Sample records for cells identifies activated

  1. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma

    PubMed Central

    Hassan, Khaled A.; Wang, Luo; Korkaya, Hasan; Chen, Guoan; Maillard, Ivan; Beer, David G.; Kalemkerian, Gregory P.; Wicha, Max S.

    2013-01-01

    Purpose The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. Experimental Design We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity. Results Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival. Conclusions Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma. PMID:23444212

  2. A role for RNA post-transcriptional regulation in satellite cell activation

    PubMed Central

    2012-01-01

    Background Satellite cells are resident skeletal muscle stem cells responsible for muscle maintenance and repair. In resting muscle, satellite cells are maintained in a quiescent state. Satellite cell activation induces the myogenic commitment factor, MyoD, and cell cycle entry to facilitate transition to a population of proliferating myoblasts that eventually exit the cycle and regenerate muscle tissue. The molecular mechanism involved in the transition of a quiescent satellite cell to a transit-amplifying myoblast is poorly understood. Methods Satellite cells isolated by FACS from uninjured skeletal muscle and 12 h post-muscle injury from wild type and Syndecan-4 null mice were probed using Affymetrix 430v2 gene chips and analyzed by Spotfiretm and Ingenuity Pathway analysis to identify gene expression changes and networks associated with satellite cell activation, respectively. Additional analyses of target genes identify miRNAs exhibiting dynamic changes in expression during satellite cell activation. The function of the miRNAs was assessed using miRIDIAN hairpin inhibitors. Results An unbiased gene expression screen identified over 4,000 genes differentially expressed in satellite cells in vivo within 12 h following muscle damage and more than 50% of these decrease dramatically. RNA binding proteins and genes involved in post-transcriptional regulation were significantly over-represented whereas splicing factors were preferentially downregulated and mRNA stability genes preferentially upregulated. Furthermore, six computationally identified miRNAs demonstrated novel expression through muscle regeneration and in satellite cells. Three of the six miRNAs were found to regulate satellite cell fate. Conclusions The quiescent satellite cell is actively maintained in a state poised to activate in response to external signals. Satellite cell activation appears to be regulated by post-transcriptional gene regulation. PMID:23046558

  3. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells

    PubMed Central

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C.; Hanson, Buck T.; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M.; Fowler, Patrick W.; Huang, Wei E.; Wagner, Michael

    2015-01-01

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518

  4. TATA-binding protein-associated factor 7 regulates polyamine transport activity and polyamine analog-induced apoptosis.

    PubMed

    Fukuchi, Junichi; Hiipakka, Richard A; Kokontis, John M; Nishimura, Kazuhiro; Igarashi, Kazuei; Liao, Shutsung

    2004-07-16

    Identification of the polyamine transporter gene will be useful for modulating polyamine accumulation in cells and should be a good target for controlling cell proliferation. Polyamine transport activity in mammalian cells is critical for accumulation of the polyamine analog methylglyoxal bis(guanylhydrazone) (MGBG) that induces apoptosis, although a gene responsible for transport activity has not been identified. Using a retroviral gene trap screen, we generated MGBG-resistant Chinese hamster ovary (CHO) cells to identify genes involved in polyamine transport activity. One gene identified by the method encodes TATA-binding protein-associated factor 7 (TAF7), which functions not only as one of the TAFs, but also a coactivator for c-Jun. TAF7-deficient cells had decreased capacity for polyamine uptake (20% of CHO cells), decreased AP-1 activation, as well as resistance to MGBG-induced apoptosis. Stable expression of TAF7 in TAF7-deficient cells restored transport activity (55% of CHO cells), AP-1 gene transactivation (100% of CHO cells), and sensitivity to MGBG-induced apoptosis. Overexpression of TAF7 in CHO cells did not increase transport activity, suggesting that TAF7 may be involved in the maintenance of basal activity. c-Jun NH2-terminal kinase inhibitors blocked MGBG-induced apoptosis without alteration of polyamine transport. Decreased TAF7 expression, by RNA interference, in androgen-independent human prostate cancer LN-CaP104-R1 cells resulted in lower polyamine transport activity (25% of control) and resistance to MGBG-induced growth arrest. Taken together, these results reveal a physiological function of TAF7 as a basal regulator for mammalian polyamine transport activity and MGBG-induced apoptosis.

