Science.gov

Sample records for cells identified ultrastructurally

  1. Effects of ultrasound upon endothelial cell ultrastructure

    NASA Astrophysics Data System (ADS)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    A number of new brain applications for therapeutic ultrasound are emerging including drug delivery through BBB opening, enhancement of angiogenesis, sonothrombolysis and neuromodulation. Safety remains important as alterations in the cytoskeleton and tight junctions of endothelial cells have been described. In this study we characterize the in vitro effects of ultrasound on cell morphology using a new human brain cell line (hCMEC/D3). Changes in ultrastructure were analyzed with antibodies against tubulin, actin and catenin. Transport was analyzed by measuring transferrin uptake. No significant changes were seen after continuous wave ultrasound treatment of hCMEC/D3 cells grown in Opticell{trade mark, serif} chambers. We could not observe disassembled actin stress fibers or variations in the microtubule network. However, severe damage occurred in cells cultured in petri dishes.

  2. Brush cells in the human duodenojejunal junction: an ultrastructural study

    PubMed Central

    Morroni, Manrico; Cangiotti, Angela Maria; Cinti, Saverio

    2007-01-01

    Brush cells have been identified in the respiratory and gastrointestinal tract mucosa of many mammalian species. In humans they are found in the respiratory tract and the gastrointestinal apparatus, in both the stomach and the gallbladder. The function of brush cells is unknown, and most morphological data have been obtained in rodents. To extend our knowledge of human brush cells, we performed an ultrastructural investigation of human small intestine brush cells. Six brush cells identified in five out of more than 300 small intestine biopsies performed for gastrointestinal tract disorders were examined by transmission electron microscopy. Five brush cells were located on the surface epithelium and one in a crypt. The five surface brush cells were characterized by a narrow apical pole from which emerged microvilli that were longer and thicker than those of enterocytes. The filamentous core extended far into the cell body without forming the terminal web. Caveolae were abundant. Filaments were in the form of microfilaments and intermediate filaments. Cytoplasmic projections containing filaments were found on the basolateral surface of brush cells. In a single cell, axons containing vesicles and dense core granules were in close contact both with the basal and the lateral surface of the cell. The crypt brush cell appeared less mature. We concluded that human small intestine brush cells share a similar ultrastructural biology with those of other mammals. They are polarized and well-differentiated cells endowed with a distinctive cytoskeleton. The observation of nerve fibres closely associated with brush cells, never previously described in humans, lends support to the hypothesis of a receptor role for these cells. PMID:17509089

  3. A Model of the Ultrastructure of a Cell.

    ERIC Educational Resources Information Center

    Bushell, Jean

    2001-01-01

    Presents a project for modeling cellular ultrastructure for 14-17 year old students that helps to develop concepts of measurement and scaling in addition to supporting student understanding of cell biology. (Author/YDS)

  4. Considerations on the ultrastructural particularities of the dental pulp cells.

    PubMed

    Manolea, H; Deva, V; Bogdan, Fl; Moraru, Iren; Pancă, Oana-Adina; Caraivan, O

    2008-01-01

    We realized an ultrastructural study of the cells of the dental pulp, having in view their particularities relative to other types of conjunctive tissue. For this purpose, we selected five cases represented by teeth without subjective or objective symptomatology. Within the paper there are exposed the morphological aspects observed by means of electron microscopy. The results are then discussed in relation with a series of observations made by other researchers regarding the particularities of the pulp cells structures.

  5. Ulcerative colitis: ultrastructure of interstitial cells in myenteric plexus.

    PubMed

    Rumessen, J J; Vanderwinden, J-M; Horn, T

    2010-10-01

    Interstitial cells of Cajal (ICC) are key regulatory cells in the gut. In the colon of patients with severe ulcerative colitis (UC), myenteric ICC had myoid ultrastructural features and were in close contact with nerve terminals. In all patients as opposed to controls, some ICC profiles showed degenerative changes, such as lipid droplets and irregular vacuoles. Nerve terminals often appeared swollen and empty. Glial cells, muscle cells, and fibroblast-like cells (FLC) showed no alterations. FLC enclosed macrophages (MLC), which were in close contact with naked axon terminals. The organization and cytological changes may be of pathophysiological significance in patients with UC. PMID:20568987

  6. Ultrastructure of Leydig cells in human ageing testes.

    PubMed Central

    Paniagua, R; Amat, P; Nistal, M; Martin, A

    1986-01-01

    Ultrastructural study of Leydig cells in elderly men revealed the following Leydig cell types: (1) ultrastructurally normal Leydig cells (46.2%); (2) Leydig cells either with multiple cytoplasmic or intranuclear Reinke crystals or with numerous para-crystalline inclusions (6.1%); (3) multivacuolated Leydig cells with the cytoplasm almost filled by lipid droplets (16.7%; (4) dedifferentiated Leydig cells with poor development of agranular endoplasmic reticulum and mitochondria, and increased amounts of lipofuscin granules (22.3%); and (5) bi- or trinucleate Leydig cells (8.7%) showing either a normal (2.8%) or dedifferentiated (5.9%) cytoplasm. These results suggest an involution of Leydig cells with advancing age. A correlation between the proportion of altered Leydig cells and the decrease in testosterone and increase in luteinising hormone levels could be observed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Figs. 6-7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:3693056

  7. Vanadium induced ultrastructural changes and apoptosis in male germ cells.

    PubMed

    Aragón, M A; Ayala, M E; Fortoul, T I; Bizarro, P; Altamirano-Lozano, M

    2005-01-01

    Vanadium is a transition metal that is emitted to the atmosphere during combustion of fossil fuels. In the environment, vanadium occurs in the (V) oxidized form, but in the body it is found exclusively in the (IV) oxidized form. Vanadium tetraoxide is an inorganic chemical species in the (IV) oxidized form that has been shown to induce toxic effects in vitro and in vivo. The reproductive toxicity of vanadium in males was studied through monitoring germ cell apoptosis during spermatogenesis. We analyzed ultrastructural damage, and testosterone and progesterone concentrations following vanadium tetraoxide administered to male mice for 60 days. Spermatogenesis stages I-III and X-XII frequently showed apoptotic germ cells in control and treated animals; vanadium tetraoxide treatment induced an increase in the number of germ cell apoptosis in stages I-III and XII at 9.4 and 18.8 mg/kg, respectively. Although spermatogenesis is regulated by testosterone, in our study this hormone level was not modified by vanadium administration; thus, germ cell death was not related with testosterone concentration. At the ultrastructural level, we observed inclusion structures that varied as to location and content in the Sertoli and germ cells. PMID:15808796

  8. Ultrastructural observations reveal the presence of channels between cork cells.

    PubMed

    Teixeira, Rita Teresa; Pereira, Helena

    2009-12-01

    The ultrastructure of phellem cells of Quercus suber L. (cork oak) and Calotropis procera (Ait) R. Br. were analyzed using electron transmission microscopy to determine the presence or absence of plasmodesmata (PD). Different types of Q. suber cork samples were studied: one year shoots; virgin cork (first periderm), reproduction cork (traumatic periderm), and wet cork. The channel structures of PD were found in all the samples crossing adjacent cell walls through the suberin layer of the secondary wall. Calotropis phellem also showed PD crossing the cell walls of adjacent cells but in fewer numbers compared to Q. suber. In one year stems of cork oak, it was possible to follow the physiologically active PD with ribosomic accumulation next to the aperture of the channel seen in the phellogen cells to the completely obstructed channels in the dead cells that characterize the phellem tissue.

  9. Structure and ultrastructure of adrenocorticotropic hormone cells in goats in anoestrus, gestation and milk production.

    PubMed

    Navarro, J A; Gómez, M A; Sánchez, J; Gómez, S; Bernabé, A

    1991-01-01

    The structural and ultrastructural characteristics of adrenocorticotropic hormone cells in adult female goats in anoestrus, gestation and milk production were studied with an immunohistochemical method (peroxidase-antiperoxidase). Only one cellular type has been identified and is characterized by numerous secretory granules of different electron density and an average diameter of 275 nm. During pregnancy these cells increase in number and size, and there is a frequent presence of vacuoles. During lactation the number of size of the cells decreases but without reaching the state observed in anoestrus and the involution of the cytoplasmic vacuolizations which appear in pregnancy.

  10. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    Columella cells of seedlings of Zea mays L. cv. Bear Hybrid grown in the microgravity of orbital flight allocate significantly larger relative-volumes to hyaloplasm and lipid bodies, and significantly smaller relative-volumes to dictyosomes, plastids, and starch than do columella cells of seedlings grown at 1 g. The ultrastructure of columella cells of seedlings grown at 1 g and on a rotating clinostat is not significantly different. However, the ultrastructure of cells exposed to these treatments differs significantly from that of seedlings grown in microgravity. These results indicate that the actions of a rotating clinostat do not mimic the ultrastructural effects of microgravity in columella cells of Z. mays.

  11. Dexamethasone induced ultrastructural changes in cultured human trabecular meshwork cells.

    PubMed

    Wilson, K; McCartney, M D; Miggans, S T; Clark, A F

    1993-09-01

    Glucocorticoid-induced ocular hypertension has been demonstrated in both animals and humans. It is possible that glucocorticoid-induced changes in trabecular meshwork (TM) cells are responsible for this hypertension. In order to elaborate further the effect of glucocorticoids on the trabecular meshwork, the ultrastructural consequences of dexamethasone (DEX) treatment were examined in three different human TM cell lines. Confluent TM cells were treated with 0.1 microM of DEX for 14 days, and then processed for light, epifluorescent microscopy or transmission electron microscopy (TEM). The effect of DEX treatment on TM cell and nuclear size was quantified using computer assisted morphometrics. Morphometric analysis showed a significant increase in both TM cell and nuclear size after 14 days of DEX treatment. Epifluorescent microscopy of rhodamine-phalloidin stained, control TM cells showed the normal arrangement of stress fibers. In contrast, DEX-treated TM cells showed unusual geodesic dome-like cross-linked actin networks. Control TM cells had the normal complement and arrangement of organelles as well as electron dense inclusions and large vacuoles. DEX-treated TM cells showed stacked arrangements of smooth and rough endoplasmic reticulum, proliferation of the Golgi apparatus, pleomorphic nuclei and increased amounts of extracellular matrix material. The DEX-induced alterations observed in the present study may be an indication of the processes that are occurring in the in vivo disease process. PMID:8261790

  12. Ultrastructure of sperm cells in the female gonoduct of Xiphinema.

    PubMed

    Van De Velde, M C; Coomans, A; Van Ranst, L; De W Kruger, J C; Claeys, M

    1991-01-01

    The ultrastructure of the sperm cells in the female gonoduct of the nematodes Xiphinema theresiae and X. pinoides is described. The nucleus of the sperm cells is composed of several electron-dense clumps of chromatin that is not surrounded by a nuclear envelope. A layer of mitochondria, in which the mitochondrial cristae are only rarely visible, lies around the nuclear material. In the surrounding cytoplasm packets of electron-dense fibres are abundant. The sperm in the uterus have the following surface differentiations: highly intertwined protrusions between adjacent sperm cells, protrusions coinciding with the plication of the inner uterine wall and a slightly undulated surface towards the uterine lumen. It is argued that in the uterus, the sperm cells actively move in proximal direction by a mechanism resembling pseudopodial movement, in which the packets of fibres are involved. In the oviduct, the sperm cells loose their surface protrusions and the packets of fibres gradually become less abundant. Since the oviduct has no pre-formed lumen, the sperm cells appear to wedge their way along by forcing oviduct cells apart.

  13. Photodynamic therapy on the ultrastructure of glioma cell

    NASA Astrophysics Data System (ADS)

    Hu, Shaoshan; Zhang, Ruyou; Zheng, Yongri

    2005-07-01

    OBJECTIVE :the main purpose of this experiment was to study the change of C6 glioma cells' ultrastructure treated by photodynamic therapy(PDT), observe the change of morphology METHOD :Make the model of rat glioma by transplanted C6 glioma cells into caudate nucleus,treated the glioma rat by PDT after two weeks. Observed the difference of subcellular structure before and after PDT by electron microscope. RESULT : Apoptosis and necrosis can be seen after treated by PDT in the C6 glioma, basal membrance damaged ,number of cellular organ of endothelial cell of blood capillary declined,tight junction of endothelial cell lengthen and the gap enlarge. The PDT has slightly effect on the nomorl rat"s subcellular structue. CONCLUSION: PDT can induce the apoptosis and necrosis of C6 glioma cell. The damage of the ultramicrostructure of mitochondria and endoplasmic reticulum was the foundmentol of the change. PDT initiate the damage of BBB of the C6 glioma cell and weeken the function、and makes it a useful way of treating the glioma combained with chemotherapy.

  14. Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Mastrodonato, Maria; Blasi, Antonella; Francioso, Edda; Rossi, Roberta; Crovace, Antonio; Resta, Leonardo

    2015-09-01

    Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify "in situ" the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected.

  15. Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Mastrodonato, Maria; Blasi, Antonella; Francioso, Edda; Rossi, Roberta; Crovace, Antonio; Resta, Leonardo

    2015-09-01

    Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify "in situ" the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected. PMID:26196242

  16. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N. A.

    2001-01-01

    Investigations of low magnetic field (LMF) effects on biological systems have attracted attention of biologists due to planned space flights to other planets where the field intensity does not exceed 10 -5 Oe. Pea ( Pisum sativum L.) seeds were grown in an environment of LMF 3 days. In meristem cells of roots exposed to LMF, one could observe such ultrastructural peculiarities as a noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids. Mitochondria were the most sensitive organelle to LMF application. Their size and relative volume in cells increased, matrix was electron-transparent, and cristae reduced. Because of the significant role of calcium signalling in plant responses to different environmental factors, calcium participation in LMF effects was investigated using a pyroantimonate method to identify the localization of free calcium ions. The intensity of cytochemical reaction in root cells after LMF application was strong. The Ca 2+ pyroantimonate deposits were observed both in all organelles and in a hyaloplasm of the cells. Data obtained suggest that the observed LMF effects on ultrastructure of root cells were due to disruptions in different metabolic systems including effects on Ca 2+ homeostasis.

  17. OXIDATIVE PHOSPHORYLATION AND ULTRASTRUCTURAL TRANSFORMATION IN MITOCHONDRIA IN THE INTACT ASCITES TUMOR CELL

    PubMed Central

    Hackenbrock, Charles R.; Rehn, Terry G.; Weinbach, Eugene C.; Lemasters, John J.

    1971-01-01

    We have examined the ultrastructure of mitochondria as it relates to energy metabolism in the intact cell. Oxidative phosphorylation was induced in ultrastructurally intact Ehrlich ascites tumor cells by rapidly generating intracellular adenosine diphosphate from endogenous adenosine triphosphate by the addition of 2-deoxyglucose. The occurrence of oxidative phosphorylation was ascertained indirectly by continuous and synchronous monitoring of respiratory rate, fluorescence of pyridine nucleotide, and 90° light-scattering. Oxidative phosphorylation was confirmed by direct enzymatic analysis of intracellular adenine nucleotides and by determination of intracellular inorganic orthophosphate. Microsamples of cells rapidly fixed for electron microscopy revealed that, in addition to oxidative phosphorylation, an orthodox → condensed ultrastructural transformation occurred in the mitochondria of all cells in less than 6 sec after the generation of adenosine diphosphate by 2-deoxyglucose. A 90° light-scattering increase, which also occurs at this time, showed a t ½ of only 25 sec which agreed temporally with a slower orthodox → maximally condensed mitochondrial transformation. Neither oxidative phosphorylation nor ultrastructural transformation could be initiated in mitochondria in intact cells by the intracellular generation of adenosine diphosphate in the presence of uncouplers of oxidative phosphorylation. Partial and complete inhibition of oxidative phosphorylation by oligomycin resulted in a positive relationship to partial and complete inhibition of 2-deoxyglucose-induced ultrastructural transformation in the mitochondria in these cells. The data presented reveal that an orthodox → condensed ultrastructural transformation is linked to induced oxidative phosphorylation in mitochondria in the intact ascites tumor cell. PMID:5111873

  18. The effects of ultraviolet C radiation on the ultrastructure of the liver cells of mole rats.

    PubMed

    Tekın, Saban; Türker, Hüseyin; Güven, Turan; Yel, Mustafa

    2016-01-01

    The aim of this study was to elucidate the ultrastructural changes in the liver cells of mole rats (Spalax leucodon) exposed to ultraviolet radiation (UVR). Thirteen mole rats used in this study were caught from nature. They were divided into four groups. The first group was separated as a control and was not given any radiation. The rest were exposed to ultraviolet C (UVC) radiation for 7, 14, and 21 days. The electron microscopic examinations revealed that significant ultrastructural changes occurred in the liver tissue. These changes were the reduction in cytoplasmic organelles, dilatation in rough endoplasmic reticulum, impairment of nucleus membrane, and broadened and vacuolated mitochondria in the cytoplasm. Also, UVC radiation caused significant changes in liver enzymes of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gama-glutamiltransferase values. After long-term exposure to radiation, some excessive ultrastructural changes occurred. These results indicated that longer exposure to UVR would cause more ultrastructural effects on the liver cells and liver enzymes.

  19. Ultrastructure of synaptic contacts between identified neurons of the auditory pathway in Gryllus bimaculatus DeGeer.

    PubMed

    Hirtz, R; Wiese, K

    1997-09-29

    The synaptic contacts between the auditory sensory cells and identified auditory interneurons ON1 and AN2 have been examined at the ultrastructural level by selective electron-dense labeling of two interneurons or of one interneuron and the sensory fibers in the same preparation. The experiments have provided the following information. The auditory afferent fibers have a monosynaptic connection with the lateral inhibitors ON1 and the ascending interneuron AN2, allowing direct activation of these interneurons. Furthermore, our work proves that the paired, lateral, inhibitor ON1 neurons have direct output synapses onto each other. The results also show that the auditory afferent axons, themselves, receive synaptic inputs just before entering the central auditory neuropil. The effects of current injection into the ON1 neuron during auditory processing indicate that these synaptic inputs onto the afferents originate, in part, from the lateral branches of the ipsilateral ON1 neuron and that they have inhibitory function. The significance of these results for auditory processing and a future perspective for electron microscopic analysis of neuropil are discussed.

  20. Comparison of the Ultrastructures of Primed and Naïve Mouse Embryonic Stem Cells.

    PubMed

    Lai, Dongmei; Bu, Shixia

    2016-02-01

    Culture conditions have been established to maintain the pluripotency of mouse naïve and primed embryonic stem cells (ESCs) using human amnion epithelial cells (hAECs) as the feeder layer. In this study, the ultrastructures of mouse primed ESCs grown on hAECs were analyzed by transmission electron microscopy. Consistent with mouse naïve ESCs, the undifferentiated mouse primed ESC line ESD-EpiSC [ESC-derived epiblast stem cells (EpiSCs)] revealed typical characteristics, including large nuclei, reticulated nucleoli, scanty cytoplasm, and low cytoplasm-to-nuclear ratios. Cells had prominent Golgi apparatus and well-developed endoplasmic reticulum. Adjacent cells were tightly in contact with dense junction desmosomes. However, in EpiSC colonies, cell contact was no longer close like naïve ESCs, and differentiated cells existed. The differentiated cells had small nucleoli with large cytoplasm, which represented primitive mesenchyme. Phagosomes or apoptotic cells were also common in the cytoplasm of differentiated cells, which suggests a differentiation potential. When exposed to leukemia inhibitory factor (LIF), ESD-EpiSCs could convert to naïve-like cells. We further analyzed the ultrastructure of converted EpiSCs (cESCs). As compared to ESD-EpiSCs, cESCs showed similar ultrastructural characteristics as naïve ESCs. These findings suggest that ultrastructure could be used to evaluate the pluripotency of ESCs. PMID:26757253

  1. Cadmium-induced ultrastructural changes in Euglena cells

    SciTech Connect

    Duret, S.; Bonaly, J.; Bariaud, A.; Vannereau, A.; Mestre, J.C.

    1986-02-01

    The ultrastructure of Euglena gracilis grown in the presence of Cd showed only numerous myelin-like structures in mitochondria, chloroplasts altered in shape, and thylakoid arrangement and increase of osmiophilic plastoglobuli. These alterations indicate that respiratory processes are the initial target of Cd toxicity.

  2. Immunogold identification of prolactin cells of goats in anoestrus, pregnancy and milk production: ultrastructural variations.

    PubMed

    Sánchez, J; Bernabé, A; Navarro, J A; Gómez, M A; Gómez, J

    1992-01-01

    Prolactin (PRL) cells of the goat adenohypophysis have been identified by the IgG-gold procedure with anti-sheep PRL serum. The secretion of these cells show differences in size and labelling in the three reproductive stages under study. Cells containing PRL can be grouped into low secretory activity cells (PRL-I) and high secretory activity cells (PRL-II) regarding their ultrastructure and functional significance. PRL-I were the most frequent cells in animals at the anoestrus stage, presenting numerous secretory granules and scarce development of the rough endoplasmic reticulum (RER) and Golgi complex (GC). At anoestrus and pregnancy stages there are frequent granule fusions, and the hormonal content partially disappears, perhaps by digestion. PRL-II cells were the most numerous at the lactating stage, presenting a moderate number of secretory granules and well-developed GC and RER. Some PRL-II cells of lactating animals exhibiting scarce granules and numerous exocytosis suggesting a high secretory activity. In both anoestrus and pregnancy stages most granules range in diameter from 450 to 750 nm, in contrast to the lactating stage in which most granules range in diameter from 150 to 450 nm.

  3. Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure

    PubMed Central

    Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; SCHRÖDER, RASMUS R

    2015-01-01

    For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. Lay Description To look at immune cells from zebrafish we employed array tomography, a technique where arrays of serial sections deposited on solid substrates are used for imaging. Cell populations were isolated from the different organs of zebrafish involved in haematopoiesis, the production of blood cells. They were chemically fixed and centrifuged to concentrate them in a pellet that was then dehydrated and embedded in resin. Using a custom-built handling device it was possible to place hundreds of serial sections on silicon wafers as well ordered arrays. To image a whole cell at a resolution that would allow identifying all the organelles (i.e. compartments surrounded by membranes) inside the cell, stacks of usually 50–100 images were recorded in a scanning electron microscope (SEM). This recording was either done manually or automatically using the newly released Atlas Array Tomography platform on a ZEISS SEM. For the imaging of the sections a pixel size of about 5 nm was chosen, which defines membrane boundaries very well and allows segmentation of the membrane topology. After alignment of the

  4. Ultrastructural analysis of cell component distribution in the apical cell of Ceratodon protonemata

    NASA Technical Reports Server (NTRS)

    Walker, L. M.; Sack, F. D.

    1995-01-01

    A distinctive feature of tip-growing plant cells is that cell components are distributed differentially along the length of the cell, although most ultrastructural analyses have been qualitative. The longtitudinal distribution of cell components was studied both qualitatively and quantitatively in the apical cell of dark-grown protonemata of the moss Ceratodon. The first 35 micrometers of the apical cell was analyzed stereologically using transmission electron microscopy. There were four types of distributions along the cell's axis, three of them differential: (1) tubular endoplasmic reticulum was evenly distributed, (2) cisternal endoplasmic reticulum and Golgi vesicles were distributed in a tip-to-base gradient, (3) plastids, vacuoles, and Golgi stacks were enriched in specific areas, although the locations of the enrichments varied, and (4) mitochondria were excluded in the tip-most 5 micrometers and evenly distributed throughout the remaining 30 micrometers. This study provides one of the most comprehensive quantitative, ultrastructural analyses of the distribution of cell components in the apex of any tip-growing plant cell. The finding that almost every component had its own spatial arrangement demonstrates the complexity of the organization and regulation of the distribution of components in tip-growing cells.

  5. A fast method to study the secretory activity of neuroendocrine cells at the ultrastructural level.

    PubMed

    Van Herp, F; Coenen, T; Geurts, H P M; Janssen, G J A; Martens, G J M

    2005-04-01

    Cryo field emission scanning electron microscopy (cryo-FE-SEM) is a versatile technique that allows the investigation of the three-dimensional organization of cells at the ultrastructural level over a wide range of magnifications. Unfortunately, cryopreparation of the specimens for this technique remains cumbersome, in particular because ice crystal formation must be prevented during freezing. Here we report that a light prefixation with glutaraldehyde and incubation in glycerol as cryoprotectant or a high-pressure freezing approach are both excellent procedures for cryopreparation of animal cells to be used in combination with cryo-FE-SEM. Using the proopiomelanocortin-producing intermediate pituitary melanotrope cells of Xenopus laevis as a physiologically inducible neuroendocrine system, we compared the ultrastructural characteristics of inactive and hyperactive neuroendocrine cells. The overall quality of the ultrastructural images was comparable for the two cryopreparation procedures, although some fine structures were better conserved using high-pressure freezing. Melanotrope cells in a secretory inactive state contained numerous storage granules and a poorly developed endoplasmic reticulum (ER), while large amounts of rough ER were present in hyperactive cells. Thus, the cryo-FE-SEM approach described here allows a fast ultrastructural study on the secretory activity of neuroendocrine cells.

  6. Structural and ultrastructural study of GH, PRL and SMT cells in male goat by immunocytochemical methods.

    PubMed

    Gómez, M A; Garcés-Abadías, B; Muñoz, A; Vásquez, F; Serrano, J; Bernabé, A

    1999-01-01

    The structural and ultrastructural characteristics of adenohypophyseal growth hormone (GH)-, prolactin (PRL)- and GH-PRL (SMT)-secreting cells were studied using immunocytochemical techniques in two normal and one lactating male goat. SMT cells were found in both types of males, which showed the same characteristics as those reported for the female. PRL and SMT cells were more frequent in the lactating male, which reflects their greater galactopoietic activity. GH cells did not seem to influence this process significantly.

  7. [Ultrastructural analysis of the action of centrophenoxine on retrovirus-transformed cells].

    PubMed

    Popov, V I; Mantsygin, Iu A; Tatariunas, A B; Allakhverdov, B L

    1989-06-01

    The ultrastructure of hybridoma cells cultured with 5.10(-4) centrophenoxine (CP) has been studied. It is shown that CP effects hybridomas and prevents retrovirus exocytosis. The effect of CP on Ca-calmodulin system associated with cytoskeleton is suggested.

  8. [Transcription complexes in subnuclear fractions isolated from mammalian cells: ultrastructural study].

    PubMed

    Puvion-Dutilleul, F; Bachellerie, J P; Bernadac, A; Zalta, J P

    1977-02-21

    Miller Beatty's technique was adapted to the study of definite chromatin fractions (nucleolar and nonnucleolar chromatin) isolated from Mammalian cells. The ultrastructural organization of the transcriptional complexes obtained depended on the nuclear compartment studied. In isolated nucleoli, there were "Christmas-tree"-like figures. In nonnucleolar chromatin, the figures were different from the former by the internal structure of the RNP fibrils being synthesized.

  9. Inflammation and Cell Death in Age-Related Macular Degeneration: An Immunopathological and Ultrastructural Model.

    PubMed

    Ardeljan, Christopher P; Ardeljan, Daniel; Abu-Asab, Mones; Chan, Chi-Chao

    2014-01-01

    The etiology of Age-related Macular Degeneration (AMD) remains elusive despite the characterization of many factors contributing to the disease in its late-stage phenotypes. AMD features an immune system in flux, as shown by changes in macrophage polarization with age, expression of cytokines and complement, microglial accumulation with age, etc. These point to an allostatic overload, possibly due to a breakdown in self vs. non-self when endogenous compounds and structures acquire the appearance of non-self over time. The result is inflammation and inflammation-mediated cell death. While it is clear that these processes ultimately result in degeneration of retinal pigment epithelium and photoreceptor, the prevalent type of cell death contributing to the various phenotypes is unknown. Both molecular studies as well as ultrastructural pathology suggest pyroptosis, and perhaps necroptosis, are the predominant mechanisms of cell death at play, with only minimal evidence for apoptosis. Herein, we attempt to reconcile those factors identified by experimental AMD models and integrate these data with pathology observed under the electron microscope-particularly observations of mitochondrial dysfunction, DNA leakage, autophagy, and cell death. PMID:25580276

  10. Ultrastructure of Zika virus particles in cell cultures

    PubMed Central

    Barreto-Vieira, Debora Ferreira; Barth, Ortrud Monika; da Silva, Marcos Alexandre Nunes; Santos, Carolina Cardoso; Santos, Aline da Silva; F, Joaquim Batista; de Filippis, Ana Maria Bispo

    2016-01-01

    Zika virus (ZIKV) has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM). Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient’s blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible. PMID:27581122

  11. Ultrastructure of Zika virus particles in cell cultures.

    PubMed

    Barreto-Vieira, Debora Ferreira; Barth, Ortrud Monika; Silva, Marcos Alexandre Nunes da; Santos, Carolina Cardoso; Santos, Aline da Silva; F, Joaquim Batista; Filippis, Ana Maria Bispo de

    2016-08-01

    Zika virus (ZIKV) has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM). Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient's blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible.

  12. Ultrastructure of Zika virus particles in cell cultures.

    PubMed

    Barreto-Vieira, Debora Ferreira; Barth, Ortrud Monika; Silva, Marcos Alexandre Nunes da; Santos, Carolina Cardoso; Santos, Aline da Silva; F, Joaquim Batista; Filippis, Ana Maria Bispo de

    2016-08-01

    Zika virus (ZIKV) has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM). Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient's blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible. PMID:27581122

  13. Long clinostation influence on the ultrastructure of Funaria hygrometrica moss protonema cells

    NASA Astrophysics Data System (ADS)

    Nedukha, E. M.

    Changes in the ultrastructure of protonema cells of Funaria hygrometrica, cultivated during 20 days on a horizontal clinostat (2 rev/min), were determined by the electron microscopy method. About 20% of the cells were almost identical to those in the control, 20% were destructive cells, and in 60% ultrastructure changes were observed. The heterogeneity of the reaction demonstrated the evidence of sensitive cells on the clinostation process. Changes affected the ultrastructure of plastids, wall of the cell, and the form of the nucleus as well. Starch disappeared from chloroplasts practically completely, thylakoids swelled, granas frequently disappeared from plastids. Peroxisomes number in cells increased appreciably, width of cell walls decreased by almost half their size. Ca++-binding sites were revealed in cytoplasma of cells. Electronocytochemical exposure of ATPases activity with the presence of Mg++ and Ca++ ions showed that Mg2+-ATPase activity localization in clinosted cells was not too different from the control, while Ca2+-ATPase location presented differences in plasmalemma and Ca-sites. These changes are perhaps connected with the membranes permeability breaking and affect the plant cells adaptation to the influence of hypogravitation.

  14. Ultrastructural characteristics of type A epithelioid cells during BCG-granulomatosis and treatment with lysosomotropic isoniazid.

    PubMed

    Shkurupii, V A; Kozyaev, M A; Nadeev, A P

    2006-04-01

    We studied BCG-granulomas, their cellular composition, and ultrastructure of type A epithelioid cells in the liver of male BALB/c mice with spontaneous granulomatous inflammation. The animals received free isoniazid or isoniazid conjugated with lysosomotropic intracellularly prolonged matrix (dialdehyde dextran, molecular weight 65-75 kDa). Lysosomotropic isoniazid was accumulated in the vacuolar apparatus of epithelioid cells and produced a stimulatory effect on plastic processes in these cells.

  15. Morphometric and ultrastructural analysis of different pituitary cell populations in undernourished monkeys.

    PubMed

    Cónsole, G M; Jurado, S B; Oyhenart, E; Ferese, C; Pucciarelli, H; Gómez Dumm, C L

    2001-01-01

    Undernutrition elicited by a low-protein diet determines a marked reduction of hypophyseal activity and affects the function of the respective target organs. The objective of the present investigation was to study the ultrastructural and quantitative immunohistochemical changes of the different pituitary cell populations in undernourished monkeys that had been previously shown to have significant changes in craniofacial growth. Twenty Saimiri sciureus boliviensis monkeys of both sexes were used. The animals were born in captivity and were separated into two groups at one year of age, i.e., control and undernourished animals. The monkeys were fed ad libitum a 20% (control group) and a 10% (experimental group) protein diet for two years. Pituitaries were processed for light and electron microscopy. The former was immunolabeled with anti-GH, -PRL, -LH, -FSH, -ACTH, and -TSH sera. Volume density and cell density were measured using an image analyzer. Quantitative immunohistochemistry revealed a decrease in these parameters with regard to somatotrophs, lactotrophs, gonadotrophs and thyrotrophs from undernourished animals compared to control ones. In these populations, the ultrastructural study showed changes suggesting compensatory hyperfunction. On the contrary, no significant changes were found in the morphometric parameters or the ultrastructure of the corticotroph population. We conclude that in undernourished monkeys the somatotroph, lactotroph, gonadotroph, and thyrotroph cell populations showed quantitative immunohistochemical changes that can be correlated with ultrastructural findings.

  16. An ultrastructural study of sporidium formation during infection of a rhabditid nematode by large gun cells of Haptoglossa heteromorpha.

    PubMed

    Glockling, S L; Beakes, G W

    2000-10-01

    Recently fired gun cells of Haptoglossa heteromorpha, an aplanosporic nematode parasite, were examined ultrastructurally. The everted tubes of the fired cells had penetrated the cuticle of a nematode, and infective sporidia were developing inside the host body. The nematode cuticle was penetrated by the narrow, walled part of the tube below the needle chamber. The lower unwalled part of the tube tail formed the sporidium. The developing sporidium had a multilayered fibrous outer coating and the plasma membrane was separated from the wall in places. Sporidia contained biphasic membrane-bound vesicles that had been generated by the Golgi dictyosome during gun cell development. Immediately following gun cell firing, the nuclear envelope of the sporidium nucleus was not apparent, and the sporidium nucleus contained clusters of electron-dense particles concentrated in the nucleolar region. We compare the structures and organelles found in the mature gun cell with those in the fired cell and attempt to identify the membranous layers around the sporidium.

  17. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall

    PubMed Central

    Scholz, Matthew J.; Weiss, Taylor L.; Jinkerson, Robert E.; Jing, Jia; Roth, Robyn; Goodenough, Ursula; Posewitz, Matthew C.

    2014-01-01

    Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes. PMID:25239976

  18. Clear cell papillary renal cell carcinoma: a clinicopathological study emphasizing ultrastructural features and cytogenetic heterogeneity.

    PubMed

    Shi, Shan-Shan; Shen, Qin; Xia, Qiu-Yuan; Tu, Pin; Shi, Qun-Li; Zhou, Xiao-Jun; Rao, Qiu

    2013-01-01

    Clear cell papillary renal cell carcinoma (CCPRCC) is a recently recognized renal neoplasm, which was initially described in end-stage renal disease (ESRD), but some cases have been reported in otherwise normal kidneys. We report a series of 11 CCPRCC (age range, 33-72 years; male-to-female ratio, 8:3). Follow-up was available for 8 patients. No patients developed local recurrence, distant or lymph-node metastasis, or cancer death. Histologically, all tumors exhibit morphologic features typical of CCPRCC including a mixture of cystic and papillary components, covered by small to medium-sized cuboidal cells with abundant clear cytoplasm. All 11 cases exhibited moderate to strong positivity for CK7, CA9, Vim, and HIF-1α, coupled with negative reactions for CD10, P504S, and RCC. We did not find any VHL gene mutations in all 11 cases. Losses of chromosomes 3 (monoploid chromosome 3) was detected in 3 cases. Ultrastructurally, the tumor cells composed of numerous glycogens with scanty cell organelles, reminiscent of clear cell renal cell carcinoma (CCRCC). In conclusion, the coexpression of CA9 and HIF-1α in the absence of VHL gene abnormalities in CCPRCC suggests activation of the HIF pathway by mechanisms independent of VHL gene mutation. Losses of chromosomes 3 (monosomies chromosome 3) was detected in 3 cases suggesting that at least some of these lesions have demonstrated abnormalities of chromosomes 3. Ultrastructurally, CCPRCC composed of numerous glycogens with scanty cell organelles, reminiscent of CCRCC suggesting the close pathogenesis relationship of CCPRCC with CCRCC. PMID:24294381

  19. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus.

    PubMed

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  20. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus

    PubMed Central

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  1. [Changes in antioxidative system and cell ultrastructure in the fruit peels of apple during sunburn development].

    PubMed

    Hao, Yan-Yan; Huang, Wei-Dong

    2004-02-01

    Fruits from 6-year-old apple trees (Malus domestica Borkh cv. Fuji) were used as materials to test the changes of antioxidative system and cell ultrastructure of fruit peels during sunburn development. Fruit sunburn appeared in mid July, 2002. The process of apple fruit sunburn was divided into three phases (0 degrees : control): 1 degrees : bleaching, 2 degrees : brownness, and 3 degrees : necrosis. Fuji apple fruits in different sunburn state were picked. Phenolic compounds, membrane protective enzymes (SOD, POD, PPO, CAT), cell membrane lipid peroxidation and cell ultrastructure in fruit peel were studied. The result showed that the degree of cell membrane lipid peroxidation enhanced along with development of sunburn. The activity of membrane protective enzymes also increased remarkably. However, the cell structure kept its integrity, except some organelles which partly disassembled, and cytoplasm and vacuoles became enriched with electron-dense substances while fruit peels became pale. As peel became brown, chlorogenic acid, quercetin, rutin and myricetin accumulated, and cells of outer layers of the epidermis collapsed correspondingly, cell wall became thicker. It is suggested that changes in both cell ultrastructure and antioxidative system confirm that physiological state of fruit peels becomes disordered during sunburn development.

  2. The ultrastructural aspects of neoplastic myoepithelial cell in pleomorphic adenomas of salivary glands.

    PubMed

    Margaritescu, C; Raica, M; Florescu, Maria; Simionescu, Cristiana; Surpateanu, M; Jaubert, F; Bogdan, F

    2004-01-01

    The purpose of this study has been to establish the major ultrastructural aspects of the myoepithelial cell and the myoepithelial-like cells proliferated in the pleomorphic adenomas of salivary glands. Thus, twelve benign pleomorphic adenomas of salivary glands have been studied by electron-microscopy transmission techniques. Our analysis has proved the proliferation of two major cellular populations, one of ductal type and one of myoepithelial type, which tried to reproduce the tubulo-acinar cytoarchitecture from the normal salivary glands. We have also noticed the key role of the so-called 'modified' myoepithelial cells from the periphery of the proliferating epithelial units in the genesis of the myxoid and chondromyxoid tumoral stromal areas. All these ultrastructural aspects have explained the great histological diversity of these salivary gland neoplasms as well as the key role of the myoepithelial cell in its histogenesis.

  3. Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days

    NASA Astrophysics Data System (ADS)

    Popova, A. F.; Sytnik, K. M.

    The ultrastructure of Chlorella cells grown in darkness on a solid agar medium with organic additions aboard the Bion-1O biosatellite was studied. Certain differences in submicroscopic organization of organelles in the experimental cells were revealed compared to the Earth control. The changes are registered mainly in ultrastructure of energetic organelles - mitochondria and plastids of the experimental cells, in particular, an increase of mitochondria and their cristae size, as well as an increase of the total volume of mitochondrion per cell were established. The decrease of the starch amount in the plastid stroma and the electron density of the latter was also observed. In many experimental cells, the increase of condensed chromatin in the nuclei has been noted. Ultrastructural rearrangements in cells after laboratory experiment realized according to the thermogram registered aboard the Bion-10 were insignificant compared to the flight experiment. Data obtained are compared to results of space flight experiments carried out aboard the Bion-9 (polycomponent aquatic system) and the orbital station Mir (solid agar medium).

  4. Potential ultrastructural changes in rat epididymal cell types induced by Boswellia papyrifera and Boswellia carterii incense.

    PubMed

    Ahmed, Mukhtar; Al-Daghri, Nasser; Harrath, Abdul Halim; Alokail, Majed S; Aladakatti, Ravindranath H; Ghodesawar, Mukhtar Ahmed G; Alwasel, Saleh

    2013-08-01

    Boswellia papyrifera and Boswellia carterii, known as Arabian incense, diffuses smoke, contaminating the air, which adversely affects human health. Therefore, this study was designed to ascertain the effect of these plants on histopathological and ultrastructure changes in cauda epididymis of Albino rats. Animals were exposed to 4 g/kg body weight of B. papyrifera and B. carterii daily for 120 days along with suitable controls. Our study indicates a significant reduction in epithelial heights. Cells showed signs of degeneration. The ultrastructural study revealed that the cauda epididymis was affected, including its cell types. Furthermore, a decrease in the size of mitochondria, Golgi complex, and both ERs was observed. In all treated groups, plasma fructose decreased considerably, indicating the sign of reduced energy, vital for motility and other sperm functions. The results of this study suggest that these plants systematically affect cauda epididymal cell types and its lumen through its potential toxicity.

  5. [Effect of pretreatment on topochemical and ultrastructural changes of lignocellulose plant cell walls: a review].

    PubMed

    Ji, Zhe; Ling, Zhe; Zhang, Xun; Ma, Jianfeng; Xu, Feng

    2014-05-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by biochemical means is impeded by several poorly understood ultrastructural and chemical barriers. Pretreatment is an essential step by altering the morphological and compositional characteristics of biomass to enhance the sugar release during enzymatic hydrolysis. Therefore, getting insight into this field is necessary to improve the conversion of biomass into biofuels. In this review, we highlight our recent understanding on the impact of various promising pretreatments on biomass, with emphasis on the topochemical and ultrastructural changes of plant cell walls that are related to the reduction of recalcitrance and the consequence of saccharification. It will lend support to the scientific research and development with respect to biomass conversion.

  6. [Ultrastructure of the cell walls and septa in glucuronate-positive species of Candida].

    PubMed

    Golubev, V I; Loginova, T M; Tiurin, V S

    1980-01-01

    According to the ultrastructure of cell walls, glucuronate-positive species of the genus Candida include both ascomycetous organisms (C. ciferrii, C. incommunis, C. steatolytica) and basidiomycetous organisms (C. bogoriensis, C. curiosa, C. diffluens, C. javanica, C. marina). The character of budding and the structure of septa suggest that the perfect forms of glucuronate-positive ascomycetous Candida species should be looked for within the family Ascoideaceae.

  7. Distribution and ultrastructural characteristics of dark cells in squamous metaplasias of the respiratory tract epithelium. [Rats

    SciTech Connect

    Klein-Szanto, A.J.P.; Nettesheim, P.; Pine, A.; Martin, D.

    1981-05-01

    Dark epithelial basal cells were found in both carcinogen-induced and non-carcinogen-induced squamous metaplasias of the tracheal epithelium. Formaldehyde-induced squamous metaplasias exhibited 4% dark cells in the basal layer. Metaplasias induced by vitamin A deficiency and those induced by dimethylbenz(a)anthracene (DMBA) without atypia showed 18-20% basal dark cells. DMBA-induced metaplasias with moderate to severe atypia exhibited 50% basal dark cells. The labeling index of basal cells in metaplastic epithelia, regardless of the inducing agent, was 16-18%, ie, the same as that of the normal esophageal stratified squamous epithelium. The percentage of labeled dark basal cells per total dark cell population was approximately 19% in the non-carcinogen-induced metaplasias and in the DMBA-induced metaplasias without atypia. In the atypical metaplasias induced by DMA this percentage increased to 26. On the basis of ultrastructural observations, five types of dark epithelial cells could be distinguished in the metaplastic epithelia. Each type of squamous metaplasia could thus be recognized by a determined numerical distribution of dark cells in the basal layer and a specific pattern of distribution of the ultrastructurally defined dark cell categories.

  8. Biochemistry and cell ultrastructure changes during senescence of Beta vulgaris L. leaf.

    PubMed

    Romanova, Alla K; Semenova, Galina A; Ignat'ev, Alexander R; Novichkova, Natalia S; Fomina, Irina R

    2016-05-01

    The comparative study of biochemical and ultrastructure features in senescing sugar beet (Beta vulgaris L.) leaves was carried out. One group of plants was grown under normal conditions in washed river sand and poured in turn with nitrate-containing mineral solution or water (N plants). Another group of plants, after 1 month of normal growth, was further grown with nitrate omitted in the nutritive solution (defN plants). The starting point of normal leaf senescence in N plants was identified by the maximal content of soluble protein. Soluble carbohydrate pools were statistically constant in senescing N plants, whereas glucose pools varied noticeably. A decrease in the contents of soluble protein and chlorophyll (a + b) in the course of senescing was typical for N plant leaves. The cell membrane in N plant leaves remained mostly intact; the central vacuoles in the leaf cells were large, and their membranes remained intact. The chloroplasts and mitochondria in senescing N plant leaves became swollen. The vesicles that were present in the cytoplasm of N plant leaves were especially large in the oldest leaves. It was concluded that senescing of sugar beet leaves at sufficient nitrate nutrition occurs according to a "vacuolar" scenario. In the case of nitrate deficiency, the content of soluble carbohydrates in defN leaves first reached maximum and then decreased in older leaves; the protein and chlorophyll (a + b) contents were totally lower than those in normal leaves and continuously decreased during the experiments. Chloroplasts in mesophyll cells of defN plant leaves became more rounded; starch grains in chloroplasts degraded and the number and size of lipid globules increased. The multitude of membrane impairments and lots of large vesicles-"crystals" appeared during the experiment. The results showed the controlling action of nitrogen nutrition in the senescing of sugar beet leaves.

  9. Biochemistry and cell ultrastructure changes during senescence of Beta vulgaris L. leaf.

    PubMed

    Romanova, Alla K; Semenova, Galina A; Ignat'ev, Alexander R; Novichkova, Natalia S; Fomina, Irina R

    2016-05-01

    The comparative study of biochemical and ultrastructure features in senescing sugar beet (Beta vulgaris L.) leaves was carried out. One group of plants was grown under normal conditions in washed river sand and poured in turn with nitrate-containing mineral solution or water (N plants). Another group of plants, after 1 month of normal growth, was further grown with nitrate omitted in the nutritive solution (defN plants). The starting point of normal leaf senescence in N plants was identified by the maximal content of soluble protein. Soluble carbohydrate pools were statistically constant in senescing N plants, whereas glucose pools varied noticeably. A decrease in the contents of soluble protein and chlorophyll (a + b) in the course of senescing was typical for N plant leaves. The cell membrane in N plant leaves remained mostly intact; the central vacuoles in the leaf cells were large, and their membranes remained intact. The chloroplasts and mitochondria in senescing N plant leaves became swollen. The vesicles that were present in the cytoplasm of N plant leaves were especially large in the oldest leaves. It was concluded that senescing of sugar beet leaves at sufficient nitrate nutrition occurs according to a "vacuolar" scenario. In the case of nitrate deficiency, the content of soluble carbohydrates in defN leaves first reached maximum and then decreased in older leaves; the protein and chlorophyll (a + b) contents were totally lower than those in normal leaves and continuously decreased during the experiments. Chloroplasts in mesophyll cells of defN plant leaves became more rounded; starch grains in chloroplasts degraded and the number and size of lipid globules increased. The multitude of membrane impairments and lots of large vesicles-"crystals" appeared during the experiment. The results showed the controlling action of nitrogen nutrition in the senescing of sugar beet leaves. PMID:26666552

  10. GABAergic and glycinergic pathways to goldfish retinal ganglion cells: an ultrastructural double label study

    SciTech Connect

    Muller, J.F.

    1987-01-01

    An ultrastructural double label has been employed to compare GABAergic and glycinergic systems in the inner plexiform layer (IPL) of the goldfish retina. Electron microscope autoradiography of /sup 3/H-GABA and /sup 3/H-glycine uptake was combined with retrograde HRP-labeling of ganglion cells. When surveyed for distribution, GABAergic and glycinergic synapses were found onto labeled ganglion cells throughout the IPL. This reinforces previous physiological work that described GABAergic and glycinergic influences on a variety of ganglion cells in goldfish and carp; These physiological effects often reflect direct inputs.

  11. Ultrastructural Aspects of the Prenatal Bovine Ovary Differentiation with a Special Focus on the Interstitial Cells.

    PubMed

    Kenngott, R A-M; Scholz, W; Sinowatz, F

    2016-10-01

    The aim of this investigation was to study the ultrastructural features during the development of fetal bovine ovaries (crown rump length ranging from 11.4 to 94.0 cm). An interesting observation was the occurrence of big elongated cells containing a variety of electron dense granules and light homogenous vacuoles/bodies. They were located between the stroma cells surrounding the germ cell cord ends, adjacent to the first formed primordial follicles, typically situated near blood vessels. ER alpha and ER beta receptor positive cells could be detected in the same regions by means of immunohistochemistry. Intercellular bridges linked the germ cells nests oogonia. Germ cell cords consisted of centrally located, large, pale oogonia, surrounded by elongated somatic cells with very long cytoplasm extensions. Primordial follicles with flat pale follicular cells could be observed on the inner end of the cords. Extrusions of the outer nuclear membrane could often been recognised in voluminous oocytes. PMID:27439665

  12. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    PubMed Central

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that

  13. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability.

    PubMed

    Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that

  14. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE PAGES

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-06-24

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by

  15. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability.

    PubMed

    Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that

  16. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize.

    PubMed

    Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2016-08-01

    A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK. PMID:27437706

  17. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize.

    PubMed

    Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2016-08-01

    A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK.

  18. Ultrastructural studies on the replication of herpes simplex virus in PK and XTC-2 cells.

    PubMed

    Ciampor, F; Szántó, J

    1982-01-01

    Ultrastructural changes showed the following characteristics of restricted replication of herpes simplex virus 1 (HSV 1) strains MA and HSZP in PK and XTC-2 cells: 1) minimal cytopathic changes in PK cells as compared to more pronounced alterations in XTC-2 cells; 2) formation of single nucleocapsids or their absence in the nuclei of PK cells infected with the HSZP strain; 3) lack of budding and envelopment and absence of reduplication of the nuclear membrane; 4) persistence of partially uncoated virions within the endocytic vacuoles in the cytoplasm of PK cells; and 5) formation of dense inclusion bodies in addition to the presence of defective virions in the cytoplasm of XTC-2 cells and vacuolation of their cytoplasmic membranes. The replication of HSV 1 in PK and XTC-2 cells seemed to be blocked at both early and late stages of virus replication. At low multiplicity of infection, no virus particles were formed.

  19. Ultrastructural comparison of porcine putative embryonic stem cells derived by in vitro fertilization and somatic cell nuclear transfer

    PubMed Central

    YOO, Hyunju; KIM, Eunhye; HWANG, Seon-Ung; YOON, Junchul David; JEON, Yubyeol; PARK, Kyu-Mi; KIM, Kyu-Jun; JIN, Minghui; LEE, Chang-Kyu; LEE, Eunsong; KIM, Hyunggee; KIM, Gonhyung; HYUN, Sang-Hwan

    2016-01-01

    The ultrastructure of porcine putative embryonic stem cells and porcine fetal fibroblasts (PFFs) was analyzed by transmission electron microscopy. The aim of this study was to compare the features of organelles in in vitro fertilization (IVF) derived porcine embryonic stem cells (IVF-pESCs) and somatic cell nuclear transfer (SCNT) derived pESCs (SCNT-pESCs). Also, the features of organelles in high-passage IVF-pESCs were compared with those in low-passage cells. The ultrastructure of PFFs showed rare microvilli on the cell surfaces, polygonal or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, elongated mitochondria, rich lysosomes and rich phagocytic vacuoles. IVF-pESCs showed rare microvilli on the cell surfaces, round or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rich ribosomes, long stacks of rough endoplasmic reticulum, elongated mitochondria, rare lysosomes and rare autophagic vacuoles. By contrast, SCNT-pESCs showed rich microvilli with various lengths and frequencies on the cell surfaces, polygonal nuclei with one reticular shaped nucleoli and heterochromatin, high cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, round mitochondria, rich lysosomes and rich phagocytic vacuoles with clear intercellular junctions. Furthermore, high-passage IVF-pESCs showed irregularly shaped colonies, pyknosis and numerous lysosomes associated with autophagic vacuoles showing signs of apoptosis. In conclusion, this study confirms that the ultrastructural characteristics of pESCs differ depending on their origin. These ultrastructural characteristics might be useful in biomedical research using pESCs, leading to new insights regarding regenerative medicine and tissue repair. PMID:26821870

  20. Ultrastructural study of neoplastic cells in Macoma balthica (Bivalvia) from the Gulf of Gdansk (Poland).

    PubMed

    Smolarz, Katarzyna; Renault, Tristan; Wołowicz, Maciej

    2006-06-01

    In the Baltic clam Macoma balthica from the Gulf of Gdansk, neoplasia is considered as a serious epizootic linked to bad environmental conditions and high levels of pollutants. Previous research was focused on the diagnosis, prevalence, seasonality and histopathological characteristic of the cancer. This study is focused on electron microscopy analyses describing cell ultrastructure abnormalities related to neoplasia. Examinations using the electron microscopy highlighted changes confined to anatomic ultrastructures, shapes and functions of neoplastic cells. The lobulated appearance of the nucleus, changes in cellular matrix and the occurrence of large granular cells with hyperchromatic nuclei, atypical Golgi structures and deterioration of rough endoplasmic reticulum manifested the disease. The presence of atypical mitochondria, free ribosomes and hypertrophic nuclei suggests the adaptation of neoplastic cells to increased mitotic activity, while the observed modification of cellular membranes may reflect functional changes connected to increased pinocytotic activity or intercellular transport. The cancer cells were found to appear in two types, abnormal round-shaped cells and spindle-shaped cells, both with increased frequencies of cell division. Round-shaped cells typical for disseminated neoplasia were observed in all affected bivalves, in a few cases co-occurring with abnormal spherical cells. Spindle-shaped cells containing some intracytoplasmic filaments, and with a tendency of the nuclei to be orientated as in a palisade were interpreted as myofibroblasts-like cells and were observed in five out of eleven clams diagnosed as neoplastic. This finding represents the first demonstration of phenotypic differences in the cell types co-occurring in animals diagnosed as neoplastic and by that suggests coexistence of two types of bivalve cancer, disseminated neoplasia and probable fibrosarcoma.

  1. Atomic force microscope observation on ultrastructures in plant cells.

    PubMed

    Wang, Xin; Zhang, Yuliang; Du, Kaihe; Fang, Xiaohong

    2010-10-01

    AFM is being applied in increasingly wide research fields and extracting more biochemical/biophysical information that is beyond the capability of traditional SEM and TEM. Due to its inherent features, AFM is rarely used to observe the subcellular details within cells. Although subcellular features were recently observed on thin sections of plant tissues using AFM, this method might introduce unexpected artifacts during sample processing. Here we try to observe plant cells still embedded in resin block. This modified method minimizes the possibility of artifacts. The comparison among outcomes of AFM, SEM, TEM and LM on the same single cell suggest that this modified method is a good, applicable, efficient and faithful way applying AFM on biological materials.

  2. Histopathologic, immunohistochemical and ultrastructural features of a granular cell tumour in an Australian parakeet (Melopsittacus undulatus).

    PubMed

    Hernández, V; Carrera, E; Méndez, A; Morales, J C; Morales, E; Sánchez, F D

    2012-10-01

    An adult male Australian parakeet (Melopsittacus undulatus) presented a firm nodular lesion in the lateral metacarpal region of the right wing. Microscopically, there were neoplastic cells, round and polyhedral in shape, with abundant, slightly eosinophilic granular cytoplasm; they were strongly periodic-acid Schiff-positive and resistant to diastase digestion. Some groups of neoplastic cells were immunopositive for smooth muscle actin and desmin. There was no immunopositivity for S-100 protein, CD68 and cytokeratin. Ultrastructurally, the neoplastic cells were round and polygonal in shape, and they were characterized by abundant cytoplasm with numerous homogeneous osmophilic bodies covered by an electron-dense membrane (lysosomes). The histopathologic, immunohistochemical and ultrastructural features of the neoplastic tissue are consistent with a granular cell tumour, which has been described in different animal species and anatomic locations; however, this seems to be an infrequent neoplasm in Australian parakeets. The immunopositivity of the neoplastic cells for smooth muscle actin and desmin, as well as slight positivity for muscle with Masson's trichrome, suggest that this is a tumour of myogenic origin. PMID:22913601

  3. Intracellular localization of samarium in the lactating mammary gland cells: ultrastructural and microanalytical study.

    PubMed

    Ahlem, Ayadi; Samira, Maghraoui; Jean-Nicolas, Audinot; Mohamed-Habib, Jaafoura; Henri-Noël, Migeon; Ali, El Hili; Leila, Tekaya

    2012-04-01

    The frequent use of some rare earths in the medical and industrial domains make us worry about their intracellular behavior into the body. Reason for which we have investigated the subcellular localization of one of these elements, the samarium, in the mammary gland of lactating female wistar rats using two very sensitive methods of observation and microanalysis, the transmission electron microscopy and the secondary ion mass spectrometry. The ultrastructural study showed the presence of electron dense deposits in the lactating mammary glandular epithelial cell lysosomes of the samarium-treated rats, but no loaded lysosomes were observed in those of control rats. The microanalytical study allowed both the identification of the chemical species present in those deposits as samarium isotopes ((152) Sm(+)) and the cartography of its distribution. Our results confirm the previous ones showing that lysosomes of the glandular epithelial cells are the site of the intracellular concentration of foreign elements such as gallium. The intralysosomal deposits observed in the mammary glandular cells of the samarium-treated rats are similar in their form and density to those observed with the same element in other varieties of cells, such as liver, bone marrow, and spleen cells. Our ultrastructural and microanalytical results and those obtained in previous studies allow deducing that the intralysosomal deposits are very probably composed of an insoluble samarium phosphate salt. PMID:22021164

  4. Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells.

    PubMed

    Wang, Ying; Hu, Peng-Chao; Ma, Yan-Bin; Fan, Rong; Gao, Fang-Fang; Zhang, Jing-Wei; Wei, Lei

    2016-01-01

    This study investigated the effects of sodium butyrate (NaB) on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and analyzed the relevant mechanism. Here, we demonstrated that a certain concentration of NaB effectively induced MCF-7 cell apoptosis. Cell counting kit-8 (CCK-8) assay was used to detect cell viability and the apoptosis rate. Western blotting was used to detect changes in the Bcl-2 expression level. We observed cell shape changes with microscopy. Immunofluorescence revealed some apoptotic nuclei. Electron microscopy revealed thick nucleoli, chromatin margination, reduced mitochondria, and dramatic vacuoles. Collectively, our findings elucidated the morphological mechanism by which NaB changed the ultrastructure of MCF-7 cells.

  5. Ultrastructural changes in tracheal epithelial cells exposed to oxygen

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Harrison, G. A.; Turnbill, C.; Black, S.

    1977-01-01

    White albino rats were sacrificed after 24, 36, 48, 72, and 96 h of exposure to 100% O2 at 1 atm. Tissue was prepared for the scanning electron microscope (SEM) by Critical Point Drying and for the transmission electron microscope (TEM) by plastic embedding. Scanning microscopy showed a loss of microvilli after 48 h of exposure. Cilia appeared relatively normal with SEM, but TEM revealed changes in the outer membrane. In TEM, nonciliated cells appeared swollen and often encroached on the ciliated cells. A heavy mucous blanket remained even after processing. All the changes observed that are induced by oxygen exposure contribute to mucostasis, reducing and/or halting mucociliary clearance.

  6. Structural and ultrastructural studies of GH, PRL and SMT cells in goat fetus (Capra hircus) using immunocytochemical methods.

    PubMed

    Vásquez, F A; Gómez, M A; Serrano, J; Bernabé, A

    2000-10-01

    The first data based on immunolabeling techniques of goat fetus adenohypophysis show that the structure and ultrastructure of growth hormone (GH)-, prolactin (PRL)-, and GH- plus PRL-secreting cells (SMT cells) in fetuses aged 100 days differ from those in the adult. Both cell number and cell size are smaller in the fetus, and the percentage of dark cells decreases with development. The data do not support the hypothesis that SMT cells represent the common origin of GH- and PRL-cells.

  7. [The injured and the immobilized muscle cell: ultrastructural observations].

    PubMed

    Lüthi, J M; Gerber, C; Claassen, H; Hoppeler, H

    1989-06-01

    Muscle soreness is a common feature among athletes and untrained individuals who engage in unusual, especially intense eccentric exercise. Various biochemical markers as for example elevated CK demonstrate a damage of muscle cells. The most prominent structural finding is a varying degree of disruption of the contractile material up to cell degeneration. These morphological findings reach their maximum 2 or 3 days after exercise. Signs of regeneration, however, are seen even weeks after exercise. In a prospective study we investigated the structures of the quadriceps muscle in 41 patients with chronic symptomatic instability of the anterior cruciate ligament before, 9 and 26 weeks after operation using the needle biopsy technique. The immobilized muscle showed a rapid and large atrophy which markedly reduced aerobic capacity as well as maximal strength. Preoperative values weren't attained 26 weeks postoperative despite intense physiotherapeutic exercise. The control leg showed an atrophy as well, but only aerobic capacity was reduced, maximal strength remained about the same.

  8. Ultrastructure of the suberized styloid crystal cells in Agave leaves.

    PubMed

    Wattendorff, J

    1976-01-01

    Styloid calcium oxalate crystal idioblasts of Agave americana L. are suberized. Where the crystals do not touch the cell wall directly they are enclosed in a suberinic sheath which is connected with the suberinic wall layer. No polysaccharides are laid down as a tertiary wall layer, nor could any polysaccharides be found in the crystal sheath. These results contradict those of Arnott (1973) but agree fully with those of Rothert and Zalenski (1899).