  5. Insights into the anticancer properties of the first antimicrobial peptide from Archaea.

    PubMed

    Gaglione, Rosa; Pirone, Luciano; Farina, Biancamaria; Fusco, Salvatore; Smaldone, Giovanni; Aulitto, Martina; Dell'Olmo, Eliana; Roscetto, Emanuela; Del Gatto, Annarita; Fattorusso, Roberto; Notomista, Eugenio; Zaccaro, Laura; Arciello, Angela; Pedone, Emilia; Contursi, Patrizia

    2017-09-01

    The peptide VLL-28, identified in the sequence of an archaeal protein, the transcription factor Stf76 from Sulfolobus islandicus, was previously identified and characterized as an antimicrobial peptide, possessing a broad-spectrum antibacterial activity. Through a combined approach of NMR and Circular Dichroism spectroscopy, Dynamic Light Scattering, confocal microscopy and cell viability assays, the interaction of VLL-28 with the membranes of both parental and malignant cell lines has been characterized and peptide mechanism of action has been studied. It is here demonstrated that VLL-28 selectively exerts cytotoxic activity against murine and human tumor cells. By means of structural methodologies, VLL-28 interaction with the membranes has been proven and the binding residues have been identified. Confocal microscopy data show that VLL-28 is internalized only into tumor cells. Finally, it is shown that cell death is mainly caused by a time-dependent activation of apoptotic pathways. VLL-28, deriving from the archaeal kingdom, is here found to be endowed with selective cytotoxic activity towards both murine and human cancer cells and consequently can be classified as an ACP. VLL-28 represents the first ACP identified in an archaeal microorganism, exerting a trans-kingdom activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Tracking heavy water (D 2O) incorporation for identifying and sorting active microbial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, David; Mader, Esther; Lee, Tae Kwon

    Here, microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. Here in this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D 2O) combined with Raman microspectroscopy. Incorporation of D 2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labelingmore » pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D 2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D 2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.« less

  7. Tracking heavy water (D 2O) incorporation for identifying and sorting active microbial cells

    DOE PAGES

    Berry, David; Mader, Esther; Lee, Tae Kwon; ...

    2014-12-30

    Here, microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. Here in this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D 2O) combined with Raman microspectroscopy. Incorporation of D 2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labelingmore » pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D 2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D 2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.« less

  8. An Improved Flow Cytometry Method For Precise Quantitation Of Natural-Killer Cell Activity

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Nehlsen-Cannarella, Sandra; Sams, Clarence

    2006-01-01

    The ability to assess NK cell cytotoxicity using flow cytometry has been previously described and can serve as a powerful tool to evaluate effector immune function in the clinical setting. Previous methods used membrane permeable dyes to identify target cells. The use of these dyes requires great care to achieve optimal staining and results in a broad spectral emission that can make multicolor cytometry difficult. Previous methods have also used negative staining (the elimination of target cells) to identify effector cells. This makes a precise quantitation of effector NK cells impossible due to the interfering presence of T and B lymphocytes, and the data highly subjective to the variable levels of NK cells normally found in human peripheral blood. In this study an improved version of the standard flow cytometry assay for NK activity is described that has several advantages of previous methods. Fluorescent antibody staining (CD45FITC) is used to positively identify target cells in place of membranepermeable dyes. Fluorescent antibody staining of target cells is less labor intensive and more easily reproducible than membrane dyes. NK cells (true effector lymphocytes) are also positively identified by fluorescent antibody staining (CD56PE) allowing a simultaneous absolute count assessment of both NK cells and target cells. Dead cells are identified by membrane disruption using the DNA intercalating dye PI. Using this method, an exact NK:target ratio may be determined for each assessment, including quantitation of NK target complexes. Backimmunoscatter gating may be used to track live vs. dead Target cells via scatter properties. If desired, NK activity may then be normalized to standardized ratios for clinical comparisons between patients, making the determination of PBMC counts or NK cell percentages prior to testing unnecessary. This method provides an exact cytometric determination of NK activity that highly reproducible and may be suitable for routine use in the clinical setting.

  9. A map of protein dynamics during cell-cycle progression and cell-cycle exit

    PubMed Central

    Gookin, Sara; Min, Mingwei; Phadke, Harsha; Chung, Mingyu; Moser, Justin; Miller, Iain; Carter, Dylan

    2017-01-01

    The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence. PMID:28892491

  10. The DNA methylation profile of activated human natural killer cells.

    PubMed

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-03

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states.

  11. Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases.

    PubMed

    Florio, Tullio

    2008-05-14

    Activation of phosphotyrosine phosphatases (PTPs) by somatostatin receptor (SSTR) represents one of the main intracellular mechanisms involved in the antiproliferative effect of somatostatin (SST) and analogues. Since their molecular cloning, the role of PTPs is emerging as a major regulator of different cell functions including cell proliferation, differentiation, cell to cell interactions, cell matrix adhesion and cell migration. It was demonstrated that PTPs possess high substrate specificity and their activity is tightly regulated. Importantly, different G protein-coupled receptors transduce their biological activities through PTPs. PTPs were identified as down-stream effectors of SSTRs to transduce antiproliferative signals, and so far, three family members (SHP-1, SHP-2 and DEP-1/PTPeta) have been identified as selective SSTR intracellular effectors. Here, the molecular mechanisms leading SSTRs to regulate PTP activity are discussed, focusing on recent data showing a close interplay between PTPs and tyrosine kinases to transduce tumoral cell growth arrest following SST analogs administration.

  12. Oxygen transfer rate identifies priming compounds in parsley cells.

    PubMed

    Schilling, Jana Viola; Schillheim, Britta; Mahr, Stefan; Reufer, Yannik; Sanjoyo, Sandi; Conrath, Uwe; Büchs, Jochen

    2015-11-25

    In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin secretion as evaluated by fluorescence spectroscopy. RAMOS noninvasively determines the OTR as a measure of the metabolic activity of plant cells. Chemical enhancement of oxygen consumption by salicylic derivatives in parsley cell suspension cultures correlates with the induction of the primed state of enhanced defense that enhances the quantity of Pep13-induced furanocoumarin phytoalexins. Treatment with the priming-active compounds methyl jasmonate and pyraclostrobin also resulted in an enhanced respiration activity. Thus, RAMOS is a novel technology for identifying priming-inducing compounds for agriculture.

  13. Detecting Anastasis In Vivo by CaspaseTracker Biosensor.

    PubMed

    Tang, Ho Man; Fung, Ming Chiu; Tang, Ho Lam

    2018-02-01

    Anastasis (Greek for "rising to life") is a recently discovered cell recovery phenomenon whereby dying cells can reverse late-stage cell death processes that are generally assumed to be intrinsically irreversible. Promoting anastasis could in principle rescue or preserve injured cells that are difficult to replace such as cardiomyocytes or neurons, thereby facilitating tissue recovery. Conversely, suppressing anastasis in cancer cells, undergoing apoptosis after anti-cancer therapies, may ensure cancer cell death and reduce the chances of recurrence. However, these studies have been hampered by the lack of tools for tracking the fate of cells that undergo anastasis in live animals. The challenge is to identify the cells that have reversed the cell death process despite their morphologically normal appearance after recovery. To overcome this difficulty, we have developed Drosophila and mammalian CaspaseTracker biosensor systems that can identify and permanently track the anastatic cells in vitro or in vivo. Here, we present in vivo protocols for the generation and use of the CaspaseTracker dual biosensor system to detect and track anastasis in Drosophila melanogaster after transient exposure to cell death stimuli. While conventional biosensors and protocols can label cells actively undergoing apoptotic cell death, the CaspaseTracker biosensor can permanently label cells that have recovered after caspase activation - a hallmark of late-stage apoptosis, and simultaneously identify active apoptotic processes. This biosensor can also track the recovery of the cells that attempted other forms of cell death that directly or indirectly involved caspase activity. Therefore, this protocol enables us to continuously track the fate of these cells and their progeny, facilitating future studies of the biological functions, molecular mechanisms, physiological and pathological consequences, and therapeutic implications of anastasis. We also discuss the appropriate controls to distinguish cells that undergo anastasis from those that display non-apoptotic caspase activity in vivo.