  9. Ultrastructure of the cell wall of Bacillus polymyxa.

    PubMed

    Nermut, M V; Murray, R G

    1967-06-01

    The macromolecular arrangement on the surface of Bacillus polymyxa was revealed by metal shadowing of whole cells and wall fragments; it consisted of a rectangular array of 70-A globules with a repeating interval of 100 A. The substructure was studied in plan with phosphotungstic acid (pH 6) or uranyl acetate as negative stains of fragments and was studied also in profile with sections of embedded material. Staining of sections of cells fixed with glutaraldehyde showed that layering (approx. 80-A dense, 40-A light, and 120-A dense layers, outermost layer first) could be demonstrated in the cell wall with lead or uranyl acetate, used together or separately. The outer "dense" layer corresponded to the regularly arrayed structure (RS); it was removed by guanidine hydrochloride, sodium lauryl sulfate, cold formamide, and by trypsin. The RS layer (isolated by a hydrogen bond breaking reagent, guanidine hydrochloride) was disrupted by agents such as sodium lauryl sulfate or damaged by 3 m sodium chloride. Qualitative chemical tests, ultraviolet absorption, and removal by trypsin indicated that the structured layer consisted mainly of protein, but exact characterization was not attempted. The globular units making up the layer consisted of a small number of subunits, imperfectly resolved by negative staining. The underlying polysaccharide appeared to be covalently bound to the deepest (probably mucopeptide) layer since it required "hot" formamide for its removal. A survey of species was not made.

  10. Ultrastructure of the Cell Wall of Bacillus polymyxa

    PubMed Central

    Nermut, M. V.; Murray, R. G. E.

    1967-01-01

    The macromolecular arrangement on the surface of Bacillus polymyxa was revealed by metal shadowing of whole cells and wall fragments; it consisted of a rectangular array of 70-A globules with a repeating interval of 100 A. The substructure was studied in plan with phosphotungstic acid (pH 6) or uranyl acetate as negative stains of fragments and was studied also in profile with sections of embedded material. Staining of sections of cells fixed with glutaraldehyde showed that layering (approx. 80-A dense, 40-A light, and 120-A dense layers, outermost layer first) could be demonstrated in the cell wall with lead or uranyl acetate, used together or separately. The outer “dense” layer corresponded to the regularly arrayed structure (RS); it was removed by guanidine hydrochloride, sodium lauryl sulfate, cold formamide, and by trypsin. The RS layer (isolated by a hydrogen bond breaking reagent, guanidine hydrochloride) was disrupted by agents such as sodium lauryl sulfate or damaged by 3 m sodium chloride. Qualitative chemical tests, ultraviolet absorption, and removal by trypsin indicated that the structured layer consisted mainly of protein, but exact characterization was not attempted. The globular units making up the layer consisted of a small number of subunits, imperfectly resolved by negative staining. The underlying polysaccharide appeared to be covalently bound to the deepest (probably mucopeptide) layer since it required “hot” formamide for its removal. A survey of species was not made. Images PMID:6025307

  11. Ultrastructure of the Epidermal Cell Wall and Cuticle of Tomato Fruit (Solanum lycopersicum L.) during Development1[OPEN

    PubMed Central

    Segado, Patricia; Domínguez, Eva

    2016-01-01

    The epidermis plays a pivotal role in plant development and interaction with the environment. However, it is still poorly understood, especially its outer epidermal wall: a singular wall covered by a cuticle. Changes in the cuticle and cell wall structures are important to fully understand their functions. In this work, an ultrastructure and immunocytochemical approach was taken to identify changes in the cuticle and the main components of the epidermal cell wall during tomato fruit development. A thin and uniform procuticle was already present before fruit set. During cell division, the inner side of the procuticle showed a globular structure with vesicle-like particles in the cell wall close to the cuticle. Transition between cell division and elongation was accompanied by a dramatic increase in cuticle thickness, which represented more than half of the outer epidermal wall, and the lamellate arrangement of the non-cutinized cell wall. Changes in this non-cutinized outer wall during development showed specific features not shared with other cell walls. The coordinated nature of the changes observed in the cuticle and the epidermal cell wall indicate a deep interaction between these two supramolecular structures. Hence, the cuticle should be interpreted within the context of the outer epidermal wall. PMID:26668335

  12. Ultrastructural study of the blood cells of the coelacanth Latimeria chalumnae (Rhipidistia: Coelacanthini).

    PubMed

    Jarial, M S

    2005-04-01

    The blood cells in the renal capillaries of the coelacanth Latimeria chalumnae Smith were studied by transmission electron microscopic methods. On the basis of ultrastructural similarities of cytoplasmic granules of the leukocytes and by comparison with those of the fish and mammalian cells, erythrocytes and three types of granular leukocytes, namely neutrophils, eosinophils and basophils, and three types of agranular leukocytes, i.e., lymphocytes, monocytes and thrombocytes are characterized. The presence of granular and agranular leukocytes in the blood of Latimeria suggests that these cells appeared early in vertebrate evolution. The display of nuclear blebs on the cytoplasmic phase of the nuclear membrane and the presence of nuclear fragments in the cytoplasm of some erythrocytes suggest that these cells undergo apoptosis in order to delete older erythrocytes from the blood stream. The relatively small size of its nucleated erythrocytes and the striking resemblance of the ultrastructural features of its leukocytes to those of higher vertebrate leukocytes support the view that Latimeria is a close living relative of tetrapods.

  13. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    The object of this research was to determine how effectively the actions of a clinostat and a fluid-filled, slow-turning lateral vessel (STLV) mimic the ultrastructural effects of microgravity in plant cells. We accomplished this by qualitatively and quantitatively comparing the ultrastructures of cells grown on clinostats and in an STLV with those of cells grown at 1 g and in microgravity aboard the Space Shuttle Columbia. Columella cells of Brassica perviridis seedlings grown in microgravity and in an STLV have similar structures. Both contain significantly more lipid bodies, less starch, and fewer dictyosomes than columella cells of seedlings grown at 1 g. Cells of seedlings grown on clinostats have significantly different ultrastructures from those grown in microgravity or in an STLV, indicating that clinostats do not mimic microgravity at the ultrastructural level. The similar structures of columella cells of seedlings grown in an STLV and in microgravity suggest that an STLV effectively mimics microgravity at the ultrastructural level.

  14. Ultrastructural interaction between spermatozoon and human oviductal cells in vitro.

    PubMed

    Vigil, Pilar; Salgado, Ana María; Cortés, Manuel E

    2012-04-01

    The oviduct is an important organ for successful mammalian reproduction. In this work, human oviducts were inseminated and their explants analyzed using scanning electron microscopy in order to study, at a finer ultrastructual level, the interaction between spermatozoon and oviduct in vitro. Results show unequivocally a spermatozoon tightly attached through the acrosomal region of its head to several cilia of the human tubal epithelial cells. This finding proves that spermatozoa do indeed adhere to the endosalpinx, a fact of utmost relevance for the physiology of the reproductive process, since it supports the idea of a spermatozoa reservoir being formed in the oviduct, which is also briefly discussed.

  15. Changes in the ultrastructure of human cells related to certain biological responses under hyperthermic culture conditions.

    PubMed

    Iwagami, Y

    1996-12-01

    It has been reported that human cancer cells are more sensitive to high temperatures than normal human cells, and that cell proliferation and viability are affected by the temperature environment. In this study, we proceeded further, and turning our attention to the close relationship between cell morphology and temperature, used two human cancer cell lines and two normal cell strains to investigate how intracellular fine structure changes in a high temperature environment. The results showed that 1) both of the human cancer cell lines were more sensitive to high temperature than the normal human cell strains, and a difference between the temperature sensitivity of the human cancer cell lines was also confirmed. 2) There is no clear difference between the manner in which normal human cells and malignant human cells are affected by hyperthermia. 3) Among other cell structures, effects on the membrane system were observed as early changes in cell structure. The mitochondria were particularly affected, followed by the rER. 4) Changes in the nucleoplasm, as well as the nuclear membrane (inner membrane), and then the intranuclear chromatin, etc., were observed as late changes. 5) Changes in mitochondria were observed in the early stage, but temporarily tended to recover, and were then fatally affected again in the late stage. We discuss the relationship between cell proliferation, cell viability, and cell ultrastructure based on the above results. PMID:9183669

  16. Ultrastructural analysis of midgut cells from Culex quinquefasciatus (Diptera: Culicidae) larvae resistant to Bacillus sphaericus.

    PubMed

    de Melo, Janaina Viana; Vasconcelos, Romero Henrique Teixeira; Furtado, André Freire; Peixoto, Christina Alves; Silva-Filha, Maria Helena Neves Lobo

    2008-12-01

    The larvicidal action of the entomopathogen Bacillus sphaericus towards Culex quinquefasciatus is due to the binary (Bin) toxin present in crystals, which are produced during bacterial sporulation. The Bin toxin needs to recognize and bind specifically to a single class of receptors, named Cqm1, which are 60-kDa alpha-glucosidases attached to the apical membrane of midgut cells by a glycosylphosphatidylinositol anchor. C. quinquefasciatus resistance to B. sphaericus has been often associated with the absence of the alpha-glucosidase Cqm1 in larvae midgut microvilli. In this work, we aimed to investigate, at the ultrastructural level, the midgut cells from C. quinquefasciatus larvae whose resistance relies on the lack of the Cqm1 receptor. The morphological analysis showed that midgut columnar cells from the resistant larvae are characterized by a pronounced production of lipid inclusions, throughout the 4th instar. At the end of this stage, resistant larvae had an increased size and number of these inclusions in the midgut cells, while only a small number were observed in the cells from susceptible larvae. The morphological differences in the midgut cells of resistant larvae found in this work suggested that the lack of the Cqm1 receptor, which also has a physiological role as being an alpha-glucosidase, can be related to changes in the cell metabolism. The ultrastructural effects of Bin toxin on midgut epithelial cells from susceptible and resistant larvae were also investigated. The cytopathological alterations observed in susceptible larvae treated with a lethal concentration of toxin included breakdown of the endoplasmic reticulum, mitochondrial swelling, microvillar disruption and vacuolization. Some effects were observed in cells from resistant larvae, although those alterations did not lead to larval death, indicating that the receptor Cqm1 is essential to mediate the larvicidal action of the toxin. This is the first ultrastructural study to show differences

  17. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    SciTech Connect

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaeelle; Frobert, Emilie; Yver, Matthieu; Traversier, Aurelien; Wolff, Thorsten; Naffakh, Nadia; and others

    2012-10-10

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  18. Ultrastructural observation of human neutrophils during apoptotic cell death triggered by Entamoeba histolytica.

    PubMed

    Sim, Seobo; Kim, Kyeong Ah; Yong, Tai-Soon; Park, Soon-Jung; Im, Kyung-il; Shin, Myeong Heon

    2004-12-01

    Neutrophils are important effector cells against protozoan extracellular parasite Entamoeba histolytica, which causes amoebic colitis and liver abscess in human beings. Apoptotic cell death of neutrophils is an important event in the resolution of inflammation and parasite's survival in vivo. This study was undertaken to investigate the ultrastructural aspects of apoptotic cells during neutrophil death triggered by Entamoeba histolytica. Isolated human neutrophils from the peripheral blood were incubated with or without live trophozoites of E. histolytica and examined by transmission electron microscopy (TEM). Neutrophils incubated with E. histolytica were observed to show apoptotic characteristics, such as compaction of the nuclear chromatin and swelling of the nuclear envelop. In contrast, neutrophils incubated in the absence of the amoeba had many protrusions of irregular cell surfaces and heterogenous nuclear chromatin. Therefore, it is suggested that Entamoeba-induced neutrophil apoptosis contribute to prevent unwanted tissue inflammation and damage in the amoeba-invaded lesions in vivo.

  19. Hairy cell leukemia: enzyme-histochemical and ultrastructural investigation of one case.

    PubMed

    Pilotti, S; Carbone, A; Lombardi, L; Tavolato, C; Rilke, F

    1978-10-31

    The investigation was carried out on blood smears, bone marrow aspirates, one lymph node biopsy, and the surgically removed spleen of a 53-year-old man with hairy cell leukemia. In the blood smears stained with May-Grünwald-Giemsa, 60 to 70% of the hairy cells contained tubular inclusions that corresponded to the ribosome-lamella complexes demonstrated at electron microscopy. In blood smears, imprints and cryostatic sections of the lymph node and of the spleen, hairy cells revealed tartrate-resistant acid phosphatase, beta-glucuronidase and adenosine-triphosphatase activity. In the spleen neutral esterase and alkaline phosphatase demonstrated the numerical increase of the histiocytes, which ultrastructurally displayed phagocytic activity. The presence in the spleen of pseudosinuses lined by hairy cells was confirmed by electron microscopy as well as by cytoenzymology.

  20. Ultrastructural observation of human neutrophils during apoptotic cell death triggered by Entamoeba histolytica.

    PubMed

    Sim, Seobo; Kim, Kyeong Ah; Yong, Tai-Soon; Park, Soon-Jung; Im, Kyung-il; Shin, Myeong Heon

    2004-12-01

    Neutrophils are important effector cells against protozoan extracellular parasite Entamoeba histolytica, which causes amoebic colitis and liver abscess in human beings. Apoptotic cell death of neutrophils is an important event in the resolution of inflammation and parasite's survival in vivo. This study was undertaken to investigate the ultrastructural aspects of apoptotic cells during neutrophil death triggered by Entamoeba histolytica. Isolated human neutrophils from the peripheral blood were incubated with or without live trophozoites of E. histolytica and examined by transmission electron microscopy (TEM). Neutrophils incubated with E. histolytica were observed to show apoptotic characteristics, such as compaction of the nuclear chromatin and swelling of the nuclear envelop. In contrast, neutrophils incubated in the absence of the amoeba had many protrusions of irregular cell surfaces and heterogenous nuclear chromatin. Therefore, it is suggested that Entamoeba-induced neutrophil apoptosis contribute to prevent unwanted tissue inflammation and damage in the amoeba-invaded lesions in vivo. PMID:15591839

  1. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    PubMed

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  2. Changes in cell ultrastructure and inhibition of JAK1/STAT3 signaling pathway in CBRH-7919 cells with astaxanthin.

    PubMed

    Song, Xiaodong; Wang, Meirong; Zhang, Lixia; Zhang, Jinjin; Wang, Xiuwen; Liu, Wenbo; Gu, Xinbin; Lv, Changjun

    2012-11-01

    Astaxanthin (AST), a xanthophylls carotenoid, possesses significant anticancer effects. However, to date, the molecular mechanism of anticancer remains unclear. In the present research, we studied the anticancer mechanism of AST, including the changes in cell ultrastructure, such as the mitochondrion, rough endoplasmic reticulum (RER), Golgi complex, and cytoskeleton, the inhibition of Janus kinase 1(JAK1)/transduction and the activators of the transcription-3 (STAT3) signaling pathway using rat hepatocellular carcinoma CBRH-7919 cells. Cell apoptosis was evaluated and the expressions of JAK1, STAT3, non-metastasis23-1 (nm23-1), and apoptotic gene like B-cell lymphoma/leukemia-2 (bcl-2), B-cell lymphoma-extra large (bcl-xl), proto-oncogene proteins c myc (c-myc) and bcl-2- associated X (bax) were also examined. The results showed that AST could induce cancer cell apoptosis. Under transmission electron microscope, the ultrastructure of treated cells were not clearly distinguishable, the membranes of the mitochondrion, RER, Golgi complex were broken or loosened, and the endoplasmic reticulum (ER) was degranulated. Cytoskeleton depolymerization of the microtubule system led to the collapse of extended vimentin intermediate filament bundles into short agglomerations with disordered distributions. AST inhibited the expression of STAT3, its upstream activator JAK1, and the STAT3 target antiapoptotic genes bcl-2, bcl-xl, and c-myc. Conversely, AST enhanced the expressions of nm23-1 and bax. Overall, our findings demonstrate that AST could induce the apoptosis of CBRH-7919 cells, which are involved in cell ultrastructure and the JAK1/STAT3 signaling pathway.

  3. Influence of basic fibroblast growth factor and astroglial cells on the ultrastructure of developing rat brain neuronal precursors in vitro.

    PubMed

    Miehe, M; Leterrier, J F; Deloulme, J C; Gensburger, C; Knoetgen, M F; Sensenbrenner, M

    1996-01-01

    We have examined the ultrastructural aspect of neuronal precursors derived from 14-day-old rat embryos during their development under various culture conditions. Cells maintained in serum-free medium which have developed for 1 week in vitro present ultrastructural features of young neurons. They contain many free ribosomes and microtubules, but few other organelles and incompletely developed Golgi apparatus. In the presence of basic fibroblast growth factor (bFGF), besides cells remaining in aggregates and displaying morphological features of undifferentiated cells, dispersed neuroblasts underwent accelerated ultrastructural maturation. They present well-developed Golgi apparatus, axodendritic synapses and dense-core vesicles already after 3 days in culture. By contrast, in the presence of astroglial-conditioned medium a more homogeneous population developed showing ultrastructural features of relatively mature neurons. However, the neuronal precursors acquired the most mature ultrastructural aspect when they were cocultured with astroglial cells. The neuronal cell bodies contain highly developed Golgi complexes, well-differentiated ergastoplasm and Niss1 body formations, while in the complex neurite network much more numerous mature synapses with clear and dense-core vesicles are visible. These observations indicate that a combination of soluble factors and membrane-bound factors is essential for extensive ultrastructural development of neuronal precursors in vitro. Another finding was that in these cultured neurons neurofilaments (NF) were never seen, while NF protein subunits were found. These data suggest that the polymerization of the three NF subunits into intermediate filaments might need particular cellular factors which probably do not exist under our in vitro conditions.

  4. Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales).

    PubMed

    Leroux, O; Leroux, F; Bagniewska-Zadworna, A; Knox, J P; Claeys, M; Bals, S; Viane, R L L

    2011-12-01

    Cell wall appositions (CWAs), formed by the deposition of extra wall material at the contact site with microbial organisms, are an integral part of the response of plants to microbial challenge. Detailed histological studies of CWAs in fern roots do not exist. Using light and electron microscopy we examined the (ultra)structure of CWAs in the outer layers of roots of Asplenium species. All cell walls studded with CWAs were impregnated with yellow-brown pigments. CWAs had different shapes, ranging from warts to elongated branched structures, as observed with scanning and transmission electron microscopy. Ultrastructural study further showed that infecting fungi grow intramurally and that they are immobilized by CWAs when attempting to penetrate intracellularly. Immunolabelling experiments using monoclonal antibodies indicated pectic homogalacturonan, xyloglucan, mannan and cellulose in the CWAs, but tests for lignins and callose were negative. We conclude that these appositions are defense-related structures made of a non-lignified polysaccharide matrix on which phenolic compounds are deposited in order to create a barrier protecting the root against infections. PMID:21708469

  5. Ultrastructural characteristics of nurse cell-larva complex of four species of Trichinella in several hosts.

    PubMed

    Sacchi, L; Corona, S; Gajadhar, A A; Pozio, E

    2001-06-01

    The nurse cell-larva complex of nematodes of the genus Trichinella plays an important role in the survival of the larva in decaying muscles, frequently favouring the transmission of the parasite in extreme environmental conditions. The ultrastructure of the nurse cell-larva complex in muscles from different hosts infected with T. nativa (a walrus and a polar bear), T. spiralis (horses and humans), T. pseudospiralis (a laboratory mouse) and T. papuae (a laboratory mouse) were examined. Analysis with transmission electron microscope showed that the typical nurse cell structure was present in all examined samples, irrespective of the species of larva, of the presence of a collagen capsule, of the age of infection and of the host species, suggesting that there exists a molecular mechanism that in the first stage of larva invasion is similar for encapsulated and non-encapsulated species.

  6. Ultrastructure of single cells, callus-like and monospore-like cells in Porphyra yezoensis ueda on semisolid culture medium

    NASA Astrophysics Data System (ADS)

    Mei, Junxue; Shen, Songdong; Jiang, Ming; Fei, Xiugeng

    2003-06-01

    It had been demonstrated that individual cells or protoplasts isolated from Porphyra thallus by enzyme could develop into normal leafy thalli in the same way as monospores, and that isolated cells develop in different way in liquid and on semi-solid media. The authors observed the ultrastructure of isolated vegetative cells cultured on semi-solid media and compared them with those of monospores and isolated cells cultured in liquid media. The results showed that subcellular structures were quite different among cells in different conditions. In their development, isolated cells on semi-solid media did not show the characteristic subcellular feature of monospore formation, such as production of fibrous vesicles. Callus-like cells formed on semi-solid media underwent a distinctive modification in cellular organization. They developed characteristic cell inclusions and a special 2-layer cell covering. Golgi bodies, ER, starch grains, mitochondria. Vacuoles were not commonly found in them.

  7. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.

    PubMed

    Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona

    2015-11-01

    Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern

  8. Ultrastructural changes produced in Ehrlich ascites carcinoma cells by ultraviolet-visible radiation in the presence of melanins

    SciTech Connect

    Lea, P.J.; Pawlowski, A.; Persad, S.D.; Menon, I.A.; Haberman, H.F.

    1988-01-01

    Irradiation of Ehrlich ascites carcinoma (EAC) cells in the presence of pheomelanin, i.e., red hair melanin (RHM), has been reported to produce extensive cell lysis. Irradiation in the presence of eumelanin, i.e., black hair melanin (BHM), or irradiation in the absence of either type of melanin did not produce this effect. We observed that RHM particles penetrated the cell membrane without apparent structural damage to the cell or the cell membrane. Irradiation of the cells in the absence of melanin did not produce any changes in the ultrastructure of the cells. Incubation of the cells in the dark in the presence of RHM produced only minor structural, mainly cytoplasmic changes. Irradiation of the cells in the presence of RHM produced extensive ultrastructural changes prior to complete cell lysis; these changes were more severe than the effects of incubation of the cells in the dark in the presence of RHM. When the cells incubated in the dark or irradiated in the presence of latex particles or either one of the eumelanins particles, viz. BHM or synthetic dopa melanin, these particles did not penetrate into the cells or produce any ultrastructural changes. These particles were in fact not even ingested by the cells.

  9. Immunohistochemical and ultrastructural study of pituitary folliculostellate cells during aging in rats.

    PubMed

    Cónsole, G M; Jurado, S B; Riccillo, F L; Gómez Dumm, C L

    2000-01-01

    The impact of aging on pituitary folliculostellate (FS) cells is not well known. The aim of the work reported here was to carry out a quantitative immunohistochemical assessment of the FS population in male and female rats during aging and to correlate the findings with possible changes at the ultrastructural level. Young (4 months), old (20 months) and senescent (29 months) Sprague-Dawley rats of both sexes were sacrificed by rapid decapitation, their pituitaries dissected and processed by both light immunohistochemistry and electron microscopy. Serial sections (4 microm) were obtained at different levels and immunostained by means of rabbit anti-S100 serum as the primary antibody and a peroxidase-mediated EnVision System (Dako). Measurement of volume density (VD) and cell density (CD) was made in S100-reacting elements by means of an image analysis system (Imaging Technology, Optimas). These parameters were found to be significantly (p < 0.05) decreased in old and senescent rats as compared to young animals. In senescent females, which presented a high incidence of microprolactinomas, a significant (p < 0.01) increment of VD and CD was observed in FS cells in the area surrounding the adenomas, together with a marked decrease in those parameters within the tumors. Sexual dimorphism was not found except for the prolactinoma-bearing female group. The ultrastructure of FS cells showed the typical characteristics previously described in the pituitary gland. Only moderate changes in the endoplasmic reticulum were observed in old and senescent animals. We conclude that aging has a clear effect on the morphology of the pituitary FS cell population.

  10. Ultrastructural evaluation of parathyroid glands and thyroid C cells of cattle fed Solanum malacoxylon.

    PubMed Central

    Collins, W. T.; Capen, C. C.; Döbereiner, J.; Tokarnia, C. H.

    1977-01-01

    Fine structural alterations of thyroid C cells and parathyroid chief cells were evaluated after feeding dried leaves of the calcinogenic plant, Solanum malacoxylon, to cattle for 1, 6 and 32 days. Thyroid C cells initially were degranulated in response to the hypercalcemia, and parathyroid chief cells accumulated secretory granules. There was hypertrophy of thyroid C cells with well-developed secretory organelles but few secretory granules in the cytoplasm after 6 days of feeding S. malacoxylon. Inactive chief cells with dispersed profiles of endoplasmic reticulum and increased lysosomal bodies predominated in the parathyroid glands. Multiple foci of soft tissue mineralization were present in the heart, lung, and kidney. Thyroid C cells underwent hypertrophy and hyperplasia after 32 days of S. malacoxylon, and parathyroid chief cells were inactive or atrophic in response to the long-term hypercalcemia. Severe soft tissue mineralization was present throughout the cardiovascular system, lung, kidney, and spleen. These ultrastructural changes in thyroid C cells and parathyroid chief cells plus the widespread soft tissue mineralization observed after feeding cattle small amounts of S. malacoxylon are consistent with the recent evidence that leaves of this plant are a potent source of the active metabolite, 1,25-dihydroxycholecalciferol, of vitamin D. Images Figure 7 Figure 8 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:869016

  11. Plasma absorption and ultrastructural changes of rat testicular cells induced by lindane.

    PubMed

    Suwalsky, M; Villena, F; Marcus, D; Ronco, A M

    2000-09-01

    This paper describes, for the first time, how topical application in rats of a commercial preparation of lindane widely used in public health, at similar doses and routes of administration as in humans, leads to rapid absorption and accumulation of lindane in the testes. An early peak of absorption was detected in plasma 6 h after topical treatment of male Wistar rats with a commercial preparation of 1% lindane (Plomurol). Higher plasma levels were observed after repetitive doses of 60 mg/kg b.w., the amount recommended for the treatment of scabies and pediculosis in humans in several countries. A residue level of 7.4 +/- 0.67 microg/g was found in testicular tissue 6 h after a single daily topical application for 4 consecutive days. The ultrastructural study of testicular interstitial cells exposed to dermal application of lindane (Plomurol) revealed widespread damage of a great number of Leydig cells, some of which were completely disintegrated. PMID:11204556

  12. Ultrastructural evidence for differentiation in a human glioblastoma cell line treated with inhibitors of eicosanoid metabolism

    SciTech Connect

    Wilson, D.E.; Anderson, K.M. ); Seed, T.M. )

    1990-01-01

    Human glioblastoma cells incubated in the presence of inhibitors of eicosanoid biosynthesis show decreased cellular proliferation without cytotoxicity. The authors studied the ultrastructural morphology of a human glioblastoma cell line cultured with nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, or 5,8,11,14-eicosatetraynoic acid, a cyclooxygenase and lipoxygenase inhibitor. When glioblastoma cells were treated for 3 days with antiproliferative concentrations of either agent, they shared many morphological characteristics, including evidence for increased astrocytic differentiation with only limited signs of toxicity. The inhibited glioma cells demonstrated an increase in the number and length of astrocytic processes containing greater numbers of glial filaments, and the NDGA-treated cells also demonstrated extensive lateral pseudopod formation along the processes. The glioblastoma cell shape also become more elongated, losing the usual nuclear lobularity and nuclear inclusions, especially in NDGA-treated cells. Many cytoplasmic organelles packed the cytosol of the inhibited glioma cells, including prominent Golgi apparatus, dilated smooth endoplasmic reticulum evolving into dilated vesicles, cytoplasmic vacuoles, and numerous concentric laminations. There was limited evidence for toxicity, however, as the mitochondria were more pleomorphic with some mitochondrial distension and disruption of the cristae along with an increase in cytoplasmic vacuolization. The authors conclude that the inhibitors of eicosanoid biosynthesis. NDGA and 5,8,11,14-eicosatetraynoic acid, not only suppress glioblastoma cell proliferation, but also include increased astrocytic differentiation.

  13. Ultrastructural confirmation of neuronal protection by melatonin against the neurotoxin 6-hydroxydopamine cell damage.

    PubMed

    Mayo, J C; Sainz, R M; Antolín, I; Rodriguez, C

    1999-02-13

    6-Hydroxydopamine (6-OHDA) is a neurotoxin used in the induction of experimental Parkinson's disease in both animals and cultured neuronal cells. Biochemical and molecular approaches showed previously that low doses of 6-OHDA induced apoptosis in PC12 cells, while high doses of this neurotoxin induced necrosis. Melatonin has been shown to protect against the neuronal programmed cell death induced by 6-OHDA, although it was not able to prevent the massive necrotic cellular death occurring after the addition of high doses of the neurotoxin. In the present work, we demonstrate by ultrastructural analysis that although low doses of 6-OHDA induced apoptosis in PC12 cells, it also damaged the non-apoptotic cells, morphologically corresponding this damage to incipient and reversible necrotic lesions. When the doses of the neurotoxin increase, there are still apoptotic cells, although most of the cells show necrotic irreversible lesions. We also found that melatonin partially prevents the incipient necrotic lesions caused by low doses of 6-OHDA. The fact that melatonin was shown in previous work to prevent apoptosis caused by low doses of 6-OHDA, but not necrosis induced by high doses of the neurotoxin, seemed to indicate that this agent is only able to protect against apoptosis. However, our present results, melatonin preventing also the incipient necrotic neuronal lesions, suggest that this hormone may provide a general protection against cell death, suggesting that higher doses should be tried in order to prevent the necrotic cell death induced by high doses of the neurotoxin.

  14. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy.

    PubMed Central

    Maron, B. J.; Ferrans, V. J.; Roberts, W. C.

    1975-01-01

    Degenerated cardiac muscle cells were present in hypertrophied ventricular muscle obtained at operation from 12 (38%) of 32 patients with asymmetric septal hypertrophy (hypertrophic cardiomyopathy) or aortic valvular disease. Degenerated cells demonstrated a wide variety of ultrastructural alterations. Mildly altered cells were normal-sized or hypertrophied and showed focal changes, including preferential loss of thick (myosin) filaments, streaming and clumping of Z band material, and proliferation of the tubules of sarcoplasmic reticulum. Moderately and severely degenerated cells were normal-sized or atrophic and showed additional changes, including extensive myofibrillar lysis and loss of T tubules. The appearance of the most severely degenerated cells usually reflected the cytoplasmic organelle (sarcoplasmic reticulum, glycogen, or mitochondria) which underwent proliferation and filled the myofibril-free areas of these cells. Moderately and severely degenerated cells were present in areas of fibrosis, had thickened basement membranes, and had lost their intercellular connections. These observations suggest that degenerated cardiac muscle cells have poor contractile function and may be responsible for impaired cardiac performance in some patients with chronic ventricular hypertrophy. Images Fig 1 Fig 2 Fig 3 Figs 4-6 Figs 7-8 Fig 9 Fig 10 Fig 11 Figs 12-15 Fig 16 Fig 17 Figs 18-21 Figs 22-23 Fig 24 Fig 25 Fig 26 Fig 27 Figs 28-29 Fig 30 Figs 31-32 Fig 33 PMID:124533

  15. The ultrastructure of the centroacinar cells within the pancreas of the starling (Sturnus vulgaris).

    PubMed Central

    Williams, D W; Kendall, M D

    1982-01-01

    Tissues from the dorsal lobe of the pancreas of 8 starlings (Sturnus vulgaris) were examined electron microscopically using conventionally prepared samples. Centroacinar cells were distinguished from exocrine pancreas cells by differences in size, shape, distribution, position and zymogen granule content. The centroacinar cells closely resembled ductal cells and were separated from them only by position. Both electron-lucent and electron-dense forms of centroacinar cells were observed. Centroacinar cells show a prominent single nucleus, often displaying at least one nucleolus, surrounded by cytoplasm in which lies a spectrum of both primary and secondary lysosomes, mitochondria which appear to have some tubulovesicular cristae amongst the predominating transverse cristae, a sparse para- or supranuclear Golgi apparatus, and variable populations of ribosomes and profiles of both rough and smooth endoplasmic reticulum. Cell surface features include microvilli, 'blebs' and the occasional single cilium. Centroacinar cells are believed to be involved in electrolyte secretion although, from a study of their ultrastructure, the absence of beta cytomembranes with numerous mitochondria in their neighbourhood, would appear to contra-indicate the maintenance of an osmotic gradient between the extracellular fluid and any secretory product. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7130051

  16. Disseminated neoplasia in cockles Cerastoderma edule: ultrastructural characterisation and effects on haemolymph cell parameters.

    PubMed

    Díaz, Seila; Renault, Tristan; Villalba, Antonio; Carballal, María Jesús

    2011-09-01

    Disseminated neoplasia (DN) has been detected in cockles from various beds in Galicia (NW Spain). A study was performed to characterise cockle neoplastic cell ultrastructure and to evaluate the effect of this disease at different severity stages on various haemolymph cell parameters. Examination of cockle neoplastic cells with transmission electron microscopy (TEM) showed round shapes and a lack of pseudopods, a high nucleus:cytoplasm diameter ratio, Golgi complexes, abundant mitochondria, ribosomes, and numerous endoplasmic reticulum tubes and electron-lucent vesicles. Various haemolymph cell parameters (cell mortality, non-specific esterase and lysosome biovolume, reactive oxygen intermediates [ROI] production, phagocytosis ability, intracellular Ca2+ and actin levels) were compared between DN severity categories by flow cytometry; haemocyte mortality, non-specific esterase activities and lysosome biovolume were found to be higher with increasing DN severity. The phagocytic ability of neoplastic cells was sharply reduced with regard to haemocytes. The cytoplasmic-free Ca2+ level was higher and actin content lower in haemolymph cells of diseased cockles compared to unaffected ones. A significant increase in ROI production was detected in later stages of disease progression.

  17. Ultrastructural localization of hydrogen peroxide production in ligninolytic Phanerochaete chrysosporium cells

    SciTech Connect

    Forney, L.J.; Reddy, C.A.; Pankratz, H.S.

    1982-09-01

    Previous studies have shown that the hydroxyl radical derived from hydrogen peroxide (H2O2) is involved in lignin degradation by Phanerochaete chrysosporium. In the present study, the ultrastructural sites of H2O2 production in ligninolytic cells of P. chrysosporium were demonstrated by cytochemically staining cells with 3,3'-diaminobenzidine (DAB). Hydrogen peroxide production, as evidenced by the presence of oxidized DAB deposits, appeared to be localized in the periplasmic space of cells from ligninolytic cultures grown for 14 days in nitrogen-limited medium. When identical cells were treated with DAB in the presence of aminotriazole, periplasmic deposits of oxidized DAB were not observed, suggesting that the deposits resulted from H2O2-dependent peroxidatic oxidation of DAB by catalase. Cells from cultures grown for 3 or 6 days in nitrogen-limited medium or for 14 days in nitrogen- sufficient medium had little ligninolytic activity and low specific activity for H202 production and did not contain periplasmic oxidized DAB deposits. The results suggest that in cultures grown in nitrogen- limited medium, there is a positive correlation between the occurrence of oxidized DAB deposits, the specific activity for H2O2 production in cell extracts, and ligninolytic activity. (Refs. 25).

  18. Ultrastructure and Membrane Traffic During Cell Division in the Marine Pennate Diatom Phaeodactylum tricornutum.

    PubMed

    Tanaka, Atsuko; De Martino, Alessandra; Amato, Alberto; Montsant, Anton; Mathieu, Benjamin; Rostaing, Philippe; Tirichine, Leila; Bowler, Chris

    2015-11-01

    The marine pennate diatom Phaeodactylum tricornutum has become a model for diatom biology, due to its ease of culture and accessibility to reverse genetics approaches. While several features underlying the molecular mechanisms of cell division have been described, morphological analyses are less advanced than they are in other diatoms. We therefore examined cell ultrastructure changes prior to and during cytokinesis. Following chloroplast division, cleavage furrows are formed at both longitudinal ends of the cell and are accompanied by significant vesicle transport. Although neither spindle nor microtubules were observed, the nucleus appeared to be split by the furrow after duplication of the Golgi apparatus. Finally, centripetal cytokinesis was completed by fusion of the furrows. Additionally, F-actin formed a ring structure and its diameter became smaller, accompanying the ingrowing furrows. To further analyse vesicular transport during cytokinesis, we generated transgenic cells expressing yellow fluorescent protein (YFP) fusions with putative diatom orthologs of small GTPase Sec4 and t-SNARE protein SyntaxinA. Time-lapse observations revealed that SyntaxinA-YFP localization expands from both cell tips toward the center, whereas Sec4-YFP was found in the Golgi and subsequently relocalizes to the future division plane. This work provides fundamental new information about cell replication processes in P. tricornutum.

  19. Ultrastructure and Membrane Traffic During Cell Division in the Marine Pennate Diatom Phaeodactylum tricornutum

    PubMed Central

    Tanaka, Atsuko; De Martino, Alessandra; Amato, Alberto; Montsant, Anton; Mathieu, Benjamin; Rostaing, Philippe; Tirichine, Leila; Bowler, Chris

    2015-01-01

    The marine pennate diatom Phaeodactylum tricornutum has become a model for diatom biology, due to its ease of culture and accessibility to reverse genetics approaches. While several features underlying the molecular mechanisms of cell division have been described, morphological analyses are less advanced than they are in other diatoms. We therefore examined cell ultrastructure changes prior to and during cytokinesis. Following chloroplast division, cleavage furrows are formed at both longitudinal ends of the cell and are accompanied by significant vesicle transport. Although neither spindle nor microtubules were observed, the nucleus appeared to be split by the furrow after duplication of the Golgi apparatus. Finally, centripetal cytokinesis was completed by fusion of the furrows. Additionally, F-actin formed a ring structure and its diameter became smaller, accompanying the ingrowing furrows. To further analyse vesicular transport during cytokinesis, we generated transgenic cells expressing yellow fluorescent protein (YFP) fusions with putative diatom orthologs of small GTPase Sec4 and t-SNARE protein SyntaxinA. Time-lapse observations revealed that SyntaxinA-YFP localization expands from both cell tips toward the center, whereas Sec4-YFP was found in the Golgi and subsequently relocalizes to the future division plane. This work provides fundamental new information about cell replication processes in P. tricornutum. PMID:26386358

  20. Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy

    PubMed Central

    Rafsanjani, Ahmad; Stiefel, Michael; Jefimovs, Konstantins; Mokso, Rajmund; Derome, Dominique; Carmeliet, Jan

    2014-01-01

    We document the hygroscopic swelling and shrinkage of the central and the thickest secondary cell wall layer of wood (named S2) in response to changes in environmental humidity using synchrotron radiation-based phase contrast X-ray tomographic nanoscopy. The S2 layer is a natural fibre-reinforced nano-composite polymer and is strongly reactive to water. Using focused ion beam, micropillars with a cross section of few micrometres are fabricated from the S2 layer of the latewood cell walls of Norway spruce softwood. The thin neighbouring cell wall layers are removed to prevent hindering or restraining of moisture-induced deformation during swelling or shrinkage. The proposed experiment intended to get further insights into the microscopic origin of the anisotropic hygro-expansion of wood. It is found that the swelling/shrinkage strains are highly anisotropic in the transverse plane of the cell wall, larger in the normal than in the direction parallel to the cell wall's thickness. This ultrastructural anisotropy may be due to the concentric lamellation of the cellulose microfibrils as the role of the cellulose microfibril angle in the transverse swelling anisotropy is negligible. The volumetric swelling of the cell wall material is found to be substantially larger than the one of wood tissues within the growth ring and wood samples made of several growth rings. The hierarchical configuration in wood optimally increases its dimensional stability in response to a humid environment with higher scales of complexity. PMID:24671938

  1. Ultrastructural observations on vasomotor rhinitis.

    PubMed

    Elwany, S; Bumsted, R

    1987-01-01

    The ultrastructure of the respiratory nasal mucosa of patients suffering from vasomotor rhinitis was studied and compared with the reported ultrastructural findings in cases of chronic perennial allergic rhinitis. The principal ultrastructural differences were the absence of interendothelial gap junctions, the scarcity of eosinophils and plasma cells, and the absence of immunologically stimulated or degranulated mast cells in vasomotor rhinitis. These differences were discussed in the light of the known pathophysiologic facts.

  2. Histochemical and ultrastructural characterization of serotonin-containing cells in rabbit tracheal epithelium

    SciTech Connect

    Dey, R.D.; Shannon, W.A. Jr.; Hagler, H.K.; Said, S.I.

    1983-04-01

    Tracheal endocrine cells (TECs) that contain serotonin have been characterized previously by staining with ferric ferricyanide. In the present article, the ferric ferricyanide staining reaction has been used to locate the TECs in deplasticized thick sections of Epon-embedded rabbit tracheas. Adjacent thin sections of the same cell were subsequently observed by electron microscopy. The TECs were filled with dense-core vesicles (DCVs) located in the cytoplasm between the nucleus and the lumen and also lateral to the nucleus. In a separate experiment, pieces of rabbit trachea were treated with a solution of glutaraldehyde-dichromate to demonstrate the presence of amines. High levels of chromium were detected in the DCVs by energy-dispersive X-ray analysis. The results from these studies have correlated the ultrastructure of a serotonin-containing endocrine cell present in rabbit tracheal epithelium with a cell type previously characterized only by light and fluorescence histochemical methods. The results also indicate that serotonin in these cells is stored in the DCVs.

  3. Ultrastructural observations of programmed cell death during metanephric development in mouse.

    PubMed

    Li, Xiaoming; Guo, Min; Shao, Youzhi

    2013-05-01

    Previous studies revealed apoptosis as an only programmed cell death (PCD) during renal morphogenesis before alternative type of PCD, necroptosis were introduced. Evidences of non-apoptotic PCD during renal development were scarce and needed to be accumulated. The purpose of this study is to investigate whether non-apoptotic PCD is involved in and observe ultrastructural features of apoptotic cells or non-apoptotic PCD during metanephros development. For this purpose, light and transmission electron microscopy were used. The most significant finding to come out of this study was that necroptosis was observed during developing metanephros by electron microscopy. The results also provided another fact that apoptosis and necroptosis constituted the PCD during embryonic development of kidney in mouse. Compared to necroptosis, apoptosis was more predominantly evident throughout whole development period and in every compartment of metanephros except for proximal tubule. However, necroptosis was only exhibited in developing nephrons also except for proximal tubule. In addition, outcomes of PCD were related to morphogenetic features of metanephric development. Efferocytosis for apoptotic cell or bodies took place in each type cell and whole period of developing metanephros. Besides efferocytosis blood flow and urine flux were available to remove the corpses of PCD, especially PCD from developing nephrons. Our findings suggested that both apoptosis and necroptosis play important roles during nephrogenesis and observed three ways to clear the PCD cell: efferocytosis, blood flow, and urine flux.

  4. [Effects of BaP exposure on ultrastructures of hepatic cells of Boleophthalmus pectinirostris].

    PubMed

    Feng, Tao; Zheng, Weiyun; Ouyang, Gaoliang; Hong, Wanshu

    2003-10-01

    The changes of ultrastructures of hepatic cells of Boleophthalmus pectinirostris were investigated after the fish were exposed under benzo(a) pyrene in different concentrations under experimental condition. The results showed that the organelles in hepatic cells of B. pectinirostris were damaged to different extents after the fish was exposed under lower concentration of BaP (0.5 mg.L-1) for up to 7 d, in which, mitochondria and endoplasmic reticulum were the chief organelles affected by BaP exposure. While the fish was exposed under higher concentration of BaP (5 mg.L-1) for 2 h, almost all of the organelles including mitochondria and endoplasmic reticulum in hepatic cells of B. pectinirostr were affected by BaP exposure. The structures of liver cells were seriously damaged. It was demonstrated that BaP could produce multiorganalle lesions in hepatic cells of B. pectinirostris, and the severity extent of such lesions was dependent on the concentration level of BaP.

  5. Temperature dependence of anisotonic NaC1 effect on radiosensitization and ultrastructure of V79 Chinese hamster cells

    SciTech Connect

    Szekely, J.G.; Raaphorst, G.P.; Lobreau, A.U.; Azzam, E.I.; Copps, T.P.

    1983-01-01

    Isodose radiation survival of V79 Chinese hamster cells, pretreated with strongly hypertonic concentrations of NaC1 at 22 degrees C, or at 37 degrees C, has been determined and correlated with ultrastructural changes within the nucleus. After an exposure of less than 10 min to 1.5 M NaC1, at both temperatures, the cells are radioprotected, but after longer exposures, the cells treated at 37 degrees C are radiosensitive, whereas those treated at 22 degrees C still show protection. The cells are radiosensitized at both temperatures by pretreatment with 0.5 M and 0.05 M NaC1. The ultrastructure of the nucleus observed after the anisotonic treatments suggests that contraction or swelling of chromatin may be associated with the observed variation in radiation sensitivity.

  6. Temperature dependence of anisotonic NaC1 effect on radiosensitization and ultrastructure of V79 Chinese hamster cells.

    PubMed

    Szekely, J G; Raaphorst, G P; Lobreau, A U; Azzam, E I; Copps, T P

    1983-01-01

    Isodose radiation survival of V79 Chinese hamster cells, pretreated with strongly hypertonic concentrations of NaC1 at 22 degrees C, or at 37 degrees C, has been determined and correlated with ultrastructural changes within the nucleus. After an exposure of less than 10 min to 1.5 M NaC1, at both temperatures, the cells are radioprotected, but after longer exposures, the cells treated at 37 degrees C are radiosensitive, whereas those treated at 22 degrees C still show protection. The cells are radiosensitized at both temperatures by pretreatment with 0.5 M and 0.05 M NaC1. The ultrastructure of the nucleus observed after the anisotonic treatments suggests that contraction or swelling of chromatin may be associated with the observed variation in radiation sensitivity.

  7. Ultrastructure of ECL cells in Mastomys after long-term treatment with H2 receptor antagonist loxtidine.

    PubMed

    Vigen, Reidar Alexander; Kidd, Mark; Modlin, Irvin M; Chen, Duan; Zhao, Chun-Mei

    2012-06-01

    Gastric ECL-cell hyperplasia and carcinoids (ECLoma) develop after 1 year in rats treated with omeprazole or 2 months in Mastomys treated with loxtidine. The aim of this study was to examine the ultrastructure of ECL cells in Mastomys after loxtidine treatment with an attempt to evaluate whether an impairment of autophagy was involved in the tumorigenesis. Mastomys were given loxtidine for 8 or 27 weeks. Morphological analysis of ECL cells showed that (1) cell size was not increased after 8 or 27 weeks; (2) secretory vesicles, a hallmark feature of welldifferentiated ECL cells, were unchanged after 8 weeks but reduced after 27 weeks; (3) granules were reduced after 8 or 27 weeks; (4) microvesicles were unchanged after the treatment; and (5) vacuoles and lipofuscin bodies were found occasionally after 8 weeks but not at 27 weeks. In addition, the appearance of ECL-cell ultrastructure differed between loxtidine-treated Mastomys and rats treated with omeprazole or subjected to antrectomy, but was similar between Mastomys treated with loxtidine for 27 weeks and mice deficient in CCK(2) receptor. We suggest that the ultrastructure of ECL cells in Mastomys after long-term treatment with loxtidine displayed an impaired formation of vacuoles and lipofuscin bodies, markers of the autophagic pathway.

  8. [Changes in cell ultrastructure during sexual determination of litchi staminate flower].

    PubMed

    Su, Jin-Wei; Wang, Xiang-Ping

    2005-04-01

    The ultrastructural changes of meristematic cell during the degeneration of gynoecium primordium leading to the formation of staminate flower of litchi were followed. Degradation of the cells and transport of the dissolved cytoplasmic components were well ordered. Configurations of rough endoplasmic reticulum (RER) changed significantly. ER played an important role in degenerative processes of gynoecium primordiuml cells. The degenerative processes started with the appearance of long RER cisternae throughout the cytoplasm. Some long RER cut or enclosed the cytoplasm. Some RER connected nucleus and mitochondria of adjacent cells, formed a ridge-like connection. Later the RER formed concentric patterns and then became irregular stacks. RER and golgiosome produced many vesicles, which were importance to protoplasmic degradation and intercellular transport of the cellular debris. The number of mitochondria increased up to the time when they began to degrade in batches. Peroxisomes appeared temporarily at the middle stage near the nucleus. The nucleolus disintegrated at the beginning of degeneration of nucleus. Then fragments of chromatin aggregated at the periphery of nuclear membrane and diffused outward. In some nuclei the perinuclear membrane became dilated and puffs were formed. As cell degeneration progressed, the protoplasm disintegrated and dissipated in an orderly fashion, i.e. ribosomes became disorganized first, followed by peroxisomes, ER, golgiosoms, mitochondria and nucleus. Eventually, gynoecium primordium cells digested all of the cytoplasm, leaving only cell wall with high electron density. Most of the products of degeneration of gynoecium primordium cells were removed through either symplastic or apoplastic pathways. Programmed cell death (PCD) may be involved in the degeneration of meristematic cells at the gynoecium primodium.

  9. Daytime food restriction alters liver glycogen, triacylglycerols, and cell size. A histochemical, morphometric, and ultrastructural study

    PubMed Central

    2010-01-01

    Background Temporal restriction of food availability entrains circadian behavioral and physiological rhythms in mammals by resetting peripheral oscillators. This entrainment underlies the activity of a timing system, different from the suprachiasmatic nuclei (SCN), known as the food entrainable oscillator (FEO). So far, the precise anatomical location of the FEO is unknown. The expression of this oscillator is associated with an enhanced arousal prior to the food presentation that is called food anticipatory activity (FAA). We have focused on the study of the role played by the liver as a probable component of the FEO. The aim of this work was to identify metabolic and structural adaptations in the liver during the expression of the FEO, as revealed by histochemical assessment of hepatic glycogen and triacylglycerol contents, morphometry, and ultrastructure in rats under restricted feeding schedules (RFS). Results RFS promoted a decrease in the liver/body weight ratio prior to food access, a reduction of hepatic water content, an increase in cross-sectional area of the hepatocytes, a moderate reduction in glycogen content, and a striking decrease in triacylglyceride levels. Although these adaptation effects were also observed when the animal displayed FAA, they were reversed upon feeding. Mitochondria observed by electron microscopy showed a notorious opacity in the hepatocytes from rats during FAA (11:00 h). Twenty four hour fasting rats did not show any of the modifications observed in the animals expressing the FEO. Conclusions Our results demonstrate that FEO expression is associated with modified liver handling of glycogen and triacylglycerides accompanied by morphometric and ultrastructural adaptations in the hepatocytes. Because the cellular changes detected in the liver cannot be attributed to a simple alternation between feeding and fasting conditions, they also strengthen the notion that RFS promotes a rheostatic adjustment in liver physiology during FEO

  10. Effects of Waterlogging on Leaf Mesophyll Cell Ultrastructure and Photosynthetic Characteristics of Summer Maize.

    PubMed

    Ren, Baizhao; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2016-01-01

    A field experiment was performed to study the effects of waterlogging on the leaf mesophyll cell ultrastructure, chlorophyll content, gas exchange parameters, chlorophyll fluorescence, and malondialdehyde (MDA) content of summer maize (Zea mays L.) hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The waterlogging treatments were implemented for different durations (3 and 6 days) at the third leaf stage (V3), the sixth leaf stage (V6), and the 10th day after the tasseling stage (10VT). Leaf area index (LAI), chlorophyll content, photosynthetic rate (Pn), and actual photochemical efficiency (ΦPSII) were reduced after waterlogging, indicating that waterlogging significantly decreased photosynthetic capacity. The chloroplast shapes changed from long and oval to elliptical or circular after waterlogging. In addition, the internal structures of chloroplasts were degenerated after waterlogging. After waterlogging for 6 d at V3, the number of grana and grana lamellae of the third expanded leaf in DH605 were decreased by 26.83% and 55.95%, respectively, compared to the control (CK). Those in ZD958 were reduced by 30.08% and 31.94%, respectively. Waterlogging increased MDA content in both hybrids, suggesting an impact of waterlogging on membrane integrity and thus membrane deterioration. Waterlogging also damaged the biological membrane structure and mitochondria. Our results indicated that the physiological reactions to waterlogging were closely related to lower LAI, chlorophyll content, and Pn and to the destruction of chloroplast ultrastructure. These negative effects resulted in the decrease of grain yield in response to waterlogging. Summer maize was the most susceptible to damage when waterlogging occurred at V3, followed by V6 and 10VT, with damage increasing in the wake of waterlogging duration increasing. PMID:27583803

  11. Effects of Waterlogging on Leaf Mesophyll Cell Ultrastructure and Photosynthetic Characteristics of Summer Maize

    PubMed Central

    Ren, Baizhao; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2016-01-01

    A field experiment was performed to study the effects of waterlogging on the leaf mesophyll cell ultrastructure, chlorophyll content, gas exchange parameters, chlorophyll fluorescence, and malondialdehyde (MDA) content of summer maize (Zea mays L.) hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The waterlogging treatments were implemented for different durations (3 and 6 days) at the third leaf stage (V3), the sixth leaf stage (V6), and the 10th day after the tasseling stage (10VT). Leaf area index (LAI), chlorophyll content, photosynthetic rate (Pn), and actual photochemical efficiency (ΦPSII) were reduced after waterlogging, indicating that waterlogging significantly decreased photosynthetic capacity. The chloroplast shapes changed from long and oval to elliptical or circular after waterlogging. In addition, the internal structures of chloroplasts were degenerated after waterlogging. After waterlogging for 6 d at V3, the number of grana and grana lamellae of the third expanded leaf in DH605 were decreased by 26.83% and 55.95%, respectively, compared to the control (CK). Those in ZD958 were reduced by 30.08% and 31.94%, respectively. Waterlogging increased MDA content in both hybrids, suggesting an impact of waterlogging on membrane integrity and thus membrane deterioration. Waterlogging also damaged the biological membrane structure and mitochondria. Our results indicated that the physiological reactions to waterlogging were closely related to lower LAI, chlorophyll content, and Pn and to the destruction of chloroplast ultrastructure. These negative effects resulted in the decrease of grain yield in response to waterlogging. Summer maize was the most susceptible to damage when waterlogging occurred at V3, followed by V6 and 10VT, with damage increasing in the wake of waterlogging duration increasing. PMID:27583803

  12. Immunocytochemical and ultrastructural identification of pituitary cell types in the protogynous Thalassoma duperrey during adult sexual ontogeny

    USGS Publications Warehouse

    Parhar, I.S.; Nagahama, Y.; Grau, E.G.; Ross, R.M.

    1998-01-01

    Protogynous wrasses (Thalassoma duperrey): females (F), primary males (PM) along with a few terminal-phase males (TM) and sex-changed males (SM), were used to characterize the topographical organization of the pituitary. In general, immunocytochemical and ultrastructural features of the adenohypophyseal cell types of the saddleback wrasse pituitary resemble those of other teleosts. In the rostral pars distalis (RPD), corticotropic cells were found bordering the neurohypophysis (NH) and surrounding the centroventrally located prolactin cells. Thyrotropic cells formed a small group in the anteriodorsal part of the rostral and proximal pars distalis (PPD). The somatotropic cells were distributed in large clusters, mostly organized in cell cords around the interdigitations of the NH of the dorsal PPD. Cells containing gonadotropin I?? subunit were localized in the dorsal parts of the PPD, in close association with somatotropic cells and gonadotropin II?? subunit containing cells were seen in the centroventral parts of the PPD and along the periphery of the pars intermedia (PI). The pars intermedia was composed of melanotropic cells and somatolactin cells that lined the neurohypohysis. Distinct ultrastructural differences in corticotropic and somatotropic cells were not observed between the four groups. In all groups, prolactin cells in the ventral-most RPD could be immature cells or actively secreting prolactin. Gonadotropic II cells of PM and F had relatively higher incidence of "nuclear budding" and cell organelles compared to TM and SM. Besides gonadotropic, the active melanotropic and somatolactin cells might be associated with some aspect(s) of reproduction.

  13. [Effects of silicon on the ultrastructures of wheat radical cells under copper stress].

    PubMed

    Zhang, Dai-Jing; Ma, Jian-Hui; Yang, Shu-Fang; Chen, Hui-Ting; Liu, Pei; Wang, Wen-Fei; Li, Chun-Xi

    2014-08-01

    To explore the alleviation effect of silicon on wheat growth under copper stress, cultivar Aikang 58 was chosen as the experimental material. The growth, root activities and root tip ultrastructures of wheat seedlings, which were cultured in Hoagland nutrient solution with five different treatments (control, 15 mg x L(-1) Cu2+, 30 mg x L(-1) Cu2+, 15 mg x L(-1) Cu2+ and 50 mg x L(-1) silicon, 30 mg x L(-1) Cu2+ and 50 mg x L(-1) silicon), were fully analyzed. The results showed that root length, plant height and root activities of wheat seedlings were significantly restrained under the copper treatments compared with the control (P < 0.01), while these restraining effects were alleviated after adding silicon to copper-stress Hoagland nutrient solution. Under copper stress, the cell wall and cell membrane of wheat seedling root tips suffered to varying degrees of destruction, which caused the increase of intercellular space and the disappearance of some organelles. After adding silicon, the cell structure was maintained intact, although some cells and organelles were still slightly deformed compared with the control. In conclusion, exogenous silicon could alleviate the copper stress damages on wheat seedlings and cellular components to some extent.

  14. Structure of xanthan gum and cell ultrastructure at different times of alkali stress

    PubMed Central

    de Mello Luvielmo, Márcia; Borges, Caroline Dellinghausen; de Oliveira Toyama, Daniela; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa

    2016-01-01

    The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24 h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. PMID:26887232

  15. Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa.

    PubMed

    Shaw, Jeremy A; Macey, David J; Brooker, Lesley R; Stockdale, Edward J; Saunders, Martin; Clode, Peta L

    2009-04-01

    The cusp epithelium is a specialized branch of the superior epithelium that surrounds the developing teeth of chitons and is responsible for delivering the elements required for the formation of biominerals within the major lateral teeth. These biominerals are deposited within specific regions of the tooth in sequence, making it possible to conduct a row by row examination of cell development in the cusp epithelium as the teeth progress from the unmineralized to the mineralized state. Cusp epithelium from the chiton Acanthopleura hirtosa was prepared using conventional chemical and microwave assisted tissue processing, for observation by light microscopy, conventional transmission electron microscopy (TEM) and energy filtered TEM. The onset of iron mineralization within the teeth, initiated at row 13, is associated with a number of dramatic changes in the ultrastructure of the apical cusp cell epithelium. Specifically, the presence of ferritin containing siderosomes, the position and number of mitochondria, and the structure of the cell microvilli are each linked to aspects of the mineralization process. These changes in tissue development are discussed in context with their influence over the physiological conditions within both the cells and extracellular compartment of the tooth at the onset of iron mineralization.

  16. Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa.

    PubMed

    Shaw, Jeremy A; Macey, David J; Brooker, Lesley R; Stockdale, Edward J; Saunders, Martin; Clode, Peta L

    2009-04-01

    The cusp epithelium is a specialized branch of the superior epithelium that surrounds the developing teeth of chitons and is responsible for delivering the elements required for the formation of biominerals within the major lateral teeth. These biominerals are deposited within specific regions of the tooth in sequence, making it possible to conduct a row by row examination of cell development in the cusp epithelium as the teeth progress from the unmineralized to the mineralized state. Cusp epithelium from the chiton Acanthopleura hirtosa was prepared using conventional chemical and microwave assisted tissue processing, for observation by light microscopy, conventional transmission electron microscopy (TEM) and energy filtered TEM. The onset of iron mineralization within the teeth, initiated at row 13, is associated with a number of dramatic changes in the ultrastructure of the apical cusp cell epithelium. Specifically, the presence of ferritin containing siderosomes, the position and number of mitochondria, and the structure of the cell microvilli are each linked to aspects of the mineralization process. These changes in tissue development are discussed in context with their influence over the physiological conditions within both the cells and extracellular compartment of the tooth at the onset of iron mineralization. PMID:19284897

  17. An ultrastructural study of the Sertoli cell in the water buffalo (Bubalus bubalis).

    PubMed

    Kurohmaru, M; Yamashiro, S; Azmi, T I; Basrur, P K

    1992-03-01

    The ultrastructure of Sertoli cell in the water buffalo (Bubalus bubalis) was observed in a transmission electron microscope. The nucleus had homogeneous nucleoplasm, scarce heterochromatin and multivesicular nuclear body (MNB). The MNB was composed of numerous vesicles and ribosome-like dense structures. The vesicles varied in size and number and contained a sparse and flocculent substance. In the indentation of the nucleus, aggregates of ribosomes were frequently observed. In the apical and middle region of the cell, long mitochondria and microtubules were distributed parallel to the long axis of the cell. Non-laminated smooth ER and some ribosomes were also recognizable throughout this region. In the basal region, widely-distributed laminated smooth ER was characteristic. Microfilament bundles at ectoplasmic specialization were irregularly arranged. Frequently-emerged nodular processes occasionally separated from basal lamina and formed round structures within Sertoli cytoplasm. Although these characteristics of buffalo Sertoli cell were very similar to those of the bovine studied, the aggregate of ribosomes was more developed in the buffalo.

  18. Effects of docosahexaenoic acid and sardine oil diets on the ultrastructure of jejunal absorptive cells in adult mice.

    PubMed

    Tamura, M; Suzuki, H

    1996-01-01

    The influence of docosahexaenoic acid (DHA) and sardine oil diets on the ultrastructure of jejunal absorptive cells was studied. Adult male Crj:CD-1 (ICR) mice were fed a fat-free semisynthetic diet supplemented with 5% (by weight) purified DHA ethyl ester, refined sardine oil, or palm oil. The mice received the DHA or palm oil diets for 7 days (groups 1 and 2) and the refined sardine oil or palm oil diets for 30 days (groups 3 and 4). There were significant ultrastructural changes in the jejunal absorptive cells between the mice fed on the palm oil diet and those receiving the DHA and sardine oil diets. The endoplasmic reticulum and Golgi apparatus of some jejunal absorptive cells in the mice fed on the palm oil diet for 7 and 30 days developed vacuolation on the upper site of the nucleus. In contrast, many granules, which appeared to be lipid droplets, were observed in the endoplasmic reticulum and Golgi apparatus of the jejunal absorptive cells in the DHA and sardine oil diet groups. These results suggest that ultrastructural differences in the jejunal absorptive cells between mice in the omega-3 fatty acid and palm oil diet groups may be associated with the changes in lipid metabolism.