  14. Mast cell heterogeneity underlies different manifestations of food allergy in mice

    PubMed Central

    Benedé, Sara

    2018-01-01

    Food can trigger a diverse array of symptoms in food allergic individuals from isolated local symptoms affecting skin or gut to multi-system severe reactions (systemic anaphylaxis). Although we know that gastrointestinal and systemic manifestations of food allergy are mediated by tissue mast cells (MCs), it is not clear why allergen exposure by the oral route can result in such distinct clinical manifestations. Our aim was to assess the contribution of mast cell subsets to different manifestations of food allergy. We used two common models of IgE-mediated food allergy, one resulting in systemic anaphylaxis and the other resulting in acute gastrointestinal symptoms, to study the immune basis of allergic reactions. We used responders and non-responders in each model system, as well as naïve controls to identify the association of mast cell activation with clinical reactivity rather than sensitization. Systemic anaphylaxis was uniquely associated with activation of connective tissue mast cells (identified by release of mouse mast cell protease (MMCP) -7 into the serum) and release of histamine, while activation of mucosal mast cells (identified by release of MMCP-1 in the serum) did not correlate with symptoms. Gastrointestinal manifestations of food allergy were associated with an increase of MMCP-1-expressing mast cells in the intestine, and evidence of both mucosal and connective tissue mast cell activation. The data presented in this paper demonstrates that mast cell heterogeneity is an important contributor to manifestations of food allergy, and identifies the connective tissue mast cell subset as key in the development of severe systemic anaphylaxis. PMID:29370173

  15. Telomerase expression in the mammalian heart

    PubMed Central

    Richardson, Gavin D.; Breault, David; Horrocks, Grace; Cormack, Suzanne; Hole, Nicholas; Owens, W. Andrew

    2012-01-01

    While the mammalian heart has low, but functionally significant, levels of telomerase expression, the cellular population responsible remains incompletely characterized. This study aimed to identify the cell types responsible for cardiac telomerase activity in neonatal, adult, and cryoinjured adult hearts using transgenic mice expressing green fluorescent protein (GFP), driven by the promoter for murine telomerase reverse transcriptase (mTert), which is a necessary and rate-limiting component of telomerase. A rare population of mTert-GFP-expressing cells was identified that possessed all detectable cardiac telomerase RNA and telomerase activity. It was heterogeneous and included cells coexpressing markers of cardiomyocytic, endothelial, and mesenchymal lineages, putative cardiac stem cell markers, and, interestingly, cardiomyocytes with a differentiated phenotype. Quantification using both flow cytometry and immunofluorescence identified a significant decline in mTert-GFP cells in adult animals compared to neonates (∼9- and ∼20-fold, respectively). Cardiac injury resulted in a ∼6.45-fold expansion of this population (P<0.005) compared with sham-operated controls. This study identifies the cells responsible for cardiac telomerase activity, demonstrates a significant diminution with age but a marked response to injury, and, given the relationship between telomerase activity and stem cell populations, suggests that they represent a potential target for further investigation of cardiac regenerative potential.—Richardson, G. D., Breault, D., Horrocks, G., Cormack, S., Hole, N., Owens, W. A. Telomerase expression in the mammalian heart. PMID:22919071

  16. Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: effects on in vitro cell growth of human tumor cell lines.

    PubMed

    Khan, Mahmud Tareq Hassan; Lampronti, Ilaria; Martello, Dino; Bianchi, Nicoletta; Jabbar, Shaila; Choudhuri, Mohammad Shahabuddin Kabir; Datta, Bidduyt Kanti; Gambari, Roberto

    2002-07-01

    In this study we compared the in vitro antiproliferative activity of extracts from medicinal plants toward human tumor cell lines, including human erythromyeloid K562, B-lymphoid Raji, T-lymphoid Jurkat, erythroleukemic HEL cell lines. Extracts from Emblica officinalis were the most active in inhibiting in vitro cell proliferation, after comparison to those from Terminalia arjuna, Aphanamixis polystachya, Oroxylum indicum, Cuscuta reflexa, Aegle marmelos, Saraca asoka, Rumex maritimus, Lagerstroemia speciosa, Red Sandalwood. Emblica officinalis extracts have been studied previously, due to their hepatoprotective, antioxidant, antifungal, antimicrobial and anti-inflammatory medicinal activities. Gas chromatography/mass spectrometry analyses allowed to identify pyrogallol as the common compound present both in unfractionated and n-butanol fraction of Emblica officinalis extracts. Antiproliferative effects of pyrogallol were therefore determined on human tumor cell lines thus identifying pyrogallol as an active component of Emblica officinalis extracts.