  19. Differentiation of chronic lymphocytic leukemia cells: correlation between the synthesis and secretion of immunoglobulins and the ultrastructure of the malignant cells

    SciTech Connect

    Rubartelli, A.; Sitia, R.; Zicca, A.; Grossi, C.E.; Ferrarini, M.

    1983-08-01

    The capacity of synthesizing and secreting Ig molecules was studied in 11 patients with B-cell chronic lymphocytic leukemia (B-CLL) whose cells expressed surface IgM, in 3 patients with surface IgG-bearing cells, and in 2 IgM prolymphocytic leukemias (IgM-PLL). Three types of mu chains were detected by SDS-polyacrylamide gel electrophoresis analysis of the endogenously labeled molecules isolated by specific immunoprecipitation. Two of them were isolated from the cell lysates and were identified as the membrane mu chain and the precursor of the secreted molecules, respectively. The latter also possibly contained precursors of the membrane molecules. The third type of molecule was detected only in the culture medium and was identified as secretory mu chain. Not all of the malignant clones possessed the three types of mu chains. Only 7/13 of the IgM-bearing malignant cell clones were capable of secretion, whereas the remaining synthesized the secretory mu chains but degraded them intracellularly. Two types of molecules (membrane and secreted) were found in the IgG-bearing CLL cells from three patients. In all of them, secretion was detected. Ultrastructural analysis demonstrated that cells from the secreting clones had the features of more mature lymphocytes than the cells from nonsecreting clones. These features were represented by a developed Golgi apparatus, various types of vesicles (smooth and coated), and strands of the rough endoplasmic reticulum. A certain heterogeneity of the degree of maturation of the cells was observed within these clones. The data are consistent with the hypothesis that CLL clones are heterogeneous and can be distinguished through the different degrees of maturation of their cell components.

  20. Enhanced effects of nonisotopic hafnium chloride in methanol as a substitute for uranyl acetate in TEM contrast of ultrastructure of fungal and plant cells.

    PubMed

    Ikeda, Ken-Ichi; Inoue, Kanako; Kanematsu, Satoko; Horiuchi, Yoshitaka; Park, Pyoyun

    2011-09-01

    This ultrastructural study showed that nonisotopic methanolic hafnium chloride and aqueous lead solution was an excellent new electron stain for enhancing TEM contrasts of fungal and plant cell structures. The ultrastructural definition provided by the new stain was often superior to that provided by conventional staining with uranyl acetate and lead. Definition of fine ultrastructure was also supported by quantitative data on TEM contrast ratios of organelles and components in fungal and plant cells. In particular, polysaccharides, which were localized in cell walls, glycogen particles, starch grains, and plant Golgi vesicle components, were much more reactive to the new stain than to the conventional one. The new nonisotopic stain is useful for enhancing the contrast of ultrastructure in biological tissues and is a safer alternative to uranyl acetate.

  1. Ultrastructural evaluation of mesenchymal stem cells from inflamed periodontium in different in vitro conditions.

    PubMed

    Zaganescu, Raluca; Barbu Tudoran, Lucian; Pall, Emoke; Florea, Adrian; Roman, Alexandra; Soanca, Andrada; Mihaela Mihu, Carmen

    2015-09-01

    This research aimed to observe the behavior of mesenchymal stem cells (MSCs) isolated from periodontal granulation tissue (gt) when manipulated ex vivo to induce three-dimensional (3D) spheroid (aggregates) formation as well as when seeded on two bone scaffolds of animal origin. Periodontal gt was chosen as a MSC source because of its availability, considering that it is eliminated as a waste material during conventional surgical therapies. 3D aggregates of cells were generated; they were grown for 3 and 7 days, respectively, and then prepared for transmission electron microscopic analysis. The two biomaterials were seeded for 72 h with gtMSCs and prepared for scanning electronic microscopic observation. The ultrastructural analysis of 3D spheroids remarked some differences between the inner and the outer cell layers, with a certain commitment observed at the inner cells. Both scaffolds showed a relatively smooth surface at low magnification. Macro- and micropores having a scarce distribution were observed on both bone substitutes. gtMSCs grew with relative difficulty on the biomaterials. After 72 h of proliferation, gtMSCs scarcely covered the surface of bovine bone scaffolds, demonstrating fibroblast-like or star-like shapes with elongated filiform extensions. Our results add other data on the possible usefulness of gtMSC and could question the current paradigm regarding the complete removal of chronically inflamed gts from the defects during periodontal surgeries. Until optimal protocols for ex vivo manipulation of MSCs are available for clinical settings, it is advisable to use biocompatible bone substitutes that allow the development of progenitor cells.

  2. [ULTRASTRUCTURAL CHANGES OF THE STEM CELLS IN THE CYCLE MONOLAYER--SPHERES--MONOLAYER].

    PubMed

    Martynova, M G; Krylova, T A; Bystrova, O A

    2016-01-01

    Sphere formation can be used to prepare stem cells (SCs) prior to transplantation. Here SCs isolated from human subepicardial adipose tissue were analyzed at different stages of the monolayer-spheres-monolayer cycle by transmission electron microscopy. The results obtained with both adherent-induced and hanging-drop induced spheres were similar. At first 2-3 passages (stage 1), isolated SCs displayed embryonal cell-like ultrastructure. With increasing passage times (stage 2), SCs became bigger and more electron-dark with a multilobed nucleus, well-developed rough endoplasmic reticulum (RER), prominent Golgi apparatus and numerous vacuoles. After 2 h from the initiation of the formation of spheres (stage 3), SCs gathered into clusters and formed desmosome-like intercellular contacts. Their nucleus possessed a large loose fibrillo-granular nucleoli, the cytoplasm was densely packed with disintegrated cisternae of RER, Golgi apparatus was not detected. After 24 h from the initiation of spheres (stage 4), SCs in well-formed spheres exhibited large dense nucleoli and poorly developed Golgi apparatus and RER. One day after sphere dissociating (stage 5), SCs were embryonal cell-like and morphologically similar to the cells of the first stage except for the presence of a large nucleolus and numerous Golgi complexes. After 48 h from sphere dissociating (stage 6), SCs became electron-dark and resembled the SCs of the second stage by the presence of irregularly shaped nuclei and the cetoplasm filled with RER. We interpreted the results as senescence of the SCs with the number of passages after isolation from tissue and a day after dissociation of the spheres and as rejuvenation of the SCs just after sphere dissociation. Further research is needed to reveal the genetic, biochemical and physiological parameters of the SCs on established morphologically distinct stages in order to provide higher-quality cellular material for disease cell therapy. PMID:27220247

  3. Spent metal working fluids produced alterations on photosynthetic parameters and cell-ultrastructure of leaves and roots of maize plants.

    PubMed

    Grijalbo, Lucía; Fernandez-Pascual, Mercedes; García-Seco, Daniel; Gutierrez-Mañero, Francisco Javier; Lucas, Jose Antonio

    2013-09-15

    In this work we assess the capacity of maize (Zea mays) plants to phytoremediate spent metal working fluids (MWFs) and its effects on photosynthesis and ultrastructure of mesophyll and root cells. A corn-esparto fibre system patented by us has been used to phytoremediate MWFs in hydroponic culture. Furthermore, a plant growth promoting rhizobacteria (PGPR) has been used to improve the process. The results show that this system is capable of significantly reducing the chemical oxygen demand, under local legislation limits. However, plant systems are really damaged, mainly its photosynthetic system, as shown by the photosynthetical parameters. Nevertheless, strain inoculated improves these parameters, especially Hill reaction. The ultrastructure of photosynthetic apparatus was also affected. Chloroplast number decreased and becomes degraded in the mesophyll of MWFs treated plants. In some cases even plasmolysis of chloroplast membrane was detected. Early senescence symptoms were detected in root ultrastructural study. Severe cellular damage was observed in the parenchymal root cells of plants grown with MWFs, while vascular bundles cell remained unchanged. It seems that the inoculation minimises the damage originated by the MWFs pollutants, appearing as less degenerative organelles and higher chloroplast number than in non-inoculated ones. PMID:23770488

  4. Comparative characteristic of mitochondria ultrastructural organization in Chlorella cells under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Popova, A. F.

    2003-05-01

    Results from experiments that used cells from the unicellular alga Chlorella vulgaris (strain Larg-1) grown on a clinostat, demonstrated the occurrence of rearrangements in cellular organelles, including changes in the mitochondrial ultrastructure compared to controls. Changes in mitochondrial structure were observed in auto- and heterotrophic regimes of cells grown in altered gravity conditions, especially in long-term experiments. The mitochondrial rearrangements become apparent during cell proliferation, which resulted in an increase in the relative volume of mitochondria per cell: up to 2.7±0.3% in short-term clino-rotation (2.2±0.1% in the control) and up to 5.3±0.4% and 5.1±0.4% in long-term clino-rotation (2.3±0.2% in the control). The size of the mitochondria and their cristae increased in cells grown under long-time clino-rotation. In addition, hypertrophied organelles, not typical for this strain, were observed. These changes in the cells were accompanied by increased electron density of the matrix and a well-ordered topography of the cristae. To examine the separation of oxidative phosphorylation and respiration, an inhibitory agent 2,4-dinitrophenol (2,4-DNP) was applied to cells which resulted in insignificant volume changes of the mitochondria (2.5±0.4% versus 2.1±0.2% in the control). The increase of mitochondrial size with regularly arranged cristae, with more condensed matrix and extension of cristae areas of clino-rotated cells, may demonstrate higher functional activity of the mitochondria under altered gravity conditions. Changes observed early in clino-rotated cells, in particular the increased level of respiration, adenylate content (especially ATP) and more intensive electron-cytochemical reactions of Mg 2+-ATPase and succinat dehydrogenase (SDH) in mitochondria (including hypertrophic organelles), also suggest increased activity of mitochondria from cells grown under altered gravity conditions compared to controls.

  5. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations.

    PubMed

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Lai, Ben S K; Geraldes, Armando; Muchero, Wellington; Tuskan, Gerald A; Douglas, Carl J; El-Kassaby, Yousry A; Mansfield, Shawn D

    2013-02-01

    The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy-Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use. PMID:23278123

  6. Ultrastructural antibody localization of alpha2-macroglobulin in membrane-limited vesicles in cultured cells.

    PubMed Central

    Willingham, M C; Yamada, S S; Pastan, I

    1978-01-01

    We have been developing a procedure for localizing intracellular antigens in cultured cells, by using peroxidase-labeled antibodies, that allows good morphologic preservation. Although useful, our previous technique did not preserve the morphology of membranes, and the location of the peroxidase reaction product was difficult to establish. In this paper, we report major improvements on the basic technique that markedly enhance the quality of localization and of morphology. Saponin is used to permeabilize membranes without destroying their morphology. The amount of reaction product is enhanced with a peroxidase-antiperoxidase label. The clarity of morphologic detail and contrast of reaction product density are increased by using postsectioning staining with the osmium/thiocarbohydrazide/osmium and uranyl acetate/lead citrate procedures. We have applied this technique to the ultrastructural localization of alpha2-macroglobulin and demonstrated that it is localized in membrane-limited vesicles. We have also used this method to improve the preservation of structures for localization by fluorescence microscopy. Images PMID:81488

  7. Ultrastructural co-localisation of vimentin and cytokeratin in visceral glomerular epithelial cells of dogs with glomerulonephritis.

    PubMed

    Vilafranca, M; Ferrer, L; Wohlsein, P; Trautwein, G; Sanchez, J; Navarro, J A

    1995-07-01

    The expression of cytokeratin and vimentin was studied in the glomerular epithelial cells of canine kidneys with and without glomerular abnormalities. Using ultrastructural, immunogold single and double labelling techniques, cytokeratin and vimentin were found together in the visceral glomerular epithelial cells (vGECs) of abnormal kidneys. In normal kidneys, the vGECs expressed only vimentin, and cytokeratin was found exclusively in parietal glomerular epithelial cells (pGECs). These results confirm previous findings in the same animals, obtained by immunohistological staining techniques.

  8. Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation

    PubMed Central

    Mikhailyuk, Tatiana; Holzinger, Andreas; Massalski, Andrzej; Karsten, Ulf

    2014-01-01

    Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions. PMID:26504365

  9. Primary culture of endothelial cells from atherosclerotic human aorta. Part 1. Identification, morphological and ultrastructural characteristics of two endothelial cell subpopulations.

    PubMed

    Antonov, A S; Nikolaeva, M A; Klueva, T S; Romanov YuA; Babaev, V R; Bystrevskaya, V B; Perov, N A; Repin, V S; Smirnov, V N

    1986-01-01

    Endothelial cells (EC) were harvested by 0.1% collagenase treatment for adult human thoracic aortas obtained 1-3 h after sudden death. At least 35-70% of EC were removed from the intimal surface of aorta, 90-95% of them being viable. Plating efficiency was 70-80%. Monolayer formation was achieved at a seeding density of 5-8 X 10(2) cells/mm2. The cells were identified as endothelium by the presence of Factor VIII antigen, Weigel-Palade bodies and typically endothelial morphology at confluence. Unlike endothelial cultures derived from human umbilical veins and infant aortas, primary cultures obtained from human adult aortas contain multinuclear EC with Factor VIII antigen and Weibel-Palade bodies. The number of multinuclear EC in cultures isolated from aortas affected by atherosclerosis was 2-fold higher (P less than 0.05) than in cultures obtained from grossly normal aortas taken from donors of the same age. EC with numerous lipid inclusions revealed by oil-red-O staining were present in all the EC primary cultures derived from aortas affected by atherosclerosis. No oil-red-O-positive cells were detected among the EC cultured from infant aorta, aorta of young donors, and umbilical vein. An electron microscopic examination of EC from atherosclerotic aorta in culture and in situ failed to reveal any ultrastructural peculiarities distinguishing multinuclear EC from the mononuclear EC. PMID:3004520

  10. 3D Ultrastructural Organization of Whole Chlamydomonas reinhardtii Cells Studied by Nanoscale Soft X-Ray Tomography

    PubMed Central

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; Schneider, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology. PMID:23300909

  11. Ultrastructural study of Helicobacter pylori adherence properties in gnotobiotic piglets.

    PubMed Central

    Rudmann, D G; Eaton, K A; Krakowka, S

    1992-01-01

    Ultrastructural examination of gastric mucosa from Helicobacter pylori-infected gnotobiotic piglets identified four general adherence patterns comparable to those observed in human patients. Intimate associations between the bacterial and mucosal cell membranes, including cuplike invaginations and adherence pedestals, were present and were accompanied by alterations to microvilli and cell membrane morphology. Images PMID:1563801

  12. Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells.

    PubMed

    Costello, M Joseph; Brennan, Lisa A; Mohamed, Ashik; Gilliland, Kurt O; Johnsen, Sönke; Kantorow, Marc

    2016-01-01

    An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12-15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial

  13. Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells

    PubMed Central

    Costello, M. Joseph; Brennan, Lisa A.; Gilliland, Kurt O.; Johnsen, Sönke; Kantorow, Marc

    2016-01-01

    An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12–15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial

  14. Ultrastructural appearance and cytoskeletal architecture of the clear, chromophilic, and chromophobe types of human renal cell carcinoma in vitro.

    PubMed

    Gerharz, C D; Moll, R; Störkel, S; Ramp, U; Thoenes, W; Gabbert, H E

    1993-03-01

    The clear, chromophilic, and chromophobe types of human renal cell carcinoma have been defined as distinct morphological entities and can be clearly separated by differences of ultrastructural appearance, cytoskeletal architecture, enzyme synthesis, and cytogenetic aberrations. In this report, the cytomorphological aspects of these tumor types are compared in vitro, showing that essential ultrastructural and cytoskeletal characteristics of each tumor type are expressed even after prolonged in vitro cultivation. The pattern of intermediate filament proteins of each tumor type was preserved in vitro, permitting the separation of exclusively cytokeratin-positive chromophobe tumor cells from clear and chromophilic tumor cells with a co-expression of vimentin and cytokeratins. In vitro, the chromophobe tumor cells continued to exhibit abundant cytoplasmatic microvesicles and sparsely distributed "studded" vesicles, which are known to be characteristic features of this tumor type in vivo. This observation confirmed the structural similarity of the chromophobe cell to the 'intercalated cell' of the cortical collecting duct and provided further evidence for the histogenetic derivation of this tumor subtype from the collecting duct system.

  15. Assessment of ultrastructure in isolated cochlear hair cells using a procedure for rapid freezing before freeze-fracture and deep-etching.

    PubMed

    Forge, A; Davies, S; Zajic, G

    1991-06-01

    Separated cochlear outer hair cells and isolated strips of organ of Corti containing hair cells and supporting cells have been rapidly frozen before freeze-fracture and deep-etching by immersion of samples sandwiched between two copper plates into liquid nitrogen-cooled propane: isopentane. Assessment of this procedure has shown that no significant freezing damage occurs. The ultrastructure of the hair cells revealed by freeze-fracture of these non-chemically fixed preparations was generally very similar to that seen in fixed material. This indicates that the processing of cochlear tissue normally used for electron microscopy produces few obvious structural artefacts. It also demonstrated that procedures for isolating cochlear hair cells generally do not affect cell structure significantly. However, some isolated hair cells did show abnormalities within the membranes of the lateral cisternae. Such membrane alterations, which would not be identified by light microscopy, occurred to a variable extent but were more commonly present after prolonged periods in maintenance medium. Deep-etching of the preparations to examine extracellular features around stereocilia revealed clearly lateral cross-links between stereocilia. However, tip-links could not be positively identified in either unfixed or prefixed preparations. PMID:1869884

  16. Human mononuclear phagocyte differentiation: a study of the U-937 cell line by ultrastructural cytochemistry and surface antigen analysis.

    PubMed

    Gourdin, M F; Vasconcelos, A W; Tabilio, A; Divine, M; Farcet, J P; Reyes, F

    1985-10-01

    U-937 represents a well-established permanent human haematopoietic cell line, which exhibits characteristics of the monocyte/macrophage series. U-937 cells were investigated by peroxidase ultrastructural cytochemistry in order to determine the normal developmental stage to which they correspond. This study was performed in non- and TPA-stimulated cells, in conjunction with surface analysis by monoclonal antibodies. It is concluded: (1) peroxidase-positive U-937 cells are monoblasts and promonocytes involved in myeloperoxidase synthesis; (2) TPA-stimulation caricatures transformation of these cells into monocytes but not into resident macrophages, as far as peroxidase cytochemistry is concerned; (3) the reactivity of myeloperoxidase present in the endoplasmic reticulum of synthesizing cells is inhibited by glutaraldehyde fixation. PMID:4041372

  17. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize.

    PubMed

    Vaculík, Marek; Pavlovič, Andrej; Lux, Alexander

    2015-10-01

    Silicon was shown to alleviate the negative effects of various biotic and abiotic stresses on plant growth. Although the positive role of Si on toxic and heavy metal Cd has been already described, the mechanisms have been explained only partially and still remain unclear. In the present study we investigated the effect of Si on photosynthetic-related processes in maize exposed to two different levels of Cd via measurements of net photosynthetic rate (AN), chlorophyll a fluorescence and pigment analysis, as well as studies of leaf tissue anatomy and cell ultrastructure using bright-field and transmission electron microscopy. We found that Si actively alleviated the toxic syndromes of Cd by increasing AN, effective photochemical quantum yield of photosystem II (ϕPSII) and content of assimilation pigments, although did not decrease the concentration of Cd in leaf tissues. Cadmium did not affect the leaf anatomy and ultrastructure of leaf mesophyll's cell chloroplasts; however, Cd negatively affected thylakoid formation in chloroplasts of bundle sheath cells, and this was alleviated by Si. Improved thylakoid formation in bundle sheath's cell chloroplasts may contribute to Si-induced enhancement of photosynthesis and related increase in biomass production in C4 plant maize.

  18. High resolution imaging of the ultrastructure of living algal cells using soft x-ray contact microscopy

    SciTech Connect

    Ford, T.W.; Cotton, R.A.; Page, A.M.; Tomie, T.; Majima, T.; Stead, A.D.

    1995-12-31

    Soft x-ray contact microscopy provides the biologist with a technique for examining the ultrastructure of living cells at a much higher resolution than that possible by various forms of light microscopy. Readout of the developed photoresist using atomic force microscopy (AFM) produces a detailed map of the carbon densities generated in the resist following exposure of the specimen to water-window soft x-rays (2--4nm) produced by impact of a high energy laser onto a suitable target. The established high resolution imaging method of transmission electron microscopy (TEM) has inherent problems in the chemical pre-treatment required for producing the ultrathin sections necessary for this technique. Using the unicellular green alga Chlamydomonas the ultrastructural appearance of the cells following SXCM and TEM has been compared. While SXCM confirms the basic structural organization of the cell as seen by TEM (e.g., the organization of the thylakoid membranes within the chloroplast; flagellar insertion into the cytoplasm), there are important differences. These are in the appearance of the cell covering and the presence of carbon-dense spherical cellular inclusions.

  19. [Ultrastructural and X-ray spectral analysis of cells U-937 during apoptosis process induced by hypertony].

    PubMed

    Snigirevskaia, E S; Moshkov, A V; Iurinskaia, V E; Vereninov, A A; Komissarchik, Ia Iu

    2014-01-01

    The results of this work concerning ultrastructural changes of U-937 cells in a state of apoptosis are largely in consistent with the same information available in the literature. However, we have got the original data on the ultrastructural changes of cell organelles and immune localization and distribution of proteasomes. It has been demonstrated that Golgi apparatus is located close to the plasma membrane in the case of apoptosis induced by incubating the cells in a hypertonic suchrose solution (200-400 mM). The fact can be considered as an indirect indication of depolymerization of cytoskeletal elements, in particular, MTs maintaining Golgi apparatus in a cell centre. In the later stages of apoptosis, the distances between Golgi cisterna are significantly increased. It can be explained by hydrolysis of golgins binding cisterna between each other. Mitochondria are not significantly changed in these cells. They have regularly disposed crista and sufficiently dense matrix with a few vacuoles. Proteasomes as rod-shaped osmiophilic particles (12 x 30 nm) have been revealed during each apoptosis stage both in nuclei and cytopl;asm of cells studied. The particles form aggregates of different densitities and sizes unlimited by membrane. It has been proposed that the particle aggregates revealed in the work are analogous to "processing bodies" or aggresomes described in the literature. They can be detected in cells under conditions of suppressed nucleus transcriptional processes in the nucleus and participate in storing and degradation of various mRNAs, RNP and proteins. The changes of intracellular contents of Na and K in a single cell during apoptosis induced by osmotic shock have been revealed using method of X-ray microanalysis. It has been demonstrated the increase in the ratio of intracellular contents Na+/K+ in the most of apoptotic cells in comparing with control cells. PMID:25707210

  20. AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells.

    PubMed

    Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong

    2014-02-01

    The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

  1. Ultrastructural and autoradiographic investigations of cell cultures derived from tendons or ligamentous material from patients with fibromatous disorders.

    PubMed

    Neumüller, J; Tohidast-Akrad, M; Ammer, K; Hakimzadeh, A; Stransky, G; Weis, S; Partsch, G; Eberl, R

    1988-01-01

    Cell cultures were derived from tendons or ligamentous material from patients with carpal tunnel syndrome (CTS), Dupuytren's contracture (DP), tendopathia nodosa (TN) and hallux valgus (HV). The ultrastructure of the operation specimens as well as of the cell monolayers was investigated, using a floating sheet method in order to preserve both cell-to-cell contacts and the orientation of the monolayers. The histologic features of the tissues obtained in the operations were correlated with the ultrastructure of the cells in culture derived from these specimens. In DP, above all in the nodules, an activation of the capillary endothelium in the vicinity of myofibroblasts and mast cells was observed. In CTS the collagen fibrils varied extremely in diameter. In DP and TN biopsies a splicing process of helicoidly arranged fibrils could be seen. A disintegration of elastic fibers in the fibrillar and amorphous components was found in DP nodules, HV and TN tissues. Transitional forms between fibroblasts and myofibroblasts were observed not only in DP but also-though in a smaller percentage--in the cultures derived from the other patients. The cells showed organelles for active protein synthesis and transport. Autophagocytosis and the formation of multilamellated bodies took place in TN and HV cultures. In CTS, DP and TN cultures cells were connected via gap junctions. In some cultures, above all in those derived from CTS, monocilia were found. In CTS cultures the formation of intracellular collagen occurred. Growth parameters were rather low in HV cultures. PLmax (maximal pulse labelling index) values were higher in TN cultures than in DP and HV cultures. Plating efficiency (PE) values were higher in cultures derived from cell-rich and capillarized tissues than in biopsies with few cells. PMID:3229549

  2. Phenotypic, ultra-structural and functional characterization of bovine peripheral blood dendritic cell subsets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dendritic cells (DC) are multifunctional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets...

  3. Morphological and ultrastructural characterization of ionoregulatory cells in the teleost Oreochromis niloticus following salinity challenge combining complementary confocal scanning laser microscopy and transmission electron microscopy using a novel prefixation immunogold labeling technique.

    PubMed

    Fridman, Sophie; Rana, Krishen J; Bron, James E

    2013-10-01

    Aspects of ionoregulatory or mitochondria-rich cell (MRC) differentiation and adaptation in Nile tilapia yolk-sac larvae following transfer from freshwater to elevated salinities, that is, 12.5 and 20 ppt are described. Investigations using immunohistochemistry on whole-mount Nile tilapia larvae using anti- Na⁺/K⁺-ATPase as a primary antibody and Fluoronanogold™ (Nanoprobes) as a secondary immunoprobe allowed fluorescent labeling with the high resolution of confocal scanning laser microscopy combined with the detection of immunolabeled target molecules at an ultrastructural level using transmission electron microscopy (TEM). It reports, for the first time, various developmental stages of MRCs within the epithelial layer of the tail of yolk-sac larvae, corresponding to immature, developing, and mature MRCs, identifiable by their own characteristic ultrastructure and form. Following transfer to hyperosmotic salinities the density of immunogold particles and well as the intricacy of the tubular system appeared to increase. In addition, complementary confocal scanning laser microscopy allowed identification of immunopositive ramifying extensions that appeared to emanate from the basolateral portion of the cell that appeared to be correlated with the localization of subsurface tubular areas displaying immunogold labeled Na⁺/K⁺-ATPase. This integrated approach describes a reliable and repeatable prefixation immunogold labeling technique allowing precise visualization of NaK within target cells combined with a 3D imaging that offers valuable insights into MRC dynamics at an ultrastructural level.

  4. Ultrastructural alterations of the hepatopancreas in Porcellio scaber under stress.

    PubMed

    Znidaršič, Nada; Strus, Jasna; Drobne, Damjana

    2003-04-01

    Cellular ultrastructure varies in accordance with physiological processes, also reflecting responses to environmental stress factors. Ultrastructural changes of the hepatopancreatic cells in the terrestrial isopod Porcellio scaber exposed to sublethal concentrations of zinc or cadmium in their food were identified by transmission electron microscopy. The exclusive structural characteristic of the hepatopancreas of animals exposed to metal-dosed food was grain-like electrondense deposits (EDD) observed in the intercellular spaces and in vesicles of B cells. In addition, hepatopancreatic cells of metal-exposed animals displayed non-specific, stress-indicating alterations such as cellular disintegration, the reduction of energetic reserves (lipid droplets, glycogen), electron dense cytoplasm, ultrastructural alterations of granular endoplasmic reticulum (GER), the Golgi complex and mitochondria.

  5. Antioxidant activity and ultrastructural changes in gastric cancer cell lines induced by Northeastern Thai edible folk plant extracts

    PubMed Central

    2013-01-01

    Background Phytochemical products have a critical role in the drug discovery process. This promising possibility, however, necessitates the need to confirm their scientific verification before use. Hence, this study aims to evaluate (1) the antioxidant activity, (2) cytotoxicity potential, and (3) the effect on ultrastructural alteration in gastric cancer cell lines through exposure to fractions of three local Northeastern Thai edible plants. Methods Plants, Syzygium gratum, Justicia gangetica and Limnocharis flava were extracted with ethyl acetate, and each crude extract analysed for their total phenolics content by Folin-Ciocalteu method. Their antioxidant activity was assessed using the ABTS system. The extracts were then assayed for cytotoxicity on two gastric cancer cell lines Kato-III and NUGC-4, and compared with Hs27 fibroblasts as a control using the MTT assay. The cell viability (%), IC50 values, as well as the ultrastructural alterations were evaluated after treatment with one way analysis of variance (ANOVA). Results The total phenolic values of the ethyl acetate extracts were well correlated with the antioxidant capacity, with extracted product of S. gratum displaying the highest level of antioxidant activity (a 10-fold greater response) over J. gangetica and L. flava respectively. Exposure of S. gratum and J. gangetica extracts to normal cell lines (Hs27) resulted in marginal cytotoxicity effects. However, through a dose-dependent assay S. gratum and J. gangetica extracts produced cytotoxicological effects in just over 75 percent of Kato-III and NUGC-4 cell lines. In addition, apoptotic characteristic was shown under TEM in both cancer cell lines with these two extracts, whereas characteristics of autophagy was found in cell lines after post exposure to extracts from L. flava. Conclusions From these three plants, S. gratum had the highest contents of phenolic compounds and antioxidant capacity. All of them found to contain compound(s) with

  6. [Changes of ultrastructure of the capillary endotheliocytes of ischemized and nonaffected muscular tissue after transplantation of human hemopoietic stem cells of fetal liver in experiment in vivo].

    PubMed

    Saliutin, R V; Zadorozhna, T D; Medvets'kyĭ, E B; Driuk, M F; Petrenko, A Iu

    2010-04-01

    In experiment was investigated ultrastructure of the capillaries endothelial cells and histological peculiarities of muscular tissue on various stages after transplantation of hemopoietic stem cells of fetal liver (HSCFL). There was proved, that in ischemic environment HSCFL stimulate processes of angiogenesis, and in the case of transplantation into intact muscular tissue they are differentiating into the tissue macrophages, not interfering with muscular tissue structure.

  7. Functional and ultrastructural cell pathology induced by fuel oil in cultured dolphin renal cells.

    PubMed

    Pfeiffer, C J; Sharova, L V; Gray, L

    2000-10-01

    Investigations were undertaken to elucidate in a marine mammal renal cell culture system the toxicity and some of the mechanisms of cytopathology in a standardized preparation following exposure to No. 1 fuel oil. Cell survivability of a cultured SP1K renal cell line from the Atlantic spotted dolphin Stenella plagiodon was reduced in a dose-dependent manner after a 12-h exposure to fuel oil. Early morphologic changes reflecting cytotoxicity, as revealed by transmission electron microscopy, included enlarged rough endoplasmic reticula, cytoplasmic vacuolization, and degenerative cytoplasmic inclusions, but mitochondria remained resistant. Assessment of extracellular proton loss by microphysiometry of cultured cells revealed fuel oil-induced enhancement of proton loss that was dependent upon both protein kinase C and renal epithelial Na(+)/H(+) counter-transport functioning, as the specific inhibitors H-7 and amiloride reduced this stimulatory petroleum effect. Cell cycle progression and apoptosis (programmed cell death) were studied in dolphin renal cells exposed to fuel oil for 12, 24, and 48 hours. The toxicant increased the percentage of cells in GO/GI phase and decreased the percentage of cells in S phase starting after 24 hours. The number of cells undergoing early apoptosis was also increased after 24 hours. PMID:11023700

  8. Ultrastructural changes in the parenchymal liver cells of rats treated with high doses of rifampicin.

    PubMed Central

    Piriou, A.; Maissiat, R.; Jacqueson, A.; Warnet, J. M.; Claude, J. R.

    1987-01-01

    Ultrastructural study of hepatic parenchyma was carried out in female Wistar rats after they had received high doses (400 mg X kg-1) of rifampicin for 1, 2, 4, 6 and 8 days. Morphological changes in the endoplasmic reticulum, Golgi apparatus and mitochondria were observed as early as day 1 of intoxication. These changes corroborate the biochemical data available regarding RFP-induced fatty liver. Images Fig. 1 Fig. 2 Fig. 3 & 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:3580280

  9. Composition and ultrastructure of the suberized cell wall of isolated crystal idioblasts from Agave americana L. leaves.

    PubMed

    Espelie, K E; Wattendorff, J; Kolattukudy, P E

    1982-07-01

    Styloid-calcium-oxalate-crystal-containing idioblasts possess an interior cell-wall layer which has a lamellar ultrastructure. Idioblasts were isolated by centrifugation of an Agave americana leaf homogenate through 2M sucrose. The aliphatic monomers of the polymeric material from an idioblast fraction were primarily ω-hydroxy acids (32%) and dicarboxylic acids (35%), with C18:1 dicarboxylic acid being the most dominant monomer (25%). Nitrobenzene oxidation of the idioblasts yielded syringaldehyde and vanillin in a ratio of 0.46:1. The major class of wax associated with the idioblasts was free fatty acids (34%). A major homologue of both the fatty acid and fatty alcohol fractions of this wax was C22. The hydrocarbon fraction of the wax had a broad chainlength distribution with a large amount of even-numbered (47%) and shorter-chain homologues. The ultrastructure, the composition of the aliphatic and aromatic components of the polymeric material as well as the composition of the wax show that the idioblast cell wall is suberized. The wax and cutin polymer of the epidermis of A. americana leaves were chemically characterized for comparative purposes.

  10. Meibomian gland studies: histologic and ultrastructural investigations.

    PubMed

    Jester, J V; Nicolaides, N; Smith, R E

    1981-04-01

    Heightened interest in meibomian gland dysfunction has prompted us to evaluate the normal morphological and ultrastructural characteristics of the meibomian gland. Histologic analysis of human, primate, steer, and rabbit glands revealed evidence of keratinized epithelium extending throughout the meibomian gland duct. Characteristic ultrastructural features of keratinized epithelium identified in primate and rabbit glands included tonofilaments, keratohyaline granules, lamellar bodies, and keratinized squamous cells. Comparison of the meibomian gland duct to the pilosebaceous canal and the sebaceous duct brought out certain dissimilarities such as (1) the lack of a well-developed stratum granulosum and (2) the absence of lipid inclusions within transitional cells from duct to acini. We postulate that abnormalities of the keratinizing process may be responsible for meibomian gland dysfunction states.

  11. Postnatal development of the interstitial cells (palisade cells) of the pars intermedia in the cat pituitary gland. An immunocytochemical and ultrastructural study.

    PubMed

    Marín, J F; Boya, J

    1991-01-01

    The postnatal development of the interstitial agranulated cells (so-called palisade cells) of the pars intermedia in the cat was investigated immunocytochemically and at the ultrastructural level. Since the first postnatal days, a strong vimentin immunoreactivity and a weaker S-100 protein immunoreactivity were detected in the marginal cells lining the pituitary cleft and in the interstitial bipolar cells located within the pars intermedia. No glial fibrillary acidic protein cells have been found in the pars intermedia of any of the animals studied. This immunocytochemical pattern was maintained throughout the postnatal development. Ultrastructurally these cells showed a vast number of cytoplasmic filaments and well-developed junctional complexes. Secretory granules were never seen. In older animals they lined microcavities and microchannels where they project microvilli and present pinocytotic vesicles on their apical surface. No transitional forms between these cells and granulated secretory cells were found. There is a large number of axons and synaptic endings in contact with the granulated secretory cells. From our findings we guess that palisade cells are not a glial derivative, but they may share a common origin with secretory granulated cells.

  12. Signet-ring cell lymphoma of T-cell origin. An immunocytochemical and ultrastructural study relating giant vacuole formation to cytoplasmic sequestration of surface membrane.

    PubMed

    Grogan, T M; Richter, L C; Payne, C M; Rangel, C S

    1985-09-01

    In contrast to previous accounts of signet-ring lymphoma as a B-cell neoplasm, we report a case of signet-ring, large-cell lymphoma of T-cell lineage. Immunologic and ultrastructural studies were performed on a subcutaneous mass noted initially, as well as on an enlarged lymph node that developed later, in a 69-year-old man. Immunologic assessment indicated strong expression of T-helper antigen (Leu 3a + b), universal T-antigens (Leu 1, 5), and Ia. There was an absence of T-suppressor/cytotoxic antigen (Leu 2a), universal T-antigens (Leu 4, 9), and immunoglobulin light and heavy chains. Collectively, these findings indicate a mature T-cell lymphoma of T-helper type in an activated (Ia+) state. In contrast to previous reports of T-cell and Ia occurring solely as surface antigens, we demonstrated pools of cytoplasmic Leu 1, 3, 5 and Ia that displaced the nucleus. The ultrastructure of the giant cytoplasmic vacuoles was identical to the microvesicle-containing vacuoles reported in signet-ring cell lymphomas of B-cell lineage. In our case of T-cell lineage, we found substantial evidence of endocytosis by the neoplastic cells and numerous giant multivesicular bodies. The pools of cytoplasmic T and Ia antigens may result from abnormal internalization of surface T-antigens or the sequestration of T-antigen-containing Golgi-derived vesicles. Our combined immunologic and ultrastructural findings suggest that aberrant membrane recycling may be the common denominator of signet-ring formation in both B- and T-cell signet-ring lymphomas.

  13. Sperm-cell ultrastructure of North American sturgeons. IV. The pallid sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905)

    USGS Publications Warehouse

    DiLauro, M.N.; Walsh, R.A.; Peiffer, M.; Bennett, R.M.

    2001-01-01

    Sperm-cell morphology and ultrastructure in the pallid sturgeon (Scaphirhynchus albus) were examined using transmission and scanning electron microscopy. Metrics and structure were compared with similar metrics obtained from other published descriptions of sturgeon sperm cells. General morphology was found to be similar to that of sperm cells of the white (Acipenser transmontanus), lake (A. fulvescens), stellate (A. stellatus), Chinese (A. sinensis), Russian (A. gueldenstaedti colchicus), and shortnose (A. brevirostrum) sturgeons, which all shared a gradual tapering of the nuclear diameter from posterior to anterior, unlike that of the Atlantic sturgeon (A. oxyrhynchus). The sperm cell of the pallid sturgeon was similar in size to that of the Atlantic sturgeon, being only slightly larger. The sperm cell of the pallid sturgeon differed from those of other sturgeons chiefly in the acrosomal region, where the posterolateral projections (PLP) have the shape of an acute triangle and are arranged in a spiral about the longitudinal axis of the cell. The PLP were longer than those of other sturgeons, being twice the length of those of the Atlantic sturgeon and 58% longer than those of the lake sturgeon. Also, in cross section the acrosome had the shape of a hollow cone rather than the cap of an oak tree acorn, as was found in ultrastructural studies of other sturgeons. In addition, we were able to confirm that the structural arrangement of the distal centriole of the midpiece is identical with that of the proximal centriole: nine sets of microtubular triplets around the periphery of the centriole. This information is of potential use to fishery biologists, forensic biologists, zoologists, reproductive physiologists, taxonomists, evolutionary biologists, and aquaculturists.

  14. Studies on the effects of microgravity on the ultrastructure and functions of cultured mammalian cells (L-6)

    NASA Technical Reports Server (NTRS)

    Sato, Atsushige

    1993-01-01

    The human body consists of 10(exp 13) cells. Understanding the mechanisms by which the cells sense and respond to microgravity is very important as the basis for space biology. The cells were originally isolated aseptically from mammalian bodies and cultured in vitro. A set of cell culture vessels was developed to be applied to three kinds of space flight experiments. Experiment 1 is to practice the cell culture technique in a space laboratory and obtain favorable growth of the cells. Aseptic handling in tryspin treatment and medium renewal will be tested. The cells, following space flight, will be returned to the ground and cultured continuously to investigate the effects of space flight on the cellular characteristics. Experiment 2 is to examine the cytoskeletal structure of the cells under microgravity conditions. The cytoskeletal structure plays essential roles in the morphological construction, movements, axonal transport, and differentiation of the cells. The cells fixed during space flight will be returned and the cytoskeleton and ultrastructure observed using electron microscopy and fluorescence microscopy. Experiment 3 is to study the cellular productivity of valuable substances. The waste medium harvested during space flight are returned and quantitated for the cellular products. The effects of microgravity on mammalian cells will be clarified from the various aspects.

  15. Ultrastructural Studies of Germ Cell Development and the Functions of Leydig Cells and Sertoli Cells associated with Spermatogenesis in Kareius bicoloratus (Teleostei, Pleuronectiformes, Pleuronectidae)

    PubMed Central

    Kang, Hee-Woong; Kim, Sung Hwan; Chung, Jae Seung

    2016-01-01

    The ultrastructures of germ cells and the functions of Leydig cells and Sertoli cells during spermatogenesis inmale Kareius bicoloratus (Pleuronectidae) were investigated by electron microscope observation. Each of the well-developed Leydig cells during active maturation division and before spermiation contained an ovoid vesicular nucleus, a number of smooth endoplasmic reticula, well-developed tubular or vesicular mitochondrial cristae, and several lipid droplets in the cytoplasm. It is assumed that Leydig cells are typical steroidogenic cells showing cytological characteristics associated with male steroidogenesis. No cyclic structural changes in the Leydig cells were observed through the year. However, although no clear evidence of steroidogenesis or of any transfer of nutrients from the Sertoli cells to spermatogenic cells was observed, cyclic structural changes in the Sertoli cells were observed over the year. During the period of undischarged germ cell degeneration after spermiation, the Sertoli cells evidenced a lysosomal system associated with phagocytic function in the seminiferous lobules. In this study, the Sertoli cells function in phagocytosis and the resorption of products originating from degenerating spermatids and spermatozoa after spermiation. The spermatozoon lacks an acrosome, as have been shown in all teleost fish spermatozoa. The flagellum or sperm tail of this species evidences the typical 9+2 array of microtubules. PMID:27294207

  16. Selected cases from the Arkadi M. Rywlin international pathology slide series: granular cell nevus of congenital type: a melanocytic proliferation exhibiting distinct morphologic, immunohistochemical, and ultrastructural features.

    PubMed

    De Pellegrin, Alessandro; Luzar, Bostjan; Suster, Saul; Falconieri, Giovanni

    2015-07-01

    A case of combined melanocytic nevus characterized by extensive granular cytoplasmic changes is described. Clinically, the lesion presented as an irregular, slightly asymmetric, and raised pigmented lesion of back with indistinct borders. Microscopically, a congenital pattern of distribution of melanocytes could be recognized growing along follicular and adnexal units. Melanocytes were arranged in sheets of epithelioid cells with abundant granular cytoplasm. A minor component featuring conventional dermal melanocytes was also present. Mitotic figures were not recognized. Immunohistochemistry was positive for Melan A and S100 protein in both conventional melanocytes and granular cells. In addition, the granular cells were also strongly positive for HMB45 and NKI-C3. The proliferative marker Ki67/MIB1 was nonreactive. Ultrastructural examination showed large cells with round to oval nuclei and numerous scattered cytoplasmic granules showing features consistent with lysosomes or autophagosomes. No premelanosomes, glycogen, lipid, or other distinctive organelles could be identified. Clinical follow-up at 2 years was uneventful. This unusual lesion may represent a peculiar dermal melanocytic proliferation in which the abundant granular cytoplasm is most likely due to degeneration of melanosomes induced by autophagocytic activity. The striking cytoplasmic granularity observed in this lesion may lead to confusion with other conditions, thus warranting adding granular cell nevus to the phenotypic spectrum of benign melanocytic proliferations.

  17. Ultrastructure of meiosis-inducing (heterotypic) and non-inducing (homotypic) cell unions in conjugation of Blepharisma.

    PubMed

    Bedini, C; Lanfranchi, A; Nobili, R; Miyake, A

    1978-08-01

    Cells of mating types I and II of Blepharisma japonicum interact with each other and unite in heterotypic (type I-type II) or homotypic (type I-type I, type II-type II) pairs. Heterotypic pairs undergo meiosis and other nuclear changes of conjugation, while homotypic pairs remain united for days without the nuclear changes taking place. We compared cell unions of these two kinds of pairs at the ultrastructural level. In the homotypic union, cell membranes are closely juxtaposed, separated by a distance of about 20 nm. This arrangement is interrupted in some places by vacuoles and small cytoplasmic bridges. Saccule-like structures tend to be more abundant near the united surfaces. Microtubules running at right or slightly obtuse angles with the cell surface (PACM microtubules) are characteristically present at the united region of cells. These structures are very similar to those observed in earlier stages of the heterotypic union. However, in homotypic pairs, cells unite only at the anterior half of the peristome, while in heterotypic pairs cells unite also at the posterior half of the peristome, where the cell membrane totally disappears in later stages. PACM microtubules persist for at least 18 h in homotypic unions, while they disappear within a few hours in heterotypic unions. These differences between the two kinds of cell union are discussed in relation to the initiation mechanism of meiosis and other nuclear changes of conjugation. Similarities between homotypic union and cell junctions in multicellular organisms are also discussed.

  18. Immunohistochemical and Ultrastructural Study of the Lamellae of Oocytes in Atretic Follicles in Relation to Different Processes of Cell Death

    PubMed Central

    Escobar, M.L.; Echeverría, O.M.; García, G.; Ortiz, R.; Vázquez-Nin, G.H.

    2015-01-01

    Atresia is the process through which non-selectable oocytes are eliminated; it involves apoptosis and/or autophagy. This study used immunohistochemical and ultrastructural techniques to characterize the lamellae present in the cytoplasm of oocytes in follicles in the process of atresia in prepubertal and adult Wistar rats. The results indicate that the lamellae are positive to tubulin and myosin immunodetection under light and electron microscopy. Labeling is greater with anti-tubulin and lesser with anti-myosin. Our observations indicate that lamellae are present in oocytes at the initial antral stage in prepubertal rats; that is, from day 14 post-birth to adult age. We were able to determine that the increase in altered lamellae principally occurs in the apoptotic cells rather than in the autophagic cells. PMID:26428888

  19. Canalicular adenoma--search for the cell of origin: ultrastructural and immunohistochemical analysis of 7 cases and review of the literature.

    PubMed

    Huebner, Thomas A; Almubarak, Hussain; Drachenberg, Cinthia B; Papadimitriou, John C

    2014-04-01

    Canalicular adenoma (CA) is a rare, benign epithelial neoplasm of the salivary glands. Historically considered to be a variant of basal cell adenoma, this "monomorphic" adenoma has a distinct clinical, morphologic, and immunohistochemical profile. The putative cell of origin remains a topic of debate. A combination of morphology, immunohistochemistry, and ultrastructural analyses have been employed to determine histogenesis, but the interpretations of these studies have implicated multiple different cell types along the salivary gland duct as the cell of origin. The authors sought to further characterize CA using electron microscopy, immunohistochemistry, and special and immuno-stains on 7 cases. Their morphologic, immunohistochemical, and ultrastructural findings support a cell of origin demonstrating features of both the intercalated duct cells and the striated duct luminal epithelial cells.

  20. Histogenesis and ultrastructure of pancreatic islet graft microvasculature. Evidence for graft revascularization by endothelial cells of host origin.

    PubMed Central

    Vajkoczy, P.; Olofsson, A. M.; Lehr, H. A.; Leiderer, R.; Hammersen, F.; Arfors, K. E.; Menger, M. D.

    1995-01-01

    In previous studies we have demonstrated that syngeneic and xenogeneic pancreatic islet grafts are revascularized within a 10 to 14-day period after transplantation. With the combined use of intravital and electron microscopy, as well as immunohistochemistry using a set of species-specific or -crossreacting antibodies to endothelial cell antigens, we investigated 1) the origin of the endothelium of the newly formed capillaries in free pancreatic islet isografts (hamster-->hamster) and xenografts (rat-->hamster), and 2) the ultrastructural characteristics of these microvessels. Intravital microscopy demonstrated that newly formed microvessels grow from the vascular bed of the host muscle tissue into the islet grafts. Immunohistochemical analysis of host tissue and transplanted islets with antibodies against factor VIII (recognizing both hamster and rat factor VIII), bovine PECAM-1 (CD31; endoCAM, crossreacting with hamster but not rat PECAM-1), and rat ICAM-1 (CD54, non-crossreacting with hamster ICAM-1) showed that the transplanted rat islets were revascularized by endothelium of hamster (host) origin. At an ultrastructural level, the endothelial lining of the newly formed microvessels showed diaphragmatic fenestration, a characteristic feature of endothelial cells of pancreatic islets in situ. On the basis of these findings we suggest that pancreatic islet transplantation may take a unique position in the field of organ transplantation, since the generally proposed mechanisms of endothelial cell-dependent antigen recognition as a trigger of graft rejection may not be transferred to islet grafts, containing microvessels lined by endothelial cells of host origin. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:7539980

  1. Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci.

    PubMed Central

    Skov Sørensen, U B; Blom, J; Birch-Andersen, A; Henrichsen, J

    1988-01-01

    The localization of pneumococcal capsular and cell wall antigens was examined by immunoelectron microscopy. C polysaccharide (C-Ps), a common component of all pneumococci, was uniformly distributed on both the inside and outside of the cell walls. The thickness of the C-Ps varied with the strain. Encapsulated strains were covered by varied amounts of capsular polysaccharide concealing the C-Ps of the bacteria so as to render it inaccessible to anti-C-Ps antibodies. In addition to C-Ps, protein antigens were demonstrable on the surface of nonencapsulated pneumococci. The proteins were not masked by the C-Ps layer. An extra layer on the cell walls was conspicuous on electron micrographs of both rough and encapsulated pneumococci. The nature of this extra layer has not been disclosed. F antigen, another common antigen of pneumococci, was uniformly distributed on the surface of the plasma membranes. During the course of the experimental work a reproducible method of gold labeling immunoglobulins was developed. Images PMID:3397179

  2. Ultrastructure and cell cycle distribution of erythropoietic cells in heterozygotes and homozygotes for haemoglobin E.

    PubMed

    Wickramasinghe, S N; Hughes, M; Wasi, P; Fucharoen, S; Litwinczuk, R A

    1984-08-01

    Marrow aspirates from heterozygotes and homozygotes for haemoglobin E (HbE) have been studied by electron microscopy and by the technique of combined Feulgen microspectrophotometry and 3H-thymidine autoradiography. The erythropoietic cells of heterozygotes did not contain any precipitated globin chains and the proliferating erythroblasts of such individuals showed no abnormality in their distribution in the different stages of interphase. By contrast, 0-1.5% of late erythroblast profiles and 3.1-12.8% of marrow reticulocyte profiles of homozygotes contained intracellular inclusions resembling precipitated alpha-chains. Although precipitated globin chains were not seen in the early polychromatic erythroblasts of homozygotes, the number of these cells in the G2 phase relative to that in the S phase was increased. These data indicate that there is probably little or no imbalance of globin chain synthesis in heterozygotes, a substantial degree of imbalance in homozygotes, and a disturbance of erythroblast proliferation in homozygotes which cannot be attributed to the deleterious effects of detectable intracellular alpha-chain precipitates. The electron microscope and cell cycle distribution data in the homozygotes for HbE were similar to those in two heterozygotes for beta thalassaemia. PMID:6743574

  3. Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae).

    PubMed

    Poprawa, Izabela; Hyra, Marta; Kszuk-Jendrysik, Michalina; Rost-Roszkowska, Magdalena Maria

    2015-03-01

    The studies on the fates of the trophocytes, the apoptosis and autophagy in the gonad of Isohypsibius granulifer granulifer have been described using transmission electron microscope, light and fluorescent microscopes. The results presented here are the first that are connected with the cell death of nurse cells in the gonad of tardigrades. However, here we complete the results presented by Węglarska (1987). The reproductive system of I. g. granulifer contains a single sack-like hermaphroditic gonad and a single gonoduct. The gonad is composed of three parts: a germarium filled with proliferating germ cells (oogonia); a vitellarium that has clusters of female germ cells (the region of oocytes development); and a male part filled with male germ cells in which the sperm cells develop. The trophocytes (nurse cells) show distinct alterations during all of the stages of oogenesis: previtello-, vitello- and choriogenesis. During previtellogenesis the female germ cells situated in the vitellarium are connected by cytoplasmic bridges, and form clusters of cells. No ultrastructural differences appear among the germ cells in a cluster during this stage of oogenesis. In early vitellogenesis, the cells in each cluster start to grow and numerous organelles gradually accumulate in their cytoplasm. However, at the beginning of the middle of vitellogenesis, one cell in each cluster starts to grow in order to differentiate into oocyte, while the remaining cells are trophocytes. Eventually, the cytoplasmic bridges between the oocyte and trophocytes disappear. Autophagosomes also appear in the cytoplasm of nurse cells together with many degenerating organelles. The cytoplasm starts to shrink, which causes the degeneration of the cytoplasmic bridges between trophocytes. Apoptosis begins when the cytoplasm of these cells is full of autophagosomes/autolysosomes and causes their death.

  4. Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae).

    PubMed

    Poprawa, Izabela; Hyra, Marta; Kszuk-Jendrysik, Michalina; Rost-Roszkowska, Magdalena Maria

    2015-03-01

    The studies on the fates of the trophocytes, the apoptosis and autophagy in the gonad of Isohypsibius granulifer granulifer have been described using transmission electron microscope, light and fluorescent microscopes. The results presented here are the first that are connected with the cell death of nurse cells in the gonad of tardigrades. However, here we complete the results presented by Węglarska (1987). The reproductive system of I. g. granulifer contains a single sack-like hermaphroditic gonad and a single gonoduct. The gonad is composed of three parts: a germarium filled with proliferating germ cells (oogonia); a vitellarium that has clusters of female germ cells (the region of oocytes development); and a male part filled with male germ cells in which the sperm cells develop. The trophocytes (nurse cells) show distinct alterations during all of the stages of oogenesis: previtello-, vitello- and choriogenesis. During previtellogenesis the female germ cells situated in the vitellarium are connected by cytoplasmic bridges, and form clusters of cells. No ultrastructural differences appear among the germ cells in a cluster during this stage of oogenesis. In early vitellogenesis, the cells in each cluster start to grow and numerous organelles gradually accumulate in their cytoplasm. However, at the beginning of the middle of vitellogenesis, one cell in each cluster starts to grow in order to differentiate into oocyte, while the remaining cells are trophocytes. Eventually, the cytoplasmic bridges between the oocyte and trophocytes disappear. Autophagosomes also appear in the cytoplasm of nurse cells together with many degenerating organelles. The cytoplasm starts to shrink, which causes the degeneration of the cytoplasmic bridges between trophocytes. Apoptosis begins when the cytoplasm of these cells is full of autophagosomes/autolysosomes and causes their death. PMID:25543879

  5. Lectin histochemistry and ultrastructure of microgranular cells in Cinachyra tarentina (Porifera, Demospongiae).

    PubMed

    Sciscioli, M; Ferri, D; Liquori, G E; Lepore, E; Santarelli, G

    2000-05-01

    A histochemical study is described that characterizes microgranular cells of the demosponge Cinachyra tarentina (C. tarentina) with the use of routine staining methods for mucosubstances, lectin histochemistry and electron microscopy. Microgranular cells are rare or absent in other species of sponges, but abundant in this species. Microgranular cells are present in both ectosome and mesohyl, particularly along the canal of the aquiferous system and around spicule holes. Inclusions of microgranular cells and the extracellular matrix were particularly positive for acidic glycoproteins with abundant sulfated ester groups and glycosidic residues containing GalNAc and Galbeta1,3GalNAc. Terminal L-fucose bound to the penultimate GalNAc residues and/or difucosylated oligosaccharides were present as well. Our results suggest that soybean lectin (SBA), peanut lectin (PNA), and winged pea lectin (WPA) are valuable markers for identifying microgranular cells of C. tarentina. Electron microscopy revealed some of the microgranular cells to contain small smooth cytoplasmic vesicles originating from the Golgi complex and few electron-dense granules, others were characterized by numerous secretory granules and vacuoles formed by vesicle fusion and connected with the plasma membrane. Our results suggest that microgranular cells in C. tarentina contribute to the synthesis of glycoprotein components of the extracellular matrix.

  6. Symplasmic Constriction and Ultrastructural Features of the Sieve Element/Companion Cell Complex in the Transport Phloem of Apoplasmically and Symplasmically Phloem-Loading Species1

    PubMed Central

    Kempers, Ronald; Ammerlaan, Ankie; van Bel, Aart J.E.

    1998-01-01

    The ultrastructural features of the sieve element/companion cell complexes were screened in the stem phloem of two symplasmically loading (squash, [Cucurbita maxima L.] and Lythrum salicaria L.) and two apoplasmically loading (broad bean [Vicia faba L.] and Zinnia elegans L.) species. The distinct ultrastructural differences between the companion cells in the collection phloem of symplasmically and apoplasmically phloem-loading species continue to exist in the transport phloem. Plasmodesmograms of the stem phloem showed a universal symplasmic constriction at the interface between the sieve element/companion cell complex and the phloem parenchyma cells. This contrasts with the huge variation in symplasmic continuity between companion cells and adjoining cells in the collection phloem of symplasmically and apoplasmically loading species. Further, the ultrastructure of the companion cells in the transport phloem faintly reflected the features of the companion cells in the loading zone of the transport phloem. The companion cells of squash contained numerous small vacuoles (or vesicles), and those of L. salicaria contained a limited number of vacuoles. The companion cells of broad bean and Z. elegans possessed small wall protrusions. Implications of the present findings for carbohydrate processing in intact plants are discussed.

  7. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in rhesus monkeys exposed to ozone.

    PubMed Central

    Castleman, W. L.; Dungworth, D. L.; Schwartz, L. W.; Tyler, W. S.

    1980-01-01

    The pathogenesis of acute respiratory bronchiolitis was examined in rhesus monkeys exposed to 0.8 ppm ozone fpr 4--50 hours. Epithelial injury and renewal was qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4--12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18% was measured after 50 hours of exposure. Most (67--80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20--33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell type most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal. Images Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 23 Figure 24 Figure 25 Figure 9 Figure 10 Figure 26 Figure 27 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 PMID:6767409

  8. A case of primary clear cell hepatocellular carcinoma in a non-cirrhotic liver: an immunohistochemical and ultrastructural study

    PubMed Central

    Clayton, Erica Fan; Furth, Emma Elizabeth; Ziober, Amy; Xu, Theodore; Yao, Yuan; Hwang, Pil Gyu; Bing, Zhanyong

    2012-01-01

    The clear cell variant of hepatocellular carcinoma is a rare entity, occurring at a frequency of less than 10% of hepatocellular carcinoma, with a female prevalence and usually associated with hepatitis C and cirrhosis. We reported a case of primary clear cell hepatocellular carcinoma occurring in a non-cirrhotic liver without history of hepatitis. Our examination included gross pathology, histopathology, immunohistochemistry, special stains, and electron microscopy evaluation. The tumor was composed of sheets of medium-to-large cells with foamy and reticulated cytoplasm and small-to-medium sized nuclei with variably prominent nucleoli. Oil red O stain showed abundant intracellular lipid. Periodic Acid-Schiff stain confirmed the presence of abundant glycogen deposition. Immunohistochemically the tumor cells were positive for Hep Par1, negative for epithelial membrane antigen, steroidogenic factor-1, HMB45, melan A, CK7 and CK20. Electron microscopy study was performed, which was first done in a clear cell hepatocellular carcinoma occurring in a non-cirrhotic liver without elevation of liver function tests. Ultrastructural evaluation of the clear cells showed scarce cellular organelles, cytoplasmic lipid vacuoles and swollen mitochondria. PMID:22826786

  9. Toxic effects of cadmium on flatworm stem cell dynamics: A transcriptomic and ultrastructural elucidation of underlying mechanisms.

    PubMed

    Plusquin, Michelle; De Mulder, Katrien; Van Belleghem, Frank; DeGheselle, Olivier; Pirotte, Nicky; Willems, Maxime; Cuypers, Ann; Salvenmoser, Willi; Ladurner, Peter; Artois, Tom; Smeets, Karen

    2016-10-01

    Stem cells or undifferentiated cells can cope more easily with external stresses. To evaluate the impact of toxic compounds on stem cell dynamics in vivo, in relation to other biological responses, we use the carcinogenic element cadmium and the regenerating model organism Macrostomum lignano. Through both BrdU and anti-histone H3 immunostainings, cadmium-induced effects were investigated at different stages of the stem cell cycle. A 24-h exposure to 100 and 250 μM CdCl2 significantly decreased the number of stem cells (neoblasts) in mitosis, whereas the number of cells in the S phase remained unchanged. After this short-term exposure, the ultrastructure of the neoblasts was minimally affected in contrast to the epidermal tissues. These results were supported by gene expression data: transcripts of cdc2 and pig3 were significantly upregulated during all treatments. Both genes are involved in the cell cycle progression and are transcribed in the gonadal region, where stem cells are highly represented. Based on a substantial increase in gene expression of heat shock proteins (HSP) and their high activity in the gonadal region, we hypothesize that these proteins are key players in the protection of stem cells against external stresses. Apart from the strong HSP induction, other protective processes including cell division, apoptosis and anti-oxidative defence, were also activated. We, therefore, conclude that the protection of stem cells against external stressors may be based on the interplay between stem cell maintenance, i.e. repair and recovery through division, on one hand and apoptosis on the other hand. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1217-1228, 2016.

  10. Ultrastructural and immunocytochemical studies of smooth muscle cells in iris arterioles of rats with experimental autoimmune uveoretinitis.

    PubMed

    Wang, J; Essner, E; Shichi, H

    1994-12-01

    In this study, we report on the ultrastructural and immunocytochemical changes that occur in smooth muscle cells of iris arterioles in S-antigen-induced experimental autoimmune uveoretinitis (EAU). The inflammatory phase (8-10 days postimmunization) was marked by infiltration of lymphocytes and polymorphonuclear leukocytes and monocytes in the iris stroma and perivascular tissue. Smooth muscle cells became hypertrophic with an 11.5-fold average increase in cell volume compared with control cells. In some of the cells, there was a marked increase in endoplasmic reticulum, ribosomes, and Golgi elements and a concomitant decrease in myofilaments, similar to that reported previously (Wang et al., Curr. Eye Res. 13, 747-754, 1994). However, the majority of hypertrophic smooth muscle cells showed only a slight increase in these synthetic organelles while retaining large amounts of myofilaments. There was no evidence for the migration or mitosis of the hypertrophic cells. Immunogold (IG) labeling of hypertrophic smooth muscle cells revealed changes in the immunoreactivity of several antigens. Labeling density for type I collagen increased progressively between 8 and 10 days, while that of decorin was slightly increased at 8 days and decreased at 10 days postimmunization. IG labeling for an alpha-actin isoform was significantly increased during the 8-10 day period, while that of beta-actin isoform was decreased. The results suggest that hypertrophic smooth muscle cells do not fully modulate to the kind of synthetic phenotype described in aortic smooth muscle cells. The significance of the transition in immunoreactivity from alpha- to beta-actin isoform is not known although it may reflect an increased synthetic state of muscle cells. The increased immunoreactivity of type I collagen and the changes in decorin, on the other hand, suggest that smooth muscle cells in EAU may be involved in remodeling of the extracellular matrix.

  11. Effects of alterd Gravity and Phosphorilation inhibitor 2.4-Dinitrophenole on Mitochondria Ultrastructural Organization in Chlorella Cells

    NASA Astrophysics Data System (ADS)

    Popova, A.

    The results of the experiments with two species of a green alga ?hlorella in spaceflight conditions and under altered gravity testified that the regular rearrangements has been revealed first of all in the cell mitochondriome. Such reorganizations were observed at auto- and geterotrophic regimes of the culture growth in the experiments of average duration (9-18 days) and also in long-term experiments (30 days - 4.5 months) (Popova, 1999). The mitochondria rearrangements become apparent at intensification of the cell proliferation, which results in increasing a relative volume of the mitohondria per cell (up to 5.3 % in microgravity compared to the control - 2.1 %). Moreover, the size of these organelles and their cristae increased in the experimental cells. The indicated mitochondria changes were accompanied by intensifying the electron density of a matrix and often by well-ordered topography of the cristae. Taking into account that the main set of the enzymes catalyzing the oxidative phosphorylation and conduction of the electrons are localized in the cristae membranes, the considerable growth of the mitochondria size and the cristae areas testified probably about a high functional activity of these organelles. Our investigations were carried out with the purpose to check the functional state of mitochondria under altered gravity (using slow horizontal clinorotator) and under influence of the inhibitory agent, separating an oxidation and oxidative phosphorylation. The ultrastructural peculiarities of the mitochondria as the energetic organelles were studied under the different 2,4- dinitrophenole concentrations and during the different terms of clinoritation at the logarithmic and stationary phases of Chlorella culture growth. The various characters of the mitochondria rearrangements and their relative volumes per cell were revealed under 2,4-dinitrophenole influence compared to the different terms of microgravity and altered gravity influences. The obtained

  12. Ultrastructural changes in granulosa lutein cells and progesterone levels during preimplantation, implatation, and early placentation in the western spotted skunk.

    PubMed

    Sinha, A A; Mead, R A

    1975-12-01

    The ultrastructure of corpora lutea obtained during the preimplantation implantation and early post-implantation periods has been studied in 20 western spotted skunks. Fine structure of granulosa lutein cells was correlated with progesterone levels. The corpus luteum of the prolonged (7 month) preimplantaion period contained undifferentiated small granulosa cells and differentiated large granulosa lutein cells. The former ranged in size between 12 and 20 mu and the latter between 20 and 45 mu. The ratio of small and large cells was about equal in an animal 2 days prior to nidation whereas only few small cells and numerous large cells were observed in an animal estimated to be 8 to 12 hours from nidation. Occasionally small cells were observed amidst large ones during the 24 hour nidation period, i.e. adhesion of trophoblast with the luminal uterine epithelium, but small cells were absent in animals after this period. Small cells had some smooth and rough endoplasmic reticulum rod-shaped mitochondria with plate-like cristae, small Golgi complex, and relatively smooth plasma membranes. Large lutein cells had abundant smooth endoplasmic reticulum, membranous whorls of smooth endoplasmic reticulum, usually round mitochondria with tubular and lamellar cristae, a well developed Golgi complex, variable amounts of lipid droplets, and highly plicated and ruffled plasma membranes. Peripheral plasma progesterone levels during the prolonged preimplantation period ranged between 1.1 and 7.9 ng/ml, but during implantation it was between 8 and 16.6 ng/ml. It is suggested that plasma progesterone levels fluctuate during the time of implantation and should not be regarded as a basis to predict actual nidation in the western spotted skunk.

  13. Ultrastructural analysis of nanogold-labeled cell surface microvilli in liquid by atmospheric scanning electron microscopy and their relevance in cell adhesion.

    PubMed

    Murai, Toshiyuki; Sato, Mari; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara

    2013-10-16

    The adhesion of leukocytes circulating in the blood to vascular endothelium is critical for their trafficking in the vasculature, and CD44 is an important cell surface receptor for rolling adhesion. In this study, we demonstrate the correlative observation of CD44 distribution at the lymphocyte cell surface in liquid by fluorescence optical microscopy and immuno-electron microscopy using an atmospheric scanning electron microscope (ASEM). The ultrastructure of the cell surface was clearly imaged by ASEM using positively charged Nanogold particles. ASEM analysis demonstrated microvilli projections around the cell surface and the localization of CD44 on the microvilli. Treatment of cells with cytochalasin D resulted in a loss of the microvilli projections and concomitantly abrogated CD44-mediated adhesion to its ligand hyaluronan. These results suggest the functional relevance of microvilli in CD44-mediated rolling adhesion under shear flow.

  14. Correlative Synchrotron Fourier Transform Infrared Spectroscopy and Single Molecule Super Resolution Microscopy for the Detection of Composition and Ultrastructure Alterations in Single Cells.

    PubMed

    Whelan, Donna R; Bell, Toby D M

    2015-12-18

    Single molecule localization microscopy (SMLM) and synchrotron Fourier transform infrared (S-FTIR) spectroscopy are two techniques capable of elucidating unique and valuable biological detail. SMLM provides images of the structures and distributions of targeted biomolecules at spatial resolutions up to an order of magnitude better than the diffraction limit, whereas IR spectroscopy objectively measures the holistic biochemistry of an entire sample, thereby revealing any variations in overall composition. Both tools are currently applied extensively to detect cellular response to disease, chemical treatment, and environmental change. Here, these two techniques have been applied correlatively at the single cell level to probe the biochemistry of common fixation methods and have detected various fixation-induced losses of biomolecular composition and cellular ultrastructure. Furthermore, by extensive honing and optimizing of fixation protocols, many fixation artifacts previously considered pervasive and regularly identified using IR spectroscopy and fluorescence techniques have been avoided. Both paraformaldehyde and two-step glutaraldehyde fixation were identified as best preserving biochemistry for both SMLM and IR studies while other glutaraldehyde and methanol fixation protocols were demonstrated to cause significant biochemical changes and higher variability between samples. Moreover, the potential complementarity of the two techniques was strikingly demonstrated in the correlated detection of biochemical changes as well as in the detection of fixation-induced damage that was only revealed by one of the two techniques.

  15. A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line

    SciTech Connect

    Thuy, Nguyen Thanh; Huy, Tran Quang; Nga, Phan Thi; Morita, Kouichi; Dunia, Irene; Benedetti, Lucio

    2013-09-15

    We describe the ultrastructure of the NamDinh virus (NDiV), a new member of the order Nidovirales grown in the C6/36 mosquito cell line. Uninfected and NDiV-infected cells were investigated by electron microscopy 24–48 h after infection. The results show that the viral nucleocapsid-like particles form clusters concentrated in the vacuoles, the endoplasmic reticulum, and are scattered in the cytoplasm. Mature virions of NDiV were released as budding particles on the cell surface where viral components appear to lie beneath and along the plasma membrane. Free homogeneous virus particles were obtained by ultracentrifugation on sucrose gradients of culture fluids. The size of the round-shaped particles with a complete internal structure was 80 nm in diameter. This is the first study to provide information on the morphogenesis and ultrastructure of the first insect nidovirus NDiV, a missing evolutionary link in the emergence of the viruses with the largest RNA genomes. - Highlights: • NamDinh virus (NDiV), a new member of the order Nidovirales was tested in cultured cell line. • The morphogenesis and ultrastructure of NDiV were investigated by electron microscopy. • The viral nucleocapsid-like particles clustered and scattered in the cytoplasm. • NDiVs were released as budding particles on the cell surface. • The size of the viral particles with a complete internal structure was 80 nm in diameter.

  16. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    PubMed Central

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  17. Reorganization of the endosomal system in Salmonella-infected cells: the ultrastructure of Salmonella-induced tubular compartments.

    PubMed

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-09-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella.

  18. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells.

    PubMed

    van Gestel, Renske A; Brouwers, Jos F; Ultee, Anton; Helms, J Bernd; Gadella, Bart M

    2016-01-01

    Lipid rafts are micro-domains of ordered lipids (Lo phase) in biological membranes. The Lo phase of cellular membranes can be isolated from disordered lipids (Ld phase) after treatment with 1 % Triton  X-100 at 4 °C in which the Lo phase forms the detergent-resistant membrane (DRM) fraction. The lipid composition of DRM derived from Madin-Darby canine kidney (MDCK) cells, McArdle cells and porcine sperm is compared with that of the whole cell. Remarkably, the unsaturation and chain length degree of aliphatic chains attached to phospholipids is virtually the same between DRM and whole cells. Cholesterol and sphingomyelin were enriched in DRMs but to a cell-specific molar ratio. Sulfatides (sphingolipids from MDCK cells) were enriched in the DRM while a seminolipid (an alkylacylglycerolipid from sperm) was depleted from the DRM. Treatment with <5 mM methyl-ß-cyclodextrin (MBCD) caused cholesterol removal from the DRM without affecting the composition and amount of the phospholipid while higher levels disrupted the DRM. The substantial amount of (poly)unsaturated phospholipids in DRMs as well as a low stoichiometric amount of cholesterol suggest that lipid rafts in biological membranes are more fluid and dynamic than previously anticipated. Using negative staining, ultrastructural features of DRM were monitored and in all three cell types the DRMs appeared as multi-lamellar vesicular structures with a similar morphology. The detergent resistance is a result of protein-cholesterol and sphingolipid interactions allowing a relatively passive attraction of phospholipids to maintain the Lo phase. For this special issue, the relevance of our findings is discussed in a sperm physiological context.

  19. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John.

    PubMed

    Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T

    2015-09-01

    The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants.

  20. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John.

    PubMed

    Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T

    2015-09-01

    The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants. PMID:25959623

  1. Xenotransplanted human prostate carcinoma (DU145) cells develop into carcinomas and cribriform carcinomas: ultrastructural aspects.

    PubMed

    Gilloteaux, Jacques; Jamison, James M; Neal, Deborah R; Summers, Jack L; Taper, Henryk S

    2012-10-01

    Androgen-independent, human prostate carcinoma cells (DU145) develop into solid, carcinomatous xenotransplants on the diaphragm of nu/nu mice. Tumors encompass at least two poorly differentiated cell types: a rapidly dividing, eosinophilic cell comprises the main cell population and a few, but large basophilic cells able to invade the peritoneal stroma, the muscular tissue, lymph vessels. Poor cell contacts, intracytoplasmic lumina, and signet cells are noted. Lysosomal activities are reflected by entoses and programmed cell deaths forming cribriform carcinomas. In large tumors, degraded cells may align with others to facilitate formation of blood supply routes. Malignant cells would spread via ascites and through lymphatics.

  2. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Guisinger, M. M.; Kiss, J. Z.

    1999-01-01

    The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.

  3. Correlative Light and Scanning Electron Microscopy for Observing the Three-Dimensional Ultrastructure of Membranous Cell Organelles in Relation to Their Molecular Components.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Ushiki, Tatsuo

    2015-12-01

    Although the osmium maceration method has been used to observe three-dimensional (3D) structures of membranous cell organelles with scanning electron microscopy (SEM), the use of osmium tetroxide for membrane fixation and the removal of cytosolic soluble proteins largely impairs the antigenicity of molecules in the specimens. In the present study, we developed a novel method to combine cryosectioning with the maceration method for correlative immunocytochemical analysis. We first immunocytochemically stained a semi-thin cryosection cut from a pituitary tissue block with a cryo-ultramicrotome, according to the Tokuyasu method, before preparing an osmium-macerated specimen from the remaining tissue block. Correlative microscopy was performed by observing the same area between the immunostained section and the adjacent face of the tissue block. Using this correlative method, we could accurately identify the gonadotropes of pituitary glands in various experimental conditions with SEM. At 4 weeks after castration, dilated cisternae of rough endoplasmic reticulum (RER) were distributed throughout the cytoplasm. On the other hand, an extremely dilated cisterna of the RER occupied the large region of the cytoplasm at 12 weeks after castration. This novel method has the potential to analyze the relationship between the distribution of functional molecules and the 3D ultrastructure in different composite tissues. PMID:26374827

  4. Identify multiple myeloma stem cells: Utopia?

    PubMed Central

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-01

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs. PMID:25621108

  5. Identify multiple myeloma stem cells: Utopia?

    PubMed

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs. PMID:25621108

  6. Identify multiple myeloma stem cells: Utopia?

    PubMed

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.

  7. Quantification of endocrine cells and ultrastructural study of insulin granules in the large intestine of opossum Didelphis aurita (Wied-Neuwied, 1826).

    PubMed

    dos Santos, Daiane Cristina Marques; Cupertino, Marli do Carmo; Fialho, Maria do Carmo Queiroz; Barbosa, Alfredo Jose Afonso; Fonseca, Cláudio Cesar; Sartori, Sirlene Souza Rodrigues; da Matta, Sérgio Luis Pinto

    2014-02-01

    This study aimed to investigate the distribution of argyrophil, argentaffin, and insulin-immunoreactive endocrine cells in the large intestine of opossums (Didelphis aurita) and to describe the ultrastructure of the secretory granules of insulin-immunoreactive endocrine cells. Fragments of the large intestine of 10 male specimens of D. aurita were collected, processed, and subjected to staining, immunohistochemistry, and transmission electron microscopy. The argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells were sparsely distributed in the intestinal glands of the mucous layer, among other cell types of the epithelium in all regions studied. Proportionally, the argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells represented 62.75%, 36.26%, and 0.99% of the total determined endocrine cells of the large intestine, respectively. Quantitatively, there was no difference between the argyrophil and the argentaffin endocrine cells, whereas insulin-immunoreactive endocrine cells were less numerous. The insulin-immunoreactive endocrine cells were elongated or pyramidal, with rounded nuclei of irregularly contoured, and large amounts of secretory granules distributed throughout the cytoplasm. The granules have different sizes and electron densities and are classified as immature and mature, with the mature granules in predominant form in the overall granular population. In general, the granule is shown with an external electron-lucent halo and electron-dense core. The ultrastructure pattern in the granules of the insulin-immunoreactive endocrine cells was similar to that of the B cells of pancreatic islets in rats.

  8. ULTRASTRUCTURE OF MYCOPLASMA SPECIES

    PubMed Central

    Domermuth, C. H.; Nielsen, M. H.; Freundt, E. A.; Birch-Andersen, A.

    1964-01-01

    Domermuth, C. H. (Statens Seruminstitut, Copenhagen, Denmark), M. H. Nielsen, E. A. Freundt, and A. Birch-Andersen. Ultrastructure of Mycoplasma species. J. Bacteriol. 88:727–744. 1964.—The ultrastructure of 19 strains (15 species) of Mycoplasmatales grown on solid medium was studied with the aid of an electron microscope. The cells possessed a triple-layered limiting membrane 75 to 100 A thick. This membrane appeared to be symmetrical in some strains and asymmetrical in others. An electron-dense material found in close contact with the cell surface was tentatively interpreted to be a capsular substance. Ribosomes and strands of nuclear material were observed in the cytoplasm of cells of all strains. Ribosomes observed in the JA strain of M. gallisepticum were frequently arranged in a regular geometric pattern of characteristic appearance. Dense inclusions sometimes limited by triple-layered membranes (possibly developing elementary bodies), as well as membrane-surrounded vesicles, were observed in the cytoplasm of cells of some strains. Images PMID:14208513

  9. Isolated adrenocortical cells of the domestic fowl (Gallus domesticus): steroidogenic and ultrastructural properties.

    PubMed

    Carsia, R V; Scanes, C G; Malamed, S

    1985-02-01

    Isolated adrenocortical cells from White Leghorn chickens (Gallus domesticus) were compared to those from rats (Rattus norvegicus). Cells were prepared from collagenase-dispersed adrenal glands of sexually mature male animals. Corticosterone was measured by radioimmunoassay after incubation for 2 h with steroidogenic agents. Of the four ACTH analogues used, three were 6-17 times more potent with rat cells than with fowl cells (potencies were indicated by half-maximal steroidogenic concentrations). However, 9-tryptophan (O-nitrophenylsulfenyl) ACTH was 8 times more potent with fowl cells than with rat cells, thus suggesting that ACTH receptor differences exist between the two cell types. In addition, cAMP analogues were 10 times more potent with rat cells than with fowl cells suggesting that fowl corticosteroidogenesis is less dependent on cAMP than is rat corticosteroidogenesis. At equal cell concentrations, rat cells secreted 20-40 times more corticosterone than did chicken cells when they were maximally stimulated. Although rat cells converted 8 times more pregnenolone to corticosterone than did fowl cells, the half-maximal steroidogenic concentration for pregnenolone-supported corticosterone synthesis was the same for both cell types (about 5 microM). This suggests that fowl cells have lower steroidogenic enzyme content rather than lower steroidogenic enzyme activity. An unusual feature seen in the isolated fowl adrenocortical cells was an abundance of intracellular filaments.

  10. Ultrastructural study of adhesion of enterotoxigenic Escherichia coli to erythrocytes and human intestinal epithelial cells.

    PubMed

    Knutton, S; Lloyd, D R; Candy, D C; McNeish, A S

    1984-05-01

    The adhesion to erythrocytes and human intestinal epithelial cells of enterotoxigenic Escherichia coli strains H10407, B2C, and H10407P, expressing colonization factor antigen I (CFA/I), CFA/II, and type 1 fimbriae, respectively, was examined by electron microscopy. CFA and type 1 fimbriae were visualized by negative staining in thin sections after en bloc staining with ruthenium red and by immune labeling with antisera raised against purified fimbriae. By negative and ruthenium red staining, CFA/I, CFA/II, and type 1 fimbriae were indistinguishable and appeared as approximately 7-nm-diameter hollow cylindrical structures up to 1.5 micron in length; strain B2C also produced 2- to 3-nm-diameter flexible fibrillar fimbriae. Bacteria producing CFA/I, CFA/II, and type 1 fimbriae adhered to and agglutinated human, bovine, and guinea pig erythrocytes, respectively; CFA/I and CFA/II also mediated attachment of bacteria to the brush border of isolated human duodenal enterocytes. Electron microscopy of agglutinated erythrocytes and enterocytes with adherent bacteria showed, in each case, that bacterial adhesion involved the formation of many interactions between the tips of fimbriae and receptors on the erythrocyte or enterocyte brush border membrane. Immune labeling allowed different fimbrial antigens mediating bacterial attachment to human enterocytes to be identified.

  11. The ultrastructural localization of immunoglobulins in human b cells of immunoproliferative diseases.

    PubMed

    Gourdin, M F; Farcet, J P; Reyes, F

    1982-06-01

    The cellular distribution of immunoglobulins in human malignant and normal B cells was investigated by immunoelectron microscopy by direct incubation of fixed cells with electron microscopy by direct incubation of fixed cells with peroxidase-coupled antibody. These conjugates penetrated into the cell, resulting in the simultaneous detection of surface and cytoplasmic immunoglobulins. The latter were seen as specific intracisternal staining of the perinuclear space and endoplasmic reticulum and occasionally of the Golgi complex. Plasma cells were frequently characterized by a heterogeneity of reactivity of the endoplasmic reticulum. Minute amounts of cytoplasmic immunoglobulin were demonstrated in cells without developed secretory organelles, such as lymphoma cells and lymphocytes from chronic lymphocytic leukemia (CLL). The method allowed us to define several subsets of cells according to the expression of surface and cytoplasmic immunoglobulins and thus to determine the stage of maturation of cells involved in monoclonal proliferation. PMID:7044445

  12. Changes in the ultrastructure of satellite cells of slow loris in tricresylphosphate poisoning.

    PubMed

    Ahmed, M M

    1977-02-28

    Toxic reaction of satellite cells from posterior root ganglia of slow loris in TCP poisoning is described. The satellite cells in experimental animals show a marked increase in the rough ER, Golgi complex, microvesicles and filaments. Furthermore there is also an increase in the number of dense bodies and mitochondrial density in these cells. The significance of these changes are discussed and it is concluded that in TCP poisoning not only the neurons but the supporting cells are also affected.

  13. Epithelial cell types of the primary ureter of Helix aspersa: Ultrastructural and cytochemical characteristics.

    PubMed

    Sánchez-Aguayo, I; Ballesteros, F; Hidalgo, J; López-Campos, J L

    1987-01-01

    The present study describes the morphological characteristics which determine the structural polarity of the principal and ciliated cells in the primary ureter epithelium of Helix aspersa. These characteristics are analysed on the basis of the function performed by both cell types. The presence of paniculate glycogen and the location of glycoconjugates associated with cell membranes of the epithelial cells is revealed by the method of Thiéry.

  14. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    NASA Technical Reports Server (NTRS)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  15. Ultrastructural Evidence for a Dual Function of the Phloem and Programmed Cell Death in the Floral Nectary of Digitalis purpurea

    PubMed Central

    Gaffal, Karl Peter; Friedrichs, Gudrun Johanna; El-Gammal, Stefan

    2007-01-01

    Background and Aims The floral nectary of Digitalis purpurea is a transitory organ with stomatal exudation of nectar. In this type of nectary, the nectar is thought to be transported to the exterior via intercellular ducts that traverse the nectariferous tissue. The latter is also traversed by a ramified system of phloem strands from which prenectar sugar is most probably unloaded. The aims of this study were to provide some of the basic information needed to evaluate the possible mechanism involved in nectar secretion and to discover the fate of the nectary. Methods The ultrastructure of the nectary was investigated at different stages of development by analysis of a series of ultrathin (7 × 10−8 m) sections 7 × 10−7 m apart from one another. Proportions of the cells typical of the nectary were documented by 3D-reconstruction and morphometry. Key Results The phloem consisted of variably shaped sieve elements and companion cells which, as a rule, were more voluminous than the sieve elements. Direct contact between the phloem strands and intercellular ducts was observed. In contrast to the phloem, which remained structurally intact beyond the secretory phase, the nectariferous tissue exhibited degenerative changes reminiscent of programmed cell death (PCD), which started as early as the onset of secretion and progressed in a cascade-like fashion until final cell death occurred in the exhausted nectary. Hallmarks of PCD were: increased vacuolation; increase in electron opacity of individual cells; progressive incorporation of plasmatic components into the vacuole reminiscent of autophagy; degradation of plastids starting with hydrolysis of starch; deformation of the nucleus and gradual disappearance of chromatin; loss of tonoplast integrity and subsequent autolysis of the rest of cellular debris. Degeneration of the cells occurred against a background of increasing cell size. Conclusions The cytological and anatomical evidence presented here, and calculations

  16. An ultrastructural study of sinuatrial node cells in the embryonic rat heart.

    PubMed Central

    Domenech-Mateu, J M; Boya-Vegué, J

    1975-01-01

    Sinuatrial nodal tissue, obtained from rat embryos of 15, 16 and 17 days, was examined with the electron microscope. Embryonic nodal cells were generally similar to adult cells except that (1) they showed thick prolongations of the cytoplasm which insinuated themselves between neighbouring cells; (2) they possessed osmiophilic granules with a predeliction for the region of the Golgi complex; (3) they exhibited a lesser and variable degree of pinocytosis. Images Fig. 1 Fig. 2 Fig. 3 PMID:1133091

  17. Effects of long-term space condition on cell ultrastructure and the molecular level change of the tomato

    NASA Astrophysics Data System (ADS)

    Jinying, L.; Min, L.; Huai, X.; Yi, P.; Chunhua, Z.; Nechitalo, G.

    Effects of long-term exposure to physical factors of space flight on dormant seeds were studied on plants derived from tomato seeds flown for 6 years on board of the space station MIR Upon return to the Earth the seeds were germinated and grown to maturity Samples of plants were compared to plants from parallel ground-based controls Various differences of ultrastructure of the tomato leaf cell were observed with an electron microscope One plant carried by space station has the anatomy of leaves with a three-layered palisade tissue and other plants similar with ground controls have the anatomy of leaves with a one-layered palisade tissue The number of starch grains per chloroplast of every space-treated tomato leaf increased significantly compared with that of the ground control The leaf cell walls of two plants carried by space station became contracted and deformed The size of chloroplast in some space-treated plants was larger and the lamellae s structure of some chloroplasts turned curvature and loose The results obtained point out to significant changes occurring on the molecular level among the space-flight treated seedlings and the ground control The leaves of plants were used for AFLP Amplification Fragment Length Polymorphism analysis For the first generation space-flight treated tomato plants among 64 pairs of primers used in this experiment 43 primers generated the same DNA bands type and 21 primers generated a different DNA band type 2582 DNA bands were produced among which 34 DNA bands were polymorphic with the percentage

  18. Ultrastructural correlates of selective outer hair cell destruction following kanamycin intoxication in the chinchilla.

    PubMed

    Ryan, A F; Woolf, N K; Bone, R C

    1980-12-01

    Kanamycin ototoxicity, combined with behavioral audiometry to evaluate threshold shifts, was used to destroy outer hair cells (OHCs) in the basal cochlea of the chincilla while leaving the inner hair cell (IHC) population largely intact. After survival times of four weeks to one year, transmission electron microscopy was employed to determine the condition of surviving hair cells and neural elements. Throughout the region of OHC loss, IHCs and their innervation were normal in appearance if their adjacent supporting cells were undamaged. When IHC supporting cells, specifically the inner pillar cells, were damaged or absent, damage to IHCs was commonly observed. Such supporting cell-related damage included extrusion of the cuticular plate from the surface of the reticular lamina, encapsulation and/or fusion of stereocilia, and gross distortion of hair cell shape. When the outer supporting cells of the organ of Corti were undamaged following OHC loss, outer spiral fibers were found to have survived in near-normal numbers in the region from 0.5-1.0 mm basal to the basal most surviving OHC, but suffered progressive attrition toward the basal end of the cochlea. It is concluded that kanamycin-induced OHC loss can occur without concommitant IHC damage or outer spiral fiber loss. PMID:7451380

  19. Loss of cell wall alpha(1–3) glucan affects Cryptococcus neoformans from ultrastructure to virulence

    PubMed Central

    Reese, Amy J.; Yoneda, Aki; Breger, Julia A.; Beauvais, Anne; Liu, Hong; Griffith, Cara L.; Bose, Indrani; Kim, Myoung-Ju; Skau, Colleen; Yang, Sarah; Sefko, Julianne A.; Osumi, Masako; Latge, Jean-Paul; Mylonakis, Eleftherios; Doering, Tamara L.

    2007-01-01

    SUMMARY Yeast cell walls are critical for maintaining cell integrity, particularly in the face of challenges such as growth in mammalian hosts. The pathogenic fungus Cryptococcus neoformans additionally anchors its polysaccharide capsule to the cell surface via α(1–3) glucan in the wall. Cryptococcal cells disrupted in their alpha glucan synthase gene were sensitive to stresses, including temperature, and showed difficulty dividing. These cells lacked surface capsule, although they continued to shed capsule material into the environment. Electron microscopy showed that the alpha glucan that is usually localized to the outer portion of the cell wall was absent, the outer region of the wall was highly disorganized, and the inner region was hypertrophic. Analysis of cell wall composition demonstrated complete loss of alpha glucan accompanied by a compensatory increase in chitin/chitosan and a redistribution of beta glucan between cell wall fractions. The mutants were unable to grow in a mouse model of infection, but caused death in nematodes. These studies integrate morphological and biochemical investigations of the role of alpha glucan in the cryptococcal cell wall. PMID:17244196

  20. Ultrastructure observation on the cells at different life history stages of Cryptocaryon irritans (Ciliophora: Prostomatea), a parasitic ciliate of marine fishes.

    PubMed

    Ma, Rui; Ni, Bing; Fan, Xinpeng; Warren, Alan; Yin, Fei; Gu, Fukang

    2016-09-01

    Cells of Cryptocaryon irritans at different life history stages were studied using both light and electron microscopy. The characteristics of several organelles were revealed for the first time at the ultrastructural level. It was confirmed that the cytostome of trophonts, protomonts and theronts was surrounded by cilium-palp triplets rather than ciliary triplets. The nematodesmata underlying the circumoral dikinetids were single bundles, whereas these were always paired in Prorodontids. Toxicysts were present in late-stage tomonts and theronts, but were absent in trophonts and protomonts. We posited that toxicysts might play a role in infection and invasion of host-fish tissue by theronts. The adoral brosse was unlike that of any other family of the class Prostomatea based on its location and morphology. Membranous folds were present in trophonts, protomonts and theronts. These folds were longer and more highly developed in C. irritans than in exclusively free-living prostome ciliates suggesting that they might be linked to parasitism in C. irritans. Trophonts, protomonts and theronts had multiple contractile vacuoles. The basic ultrastructure of the contractile vacuole of C. irritans was similar to that of other kinetofragminophoran ciliates. They might play different roles in different stages of the life cycle since their ultrastructure varied among trophonts, protomonts and theronts. PMID:27460894

  1. Ultrastructure of a magnetotactic spirillum.

    PubMed Central

    Balkwill, D L; Maratea, D; Blakemore, R P

    1980-01-01

    The ultrastructure of a magnetotactic bacterium (strain MS-1) was examined by transmission, scanning, and scanning-transmission electron microscopy. The organism resembled other spirilla in general cell morphology, although some differences were detected at the ultrastructural level. Electron-dense particles within magnetotactic cells were shown by energy-dispersive X-ray analysis to be localizations containing iron. A non-magnetotactic variant of strain MS-1 lacked these novel bacterial inclusion bodies. A chain of these particles traversed each magnetotactic cell in a specific arrangement that was consistent from cell to cell, seemingly associated with the inner surface of the cytoplasmic membrane. Each particle was surrounded by an electron-dense layer separated from the particle surface by an electron-transparent region. The term "magnetosome" is proposed for the electron-dense particles with their enveloping layer(s) as found in this and other magnetotactic bacteria. Images PMID:6245069

  2. The ultrastructure of bovine ileal follicle-associated epithelial (FAE) cells during the perinatal period.

    PubMed Central

    Asari, M; Kano, Y; Wakui, S; Nishita, T; Matsushita, H; Oshige, H

    1989-01-01

    The ileal follicle-associated epithelial (FAE) cells in bovine fetuses and neonates were examined by light and electron microscopy. In 7-9 months old fetuses (68, 82 and 86 cm CRL) the dome epithelium was usually a little thinner than elsewhere and contained more intra-epithelial leucocytes. FAE cells were already distinguishable by their being more cuboidal and eosinophilic than the other epithelial cells. The cytoplasm of the FAE cells bulged noticeably into the lumen and contained numerous mitochondria and vacuoles. At 18 hours and 21 hours after birth, the dome epithelium was more columnar and eosinophilic than previously and contained more intra-epithelial leucocytes. The FAE cells showed characteristic bulging of large cytoplasmic processes into the lumen, as seen in the previous stage. In the cytoplasm, moderate numbers of mitochondria, numerous vesicles and microtubules could be seen. Frequently degenerated FAE cells could also be found among normal FAE cells in the epithelium. After this stage the cytoplasmic processes almost disappeared but distribution of the other organelles was similar to that seen at the previous stage except that multivesicular bodies were frequently seen in the apical cytoplasm. These histological results suggest that bovine ileal FAE cells are histologically and functionally mature by birth and that at birth they seem to be able to react against the penetration of pathogenic substances from the extrauterine environment. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:2606783

  3. Antiproliferative effect of linalool on RPMI 7932 human melanoma cell line: ultrastructural studies.

    PubMed

    Cerchiara, Teresa; Straface, Serafina Vittoria; Brunelli, Elvira; Tripepi, Sandro; Gallucci, Maria Caterina; Chidichimo, Giuseppe

    2015-04-01

    Linalool, a small monoterpene molecule, is used widely for its flavoring and fragrant properties in many cosmetic products. In this work, we investigated the antiproliferative effect of two different linalool solutions on RPMI 7932 human melanoma and NCTC 2544 normal keratinocites cell lines using the trypan blue method. Morphological changes in cells were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, apoptosis was evaluated using caspase 3-antibody. Linalool showed a selective inhibitory effect on the growth of melanoma cells in a concentrationdependent manner, inducing several morphological changes, as revealed by SEM and TEM analysis. Moreover, the labelling for caspase-3 is abundant in the melanoma cells and almost absent in the normal keratinocites cells. The results suggest that linalool could be used as drug and/or as model drug for developing potential therapeutic agents for melanoma. PMID:25973472

  4. Antiproliferative effect of linalool on RPMI 7932 human melanoma cell line: ultrastructural studies.

    PubMed

    Cerchiara, Teresa; Straface, Serafina Vittoria; Brunelli, Elvira; Tripepi, Sandro; Gallucci, Maria Caterina; Chidichimo, Giuseppe

    2015-04-01

    Linalool, a small monoterpene molecule, is used widely for its flavoring and fragrant properties in many cosmetic products. In this work, we investigated the antiproliferative effect of two different linalool solutions on RPMI 7932 human melanoma and NCTC 2544 normal keratinocites cell lines using the trypan blue method. Morphological changes in cells were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, apoptosis was evaluated using caspase 3-antibody. Linalool showed a selective inhibitory effect on the growth of melanoma cells in a concentrationdependent manner, inducing several morphological changes, as revealed by SEM and TEM analysis. Moreover, the labelling for caspase-3 is abundant in the melanoma cells and almost absent in the normal keratinocites cells. The results suggest that linalool could be used as drug and/or as model drug for developing potential therapeutic agents for melanoma.

  5. Extended Ultrastructural Characterization of Chordoma Cells: The Link to New Therapeutic Options

    PubMed Central

    Kolb, Dagmar; Pritz, Elisabeth; Steinecker-Frohnwieser, Bibiane; Lohberger, Birgit; Deutsch, Alexander; Kroneis, Thomas; El-Heliebi, Amin; Dohr, Gottfried; Meditz, Katharina; Wagner, Karin; Koefeler, Harald; Leitinger, Gerd; Leithner, Andreas; Liegl-Atzwanger, Bernadette; Zweytick, Dagmar; Rinner, Beate

    2014-01-01

    Chordomas are rare bone tumors, developed from the notochord and largely resistant to chemotherapy. A special feature of this tumor is the heterogeneity of its cells. By combining high pressure freezing (HPF) with electron tomography we were able to illustrate the connections within the cells, the cell-cell interface, and the mitochondria-associated endoplasmic reticulum membrane complex that appears to play a special role among the characteristics of chordoma. These lipid raft-like regions are responsible for lipid syntheses and for calcium signaling. Compared to other tumor cells, chordoma cells show a close connection of rough endoplasmic reticulum and mitochondria, which may influence the sphingolipid metabolism and calcium release. We quantified levels of ceramide and glycosylceramide species by the methyl tert-butyl ether extraction method and we assessed the intracellular calcium concentration with the ratiometric fluorescent dye Fura-2AM. Measurements of the changes in the intracellular calcium concentration revealed an increase in calcium due to the application of acetylcholine. With regard to lipid synthesis, glucosylceramide levels in the chordoma cell line were significantly higher than those in normal healthy cells. The accumulation of glycosylceramide in drug resistant cancer cells has been confirmed in many types of cancer and may also account for drug resistance in chordoma. This study aimed to provide a deep morphological description of chordoma cells, it demonstrated that HPF analysis is useful in elucidating detailed structural information. Furthermore we demonstrate how an accumulation of glycosylceramide in chordoma provides links to drug resistance and opens up the field for new research options. PMID:25479055

  6. Ultra-structural changes and expression of chondrogenic and hypertrophic genes during chondrogenic differentiation of mesenchymal stromal cells in alginate beads

    PubMed Central

    Dashtdar, Havva; Selvaratnam, Lakshmi; Balaji Raghavendran, Hanumantharao; Suhaeb, Abdulrazzaq Mahmod; Ahmad, Tunku Sara

    2016-01-01

    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis. PMID:26966647

  7. Ultrastructural Pathology of Oligodendroglial Cells in Traumatic and Hydrocephalic Human Brain Edema: A Review.

    PubMed

    Castejón, Orlando J

    2015-01-01

    Oligodendroglial cell changes in human traumatic brain injuries and hydrocephalus have been reviewed and compared with experimental brain edema. Resting unreactive oligodendrocytes, reactive oligodendrocytes, anoxic-ischemic oligodendrocytes, hyperthrophic phagocytic oligodendrocytes, and apoptotic oligodendrocytes are found. Anoxic-ischemic oligodendrocytes exhibit enlargement of endoplasmic reticulum, Golgi complex, and enlargement and disassembly of nuclear envelope. They appear in contact with degenerated myelinated axons. Hypertrophic phagocytic oligodendrocytes engulf degenerated myelinated axons exerting myelinolytic effects. A continuum oncotic and apoptotic cell death type leading to necrosis is observed. The vasogenic and cytotoxic components of brain edema are discussed in relation to oligodendroglial cell changes and reactivity. PMID:26548433

  8. Ultrastructural characterization of stable L-form cells from Erysipelothrix rhusiopathiae and of accompanying artifacts.

    PubMed

    Gumpert, J; Todorov, T; Toshkov, A

    1978-01-01

    The stable L-form of Erysipelothrix rhusiopathiae is a typical protoplast type L-form. Cells are surrounded by a trilamellar cytoplasmic membrane only. They grow in form of aggregations in liquid media and their diameters vary between 0.1 and 2 micrometer. Always a large portion of cells undergoes lysis. It seems to be characteristic for L-form cultures of E. rhusiopathiae that always many artifact structures are formed. The artifacts are spherical particles with diameters of 0.1 micrometer to more than 3 micrometer. They can be differentiated from L-form cells only by electron microscopy. The artifacts consist of electron dense amorphous material and their surface is irregular without a clear boundary line. Obviously, these artifacts are produced from protein components of the medium and from cytoplasmatic components of the lysing L-form cells.

  9. The blood-brain barrier in primary CNS lymphomas: ultrastructural evidence of endothelial cell death.

    PubMed Central

    Molnár, P. P.; O'Neill, B. P.; Scheithauer, B. W.; Groothuis, D. R.

    1999-01-01

    The vasculature of 24 primary CNS B-cell lymphomas that were not related to acquired immunodeficiency syndrome was systematically studied by electron microscopy. Seven low-grade astrocytic tumors were included for comparison. Classical electron microscopy features of apoptosis were found in lymphoma cells of 21 of 22 subjects. Capillaries of gliomas and lymphomas showed changes reported previously: variability of endothelial cell (EC)-thickness and number, basal lamina thickness and duplication, and fenestrations. Primary CNS B-cell lymphoma ECs showed two distinctive populations of electron-dense and electron-lucent cells. The electron-dense ECs occurred in 38% of all capillaries, with changes consisting of chromatin condensation in bizarre and contracted nuclei, cytoplasmic shrinkage with markedly increased electron density, and dilatation of the endoplasmic reticulum. We interpreted these changes as indicative of apoptosis. Cell death eventually resulted in complete disintegration of the endothelium with frank discontinuities of the EC component of the blood-tumor barrier in capillaries and postcapillary venules. Another population of ECs had increased cell volume, conspicuous cytoplasmic electron lucency, dispersed organelles, scattered vesicles, and apical stress fibers. We interpreted these changes as indicative of cellular regeneration. Individual apoptotic ECs often lay next to normal or regenerating ECs. Neither type of EC change was observed in gliomas, which also lacked perivascular neoplastic lymphocytic cuffing. We believe that these populations of ECs, which have not been described in other disorders affecting the blood-brain barrier, may be induced by cytokines released from necrotic and/or apoptotic tumor lymphocytes and may explain the unusual imaging characteristics of primary CNS B-cell lymphomas treated with corticosteroids. PMID:11550310

  10. Anatomical structure and ultrastructure of the endocarp cell walls of Argania spinosa (L.) Skeels (Sapotaceae).

    PubMed

    Sebaa, H S; Harche, M Kaid

    2014-12-01

    The anatomical and histochemical study of young and adult endocarps of Argania spinosa (sampled from Tindouf; Algeria) shows a general structure that is similar to that of majority of stone fruits. These samples consist of tissues that contain lignified and cellulosic cell walls. The majority of the tissues are composed of sclerenchyma cells; with very thick lignified cell walls and conducting tissues. Coniferyl lignins are abundant in the majority of the lignified tissues. However, the coniferyl lignins appear at the primary xylem during lignification. Syringyl lignins are present in small quantities. The electron microscopy observation of the sclerenchyma cell walls of the young endocarp shows polylamellate strates and, cellular microfibrils in arced patterns. This architecture is observed in the cell walls of the adult endocarp only after the incubation of the tissue in methylamine. These configurations (arcs) are the result of a regular and complete rotation with a 180° variation in the microfibril angle; the complete and symmetrical arcs show a helicoidal mode of construction. The observation of the sclerenchyma cells revealed the capacity of helicoidal morphogenesis to adjust itself under the influence of topological constraints, such as the presence of a large number of pit canals, which maintain symplastic transport. PMID:25125280

  11. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice.

    PubMed

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-06-28

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  12. "Type III" cells of rat taste buds: immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene product 9.5, and serotonin.

    PubMed

    Yee, C L; Yang, R; Böttger, B; Finger, T E; Kinnamon, J C

    2001-11-01

    Taste buds contain a variety of morphological and histochemical types of elongate cells. Serotonin, neuron-specific enolase (NSE), ubiquitin carboxyl terminal hydrolase (PGP 9.5), and neural cell adhesion molecule (N-CAM) all have been described as being present in the morphologically defined Type III taste cells in rats. In order to determine whether these substances coexist in a single cell, we undertook immunohistochemical and ultrastructural analysis of taste buds in rats. Double-label studies show that PGP 9.5 and NSE always colocalize. In contrast, PGP 9.5 and serotonin seldom colocalize. Further, whereas the serotonin-immunoreactive cells are always slender and elongate, the PGP 9.5/NSE population comprise two morphological types--one slender, the other broader and pyriform. Although gustducin-immunoreactive taste cells appear similar in overall shape to the pyriform PGP 9.5/NSE population, gustducin never colocalizes with PGP 9.5 or NSE. The serotonin-immunoreactive taste cells have an invaginated nucleus, synaptic contacts with nerve fibers, and taper apically to a single, large microvillus. These are all characteristics of Type III taste cells described previously in rabbits (Murray [1973] Ultrastructure of Sensory Organs I. Amsterdam: North Holland. p 1-81). PGP 9.5-immunoreactive taste cells exhibit two morphological varieties. One type is similar to the serotonin-immunoreactive population, containing an invaginated nucleus, synapses with nerve fibers, and a single large microvillus. The other type of PGP 9.5-immunoreactive taste cell has a large round nucleus and the apical end of the cell tapers to a tuft of short microvilli, which are characteristics of Type II taste cells. Thus, in rats, some Type III cells accumulate serotonin but do not express PGP 9.5, whereas others express PGP 9.5 but do not accumulate amines. Similarly, Type II taste cells come in at least two varieties: those immunoreactive for gustducin and those immunoreactive for PGP 9.5.

  13. Diamine oxidase-gold ultrastructural localization of histamine in human skin biopsies containing mast cells stimulated to degranulate in vivo by exposure to recombinant human stem cell factor.

    PubMed

    Dvorak, A M; Costa, J J; Morgan, E S; Monahan-Earley, R A; Galli, S J

    1997-10-15

    Stem cell factor (SCF) has a major role in hematopoiesis and in the regulation of mast cell development and function. For example, recombinant human SCF (rhSCF) can induce the development of human mast cells from precursor cells in vitro, stimulate mediator release from human skin mast cells in vitro, and promote both the development and functional activation of human skin mast cells in vivo. In the present study, we used a new ultrastructural enzyme-affinity method, employing diamine oxidase (DAO)-conjugated gold particles (DAO-gold), to detect histamine in skin biopsies obtained from patients with breast carcinomas who were receiving daily subcutaneous (SC) injections of rhSCF in a phase I study of this cytokine. We examined control biopsies obtained at sites remote from rhSCF injection as well as biopsies of rhSCF-injected skin that were obtained within 2 hours and 30 minutes of the SC injection of rhSCF at that site. The rhSCF-injected sites (which clinically exhibited a wheal-and-flare response), but not the control sites, contained mast cells undergoing regulated secretion by granule extrusion. The DAO-gold-affinity method detected histamine in electron-dense granules of mast cells in control and injected skin biopsies; however, the altered matrix of membrane-free, extruded mast cell granules was largely unreactive with DAO-gold. Notably, DAO-gold bound strongly to fibrin deposits and collagen fibers that were adjacent to degranulated mast cells. These findings represent the first morphologic evidence of histamine secretion by classical granule exocytosis in human mast cells in vivo. PMID:9376568

  14. Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study.

    PubMed

    Molano, J; Bowers, B; Cabib, E

    1980-05-01

    The distribution of chitin in Saccharomyces cervisiae primary septa and cell walls was studied with three methods: electron microscopy of colloidal gold particles coated either with wheat germ agglutinin or with one of two different chitinases, fluorescence microscopy with fluorescein isothiocyanate derivatives of the same markers, and enzymatic treatments of [14C]glucosamine-labeled cells. The septa were uniformly and heavily labeled with the gold-attached markers, an indication that chitin was evenly distributed throughout. To study the localization of chitin in lateral walls, alkali-extracted cell ghosts were used. Observations by electron and fluorescence microscopy suggest that lectin-binding material is uniformly distributed over the whole cell ghost wall. This material also appears to be chitin, on the basis of the analysis of the products obtained after treatment of 14C-labeled cell ghosts with lytic enzymes. The chitin of lateral walls can be specifically removed by treatment with beta-(1 leads to 6)-glucanase containing a slight amount of chitinase. During this incubation approximately 7% of the total radioactivity is solubilized, about the same amount liberated when lateral walls of cell ghosts are completely digested with snail glucanase yield primary septa. It is concluded that the remaining chitin, i.e., greater than 90% of the total, is in the septa. The facilitation of chitin removal from the cell wall by beta-(1 leads to 6)-glucanase indicates a strong association between chitin and beta-(1 leads to 6)-glucan. Covalent linkages between the two polysaccharides were not detected but cannot be excluded. PMID:6989839

  15. [Effects of low temperature at 10 degrees C on some antioxidant enzyme activities and ultrastructures of hypocotylar cells in mung bean and garden pea].

    PubMed

    Chen, Xu-Wei; Yang, Ling; Zhang, Yi; Gong, Ju-Fang

    2005-10-01

    Mung bean (Phaseolus radiatus Linn.) and garden pea (Pisum satium Linn.), which were stressed 4 days under a low temperature of 10 degrees C, were used as materials to study the cold tolerance of plant with different resistance. On the 2nd and 3rd day under 10 degrees C stress, both the malondialdehyde (MDA) content and the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities increased significantly in hypocotylar cells of mung bean, so did SOD activity in garden pea, but other physiological indexes in garden pea were not different from the non-treatment groups (Figs. 1-5). In hypocotylar cells of mung bean, SOD activity always maintain at the highest level in a period of time,and so does POD activity (Figs. 3, 4). Ultrastructural results after stress indicated as follows: (1) Plastids in hypocotylar cells of mung bean accumulated much starch (Plate I-6), whereas the form of plastids in hypocotylar cells of garden pea changed maskedly to become dumb-bell-shaped, round or irregular, with the last one being the most common form (Plate I-8, 12); (2) In both mung bean and garden pea, central vacuole was divided into small vacuoles (Plate I-4, 10), and the number of mitochondria increased and became aggregated (Plate I-3, 11, 12). Judging from the activities of protective enzymes and ultrastructures, 10 degrees C low temperature caused non-lethal, temporary injuries to hypocotyls ultrastructures in mung bean, but no visible injury at all, and even improved its cold tolerance to a certain degree in garden pea.

  16. The immunohistochemical localization of notch receptors and ligands in human articular cartilage, chondroprogenitor culture and ultrastructural characteristics of these progenitor cells.

    PubMed

    Ustunel, Ismail; Ozenci, Alpay Merter; Sahin, Zeliha; Ozbey, Ozlem; Acar, Nuray; Tanriover, Gamze; Celik-Ozenci, Ciler; Demir, Ramazan

    2008-01-01

    The presence of progenitor/stem cells in human articular cartilage remains controversial. Therefore, we attempted to isolate and culture progenitor/stem cells and to investigate their phenotypic characteristics. Biopsies were obtained (with consent) from patients undergoing arthroscopic surgery. Full depth explants were fixed and cryosectioned or enzymatically digested and the resulting cells cultured and plated on fibronectin-coated dishes. Chondrocytes were cultured until colonies of >32 cells were present. Colonies were trypsinized and expanded in monolayer for pellet culture. Immunolocalization of Notch and its ligands were detected in vivo and in vitro using immunocytochemistry. In vitro studies investigated differences in immunolocalization of Notch and its associated ligands in colony-forming cells and small clusters of non-colony-forming cells. The ultrastructure of the chondroprogenitors was examined by scanning and transmission electron microscopy. Results revealed that the immunolocalization of Notch-1 and its ligand Delta were concentrated in regions closest to the articular surface. Notch-1 was also densely localized in the deeper zone of articular cartilage. Notch-2 immunolabeling was densely localized in all zones of articular cartilage. Jagged-1 was concentrated in the deeper regions of articular cartilage. Notch-1, Delta and Jagged-1 were more abundant in colony-forming cells than non-colony-forming chondrocytes in vitro. Notch-3, Notch-4 and Jagged-2 were absent from all regions of the articular cartilage tissues and cultured cartilage cells in vitro. Ultrastructurally, chondrocytes cultured in monolayer dedifferentiated to fibroblast-like cells with cell surface processes of varying lengths, pellet cultured cells varied in morphology, as flattened and rounded. In conclusion, we propose that adult human articular cartilage may contain cells having progenitor cell features. PMID:18272209

  17. Physiology of morphologically identified cells of the bullfrog fungiform papilla.

    PubMed

    Takeuchi, H; Tsunenari, T; Kurahashi, T; Kaneko, A

    2001-09-17

    Voltage-gated ionic current and the response to quinine were studied on the four types of morphologically identified taste cells of the bullfrog fungiform papilla by whole-cell patch clamp recording with a Lucifer yellow-filled pipette. Dye-coupled type Ia cells (mucous cells) did not show voltage-activated currents. Type Ib cells (wing cells) characterized by the fin-like processes, type II cells (rod cells) having a thick straight dendrite running to the surface and type III cells with a thin dendrite had voltage-gated sodium (INa) and potassium currents (IK) and generated action potentials. The amplitude of INa was significantly larger in type Ib and II cells than in type III cells. Type Ib and II cells responded to quinine but Type III cells did not.

  18. Ultra-structural study of insulin granules in pancreatic β-cells of db/db mouse by scanning transmission electron microscopy tomography.

    PubMed

    Xue, Yanhong; Zhao, Wei; Du, Wen; Zhang, Xiang; Ji, Gang; Ying, Wang; Xu, Tao

    2012-07-01

    Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.

  19. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  20. Effects of carbon dioxide and ethylene at the ultrastructural level of abscisson cells

    SciTech Connect

    Valdovinos, J.G.; Lieberman, S.J.; Jensen, T.E. )

    1989-04-01

    A study of the structure of abscission cells of tobacco flower pedicels treated with air, ethylene (ETH), carbon dioxide (CO{sub 2}), and ETH plus CO{sub 2} indicated the following: CO{sub 2} treatment suppressed ETH - increased rough endoplasmic reticula. With both CO{sub 2} and ETH + CO{sub 2} treatments, the following changes were observed: mitochondria appeared less electron dense; greater numbers of Golgi vesicles were present; chloroplasts contained greater numbers of starch granules as well as starch granules of a larger size and interval spacing between thylakoids was increased; vesicles associated with cell walls were increased in number.

  1. Cell death in the embryonic brain of Gallotia galloti (Reptilia; Lacertidae): a structural and ultrastructural study.

    PubMed Central

    Trujillo, C M; Yanes, C M; Marrero, A; Perez, M A; Martin, J M

    1987-01-01

    In the striatum, thalamus and cerebellum of a Lacertid reptile, we have found three types of cellular death during embryonic development, both at the light and electron microscopic level. The first affects the undifferentiated neuro-epithelial cells and is commonest during the early stages (E. 32-E. 36). The second corresponds to the type of 'nuclear' death described in the bibliography and reaches a maximum in the middle embryonic period (E. 37-E. 39); nevertheless important variations were observed in different zones. The third is the same as the 'cytoplasmic' death type and appears in the perinatal stages. Phagocytosis involved in the elimination of dead cells is of two types. One is associated with early death and is carried out by undifferentiated neuro-epithelial cells. The other is carried out by microglial cells which appear around Stage 37. Much cellular debris was observed in the intermediate zone and this was associated with the second type of phagocytosis. In both cases lipid production was associated with the degenerative process. Comparison of the temporal cellular death pattern with synaptogenesis, gliogenesis and maturation of neuronal processes is consistent with the view that the various types of cellular death found by us had different causes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:3654326

  2. Ultrastructural studies on the Ca2+ localization in the dividing cells of the maize root tip.

    PubMed

    Sakai-Wada, A; Yagi, S

    1993-12-01

    The distribution of Ca2+ in dividing cells of the maize root tip was examined by potassium pyroantimonate precipitation and EGTA treatment methods. Ca2+ was found in most of the cell organelles, such as the matrix of the mitochondria, the thylakoid membrane of the proplastid and the Golgi vesicles, and on the plasma membrane. Ca2+ was also distributed throughout the cytoplasmic ground matrix and attractoplasm, inside the vacuoles, in the granular zone of the nucleolus in the interphasic nucleus and in the regenerated nucleolus in the telophasic nucleus. The amounts of Ca2+ distributed in the cytoplasmic ground matrix, the vacuole and the nucleolus varied during nuclear division. From the results of the present experiment, the following considerations on the role of Ca2+ and the regulation site of Ca2+ in dividing plant cells were drawn: 1) Ca2+ may play a role in the construction of the granular form of the ribosome. 2) Ca2+ may be an essential ion in the regeneration of nucleolus. 3) Vacuoles may act as the regulatory site of the Ca2+ concentration in the cytoplasm and attractoplasm in plant cells. Spindle microtubules and phragmo-microtubules are probably surrounded by other ions, such as Mg2+.

  3. Pituitary adenomas: immunohistology and ultrastructural analysis of 118 tumors.

    PubMed

    Esiri, M M; Adams, C B; Burke, C; Underdown, R

    1983-01-01

    An analysis is presented of the immunohistological and ultrastructural features in a series of 118 surgically removed pituitary adenomas all of which were studied immunohistologically using antisera to growth hormone (GH), prolactin (PRL) ACTH, beta FSH, beta LH and beta TSH, and 75 of which were studied ultrastructurally. Results were analysed according to the mode of presentation of patients. Forty-one (35%) of the tumours were from patients with acromegaly or gigantism, ten (9%) from patients with Cushing's syndrome or Nelson's syndrome, 19 (16%) from patients with clinical features associated with hyperprolactinaemia and 48 (40%) from patients with space occupying lesions which appeared clinically to be overtly endocrinologically functionless. By light microscopy, using the immunoperoxidase (PAP) technique, immunoreactive GH was demonstrated in all the tumours from patients with acromegaly or gigantism, immunoreactive ACTH in all tumours from patients with Cushing's syndrome or Nelson's syndrome and immunoreactive PRL in 95% of tumours associated with effects of hyperprolactinaemia. Forty-five percent of the tumours from acromegalic patients contained some PRL-positive cells as well as GH-positive cells. Among the tumours which appeared clinically to be endocrinologically functionless were three tumours (from males) uniformly stained for immunoreactive PRL. Of the remainder, 60% were negative for immunoreactive hormones and 40% contained small numbers of cells which were positive for a variety of immunoreactive hormones. ACTH-cell and PRL-cell tumours had ultrastructural features as described in previous studies. Fifty percent of GH-cell tumours examined at the EM level contained fibrous bodies, while in the remainder these structures were not identified. Tumours with fibrous bodies were more likely to contain PRL as well as GH with immunoperoxidase. All tumours that were endocrinologically functionless and which were examined at the EM level contained

  4. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  5. Separation and Ultrastructure of Proplastids from Dark-grown Euglena Cells

    PubMed Central

    Ophir, Ilana; Ben-Shaul, Yehuda

    1973-01-01

    A procedure for the separation of proplastids free of mitochondria from dark-grown Euglena cells has been developed. A fraction enriched in proplastids was used for freeze-etching study of proplastid structure. The prolamellar body in freeze-etched replicas appeared sponge-like, with thylakoids, often vesicular, emerging from it. The prolamellar body and the thylakoids were covered by particles of about 100Å in diameter. No larger particles, typical of light-grown chloroplasts, were observed. Images PMID:16658476

  6. Separation and Ultrastructure of Proplastids from Dark-grown Euglena Cells.

    PubMed

    Ophir, I; Ben-Shaul, Y

    1973-06-01

    A procedure for the separation of proplastids free of mitochondria from dark-grown Euglena cells has been developed. A fraction enriched in proplastids was used for freeze-etching study of proplastid structure. The prolamellar body in freeze-etched replicas appeared sponge-like, with thylakoids, often vesicular, emerging from it. The prolamellar body and the thylakoids were covered by particles of about 100A in diameter. No larger particles, typical of light-grown chloroplasts, were observed.

  7. Effect of interferon on dimethyl sulfoxide-stimulated Friend erythroleukemic cells: ultrastructural and biochemical study.

    PubMed Central

    Luftig, R B; Conscience, J F; Skoultchi, A; McMillan, P; Revel, M; Ruddle, F H

    1977-01-01

    Treatment of dimethyl sulfoxide-stimulated Friend erythroleukemic cells (clone 745) with mouse interferon (50 U/ml) led to the following changes: (i) a net decrease (40 to 60%) in both the total number of apparently newly synthesized virion particles per cell section and in the average number of cell sections containing one or more virion particles; (ii) a large decrease (80 to 90%) in the number of particles released into the supernatant fluid, as assayed by reverse transcriptase activity; (iii) an initial increase in the number of "immature" or "enveloped A-type" virions followed by an increase in the accumulation of empty, core shell-like particles; and (iv) a decrease in the number of cytoplasmic vacuolar structures, which have been implicated as a major site of virus production and which we show here by serial sectioning to be, in several instances, invaginations of the plasma membrane. The effects on virus production were noticeable 2 h after interferon addition and reached their full extent by 13 h. We conclude from these observations that interferon acts upon the late stage(s) of virion maturation, leading both to a decrease in virion production as well as to the formation of defective particles. In contrast, a small but significant increase in the rate at which globin mRNA and hemoglobin accumulate is observed after interferon treatment. Images PMID:561195

  8. An ultrastructural study of oogenesis and cell dynamics during cocoon shell secretion in the subterranean freshwater planarian Dendrocoelum constrictum (Platyhelminthes, Tricladida).

    PubMed

    Harrath, A H; Ahmed, M; Sayed, S R; Saifi, M A; Alwasel, S H

    2013-02-01

    The ultrastructure of the ovary and the female atrium during cocoon formation was investigated in the subterranean freshwater planarian Dendrocoelum constrictum. In the peripheral portion of the ovary, the oogonia are recognized as undifferentiated germ cells, which are morphologically similar to neoblasts that have a high nucleus/cytoplasm ratio. Oocyte maturation is characterized by a marked growth of the cytoplasm because of the accumulation of cytoplasmic organelles and inclusions. The Golgi complexes begin to increase within the ooplasm and produce vesicles with an electron-dense content that fuse to produce larger spherical globules with homogeneous and electron-dense material. In the mature oocyte, the spherical globules migrate toward the cortical ooplasm, forming a continuous monolayer. We confirm that these spherical globules, which represent cortical granules rather than eggshell globules, vary in size up to 2μm and their electron-dense content shows concentric thin bands. After leaving the ovary through the oviduct, the mature and fertilized oocytes reach the female atrium where they are packaged with thousands of vitelline cells in the cocoon shell. Based on our ultrastructural analysis, we demonstrate that the wall of the cocoon shell is composed of two layers, each of which has a different origin. The shell granules extruded from the vitelline cells are involved in the secretion of the inner layer of the cocoon shell, whereas the outer layer of the cocoon shell is synthesized by the epithelial cells in the genital atrium.

  9. Biochemical and ultrastructural effects of monensin on myeloperoxidase (MPO) processing in human leukemic HL-60 cells

    SciTech Connect

    Akin, D.T.; Kinkade J.M. Jr.; Parmley, R.T.

    1986-05-01

    Pulse-chase experiments using /sup 35/S-methionine, immunoprecipitation, and SDS-PAGE fluorography were used to study the effects of monensin (1 ..mu..M) on the post-translational processing and packaging of MPO into azurophil granules (AG). After 20 hr, maturation of MPO was inhibited by 80% and a large intermediate accumulated. Electron microscopy of treated cells revealed striking changes in morphology (formation of large vacuoles with small electron dense cores in the Golgi region) and staining patterns for complex glycoconjugates (PA-TCH-SP) and sulfate (HID), indicating qualitative changes in granule and Golgi characteristics. The distribution of DAB-reactive peroxidase was relatively unchanged. Subcellular fractionation using Percoll density gradient centrifugation showed labeled MPO remained in a lower density region and did not chase into higher density AG as seen with untreated cells. These data indicate that monensin inhibits both the maturation of MPO and the AG. Further studies are required to determine how closely these two processes are related.