  17. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

    PubMed

    Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K

    2017-03-01

    The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Versatile function of the circadian protein CIPC as a regulator of Erk activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Ryota; Nishino, Tasuku; Yokoyama, Atsushi

    2016-01-15

    The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase,more » and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins. - Highlights: • CIPC is a cell cycle dependent nuclear-cytoplasmic shuttling protein. • K186 and 187are the essential amino acid residues within the NLS of CIPC. • CAD was identified as a novel CIPC-binding protein. • CIPC might regulate the activity and translocation of CAD in the cells.« less

  19. Lack of in vitro constitutive activity for four previously reported TSH receptor mutations identified in patients with nonautoimmune hyperthyroidism and hot thyroid carcinomas.

    PubMed

    Jaeschke, Holger; Mueller, Sandra; Eszlinger, Markus; Paschke, Ralf

    2010-12-01

    Constitutively activating mutations (CAMs) of the TSHR are the major cause for nonautoimmune hyperthyroidism. Re-examination of constitutive activity previously determined in CHO cell lines recently demonstrated the caveats for the in vitro determination of constitutive TSHR activity, which leads to false positive conclusions regarding the molecular origin of hyperthyroidism or hot thyroid carcinomas. Mutations L677V and T620I identified in hot thyroid carcinomas were previously characterized in CHO and in 3T3-Vill cell lines, respectively, stably expressing the mutant without determination of TSHR expression. F666L identified in a patient with hot thyroid nodules, I691F in a family with nonautoimmune hyperthyroidism and F631I identified in a hot thyroid carcinoma were not characterized for their in vitro function. Therefore, we decided to (re)evaluate the in vitro function of these five TSHR variants by determination of cell surface expression, and intracellular cAMP and inositol phosphate levels and performed additionally linear regression analyses to determine basal activity independently from the mutant's cell surface expression in COS-7 and HEK(GT) cells. Only one (F631I) of the five investigated TSHR variants displayed constitutive activity for G(α) s signalling and showed correlation with the clinical phenotype. The previous false classification of T620I and L677V as CAMs is most likely related to the fact that both mutations were characterized in cell lines stably expressing the mutated receptor construct without assessing the respective receptor number per cell. Other molecular aetiologies for the nonautoimmune hyperthyroidism and/or hot thyroid carcinomas in these three patients and one family should be elucidated. © 2010 Blackwell Publishing Ltd.

  20. Differential PKA activation and AKAP association determines cell fate in cancer cells

    PubMed Central

    2013-01-01

    Background The dependence of malignant properties of colorectal cancer (CRC) cells on IGF1R signaling has been demonstrated and several IGF1R antagonists are currently in clinical trials. Recently, we identified a novel pathway in which cAMP independent PKA activation by TGFβ signaling resulted in the destabilization of survivin/XIAP complex leading to increased cell death. In this study, we evaluated the effect of IGF1R inhibition or activation on PKA activation and its downstream cell survival signaling mechanisms. Methods Small molecule IGF1R kinase inhibitor OSI-906 was used to test the effect of IGF1R inhibition on PKA activation, AKAP association and its downstream cell survival signaling. In a complementary approach, ligand mediated activation of IGF1R was performed and AKAP/PKA signaling was analyzed for their downstream survival effects. Results We demonstrate that the inhibition of IGF1R in the IGF1R-dependent CRC subset generates cell death through a novel mechanism involving TGFβ stimulated cAMP independent PKA activity that leads to disruption of cell survival by survivin/XIAP mediated inhibition of caspase activity. Importantly, ligand mediated activation of the IGF1R in CRC cells results in the generation of cAMP dependent PKA activity that functions in cell survival by inhibiting caspase activity. Therefore, this subset of CRC demonstrates 2 opposing pathways organized by 2 different AKAPs in the cytoplasm that both utilize activation of PKA in a manner that leads to different outcomes with respect to life and death. The cAMP independent PKA activation pathway is dependent upon mitochondrial AKAP149 for its apoptotic functions. In contrast, Praja2 (Pja2), an AKAP-like E3 ligase protein was identified as a key element in controlling cAMP dependent PKA activity and pro-survival signaling. Genetic manipulation of AKAP149 and Praja2 using siRNA KD had opposing effects on PKA activity and survivin/XIAP regulation. Conclusions We had identified 2 cytoplasmic pathways dependent upon the same enzymatic activity with opposite effects on cell fate in terms of life and death. Understanding the specific mechanistic functions of IGF1R with respect to determining the PKA survival functions would have potential for impact upon the development of new therapeutic strategies by exploiting the IGF1R/cAMP-PKA survival signaling in cancer. PMID:24083380