  10. ARSENIC INDUCES SUSTAINED IMPAIRMENT OF SKELETAL MUSCLE AND MUSCLE PROGENITOR CELL ULTRASTRUCTURE AND BIOENERGETICS

    PubMed Central

    Fabrisia, Ambrosio; Elke, Brown; Donna, Stolz; Ricardo, Ferrari; Bret, Goodpaster; Bridget, Deasy; Giovanna, Distefano; Alexandra, Roperti; Amin, Cheikhi; Yesica, Garciafigueroa; Aaron, Barchowsky

    2014-01-01

    Over 4 million individuals in the US, and over 140 million individuals worldwide, are exposed daily to arsenic-contaminated drinking water. Human exposures can range from below the current limit of 10 µg/L to over 1 mg/L, with 100 µg/L promoting disease in a large portion of those exposed. Although increased attention has recently been paid to myopathy following arsenic exposure, the pathogenic mechanisms underlying clinical symptoms remain poorly understood. This study tested the hypothesis that arsenic induces lasting muscle mitochondrial dysfunction and impairs metabolism. When compared to non-exposed controls, mice exposed to drinking water containing 100µg/L arsenite for 5 weeks demonstrated impaired muscle function, mitochondrial myopathy, and altered oxygen consumption that were concomitant with increased mitochondrial fusion gene transcription. There was no difference in levels of inorganic arsenic or its mononomethyl- and dimethyl- metabolites between controls and exposed muscles, confirming that arsenic does not accumulate in muscle. Nevertheless, muscle progenitor cells isolated from exposed mice recapitulated the aberrant myofiber phenotype and were more resistant to oxidative stress, generated more reactive oxygen species, and displayed autophagic mitochondrial morphology, as compared to cells isolated from non-exposed mice. These pathological changes from a possible maladaptive oxidative stress response provide insight into declines in muscle functioning caused by exposure to this common environmental contaminant. PMID:24960579

  11. Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique.

    PubMed

    Asano, Yoshiya; Nishiguchi, Akihiro; Matsusaki, Michiya; Okano, Daisuke; Saito, Erina; Akashi, Mitsuru; Shimoda, Hiroshi

    2014-06-01

    Cell accumulation technique is an extracellular matrix (ECM) nanofilm-based tissue-constructing method that enables formation of multilayered hybrid culture tissues. In this method, ECM-nanofilm is constructed using layer-by-layer assembly of fibronectin and gelatin on culture cells. The ECM-nanofilm promotes cell-to-cell interaction; then the three-dimensional (3D) multilayered tissue can be constructed with morphological change of the cells mimicking living tissues. By using this method, we have successfully produced tubular networks of human umbilical venous endothelial cells (HUVECs) and human dermal lymphatic endothelial cells (HDLECs) in 3D multilayered normal human dermal fibroblasts (NHDFs). This study demonstrated morphological characteristics of the vascular networks in the engineered tissues by using light and electron microscopy. In light microscopy, HUVECs and HDLECs formed luminal structures such as native blood and lymphatic capillaries, respectively. Electron microscopy showed distinct ultrastructural aspects of the vasculature of HUVECs or HDLECs with intermediated NHDFs and abundant ECM. The vasculature constructed by HUVECs exhibited structures similar to native blood capillaries, involving overlapping endothelial connections with adherens junctions, abundant vesicles in the endothelial cells and basement membrane-like structure. The detection of laminin around HUVEC-constructed vessels supported the presence of perivascular basal lamina. The vasculature constructed by HDLECs showed some ultrastructural characteristics similar to those of native lymphatic capillaries such as irregular vascular shape, loose adhesive connection and gap formation between endothelial cells. In conclusion, our novel vascular network models fabricated by the cell accumulation technique provide highly organized blood and lymphatic capillary networks mimicking the vasculatures in vivo.

  12. Effects of Electroacupuncture on Interstitial Cells of Cajal (ICC) Ultrastructure and Connexin 43 Protein Expression in the Gastrointestinal Tract of Functional Dyspepsia (FD) Rats.

    PubMed

    Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong

    2016-01-01

    BACKGROUND Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. MATERIAL AND METHODS The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. RESULTS Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. CONCLUSIONS These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders. PMID:27297942

  13. Effects of Electroacupuncture on Interstitial Cells of Cajal (ICC) Ultrastructure and Connexin 43 Protein Expression in the Gastrointestinal Tract of Functional Dyspepsia (FD) Rats.

    PubMed

    Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong

    2016-01-01

    BACKGROUND Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. MATERIAL AND METHODS The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. RESULTS Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. CONCLUSIONS These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders.

  14. Effects of Electroacupuncture on Interstitial Cells of Cajal (ICC) Ultrastructure and Connexin 43 Protein Expression in the Gastrointestinal Tract of Functional Dyspepsia (FD) Rats

    PubMed Central

    Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong

    2016-01-01

    Background Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. Material/Methods The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. Results Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. Conclusions These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders. PMID:27297942

  15. Identifying gene expression modules that define human cell fates.

    PubMed

    Germanguz, I; Listgarten, J; Cinkornpumin, J; Solomon, A; Gaeta, X; Lowry, W E

    2016-05-01

    Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in fact define cell fate. Lastly, we introduce a web-based database to disseminate the results.

  16. Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells

    PubMed Central

    1985-01-01

    The distribution of calsequestrin in rat atrial and ventricular myocardial cells was determined by indirect immunocolloidal gold labeling of ultrathin frozen sections. The results presented show that calsequestrin is confined to the sarcoplasmic reticulum where it is localized in the lumen of the peripheral and the interior junctional sarcoplasmic reticulum as well as in the lumen of the corbular sarcoplasmic reticulum, but absent from the lumen of the network sarcoplasmic reticulum. Comparison of these results with our previous studies on the distribution of the Ca2+ + Mg2+-dependent ATPase of the cardiac sarcoplasmic reticulum show directly that the Ca2+ + Mg2+- dependent ATPase and calsequestrin are confined to distinct regions within the continuous sarcoplasmic reticulum membrane. Assuming that calsequestrin provides the major site of Ca2+ sequestration in the lumen of the sarcoplasmic reticulum, the results presented support the idea that both junctional (interior and peripheral) and specialized nonjunctional (corbular) regions of the sarcoplasmic reticulum are involved in Ca2+ storage and possibly release. Furthermore, the structural differences between the junctional and the corbular sarcoplasmic reticulum support the possibility that Ca2+ storage and/or release from the lumen of the junctional and the corbular sarcoplasmic reticulum are regulated by different physiological signals. PMID:4008530

  17. Association of Paramecium bursaria Chlorella viruses with Paramecium bursaria cells: ultrastructural studies.

    PubMed

    Yashchenko, Varvara V; Gavrilova, Olga V; Rautian, Maria S; Jakobsen, Kjetill S

    2012-05-01

    Paramecium bursaria Chlorella viruses were observed by applying transmission electron microscopy in the native symbiotic system Paramecium bursaria (Ciliophora, Oligohymenophorea) and the green algae Chlorella (Chlorellaceae, Trebouxiophyceae). Virus particles were abundant and localized in the ciliary pits of the cortex and in the buccal cavity of P. bursaria. This was shown for two types of the symbiotic systems associated with two types of Chlorella viruses - Pbi or NC64A. A novel quantitative stereological approach was applied to test whether virus particles were distributed randomly on the Paramecium surface or preferentially occupied certain zones. The ability of the virus to form an association with the ciliate was investigated experimentally; virus particles were mixed with P. bursaria or with symbiont-free species P. caudatum. Our results confirmed that in the freshwater ecosystems two types of P. bursaria -Chlorella symbiotic systems exist, those without Chlorella viruses and those associated with a large amount of the viruses. The fate of Chlorella virus particles at the Paramecium surface was determined based on obtained statistical data and taking into account ciliate feeding currents and cortical reorganization during cell division. A life cycle of the viruses in the complete symbiotic system is proposed.

  18. Salivary gland monomorphic adenoma. Ultrastructural, immunoperoxidase, and histogenetic aspects.

    PubMed Central

    Dardick, I.; Kahn, H. J.; Van Nostrand, A. W.; Baumal, R.

    1984-01-01

    Monomorphic adenoma of basal cell type is a salivary gland tumor believed to result from a proliferation of a single type of cell. However, ultrastructural and immunocytochemical investigations of 6 monomorphic adenomas (5 from parotid and 1 from intraoral minor salivary gland) indicate that there are two classes of these lesions, one composed of two types of tumor cells and the other wholly or predominantly made up of one type of cell (isomorphic). In the former group, the organization of the tumor cells closely mimicked that of normal and hyperplastic salivary gland intercalated ducts. Aggregates of tumor cells were arranged as an inner layer of luminal epithelial cells which were surrounded by an outer layer of cells that, in some cases, had ultrastructural and immunohistochemical features indicating myoepithelial cell differentiation. In some adenomas formed by two types of tumor cells, basal-lamina-lined extracellular spaces were identified ultrastructurally in relation to modified myoepithelial cells; such spaces had the same fine-structural features as those reported in pleomorphic adenoma and adenoid cystic carcinoma. Predominantly isomorphic adenomas were composed exclusively of luminal epithelial cells. These results indicate that despite the varied histologic patterns in the numerous subtypes of monomorphic adenoma, there is a central theme of differentiation and organization in this type of neoplasm which recapitulates the ductoacinar unit of normal salivary gland parenchyma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 PMID:6375388

  19. Some ultrastructural information on intact, living bacterial cells and related cell-wall fragments as given by FTIR

    NASA Astrophysics Data System (ADS)

    Naumann, D.

    1984-05-01

    Living bacterial cells of Staphylococcus aureus have been measured from aqueous suspensions taking advantage of the solvent subtraction capabilities of FTIR. All spectral features, between 1800-800 cm -1, of the intact cells could be measured with a reproducibility of better than ±5% when applying strict metabolic control of cell growth and a highly standardized experimental procedure prior to IR measurements. IR bands near 1745, 1656, 1547, 1240 and 1200-1000 cm -1were tentatively assigned to: CO stretching of ester groups, amide I and amide II bands of the various peptides and proteins, asymmetric stretching of phosphate groups and complex vibrational modes resulting from polysaccharidal compounds, respectively. Absorbance subtraction of IR spectra of different intact baterial cells and cell-wall preparations yielded reasonable results on structural variations accompanying: (i) cell growth, (ii) use of different growth media, (iii) chemical treatment of cells and (iv) biochemical isolation processes of cell walls from the intact cells.

  20. [The ultrastructural manifestations of the regenerative processes in the Sertoli cells under the action of low-intensity electromagnetic radiation in the rats subjected to stress].

    PubMed

    Korolev, Yu N; Geniatulina, M S; Nikulina, L A; Mikhailik, L V

    2015-01-01

    The experiments on the outbred female rats using the electron microscopic technique have demonstrated that the application of ultrahigh frequency low-intensity electromagnetic radiation (LIEMR) with a flux density below 1 mCW/Cm2 and a frequency of approximately 1,000 MHz in the regime of primary prophylaxis and therapeutic-preventive action suppressed the development of the post-stress pathological ultrastructural changes and increased the activity of the regenerative processes in the Sertoli cells. It was shown that the developing adaptive and compensatory changes in the Sertoli cells most frequently involve the energy-producing structures (mitochondria) that undergo the enlargement of their average and total dimensions. Simultaneously, the amount of granular endoplasmic reticulum and the number of ribosomes increased while the intracellular links between the organelles strengthened and the reserve potential of the cells improved. It is concluded that the observed effects may be due to the action of both local and systemic regulation mechanisms.

  1. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  2. Three-dimensional ultrastructural analyses of anterior pituitary gland expose spatial relationships between endocrine cell secretory granule localization and capillary distribution

    PubMed Central

    Yoshitomi, Munetake; Ohta, Keisuke; Kanazawa, Tomonoshin; Togo, Akinobu; Hirashima, Shingo; Uemura, Kei-ichiro; Okayama, Satoko; Morioka, Motohiro; Nakamura, Kei-ichiro

    2016-01-01

    Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules. PMID:27796315

  3. Cell-based Assays to Identify Inhibitors of Viral Disease

    PubMed Central

    Green, Neil; Ott, Robert D.; Isaacs, Richard J.; Fang, Hong

    2009-01-01

    Background Antagonizing the production of infectious virus inside cells requires drugs that can cross the cell membrane without harming host cells. Objective It is therefore advantageous to establish intracellular potency of anti-viral drug candidates early in the drug-discovery pipeline. Methods To this end, cell-based assays are being developed and employed in high-throughput drug screening, ranging from assays that monitor replication of intact viruses to those that monitor activity of specific viral proteins. While numerous cell-based assays have been developed and investigated, rapid counter screens are also needed to define the specific viral targets of identified inhibitors and to eliminate nonspecific screening hits. Results/Conclusions Here, we describe the types of cell-based assays being used in antiviral drug screens and evaluate the equally important counter screens that are being employed to reach the full potential of cell-based high-throughput screening. PMID:19750206

  4. Fluctuations and ultrastructural localization of oncoproteins and cell cycle regulatory proteins during growth and apoptosis of synchronized AGF cells.

    PubMed

    Gazitt, Y; Erdos, G W

    1994-02-15

    AGF cells were synchronized by blocking the cell cycle at the G1/S boundary with high concentrations of thymidine (thymidine block) for 11 h. Prolongation of the thymidine block from 11 h to 20 h resulted in apoptosis. Early changes in cellular and nuclear morphology were monitored by confocal microscopy, transmission electron microscopy, and scanning electron microscopy. The fluctuations in the levels of the proliferation cell nuclear antigen (PCNA), cyclin A, CDC-2, c-myc, and p53 proteins were monitored in synchronized cultures and in cells undergoing apoptosis by immunofluorescence staining, flow cytometry, and Western immunoblotting. When assayed by immunofluorescence staining and flow cytometry, the levels of cyclin A and PCNA increased about 2-fold during the S phase, and the level of CDC-2 was fairly constant during S and slightly decreased during late S/G2. The level of c-myc also increased about 2-fold during the S phase, whereas the level of p53 increased only slightly during S. Most importantly, however, the level of staining for c-myc, p53, cyclin A, CDC-2, and PCNA increased 50%-150% during apoptosis compared to the levels observed in cells at G1/S. In contrast, the levels of actin and vimentin, although increased during S, were decreased during apoptosis compared to the levels observed at G1/S. Western blot analysis of the steady state levels of PCNA, cyclin A, and CDC-2 revealed an increase in the levels of all three proteins during S, with higher levels of these proteins observed in apoptotic cells compared to the levels observed in cells at G1/S. Similarly, the levels of p53 and c-myc proteins increased during S and were also high in apoptotic cells. Interestingly, high levels of these two proteins were observed also in cells arrested at G1/S. AGF cells undergoing apoptosis were immunostained for c-myc, p53, PCNA, cyclin A, and CDC-2 and were viewed by confocal microscopy. Apoptotic cells exhibited increased staining for c-myc and p53 in the

  5. Synthesis of a peroxidase activity by the cells of hairy cell leukemia: a study by ultrastructural cytochemistry.

    PubMed

    Reyes, F; Gourdin, M F; Farcet, J P; Dreyfus, B; Breton-Gorius, J

    1978-09-01

    The nature of cells present in the blood, marrow, and spleen of patients with hairy cell leukemia is largely debated. These cells have been tentatively categorized on the basis of either monocytic or lymphocytic markers, and the accumulating data points to the fact that they share some characteristics of both cell types. Although hairy cells are known to lack myeloperoxidase-positive granules, present in normal human monocytes, we investigated the possible presence of other peroxidase activities differing from the granule-bound myeloperoxidase. The study was carried out with several methods based on the incubation of fixed and unfixed cells in the presence of diaminobenzidine and hydrogen peroxide. A peroxidase activity was found in hairy cells, located always in the endoplasmic reticulum but not in the Golgi apparatus or in any granule. By its cytochemical characteristics it appears to be closely related to that of tissue macrophages, activated blood monocytes, and other nonlymphocytic hematopoietic cells. This peroxidase is not found in lymphocytes with B or T phenotypes. PMID:678670

  6. ULTRASTRUCTURAL STUDIES OF HUMAN CUTANEOUS NERVE WITH SPECIAL REFERENCE TO LAMELLATED CELL INCLUSIONS AND VACUOLE-CONTAINING CELLS.

    PubMed

    EVANS, M J; FINEAN, J B; WOOLF, A L

    1965-03-01

    One hundred and twenty-nine specimens of human cutaneous nerve obtained from patients suffering from a variety of neuromuscular disorders have been surveyed in detail by electron microscopy. The most striking finding was the presence of lamellated Schwann cell inclusions and of cells containing vacuoles, both of which appear to be derived from myelin and to show some correlation with sensory loss.

  7. Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells

    SciTech Connect

    Kleinow, Tatjana; Tanwir, Fariha; Kocher, Cornelia; Krenz, Bjoern; Wege, Christina; Jeske, Holger

    2009-09-01

    The geminivirus Abutilon mosaic virus (AbMV) encodes two proteins which are essential for viral spread within plants. The nuclear shuttle protein (NSP) transfers viral DNA between the nucleus and cytoplasm, whereas the movement protein (MP) facilitates transport between cells through plasmodesmata and long-distance via phloem. An inducible overexpression system for epitope-tagged NSP and MP in plants yielded unprecedented amounts of both proteins. Western blots revealed extensive posttranslational modification and truncation for MP, but not for NSP. Ultrastructural examination of Nicotiana benthamiana tissues showed characteristic nucleopathic alterations, including fibrillar rings, when epitope-tagged NSP and MP were simultaneously expressed in leaves locally infected with an AbMV DNA A in which the coat protein gene was replaced by a green fluorescent protein encoding gene. Immunogold labelling localized NSP in the nucleoplasm and in the fibrillar rings. MP appeared at the cell periphery, probably the plasma membrane, and plasmodesmata.

  8. Comparative study of effects of magnesium and taurine on electrical parameters of natural and artificial membranes. VIII. Effect on the ultrastructure of human amniotic epithelial cells.

    PubMed

    Guiet-Bara, A; Bara, M; Durlach, J

    1991-03-01

    The ultrastructure of human amniotic epithelial cells from normal pregnancies, at term, was studied using transmission electron microscopy. The results were analysed by a stereological method which indicates the ratio between the volume of the intercellular space (R1, the microvilli (R2), and the podocytes (R3) versus the cell volume. At low concentration (2 mM), MgCl2 decreased R1 and R3 and had no significant effect on R2. In contrast, taurine (2 mM) increased R1 and had no significant effect on R2 and R3. There is no vicarious action between Mg and taurine. These data are in contrast to the results obtained after electrophysiological studies, which indicates that the structural targets for Mg and taurine are different from the targets responsible for ionic transfer.

  9. Low Temperature‐induced Modifications in Cell Ultrastructure and Localization of Phenolics in Winter Oilseed Rape (Brassica napus L. var. oleifera L.) Leaves

    PubMed Central

    STEFANOWSKA, MARZANNA; KURAŚ, MIECZYSŁAW; KACPERSKA, ALINA

    2002-01-01

    Acclimation of winter oilseed plants in the cold (i.e. at temperatures >0 °C) followed by short exposure to sub‐lethal freezing temperatures resulted in pronounced ultrastructural changes of leaf epidermal and mesophyll cells. The following major changes were observed upon acclimation at 2 °C: increased thickness of cell walls; numerous invaginations of plasma membranes; the appearance of many large vesicles localized in the cytoplasm in close proximity to the central vacuole; the occurrence of abundant populations of microvesicles associated with the endoplasmic reticulum (ER) cisternae or located in the vicinity of dictyosomes; and the occurrence of paramural bodies and myelin‐like structures. In addition, large phenolic deposits were observed in the vicinity of the plasma membrane and membrane‐bound organelles such as chloroplasts, large vesicles or cytoplasm/tonoplast interfaces. Transient freezing (–5 °C for 18 h) of the cold‐acclimated leaves led to reversible disorganization of the cytoplasm and to pronounced structural changes of the cellular organelles. Chloroplasts were swollen, with the stroma occupying one half of their volume and the thylakoid system being displaced to the other half. Large phenolic aggregates disappeared but distinct layers of phenolic deposits were associated with mitochondrial membranes and with chloroplast envelopes. In frost‐thawed cells recovered at 2 °C for 24 h, dictyosomes and dictyosome‐ or ER‐derived small vesicles reappeared in the ribosome‐rich cytoplasm. Aberrations in the structure of chloroplasts and mitochondria were less pronounced. Few phenolic deposits were seen as small grains associated with chloroplast envelopes and vesicle membranes. These observations demonstrate that plants undergo different changes in cell ultrastructure depending on whether they are subjected to chilling or freezing temperatures. Results are discussed in relation to membrane recycling and the possible role of

  10. Ultrastructural evidence for two-cell and three-cell neural pathways in the tentacle epidermis of the sea anemone Aiptasia pallida.

    PubMed

    Westfall, Jane A; Elliott, Carol F; Carlin, Ryan W

    2002-01-01

    Sensory and ganglion cells in the tentacle epidermis of the sea anemone Aiptasia pallida were traced in serial transmission electron micrographs to their synaptic contacts on other cells. Sensory cell synapses were found on spirocytes, muscle cells, and ganglion cells. Ganglion cells, in turn, synapsed on sensory cells, spirocytes, muscle cells, and other neurons and formed en passant axo-axonal synapses. Axonal synapses on nematocytes and gland cells were not traced to their cells of origin, i.e., identified sensory or ganglion cells. Direct synaptic contacts of sensory cells with spirocytes and sensory cells with muscle cells suggest a local two-cell pathway for spirocyst discharge and muscle cell contraction, whereas interjection of a ganglion cell between the sensory and effector cells creates a local three-cell pathway. The network of ganglion cells and their processes allows for a through-conduction system that is interconnected by chemical synapses. Although the sea anemone nervous system is more complex than that of Hydra, it has similar two-cell and three-cell effector pathways that may function in local responses to tentacle contact with food.

  11. Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage.

    PubMed

    Carranza-Rosales, Pilar; Said-Fernández, Salvador; Sepúlveda-Saavedra, Julio; Cruz-Vega, Delia E; Gandolfi, A Jay

    2005-06-01

    Mercury produces acute renal failure in experimental animal models, but the mechanism of tubular injury has not completely been clarified. There is an increased interest in the role of apoptosis in the pathogenesis of renal diseases that result primarily from injury to renal tubular epithelial cells. However, detailed studies of morpho-functional alterations induced by mercuric chloride in kidney cell lines are scarce. This work characterizes these alterations in OK cell cultures. Morphological alterations were profiled using light microscopy, transmission electron microscopy, and confocal microscopy, as well as mitochondrial functional assays in the cells exposed to low concentrations of HgCl2. At concentrations of 1 and 10 microM of HgCl2 there were no morphological or ultrastructural alterations, but the mitochondrial function (MTT assay) and intracellular ATP content was increased, especially at longer incubation times (6 and 9 h). At 15 microM HgCl2, both the mitochondrial activity and the endogenous ATP decreased significantly. At this concentration the OK cells rounded up, had increased number of cytoplasmic vacuoles, and detached from the cell monolayer. At 15 microM HgCl2 ultrastructural changes were characterized by dispersion of the ribosomes, dilatation of the cisterns of the rough endoplasmic reticulum, increase of number of cytoplasmic vacuoles, chromatin condensation, invaginations of the nuclear envelope, presence of cytoplasmic inclusion bodies, and alterations in the size and morphology of mitochondria. At 15 microM HgCl2 apoptotic signs included membrane blebbing, chromatin condensation, mitochondrial alterations, apoptotic bodies, and nuclear envelope rupture. Using confocal microscopy and the mitochondrial specific dye MitoTracker Red, it was possible to establish qualitative changes induced by mercury on the mitochondrial membrane potential after incubation of the cells for 6 and 9h with 15 microM HgCl2. This effect was not observed at short

  12. Ultrastructural studies of unstable angina in living man

    SciTech Connect

    Gotlieb, A.I.; Freeman, M.R.; Salerno, T.A.; Lichtenstein, S.V.; Armstrong, P.W. )

    1991-01-01

    Nineteen patients with refractory unstable angina who were undergoing aortocoronary bypass were studied to assess the extent of platelet aggregation present in the microvasculature. Ultrastructural findings on the morphology of cardiac muscle and microvasculature were correlated with the findings on coronary angiograms and thallium scans. There were no significant correlations. The presence of platelet aggregates was identified in four biopsies, two of which had thrombus by angiographic criteria. Biopsy in areas with thallium defects revealed an increased prevalence of white blood cells without acute myocardial infarction. This study confirms the presence of platelet aggregates in patients with unstable angina, albeit at a reduced frequency when compared with autopsy studies.

  13. Combined ultrastructural and biochemical study of cellular processing of vasoactive intestinal peptide and its receptors in human colonic carcinoma cells in culture.

    PubMed

    Hejblum, G; Gali, P; Boissard, C; Astesano, A; Marie, J C; Anteunis, A; Hui Bon Hoa, D; Rosselin, G

    1988-11-01

    Desensitization of human carcinoma colonic cells in culture (HT-29) to vasoactive intestinal peptide (VIP) has been reported previously (C. Boissard, J. C. Marie, G. Hejblum, C. Gespach, and G. Rosselin, Cancer Res., 46: 4406-4413, 1986). In the present study, we have determined the ultrastructural localization of VIP and its receptor after exposure of HT-29 cells to VIP monoiodinated on tyrosyl residue 10 together with the molecular forms and the activity of the internalized VIP receptor. Quantitative electron microscope autoradiography showed that after binding at the cell surface, VIP is internalized in heterogeneous endosomes. Cross-linking experiments followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis were performed in different experimental conditions allowing us to selectively obtain cell surface-associated, internalized, or recycled receptors. No detectable alteration of the labeled VIP-receptor complex occurred during the internalization and recycling processes. Furthermore, a loss of the forskolin potentiation of the VIP-induced stimulation of adenylate cyclase was observed after VIP exposure. This feature was time and temperature dependent as was the VIP-induced loss of cell surface receptors, indicating that the internalized VIP receptor is dissociated from the adenylate cyclase. PMID:2844402

  14. Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells.

    PubMed

    Yamashita, Akihiro; Liu, Shiying; Woltjen, Knut; Thomas, Bradley; Meng, Guoliang; Hotta, Akitsu; Takahashi, Kazutoshi; Ellis, James; Yamanaka, Shinya; Rancourt, Derrick E

    2013-01-01

    Safety is the foremost issue in all human cell therapies, but human induced pluripotent stem cells (iPSCs) currently lack a useful safety indicator. Studies in chimeric mice have demonstrated that certain lines of iPSCs are tumorigenic; however a similar screen has not been developed for human iPSCs. Here, we show that in vitro cartilage tissue engineering is an excellent tool for screening human iPSC lines for tumorigenic potential. Although all human embryonic stem cells (ESCs) and most iPSC lines tested formed cartilage safely, certain human iPSCs displayed a pro-oncogenic state, as indicated by the presence of secretory tumors during cartilage differentiation in vitro. We observed five abnormal iPSC clones amoungst 21 lines derived from five different reprogramming methods using three cellular origins. We conclude that in vitro cartilage tissue engineering is a useful approach to identify abnormal human iPSC lines.

  15. Some physiological properties of identified mammalian neuroglial cells

    PubMed Central

    Dennis, M. J.; Gerschenfeld, H. M.

    1969-01-01

    Mammalian glial cells were identified and studied in the optic nerves of anaesthetized rats. Cells with membrane potentials of 77-85 mV were located in the optic nerve with capillary micropipettes. These were shown to be neuroglia by iontophoretic injection of a fluorescent dye through the recording electrode, followed by histological verification of the location of the dye. No distinction was made between astroglia and oligodendroglia. Neuroglial cells gave no impulse activity. Their membrane potential was studied in isolated optic nerves by varying the ionic composition of the bathing fluid. The glial membrane potential depends predominantly on a transmembrane gradient of potassium ions. ImagesFig. 1Fig. 2 PMID:5821876

  16. Identifying genes that mediate anthracyline toxicity in immune cells.

    PubMed

    Frick, Amber; Suzuki, Oscar T; Benton, Cristina; Parks, Bethany; Fedoriw, Yuri; Richards, Kristy L; Thomas, Russell S; Wiltshire, Tim

    2015-01-01

    The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS), we identified four genome-wide significant quantitative trait loci (QTL) that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01 × 10(-8)). Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05). In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies.

  17. Alterations of leaf cell ultrastructures and AFLP DNA profiles in Earth-grown tomato plants propagated from long-term six years Mir-flown seeds

    NASA Astrophysics Data System (ADS)

    Liu, Min; Xue, Huai; Pan, Yi; Zhang, Chunhua; Lu, Jinying

    Leaf cell ultrastructures and DNA variations in the firstand the second-generation of Earthgrown tomato (Lycopersicon esculentun Mill) plants that had been endured a long-term six years spaceflight in the Mir were compared to their ground-based control plants, under observations with a Transmission Electron Microscope and the Amplification Fragment Length Polymorphism (AFLP) analysis. For alterations in the morphological ultrastructures, one plant among the 11 first-generation plants generated from 30 Mir-flown seeds had a three-layered palisade cell structure, while other 10 first-generation plants and all ground-based controls had one-layered palisade cell structure in leaves. Starch grains were larger and in clusters, numbers of starch grains increased in the chloroplasts in the Mir-flown plants. Leaf cells became contracted and deformed, and cell shape patterns were different in the Mir-flown plants. For the leaf genomic DNA alterations, 34 DNA bands were polymorphic with a 1.32% polymorphism among 2582 DNA bands in the first-generation Mir-flown plants. Band types in the spaceflight treated plants were also different from those in the ground-based control. Of 11 survived first-generation plants, 7 spaceflight treated plants (Plant Nos. 1-6 and No. 9) had a same 7 polymorphic bands and a same 0.27%DNA mutation. The DNA mutation rate was greatest in Plants No.10 and No.7 (0.90% and 0.94%), less in Plant No.11 (0.31%) and least in Plant No.8 (0.20%). For the 38 send-generation plants propagated from the No. 5 Mir-flown seed, 6 DNA bands were polymorphic with a 0.23% polymorphism among 2564 amplified DNA bands. Among those 38 second-generation plants amplified by primer pair (E4: ACC, M8: CTT), one DNA band disappeared in 29 second-generation plants and in the original Mir-flown No. 5 plant, compared to the ground-base controls. Among the 38 second-generation plants generated from the Mir-flown No. 5 seed, the DNA band types of 29 second-generation plants were

  18. Nutcracker syndrome in a child with familial Mediterranean fever (FMF) disease: renal ultrastructural features.

    PubMed

    Ozcan, Ayhan; Gonul, Ipek Isik; Sakallioglu, Onur; Oztas, Emin

    2009-12-01

    Renal nutcracker syndrome is an uncommon clinical condition caused by compression of the left renal vein. It is usually accompanied by hematuria and/or orthostatic proteinuria. To date, the pathogenic mechanism of proteinuria and its ultrastructural features have not been clearly identified. Here, we present the glomerular ultrastructural features of nutcracker syndrome and our attempt to analyze the relationship between proteinuria and ultrastructural features. Two months prior to admission, a 11-year-old girl with familial Mediterranean fever who was treated with colchicine was found to have proteinuria. Accompanying hematuria was not identified, and laboratory findings were otherwise normal. Doppler ultrasonography and computerized tomography angiography revealed an entrapment of the left renal vein. A kidney biopsy was performed due to the persistent proteinuria. Light microscopy revealed segmental, minimal increases in the mesangial cells and matrix. No amyloid deposition was present. Neither immunofluorescence nor electron microscopy showed immunoglobulin deposition. Increased thickness of the glomerular basement membrane due to the unequivocal radiolucent widening of the lamina rara interna was the most striking ultrastructural finding. At high magnification, there were no amyloidal fibrils. It has been proposed that hemodynamic alterations and structural changes in glomerular basement membrane glycosaminoglycans may play a role in the pathogenesis of proteinuria. Radiolucent expansion of the lamina rara interna of the glomerular basement membrane in the presenting case would seem to support these data.

  19. Consequences of abrupt glutathione depletion in murine Clara cells: ultrastructural and biochemical investigations into the role of glutathione loss in naphthalene cytotoxicity.

    PubMed

    Phimister, Andrew J; Williams, Kurt J; Van Winkle, Laura S; Plopper, Charles G

    2005-08-01

    Glutathione plays many critical roles within the cell, including offering protection from reactive chemicals. The bioactivated toxicant naphthalene forms chemically reactive intermediates that can deplete glutathione and covalently bind to cellular proteins. Naphthalene selectively injures the nonciliated epithelial cells of the intrapulmonary airways (i.e., Clara cells). This study attempted to define what role glutathione loss plays in naphthalene cytotoxicity by comparing Swiss-Webster mice treated with naphthalene with those treated with the glutathione depletor diethylmaleate. High-resolution imaging techniques were used to evaluate acute changes in Clara cell ultrastructure, membrane permeability, and cytoskeleton structure. A single dose of either diethylmaleate (1000 mg/kg) or naphthalene (200 mg/kg) caused similar glutathione losses in intrapulmonary airways (< 20% of control). Diethylmaleate did not increase membrane permeability, disrupt mitochondria, or lead to cell death--hallmark features of naphthalene cytotoxicity. However, diethylmaleate treatment did cause Clara cell swelling, plasma membrane blebs, and actin cytoskeleton disruptions similar to naphthalene treatment. Structural changes in mitochondria and Golgi bodies also were noted. Changes in ATP levels were measured as an indication of overall cell function, in isolated airway explants incubated with diethylmaleate, naphthalene, or naphthalene metabolites in vitro. Only the reactive metabolites of naphthalene caused significant ATP losses. Unlike the lethal injury caused by naphthalene, the disruptive cellular changes associated with glutathione loss from diethylmaleate seemed to be reversible after recovery of glutathione levels. This suggests that glutathione depletion may be responsible for some aspects of naphthalene cytotoxicity, but it is not sufficient to cause cell death without further stresses.

  20. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy.

    PubMed

    Vincent, Amy E; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M; McFarland, Robert; Gorman, Grainne S; Taylor, Robert W; Turnbull, Doug M; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  1. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy

    PubMed Central

    Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  2. Ultrastructural immunogold localization of major sperm protein (MSP) in spermatogenic cells of the nematode Acrobeles complexus (Nematoda, Rhabditida).

    PubMed

    Yushin, Vladimir V; Claeys, Myriam; Bert, Wim

    2016-10-01

    The nematode spermatozoa represent a highly modified (aberrant) type of male gametes that lack a flagellum but for which the process of spermatogenesis culminates in the production of a crawling spermatozoon on the basis of the cytoskeletal component known as "major sperm protein", or MSP. MSP is also known as an important hormone triggering oocyte maturation and ovulation in the model nematode Caenorhabditis elegans, where this protein was first identified. However, direct evidence of MSP localization and of its fate in nematode spermatogenic cells is rare. In this study, the spermatogenesis and sperm structure in the rhabditid nematode Acrobeles complexus (Rhabditida: Tylenchina: Cephalobomorpha: Cephaloboidea: Cephalobidae) has been examined with electron microscopy. Morphological observations were followed by high-pressure freezing and freeze-substitution fixation which allows post-embedding immunogold localization of MSP in all stages of sperm development using antibodies raised for MSP of C. elegans. In spermatocytes, synthetic activity results in the development of specific cellular components, fibrous bodies (FB) and membranous organelles (MO), which appear as FB-MO complexes where the filamentous matter of FB has been MSP-labeled. The spermatids subdivide into a residual body with superfluous cytoplasm, and a main cell body which contains nucleus, mitochondria and FB-MO complexes. These complexes dissociate into individual components, MO and FB, with the MSP being localized in FB. Immature spermatozoa from testes are opaque cells where a centrally located nucleus is surrounded by mitochondria, MO and FB clustered together, the MSP still being localized only in FB. Cytoplasm of mature spermatozoa from spermatheca is segregated into external pseudopods lacking organelles and a central cluster of mitochondria with intact MO surrounding the central nucleus. The FB ultimately disappear, and the MSP labeling becomes concentrated in the filamentous content of

  3. Ultrastructural immunogold localization of major sperm protein (MSP) in spermatogenic cells of the nematode Acrobeles complexus (Nematoda, Rhabditida).

    PubMed

    Yushin, Vladimir V; Claeys, Myriam; Bert, Wim

    2016-10-01

    The nematode spermatozoa represent a highly modified (aberrant) type of male gametes that lack a flagellum but for which the process of spermatogenesis culminates in the production of a crawling spermatozoon on the basis of the cytoskeletal component known as "major sperm protein", or MSP. MSP is also known as an important hormone triggering oocyte maturation and ovulation in the model nematode Caenorhabditis elegans, where this protein was first identified. However, direct evidence of MSP localization and of its fate in nematode spermatogenic cells is rare. In this study, the spermatogenesis and sperm structure in the rhabditid nematode Acrobeles complexus (Rhabditida: Tylenchina: Cephalobomorpha: Cephaloboidea: Cephalobidae) has been examined with electron microscopy. Morphological observations were followed by high-pressure freezing and freeze-substitution fixation which allows post-embedding immunogold localization of MSP in all stages of sperm development using antibodies raised for MSP of C. elegans. In spermatocytes, synthetic activity results in the development of specific cellular components, fibrous bodies (FB) and membranous organelles (MO), which appear as FB-MO complexes where the filamentous matter of FB has been MSP-labeled. The spermatids subdivide into a residual body with superfluous cytoplasm, and a main cell body which contains nucleus, mitochondria and FB-MO complexes. These complexes dissociate into individual components, MO and FB, with the MSP being localized in FB. Immature spermatozoa from testes are opaque cells where a centrally located nucleus is surrounded by mitochondria, MO and FB clustered together, the MSP still being localized only in FB. Cytoplasm of mature spermatozoa from spermatheca is segregated into external pseudopods lacking organelles and a central cluster of mitochondria with intact MO surrounding the central nucleus. The FB ultimately disappear, and the MSP labeling becomes concentrated in the filamentous content of

  4. Immunocytochemical and ultrastructural characterization of type 1 astrocytes and 0-2A lineage cells in long-term co-cultures.

    PubMed

    Andersson, C; Brunso-Bechtold, J; Tytell, M

    1994-05-16

    We examined cultures of purified type 1 astrocytes and mixed glial co-cultures containing type 1 astrocytes and 0-2A lineage cells in media containing fetal calf serum at 5 days in vitro (DIV), 12 DIV, and 30 DIV, using cell-specific immunocytochemical markers and electron microscopy. At all three time points and in both culture systems, the polygonal-shaped type 1 astrocytes were A2B5-, GFAP+, and GalC-(specific markers for 0-2A lineage cells, and mature astrocytes and oligodendrocytes, respectively). From 5 to 30 DIV, the type 1 astrocytes increased markedly in size and the appearance of the cytoskeleton changed dramatically, with the amount of glial filaments increasing and microtubules decreasing. At 5, 12, and 30 DIV, the 0-2A lineage cells were multipolar, A2B5 +, HNK-1 +, GFAP-, and GalC-. The 0-2 lineage cells could not be distinguished as either astrocytes or oligodendrocytes on the basis of immunocytochemical or ultrastructural characteristics. These cells had dense cytoplasm, very few intermediate filaments, and a large number of vacuoles and dense bodies. The general characteristics of the cultured astrocytes at 12 DIV and 30 DIV were similar to mature and aged astrocytes in vivo, respectively. These findings suggest that the culture environment in this study accelerated aging of type 1 astrocytes. 0-2A lineage cells, on the other hand, appeared unable to differentiate into either type 2 astrocytes or oligodendrocytes when cultured in the presence of both type 1 astrocytes and fetal calf serum.

  5. Microcystin-LR induced oxidative stress and ultrastructural alterations in mesophyll cells of submerged macrophyte Vallisneria natans (Lour.) Hara.

    PubMed

    Jiang, Jinlin; Gu, Xueyuan; Song, Rui; Wang, Xiaorong; Yang, Liuyan

    2011-06-15

    Microcystins produced by cyanobacteria in the aquatic environment are a potential risk to aquatic plants. In the present study, the uptake of microcystin-LR (MC-LR) and related physiological and biochemical effects on Vallisneria natans (Lour.) Hara were investigated at concentrations of 0.1-25.0 μg L(-1). Results showed that O(2)(-) intensity was significantly induced at 1.0 μg L(-1) and reached a maximum level at 5.0 μg L(-1). Superoxide dismutase (SOD) and peroxidase (POD) were induced with increasing MC-LR concentrations as an antioxidant response. Catalase (CAT) was significantly induced while GSH/GSSG (reduced/oxidized glutathione) ratio was significantly reduced at 0.1 μg L(-1). The induction of glutathione S-transferase (GST) and inhibition of GSH revealed that GSH was involved in the detoxification of MC-LR in plants. Oxidative damage was evidenced by the significant increase of malondialdehyde content at 1.0 μg L(-1). A pigment pattern change and a series of significant ultrastructural alterations were also observed due to MC-LR exposure. The lowest non-effect concentration of MC-LR for V. natans at the subcellular and molecular level is around 0.5 μg L(-1). These results imply that even at relatively low MC-LR concentrations the aquatic plants may still suffer a negative ecological impact. PMID:21466917

  6. Identifying Essential Cell Types and Circuits in Autism Spectrum Disorders

    PubMed Central

    Maloney, Susan E.; Rieger, Michael A.; Dougherty, Joseph D.

    2014-01-01

    Autism spectrum disorder (ASD) is highly genetic in its etiology, with potentially hundreds of genes contributing to risk. Despite this heterogeneity, these disparate genetic lesions may result in the disruption of a limited number of key cell types or circuits –information which could be leveraged for the design of therapeutic interventions. While hypotheses for cellular disruptions can be identified by postmortem anatomical analysis and expression studies of ASD risk genes, testing these hypotheses requires the use of animal models. In this review, we explore the existing evidence supporting the contribution of different cell types to ASD, specifically focusing on rodent studies disrupting serotonergic, GABAergic, cerebellar and striatal cell types, with particular attention to studies of the sufficiency of specific cellular disruptions to generate ASD-related behavioral abnormalities. This evidence suggests multiple cellular routes can create features of the disorder, though it is currently unclear if these cell types converge on a final common circuit. We hope that in the future, systematic studies of cellular sufficiency and genetic interaction will help to classify patients into groups by type of cellular disruptions which suggest tractable therapeutic targets. PMID:24290383

  7. Mouse papillary lung tumors transplacentally induced by N-nitrosoethylurea: evidence for alveolar type II cell origin by comparative light microscopic, ultrastructural, and immunohistochemical studies.

    PubMed

    Rehm, S; Ward, J M; ten Have-Opbroek, A A; Anderson, L M; Singh, G; Katyal, S L; Rice, J M

    1988-01-01

    A histogenetic study was designed to evaluate controversial findings on the cell of origin of tubular/papillary lung tumors in mice, i.e., bronchiolar Clara cell versus alveolar type II cell. N-Nitrosoethylurea (0.5 mmol or 0.74 mmol/kg) was given to pregnant C3H (C3H/HeNCr MTV-) and Swiss Webster [Tac:(SW)fBR] mice as a single i.p. injection on Day 14, 15, 16, or 18 of gestation. The offspring were studied at various ages ranging from 7 days to 52 wk. Serial sections of the whole lung (100 to 200 sections per mouse) showed that solid/alveolar and papillary tumors arose from the pulmonary acinus, invading the bronchioles only as the tumors grew. Furthermore, a mixture of solid and papillary patterns within a single module did not represent a merging of two tumors but a progression from the solid to the papillary form. By use of two rabbit antisera against mouse lung surfactant apoproteins found in normal alveolar type II cells, it was shown by the avidin-biotin peroxidase complex procedure, by the peroxidase-antiperoxidase technique, and by indirect immunofluorescence that both solid and papillary tumors contained these proteins that are specific markers for alveolar type II cells. With a rabbit anti-rat Clara cell antiserum, none of the tumors studied was immunoreactive while normal Clara cells were reactive. The nitroblue tetrazolium formazan stain for dehydrogenase enzymes, found particularly in Clara cells, did not reveal these enzymes in any lung tumors from either strain. Ultrastructurally, no typical features of the mature Clara cell were detected in papillary or other pulmonary neoplasms. However, all tumors showed characteristic alveolar type II cell structures such as various stages of lamellar body formation, although these features were less well differentiated in the papillary tumors. Argentaffin dense bodies, representing lysosomes and immature forms of lamellar bodies, were commonly observed in papillary tumors. Some features of the papillary tumors

  8. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6

    PubMed Central

    Wang, Yanhua; Wang, Guangxiang; Cai, Jian Ping

    2016-01-01

    The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents. PMID:27658594

  9. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6.

    PubMed

    Wang, Yanhua; Wang, Guangxiang; Cai, Jian Ping

    2016-08-01

    The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents. PMID:27658594

  10. THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM

    PubMed Central

    Fawcett, Don W.; McNutt, N. Scott

    1969-01-01

    The ultrastructure of cat papillary muscle was studied with respect to the organization of the contractile material, the structure of the organelles, and the cell junctions. The morphological changes during prolonged work in vitro and some effects of fixation were assessed. The myofilaments are associated in a single coherent bundle extending throughout the fiber cross-section. The absence of discrete "myofibrils" in well preserved cardiac muscle is emphasized. The abundant mitochondria confined in clefts among the myofilaments often have slender prolongations, possibly related to changes in their number or their distribution as energy sources within the contractile mass. The large T tubules that penetrate ventricular cardiac muscle fibers at successive I bands are arranged in rows and are lined with a layer of protein-polysaccharide. Longitudinal connections between T tubules are common. The simple plexiform sarcoplasmic reticulum is continuous across the Z lines, and no circumferential "Z tubules" were identified. Specialized contacts between the reticulum and the sarcolemma are established on the T tubules and the cell periphery via subsarcolemmal saccules or cisterns. At cell junctions, a 20 A gap can be demonstrated between the apposed membranes in those areas commonly interpreted as sites of membrane fusion. In papillary muscles worked in vitro without added substrate, there is a marked depletion of both glycogen and lipid. No morphological evidence for preferential use of glycogen was found. PMID:4891913

  11. Functional screen identifies regulators of murine hematopoietic stem cell repopulation

    PubMed Central

    Holmfeldt, Per; Ganuza, Miguel; Marathe, Himangi; He, Bing; Hall, Trent; Kang, Guolian; Moen, Joseph; Pardieck, Jennifer; Saulsberry, Angelica C.; Cico, Alba; Gaut, Ludovic; McGoldrick, Daniel; Finkelstein, David; Tan, Kai

    2016-01-01

    Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp521. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3−/− HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host. PMID:26880577

  12. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  13. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    PubMed

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte; Corbeil, Denis; Hoflack, Bernard

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  14. Immunohistochemical and ultrastructural detection of intestinal spirochetes in Thoroughbred horses.

    PubMed

    Shibahara, Tomoyuki; Kuwano, Atsutoshi; Ueno, Takanori; Katayama, Yoshinari; Ohya, Tatsuo; Taharaguchi, Sadao; Yamamoto, Shinji; Umemura, Takashi; Ishikawa, Yoshiharu; Kadota, Koichi

    2005-03-01

    Studies of equine intestinal spirochetes have long focused on intestinal contents alone, but intestinal spirochetosis has been reported recently in a 21-month-old Thoroughbred colt in Japan. To define the clinical and pathological significances of intestinal spirochetosis in several horses, an epizootiologic survey with histologic, immunohistochemical, and ultrastructural methods was conducted for Brachyspira antigen-containing intestinal spirochetes in 12 diseased or injured Thoroughbred horses, aged from 35 days to 17 years. Brachyspira antigen-containing spirochetes were found in 7 of 12 horses (58.3%) and were more frequent in the cecum than in other parts of the bowel. It was not clear whether the infection was clinically related to diarrhea or dysentery, but histopathology revealed a close association between the bacterial infection and epithelial hyperplasia. Crypt epithelium consisted mainly of goblet cells and showed frequent mitosis throughout its length. Inflammatory cells and congestion were also present. There were numerous spirochetes in the crypts, and some invaded the cecal and colonic epithelia and underlying lamina propria. Ultrastructurally, the spirochetes were divided into 4 types. Three types were identified in degenerative epithelial cells or intracellularly. Brachyspira antigen-containing intestinal spirochetes invading the mucosa were capable of causing epithelial hyperplasia in the cecum and colon in the horses. The findings in this study will increase awareness of the importance of intestinal spirochetosis and may also be helpful for diagnosis and treatment of this condition. PMID:15825495

  15. Ultrastructural analysis of testicular tissue and sperm by transmission and scanning electron microscopy.

    PubMed

    Chemes, Hector E

    2013-01-01

    Transmission electron microscopy (TEM) studies have provided the basis for an in-depth understanding of the cell biology and normal functioning of the testis and male gametes and have opened the way to characterize the functional role played by specific organelles in spermatogenesis and sperm function. The development of the scanning electron microscope (SEM) extended these boundaries to the recognition of cell and organ surface features and the architectural array of cells and tissues. The merging of immunocytochemical and histochemical approaches with electron microscopy has completed a series of technical improvements that integrate structural and functional features to provide a broad understanding of cell biology in health and disease. With these advances the detailed study of the intricate structural and molecular organization as well as the chemical composition of cellular organelles is now possible. Immunocytochemistry is used to identify proteins or other components and localize them in specific cells or organelles with high specificity and sensitivity, and histochemistry can be used to understand their function (i.e., enzyme activity). When these techniques are used in conjunction with electron microscopy their resolving power is further increased to subcellular levels. In the present chapter we will describe in detail various ultrastructural techniques that are now available for basic or translational research in reproductive biology and reproductive medicine. These include TEM, ultrastructural immunocytochemistry, ultrastructural histochemistry, and SEM.

  16. Ultrastructure of modified root-tip cells in Ficus carica, induced by the ectoparasitic nematode Xiphinema index.

    PubMed

    Wyss, U; Lehmann, H; Jank-Ladwig, R

    1980-02-01

    The migratory ectoparasitic root nematode Xiphinema index, added to Ficus carica seedlings in sterile agar culture, fed exclusively on the tips of the roots. As a response the tips started to swell and became transformed into terminal galls as long as feeding was continued. When the cytology of swollen root-tips was examined 24 h after the first nematode attack, necrotic cells, scattered singly or in small groups within the root apex, were found in ultrathin sections. These cells, whose protoplasts showed features of a hypersensitive reaction, were most probably those fed upon by nematodes. Each necrotic cell was surrounded by several enlarged, mostly binucleate cells with dense cytoplasm. One day later the binucleate cells were multinucleate, containing 4 or even 8 nuclei. The clear-cut demarcation between necrotic and modified cells indicated that only the stimulus for the induction of modified cells but not the stimulus for cell necrosis passed into neighbouring cells. Root-tip galls that provided the appropriate food for egg production in nematodes contained greatly enlarged multinucleate cells between necrotic cells. The modified cells showed features of high metabolic activities, expressed in nuclear and nucleolar hypertrophy, invagination of the nuclear envelope, increased cytoplasmic density, abundance of mitochondria, plastids and rough endoplasmic reticulum. Wall ingrowths, typical of transfer cells, were rare and if present occurred only adjacent to necrotic cells. In older modified cells new cell plates, surrounded by phragmoplasts, were formed.

  17. Familial testicular germ cell tumor: no associated syndromic pattern identified

    PubMed Central

    2014-01-01

    Background Testicular germ cell tumor (TGCT) is the most common malignancy in young men. Familial clustering, epidemiologic evidence of increased risk with family or personal history, and the association of TGCT with genitourinary (GU) tract anomalies have suggested an underlying genetic predisposition. Linkage data have not identified a rare, highly-penetrant, single gene in familial TGCT (FTGCT) cases. Based on its association with congenital GU tract anomalies and suggestions that there is an intrauterine origin to TGCT, we hypothesized the existence of unrecognized dysmorphic features in FTGCT. Methods We evaluated 38 FTGCT individuals and 41 first-degree relatives from 22 multiple-case families with detailed dysmorphology examinations, physician-based medical history and physical examination, laboratory testing, and genitourinary imaging studies. Results The prevalence of major abnormalities and minor variants did not significantly differ between either FTGCT individuals or their first-degree relatives when compared with normal population controls, except for tall stature, macrocephaly, flat midface, and retro-/micrognathia. However, these four traits were not manifest as a constellation of features in any one individual or family. We did detect an excess prevalence of the genitourinary anomalies cryptorchidism and congenital inguinal hernia in our population, as previously described in sporadic TGCT, but no congenital renal, retroperitoneal or mediastinal anomalies were detected. Conclusions Overall, our study did not identify a constellation of dysmorphic features in FTGCT individuals, which is consistent with results of genetic studies suggesting that multiple low-penetrance genes are likely responsible for FTGCT susceptibility. PMID:24559313

  18. Long-Term Spinal Ventral Root Reimplantation, but not Bone Marrow Mononuclear Cell Treatment, Positively Influences Ultrastructural Synapse Recovery and Motor Axonal Regrowth

    PubMed Central

    Barbizan, Roberta; Castro, Mateus V.; Ferreira Jr., Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre L. R.

    2014-01-01

    We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and “g” ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion. PMID:25353176

  19. Long-term spinal ventral root reimplantation, but not bone marrow mononuclear cell treatment, positively influences ultrastructural synapse recovery and motor axonal regrowth.

    PubMed

    Barbizan, Roberta; Castro, Mateus V; Ferreira, Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre L R

    2014-01-01

    We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and "g" ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion. PMID:25353176

  20. s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells

    PubMed Central

    Brocqueville, Guillaume; Chmelar, Renee S.; Bauderlique-Le Roy, Hélène; Deruy, Emeric; Tian, Lu; Vessella, Robert L.; Greenberg, Norman M.; Bourette, Roland P.

    2016-01-01

    Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin− CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells. PMID:27081082

  1. Ultrastructure of the renal juxtaglomerular complex and peripolar cells in the axolotl (Ambystoma mexicanum) and toad (Bufo marinus).

    PubMed

    Hanner, R H; Ryan, G B

    1980-05-01

    Renal juxtaglomerular regions were examined in the axolotl (Ambystoma mexicanum and toad (Bufo marinus). Prominent granulated peripolar epithelial cells were found surrounding the origin of the glomerular tuft in the axolotl. These cells resembled the peripolar cells recently discovered in mammalian species. They contained multiple electron-dense cytoplasmic granules, some of which showed a paracrystalline substructure and signs of exocytoxic activity. Such cells were difficult to find and smaller in the toad. In contrast, granulated juxtaglomerular arteriolar myoephithelial cells were much more readily found and larger in the toad than in the axolotl. No consistent differences were noted in juxtaglomerular cells or their granules in response to changes in environmental chloride concentration.

  2. Ultrastructural changes in granulosa cells and plasma steroid levels after administration of luteinizing hormone-releasing hormone in the Western painted turtle, Chrysemys picta.

    PubMed

    Al-Kindi, A Y; Mahmoud, Y; Woller, M J

    2001-08-01

    In this study we investigated the effects of treatment by luteinizing hormone-releasing hormone (LHRH) on the morphology and steroid release of ovarian tissues in the Western painted turtle, (Chrysemys picta). In Experiment I, four adult female turtles were injected with synthetic mammalian LHRH (i.p., 500 pg/g bodyweight) and four with saline 2-3 weeks prior to ovulation. Granulosa cells from LHRH-treated turtles vs controls contained both preovulatory follicles (16-20 mm in diameter) and small follicles (0.5-1.00mm in diameter) with increased RER, free ribosomes and mitochondria with swollen cristae. An increase in the amount of cytoskeletal material (microfilaments) was observed in granulosa cells of the experimental turtles compared to the controls. Cytoplasmic extensions of the oocyte and granulosa cells were longer in the small follicles of treated animals, accounting for the observed increase in the thickness of the zona pellucida (ZP) over the controls. In Experiment II, administration of LHRH (i.p.) to 10 turtles during the same period triggered a substantial increase in plasma progesterone and estradiol-17beta levels over the 10 saline-injected controls. This supports the idea that in this species, as in mammals, steroidogenic activity in the ovarian follicles are under the control of the hypothalamic-pituitary axis. The ultrastructure and hormonal levels of the experimental animals were typical of untreated turtles just prior to ovulation. In this species the development of follicles and steroidogenesis can be stimulated prematurely by a releasing hormone from a nonreptilian origin.

  3. Thymosin Beta 4 May Translocate from the Cytoplasm in to the Nucleus in HepG2 Cells following Serum Starvation. An Ultrastructural Study

    PubMed Central

    Piludu, Marco; Piras, Monica; Pichiri, Giuseppina; Coni, Pierpaolo; Orrù, Germano; Cabras, Tiziana; Messana, Irene; Faa, Gavino; Castagnola, Massimo

    2015-01-01

    Due to its actin-sequestering properties, thymosin beta-4 (Tβ4) is considered to play a significant role in the cellular metabolism. Several physiological properties of Tβ4 have been reported;, however, many questions concerning its cellular function remain to be ascertained. To better understand the role of this small peptide we have analyzed by means of transmission immunoelectron microscopy techniques the ultrastructural localization of Tβ4 in HepG2 cells. Samples of HepG2 cells were fixed in a mixture of 3% formaldehyde and 0.1% glutaraldehyde in 0.1 M cacodylate buffer and processed for standard electron microscopic techniques. The samples were dehydrated in a cold graded methanol series and embedded in LR gold resin. Ultrathin sections were labeled with rabbit antibodies to Tβ4, followed by gold-labeled goat anti-rabbit, stained with uranyl acetate and bismuth subnitrate, observed and photographed in a JEOL 100S transmission electron microscope. High-resolution electron microscopy showed that Tβ4 was mainly restricted to the cytoplasm of HepG2 growing in complete medium. A strong Tβ4 reactivity was detected in the perinuclear region of the cytoplasmic compartment where gold particles appeared strictly associated to the nuclear membrane. In the nucleus specific Tβ4 labeling was observed in the nucleolus. The above electron microscopic results confirm and extend previous observations at light microscopic level, highlighting the subcellular distribution of Tβ4 in both cytoplasmic and nuclear compartments of HepG2 cells. The meaning of Tβ4 presence in the nucleolus is not on the best of our knowledge clarified yet. It could account for the interaction of Tβ4 with nucleolar actin and according with this hypothesis, Tβ4 could contribute together with the other nucleolar acting binding proteins to modulate the transcription activity of the RNA polymerases. PMID:25835495

  4. Ultrastructural alterations during embryonic rats' lung development caused by ozone.

    PubMed

    López, Irma; Sánchez, Ivonne; Bizarro, Patricia; Acevedo, Sandra; Ustarroz, Martha; Fortoul, Teresa

    2008-01-01

    Ozone (O3) is an oxidizing agent that acts on phospholipids, proteins and sugars of cellular membranes producing free radicals, which cause oxidative damages. The O3 exposure has been used as a model to study oxidative stress, in which the respiratory airways represent the entrance to the organism. In this study, ultrastructural alterations were identified at the bronchiolar level during the intra-uterine lung development, using an O3 exposure model in pregnant rats during 18, 20 and 21 days of gestation. Twelve pregnant Wistar rats, six controls and six exposed to 1 ppm O3 inhalation during 12 h per day, were used. The rats were sacrificed at gestational days 18, 20 and 21; the fetuses were obtained and their lungs dissected. The ultrastructural analysis evidenced swollen mitochondria, cytoplasmic vacuolization of the epithelial cells and structural disorder caused by the oxidative stress. At gestation day 20, flake-off epithelial cells and laminar bodies in the bronchiolar lumen were observed. In the 21-gestation-day group, the mitochondria were edematous and their cristae were disrupted by the damage caused in mitochondrial membranes. PMID:18083976

  5. Ultrastructural study of binucleation in cells of the rat adrenal glomerular zone after a prolonged low-sodium diet.

    PubMed

    Palacios, G; Lafarga, M; Perez, R

    1976-01-01

    Binucleate cells have been found in the glomerular zone of the adrenal cortex in rats subjected to low-sodium diets. By considering the various possibilities for their production, both the findings of nuclei in process of constriction and nuclei identical in form, confronted and smaller in size than those of neighbour cells, are in agreement with an amitotic nuclear division as the possible mechanism for the formation of these cells.

  6. Ultrastructural changes in the ovary cells of engorged Rhipicephalus sanguineus female ticks treated with esters of ricinoleic acid from castor oil (Ricinus communis).

    PubMed

    Sampieri, Bruno Rodrigues; Arnosti, André; Nunes, Pablo Henrique; Furquim, Karim Christina Scopinho; Chierice, Gilberto Orivaldo; Mathias, Maria Izabel Camargo

    2012-05-01

    Rhipicephalus sanguineus is a widely distributed tick species that has adapted to the urban environment, and the dog is its main host. This species is also known as a vector and reservoir of diseases caused by bacteria, protozoa, and viruses. Currently, acaricides of synthetic chemical origin have been widely and indiscriminately used, leading to the development of resistance to these products by ticks and causing damage to the environment. Thus, these issues have made it necessary to seek other forms of controlling these ectoparasites. R. sanguineus was artificially infested in host New Zealand White rabbits, which were divided into four treatment groups: control (CG1 and CG2) and treatment (TG1 and TG2) groups. TG1 and TG2 hosts were provided with feed supplemented with esters of ricinoleic acid from castor oil at a concentration of 5 g/kg of feed for 7 and 15 days. Afterward, the ovaries of the female ticks were removed for analysis by transmission electron microscopy. The results showed ultrastructural changes in the somatic and germ cells of ovaries from TG1 and TG2 females, particularly with respect to chorion deposition, a protective membrane of the oocyte, as well as in the transport process of vitellogenic materials via the hemolymph and pedicel cells. Moreover, the mitochondria were less electron-dense and had cristae that were more disorganized than the mitochondria from CG1 and CG2 individuals. Thus, this study demonstrated the action of esters on the ovaries of R. sanguineus, signaling the prospect of a way to control this ectoparasite without affecting nontarget organisms or the environment.

  7. Satellited 4q identified in amniotic fluid cells

    SciTech Connect

    Miller, I.; Hsieh, C.L.; Songster, G.

    1995-01-16

    Extra material was identified on the distal long arm of a chromosome 4 in an amniotic fluid specimen sampled at 16.6 weeks of gestational age. There was no visible loss of material from chromosome 4, and no evidence for a balanced rearrangement. The primary counseling issue in this case was advanced maternal age. Ultrasound findings were normal, and family history was unremarkable. The identical 4qs chromosome was observed in cells from a paternal peripheral blood specimen and appeared to be an unbalanced rearrangement. This extra material was NOR positive in lymphocytes from the father, but was negative in the fetal amniocytes. Father`s relatives were studied to verify the familial origin of this anomaly. In situ hybridization with both exon and intron sequences of ribosomal DNA demonstrated that ribosomal DNA is present at the terminus of the 4qs chromosome in the fetus, father, and paternal grandmother. This satellited 4q might have been derived from a translocation event that resulted in very little or no loss from the 4q and no specific phenotype. This derivative chromosome 4 has been inherited through at least 3 generations of phenotypically normal individuals. 8 refs., 3 figs.

  8. Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: Method description

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan B.; Bernhard, Joan M.; Curtis, Jason; Rathburn, Anthony E.

    2010-06-01

    Carbon isotopes of foraminiferal tests provide a widely used proxy for past oceanographic environmental conditions. This proxy can be calibrated using live specimens, which are reliably identified with observations of cell ultrastructure. Observations of ultrastructures can also be used for studies of biological characteristics such as diet and presence of symbionts. Combining biological and isotopic studies on individual foraminifera could provide novel information, but standard isotopic methods destroy ultrastructures by desiccating specimens and observations of ultrastructure require removal of carbonate tests, preventing isotope measurements. The approach described here preserves cellular ultrastructure during isotopic analyses by keeping the foraminifera in an aqueous buffer (Phosphate Buffered Saline (PBS)). The technique was developed and standardized with 36 aliquots of NBS-19 standard of similar weight to foraminiferal tests (5 to 123 μg). Standard errors ranged from ± 0.06 to ± 0.85‰ and were caused by CO2 contaminants dissolved in the PBS. The technique was used to measure δ13C values of 96 foraminifera, 10 of which do not precipitate carbonate tests. Calcareous foraminiferal tests had corrected carbon isotope ratios of -8.5 to +3.2‰. This new technique allows comparisons of isotopic compositions of tests made by foraminifera known to be alive at the time of collection with their biological characteristics such as prey composition and presence or absence of putative symbionts. The approach may be applied to additional biomineralizing organisms such as planktonic foraminifera, pteropods, corals, and coccolithophores to elucidate certain biological controls on their paleoceanographic proxy signatures.

  9. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex

    PubMed Central

    de Vivo, Luisa; Nelson, Aaron B.; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Study Objective: The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Methods: Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6–8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Results: Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Conclusions: Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. Citation: de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of sleep affects the ultrastructure of pyramidal neurons in the adolescent mouse frontal cortex. SLEEP 2016;39(4):861–874. PMID:26715225

  10. Ultrastructural changes in lactotrophs and folliculo-stellate cells in the ovine pituitary during the annual reproductive cycle.

    PubMed

    Christian, H C; Imirtziadis, L; Tortonese, D

    2015-04-01

    In seasonal mammals living in temperate zones, photoperiod regulates prolactin secretion, such that prolactin plasma concentrations peak during the summer months and are lowest during the winter. In sheep, a short-day breeder, circulating prolactin has important modulatory effects on the reproductive system via inhibitory actions on pituitary gonadotrophs and hypothalamic gonadotrophin-releasing hormone release. The exact cellular mechanisms that account for the chronic hypersecretion of prolactin during the summer is not known, although evidence supports an intrapituitary mechanism regulated by melatonin. Folliculo-stellate (FS) cells are non-endocrine cells that play a crucial role in paracrine communication within the pituitary and produce factors controlling prolactin and gonadotrophin release. The present study examined the morphology of the FS and lactotroph cell populations and their distribution in the sheep pituitary during the annual reproductive cycle. Ovine pituitary glands were collected in the winter (breeding season; BS) and summer (nonbreeding season; NBS) and were prepared for quantitative electron microscopy to assess the effects of season on FS and lactotroph cell density, morphology and distribution, as well as on junctional contacts between cells. It was found that lactotrophs in the NBS are larger in size and contain more numerous PRL granules than lactotrophs in the BS. FS cells were also larger in the NBS compared to BS and showed altered morphology such that, in the BS, long cell processes surrounded clusters of adjacent secretory cells. Although no significant change in the number of junctions was observed between lactotrophs and FS cells, or lactotrophs and gonadotrophs, there was a significant increase in the number of adherens junctions between lactotrophs and between FS cells. These findings demonstrate seasonal plasticity in the morphology of lactotrophs and FS cells that reflect changes in PRL secretion. PMID:25650820

  11. Ultrastructural Analysis of ICP34.5− Herpes Simplex Virus 1 Replication in Mouse Brain Cells In Vivo▿

    PubMed Central

    Mehta, Hina; Muller, Jacqueline; Markovitz, Nancy S.

    2010-01-01

    Replication-competent forms of herpes simplex virus 1 (HSV-1) defective in the viral neurovirulence factor infected cell protein 34.5 (ICP34.5) are under investigation for use in the therapeutic treatment of cancer. In mouse models, intratumoral injection of ICP34.5-defective oncolytic HSVs (oHSVs) has resulted in the infection and lysis of tumor cells, an associated decrease in tumor size, and increased survival times. The ability of these oHSVs to infect and lyse cells is frequently characterized as exclusive to or selective for tumor cells. However, the extent to which ICP34.5-deficient HSV-1 replicates in and may be neurotoxic to normal brain cell types in vivo is poorly understood. Here we report that HSV-1 defective in ICP34.5 expression is capable of establishing a productive infection in at least one normal mouse brain cell type. We show that γ34.5 deletion viruses replicate productively in and induce cellular damage in infected ependymal cells. Further evaluation of the effects of oHSVs on normal brain cells in animal models is needed to enhance our understanding of the risks associated with the use of current and future oHSVs in the brains of clinical trial subjects and to provide information that can be used to create improved oHSVs for future use. PMID:20702618

  12. Ultrastructure of the intercalated body, a novel organelle associated with fluid forming cells in the organ of Corti.

    PubMed

    Sobkowicz, H M; Holy, J; Scott, G L

    1990-07-01

    The intercalated body is a newly discovered organelle in the inner and outer spiral sulcus cells of the mouse organ of Corti. The organelle was found in the cochleas of 14-day and older intact mice and in organs in culture of corresponding ages. The organelle consists of a stack of interconnected cisternae of endoplasmic reticulum and of membrane bound rodlets that are intercalated between, and run parallel to, the cisternae. The cisternal membranes are predominantly smooth, but some may display ribosomes. Most rodlets are from 1 to 2 microns long, about 0.1 micron wide, and contain electron dense material. Mitochondria are commonly associated with or incorporated into the organelle. Some electron micrographs suggest that the rodlets may originate from modified mitochondria. It is our impression that the formation of the organelle begins with the apposition of cisternae and mitochondria. Cisternal-associated mitochondria appear to constrict, elongate, and lose their inner membranes. In both the intact animal and in culture, the cells of the inner and outer spiral sulci display microvilli, apical junctional complexes, lateral intercellular spaces containing interdigitating cell processes, and appear to be involved in fluid formation. Moreover, in culture, the cells of inner and outer spiral sulci as well as some cells proliferating in the outgrowth zone participate in fluid formation, producing large fluid pockets. All these cells commonly contain intercalated bodies. It is possible that in the intact animal, as in culture, intercalated bodies may play a role in fluid regulation in the immediate vicinity of the hair cells.

  13. The perinuclear space of pancreatic acinar cells and the synthetic pathway of zymogen in Scorpaena scrofa L.: ultrastructural aspects.

    PubMed

    Gilloteaux, Jacques; Kashouty, Rabih; Yono, Noor

    2008-02-01

    Electron microscopic examination of exocrine pancreatic tissues from the fish Scorpaena scrofa L., probably captured while replenishing the acinar cells, shows two main functional cell morphologies of the same cell type. One cell functional aspect contains numerous well-contrasted small vesicles, the zymogenic vesicles. The other functional morphology is mainly represented by a few cells containing large apical zymogen vesicles with many empty RER cisterns. In our observations, the zymogenic vesicles are always studded with ribosomes. The main cytological finding is to report that zymogenic vesicles can be extruded from the perinuclear space and it confirms the suspected, synthetic activity of this cell compartment. The pool of zymogenic vesicles, maintaining their coat of ribosomes, then fuses and transfers their content into the cis Golgi complex network. Finally, the zymogen vesicles are produced following the classical secretory pathway from the trans Golgi saccular network into the supranuclear, apical region of the acinar cells where the largest vesicles concentrate their content until secretion. PMID:17961618

  14. Placental phagocytic cells infected with herpes simplex type 2 and echovirus type 19: virological and ultrastructural aspects.

    PubMed

    Oliveira, L H; Fonseca, M E; De Bonis, M

    1992-01-01

    Placental macrophage cells were kept in a short-term culture and infected with herpes simplex type 2 virus and echovirus type 19. These were observed under optical and electron microscopy. Immunofluorescence, virus titration and autoradiographic technique were used to determine if the virus was replicating in the system. The results showed that the placental phagocytic cells do not allow virus growth and that the virus particles are destroyed right after virus uptake, within 4 h post-infection. The increase of lipid bodies and other cellular alterations suggested the intensive action of these cells against viruses.

  15. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle.

    PubMed

    Uezumi, Akiyoshi; Nakatani, Masashi; Ikemoto-Uezumi, Madoka; Yamamoto, Naoki; Morita, Mitsuhiro; Yamaguchi, Asami; Yamada, Harumoto; Kasai, Takehiro; Masuda, Satoru; Narita, Asako; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Fukada, So-Ichiro; Nishino, Ichizo; Tsuchida, Kunihiro

    2016-08-01

    Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases. PMID:27509136

  16. The interaction of microgravity and ethylene on the ultrastructure cell and Ca2+ localization in soybean hook hypocotyl

    NASA Technical Reports Server (NTRS)

    Nedukha, O. M.; Kordyum, E. L.; Brown, C.; Chapman, D.

    2001-01-01

    Calcium ions are secondary messenger in numerous cellular processes of plant grown at 1 g. Ca2+ are connected with oxygen atoms, of pectin carboxy groups and/or with H(+)-groups of protein (Roux and Slocum, 1982; Hepler and Wayne, 1985). The influence of altered gravity on the calcium balance in some cells is established. The increased synthesis of ethylene in plant grown in microgravity caused the change of the structural-functional organization of cell (Hensel and Iversen, 1980; Hilaire et al., 1996). Available data put the new question: how do high ethylene level and microgravity influence on the redistribution of Ca2+ in cell of seedling in early stage of growth? Therefore, the goal of our data was the comparable study of the cell ulltrastructure and localization of Ca2+ in hook hypocotyl of soybean seedling under interaction of microgravity and ethylene.

  17. Ultrastructural analysis of dermal fibroblasts in mucopolysaccharidosis type I: Effects of enzyme replacement therapy and hematopoietic cell transplantation.

    PubMed

    Cox-Brinkman, Josanne; van den Bergh Weerman, Marius A; Wijburg, Frits A; Aerts, Johannes M F G; Florquin, Sandrine; van der Lee, Johanna H; Hollak, Carla E M

    2010-05-01

    In mucopolysaccharidosis type I (MPS I; alpha-L-iduronidase deficiency), glycosaminoglycans (GAGs) accumulate in different cell types, causing characteristic vacuolization. Hematopoietic cell transplantation (HCT) and enzyme replacement therapy (ERT) both aim to restore tissue morphology by delivering alpha-L-iduronidase to the deficient cells. The authors investigated the efficacy of both therapies on dermal fibroblast morphology in 12 patients by electron microscopy of repeated skin biopsies before and during 2 years of ERT as well as before and 6 months after HCT. Cell vacuolization was rated according to a semi-quantitative scoring system. At baseline all patients showed an increased vacuolization score as compared to controls. In addition the vacuolization score was significantly higher in patients with the severe phenotype of the disease (n = 7) compared to patients with attenuated phenotypes (n = 5) (p = .009). After initiation of ERT a significant decrease in cell vacuolization was observed (p = .012). However, the response rate varied among patients, as the vacuolization score remained high during the first year of ERT in 3 patients with the severe phenotype. In all patients who received a successful HCT (n = 3) only minimal disturbances in cell morphology were observed afterward. In conclusion, both ERT and HCT are capable of restoring, at least partially, dermal fibroblast morphology in MPS I.

  18. Ultrastructural and immunohistochemical studies of rat epididymis.

    PubMed

    Francavilla, S; De Martino, C; Scorza Barcellona, P; Natali, P G

    1983-01-01

    The anatomical distribution of smooth muscle actin, myosin, fibronectin and basement membrane has been investigated immunohistochemically, using the indirect immunofluorescence technique, in the rat epididymis. The findings were correlated with the ultrastructural organization of the organ. Actin was found to be distributed in the stereociliary region of the epithelial principal cells and in the terminal web region. Actin was also visible along the base of the epithelium. Myosin was detected in the terminal web and in the terminal bar regions of the epithelium. The contractile cells showed a strong stain for both proteins. Basement membrane immunoreactivity was distributed along the epithelial basement membrane and around the contractile cells of the wall. In the cauda, between the epithelium and the contractile cell layers, the lamina propria, containing blood vessels and a thin layer of cells, was negative for all antigens investigated. Fibronectin showed a granular distribution around the contractile cells, mainly in the cauda. The ultrastructural study showed only thin (5-6 nm in diameter) filaments in the stereocilia and terminal web region. Thin filaments were also visible in the cytoplasm of the basal cells, thus suggesting a contractile function of this cell type. The heterogeneous appearance of the contractile cells of the wall seemed to support the different contractile pattern of the epididymal regions: caput, corpus and cauda. The cells present in the lamina propria showed cytoplasmic vesicles with dark granules resembling the "A" cell granules of the endocrine pancreas and gut mucosa cells.

  19. Ultrastructural and immunohistochemical studies of rat epididymis.

    PubMed

    Francavilla, S; De Martino, C; Scorza Barcellona, P; Natali, P G

    1983-01-01

    The anatomical distribution of smooth muscle actin, myosin, fibronectin and basement membrane has been investigated immunohistochemically, using the indirect immunofluorescence technique, in the rat epididymis. The findings were correlated with the ultrastructural organization of the organ. Actin was found to be distributed in the stereociliary region of the epithelial principal cells and in the terminal web region. Actin was also visible along the base of the epithelium. Myosin was detected in the terminal web and in the terminal bar regions of the epithelium. The contractile cells showed a strong stain for both proteins. Basement membrane immunoreactivity was distributed along the epithelial basement membrane and around the contractile cells of the wall. In the cauda, between the epithelium and the contractile cell layers, the lamina propria, containing blood vessels and a thin layer of cells, was negative for all antigens investigated. Fibronectin showed a granular distribution around the contractile cells, mainly in the cauda. The ultrastructural study showed only thin (5-6 nm in diameter) filaments in the stereocilia and terminal web region. Thin filaments were also visible in the cytoplasm of the basal cells, thus suggesting a contractile function of this cell type. The heterogeneous appearance of the contractile cells of the wall seemed to support the different contractile pattern of the epididymal regions: caput, corpus and cauda. The cells present in the lamina propria showed cytoplasmic vesicles with dark granules resembling the "A" cell granules of the endocrine pancreas and gut mucosa cells. PMID:6354463

  20. Ultrastructural differences between diabetic and idiopathic gastroparesis

    PubMed Central

    Faussone-Pellegrini, Maria Simonetta; Grover, Madhusudan; Pasricha, Pankaj J; Bernard, Cheryl E; Lurken, Matthew S; Smyrk, Thomas C; Parkman, Henry P; Abell, Thomas L; Snape, William J; Hasler, William L; Ünalp-Arida, Aynur; Nguyen, Linda; Koch, Kenneth L; Calles, Jorges; Lee, Linda; Tonascia, James; Hamilton, Frank A; Farrugia, Gianrico

    2012-01-01

    Abstract The ultrastructural changes in diabetic and idiopathic gastroparesis are not well studied and it is not known whether there are different defects in the two disorders. As part of the Gastroparesis Clinical Research Consortium, full thickness gastric body biopsies from 20 diabetic and 20 idiopathic gastroparetics were studied by light microscopy. Abnormalities were found in many (83%) but not all patients. Among the common defects were loss of interstitial cells of Cajal (ICC) and neural abnormalities. No distinguishing features were seen between diabetic and idiopathic gastroparesis. Our aim was to provide a detailed description of the ultrastructural abnormalities, compare findings between diabetic and idiopathic gastroparesis and determine if patients with apparently normal immunohistological features have ultrastructural abnormalities. Tissues from 40 gastroparetic patients and 24 age- and sex-matched controls were examined by transmission electron microscopy (TEM). Interstitial cells of Cajal showing changes suggestive of injury, large and empty nerve endings, presence of lipofuscin and lamellar bodies in the smooth muscle cells were found in all patients. However, the ultrastructural changes in ICC and nerves differed between diabetic and idiopathic gastroparesis and were more severe in idiopathic gastroparesis. A thickened basal lamina around smooth muscle cells and nerves was characteristic of diabetic gastroparesis whereas idiopathic gastroparetics had fibrosis, especially around the nerves. In conclusion, in all the patients TEM showed abnormalities in ICC, nerves and smooth muscle consistent with the delay in gastric emptying. The significant differences found between diabetic and idiopathic gastroparesis offers insight into pathophysiology as well as into potential targeted therapies. PMID:21914127

  1. Respiratory scleroma: a clinicopathologic and ultrastructural study.

    PubMed

    Sedano, H O; Carlos, R; Koutlas, I G

    1996-06-01

    Respiratory scleroma (rhinoscleroma) is a chronic granulomatous infection produced by Klebsiella rhinoscleromatis, a gram-negative aerobic coccobacillus. This disease is endemic to Africa, Central and South America, South Central and Eastern Europe, the Middle East, and China. Sporadic cases have been reported in the United States, especially in persons who migrated from the aforementioned areas. The majority of cases affect the nose, but extension to the soft and hard palate, upper lip, and maxillary sinuses also is frequent. This study comprises 11 patients (6 females and 5 males) with respiratory scleroma identified over a 6-year period in Guatemala. Their ages ranged from 16 to 60 years. Light microscopy showed a dense plasmacytic infiltrate, Mikulicz histiocytes, and Russell bodies within the plasma cells. Ultrastructural study revealed Mikulicz histiocytes, cytoplasmic vacuoles containing bacilli, and so-called A and B granules. We favor the term respiratory scleroma for this lesion because it affects not only the nose but also the upper and lower respiratory tracts as well as the mouth. PMID:8784898

  2. Ultrastructure of the intercalated body, a novel organelle associated with fluid forming cells in the organ of Corti.

    PubMed

    Sobkowicz, H M; Holy, J; Scott, G L

    1990-07-01

    The intercalated body is a newly discovered organelle in the inner and outer spiral sulcus cells of the mouse organ of Corti. The organelle was found in the cochleas of 14-day and older intact mice and in organs in culture of corresponding ages. The organelle consists of a stack of interconnected cisternae of endoplasmic reticulum and of membrane bound rodlets that are intercalated between, and run parallel to, the cisternae. The cisternal membranes are predominantly smooth, but some may display ribosomes. Most rodlets are from 1 to 2 microns long, about 0.1 micron wide, and contain electron dense material. Mitochondria are commonly associated with or incorporated into the organelle. Some electron micrographs suggest that the rodlets may originate from modified mitochondria. It is our impression that the formation of the organelle begins with the apposition of cisternae and mitochondria. Cisternal-associated mitochondria appear to constrict, elongate, and lose their inner membranes. In both the intact animal and in culture, the cells of the inner and outer spiral sulci display microvilli, apical junctional complexes, lateral intercellular spaces containing interdigitating cell processes, and appear to be involved in fluid formation. Moreover, in culture, the cells of inner and outer spiral sulci as well as some cells proliferating in the outgrowth zone participate in fluid formation, producing large fluid pockets. All these cells commonly contain intercalated bodies. It is possible that in the intact animal, as in culture, intercalated bodies may play a role in fluid regulation in the immediate vicinity of the hair cells. PMID:2374037

  3. Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage

    PubMed Central

    Yu, Yin; Zheng, Hongjun; Buckwalter, Joseph A.; Martin, James A.

    2014-01-01

    Objective To date, no approved clinical intervention successfully prevents the progressive degradation of injured articular cartilage that leads to osteoarthritis (OA). Stem/progenitor cell populations within tissues of diarthrodial joint have shown their therapeutic potential in treating OA. However, this potential has not been fully realized due in part to the heterogeneity of these subpopulations. Characterization of clonal populations derived from a single cell may help identify more homogenous stem/progenitor populations within articular cartilage. Moreover, chondrogenic potential of clonal populations from different zones could be further examined to elucidate their differential roles in maintaining articular cartilage homeostasis. Method We combined FACS (Fluorescence-activated cell sorting) and clonogenicity screening to identify stem/progenitor cells cloned from single cells. High-efficiency colony-forming cells (HCCs) were isolated, and evaluated for stem/progenitor cell characteristics. HCCs were also isolated from different zones of articular cartilage. Their function was compared by lineage-specific gene expression, and differentiation potential. Results A difference in colony-forming efficiency was observed in terms of colony sizes. HCCs were highly clonogenic and multipotent, and overexpressed stem/progenitor cell markers. Also, proliferation and migration associated genes were over-expressed in HCCs. HCCs showed zonal differences with deep HCCs more chondrogenic and osteogenic than superficial HCCs. Conclusion Our approach is a simple yet practical way to identify homogeneous stem/progenitor cell populations with clonal origin. The discovery of progenitor cells demonstrates the intrinsic self-repairing potential of articular cartilage. Differences in differentiation potential may represent the distinct roles of superficial and deep zone stem/progenitor cells in the maintenance of articular cartilage homeostasis. PMID:25038490

  4. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis

    PubMed Central

    Kirshenbaum, Arnold S.; Cruse, Glenn; Desai, Avanti; Bandara, Geethani; Leerkes, Maarten; Lee, Chyi-Chia R.; Fischer, Elizabeth R.; O’Brien, Kevin J.; Gochuico, Bernadette R.; Stone, Kelly; Gahl, William A.; Metcalfe, Dean D.

    2016-01-01

    Hermansky-Pudlak Syndrome type-1 (HPS-1) is an autosomal recessive disorder caused by mutations in HPS1 which result in reduced expression of the HPS-1 protein, defective lysosome-related organelle (LRO) transport and absence of platelet delta granules. Patients with HPS-1 exhibit oculocutaneous albinism, colitis, bleeding and pulmonary fibrosis postulated to result from a dysregulated immune response. The effect of the HPS1 mutation on human mast cells (HuMCs) is unknown. Since HuMC granules classify as LROs along with platelet granules and melanosomes, we set out to determine if HPS-1 cutaneous and CD34+ culture-derived HuMCs have distinct granular and cellular characteristics. Cutaneous and cultured CD34+-derived HuMCs from HPS-1 patients were compared with normal cutaneous and control HuMCs, respectively, for any morphological and functional differences. One cytokine-independent HPS-1 culture was expanded, cloned, designated the HP proMastocyte (HPM) cell line and characterized. HPS-1 and idiopathic pulmonary fibrosis (IPF) alveolar interstitium showed numerous HuMCs; HPS-1 dermal mast cells exhibited abnormal granules when compared to healthy controls. HPS-1 HuMCs showed increased CD63, CD203c and reduced mediator release following FcɛRI aggregation when compared with normal HuMCs. HPM cells also had the duplication defect, expressed FcɛRI and intracytoplasmic proteases and exhibited less mediator release following FcɛRI aggregation. HPM cells constitutively released IL-6, which was elevated in patients’ serum, in addition to IL-8, fibronectin-1 (FN-1) and galectin-3 (LGALS3). Transduction with HPS1 rescued the abnormal HPM morphology, cytokine and matrix secretion. Microarray analysis of HPS-1 HuMCs and non-transduced HPM cells confirmed upregulation of differentially expressed genes involved in fibrogenesis and degranulation. Cultured HPS-1 HuMCs appear activated as evidenced by surface activation marker expression, a decrease in mediator content and

  5. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis.

    PubMed

    Kirshenbaum, Arnold S; Cruse, Glenn; Desai, Avanti; Bandara, Geethani; Leerkes, Maarten; Lee, Chyi-Chia R; Fischer, Elizabeth R; O'Brien, Kevin J; Gochuico, Bernadette R; Stone, Kelly; Gahl, William A; Metcalfe, Dean D

    2016-01-01

    Hermansky-Pudlak Syndrome type-1 (HPS-1) is an autosomal recessive disorder caused by mutations in HPS1 which result in reduced expression of the HPS-1 protein, defective lysosome-related organelle (LRO) transport and absence of platelet delta granules. Patients with HPS-1 exhibit oculocutaneous albinism, colitis, bleeding and pulmonary fibrosis postulated to result from a dysregulated immune response. The effect of the HPS1 mutation on human mast cells (HuMCs) is unknown. Since HuMC granules classify as LROs along with platelet granules and melanosomes, we set out to determine if HPS-1 cutaneous and CD34+ culture-derived HuMCs have distinct granular and cellular characteristics. Cutaneous and cultured CD34+-derived HuMCs from HPS-1 patients were compared with normal cutaneous and control HuMCs, respectively, for any morphological and functional differences. One cytokine-independent HPS-1 culture was expanded, cloned, designated the HP proMastocyte (HPM) cell line and characterized. HPS-1 and idiopathic pulmonary fibrosis (IPF) alveolar interstitium showed numerous HuMCs; HPS-1 dermal mast cells exhibited abnormal granules when compared to healthy controls. HPS-1 HuMCs showed increased CD63, CD203c and reduced mediator release following FcɛRI aggregation when compared with normal HuMCs. HPM cells also had the duplication defect, expressed FcɛRI and intracytoplasmic proteases and exhibited less mediator release following FcɛRI aggregation. HPM cells constitutively released IL-6, which was elevated in patients' serum, in addition to IL-8, fibronectin-1 (FN-1) and galectin-3 (LGALS3). Transduction with HPS1 rescued the abnormal HPM morphology, cytokine and matrix secretion. Microarray analysis of HPS-1 HuMCs and non-transduced HPM cells confirmed upregulation of differentially expressed genes involved in fibrogenesis and degranulation. Cultured HPS-1 HuMCs appear activated as evidenced by surface activation marker expression, a decrease in mediator content and

  6. Ultrastructural localization of anionic sites on the surface of yeast, hyphal and germ-tube forming cells of Candida albicans.

    PubMed

    Horisberger, M; Clerc, M F

    1988-08-01

    The cell wall of Candida albicans contains chitin, beta-glucans and phosphorylated mannoproteins, and possesses a fuzzy coat which is thought to play a role in pathogenicity, phagocytosis, and adherence of this dimorphic yeast. Using scanning electron microscopy and the gold method, mannoproteins were detected on the whole surface of blastoconidia including the bud scars, but chitin was absent even after alpha-mannosidase treatment of the cells. The presence of surface beta-(1----6)glucan (but not beta(1----3)glucan) was observed only after extensive alpha-mannosidase and alkaline phosphatase treatments of blastoconidia. Using transmission and scanning electron microscopy, the locations of anionic sites were revealed by polycationic colloidal gold-chitosan complexes on the surface of blastoconidia, germ tubes and hyphae. Anionic sites were dispersed evenly over the surface of blastoconidia bearing bud scars. Depending upon the growth conditions, anionic sites could be detected on emerging buds and young cells. However, bud scars were always free of marking. When germ-tube formation was induced, anionic sites were present at different densities on all cell surfaces, the highest density being observed on cells with bud scars. Anionic sites were detected at a remarkably high density on all hyphal surfaces. An apical concentration of anionic sites was observed on germ tubes and hyphae. The distribution of anionic sites was not modified by endoglucosaminidase treatment of blastoconidia, germ tubes and hyphae. The anionic sites were associated with the fuzzy coat. As the hyphal form is regarded as possessing the greatest invasiveness, it is suggested that anionic sites play an important role in establishing tissue colonization by this human pathogen. PMID:3053174

  7. Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data

    PubMed Central

    Barron, Martin; Li, Jun

    2016-01-01

    Single-cell RNA-Sequencing (scRNA-Seq) is a revolutionary technique for discovering and describing cell types in heterogeneous tissues, yet its measurement of expression often suffers from large systematic bias. A major source of this bias is the cell cycle, which introduces large within-cell-type heterogeneity that can obscure the differences in expression between cell types. The current method for removing the cell-cycle effect is unable to effectively identify this effect and has a high risk of removing other biological components of interest, compromising downstream analysis. We present ccRemover, a new method that reliably identifies the cell-cycle effect and removes it. ccRemover preserves other biological signals of interest in the data and thus can serve as an important pre-processing step for many scRNA-Seq data analyses. The effectiveness of ccRemover is demonstrated using simulation data and three real scRNA-Seq datasets, where it boosts the performance of existing clustering algorithms in distinguishing between cell types. PMID:27670849

  8. Palindromic rheumatism with rheumatoid nodules: a case report with ultrastructural studies.

    PubMed Central

    Schreiber, S; Schumacher, H R; Cherian, P V

    1986-01-01

    Rheumatoid nodules developed on the finger tips of a patient with palindromic rheumatism. The patient had no bone cysts or erosions and had no rheumatoid factor. A light microscopic and ultrastructural study of a nodule showed a necrotic centre with fibrin, collagen, and granular material surrounded by large histiocytes, fibrocytes, lymphocytes, and vessels with adjacent mast cells as has been seen with nodules in classical rheumatoid arthritis (RA). We describe the first immunoperoxidase studies on a rheumatoid nodule and have identified reaction products for immunoglobulins and C3 in perivascular and endothelial cell vacuoles and in the necrotic centre. Images PMID:3954461

  9. COMPASS identifies T-cell subsets correlated with clinical outcomes

    PubMed Central

    Lin, Lin; Finak, Greg; Ushey, Kevin; Seshadri, Chetan; Hawn, Thomas R.; Frahm, Nicole; Scriba, Thomas J.; Mahomed, Hassan; Hanekom, Willem; Bart, Pierre-Alexandre; Pantaleo, Giuseppe; Tomaras, Georgia D.; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Michael, Nelson L.; Kim, Jerome H.; Robb, Merlin L.; O’Connell, Robert J.; Karasavvas, Nicos; Gilbert, Peter; DeRosa, Stephen; McElrath, M. Juliana

    2015-01-01

    Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells and allowed interrogation of cell population heterogeneity. Computational tools to take full advantage of these technologies are lacking. Here, we present COMPASS, a computational framework for unbiased polyfunctionality analysis of antigen-specific T-cell subsets. COMPASS uses a Bayesian hierarchical framework to model all observed functional cell subsets and select those most likely to exhibit antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, while subject-level responses are quantified by two novel summary statistics that can be correlated directly with clinical outcome, and describe the quality of an individual’s (poly)functional response. Using three clinical datasets of cytokine production we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals novel cellular correlates of protection in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software. PMID:26006008

  10. Ciliary ultrastructure of polyplacophorans (Mollusca, Amphineura, Polyplacophora).

    PubMed

    Lundin, K; Schander, C

    2001-01-01

    This study is part of a series of papers aiming to investigate the phylogenetic significance of ciliary ultrastructure among molluscs and to test the hypothesis of a relationship between Xenoturbella and the molluscs. The ultrastructure of the ciliary apparatus on the gills of the polyplacophorans Leptochiton asellus and Tonicella rubra was studied. The gill cilia of the two species are similar in shape. The free part of the cilium is long with a slender distal part. There are two ciliary rootlets. One of them is short, broad and placed on the anterior face of the basal body. The other rootlet is conical and has a vertical orientation. Among the mollusca, two ciliary rootlets in the ciliary apparatus of multiciliate ectodermal cells have only been reported from the Chaetodermomorpha and Neomeniomorpha. This character state is likely plesiomorphic for the Mollusca and indicates a basal (nonderived) position of these taxa among the molluscs. No possible synapomorphic character with Xenoturbella bocki was found.

  11. Ultrastructural modifications in the mitochondrion of mouse Sertoli cells after inhalation of lead, cadmium or lead-cadmium mixture.

    PubMed

    Bizarro, Patricia; Acevedo, Sandra; Niño-Cabrera, Geraldine; Mussali-Galante, Patricia; Pasos, Francisco; Avila-Costa, Maria Rosa; Fortoul, Teresa I

    2003-01-01

    CD-1 mice inhaled 0.01 M lead acetate, 0.006 M cadmium chloride or Pb-Cd mixture during 1h twice a week during 4 weeks. Testes were processed for transmission electron microscopic analysis. The percentage of damaged mitochondria was related to exposure time and the type of metal inhaled, noticing more damage when the mixture was administered. A dose-time relationship was found. Cadmium chloride caused the most severe mitochondrial alteration compared to lead acetate, whereas the mixture was more aggressive compared with each metal alone. Our results suggest that the changes in Sertoli cell could lead to a transformation process that may interfere with spermatogenesis.

  12. Identifying Cell Types from Spatially Referenced Single-Cell Expression Datasets

    PubMed Central

    Achim, Kaia; Richardson, Sylvia; Azizi, Lamiae; Marioni, John

    2014-01-01

    Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene expression. The ability to study this heterogeneity has been revolutionised by advances in experimental technology, such as Wholemount in Situ Hybridizations (WiSH) and single-cell RNA-sequencing. Consequently, it is now possible to study gene expression levels in thousands of cells from the same tissue type. After generating such data one of the key goals is to cluster the cells into groups that correspond to both known and putatively novel cell types. Whilst many clustering algorithms exist, they are typically unable to incorporate information about the spatial dependence between cells within the tissue under study. When such information exists it provides important insights that should be directly included in the clustering scheme. To this end we have developed a clustering method that uses a Hidden Markov Random Field (HMRF) model to exploit both quantitative measures of expression and spatial information. To accurately reflect the underlying biology, we extend current HMRF approaches by allowing the degree of spatial coherency to differ between clusters. We demonstrate the utility of our method using simulated data before applying it to cluster single cell gene expression data generated by applying WiSH to study expression patterns in the brain of the marine annelid Platynereis dumereilii. Our approach allows known cell types to be identified as well as revealing new, previously unexplored cell types within the brain of this important model system. PMID:25254363

  13. [Ultrastructure of cervical mucus].

    PubMed

    Chretien, F C

    1973-09-01

    This discussion covers the chemical structure of cervical mucus, accepted thoeries of its ultrastructure, and the author's data from the scanning electron microscope. A theory of the ultrastructure of cervical mucus must explain how it can be viscous and hostile to sperm for most of the cycle, but elastic and arranged parallel to their upward migration at ovulation. Cervical mucus is a hydrogel with 2%-12% solid phase composed of glucoproteins, probably meshed noncovalently into protein chains, with oligosaccharide side chains ending in sialic acid. A popular thoery generated by nuclear magnetic resonnance studies suggests that there may be sheaves of fibers arranged into micelles, with transverse fibers forming a netwrok that enlarges at ovulation. The light microscope is useless for studying mucus structure, but transmission electron microscopes have tentatively verified this hypothesis. The author's work with the scanning electron microscope showed a tangled web of filaments approximately 500-750 Angstroms, 1000-1500 or 300-6000 Angstroms thick. Usually the margin of the specimen appeared thin, like a spider web, but the center appeared thick with open channels, like the skeleton of a sponge, with a secondary network at the level of the oblique and transverse fibers.

  14. Ultrastructural modifications in the mitochondrion of mouse Sertoli cells after inhalation of lead, cadmium or lead-cadmium mixture.

    PubMed

    Bizarro, Patricia; Acevedo, Sandra; Niño-Cabrera, Geraldine; Mussali-Galante, Patricia; Pasos, Francisco; Avila-Costa, Maria Rosa; Fortoul, Teresa I

    2003-01-01

    CD-1 mice inhaled 0.01 M lead acetate, 0.006 M cadmium chloride or Pb-Cd mixture during 1h twice a week during 4 weeks. Testes were processed for transmission electron microscopic analysis. The percentage of damaged mitochondria was related to exposure time and the type of metal inhaled, noticing more damage when the mixture was administered. A dose-time relationship was found. Cadmium chloride caused the most severe mitochondrial alteration compared to lead acetate, whereas the mixture was more aggressive compared with each metal alone. Our results suggest that the changes in Sertoli cell could lead to a transformation process that may interfere with spermatogenesis. PMID:14555194

  15. Benign lymphoepithelial lesion (Mikulicz's disease) of the salivary gland: an ultrastructural study.

    PubMed

    Kahn, L B

    1979-01-01

    An ultrastructural study of a benign lymphoepithelial lesion of the parotid gland demonstrated that the so-called epimyoepithelial cell islands were sharply demarcated from the surrounding parenchyma by a thick basement membrane containing collagen fibers. The hyaline material seen by light microscopy within the islands was ultrastructurally similar in appearance to this delimiting basement membrane. The epithelial cells within the islands were united by well formed desmosomes and many had prominent tonofilament bundles, but myogenic differentiation was not observed. Hydropic degeneration was not seen in these epithelial cells; cells with a perinuclear clear space seen by light microscopy corresponded to large lymphoid cells ultrastructurally.

  16. Identifiability and privacy in pluripotent stem cell research.

    PubMed

    Isasi, Rosario; Andrews, Peter W; Baltz, Jay M; Bredenoord, Annelien L; Burton, Paul; Chiu, Ing-Ming; Hull, Sara Chandros; Jung, Ji-Won; Kurtz, Andreas; Lomax, Geoffrey; Ludwig, Tenneille; McDonald, Michael; Morris, Clive; Ng, Huck Hui; Rooke, Heather; Sharma, Alka; Stacey, Glyn N; Williams, Clare; Zeng, Fanyi; Knoppers, Bartha Maria

    2014-04-01

    Data sharing is an essential element of research; however, recent scientific and social developments have challenged conventional methods for protecting privacy. Here we provide guidance for determining data sharing thresholds for human pluripotent stem cell research aimed at a wide range of stakeholders, including research consortia, biorepositories, policy-makers, and funders.

  17. Identifiability and Privacy in Pluripotent Stem Cell Research

    PubMed Central

    Isasi, Rosario; Andrews, Peter W.; Baltz, Jay M.; Bredenoord, Annelien L.; Burton, Paul; Chiu, Ing-Ming; Hull, Sara Chandros; Jung, Ji-Won; Kurtz, Andreas; Lomax, Geoffrey; Ludwig, Tenneille; McDonald, Michael; Morris, Clive; Ng, Huck Hui; Rooke, Heather; Sharma, Alka; Stacey, Glyn N.; Williams, Clare; Zeng, Fanyi; Knoppers, Bartha Maria

    2016-01-01

    Data sharing is an essential element of research; however, recent scientific and social developments have challenged conventional methods for protecting privacy. Here we provide guidance for determining data sharing thresholds for human pluripotent stem cell research aimed at a wide range of stakeholders, including research consortia, biorepositories, policy-makers, and funders. PMID:24702994

  18. Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells.

    PubMed

    Koso, Hideto; Takeda, Haruna; Yew, Christopher Chin Kuan; Ward, Jerrold M; Nariai, Naoki; Ueno, Kazuko; Nagasaki, Masao; Watanabe, Sumiko; Rust, Alistair G; Adams, David J; Copeland, Neal G; Jenkins, Nancy A

    2012-10-30

    Neural stem cells (NSCs) are considered to be the cell of origin of glioblastoma multiforme (GBM). However, the genetic alterations that transform NSCs into glioma-initiating cells remain elusive. Using a unique transposon mutagenesis strategy that mutagenizes NSCs in culture, followed by additional rounds of mutagenesis to generate tumors in vivo, we have identified genes and signaling pathways that can transform NSCs into glioma-initiating cells. Mobilization of Sleeping Beauty transposons in NSCs induced the immortalization of astroglial-like cells, which were then able to generate tumors with characteristics of the mesenchymal subtype of GBM on transplantation, consistent with a potential astroglial origin for mesenchymal GBM. Sequence analysis of transposon insertion sites from tumors and immortalized cells identified more than 200 frequently mutated genes, including human GBM-associated genes, such as Met and Nf1, and made it possible to discriminate between genes that function during astroglial immortalization vs. later stages of tumor development. We also functionally validated five GBM candidate genes using a previously undescribed high-throughput method. Finally, we show that even clonally related tumors derived from the same immortalized line have acquired distinct combinations of genetic alterations during tumor development, suggesting that tumor formation in this model system involves competition among genetically variant cells, which is similar to the Darwinian evolutionary processes now thought to generate many human cancers. This mutagenesis strategy is faster and simpler than conventional transposon screens and can potentially be applied to any tissue stem/progenitor cells that can be grown and differentiated in vitro.

  19. SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells.

    PubMed

    Böser, Alexander; Drexler, Hannes C A; Reuter, Hanna; Schmitz, Henning; Wu, Guangming; Schöler, Hans R; Gentile, Luca; Bartscherer, Kerstin

    2013-11-27

    Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC) protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA), which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research.

  20. Ultrastructure of the Subcutaneous Primo-Vascular System in Rat Abdomen.

    PubMed

    Lim, Chae Jeong; Lee, So Yeong; Ryu, Pan Dong

    2016-01-01

    Recently, we identified the primo-vascular system (PVS), a novel vascular network, in rat subcutaneous tissues. Little is known about the subcutaneous PVS (sc-PVS). Here, we examined the ultrastructure of the sc-PVS in the hypodermis at the rat abdominal midline by electron microscopy. On the surface of sc-PVS, we observed three types of cells: microcells (5-6 μm), large elliptical cells (>20 μm), and erythrocyte (3-4 μm). The inside of the sc-PVS was filled with numerous cells, which can be classified into three major groups: leucocytes, mast cells, and erythrocytes. The dense leucocytes and mast cells were easily noticed. The extracellular matrix of the sc-PVS was mainly composed of extensive fibers (79 ± 6.5 nm) tightly covered by micro- (0.5-1 μm) and nanoparticles (10-100 nm). In conclusion, the ultrastructural features, such as the resident cells on and in the sc-PVS and fiber meshwork covered by particles, indicate that sc-PVS might act as a circulatory channel for the flow and delivery of numerous cells and particles. Our findings will help understand the nature of various sc-PVS beneath-the-skin layers and how they relate to acupuncture meridians. PMID:27526159

  1. Ultrastructural and morphological changes in Leishmania (Viannia) braziliensis treated with synthetic chalcones.

    PubMed

    de Mello, Tatiane F P; Cardoso, Bruna M; Bitencourt, Heriberto R; Donatti, Lucélia; Aristides, Sandra M A; Lonardoni, Maria V C; Silveira, Thais G V

    2016-01-01

    Cutaneous leishmaniasis has an estimated incidence of 1.5 million new cases per year and the treatment options available are old, expensive, toxic, and difficult to administer. Chalcones have shown good activity against several species of Leishmania. However few studies have discussed the mechanisms of action and drug target of this group of compounds in Leishmania. The synthetic chalcones that were evaluated in the present study were previously shown to exhibit activity against Leishmania (Viannia) braziliensis. The objective of the present study was to identify ultrastructural and morphological changes in L. (V.) braziliensis after treatment with three synthetic chalcones (1-3). Promastigotes were treated with chalcones 1-3 and evaluated by transmission and scanning electron microscopy. Cellular and nuclear morphology of the parasites, changes in membrane permeability, and DNA fragmentation in agarose electrophoresis gel were also investigated after exposure to synthetic chalcones. All three synthetic chalcones (1-3) induced ultrastructural alterations in mitochondria, intense vacuolization, two nuclei with rounding of parasites, and cellular and nuclear shrinkage. Chalcones 1-3 also induced no changes in membrane permeability, and presence of nucleosome-sized DNA fragments. Synthetic chalcones 1-3 induced ultrastructural and morphological changes, suggesting that chalcones 1-3 induce apoptosis-like cell death. Further studies should be conducted to elucidate other aspects of the action of these chalcones against Leishmania spp. and their use for the treatment of cutaneous leishmaniasis.

  2. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  3. Ultrastructure of human malignant diffuse mesothelioma.

    PubMed Central

    Suzuki, Y.; Kannerstein, M.

    1976-01-01

    Eleven cases of malignant diffuse mesotheliomas, histologically classified into two groups, epithelial (5 pleural and 3 peritoneal) and biphasic or mixed (2 pleural and 1 peritoneal) forms, were stuied by electron microscopy to elucidate their ultrastructural characteristics. The neoplastic cells of the epithelial forms were varied in ultrastructure, from well differentiated (marked by polarity, micovilli, glycogen granules, junctional structures, tonofilaments, intracellular vacuoles, and a basement membrane) to poorly differentiated (which lacked some of these epithelial characteristics). In four of eight instances in epithelial type tumors, nonepithelial or mesenchymal neoplastic cells were recognized. The biphasic or mixed cases included three major cell types: epithelial, atypical epithelial, and mesenchymal. It appeared that there were transitional forms among the three cell types. The observations support the concept that the neoplastic cell of malignant mesothelioma can differentiate into a number of cell lines. Images Figures 20 and 21 Figure 22 Figure 23 Figures 24 and 25 Figure 26 Figure 27A Figure 27B and C Figure 28 Figure 29 Figure 30 Figure 31 Figures 32 and 33 Figure 34 Figure 35 Figure 36 Figures 1-4 Figures 5 and 6 Figure 37 Figures 7-10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figures 17 and 18 Figure 19 PMID:998721

  4. Basilar artery of the capybara (Hydrochaeris hydrochaeris): an ultrastructural study.

    PubMed

    Islam, S; Ribeiro, A A C M; Loesch, A

    2004-04-01

    The present study investigated the ultrastructural features of the basilar artery of the largest rodent species, the capybara. The study suggests that the general ultrastructural morphological organization of the basilar artery of the capybara is similar to that of small rodents. However, there are some exceptions. The basilar artery of the capybara contains a subpopulation of 'granular' vascular smooth muscle cells resembling monocytes and/or macrophages. The possibility cannot be excluded that the presence of these cells reflects the remodelling processes of the artery due to animal maturation and the regression of the internal carotid artery. To clarify this issue, more systemic studies are required involving capybaras of various ages.

  5. Sparse activity of identified dentate granule cells during spatial exploration

    PubMed Central

    Diamantaki, Maria; Frey, Markus; Berens, Philipp; Preston-Ferrer, Patricia; Burgalossi, Andrea

    2016-01-01

    In the dentate gyrus – a key component of spatial memory circuits – granule cells (GCs) are known to be morphologically diverse and to display heterogeneous activity profiles during behavior. To resolve structure–function relationships, we juxtacellularly recorded and labeled single GCs in freely moving rats. We found that the vast majority of neurons were silent during exploration. Most active GCs displayed a characteristic spike waveform, fired at low rates and showed spatial activity. Primary dendritic parameters were sufficient for classifying neurons as active or silent with high accuracy. Our data thus support a sparse coding scheme in the dentate gyrus and provide a possible link between structural and functional heterogeneity among the GC population. DOI: http://dx.doi.org/10.7554/eLife.20252.001 PMID:27692065

  6. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    PubMed

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. PMID:25907046

  7. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    PubMed

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery.

  8. Products of cells cultured from gliomas. VI. Immunofluorescent, morphometric, and ultrastructural characterization of two different cell types growing from explants of human gliomas.

    PubMed Central

    McKeever, P. E.; Smith, B. H.; Taren, J. A.; Wahl, R. L.; Kornblith, P. L.; Chronwall, B. M.

    1987-01-01

    Explants derived from human gliomas have been characterized with respect to their cellular outgrowth pattern after 1-22 weeks in culture. A mat of cells which were fibronectin (FN)-positive and glial fibrillary acidic protein (GFAP)-negative (hereafter designated FN+ cells) with a polygonal, flat morphology covered the growth substrate in a swirling pattern for a mean diameter of 9.2 mm around FN+ explants. FN+ cells showed ruffled plasmalemma, dilated rough endoplasmic reticulin (RDR), and extracellular filamentous strands. Rare desmosomes were compatible with at most minor leptomeningeal components or differentiation. FN+ cells predominated in six of seven cultures at passage 2, and their features were the same from various high-grade gliomas and gliosarcoma. Around other explants, elongated or stellate cells which were GFAP+ and FN- grew in a netlike pattern with little cell-to-cell contact. These GFAP+ cells surrounded explants at a mean diameter of 2 mm, substantially less than FN+ cells (P less than 0.005), and they grew more slowly than FN+ cells around explants. GFAP+ cells had an area/perimeter ratio which was less than that of FN+ cells. GFAP+ cells contained abundant intracellular filaments, rare desmosomes, and narrow RER cisternae. In mixed explants, GFAP+ cells often grew on top of FN+ cells. Individual cells which stained for both GFAP and FN were evident only from one glioma (8% doubly positive). Cells negative for both proteins resembled FN+ cells morphologically. Frozen sections of original glioma tissue showed FN+ vessel walls and GFAP+ parenchyma. Results are evidence for very early overgrowth of a preexistent FN+ cell type distinct from the GFAP+ parenchymal cell. The features of this distinct cell type are mesenchymal and resemble the proliferating vascular elements of gliomas in situ. The tendency for GFAP+ cells to grow on top of these FN+ cells suggests a feeder layer interaction. More knowledge of the origins and interactions of these two

  9. The ultrastructure of the muscle coat of human gastro-oesophageal junction, with special reference to “interstitial cells of Cajal”†

    PubMed Central

    Faussone-Pellegrini, Maria-Simonetta; Cortesini, Camillo; Romagnoli, Paolo

    2013-01-01

    richly innervated by varicose nerve fibers that were densely packed with synaptic vesicles; many close junctions to nerve endings were also detected. These morphological data lead us to assume that the interstitial cells demonstrated by the electron microscope do not correspond to the cells initially identified by Cajal and cannot even be considered connective tissue cells. We propose that they are specialized smooth muscle cells that are involved in generating spontaneous, myogenic electrical activity in the gastrointestinal tract. PMID:23576949

  10. A functional genomic screen in planarians identifies novel regulators of germ cell development

    PubMed Central

    Wang, Yuying; Stary, Joel M.; Wilhelm, James E.; Newmark, Phillip A.

    2010-01-01

    Germ cells serve as intriguing examples of differentiated cells that retain the capacity to generate all cell types of an organism. Here we used functional genomic approaches in planarians to identify genes required for proper germ cell development. We conducted microarray analyses and in situ hybridization to discover and validate germ cell-enriched transcripts, and then used RNAi to screen for genes required for discrete stages of germ cell development. The majority of genes we identified encode conserved RNA-binding proteins, several of which have not been implicated previously in germ cell development. We also show that a germ cell-specific subunit of the conserved transcription factor CCAAT-binding protein/nuclear factor-Y is required for maintaining spermatogonial stem cells. Our results demonstrate that conserved transcriptional and post-transcriptional mechanisms regulate germ cell development in planarians. These findings suggest that studies of planarians will inform our understanding of germ cell biology in higher organisms. PMID:20844018

  11. Effect of low temperature on growth and ultra-structure of Staphylococcus spp.

    PubMed

    Onyango, Laura A; Dunstan, R Hugh; Gottfries, Johan; von Eiff, Christof; Roberts, Timothy K

    2012-01-01

    The effect of temperature fluctuation is an important factor in bacterial growth especially for pathogens such as the staphylococci that have to remain viable during potentially harsh and prolonged transfer conditions between hosts. The aim of this study was to investigate the response of S. aureus, S. epidermidis, and S. lugdunensis when exposed to low temperature (4°C) for prolonged periods, and how this factor affected their subsequent growth, colony morphology, cellular ultra-structure, and amino acid composition in the non-cytoplasmic hydrolysate fraction. Clinical isolates were grown under optimal conditions and then subjected to 4°C conditions for a period of 8 wks. Cold-stressed and reference control samples were assessed under transmission electron microscopy (TEM) to identify potential ultra-structural changes. To determine changes in amino acid composition, cells were fractured to remove the lipid and cytoplasmic components and the remaining structural components were hydrolysed. Amino acid profiles for the hydrolysis fraction were then analysed for changes by using principal component analysis (PCA). Exposure of the three staphylococci to prolonged low temperature stress resulted in the formation of increasing proportions of small colony variant (SCV) phenotypes. TEM revealed that SCV cells had significantly thicker and more diffuse cell-walls than their corresponding WT samples for both S. aureus and S. epidermidis, but the changes were not significant for S. lugdunensis. Substantial species-specific alterations in the amino acid composition of the structural hydrolysate fraction were also observed in the cold-treated cells. The data indicated that the staphylococci responded over prolonged periods of cold-stress treatment by transforming into SCV populations. The observed ultra-structural and amino acid changes were proposed to represent response mechanisms for staphylococcal survival amidst hostile conditions, thus maintaining the viability of the

  12. Structural and ultrastructural features of the agouti tongue (Dasyprocta aguti Linnaeus, 1766)

    PubMed Central

    Ciena, Adriano Polican; Bolina, Cristina de Sousa; de Almeida, Sonia Regina Yokomizo; Rici, Rose Eli Grassi; de Oliveira, Moacir Franco; da da Silva, Marcelo Cavenaghi Pereira; Miglino, Maria Angélica; Watanabe, Ii-sei

    2013-01-01

    The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae. PMID:23701183

  13. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways.

    PubMed

    Chéry, Lisly; Lam, Hung-Ming; Coleman, Ilsa; Lakely, Bryce; Coleman, Roger; Larson, Sandy; Aguirre-Ghiso, Julio A; Xia, Jing; Gulati, Roman; Nelson, Peter S; Montgomery, Bruce; Lange, Paul; Snyder, Linda A; Vessella, Robert L; Morrissey, Colm

    2014-10-30

    Cancer dormancy refers to the prolonged clinical disease-free time between removal of the primary tumor and recurrence, which is common in prostate cancer (PCa), breast cancer, esophageal cancer, and other cancers. PCa disseminated tumor cells (DTC) are detected in both patients with no evidence of disease (NED) and advanced disease (ADV). However, the molecular and cellular nature of DTC is unknown. We performed a first-in-field study of single DTC transcriptomic analyses in cancer patients to identify a molecular signature associated with cancer dormancy. We profiled eighty-five individual EpCAM⁺/CD45⁻ cells from the bone marrow of PCa patients with NED or ADV. We analyzed 44 DTC with high prostate-epithelial signatures, and eliminated 41 cells with high erythroid signatures and low prostate epithelial signatures. DTC were clustered into 3 groups: NED, ADV_1, and ADV_2, in which the ADV_1 group presented a distinct gene expression pattern associated with the p38 stress activated kinase pathway. Additionally, DTC from the NED group were enriched for a tumor dormancy signature associated with head and neck squamous carcinoma and breast cancer. This study provides the first clinical evidence of the p38 pathway as a potential biomarker for early recurrence and an attractive target for therapeutic intervention.

  14. Mating in Chlamydomonas: a system for the study of specific cell adhesion. I. Ultrastructural and electrophoretic analyses of flagellar surface components involved in adhesion

    PubMed Central

    1976-01-01

    To determine the ultrastructural and biochemical bases for flagellar adhesiveness in the mating reaction in Chlamydomonas, gametic and vegetative flagella and flagellar membranes were studied by use of electron microscope and electrophoretic procedures. Negative staining with uranyl acetate revealed no differences in gametic and vegetative flagellar surfaces; both had flagellar membranes, flagellar sheaths, and similar numbers and distributions of mastigonemes. Freezecleave procedures suggested that there may be a greater density of intramembranous particles on the B faces of gametic flagellar membranes than on the B faces of vegetative flagellar membranes. Gamone, the adhesive material that gametes release into their medium, was demonstrated, on the basis of ultrastructural and biochemical analyses, to be composed of flagellar surface components, i.e., membrane vesicles and mastigonemes. Comparison of vegetative (nonadhesive) and gametic (adhesive) "gamones" by use of SDS polyacrylamide gel electrophoresis showed both preparations to be composed of membrane, mastigoneme, and some microtubule proteins, as well as several unidentified protein and carbohydrate-staining components. However, there was an additional protein of approximately 70,000 mol wt in gametic gamone which was not present in vegetative gamone. When gametic gamone was separated into a membrane and a mastigoneme fraction on CSCl gradients, only the membrane fraction had isoagglutinating activity; the mastigoneme fraction was inactive, suggesting that mastigonemes are not involved in adhesion. PMID:1245545

  15. Hypertextual Ultrastructures: Movement and Containment in Texts and Hypertexts

    ERIC Educational Resources Information Center

    Coste, Rosemarie L.

    2009-01-01

    The surface-level experience of hypertextuality as formless and unbounded, blurring boundaries among texts and between readers and writers, is created by a deep structure which is not normally presented to readers and which, like the ultrastructure of living cells, defines and controls texts' nature and functions. Most readers, restricted to…

  16. Immunocytochemical and ultrastructural findings in a mature retroperitoneal teratoma.

    PubMed

    Warson, F; Smets, G; Gepts, W; Velkeniers, B; Vanhaelst, L; Sacre, R; Peters, O

    1987-12-01

    Report is made of a mature retroperitoneal teratoma in a 32-year-old man. Investigation of the tumor revealed cells immunoreactive for ACTH, Met-enkephalin, beta-LPH, serotonin, FSH, BPP, S100, Neuron-specific-enolase. These cells were mainly present in the glandular epithelium, lining the cysts of the tumor. Ultrastructurally, neuro-secretory granules were demonstrated in the cytoplasm of the tumoral endocrine cells. At no time did the patient display endocrine symptoms.

  17. Choanocyte ultrastructure in Halisarca dujardini (Demospongiae, Halisarcida).

    PubMed

    Gonobobleva, Elisaveta; Maldonado, Manuel

    2009-05-01

    Understanding poriferan choanocyte ultrastructure is crucial if we are to unravel the steps of a putative evolutionary transition between choanoflagellate protists and early metazoans. Surprisingly, some aspects of choanocyte cytology still remain little investigated. This study of choanocyte ultrastructure in the halisarcid demosponge Halisarca dujardini revealed a combination of minor and major distinctive traits, some of them unknown in Porifera so far. Most significant features were 1) an asymmetrical periflagellar sleeve, 2) a battery of specialized intercellular junctions at the lateral cell surface complemented with an array of lateral interdigitations between adjacent choanocytes that provides a particular sealing system of the choanoderm, and 3) a unique, unexpectedly complex, basal apparatus. The basal apparatus consists of a basal body provided with a small basal foot and an intricate transverse skeleton of microtubules. An accessory centriole, which is not perpendicular to the basal body, is about 45 degrees . In addition, a system of short striated rootlets (periodicity = 50-60 nm) arises from the proximal edge of the basal body and runs longitudinally to contact the nuclear apex. This is the first flagellar rootlet system ever found in a choanocyte. The accessory centriole, the rootlet system, and the nuclear apex are all encircled by a large Golgi apparatus, adding another distinctive feature to the choanocyte cytology. The set of distinct features discovered in the choanocyte of H. dujardini indicates that the ultrastructure of the poriferan choanocyte may vary substantially between sponge groups. It is necessary to improve understanding of such variation, as the cytological features of choanocytes are often coded as characters both for formulation of hypotheses on the origin of animals and inference of phylogenetic relationships at the base of the metazoan tree.

  18. Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation.

    PubMed

    Tsuji, Naoki; Ninov, Nikolay; Delawary, Mina; Osman, Sahar; Roh, Alex S; Gut, Philipp; Stainier, Didier Y R

    2014-01-01

    Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.

  19. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes

    PubMed Central

    Ackermann, Amanda M.; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H.

    2016-01-01

    Objective Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. Methods We sorted human α- and β-cells and performed the “Assay for Transposase-Accessible Chromatin with high throughput sequencing” (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. Results We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The “group specific protein” (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. Conclusions

  20. Ultrastructural identification of telocytes in the muscularis of chicken ileum

    PubMed Central

    YANG, PING; LIU, YA'AN; AHMED, NISAR; ULLAH, SHAKEEB; LIU, YI; CHEN, QIUSHENG

    2015-01-01

    Telocytes (TCs) are a specialized type of interstitial cells, characterized by a small cell body and long, thin processes, that have recently been identified in various cavitary and non-cavitary organs of humans and laboratory mammals. Chickens present significant economical and scientific notability; however, ultrastructural identification of TCs remains unclear in birds. The aim of the present study was to describe electron microscopic evidence for the presence of TCs in the chicken gut. The ileum of healthy adult broiler chickens (n=10) was studied by transmission electron microscopy. TCs are characterized by several, long (tens to hundreds of µm) prolongations called telopodes (Tps). Tps, which are below the resolving power of light microscopy, display podomeres (thin segments of ≤0.2 µm) and podoms (dilations accommodating caveolae, mitochondria and endoplasmic reticulum). TCs were observed in every field, but were predominantly located in the myenteric plexus and the lamina propria. Tps frequently establish close spatial relationships with immune cells, blood vessels and nerve endings. On the basis of their distribution and morphology, it was hypothesized that the different locations of TCs may be associated with different roles. PMID:26668636

  1. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis

    PubMed Central

    Battula, Venkata Lokesh; Shi, Yuexi; Evans, Kurt W.; Wang, Rui-Yu; Spaeth, Erika L.; Jacamo, Rodrigo O.; Guerra, Rudy; Sahin, Aysegul A.; Marini, Frank C.; Hortobagyi, Gabriel; Mani, Sendurai A.; Andreeff, Michael

    2012-01-01

    Cancer stem cells (CSCs) are a small subpopulation of cancer cells that have increased resistance to conventional therapies and are capable of establishing metastasis. However, only a few biomarkers of CSCs have been identified. Here, we report that ganglioside GD2 (a glycosphingolipid) identifies a small fraction of cells in human breast cancer cell lines and patient samples that are capable of forming mammospheres and initiating tumors with as few as 10 GD2+ cells. In addition, the majority of GD2+ cells are also CD44hiCD24lo, the previously established CSC-associated cell surface phenotype. Gene expression analysis revealed that GD3 synthase (GD3S) is highly expressed in GD2+ as well as in CD44hiCD24lo cells and that interference with GD3S expression, either by shRNA or using a pharmacological inhibitor, reduced the CSC population and CSC-associated properties. GD3S knockdown completely abrogated tumor formation in vivo. Also, induction of epithelial-mesenchymal transition (EMT) in transformed human mammary epithelial cells (HMLER cells) dramatically increased GD2 as well as GD3S expression in these cells, suggesting a role of EMT in the origin of GD2+ breast CSCs. In summary, we identified GD2 as a new CSC-specific cell surface marker and GD3S as a potential therapeutic target for CSCs, with the possibility of improving survival and cure rates in patients with breast cancer. PMID:22585577

  2. Comparative sperm ultrastructure in Nemertea.

    PubMed

    von Döhren, J; Beckers, P; Vogeler, R; Bartolomaeus, T

    2010-07-01

    Although the monophyly of Nemertea is strongly supported by unique morphological characters and results of molecular phylogenetic studies, their ingroup relationships are largely unresolved. To contribute solving this problem we studied sperm ultrastructure of 12 nemertean species that belong to different subtaxa representing the commonly recognized major monophyletic groups. The study yielded a set of 26 characters with an unexpected variation among species of the same genus (Tubulanus and Procephalothrix species), whereas other species varied in metric values or only one character state (Ramphogordius). In some species, the sperm nucleus has grooves (Zygonemertes virescens, Amphiporus imparispinosus) that may be twisted and give a spiral shape to the sperm head (Paranemertes peregrina, Emplectonema gracile). To make the characters from sperm ultrastructure accessible for further phylogenetic analyses, they were coded in a character matrix. Published data for eight species turned out to be sufficiently detailed to be included. Comparative evaluation of available information on the sperm ultrastructure suggests that subtaxa of Heteronemertea and Hoplonemertea are supported as monophyletic by sperm morphology. However, the data do not provide information on the existing contradictions regarding the internal relationships of "Palaeonemertea." Nevertheless, our study provides evidence that sperm ultrastructure yields numerous potentially informative characters that will be included in upcoming phylogenetic analyses.

  3. The defensive secretion of Carabus lefebvrei Dejean 1826 pupa (Coleoptera, Carabidae): gland ultrastructure and chemical identification.

    PubMed

    Giglio, Anita; Brandmayr, Pietro; Dalpozzo, Renato; Sindona, Giovanni; Tagarelli, Antonio; Talarico, Federica; Brandmayr, Tullia Zetto; Ferrero, Enrico A

    2009-05-01

    This study documents the defensive function of flavored humor secreted by the abdominal glands of Carabus lefebvrei pupae. The morphology and the ultrastructure of these glands were described and the volatile compounds of glands secretion were identified by gas chromatography/mass spectrometry. The ultrastructure analysis shows an acinose complex formed by about 50 clusters. Each cluster has 20 glandular units and the unit-composed of one secretory and one canal cell lying along a duct-belongs to the class 3 cell type of Quennedey (1998). In the cytoplasm, the secretory cell contains abundant rough endoplasmatic reticula, glycogen granules, numerous mitochondria, and many well-developed Golgi complexes producing electron-dense secretory granules. Mitochondria are large, elongated, and often adjoining electronlucent vesicles. The kind and the origin of secretory granules varying in size and density were discussed. The chemical analysis of the gland secretion revealed the presence of a mixture of low molecular weight terpenes, ketones, aldehydes, alcohols, esters, and carboxylic acids. Monoterpenes, especially linalool, were the major products. We supposed that ketones, aldehydes, alcohols, esters, and carboxylic acids have a deterrent function against the predators and monoterpenes provide a prophylaxis function against pathogens.

  4. Echinococcus multilocularis Leuckart, 1863 (Taeniidae): new data on sperm ultrastructure.

    PubMed

    Miquel, Jordi; Świderski, Zdzisław; Azzouz-Maache, Samira; Pétavy, Anne-Françoise

    2016-06-01

    The present study establishes the ultrastructural organisation of the mature spermatozoon of Echinococcus multilocularis, which is essential for future research on the location of specific proteins involved in the sperm development in this species and also in Echinococcus granulosus. Thus, the ultrastructural characteristics of the sperm cell are described by means of transmission electron microscopy. The spermatozoon of E. multilocularis is a filiform cell, which is tapered at both extremities and lacks mitochondria. It exhibits all the characteristics of type VII spermatozoon of tapeworms, namely a single axoneme, crested bodies, spiralled cortical microtubules and nucleus, a periaxonemal sheath and intracytoplasmic walls. Other characteristics observed in the male gamete are the presence of a >900-nm long apical cone in its anterior extremity and only the axoneme in its posterior extremity. The ultrastructural characters of the spermatozoon of E. multilocularis are compared with those of other cestodes studied to date, with particular emphasis on representatives of the genus Taenia. The most interesting finding concerns the presence of two helical crested bodies in E. multilocularis while in the studied species of Taenia, there is only one crested body. Future ultrastructural studies of other species of the genus Echinococcus would be of particular interest in order to confirm whether or not the presence of two crested bodies is a characteristic of this genus. PMID:26960958

  5. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  6. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  7. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.

  8. Repositioning "old" drugs for new causes: identifying new inhibitors of prostate cancer cell migration and invasion.

    PubMed

    Shah, Esha T; Upadhyaya, Akanksha; Philp, Lisa K; Tang, Tiffany; Skalamera, Dubravka; Gunter, Jennifer; Nelson, Colleen C; Williams, Elizabeth D; Hollier, Brett G

    2016-04-01

    The majority of prostate cancer (PCa) deaths occur due to the metastatic spread of tumor cells to distant organs. Currently, there is a lack of effective therapies once tumor cells have spread outside the prostate. It is therefore imperative to rapidly develop therapeutics to inhibit the metastatic spread of tumor cells. Gain of cell motility and invasive properties is the first step of metastasis and by inhibiting motility one can potentially inhibit metastasis. Using the drug repositioning strategy, we developed a cell-based multi-parameter primary screening assay to identify drugs that inhibit the migratory and invasive properties of metastatic PC-3 PCa cells. Following the completion of the primary screening assay, 33 drugs were identified from an FDA approved drug library that either inhibited migration or were cytotoxic to the PC-3 cells. Based on the data obtained from the subsequent validation studies, mitoxantrone hydrochloride, simvastatin, fluvastatin and vandetanib were identified as strong candidates that can inhibit both the migration and invasion of PC-3 cells without significantly affecting cell viability. By employing the drug repositioning strategy instead of a de novo drug discovery and development strategy, the identified drug candidates have the potential to be rapidly translated into the clinic for the management of men with aggressive forms of PCa.

  9. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    PubMed

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-01-01

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application. PMID:27324848

  10. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    PubMed

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-06-21

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application.

  11. Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells

    PubMed Central

    George, Joshy; Uyar, Asli; Young, Kira; Kuffler, Lauren; Waldron-Francis, Kaiden; Marquez, Eladio; Ucar, Duygu; Trowbridge, Jennifer J.

    2016-01-01

    The precise identity of a tumour's cell of origin can influence disease prognosis and outcome. Methods to reliably define tumour cell of origin from primary, bulk tumour cell samples has been a challenge. Here we use a well-defined model of MLL-rearranged acute myeloid leukaemia (AML) to demonstrate that transforming haematopoietic stem cells (HSCs) and multipotent progenitors results in more aggressive AML than transforming committed progenitor cells. Transcriptome profiling reveals a gene expression signature broadly distinguishing stem cell-derived versus progenitor cell-derived AML, including genes involved in immune escape, extravasation and small GTPase signal transduction. However, whole-genome profiling of open chromatin reveals precise and robust biomarkers reflecting each cell of origin tested, from bulk AML tumour cell sampling. We find that bulk AML tumour cells exhibit distinct open chromatin loci that reflect the transformed cell of origin and suggest that open chromatin patterns may be leveraged as prognostic signatures in human AML. PMID:27397025

  12. Expression of TCR-Vβ peptides by murine bone marrow cells does not identify T-cell progenitors

    PubMed Central

    Abbey, Janice L; Karsunky, Holger; Serwold, Thomas; Papathanasiou, Peter; Weissman, Irving L; O’Neill, Helen C

    2015-01-01

    Germline transcription has been described for both immunoglobulin and T-cell receptor (TCR) genes, raising questions of their functional significance during haematopoiesis. Previously, an immature murine T-cell line was shown to bind antibody to TCR-Vβ8.2 in absence of anti-Cβ antibody binding, and an equivalent cell subset was also identified in the mesenteric lymph node. Here, we investigate whether germline transcription and cell surface Vβ8.2 expression could therefore represent a potential marker of T-cell progenitors. Cells with the TCR phenotype of Vβ8.2+Cβ− are found in several lymphoid sites, and among the lineage-negative (Lin−) fraction of hematopoietic progenitors in bone marrow (BM). Cell surface marker analysis of these cells identified subsets reflecting common lymphoid progenitors, common myeloid progenitors and multipotential progenitors. To assess whether the Lin−Vβ8.2+Cβ− BM subset contains hematopoietic progenitors, cells were sorted and adoptively transferred into sub-lethally irradiated recipients. No T-cell or myeloid progeny were detected following introduction of cells via the intrathymic or intravenous routes. However, B-cell development was detected in spleen. This pattern of restricted in vivo reconstitution disputes Lin−Vβ8.2+Cβ− BM cells as committed T-cell progenitors, but raises the possibility of progenitors with potential for B-cell development. PMID:25754612

  13. Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying B | Division of Cancer Prevention

    Cancer.gov

    DESCRIPTION (provided by applicant): Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying Biomarkers for Early Detection and Risk Assessment. This application addresses Program Announcement PA-09-197: Biomarkers for Early Detection of Hematopoietic Malignancies (R01). The overall aim of this project is to identify novel biomarkers that may be used to diagnose and treat patients with Langerhans Cell Histiocytosis (LCH). LCH occurs with similar frequency as other rare malignancies including Hodgkin's lymphoma and AML. |

  14. How methylglyoxal kills bacteria: An ultrastructural study.

    PubMed

    Rabie, Erika; Serem, June Cheptoo; Oberholzer, Hester Magdalena; Gaspar, Anabella Regina Marques; Bester, Megan Jean

    2016-01-01

    Antibacterial activity of honey is due to the presence of methylglyoxal (MGO), H2O2, bee defensin as well as polyphenols. High MGO levels in manuka honey are the main source of antibacterial activity. Manuka honey has been reported to reduce the swarming and swimming motility of Pseudomonas aeruginosa due to de-flagellation. Due to the complexity of honey it is unknown if this effect is directly due to MGO. In this ultrastructural investigation the effects of MGO on the morphology of bacteria and specifically the structure of fimbriae and flagella were investigated. MGO effectively inhibited Gram positive (Bacillus subtilis; MIC 0.8 mM and Staphylococcus aureus; MIC 1.2 mM) and Gram negative (P. aeruginosa; MIC 1.0 mM and Escherichia coli; MIC 1.2 mM) bacteria growth. The ultrastructural effects of 0.5, 1.0 and 2 mM MGO on B. substilis and E. coli morphology was then evaluated. At 0.5 mM MGO, bacteria structure was unaltered. For both bacteria at 1 mM MGO fewer fimbriae were present and the flagella were less or absent. Identified structures appeared stunted and fragile. At 2 mM MGO fimbriae and flagella were absent while the bacteria were rounded with shrinkage and loss of membrane integrity. Antibacterial MGO causes alterations in the structure of bacterial fimbriae and flagella which would limit bacteria adherence and motility. PMID:26986806

  15. Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population.

    PubMed

    Metzger, Todd C; Khan, Imran S; Gardner, James M; Mouchess, Maria L; Johannes, Kellsey P; Krawisz, Anna K; Skrzypczynska, Katarzyna M; Anderson, Mark S

    2013-10-17

    Thymic epithelial cells in the medulla (mTECs) play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs) and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire), a transcriptional activator present in a subset of mTECs characterized by high CD80 and major histocompatibility complex II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire(+) mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire(-) mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates toward the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance.

  16. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

    PubMed Central

    Worthley, Daniel L.; Churchill, Michael; Compton, Jocelyn T.; Tailor, Yagnesh; Rao, Meenakshi; Si, Yiling; Levin, Daniel; Schwartz, Matthew G.; Uygur, Aysu; Hayakawa, Yoku; Gross, Stefanie; Renz, Bernhard W.; Setlik, Wanda; Martinez, Ashley N.; Chen, Xiaowei; Nizami, Saqib; Lee, Heon Goo; Kang, H. Paco; Caldwell, Jon-Michael; Asfaha, Samuel; Westphalen, C. Benedikt; Graham, Trevor; Jin, Guangchun; Nagar, Karan; Wang, Hongshan; Kheirbek, Mazen A.; Kolhe, Alka; Carpenter, Jared; Glaire, Mark; Nair, Abhinav; Renders, Simon; Manieri, Nicholas; Muthupalani, Sureshkumar; Fox, James G.; Reichert, Maximilian; Giraud, Andrew S.; Schwabe, Robert F.; Pradere, Jean-Phillipe; Walton, Katherine; Prakash, Ajay; Gumucio, Deborah; Rustgi, Anil K.; Stappenbeck, Thaddeus S.; Friedman, Richard A.; Gershon, Michael D.; Sims, Peter; Grikscheit, Tracy; Lee, Francis Y.; Karsenty, Gerard; Mukherjee, Siddhartha; Wang, Timothy C.

    2014-01-01

    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs). PMID:25594183

  17. Ultrastructure of internal jugular vein defective valves

    PubMed Central

    Tisato, V; Menegatti, E; Mascoli, F; Gianesini, S; Salvi, F; Secchiero, P

    2015-01-01

    Objectives To study the ultrastructure of intraluminal defects found in the internal jugular vein by using a scanning electron microscopy. Methods Using a scanning electron microscopy, intraluminal septa and/or defective valves blocking the flow in the distal internal jugular vein of seven patients were studied together with the adjacent wall and compared with control specimen. Results The internal jugular veins’ wall showed a significant derangement of the endothelial layer as compared to controls. Surprisingly, no endothelial cells were found in the defective cusps, and the surface of the structure is covered by a fibro-reticular lamina. Conclusions Although the lack of endothelial cells in the internal jugular vein intraluminal obstacles is a further abnormality found in course of chronic cerebrospinal venous insufficiency, our investigation cannot clarify whether this finding is primary or caused by progressive loss of endothelium in relation to altered haemodynamic forces and/or to a past post-thrombotic/inflammatory remodelling. PMID:24972760

  18. Ultrastructure and phylogeny of Ustilago coicis *

    PubMed Central

    Zhang, Jing-ze; Guan, Pei-gang; Tao, Gang; Ojaghian, Mohammad Reza; Hyde, Kevin David

    2013-01-01

    Ustilago coicis causes serious smut on Coix lacryma-jobi in Dayang Town, Jinyun County, Zhejiang Province of China. In this paper, ultrastructural assessments on fungus-host interactions and teliospore development are presented, and molecular phylogenetic analyses have been done to elucidate the phylogenetic placement of the taxon. Hyphal growth within infected tissues was both intracellular and intercellular and on the surface of fungus-host interaction, and the fungal cell wall and the invaginated host plasma membrane were separated by a sheath comprising two distinct layers between the fungal cell wall and the invaginated host plasma membrane. Ornamentation development of teliospore walls was unique as they appeared to be originated from the exosporium. In addition, internal transcribed spacer (ITS) and large subunit (LSU) sequence data showed that U. coicis is closely related to Ustilago trichophora which infects grass species of the genus Echinochloa (Poaceae). PMID:23549851

  19. VMAT2 identified as a regulator of late-stage β-cell differentiation.

    PubMed

    Sakano, Daisuke; Shiraki, Nobuaki; Kikawa, Kazuhide; Yamazoe, Taiji; Kataoka, Masateru; Umeda, Kahoko; Araki, Kimi; Mao, Di; Matsumoto, Shirou; Nakagata, Naomi; Andersson, Olov; Stainier, Didier; Endo, Fumio; Kume, Kazuhiko; Uesugi, Motonari; Kume, Shoen

    2014-02-01

    Cell replacement therapy for diabetes mellitus requires cost-effective generation of high-quality, insulin-producing, pancreatic β cells from pluripotent stem cells. Development of this technique has been hampered by a lack of knowledge of the molecular mechanisms underlying β-cell differentiation. The present study identified reserpine and tetrabenazine (TBZ), both vesicular monoamine transporter 2 (VMAT2) inhibitors, as promoters of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Neurog3 (referred to henceforth as Ngn3)-positive endocrine precursors. VMAT2-controlled monoamines, such as dopamine, histamine and serotonin, negatively regulated β-cell differentiation. Reserpine or TBZ acted additively with dibutyryl adenosine 3',5'-cyclic AMP, a cell-permeable cAMP analog, to potentiate differentiation of embryonic stem (ES) cells into β cells that exhibited glucose-stimulated insulin secretion. When ES cell-derived β cells were transplanted into AKITA diabetic mice, the cells reversed hyperglycemia. Our protocol provides a basis for the understanding of β-cell differentiation and its application to a cost-effective production of functional β cells for cell therapy.

  20. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography

    PubMed Central

    Sherman, Shachar; Kirchenbuechler, David; Nachmias, Dikla; Tamir, Adi; Werner, Stephan; Elbaum, Michael; Elia, Natalie

    2016-01-01

    Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission. PMID:27282220

  1. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography.

    PubMed

    Sherman, Shachar; Kirchenbuechler, David; Nachmias, Dikla; Tamir, Adi; Werner, Stephan; Elbaum, Michael; Elia, Natalie

    2016-01-01

    Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission. PMID:27282220

  2. Standard melanoma-associated markers do not identify the MM127 metastatic melanoma cell line

    PubMed Central

    Haridas, Parvathi; McGovern, Jacqui A.; Kashyap, Abhishek S.; McElwain, D. L. Sean; Simpson, Matthew J.

    2016-01-01

    Reliable identification of different melanoma cell lines is important for many aspects of melanoma research. Common markers used to identify melanoma cell lines include: S100; HMB-45; and Melan-A. We explore the expression of these three markers in four different melanoma cell lines: WM35; WM793; SK-MEL-28; and MM127. The expression of these markers is examined at both the mRNA and protein level. Our results show that the metastatic cell line, MM127, cannot be detected using any of the commonly used melanoma-associated markers. This implies that it would be very difficult to identify this particular cell line in a heterogeneous sample, and as a result this cell line should be used with care. PMID:27087056

  3. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate

    PubMed Central

    Kendrick, Howard; Regan, Joseph L; Magnay, Fiona-Ann; Grigoriadis, Anita; Mitsopoulos, Costas; Zvelebil, Marketa; Smalley, Matthew J

    2008-01-01

    Background Understanding the molecular control of cell lineages and fate determination in complex tissues is key to not only understanding the developmental biology and cellular homeostasis of such tissues but also for our understanding and interpretation of the molecular pathology of diseases such as cancer. The prerequisite for such an understanding is detailed knowledge of the cell types that make up such tissues, including their comprehensive molecular characterisation. In the mammary epithelium, the bulk of the tissue is composed of three cell lineages, namely the basal/myoepithelial, luminal epithelial estrogen receptor positive and luminal epithelial estrogen receptor negative cells. However, a detailed molecular characterisation of the transcriptomic differences between these three populations has not been carried out. Results A whole transcriptome analysis of basal/myoepithelial cells, luminal estrogen receptor negative cells and luminal estrogen receptor positive cells isolated from the virgin mouse mammary epithelium identified 861, 326 and 488 genes as highly differentially expressed in the three cell types, respectively. Network analysis of the transcriptomic data identified a subpopulation of luminal estrogen receptor negative cells with a novel potential role as non-professional immune cells. Analysis of the data for potential paracrine interacting factors showed that the basal/myoepithelial cells, remarkably, expressed over twice as many ligands and cell surface receptors as the other two populations combined. A number of transcriptional regulators were also identified that were differentially expressed between the cell lineages. One of these, Sox6, was specifically expressed in luminal estrogen receptor negative cells and functional assays confirmed that it maintained mammary epithelial cells in a differentiated luminal cell lineage. Conclusion The mouse mammary epithelium is composed of three main cell types with distinct gene expression patterns

  4. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L.

    PubMed

    Gulzar, Aasifa; Siddiqui, M B; Bi, Shazia

    2016-09-01

    The allelopathic potential of leaf aqueous extract (LAE) of Calotropis procera on growth behavior, ultrastructural changes on Cassia sophera L., and cytological changes on Allium cepa L. was investigated. LAE at different concentrations (0.5, 1, 2, and 4 %) significantly reduced the root length, shoot length, and dry biomass of C. sophera. Besides, the ultrastructural changes (through scanning electron microscopy, SEM) induced in epidermal cells of 15-day-old seedlings of Cassia leaf were also noticed. The changes induced were shrinking and contraction of epidermal cells along with the formation of major grooves, canals, and cyst-like structures. The treated samples of epidermal cells no longer seem to be smooth as compared to control. LAE at different concentrations induces chromosomal aberrations and variation in shape of the interphase and prophase nucleus in A. cepa root tip cells when compared with control groups. The mitotic index in treated onion root tips decreased with increasing concentrations of the extracts. The most frequent aberrations were despiralization at prophase with the formation of micronuclei, sticky anaphase with bridges, sticky telophase, C-metaphase, etc. The results also show the induction of ghost cells, cells with membrane damage, and cells with heterochromatic nuclei by extract treatment. Upon HPLC analysis, nine phenolic acids (caffeic acid, gentisic acid, catechol, gallic acid, syringic acid, ellagic acid, resorcinol, p-coumaric acid, and p-hydroxy benzoic acid) were identified. Thus, the phenolic acids are mainly responsible for the allelopathic behavior of C. procera. PMID:26387115

  5. Laser-guidance based cell detection for identifying malignant cancerous cells without any fluorescent markers.

    PubMed

    Ma, Zhen; Gao, Bruce Z

    2011-09-01

    Laser guidance technique employs the optical forces generated from a focused Gaussian laser beam incident on a biological cell to trap and guide the cell along the laser propagation direction. The optical force, which determines the guidance speed, is dependent on the cellular characteristics of the cell being guided, such as size, shape, composition and morphology. Different cell populations or subpopulations can be detected without any fluorescent markers by measuring their guidance speeds. We found that cell guidance speeds were sensitive enough to monitor the subtle changes during the progression of mouse fibroblast cells from normal to cancerous phenotype. The results also demonstrated that this technique can effectively distinguish mouse mammary cancerous cells with different metastatic competence. Laser guidance technique can be used as a label-free cell detection method for basic cell biological investigation and cancer diagnosis.

  6. Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming gene

    NASA Astrophysics Data System (ADS)

    Lang, Alex; Li, Hu; Collins, James; Mehta, Pankaj

    2013-03-01

    A common metaphor for describing development is a rugged epigenetic landscape where cell fates are represented as attracting valleys resulting from a complex regulatory network. Here, we introduce a framework for explicitly constructing epigenetic landscapes that combines genomic data with techniques from physics, specifically Hopfield neural networks. Each cell fate is a dynamic attractor, yet cells can change fate in response to external signals. Our model suggests that partially reprogrammed cells (cells found in reprogramming experiments but not in vivo) are a natural consequence of high-dimensional landscapes and predicts that partially reprogrammed cells should be hybrids that coexpress genes from multiple cell fates. We verify this prediction by reanalyzing existing data sets. Our model reproduces known reprogramming protocols and identifies candidate transcription factors for reprogramming to novel cell fates, suggesting epigenetic landscapes are a powerful paradigm for understanding cellular identity.

  7. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells.

    PubMed

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C; Hanson, Buck T; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M; Fowler, Patrick W; Huang, Wei E; Wagner, Michael

    2015-01-13

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.

  8. The anti-human CD21 antibody, BU33, identifies equine B cells.

    PubMed

    Mayall, S; Siedek, E; Hamblin, A S

    2001-01-01

    The number of antibodies for identifying equine B cells is small and the number that react with well-defined epitopes even smaller. The monoclonal antibody, BU33, which is directed against human CD21 (Complement Receptor 2; CR2) was shown to identify (1) follicular lymphocytes in the lymph nodes and spleen of three horses, and (2) a mean of 18 +/- 6% (SEM) of peripheral blood lymphocytes from 10 horses. These findings indicate that the antibody identifies equine B cells and possibly equine CR2 or a related molecule. This study adds to the reagents available for equine research and diagnostic pathology.

  9. Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset

    NASA Astrophysics Data System (ADS)

    Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.

    2014-03-01

    Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.

  10. Ultrastructure of novel thrombocytes in the dog snapper Lutjanus jocu.

    PubMed

    Azevedo, C; Matos, P; Rocha, S; Matos, E; Oliveira, E; Al-Quraishy, S; Casal, G

    2014-04-01

    Myxosporean cysts containing spores of Henneguya sp. were observed in the gills of the dog snapper Lutjanus jocu. Adjacent to the cysts were capillaries, allowing observation of peripheral blood cells. Numerous white blood cells displaying uncommon cytoplasmic projections were observed amongst the erythrocytes. Their morphology allowed them to be identified as thrombocytes (TCs). Each TC displayed 18-26 cytoplasmic projections, most of which were in close proximity to erythrocytes. At their apical end, each cytoplasmic projection presented an ellipsoidal vacuole (c. 0·6 µm × 0·3 µm) from which a secretory tubule, 0·3-0·4 µm long and c. 120 nm in total diameter, extended towards the periphery of the TC plasmalemma and fused with the cellular membrane. From this opening, contents of vacuoles were apparently released into the lumen of the capillaries. Other vacuoles with similar features, and containing an electron-lucent matrix, were observed in the cytoplasm of the TC. This is the first description of fish TC with these ultrastructural features and organization, which suggest that they perform a secretory function.

  11. A loss-of-function genetic screening identifies novel mediators of thyroid cancer cell viability.

    PubMed

    Cantisani, Maria Carmela; Parascandolo, Alessia; Perälä, Merja; Allocca, Chiara; Fey, Vidal; Sahlberg, Niko; Merolla, Francesco; Basolo, Fulvio; Laukkanen, Mikko O; Kallioniemi, Olli Pekka; Santoro, Massimo; Castellone, Maria Domenica

    2016-05-10

    RET, BRAF and other protein kinases have been identified as major molecular players in thyroid cancer. To identify novel kinases required for the viability of thyroid carcinoma cells, we performed a RNA interference screening in the RET/PTC1(CCDC6-RET)-positive papillary thyroid cancer cell line TPC1 using a library of synthetic small interfering RNAs (siRNAs) targeting the human kinome and related proteins. We identified 14 hits whose silencing was able to significantly reduce the viability and the proliferation of TPC1 cells; most of them were active also in BRAF-mutant BCPAP (papillary thyroid cancer) and 8505C (anaplastic thyroid cancer) and in RAS-mutant CAL62 (anaplastic thyroid cancer) cells. These included members of EPH receptor tyrosine kinase family as well as SRC and MAPK (mitogen activated protein kinases) families. Importantly, silencing of the identified hits did not affect significantly the viability of Nthy-ori 3-1 (hereafter referred to as NTHY) cells derived from normal thyroid tissue, suggesting cancer cell specificity. The identified proteins are worth exploring as potential novel druggable thyroid cancer targets. PMID:27058903

  12. A loss-of-function genetic screening identifies novel mediators of thyroid cancer cell viability

    PubMed Central

    Cantisani, Maria Carmela; Parascandolo, Alessia; Perälä, Merja; Allocca, Chiara; Fey, Vidal; Sahlberg, Niko; Merolla, Francesco; Basolo, Fulvio; Laukkanen, Mikko O.; Kallioniemi, Olli Pekka; Santoro, Massimo; Castellone, Maria Domenica

    2016-01-01

    RET, BRAF and other protein kinases have been identified as major molecular players in thyroid cancer. To identify novel kinases required for the viability of thyroid carcinoma cells, we performed a RNA interference screening in the RET/PTC1(CCDC6-RET)-positive papillary thyroid cancer cell line TPC1 using a library of synthetic small interfering RNAs (siRNAs) targeting the human kinome and related proteins. We identified 14 hits whose silencing was able to significantly reduce the viability and the proliferation of TPC1 cells; most of them were active also in BRAF-mutant BCPAP (papillary thyroid cancer) and 8505C (anaplastic thyroid cancer) and in RAS-mutant CAL62 (anaplastic thyroid cancer) cells. These included members of EPH receptor tyrosine kinase family as well as SRC and MAPK (mitogen activated protein kinases) families. Importantly, silencing of the identified hits did not affect significantly the viability of Nthy-ori 3-1 (hereafter referred to as NTHY) cells derived from normal thyroid tissue, suggesting cancer cell specificity. The identified proteins are worth exploring as potential novel druggable thyroid cancer targets. PMID:27058903

  13. The Effect of Spaceflight on the Ultrastructure of the Cerebellum

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.; Martinelli, Giorgio P.

    2003-01-01

    In weightlessness, astronauts and cosmonauts may experience postural illusions as well as motion sickness symptoms known as the space adaptation syndrome. Upon return to Earth, they have irregularities in posture and balance. The adaptation to microgravity and subsequent re-adaptation to Earth occurs over several days. At the cellular level, a process called neuronal plasticity may mediate this adaptation. The term plasticity refers to the flexibility and modifiability in the architecture and functions of the nervous system. In fact, plastic changes are thought to underlie not just behavioral adaptation, but also the more generalized phenomena of learning and memory. The goal of this experiment was to identify some of the structural alterations that occur in the rat brain during the sensory and motor adaptation to microgravity. One brain region where plasticity has been studied extensively is the cerebellar cortex-a structure thought to be critical for motor control, coordination, the timing of movements, and, most relevant to the present experiment, motor learning. Also, there are direct as well as indirect connections between projections from the gravity-sensing otolith organs and several subregions of the cerebellum. We tested the hypothesis that alterations in the ultrastructural (the structure within the cell) architecture of rat cerebellar cortex occur during the early period of adaptation to microgravity, as the cerebellum adapts to the absence of the usual gravitational inputs. The results show ultrastructural evidence for neuronal plasticity in the central nervous system of adult rats after 24 hours of spaceflight. Qualitative studies conducted on tissue from the cerebellar cortex (specifically, the nodulus of the cerebellum) indicate that ultrastructural signs of plasticity are present in the cerebellar zones that receive input from the gravity-sensing organs in the inner ear (the otoliths). These changes are not observed in this region in cagematched

  14. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    PubMed

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-01

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  15. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells

    PubMed Central

    Sharma, Prabhat K; Wong, Emily B; Napier, Ruth J; Bishai, William R; Ndung'u, Thumbi; Kasprowicz, Victoria O; Lewinsohn, Deborah A; Lewinsohn, David M; Gold, Marielle C

    2015-01-01

    Mucosa-associated invariant T (MAIT) cells express the semi-invariant T-cell receptor TRAV1–2 and detect a range of bacteria and fungi through the MHC-like molecule MR1. However, knowledge of the function and phenotype of bacteria-reactive MR1-restricted TRAV1–2+ MAIT cells from human blood is limited. We broadly characterized the function of MR1-restricted MAIT cells in response to bacteria-infected targets and defined a phenotypic panel to identify these cells in the circulation. We demonstrated that bacteria-reactive MR1-restricted T cells shared effector functions of cytolytic effector CD8+ T cells. By analysing an extensive panel of phenotypic markers, we determined that CD26 and CD161 were most strongly associated with these T cells. Using FACS to sort phenotypically defined CD8+ subsets we demonstrated that high expression of CD26 on CD8+ TRAV1–2+ cells identified with high specificity and sensitivity, bacteria-reactive MR1-restricted T cells from human blood. CD161hi was also specific for but lacked sensitivity in identifying all bacteria-reactive MR1-restricted T cells, some of which were CD161dim. Using cell surface expression of CD8, TRAV1–2, and CD26hi in the absence of stimulation we confirm that bacteria-reactive T cells are lacking in the blood of individuals with active tuberculosis and are restored in the blood of individuals undergoing treatment for tuberculosis. PMID:25752900

  16. Lectins Identify Glycan Biomarkers on Glioblastoma-Derived Cancer Stem Cells

    PubMed Central

    Tucker-Burden, Carol; Chappa, Prasanthi; Krishnamoorthy, Malini; Gerwe, Brian A.; Scharer, Christopher D.; Heimburg-Molinaro, Jamie; Harris, Wayne; Usta, Sümeyra Naz; Eilertson, Carmen D.; Hadjipanayis, Constantinos G.; Stice, Steven L.; Brat, Daniel J.

    2012-01-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. Despite aggressive therapy with surgery, radiotherapy, and chemotherapy, nearly all patients succumb to disease within 2 years. Several studies have supported the presence of stem-like cells in brain tumor cultures that are CD133-positive, are capable of self-renewal, and give rise to all cell types found within the tumor, potentially perpetuating growth. CD133 is a widely accepted marker for glioma-derived cancer stem cells; however, its reliability has been questioned, creating a need for other identifiers of this biologically important subpopulation. We used a panel of 20 lectins to identify differences in glycan expression found in the glycocalyx of undifferentiated glioma-derived stem cells and differentiated cells that arise from them. Fluorescently labeled lectins that specifically recognize α-N-acetylgalactosamine (GalNAc) and α-N-acetylglucosamine (GlcNAc) differentially bound to the cell surface based on the state of cellular differentiation. GalNAc and GlcNAc were highly expressed on the surface of undifferentiated cells and showed markedly reduced expression over a 12-day duration of differentiation. Additionally, the GalNAc-recognizing lectin Dolichos biflorus agglutinin was capable of specifically selecting and sorting glioma-derived stem cell populations from an unsorted tumor stock and this subpopulation had proliferative properties similar to CD133+ cells in vitro and also had tumor-forming capability in vivo. Our preliminary results on a single cerebellar GBM suggest that GalNAc and GlcNAc are novel biomarkers for identifying glioma-derived stem cells and can be used to isolate cancer stem cells from unsorted cell populations, thereby creating new cell lines for research or clinical testing. PMID:22435486

  17. DIFFERENTIAL EXPRESSION IN CLEAR CELL RENAL CELL CARCINOMA IDENTIFIED BY GENE EXPRESSION PROFILING

    PubMed Central

    Lane, Brian R.; Li, Jianbo; Zhou, Ming; Babineau, Denise; Faber, Pieter; Novick, Andrew C.; Williams, Bryan R.G.

    2008-01-01

    Objective Gene expression profiling has been shown to provide prognostic information regarding patients with a solitary, sporadic RCC. There is no reliable way to differentiate synchronous renal metastases from bilateral primary tumors in patients with bilateral RCC. We present data using a custom kidney cancer cDNA array that can predict outcomes in patients with unilateral and bilateral RCC. Methods Fresh frozen tissue from 38 clear cell RCC (cRCC) was analyzed using a cancer cDNA array containing 3966 genes relevant to cancer or kidney development. Median follow-up was 5.3 years; cancer had recurred in 12 (43%) patients and 11 (39%) patients were deceased at last follow-up. Results Using a training dataset of 8 tumors, a 44-gene expression profile (GEP) distinguishing aggressive and indolent cRCC was identified. Of 29 single cRCC, 16 were predicted to be indolent and 13 aggressive by GEP. Recurrence-free survival at 5 years was 68% and 42% in these 2 groups (P=.032). cRCC classified as indolent or aggressive according to SSIGN score had 5-year recurrence-free survival of 78% and 42%, respectively (P=.021). In a cox proportional hazards analysis, GEP was not an independent predictor of recurrence-free survival after accounting for SSIGN score. GEP classification correlated with cancer-specific survival at 5 years in 4 of 4 patients with metachronous cRCC, but only 2 of 4 patients with bilateral synchronous cRCC. Conclusions GEP using a kidney cancer-relevant cDNA array can differentiate between aggressive and indolent cRCC. GEP results may be most useful in unilateral cRCC when results are discordant with predictions of tumor behavior based on standard clinicopathologic features. In addition, GEP can provide prognostic information that may help characterize tumors of unknown clinical stage, such as bilateral metachronous cRCC. PMID:19095258

  18. A validated gene regulatory network and GWAS identifies early regulators of T cell-associated diseases.

    PubMed

    Gustafsson, Mika; Gawel, Danuta R; Alfredsson, Lars; Baranzini, Sergio; Björkander, Janne; Blomgran, Robert; Hellberg, Sandra; Eklund, Daniel; Ernerudh, Jan; Kockum, Ingrid; Konstantinell, Aelita; Lahesmaa, Riita; Lentini, Antonio; Liljenström, H Robert I; Mattson, Lina; Matussek, Andreas; Mellergård, Johan; Mendez, Melissa; Olsson, Tomas; Pujana, Miguel A; Rasool, Omid; Serra-Musach, Jordi; Stenmarker, Margaretha; Tripathi, Subhash; Viitala, Miro; Wang, Hui; Zhang, Huan; Nestor, Colm E; Benson, Mikael

    2015-11-11

    Early regulators of disease may increase understanding of disease mechanisms and serve as markers for presymptomatic diagnosis and treatment. However, early regulators are difficult to identify because patients generally present after they are symptomatic. We hypothesized that early regulators of T cell-associated diseases could be found by identifying upstream transcription factors (TFs) in T cell differentiation and by prioritizing hub TFs that were enriched for disease-associated polymorphisms. A gene regulatory network (GRN) was constructed by time series profiling of the transcriptomes and methylomes of human CD4(+) T cells during in vitro differentiation into four helper T cell lineages, in combination with sequence-based TF binding predictions. The TFs GATA3, MAF, and MYB were identified as early regulators and validated by ChIP-seq (chromatin immunoprecipitation sequencing) and small interfering RNA knockdowns. Differential mRNA expression of the TFs and their targets in T cell-associated diseases supports their clinical relevance. To directly test if the TFs were altered early in disease, T cells from patients with two T cell-mediated diseases, multiple sclerosis and seasonal allergic rhinitis, were analyzed. Strikingly, the TFs were differentially expressed during asymptomatic stages of both diseases, whereas their targets showed altered expression during symptomatic stages. This analytical strategy to identify early regulators of disease by combining GRNs with genome-wide association studies may be generally applicable for functional and clinical studies of early disease development. PMID:26560356

  19. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion

    PubMed Central

    Giordano, Marilyn; Henin, Coralie; Maurizio, Julien; Imbratta, Claire; Bourdely, Pierre; Buferne, Michel; Baitsch, Lukas; Vanhille, Laurent; Sieweke, Michael H; Speiser, Daniel E; Auphan-Anezin, Nathalie; Schmitt-Verhulst, Anne-Marie; Verdeil, Grégory

    2015-01-01

    T cells infiltrating neoplasms express surface molecules typical of chronically virus-stimulated T cells, often termed “exhausted” T cells. We compared the transcriptome of “exhausted” CD8 T cells infiltrating autochthonous melanomas to those of naïve and acutely stimulated CD8 T cells. Despite strong similarities between transcriptional signatures of tumor- and virus-induced exhausted CD8 T cells, notable differences appeared. Among transcriptional regulators, Nr4a2 and Maf were highly overexpressed in tumor-exhausted T cells and significantly upregulated in CD8 T cells from human melanoma metastases. Transduction of murine tumor-specific CD8 T cells to express Maf partially reproduced the transcriptional program associated with tumor-induced exhaustion. Upon adoptive transfer, the transduced cells showed normal homeostasis but failed to accumulate in tumor-bearing hosts and developed defective anti-tumor effector responses. We further identified TGFβ and IL-6 as main inducers of Maf expression in CD8 T cells and showed that Maf-deleted tumor-specific CD8 T cells were much more potent to restrain tumor growth in vivo. Therefore, the melanoma microenvironment contributes to skewing of CD8 T cell differentiation programs, in part by TGFβ/IL-6-mediated induction of Maf. PMID:26139534

  20. Morphologic and Gene Expression Criteria for Identifying Human Induced Pluripotent Stem Cells

    PubMed Central

    Wakao, Shohei; Kitada, Masaaki; Kuroda, Yasumasa; Ogura, Fumitaka; Murakami, Toru; Niwa, Akira; Dezawa, Mari

    2012-01-01

    Induced pluripotent stem (iPS) cells can be generated from somatic cells by the forced expression of four factors, Oct3/4, Sox2, Klf4, and c-Myc. While a great variety of colonies grow during induction, only a few of them develop into iPS cells. Researchers currently use visual observation to identify iPS cells and select colonies resembling embryonic stem (ES) cells, and there are no established objective criteria. Therefore, we exhaustively analyzed the morphology and gene expression of all the colonies generated from human fibroblasts after transfection with four retroviral vectors encoding individual factors (192 and 203 colonies in two experiments) and with a single polycistronic retroviral vector encoding all four factors (199 and 192 colonies in two experiments). Here we demonstrate that the morphologic features of emerged colonies can be categorized based on six parameters, and all generated colonies that could be passaged were classified into seven subtypes in colonies transfected with four retroviral vectors and six subtypes with a single polycistronic retroviral vector, both including iPS cell colonies. The essential qualifications for iPS cells were: cells with a single nucleolus; nucleus to nucleolus (N/Nls) ratio ∼2.19: cell size ∼43.5 µm2: a nucleus to cytoplasm (N/C) ratio ∼0.87: cell density in a colony ∼5900 cells/mm2: and number of cell layer single. Most importantly, gene expression analysis revealed for the first time that endogenous Sox2 and Cdx2 were expressed specifically in iPS cells, whereas Oct3/4 and Nanog, popularly used markers for identifying iPS cells, are expressed in colonies other than iPS cells, suggesting that Sox2 and Cdx2 are reliable markers for identifying iPS cells. Our findings indicate that morphologic parameters and the expression of endogenous Sox2 and Cdx2 can be used to accurately identify iPS cells. PMID:23272044

  1. Morphologic and gene expression criteria for identifying human induced pluripotent stem cells.

    PubMed

    Wakao, Shohei; Kitada, Masaaki; Kuroda, Yasumasa; Ogura, Fumitaka; Murakami, Toru; Niwa, Akira; Dezawa, Mari

    2012-01-01

    Induced pluripotent stem (iPS) cells can be generated from somatic cells by the forced expression of four factors, Oct3/4, Sox2, Klf4, and c-Myc. While a great variety of colonies grow during induction, only a few of them develop into iPS cells. Researchers currently use visual observation to identify iPS cells and select colonies resembling embryonic stem (ES) cells, and there are no established objective criteria. Therefore, we exhaustively analyzed the morphology and gene expression of all the colonies generated from human fibroblasts after transfection with four retroviral vectors encoding individual factors (192 and 203 colonies in two experiments) and with a single polycistronic retroviral vector encoding all four factors (199 and 192 colonies in two experiments). Here we demonstrate that the morphologic features of emerged colonies can be categorized based on six parameters, and all generated colonies that could be passaged were classified into seven subtypes in colonies transfected with four retroviral vectors and six subtypes with a single polycistronic retroviral vector, both including iPS cell colonies. The essential qualifications for iPS cells were: cells with a single nucleolus; nucleus to nucleolus (N/Nls) ratio ∼2.19: cell size ∼43.5 µm(2): a nucleus to cytoplasm (N/C) ratio ∼0.87: cell density in a colony ∼5900 cells/mm(2): and number of cell layer single. Most importantly, gene expression analysis revealed for the first time that endogenous Sox2 and Cdx2 were expressed specifically in iPS cells, whereas Oct3/4 and Nanog, popularly used markers for identifying iPS cells, are expressed in colonies other than iPS cells, suggesting that Sox2 and Cdx2 are reliable markers for identifying iPS cells. Our findings indicate that morphologic parameters and the expression of endogenous Sox2 and Cdx2 can be used to accurately identify iPS cells. PMID:23272044

  2. Muscle satellite cell-specific genes identified by genetic profiling of MyoD-deficient myogenic cell.

    PubMed

    Seale, Patrick; Ishibashi, Jeff; Holterman, Chet; Rudnicki, Michael A

    2004-11-15

    Satellite cells are committed myogenic progenitors that give rise to proliferating myoblasts during postnatal growth and repair of skeletal muscle. To identify genes expressed at different developmental stages in the satellite cell myogenic program, representational difference analysis of cDNAs was employed to identify more than 50 unique mRNAs expressed in wild-type myoblasts and MyoD-/- myogenic cells. Novel expression patterns for several genes, such as Pax7, Asb5, IgSF4, and Hoxc10, were identified that were expressed in both quiescent and activated satellite cells. Several previously uncharacterized genes that represent putative MyoD target genes were also identified, including Pw1, Dapk2, Sytl2, and NLRR1. Importantly, many genes such as IgSF4, Neuritin, and Klra18 that were expressed exclusively in MyoD-/- myoblasts were also expressed by satellite cells in undamaged muscle in vivo but were not expressed by primary myoblasts. These data are consistent with a biological role for activated satellite cells that induce Myf5 but not MyoD. Lastly, additional endothelial and hematopoietic markers were identified supporting a nonsomitic developmental origin of the satellite cell myogenic lineage. PMID:15501219

  3. Comparison of the effects of Origanum vulgare with LHRH-A2 and 17β-estradiol on the ultrastructure of gonadotroph cells and ovarian oogenesis in immature Trichogaster trichopterus.

    PubMed

    Bagheri Ziari, Sedigheh; Naji, Tahereh; Hosseinzadeh Sahafi, Homayoun

    2015-10-01

    Origanum vulgare is a plant of the mint family that contains phytoestrogens. This study compared the effects of O. vulgare, LHRH-A2, and 17β-estradiol on the ultrastructure of gonadotroph cells and ovarian oogenesis in immature Trichogaster trichopterus. Fish (5.1±0.032cm and 2.1±0.043g, n=150) were randomly divided into four treatment groups (three hormonal treatments and control) and treated intramuscularly at four levels with 17β-estradiol or O. vulgare at 10, 20, 30 and 50mg/kg body weight and with LHRH-A2 at 0.001, 0.002, 0.003, and 0.005mg/kg body weight. There were three control treatments: saline, ethanol and placebo. Fish were kept in 15 tanks, with 10 fish per tank, injected a total of seven doses over 13 days. Gonadosomatic index (GSI) and oocyte diameter were lower (P≤0.05) in the control than in the three hormonal treatments. The highest GSI and oocyte diameter responses were observed in fish treated with 17β-estradiol (2.76±0.23%, 149.8±15.43mm) followed by O. vulgare (1.86±0.18%, 104.3±11.5mm) and LHRH-A2 (1.52±0.12%, 91.75±9.02mm) (P≤0.05). Moreover, there was a significant effect of dose level within all the hormonal treatments (P≤0.05). The effect of treatment on the length and weight was likely GSI. Ovarian tissue results showed faster oogenesis of oocytes in fish treated with O. vulgare, after 17β-estradiol. Ultrastructure of gonadotroph cells demonstrated less stimulation by O. vulgare than by 17β-estradiol and LHRH-A2. This study suggests that compared with the two hormonal treatments, O. vulgare dose-dependently affects ovarian oogenesis and gonadotroph cells. PMID:26324391

  4. Comparison of the effects of Origanum vulgare with LHRH-A2 and 17β-estradiol on the ultrastructure of gonadotroph cells and ovarian oogenesis in immature Trichogaster trichopterus.

    PubMed

    Bagheri Ziari, Sedigheh; Naji, Tahereh; Hosseinzadeh Sahafi, Homayoun

    2015-10-01

    Origanum vulgare is a plant of the mint family that contains phytoestrogens. This study compared the effects of O. vulgare, LHRH-A2, and 17β-estradiol on the ultrastructure of gonadotroph cells and ovarian oogenesis in immature Trichogaster trichopterus. Fish (5.1±0.032cm and 2.1±0.043g, n=150) were randomly divided into four treatment groups (three hormonal treatments and control) and treated intramuscularly at four levels with 17β-estradiol or O. vulgare at 10, 20, 30 and 50mg/kg body weight and with LHRH-A2 at 0.001, 0.002, 0.003, and 0.005mg/kg body weight. There were three control treatments: saline, ethanol and placebo. Fish were kept in 15 tanks, with 10 fish per tank, injected a total of seven doses over 13 days. Gonadosomatic index (GSI) and oocyte diameter were lower (P≤0.05) in the control than in the three hormonal treatments. The highest GSI and oocyte diameter responses were observed in fish treated with 17β-estradiol (2.76±0.23%, 149.8±15.43mm) followed by O. vulgare (1.86±0.18%, 104.3±11.5mm) and LHRH-A2 (1.52±0.12%, 91.75±9.02mm) (P≤0.05). Moreover, there was a significant effect of dose level within all the hormonal treatments (P≤0.05). The effect of treatment on the length and weight was likely GSI. Ovarian tissue results showed faster oogenesis of oocytes in fish treated with O. vulgare, after 17β-estradiol. Ultrastructure of gonadotroph cells demonstrated less stimulation by O. vulgare than by 17β-estradiol and LHRH-A2. This study suggests that compared with the two hormonal treatments, O. vulgare dose-dependently affects ovarian oogenesis and gonadotroph cells.

  5. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL.

    PubMed

    Kirsch, Ilan R; Watanabe, Rei; O'Malley, John T; Williamson, David W; Scott, Laura-Louise; Elco, Christopher P; Teague, Jessica E; Gehad, Ahmed; Lowry, Elizabeth L; LeBoeuf, Nicole R; Krueger, James G; Robins, Harlan S; Kupper, Thomas S; Clark, Rachael A

    2015-10-01

    Early diagnosis of cutaneous T cell lymphoma (CTCL) is difficult and takes on average 6 years after presentation, in part because the clinical appearance and histopathology of CTCL can resemble that of benign inflammatory skin diseases. Detection of a malignant T cell clone is critical in making the diagnosis of CTCL, but the T cell receptor γ (TCRγ) polymerase chain reaction (PCR) analysis in current clinical use detects clones in only a subset of patients. High-throughput TCR sequencing (HTS) detected T cell clones in 46 of 46 CTCL patients, was more sensitive and specific than TCRγ PCR, and successfully discriminated CTCL from benign inflammatory diseases. HTS also accurately assessed responses to therapy and facilitated diagnosis of disease recurrence. In patients with new skin lesions and no involvement of blood by flow cytometry, HTS demonstrated hematogenous spread of small numbers of malignant T cells. Analysis of CTCL TCRγ genes demonstrated that CTCL is a malignancy derived from mature T cells. There was a maximal T cell density in skin in benign inflammatory diseases that was exceeded in CTCL, suggesting that a niche of finite size may exist for benign T cells in skin. Last, immunostaining demonstrated that the malignant T cell clones in mycosis fungoides and leukemic CTCL localized to different anatomic compartments in the skin. In summary, HTS accurately diagnosed CTCL in all stages, discriminated CTCL from benign inflammatory skin diseases, and provided insights into the cell of origin and location of malignant CTCL cells in skin. PMID:26446955

  6. Voltage-gated inward currents of morphologically identified cells of the frog taste disc.

    PubMed

    Suwabe, Takeshi; Kitada, Yasuyuki

    2004-01-01

    We used the patch clamp technique to record from taste cells in vertical slices of the bullfrog (Rana catesbeiana) taste disc. Cell types were identified by staining with Lucifer yellow in a pipette after recording their electrophysiological properties. Cells could be divided into the following three groups: type Ib (wing) cells with sheet-like apical processes, type II (rod) cells with single thick rod-like apical processes and type III (rod) cells with thin rod-like apical processes. No dye-coupling was seen either between cells of the same type or between cells of different types. We focused on the voltage-gated inward currents of the three types of cells. Type Ib and type II cells exhibited tetrodotoxin (TTX)-sensitive voltage-gated Na+ currents. Surprisingly, type III cells showed TTX-resistant voltage-gated Na+ currents and exhibited a lack of TTX-sensitive Na+ currents. TTX-resistant voltage-gated Na+ currents in taste cells are reported for the first time here. The time constant for the inactivating portion of the voltage-gated inward Na+ currents of type III cells was much larger than that of type Ib and type II cells. Therefore, slow inactivation of inward Na+ currents characterizes type III cells. Amplitudes of the maximum peak inward currents of type III cells were smaller than those of type Ib and type II cells. However, the density (pA/pF) of the maximum peak inward currents of type III cells was much higher than that of type Ib cells and close to that of type II cells. No evidence of the presence of voltage-gated Ca2+ channels in frog taste cells has been presented up to now. In this study, voltage-gated Ba2+ currents were observed in type III cells but not in type Ib and type II cells when the bath solution was a standard Ba2+ solution containing 25 mM Ba2+. Voltage-gated Ba2+ currents were blocked by addition of 2 mM CoCl2 to the standard Ba2+ solution, suggesting that type III cells possess the voltage-gated Ca2+ channels and they do classical

  7. Epigenetic Landscapes Explain Partially Reprogrammed Cells and Identify Key Reprogramming Genes

    PubMed Central

    Lang, Alex H.; Li, Hu; Collins, James J.; Mehta, Pankaj

    2014-01-01

    A common metaphor for describing development is a rugged “epigenetic landscape” where cell fates are represented as attracting valleys resulting from a complex regulatory network. Here, we introduce a framework for explicitly constructing epigenetic landscapes that combines genomic data with techniques from spin-glass physics. Each cell fate is a dynamic attractor, yet cells can change fate in response to external signals. Our model suggests that partially reprogrammed cells are a natural consequence of high-dimensional landscapes, and predicts that partially reprogrammed cells should be hybrids that co-express genes from multiple cell fates. We verify this prediction by reanalyzing existing datasets. Our model reproduces known reprogramming protocols and identifies candidate transcription factors for reprogramming to novel cell fates, suggesting epigenetic landscapes are a powerful paradigm for understanding cellular identity. PMID:25122086

  8. Confocal Raman data analysis enables identifying apoptosis of MCF-7 cells caused by anticancer drug paclitaxel

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Middendorp, Elodie; Panayotov, Ivan; Dutilleul, Pierre-Yves Collard; Vegh, Attila-Gergely; Ramakrishnan, Sathish; Gergely, Csilla; Cuisinier, Frederic

    2013-05-01

    Confocal Raman microscopy is a noninvasive, label-free imaging technique used to study apoptosis of live MCF-7 cells. The images are based on Raman spectra of cells components, and their apoptosis is monitored through diffusion of cytochrome c in cytoplasm. K-mean clustering is used to identify mitochondria in cells, and correlation analysis provides the cytochrome c distribution inside the cells. Our results demonstrate that incubation of cells for 3 h with 10 μM of paclitaxel does not induce apoptosis in MCF-7 cells. On the contrary, incubation for 30 min at a higher concentration (100 μM) of paclitaxel induces gradual release of the cytochrome c into the cytoplasm, indicating cell apoptosis via a caspase independent pathway.

  9. Ultrastructural aspects of previtellogenic oocyte growth in hermaphrodite sharpsnout seabream, Diplodus puntazzo (Teleostei, Sparidae).

    PubMed

    Gülsoy, Nagihan; Çolak, Sibel

    2009-06-01

    This paper describes various aspects of previtellogenic oocyte growth in sharpsnout seabream, Diplodus puntazzo , is an important marine culture fish species in the Mediterranean. The ultrastructural characteristics of nuclear morphology, nuclear-cytoplasmic ratio and the starting of the follicle envelope formation were described in detail. These cells do not significantly differ from those of the other teleost species. The ultrastructural aspects provide new information on the reproductive biology of Sparidae. PMID:19584025

  10. Live Imaging, Identifying, and Tracking Single Cells in Complex Populations In Vivo and Ex Vivo

    PubMed Central

    Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Lou, Xinghua; Hadjantonakis, Anna-Katerina

    2014-01-01

    Advances in optical imaging technologies combined with the use of genetically encoded fluorescent proteins have enabled the visualization of stem cells over extensive periods of time in vivo and ex vivo. The generation of genetically encoded fluorescent protein reporters that are fused with subcellularly localized proteins, such as human histone H2B, has made it possible to direct fluorescent protein reporters to specific subcellular structures and identify single cells in complex populations. This facilitates the visualization of cellular behaviors such as division, movement, and apoptosis at a single-cell resolution and, in principle, allows the prospective and retrospective tracking towards determining the lineage of each cell. PMID:23640250

  11. Ultrastructural observations on feeding appendages and gills of Alvinella pompejana (Annelida, Polychaeta)

    NASA Astrophysics Data System (ADS)

    Storch, V.; Gaill, F.

    1986-09-01

    The feeding appendages of Alvinella pompejana obtained from a deep-sea hydrothermal vent environment are described. They are characterized by a ciliated groove, the cells of which have a very distinctive ultrastructure, by groups of bipolar receptor cells and by several kinds of gland cells. Among these, one cell type is in an upside down position suggesting a function completely different from other epidermal secretory cells. The gills differ considerably from the feeding appendages on the basis of their ultrastructure. Their epidermis is very irregular in height; basal infoldings give the blood access to a space coming very near to the external medium. The blood vascular system is open. On the other hand, the gills of Amphicteis gunneri are not effective sites of gas exchange, since their columnar epithelium is underlain with muscle cells. The cells composing the feeding appendages and gills of Alvinella pompejana are characterized by ultrastructurally very different mitochondria.

  12. Tim-3 identifies exhausted follicular helper T cells in breast cancer patients.

    PubMed

    Zhu, Shiguang; Lin, Jun; Qiao, Guangdong; Wang, Xingmiao; Xu, Yanping

    2016-09-01

    Breast cancer is the most common cancer diagnosed in women worldwide. Although a series of treatment options have improved the overall 5-year survival rate to 90%, individual responses still vary from patient to patient. New evidence suggested that the infiltration of CXCL13-expressing CD4(+) follicular helper cells (Tfh) in breast tumor predicted better survival. Here, we examined the regulation of Tfh function in breast cancer patients in depth. We found that the frequencies of circulating Tfh cells were not altered in breast cancer patients compared to healthy controls. However, the expression of PD-1 and Tim-3 in Tfh cells was significantly elevated in breast cancer patients. Interestingly, we observed a preferential upregulation of PD-1 in Tim-3(+) Tfh cells compared to Tim-3(-) Tfh cells. Coexpression of PD-1 and Tim-3 is typically a hallmark of functional exhaustion in chronic virus infections and tumor. To examine whether Tim-3(+) identifies exhausted Tfh cells, we stimulated Tfh cells with anti-CD3/CD28, and found that Tim-3(+) T cells expressed reduced frequencies of chemokine CXCL13 and cytokine interleukin 21 (IL-21), and contained fewer proliferating cells, than Tim-3(-) Tfh cells. Compared to those cocultured with Tim-3(-) Tfh cells, naive B cells cocultured with Tim-3(+) Tfh cells resulted in significantly less IgM, IgG and IgA production after 12 day incubation, demonstrating a reduction in Tim-3(+) Tfh-mediated B cell help. Moreover, the frequencies of Tim-3(+) Tfh cells in resected breast tumor were further upregulated than autologous blood, suggesting a participation of Tim-3(+) Tfh cells in tumor physiology. Overall, the data presented here provided new insight in the regulation of Tfh cells in breast cancer patients.

  13. Bioorthogonal labeling cell-surface proteins expressed in pancreatic cancer cells to identify potential diagnostic/therapeutic biomarkers

    PubMed Central

    Haun, Randy S; Quick, Charles M; Siegel, Eric R; Raju, Ilangovan; Mackintosh, Samuel G; Tackett, Alan J

    2015-01-01

    To develop new diagnostic and therapeutic tools to specifically target pancreatic tumors, it is necessary to identify cell-surface proteins that may serve as potential tumor-specific targets. In this study we used an azido-labeled bioorthogonal chemical reporter to metabolically label N-linked glycoproteins on the surface of pancreatic cancer cell lines to identify potential targets that may be exploited for detection and/or treatment of pancreatic cancer. Labeled glycoproteins were tagged with biotin using click chemistry, purified by streptavidin-coupled magnetic beads, separated by gel electrophoresis, and identified by liquid chromatography-tandem mass spectrometry (MS). MS/MS analysis of peptides from 3 cell lines revealed 954 unique proteins enriched in the azido sugar samples relative to control sugar samples. A comparison of the proteins identified in each sample indicated 20% of these proteins were present in 2 cell lines (193 of 954) and 17 of the proteins were found in all 3 cell lines. Five of the 17 proteins identified in all 3 cell lines have not been previously reported to be expressed in pancreatic cancer; thus indicating that novel cell-surface proteins can be revealed through glycoprotein profiling. Western analysis of one of these glycoproteins, ecto-5′-nucleotidase (NT5E), revealed it is expressed in 8 out of 8 pancreatic cancer cell lines examined. Further, immunohistochemical analysis of human pancreatic tissues indicates NT5E is significantly overexpressed in pancreatic tumors compared to normal pancreas. Thus, we have demonstrated that metabolic labeling with bioorthogonal chemical reporters can be used to selectively enrich and identify novel cell-surface glycoproteins expressed in pancreatic ductal adenocarcinomas. PMID:26176765

  14. Comparative Analysis of the Morphology, Ultrastructure, and Glycosylation Pattern of the Jejunum and Ileum of the Wild Rodent Lagostomus maximus.

    PubMed

    Tano De La Hoz, María Florencia; Flamini, Mirta Alicia; Díaz, Alcira Ofelia

    2016-05-01

    Morphological and histochemical analyses were performed to characterize the histology, ultrastructure, and glycosylation pattern of the jejunum and ileum of the wild rodent Lagostomus maximus. Enterocytes, goblet cells, Paneth cells, and enteroendocrine cells were identified in both intestinal epithelia. Two morphological types of enterocytes were identified only in the ileum based on their cytoplasm electron density. Although the histological and ultrastructural examination showed that the epithelia of both anatomical regions were morphologically similar, a certain specialization in their secretory products was evident. The glycosylation pattern of the jejunum and ileum was characterized in situ by histochemical and lectin histochemical methods. Histochemical results revealed the presence of carboxylated and sulfated gycoconjugates in both regions, although sulfomucins were clearly prevalent in the ileum. Sialic acid was highly O-acetylated and particularly abundant in the jejunum. The KOH/PA*/Bh/PAS technique evidenced a more intense histochemical reaction in the jejunal than in the ileum goblet cells, demonstrating a reduction of neutral mucin secretion in the distal small intestine. Further specific differences were revealed by lectin histochemistry. These data evidenced that the nature of mucus varies at different anatomical regions, probably adapted to physiological requirements.

  15. Aldehyde Dehydrogenase Activity Identifies a Population of Human Skeletal Muscle Cells With High Myogenic Capacities

    PubMed Central

    Vauchez, Karine; Marolleau, Jean-Pierre; Schmid, Michel; Khattar, Patricia; Chapel, Alain; Catelain, Cyril; Lecourt, Séverine; Larghéro, Jérôme; Fiszman, Marc; Vilquin, Jean-Thomas

    2009-01-01

    Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM), umbilical cord blood (UCB), and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study, we have identified ALDH+ cells within human skeletal muscles, and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH, Aldefluor, identified brightly stained (ALDHbr) cells with low side scatter (SSClo), in enzymatically dissociated muscle biopsies, thereafter abbreviated as SMALD+ (for skeletal muscle ALDH+) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD+/CD34− and SMALD+/CD34+ cells. These sub-populations did not initially express endothelial (CD31), hematopoietic (CD45), and myogenic (CD56) markers. Upon sorting, however, whereas SMALD+/CD34+ cells developed in vitro as a heterogeneous population of CD56− cells able to differentiate in adipoblasts, the SMALD+/CD34− fraction developed in vitro as a highly enriched population of CD56+ myoblasts able to form myotubes. Moreover, only the SMALD+/CD34− population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy. PMID:19738599

  16. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL

    PubMed Central

    O'Malley, John T.; Williamson, David W.; Scott, Laura-Louise; Elco, Christopher P.; Teague, Jessica E.; Gehad, Ahmed; Lowry, Elizabeth L.; LeBoeuf, Nicole R.; Krueger, James G.; Robins, Harlan S.; Kupper, Thomas S.; Clark, Rachael A.

    2016-01-01

    Early diagnosis of CTCL is difficult and takes on average six years after presentation, in part because the clinical appearance and histopathology of CTCL can resemble that of benign inflammatory skin diseases. Detection of a malignant T cell clone is critical in making the diagnosis of CTCL but the TCRγ PCR analysis in current clinical use detect clones in only a subset of patients. High-throughput TCR sequencing (HTS) detected T cell clones in 46/46 CTCL patients, was more sensitive and specific than TCRγ PCR, and successfully discriminated CTCL from benign inflammatory diseases. HTS also accurately assessed responses to therapy and facilitated diagnosis of disease recurrence. In patients with new skin lesions and no involvement of blood by flow cytometry, HTS demonstrated hematogenous spread of small numbers of malignant T cells. Analysis of CTCL TCRγ genes demonstrated that CTCL is a malignancy derived from mature T cells. There was a maximal T cell density in skin in benign inflammatory diseases that was exceeded in CTCL, suggesting a niche of finite size may exist for benign T cells in skin. Lastly, immunostaining demonstrated that the malignant T cell clones in mycosis fungoides and leukemic CTCL localized to different anatomic compartments in the skin. In summary, HTS accurately diagnosed CTCL in all stages, discriminated CTCL from benign inflammatory skin diseases and provided insights into the cell of origin and location of malignant CTCL cells in skin. PMID:26446955

  17. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds.

    PubMed

    Holt, David; Parthasarathy, Ashwin B; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16 . Ten animals showed no residual tumor cells in the wound bed (mean SBR<2 , P<0.001 ). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15 , and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations.

  18. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    NASA Astrophysics Data System (ADS)

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ˜16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations.

  19. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    PubMed Central

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-01-01

    Abstract. Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations. PMID:26160347

  20. Identifying an ovarian cancer cell hierarchy regulated by bone morphogenetic protein 2

    PubMed Central

    Choi, Yun-Jung; Ingram, Patrick N.; Yang, Kun; Coffman, Lan; Iyengar, Mangala; Bai, Shoumei; Thomas, Dafydd G.; Yoon, Euisik; Buckanovich, Ronald J.

    2015-01-01

    Whether human cancer follows a hierarchical or stochastic model of differentiation is controversial. Furthermore, the factors that regulate cancer stem-like cell (CSC) differentiation potential are largely unknown. We used a novel microfluidic single-cell culture method to directly observe the differentiation capacity of four heterogeneous ovarian cancer cell populations defined by the expression of the CSC markers aldehyde dehydrogenase (ALDH) and CD133. We evaluated 3,692 progeny from 2,833 cells. We found that only ALDH+CD133+ cells could generate all four ALDH+/−CD133+/− cell populations and identified a clear branched differentiation hierarchy. We also observed a single putative stochastic event. Within the hierarchy of cells, bone morphologenetic protein 2 (BMP2) is preferentially expressed in ALDH−CD133− cells. BMP2 promotes ALDH+CD133+ cell expansion while suppressing the proliferation of ALDH−CD133− cells. As such, BMP2 suppressed bulk cancer cell growth in vitro but increased tumor initiation rates, tumor growth, and chemotherapy resistance in vivo whereas BMP2 knockdown reduced CSC numbers, in vivo growth, and chemoresistance. These data suggest a hierarchical differentiation pattern in which BMP2 acts as a feedback mechanism promoting ovarian CSC expansion and suppressing progenitor proliferation. These results explain why BMP2 suppresses growth in vitro and promotes growth in vivo. Together, our results support BMP2 as a therapeutic target in ovarian cancer. PMID:26621735

  1. Ph+/VE-cadherin+ identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells.

    PubMed

    Wang, Lin; O'Leary, Heather; Fortney, James; Gibson, Laura F

    2007-11-01

    Although leukemic stem cells (LSCs) show a symbiotic relationship with bone marrow microenvironmental niches, the mechanism by which the marrow microenvironment contributes to self-renewal and proliferation of LSCs remains elusive. In the present study, we identified a unique subpopulation of Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL) cells coexpressing markers of endothelial cells (including VE-cadherin, PECAM-1, and Flk-1) and committed B-lineage progenitors. After long-term coculture with bone marrow stromal cells, tumor cells formed hematopoietic colonies and cords, expressed early stem- cell markers, and showed endothelial sprouting. Gene expression profiles of LSCs were altered in the presence of stromal cell contact. Stromal cell contact promoted leukemic cell VE-cadherin expression, stabilized beta-catenin, and up-regulated Bcr-abl fusion gene expression. Our study indicates that these specific tumor cells are uniquely positioned to respond to microenvironment-derived self-renewing and proliferative cues. Ph(+)/VE-cadherin(+) tumor subpopulation circumvents the requirement of exogenous Wnt signaling for self-renewal through stromal cell support of leukemic cell VE-cadherin expression and up-regulated Bcr-abl tyrosine kinase activity. These data suggest that strategies targeting signals in the marrow microenvironment that amplify the Bcr-abl/VE-cadherin/beta-catenin axis may have utility in sensitizing drug-resistant leukemic stem cells. PMID:17638851

  2. A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis

    PubMed Central

    Reticker-Flynn, Nathan E.; Braga Malta, David F.; Winslow, Monte M.; Lamar, John M.; Xu, Mary J.; Underhill, Gregory H.; Hynes, Richard O.; Jacks, Tyler E.; Bhatia, Sangeeta N.

    2013-01-01

    Extracellular matrix interactions play essential roles in normal physiology and many pathological processes. While the importance of ECM interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Here we report a novel screening platform capable of measuring phenotypic responses to combinations of ECM molecules. Using a genetic mouse model of lung adenocarcinoma, we measure the ECM-dependent adhesion of tumor-derived cells. Hierarchical clustering of the adhesion profiles differentiates metastatic cell lines from primary tumor lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8, or laminin. We show that these molecules correlate with human disease and that their interactions are mediated in part by α3β1 integrin. Thus, our platform allowed us to interrogate interactions between metastatic cells and their microenvironments, and identified ECM and integrin interactions that could serve as therapeutic targets. PMID:23047680

  3. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death

    PubMed Central

    Fox, Jennifer T.; Sakamuru, Srilatha; Huang, Ruili; Teneva, Nedelina; Simmons, Steven O.; Xia, Menghang; Tice, Raymond R.; Austin, Christopher P.; Myung, Kyungjae

    2012-01-01

    Human ATAD5 is a biomarker for identifying genotoxic compounds because ATAD5 protein levels increase posttranscriptionally in response to DNA damage. We screened over 4,000 compounds with a cell-based quantitative high-throughput ATAD5-luciferase assay detecting genotoxic compounds. We identified 22 antioxidants, including resveratrol, genistein, and baicalein, that are currently used or investigated for the treatment of cardiovascular disease, type 2 diabetes, osteopenia, osteoporosis, and chronic hepatitis, as well as for antiaging. Treatment of dividing cells with these compounds induced DNA damage and resulted in cell death. Despite their genotoxic effects, resveratrol, genistein, and baicalein did not cause mutagenesis, which is a major side effect of conventional anticancer drugs. Furthermore, resveratrol and genistein killed multidrug-resistant cancer cells. We therefore propose that resveratrol, genistein, and baicalein are attractive candidates for improved chemotherapeutic agents. PMID:22431602

  4. Resolving Tumor Heterogeneity: Genes Involved in Chordoma Cell Development Identified by Low-Template Analysis of Morphologically Distinct Cells

    PubMed Central

    Wagner, Karin; Meditz, Katharina; Kolb, Dagmar; Feichtinger, Julia; Thallinger, Gerhard G.; Quehenberger, Franz; Liegl-Atzwanger, Bernadette; Rinner, Beate

    2014-01-01

    The classical sacrococcygeal chordoma tumor presents with a typical morphology of lobulated myxoid tumor tissue with cords, strands and nests of tumor cells. The population of cells consists of small non-vacuolated cells, intermediate cells with a wide range of vacuolization and large heavily vacuolated (physaliferous) cells. To date analysis was only performed on bulk tumor mass because of its rare incidence, lack of suited model systems and technical limitations thereby neglecting its heterogeneous composition. We intended to clarify whether the observed cell types are derived from genetically distinct clones or represent different phenotypes. Furthermore, we aimed at elucidating the differences between small non-vacuolated and large physaliferous cells on the genomic and transcriptomic level. Phenotype-specific analyses of small non-vacuolated and large physaliferous cells in two independent chordoma cell lines yielded four candidate genes involved in chordoma cell development. UCHL3, coding for an ubiquitin hydrolase, was found to be over-expressed in the large physaliferous cell phenotype of MUG-Chor1 (18.7-fold) and U-CH1 (3.7-fold) cells. The mannosyltransferase ALG11 (695-fold) and the phosphatase subunit PPP2CB (18.6-fold) were found to be up-regulated in large physaliferous MUG-Chor1 cells showing a similar trend in U-CH1 cells. TMEM144, an orphan 10-transmembrane family receptor, yielded contradictory data as cDNA microarray analysis showed up- but RT-qPCR data down-regulation in large physaliferous MUG-Chor1 cells. Isolation of few but morphologically identical cells allowed us to overcome the limitations of bulk analysis in chordoma research. We identified the different chordoma cell phenotypes to be part of a developmental process and discovered new genes linked to chordoma cell development representing potential targets for further research in chordoma tumor biology. PMID:24503940

  5. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    support the use of this experimental approach to systematically identify cell pathways and molecular mechanisms involved in tick-pathogen interactions. Data are available via ProteomeXchange with identifier PXD002181.

  6. Ultrastructure of the membrana limitans interna after dye-assisted membrane peeling.

    PubMed

    Brockmann, Tobias; Steger, Claudia; Westermann, Martin; Nietzsche, Sandor; Koenigsdoerffer, Ekkehart; Strobel, Juergen; Dawczynski, Jens

    2011-01-01

    The purpose of this study was to investigate the ultrastructure of the membrana limitans interna (internal limiting membrane, ILM) and to evaluate alterations to the retinal cell layers after membrane peeling with vital dyes. Twenty-five patients (25 eyes) who underwent macular hole surgery were included, whereby 12 indocyanine green (ICG)- and 13 brilliant blue G (BBG)-stained ILM were analyzed using light, transmission electron and scanning electron microscopy. Retinal cell fragments on the ILM were identified in both groups using immunohistochemistry. Comparing ICG- and BBG-stained membranes, larger cellular fragments were observed at a higher frequency in the BBG group. Thereby, the findings indicate that ICG permits an enhanced separation of the ILM from the underlying retina with less mechanical destruction. A possible explanation might be seen in the known photosensitivity of ICG, which induces a stiffening and shrinkage of the ILM but also generates retinal toxic metabolites.

  7. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration.

    PubMed

    McLaughlin, Laura M; Xu, Hui; Carden, Sarah E; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C; Monack, Denise M

    2014-04-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration.

  8. Integrin and glycocalyx mediated contributions to cell adhesion identified by single cell force spectroscopy

    NASA Astrophysics Data System (ADS)

    Boettiger, D.; Wehrle-Haller, B.

    2010-05-01

    The measurement of cell adhesion using single cell force spectroscopy methods was compared with earlier methods for measuring cell adhesion. This comparison provided a means and rationale for separating components of the measurement retract curve that were due to interactions between the substrate and the glycocalyx, and interactions that were due to cell surface integrins binding to a substrate-bound ligand. The glycocalyx adhesion was characterized by multiple jumps with dispersed jump sizes that extended from 5 to 30 µm from the origin. The integrin mediated adhesion was represented by the Fmax (maximum detachment force), was generally within the first 5 µm and commonly detached with a single rupture cascade. The integrin peak (Fmax) increases with time and the rate of increase shows large cell to cell variability with a peak ~ 50 nN s - 1 and an average rate of increase of 75 pN s - 1. This is a measure of the rate of increase in the number of adhesive integrin-ligand bonds/cell as a function of contact time.

  9. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis.

    PubMed

    Alonso-Martin, Sonia; Rochat, Anne; Mademtzoglou, Despoina; Morais, Jessica; de Reyniès, Aurélien; Auradé, Frédéric; Chang, Ted Hung-Tse; Zammit, Peter S; Relaix, Frédéric

    2016-01-01

    Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies. PMID:27446912

  10. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis

    PubMed Central

    Alonso-Martin, Sonia; Rochat, Anne; Mademtzoglou, Despoina; Morais, Jessica; de Reyniès, Aurélien; Auradé, Frédéric; Chang, Ted Hung-Tse; Zammit, Peter S.; Relaix, Frédéric

    2016-01-01

    Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies. PMID:27446912

  11. [Ultrastructure of human oligodendroglioma].

    PubMed

    Himuro, H; Kubo, O; Tajika, Y; Kamiya, M; Inoue, N; Hon-ami, T; Kitamura, K

    1983-02-01

    Ten cases of human oligodendroglioma were examined with electron microscope. The materials were specimens derived through surgical operations. Results were as follow. The shape of tumor cells are various, round, oval, polygonal and irregular. The majority of tumor cells have round or ovoid nuclei, some have irregular nuclei or nuclear indentation. Chromatin distributions tend to clump. In the cytoplasm, there are commonly ribosomes, rough surfaced endoplasmic reticulums, mitochondria, microtubules and lysosome. Glial filament is rare or almost absent. Crystalline structures are seen in 3 cases. Cellular junctions, though immature, are seen in 4 cases. Perinuclear halo in the light microscopy was explained to be a fixation artifact in 10% formol. The samples, which were fixed in 2.5% cold glutaraldehyde and post-fixed in 1% osmium tetraoxide, did not show perinclear halo under the light and electron microscope. The specimen, which were fixed in 10% formol, were examined with electron microscope. Plasma membrane of the tumor cell was partly destroyed, intracytoplasmic organelles and matrix were also broken, and the cytoplasm was empty. It is confirmed in this study that empty cytoplasm represents the peculiar perinuclear halo in the light microscopy. PMID:6843766

  12. Density-based separation in multiphase systems provides a simple method to identify sickle cell disease

    PubMed Central

    Kumar, Ashok A.; Patton, Matthew R.; Hennek, Jonathan W.; Lee, Si Yi Ryan; D’Alesio-Spina, Gaetana; Yang, Xiaoxi; Kanter, Julie; Shevkoplyas, Sergey S.; Brugnara, Carlo; Whitesides, George M.

    2014-01-01

    Although effective low-cost interventions exist, child mortality attributable to sickle cell disease (SCD) remains high in low-resource areas due, in large part, to the lack of accessible diagnostic methods. The presence of dense (ρ > 1.120 g/cm3) cells is characteristic of SCD. The fluid, self-assembling step-gradients in density created by aqueous multiphase systems (AMPSs) identifies SCD by detecting dense cells. AMPSs separate different forms of red blood cells by density in a microhematocrit centrifuge and provide a visual means to distinguish individuals with SCD from those with normal hemoglobin or with nondisease, sickle-cell trait in under 12 min. Visual evaluation of a simple two-phase system identified the two main subclasses of SCD [homozygous (Hb SS) and heterozygous (Hb SC)] with a sensitivity of 90% (73–98%) and a specificity of 97% (86–100%). A three-phase system identified these two types of SCD with a sensitivity of 91% (78–98%) and a specificity of 88% (74–98%). This system could also distinguish between Hb SS and Hb SC. To the authors’ knowledge, this test demonstrates the first separation of cells by density with AMPSs, and the usefulness of AMPSs in point-of-care diagnostic hematology. PMID:25197072

  13. 3D culture model of fibroblast-mediated collagen creep to identify abnormal cell behaviour.

    PubMed

    Kureshi, A K; Afoke, A; Wohlert, S; Barker, S; Brown, R A

    2015-11-01

    Native collagen gels are important biomimetic cell support scaffolds, and a plastic compression process can now be used to rapidly remove fluid to any required collagen density, producing strong 3D tissue-like models. This study aimed to measure the mechanical creep properties of such scaffolds and to quantify any enhanced creep occurring in the presence of cells (cell-mediated creep). The test rig developed applies constant creep tension during culture and measures real-time extension due to cell action. This was used to model extracellular matrix creep, implicated in the transversalis fascia (TF) in inguinal hernia. Experiments showed that at an applied tension equivalent to 15% break strength, cell-mediated creep over 24-h culture periods was identified at creep rates of 0.46 and 0.38%/h for normal TF and human dermal fibroblasts, respectively. However, hernia TF fibroblasts produced negligible cell-mediated creep levels under the same conditions. Raising the cell culture temperature from 4 to 37 °C was used to demonstrate live cell dependence of this creep. This represents the first in vitro demonstration of TF cell-mediated collagen creep and to our knowledge the first demonstration of a functional, hernia-related cell abnormality. PMID:25862069

  14. Tubulocystic carcinoma of the kidney: a histologic, immunohistochemical, and ultrastructural study.

    PubMed

    Alexiev, Borislav A; Drachenberg, Cinthia B

    2013-05-01

    Tubulocystic carcinoma of the kidney (TCCK) is a tumor entity, which is not yet included in the WHO classification of renal tumors. The histogenesis of this neoplasm is uncertain. This study was undertaken to determine (1) the incidence of TCCK and (2) immunohistochemical and ultrastructural characteristics of those tumors that qualify as TCCK by the current definitions. From January 1, 2003 to December 31, 2012, a total of 615 renal cell carcinomas (RCCs) were seen by the Department of Pathology, University of Maryland Medical Center. Four TCCKs were identified (4/615, <1 %). TCCK is a distinctive group of kidney tumors with a male predominance and noteworthy macroscopic spongy appearance. Microscopically, the tumors were composed of tubules and cysts lined by a single layer of eosinophilic, columnar, cuboidal, flat, or hobnail cells with large nuclei and prominent nucleoli separated by a thin fibrotic stroma. In all TCCKs, the majority of neoplastic cells showed immunohistochemical (CD10(+), RCC(+), vimentin(+), and AMACR(+)) and ultrastructural (abundant long brush border microvilli) characteristics of proximal renal tubules. In few cells, the microvilli were shorter and sparse with cytoplasmic interdigitation analogous to intercalated cells of the collecting ducts. Focal positivity for BerEP4 (a marker preferentially expressed in distal renal tubules) was also noted. The major differential diagnostic considerations are oncocytoma, multilocular cystic renal cell carcinoma, and cystic nephroma/mixed epithelial and stromal tumor of the kidney. TCCK seems to have a favorable prognosis. In the current series, none of the patients had local recurrence or metastatic disease. PMID:23525677

  15. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells

    PubMed Central

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C.; Hanson, Buck T.; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M.; Fowler, Patrick W.; Huang, Wei E.; Wagner, Michael

    2015-01-01

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518

  16. Ultrastructure of Sheep Primordial Follicles Cultured in the Presence of Indol Acetic Acid, EGF, and FSH

    PubMed Central

    Andrade, Evelyn Rabelo; Maddox-Hyttel, Poul; Landim-Alvarenga, Fernanda Da Cruz; Viana Silva, José Roberto; Alfieri, Amauri Alcindo; Seneda, Marcelo Marcondes; Figueiredo, José Ricardo; Toniolli, Ricardo

    2011-01-01

    The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA), Epidermal Growth Factor (EGF), and FSH. To evaluate ultrastructure of primordial follicles cultured in MEM (control) or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6 d were ultrastructurally normal. They had oocyte with intact nucleus and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER) was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion, the presence of IAA, EGF, and FSH helped to maintain ultrastructural integrity of sheep primordial follicles cultured in vitro. PMID:21188166

  17. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis

    PubMed Central

    Yang, Jian; Chi, Chi; Liu, Zhen; Yang, Gang; Shen, Zong-Ji; Yang, Xiao-Jun

    2015-01-01

    Acute salpingitis (AS) is an inflammatory disease which causes severe damage to a subset of classically described cells lining in oviduct wall and contributes to interstitial fibrosis and fertility problems. Telocytes (TCs), a newly discovered peculiar type of stromal cells, have been identified in many organs, including oviduct, with proposed multiple potential bio-functions. However, with recent increasing reports regarding TCs alterations in disease-affected tissues, there is still lack of evidence about TCs involvement in AS-affected oviduct tissues and potential pathophysiological roles. We presently identified normal TCs by their characteristic ultrastructural features and immunophenotype. However, in AS-affected oviduct tissues, TCs displayed multiple ultrastructural damage both in cellular body and prolongations, with obvious loss of TCs and development of tissue fibrosis. Furthermore, TCs lose their interstitial 3-D network connected by homocellular or heterocellular junctions between TCs and adjacent cells. And especially, TCs connected to the activated immunocytes (mononuclear cells, eosinophils) and affected local immune state (repression or activation). Meanwhile, massive neutrophils infiltration and overproduced Inducible Nitric Oxide Synthase (iNOS), COX-2, suggested mechanism of inflammatory-induced TCs damage. Consequently, TCs damage might contribute to AS-induced structural and reproductive functional abnormalities of oviduct, probably via: (i) substances, energy and functional insufficiency, presumably, e.g. TC-specific genetic material profiles, ion channels, cytoskeletal elements, Tps dynamics, etc., (ii) impaired TCs-mediated multicellular signalling, such as homeostasis/angiogenesis, tissue repair/regeneration, neurotransmission, (iii) derangement of 3-D network and impaired mechanical support for TCs-mediated multicellular signals within the stromal compartment, consequently induced interstitial fibrosis, (iv) involvement in local

  18. Ultrastructural observations on the differentiation of spermatids in man.

    PubMed

    Holstein, A F

    1976-01-01

    Ultrastructural aspects of the normal development of human spermatids are presented. Eight typical pictures of differentiation of spermatids are described based on cytological details of the acrosome, nucleus and tail. The transient appearance of a spindle-shaped body, connected to the principal piece of the tail, is pointed out. In most cases, malformed spermatids have developmental disturbances of only one component of the cell, e.g. of the acrosome, nucleus or tail. Some typical malformations are described.

  19. Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    NASA Technical Reports Server (NTRS)

    Akuzawa, M.; Hataya, M.

    1982-01-01

    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis.

  20. Ultrastructure of Aplysia neurons having different degrees of light sensitivity.

    PubMed

    Krauhs, J M; Andresen, M C; Baur, P S; Brown, A M

    1979-09-01

    The relationship between ultrastructure and photosensitivity of pigmented neurons of the abdominal ganglion of Aplysia californica was investigated using electron microscopy and electrophysiological methods. Four identified neurons of similar light microscopic appearance were examined; two are photoresponsive and two are not. Illumination hyperpolarizes both responsive neurons. One of them, R2, requires roughly 100 times greater light intensities than does the other, the ventral photoresponsive neuron (VPN), for similar responses. Two neurons lying adjacent to VPN and similar in appearance to VPN do not have measurable electrophysiological responses to even the highest light intensities. All four neurons contained lipochondria, pigmented organelles associated with the light response. Therefore the presence of these organelles is not the only requirement for light sensitivity in these neurons. Illumination appeared to increase the number of membranous lipochondria in both R2 and the ventral neurons, but only in R2 was this increase significant. Factors such as the concentration of lipochondria near the plasma membrane may affect quantitative aspects of the light response, but in the insensitive cells the lipochondria are apparently uncoupled from other factors required for the light response.

  1. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells

    PubMed Central

    Bar-Joseph, Ziv; Siegfried, Zahava; Brandeis, Michael; Brors, Benedikt; Lu, Yong; Eils, Roland; Dynlacht, Brian D.; Simon, Itamar

    2008-01-01

    Characterization of the transcriptional regulatory network of the normal cell cycle is essential for understanding the perturbations that lead to cancer. However, the complete set of cycling genes in primary cells has not yet been identified. Here, we report the results of genome-wide expression profiling experiments on synchronized primary human foreskin fibroblasts across the cell cycle. Using a combined experimental and computational approach to deconvolve measured expression values into “single-cell” expression profiles, we were able to overcome the limitations inherent in synchronizing nontransformed mammalian cells. This allowed us to identify 480 periodically expressed genes in primary human foreskin fibroblasts. Analysis of the reconstructed primary cell profiles and comparison with published expression datasets from synchronized transformed cells reveals a large number of genes that cycle exclusively in primary cells. This conclusion was supported by both bioinformatic analysis and experiments performed on other cell types. We suggest that this approach will help pinpoint genetic elements contributing to normal cell growth and cellular transformation. PMID:18195366

  2. Identifying subcellular protein localization with fluorescent protein fusions after transient expression in onion epidermal cells.

    PubMed

    Nebenführ, Andreas

    2014-01-01

    Most biochemical functions of plant cells are carried out by proteins which act at very specific places within these cells, for example, within different organelles. Identifying the subcellular localization of proteins is therefore a useful tool to narrow down the possible functions that a novel or unknown protein may carry out. The discovery of genetically encoded fluorescent markers has made it possible to tag specific proteins and visualize them in vivo under a variety of conditions. This chapter describes a simple method to use transient expression of such fluorescently tagged proteins in onion epidermal cells to determine their subcellular localization relative to known markers.

  3. Engineering and Identifying Supercharged Proteins for Macromolecule Delivery into Mammalian Cells

    PubMed Central

    Thompson, David B.; Cronican, James J.; Liu, David R.

    2012-01-01

    Supercharged proteins are a class of engineered or naturally occurring proteins with unusually high net positive or negative theoretical charge. Both supernegatively and superpositively charged proteins exhibit a remarkable ability to withstand thermally or chemically induced aggregation. Superpositively charged proteins are also able to penetrate mammalian cells. Associating cargo with these proteins, such as plasmid DNA, siRNA, or other proteins, can enable the functional delivery of these macromolecules into mammalian cells both in vitro and in vivo. The potency of functional delivery in some cases can exceed that of other current methods for macromolecule delivery, including the use of cell-penetrating peptides such as Tat, and adenoviral delivery vectors. This chapter summarizes methods for engineering supercharged proteins, optimizing cell penetration, identifying naturally occurring supercharged proteins, and using these proteins for macromolecule delivery into mammalian cells. PMID:22230574

  4. An integrated genomic and proteomic approach to identify signatures of endosulfan exposure in hepatocellular carcinoma cells.

    PubMed

    Gandhi, Deepa; Tarale, Prashant; Naoghare, Pravin K; Bafana, Amit; Krishnamurthi, Kannan; Arrigo, Patrizio; Saravanadevi, Sivanesan

    2015-11-01

    Present study reports the identification of genomic and proteomic signatures of endosulfan exposure in hepatocellular carcinoma cells (HepG2). HepG2 cells were exposed to sublethal concentration (15μM) of endosulfan for 24h. DNA microarray and MALDI-TOF-MS analyses revealed that endosulfan induced significant alterations in the expression level of genes and proteins involved in multiple cellular pathways (apoptosis, transcription, immune/inflammatory response, carbohydrate metabolism, etc.). Furthermore, downregulation of PHLDA gene, upregulation of ACIN1 protein and caspase-3 activation in exposed cells indicated that endosulfan can trigger apoptotic cascade in hepatocellular carcinoma cells. In total 135 transcripts and 19 proteins were differentially expressed. This study presents an integrated approach to identify the alteration of biological/cellular pathways in HepG2 cells upon endosulfan exposure.

  5. A Systems-Level Interrogation Identifies Regulators of Drosophila Blood Cell Number and Survival

    PubMed Central

    Makhijani, Kalpana; Alexander, Brandy; Perrimon, Norbert; Brückner, Katja

    2015-01-01

    In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems. PMID:25749252

  6. Identifying Students Difficulties in Understanding Concepts Pertaining to Cell Water Relations: An Exploratory Study.

    ERIC Educational Resources Information Center

    Friedler, Y.; And Others

    This study identified students' conceptual difficulties in understanding concepts and processes associated with cell water relationships (osmosis), determined possible reasons for these difficulties, and pilot-tested instruments and research strategies for a large scale comprehensive study. Research strategies used included content analysis of…

  7. Coexpression of TIGIT and FCRL3 identifies Helios+ human memory regulatory T cells.

    PubMed

    Bin Dhuban, Khalid; d'Hennezel, Eva; Nashi, Emil; Bar-Or, Amit; Rieder, Sadiye; Shevach, Ethan M; Nagata, Satoshi; Piccirillo, Ciriaco A

    2015-04-15

    Two distinct subsets of CD4(+)Foxp3(+) regulatory T (Treg) cells have been described based on the differential expression of Helios, a transcription factor of the Ikaros family. Efforts to understand the origin and biological roles of these Treg populations in regulating immune responses have, however, been hindered by the lack of reliable surface markers to distinguish and isolate them for subsequent functional studies. Using a single-cell cloning strategy coupled with microarray analysis of different Treg functional subsets in humans, we identify the mRNA and protein expression of TIGIT and FCRL3 as a novel surface marker combination that distinguishes Helios(+)FOXP3(+) from Helios(-)FOXP3(+) memory cells. Unlike conventional markers that are modulated on conventional T cells upon activation, we show that the TIGIT/FCRL3 combination allows reliable identification of Helios(+) Treg cells even in highly activated conditions in vitro as well as in PBMCs of autoimmune patients. We also demonstrate that the Helios(-)FOXP3(+) Treg subpopulation harbors a larger proportion of nonsuppressive clones compared with the Helios(+)FOXP3(+) cell subset, which is highly enriched for suppressive clones. Moreover, we find that Helios(-) cells are exclusively responsible for the productions of the inflammatory cytokines IFN-γ, IL-2, and IL-17 in FOXP3(+) cells ex vivo, highlighting important functional differences between Helios(+) and Helios(-) Treg cells. Thus, we identify novel surface markers for the consistent identification and isolation of Helios(+) and Helios(-) memory Treg cells in health and disease, and we further reveal functional differences between these two populations. These new markers should facilitate further elucidation of the functional roles of Helios-based Treg heterogeneity.

  8. Coexpression of TIGIT and FCRL3 Identifies Helios+ Human Memory Regulatory T Cells

    PubMed Central

    Dhuban, Khalid Bin; d’Hennezel, Eva; Nashi, Emil; Bar-Or, Amit; Rieder, Sadiye; Shevach, Ethan M.; Nagata, Satoshi; Piccirillo, Ciriaco A.

    2015-01-01

    Two distinct subsets of CD4+Foxp3+ regulatory T (Treg) cells have been described based on the differential expression of Helios, a transcription factor of the Ikaros family. Efforts to understand the origin and biological roles of these Treg populations in regulating immune responses have, however, been hindered by the lack of reliable surface markers to distinguish and isolate them for subsequent functional studies. Using a single-cell cloning strategy coupled with microarray analysis of different Treg functional subsets in humans, we identify the mRNA and protein expression of TIGIT and FCRL3 as a novel surface marker combination that distinguishes Helios+FOXP3+ from Helios−FOXP3+ memory cells. Unlike conventional markers that are modulated on conventional T cells upon activation, we show that the TIGIT/FCRL3 combination allows reliable identification of Helios+ Treg cells even in highly activated conditions in vitro as well as in PBMCs of autoimmune patients. We also demonstrate that the Helios−FOXP3+ Treg subpopulation harbors a larger proportion of nonsuppressive clones compared with the Helios+ FOXP3+ cell subset, which is highly enriched for suppressive clones. Moreover, we find that Helios− cells are exclusively responsible for the productions of the inflammatory cytokines IFN-γ, IL-2, and IL-17 in FOXP3+ cells ex vivo, highlighting important functional differences between Helios+ and Helios− Treg cells. Thus, we identify novel surface markers for the consistent identification and isolation of Helios+ and Helios− memory Treg cells in health and disease, and we further reveal functional differences between these two populations. These new markers should facilitate further elucidation of the functional roles of Helios-based Treg heterogeneity. PMID:25762785

  9. Identification and Phylogeny of the First T Cell Epitope Identified from a Human Gut Bacteroides Species.

    PubMed

    Perez-Muñoz, Maria Elisa; Joglekar, Payal; Shen, Yi-Ju; Shen, Yi-Ji; Chang, Kuan Y; Peterson, Daniel A

    2015-01-01

    Host T cell reactivity toward gut bacterial epitopes has been recognized as part of disease pathogenesis. However, the specificity of T cells that recognize this vast number of epitopes has not yet been well described. After colonizing a C57BL/6J germ-free mouse with the human gut symbiotic bacteria Bacteroides thetaiotaomicron, we isolated a T cell that recognized these bacteria in vitro. Using this T cell, we mapped the first known non-carbohydrate T cell epitope within the phylum Bacteroidetes. The T cell also reacted to two other additional Bacteroides species. We identified the peptide that stimulated the T cell by using a genetic approach. Genomic data from the epitope-positive and epitope-negative bacteria explain the cross-reactivity of the T cell to multiple species. This epitope degeneracy should shape our understanding of the T cell repertoire stimulated by the complex microbiome residing in the gastrointestinal tract in both healthy and disease states. PMID:26637014

  10. A newly identified type of attachment cell is critical for normal patterning of chordotonal neurons.

    PubMed

    Halachmi, Naomi; Nachman, Atalya; Salzberg, Adi

    2016-03-01

    This work describes unknown aspects of chordotonal organ (ChO) morphogenesis revealed in post-embryonic stages through the use of new fluorescently labeled markers. We show that towards the end of embryogenesis a hitherto unnoticed phase of cell migration commences in which the cap cells of the ventral ChOs elongate and migrate towards their prospective attachment sites. This migration and consequent cell attachment generates a continuous zigzag line of proprioceptors, stretching from the ventral midline to a dorsolateral position in each abdominal segment. Our observation that the cap cell of the ventral-most ChO attaches to a large tendon cell near the midline provides the first evidence for a direct physical connection between the contractile and proprioceptive systems in Drosophila. Our analysis has also provided an answer to a longstanding enigma that is what anchors the neurons of the ligamentless ventral ChOs on their axonal side. We identified a new type of ChO attachment cell, which binds to the scolopale cells of these organs, thus behaving like a ligament cell, but on the other hand exhibits all the typical features of a ChO attachment cell and is critical for the correct anchoring of these organs. PMID:26794680

  11. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    PubMed

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed.

  12. Ultrastructure of the root cap of Arabidopsis Thaliana L. Heynh under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Peculiarities of the ultrastructural organization of Arabidopsis root cap cells grown from the stage of two cotyledonous leaves in the Svetoblok-1 apparatus aboard the Salyut 6 research orbital station and in the laboratory are assessed. It is established that under conditions of real space flight vacuolization of the root cap cells increses considerably compared to the control variant. Changes in the topography and ulstrastructure of amyloplasts as well as lysis of cell walls are observed in the material under study. An assumption is advanced on analogous cell responses observed at the ultrastructural level to weightlessness and clinostatic conditions.

  13. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  14. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation.

    PubMed

    Yamanaka, Tomoyuki; Wong, Hon Kit; Tosaki, Asako; Bauer, Peter O; Wada, Koji; Kurosawa, Masaru; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2014-01-01

    In polyglutamine (polyQ) diseases including Huntington's disease (HD), mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼ 12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms. PMID:24705917

  15. Large-Scale RNA Interference Screening in Mammalian Cells Identifies Novel Regulators of Mutant Huntingtin Aggregation

    PubMed Central

    Tosaki, Asako; Bauer, Peter O.; Wada, Koji; Kurosawa, Masaru; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2014-01-01

    In polyglutamine (polyQ) diseases including Huntington's disease (HD), mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms. PMID:24705917

  16. Heterogeneous vesicles in mucous epithelial cells of posterior esophagus of Chinese giant salamander (Andrias davidianus).

    PubMed

    Zhang, H; Guo, X; Zhong, S; Ge, T; Peng, S; Yu, P; Zhou, Z

    2015-08-25

    The Chinese giant salamander belongs to an old lineage of salamanders and endangered species. Many studies of breeding and disease regarding this amphibian had been implemented. However, the studies on the ultrastructure of this amphibian are rare. In this work, we provide a histological and ultrastructural investigation on posterior esophagus of Chinese giant salamander. The sections of amphibian esophagus were stained by hematoxylin & eosin (H&E). Moreover, the esophageal epithelium was observed by transmission electron microscopy (TEM). The results showed that esophageal epithelium was a single layer epithelium, which consisted of mucous cells and columnar cells. The esophageal glands were present in submucosa. The columnar cells were ciliated. According to the diverging ultrastructure of mucous vesicles, three types of mucous cells could be identified in the esophageal mucosa: i) electron-lucent vesicles mucous cell (ELV-MC); ii) electron-dense vesicles mucous cell (EDV-MC); and iii) mixed vesicles mucous cell (MV-MC).

  17. Heterogeneous Vesicles in Mucous Epithelial Cells of Posterior Esophagus of Chinese Giant Salamander (Andrias Davidianus)

    PubMed Central

    Zhang, H.; Zhong, S.; Ge, T.; Peng, S.; Yu, P.; Zhou, Z.; Guo, X.

    2015-01-01

    The Chinese giant salamander belongs to an old lineage of salamanders and endangered species. Many studies of breeding and disease regarding this amphibian had been implemented. However, the studies on the ultrastructure of this amphibian are rare. In this work, we provide a histological and ultra-structural investigation on posterior esophagus of Chinese giant salamander. The sections of amphibian esophagus were stained by hematoxylin & eosin (H&E). Moreover, the esophageal epithelium was observed by transmission electron microscopy (TEM). The results showed that esophageal epithelium was a single layer epithelium, which consisted of mucous cells and columnar cells. The esophageal glands were present in submucosa. The columnar cells were ciliated. According to the diverging ultrastructure of mucous vesicles, three types of mucous cells could be identified in the esophageal mucosa: i) electron-lucent vesicles mucous cell (ELV-MC); ii) electron-dense vesicles mucous cell (EDV-MC); and iii) mixed vesicles mucous cell (MV-MC). PMID:26428885

  18. Identifying tumor cell growth inhibitors by combinatorial chemistry and zebrafish assays.

    PubMed

    Xiang, Jing; Yang, Hongbo; Che, Chao; Zou, Haixia; Yang, Hanshuo; Wei, Yuquan; Quan, Junmin; Zhang, Hui; Yang, Zhen; Lin, Shuo

    2009-01-01

    Cyclin-dependent kinases (CDKs) play important roles in regulating cell cycle progression, and altered cell cycles resulting from over-expression or abnormal activation of CDKs observed in many human cancers. As a result, CDKs have become extensive studied targets for developing chemical inhibitors for cancer therapies; however, protein kinases share a highly conserved ATP binding pocket at which most chemical inhibitors bind, therefore, a major challenge in developing kinase inhibitors is achieving target selectivity. To identify cell growth inhibitors with potential applications in cancer therapy, we used an integrated approach that combines one-pot chemical synthesis in a combinatorial manner to generate diversified small molecules with new chemical scaffolds coupled with growth inhibition assay using developing zebrafish embryos. We report the successful identification of a novel lead compound that displays selective inhibitory effects on CDK2 activity, cancer cell proliferation, and tumor progression in vivo. Our approaches should have general applications in developing cell proliferation inhibitors using an efficient combinatorial chemical genetic method and integrated biological assays. The novel cell growth inhibitor we identified should have potential as a cancer therapeutic agent.

  19. Identifying Tumor Cell Growth Inhibitors by Combinatorial Chemistry and Zebrafish Assays

    PubMed Central

    Che, Chao; Zou, Haixia; Yang, Hanshuo; Wei, Yuquan; Quan, Junmin; Zhang, Hui; Yang, Zhen; Lin, Shuo

    2009-01-01

    Cyclin-dependent kinases (CDKs) play important roles in regulating cell cycle progression, and altered cell cycles resulting from over-expression or abnormal activation of CDKs observed in many human cancers. As a result, CDKs have become extensive studied targets for developing chemical inhibitors for cancer therapies; however, protein kinases share a highly conserved ATP binding pocket at which most chemical inhibitors bind, therefore, a major challenge in developing kinase inhibitors is achieving target selectivity. To identify cell growth inhibitors with potential applications in cancer therapy, we used an integrated approach that combines one-pot chemical synthesis in a combinatorial manner to generate diversified small molecules with new chemical scaffolds coupled with growth inhibition assay using developing zebrafish embryos. We report the successful identification of a novel lead compound that displays selective inhibitory effects on CDK2 activity, cancer cell proliferation, and tumor progression in vivo. Our approaches should have general applications in developing cell proliferation inhibitors using an efficient combinatorial chemical genetic method and integrated biological assays. The novel cell growth inhibitor we identified should have potential as a cancer therapeutic agent. PMID:19194508

  20. Functional ultrastructure of the plant nucleolus.

    PubMed

    Stępiński, Dariusz

    2014-11-01

    Nucleoli are nuclear domains present in almost all eukaryotic cells. They not only specialize in the production of ribosomal subunits but also play roles in many fundamental cellular activities. Concerning ribosome biosynthesis, particular stages of this process, i.e., ribosomal DNA transcription, primary RNA transcript processing, and ribosome assembly proceed in precisely defined nucleolar subdomains. Although eukaryotic nucleoli are conservative in respect of their main function, clear morphological differences between these structures can be noticed between individual kingdoms. In most cases, a plant nucleolus shows well-ordered structure in which four main ultrastructural components can be distinguished: fibrillar centers, dense fibrillar component, granular component, and nucleolar vacuoles. Nucleolar chromatin is an additional crucial structural component of this organelle. Nucleolonema, although it is not always an unequivocally distinguished nucleolar domain, has often been described as a well-grounded morphological element, especially of plant nucleoli. The ratios and morphology of particular subcompartments of a nucleolus can change depending on its metabolic activity which in turn is correlated with the physiological state of a cell, cell type, cell cycle phase, as well as with environmental influence. Precise attribution of functions to particular nucleolar subregions in the process of ribosome biosynthesis is now possible using various approaches. The presented description of plant nucleolar morphology summarizes previous knowledge regarding the function of nucleoli as well as of their particular subdomains not only in the course of ribosome biosynthesis.

  1. Divisions of Identified Parvalbumin-Expressing Basket Cells during Working Memory-Guided Decision Making.

    PubMed

    Lagler, Michael; Ozdemir, A Tugrul; Lagoun, Sabria; Malagon-Vina, Hugo; Borhegyi, Zsolt; Hauer, Romana; Jelem, Anna; Klausberger, Thomas

    2016-09-21

    Parvalbumin-expressing basket cells tightly control cortical networks and fire remarkably stereotyped during network oscillations and simple behaviors. How can these cells support multifaceted situations with different behavioral options and complex temporal sequences? We recorded from identified parvalbumin-expressing basket cells in prefrontal cortex of freely moving rats performing a multidimensional delayed cue-matching-to-place task, juxtacellularly filled recorded neurons for unequivocal histological identification, and determined their activity during temporally structured task episodes, associative working-memory, and stimulus-guided choice behavior. We show that parvalbumin-expressing basket cells do not fire homogenously, but individual cells were recruited or inhibited during different task episodes. Firing of individual basket cells was correlated with amount of presynaptic VIP (vasoactive intestinal polypeptide)-expressing GABAergic input. Together with subsets of pyramidal neurons, activity of basket cells differentiated for sequential actions and stimulus-guided choice behavior. Thus, interneurons of the same cell type can be recruited into different neuronal ensembles with distinct firing patterns to support multi-layered cognitive computations. PMID:27593181

  2. Divisions of Identified Parvalbumin-Expressing Basket Cells during Working Memory-Guided Decision Making.

    PubMed

    Lagler, Michael; Ozdemir, A Tugrul; Lagoun, Sabria; Malagon-Vina, Hugo; Borhegyi, Zsolt; Hauer, Romana; Jelem, Anna; Klausberger, Thomas

    2016-09-21

    Parvalbumin-expressing basket cells tightly control cortical networks and fire remarkably stereotyped during network oscillations and simple behaviors. How can these cells support multifaceted situations with different behavioral options and complex temporal sequences? We recorded from identified parvalbumin-expressing basket cells in prefrontal cortex of freely moving rats performing a multidimensional delayed cue-matching-to-place task, juxtacellularly filled recorded neurons for unequivocal histological identification, and determined their activity during temporally structured task episodes, associative working-memory, and stimulus-guided choice behavior. We show that parvalbumin-expressing basket cells do not fire homogenously, but individual cells were recruited or inhibited during different task episodes. Firing of individual basket cells was correlated with amount of presynaptic VIP (vasoactive intestinal polypeptide)-expressing GABAergic input. Together with subsets of pyramidal neurons, activity of basket cells differentiated for sequential actions and stimulus-guided choice behavior. Thus, interneurons of the same cell type can be recruited into different neuronal ensembles with distinct firing patterns to support multi-layered cognitive computations.

  3. Monocyte-derived dendritic cells identified as booster of T follicular helper cell differentiation

    PubMed Central

    Fillatreau, Simon

    2014-01-01

    Adjuvants play an essential role in the induction of acquired immunity upon vaccination with protein antigen. In this issue of EMBO Molecular Medicine, a classical type of adjuvant made of DNA oligonucleotide containing CpG motifs, which has already been used in humans, is shown to boost humoral immunity primarily by acting on monocyte-derived dendritic cells. This study provides novel insight on the mode of action of adjuvant targeting Toll-like receptors. PMID:24803394

  4. Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage

    PubMed Central

    Park, Jung; Gebhardt, Matthias; Golovchenko, Svitlana; Perez-Branguli, Francesc; Hattori, Takako; Hartmann, Christine; Zhou, Xin; deCrombrugghe, Benoit; Stock, Michael; Schneider, Holm; von der Mark, Klaus

    2015-01-01

    According to the general understanding, the chondrocyte lineage terminates with the elimination of late hypertrophic cells by apoptosis in the growth plate. However, recent cell tracking studies have shown that murine hypertrophic chondrocytes can survive beyond “terminal” differentiation and give rise to a progeny of osteoblasts participating in endochondral bone formation. The question how chondrocytes convert into osteoblasts, however, remained open. Following the cell fate of hypertrophic chondrocytes by genetic lineage tracing using BACCol10;Cre induced YFP-reporter gene expression we show that a progeny of Col10Cre-reporter labelled osteoprogenitor cells and osteoblasts appears in the primary spongiosa and participates – depending on the developmental stage – substantially in trabecular, endosteal, and cortical bone formation. YFP+ trabecular and endosteal cells isolated by FACS expressed Col1a1, osteocalcin and runx2, thus confirming their osteogenic phenotype. In searching for transitory cells between hypertrophic chondrocytes and trabecular osteoblasts we identified by confocal microscopy a novel, small YFP+Osx+ cell type with mitotic activity in the lower hypertrophic zone at the chondro-osseous junction. When isolated from growth plates by fractional enzymatic digestion, these cells termed CDOP (chondrocyte-derived osteoprogenitor) cells expressed bone typical genes and differentiated into osteoblasts in vitro. We propose the Col10Cre-labeled CDOP cells mark the initiation point of a second pathway giving rise to endochondral osteoblasts, alternative to perichondrium derived osteoprogenitor cells. These findings add to current concepts of chondrocyte-osteocyte lineages and give new insight into the complex cartilage-bone transition process in the growth plate. PMID:25882555

  5. Gene trapping identifies transiently induced survival genes during programmed cell death

    PubMed Central

    Wempe, Frank; Yang, Ji-Yeon; Hammann, Joanna; Melchner, Harald von

    2001-01-01

    Background The existence of a constitutively expressed machinery for death in individual cells has led to the notion that survival factors repress this machinery and, if such factors are unavailable, cells die by default. In many cells, however, mRNA and protein synthesis inhibitors induce apoptosis, suggesting that in some cases transcriptional activity might actually impede cell death. To identify transcriptional mechanisms that interfere with cell death and survival, we combined gene trap mutagenesis with site-specific recombination (Cre/loxP system) to isolate genes from cells undergoing apoptosis by growth factor deprivation. Results From an integration library consisting of approximately 2 × 106 unique proviral integrations obtained by infecting the interleukin-3 (IL-3)-dependent hematopoietic cell line - FLOXIL3 - with U3Cre gene trap virus, we have isolated 125 individual clones that converted to factor independence upon IL-3 withdrawal. Of 102 cellular sequences adjacent to U3Cre integration sites, 17% belonged to known genes, 11% matched single expressed sequence tags (ESTs) or full cDNAs with unknown function and 72% had no match within the public databases. Most of the known genes recovered in this analysis encoded proteins with survival functions. Conclusions We have shown that hematopoietic cells undergoing apoptosis after withdrawal of IL-3 activate survival genes that impede cell death. This results in reduced apoptosis and improved survival of cells treated with a transient apoptotic stimulus. Thus, apoptosis in hematopoietic cells is the end result of a conflict between death and survival signals, rather than a simple death by default. PMID:11516336

  6. Histone deacetylase inhibitor screening identifies HC toxin as the most effective in intrahepatic cholangiocarcinoma cells

    PubMed Central

    ZHOU, WENJIE; CHEN, XIAOXUN; HE, KE; XIAO, JINFENG; DUAN, XIAOPENG; HUANG, RUI; XIA, ZHENGLIN; HE, JINGLIANG; ZHANG, JINQIAN; XIANG, GUOAN

    2016-01-01

    Histone deacetylases (HDACs) are highly expressed in intrahepatic cholangiocarcinoma (ICC) and are associated with poor prognosis of these patients. The aim of the present study was to explore the inhibitory effects of HDAC inhibitors on ICC cells and identify effective and sensitive drugs for ICC. Effects of 34 HDAC inhibitors were screened through two rounds of cell viability assays, and HC toxin, a cyclic tetrapeptide first isolated from the secondary metabolite of Helminthosporium carbonum, exhibited an antitumor activity superior to that of the other HDAC inhibitors and gemcitabine. The mechanisms involved in the inhibitory effects of HC toxin on CCLP-1 cells were investigated by cell counting, colony formation assay, cell morphological observation, real-time PCR, western blotting and flow cytometry. It was demonstrated that HC toxin inhibited the cell proliferation and clone formation ability of the CCLP-1 cells. HC toxin increased the acetyl-histone H4 level and this was associated with the inhibitory effect of HC toxin on the CCLP-1 cells. We also found that HC toxin reduced the level of HDAC1 protein in a post-transcriptional manner. Morphological observation showed multiple morphological changes and indicated the possibility of cell differentiation owing to HC toxin. With increasing concentration of HC toxin, the cell cycle was gradually arrested at the G0/G1 stage and the percentage of apoptotic cells increased which was not mainly through the caspase-3-dependent ways. These results indicated that HC toxin was the most effective among the various HDAC inhibitors with multiple functions in the suppression of ICC in vitro. Thus, HC may be a potential chemotherapeutic for ICC. PMID:26935789

  7. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-07-26

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.

  8. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation

    PubMed Central

    Yang, Zijiang; Concannon, John; Ng, Kelvin S.; Seyb, Kathleen; Mortensen, Luke J.; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P.; Glicksman, Marcie A.; Karp, Jeffrey M.

    2016-01-01

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy. PMID:27457881

  9. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-01-01

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy. PMID:27457881

  10. HEPATOBLASTOMAS IN THE MUMMICHOG, FUNDULUS HETEROCLITUS (L.), FROM A CREOSOTE-CONTAMINATED ENVIRONMENT: A HISTOLOGIC, ULTRASTRUCTURAL AND IMMUNOHISTOCHEMICAL STUDY

    EPA Science Inventory

    A detailed histologic and ultrastructural description of two cases of hepatoblastoma, a primitive liver cell neoplasm, is provided from mummichog, Fundulus heteroclitus(L.), inhabiting a creosote-contaminated site in the Elizabeth River, Virginia, USA. Both neoplasms were multifo...

  11. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    SciTech Connect

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  12. Ultrastructural observations on the development of Ceratomyxa aegyptiaca (Myxozoa: Bivalvulida) infecting Solea aegyptiaca (Pleuronectiformes: Soleidae) from Tunisian coastal lagoon.

    PubMed

    Yemmen, Chiraz; Quilichini, Yann; Marchand, Bernard; Bahri, Sihem

    2016-01-01

    Ultrastructural description of Ceratomyxa aegyptiaca Yemmen, Marton, Eszterbauer and Bahri, 2012 infecting the gallbladder of Solea aegyptiaca Chabanaud, 1927 from a tunisian north-east costal lagoon, was presented in this study. The primary cell was attached to the gallbladder epithelium and presented at one side cytoplasmic projections corresponding to pinocytotic invaginations. Netherless, early sporogonic stages development was carried with contact to the epithelial cells of gallbladder. Immature spores were identified in early sporoblasts by their valvogenic, capsulogenic and binucleated sporoplasmic cells. Capsulogenesis was asynchronous. Each capsulogenic cell presented a large condensed nucleus and a capsular primordium that extended into an external tube. The eversion and coiling of the external tube gave rise to the polar filament, which displayed six turns and an apical plug. PMID:27615932

  13. Ultrastructural pathology and immunohistochemistry of mustard gas lesion

    SciTech Connect

    Petrali, J.P.; Oglesby, S.B.; Hamilton, T.A.; Mills, K.R.

    1993-05-13

    The ultrastructural pathology of sulfur mustard gas (HD) skin toxicity has been characterized for several in vivo and in vitro model systems. In animal models, the pathology involves the latent lethal targeting of skin basal cells, a disabling of hemidesmosomes and a progressive edema of the lamina lucida, all of which contribute to the formation of characteristic microblisters at the dermal-epidermal junction. However, the effects of HD toxicity on structural proteins of extracellular domains of the dermal-epidermal junction have not been elucidated. We are beginning an immunohistochemical study of these domains in the hairless guinea pig and summarize here the time course effects of HD of three structural proteins: bullous pemphigoid antigen, laminin and Type IV collagen. The results of this combined ultrastructural and immunohistochemical study indicate that proteins of extracellular matrices of the basement membrane are antigenically altered during the development of HD-induced skin pathology and may contribute to the formation of microblisters.

  14. Focal dermal hypoplasia: ultrastructural abnormalities of the connective tissue.

    PubMed

    del Carmen Boente, María; Asial, Raúl A; Winik, Beatriz C

    2007-02-01

    We followed over 10 years three girls with focal dermal hypoplasia syndrome. The histopathological changes demonstrated at the optical level an hypoplastic dermis with thin and scarce collagen bundles and a marked diminution of elastic fibers. Mature adipose tissue was found scattered within the papillary and reticular dermis. No alterations in the basal membrane were observed by immunocytochemical or ultrastructural techniques. Ultrastructurally, in the skin-affected areas, loosely arranged collagen bundles composed of few fibrils were seen scattered in the extracellular matrix. Scarce elastic fibers of normal morphology were also observed. Fibroblasts were smaller, oval-shaped, and diminished in number with a poorly developed cytoplasm. In these fibroblasts, the most conspicuous feature was a remarkable and irregular thickening of the nuclear fibrous lamina. Taking into account that a common link between all laminopaties may be a failure of stem cells to regenerate mesenchymal tissue, this failure would induce the dermal hypoplasia observed in our patients presenting Goltz syndrome.

  15. [Ketamine-induced ultrastructural changes in the retina].

    PubMed

    Magdolina, A

    1978-10-01

    Alterations of the retina caused by ketamin were studied in experiment. After a 60-minutes monoanaesthesia with ketamin ultrastructural changes were observed on the inner members of receptor cells, in the three nuclear layers and in the layer of nerve fibres. Severe damage to the structure of the Müller's glial cells providing nutrition to neural-elements was also revealed. Three days after the anaesthesia beside the regression of these alterations, glycogen deposits could be seen in the Müller's cells. This phenomenon and some side effects caused by ketamin can be explained by increased utilization of oxygen and relative hypoxia.

  16. Development of A Cell-Based Assay to Identify Small Molecule Inhibitors of FGF23 Signaling.

    PubMed

    Diener, Susanne; Schorpp, Kenji; Strom, Tim-Matthias; Hadian, Kamyar; Lorenz-Depiereux, Bettina

    2015-10-01

    Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine key regulator of phosphate homeostasis. It inhibits renal tubular phosphate reabsorption by activating receptor complexes composed of FGF receptor 1c (FGFR1c) and the co-receptor Klotho. As a major signaling pathway mitogen-activated protein kinase (MAPK) pathway is employed. In this study, we established an FGF23-inducible cell model by stably expressing human Klotho in HEK293 cells (HEK293-KL cells) containing endogenous FGF receptors. To identify novel small molecule compounds that modulate FGF23/FGFR1c/Klotho signaling, we developed and optimized a cell-based assay that is suited for high-throughput screening. The assay monitors the phosphorylation of endogenous extracellular signal-regulated kinase 1 and 2 in cellular lysates of HEK293-KL cells after induction with FGF23. This cell-based assay was highly robust (Z' factor >0.5) and the induction of the system is strictly dependent on the presence of FGF23. The inhibitor response curves generated using two known MAPK pathway inhibitors correlate well with data obtained by another assay format. This assay was further used to identify small molecule modulators of the FGF23 signaling cascade by screening the 1,280 food and drug administration-approved small molecule library of Prestwick Chemical. The primary hit rate was 2% and false positives were efficiently identified by retesting the hits in primary and secondary validation screening assays and in western blot analysis. Intriguingly, by using a basic FGF (bFGF)/FGFR counterscreening approach, one validated hit compound retained specificity toward FGF23 signaling, while bFGF signaling was not affected. Since increased plasma concentrations of FGF23 are the main cause of many hypophosphatemic disorders, a modulation of its effect could be a potential novel strategy for therapeutic intervention. Moreover, this strategy may be valuable for other disorders affecting phosphate homeostasis. PMID:26461432

  17. Plasmodesmal receptor-like kinases identified through analysis of rice cell wall extracted proteins.

    PubMed

    Jo, Yeonhwa; Cho, Won Kyong; Rim, Yeonggil; Moon, Juyeon; Chen, Xiong-Yan; Chu, Hyosub; Kim, Cha Young; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2011-01-01

    In plants, plasmodesmata (PD) are intercellular channels that function in both metabolite exchange and the transport of proteins and RNAs. Currently, many of the PD structural and regulatory components remain to be elucidated. Receptor-like kinases (RLKs) belonging to a notably expanded protein family in plants compared to the animal kingdom have been shown to play important roles in plant growth, development, pathogen resistance, and cell death. In this study, cell biological approaches were used to identify potential PD-associated RLK proteins among proteins contained within cell walls isolated from rice callus cultured cells. A total of 15 rice RLKs were investigated to determine their subcellular localization, using an Agrobacterium-mediated transient expression system. Of these six PD-associated RLKs were identified based on their co-localization with a viral movement protein that served as a PD marker, plasmolysis experiments, and subcellular localization at points of wall contact between spongy mesophyll cells. These findings suggest potential PD functions in apoplasmic signaling in response to environmental stimuli and developmental inputs. PMID:21161304

  18. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells.

    PubMed

    Agizzio, Ana Paula; Da Cunha, Maura; Carvalho, André O; Oliveira, Marco Antônio; Ribeiro, Suzanna F F; Gomes, Valdirene M

    2006-10-01

    Different types of antimicrobial proteins were purified from plant seeds, including chitinases, β-1,3-glucanases, defensins, thionins, lipid transfer proteins and 2S albumins. It has become clear that these groups of proteins play an important role in the protection of plants from microbial infection. Recent results from our laboratory have shown that the defense-related proteins from passion fruit seeds, named Pf1 and Pf2 (which show sequence homology with 2S albumins), inhibit fungal growth and glucose-stimulated acidification of the medium by Saccharomyces cerevisiae cells. The aim of this study was to determine whether 2S albumins from passion fruit seeds induce plasma membrane permeabilization and cause morphological alterations in yeast cells. Initially, we used an assay based on the uptake of SYTOX Green, an organic compound that fluoresces upon interaction with nucleic acids and penetrates cells with compromised plasma membranes, to investigate membrane permeabilization in S. cerevisiae cells. When viewed with a confocal laser microscope, S. cervisiae cells showed strong SYTOX Green fluorescence in the cytosol, especially in the nuclei. 2S albumins also inhibited glucose-stimulated acidification of the medium by S. cerevisiae cells, which indicates a probable impairment of fungal metabolism. The microscopical analysis of the yeast cells treated with 2S albumins demonstrated several morphological alterations in cell shape,