  1. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries

    PubMed Central

    Park, Eun-Sil; Tilly, Jonathan L.

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26tdTm/tdTm mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter ‘leakiness’ in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture. PMID:25147160

  2. Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons.

    PubMed

    Welsbie, Derek S; Mitchell, Katherine L; Jaskula-Ranga, Vinod; Sluch, Valentin M; Yang, Zhiyong; Kim, Jessica; Buehler, Eugen; Patel, Amit; Martin, Scott E; Zhang, Ping-Wu; Ge, Yan; Duan, Yukan; Fuller, John; Kim, Byung-Jin; Hamed, Eman; Chamling, Xitiz; Lei, Lei; Fraser, Iain D C; Ronai, Ze'ev A; Berlinicke, Cynthia A; Zack, Donald J

    2017-06-21

    Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity.

    PubMed

    Alonso-Martin, Sonia; Auradé, Frédéric; Mademtzoglou, Despoina; Rochat, Anne; Zammit, Peter S; Relaix, Frédéric

    2018-06-08

    Muscle satellite cells are the primary source of stem cells for postnatal skeletal muscle growth and regeneration. Understanding genetic control of satellite cell formation, maintenance, and acquisition of their stem cell properties is on-going, and we have identified SOXF (SOX7, SOX17, SOX18) transcriptional factors as being induced during satellite cell specification. We demonstrate that SOXF factors regulate satellite cell quiescence, self-renewal and differentiation. Moreover, ablation of Sox17 in the muscle lineage impairs postnatal muscle growth and regeneration. We further determine that activities of SOX7, SOX17 and SOX18 overlap during muscle regeneration, with SOXF transcriptional activity requisite. Finally, we show that SOXF factors also control satellite cell expansion and renewal by directly inhibiting the output of β-catenin activity, including inhibition of Ccnd1 and Axin2 . Together, our findings identify a key regulatory function of SoxF genes in muscle stem cells via direct transcriptional control and interaction with canonical Wnt/β-catenin signaling. © 2018, Alonso-Martin et al.

  4. CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+-activated human regulatory T cells.

    PubMed

    Solstad, Therese; Bains, Simer Jit; Landskron, Johannes; Aandahl, Einar Martin; Thiede, Bernd; Taskén, Kjetil; Torgersen, Knut Martin

    2011-11-10

    Human CD4(+)FoxP3(+) T cells are functionally and phenotypically heterogeneous providing plasticity to immune activation and regulation. To better understand the functional dynamics within this subset, we first used a combined strategy of subcellular fractionation and proteomics to describe differences at the protein level between highly purified human CD4(+)CD25(+) and CD4(+)CD25(-) T-cell populations. This identified a set of membrane proteins highly expressed on the cell surface of human regulatory T cells (Tregs), including CD71, CD95, CD147, and CD148. CD147 (Basigin or Emmprin) divided CD4(+)CD25(+) cells into distinct subsets. Furthermore, CD147, CD25, FoxP3, and in particular CTLA-4 expression correlated. Phenotypical and functional analyses suggested that CD147 marks the switch between resting (CD45RA(+)) and activated (CD45RO(+)) subsets within the FoxP3(+) T-cell population. Sorting of regulatory T cells into CD147(-) and CD147(+) populations demonstrated that CD147 identifies an activated and highly suppressive CD45RO(+) Treg subset. When analyzing CD4(+) T cells for their cytokine producing potential, CD147 levels grouped the FoxP3(+) subset into 3 categories with different ability to produce IL-2, TNF-α, IFN-γ, and IL-17. Together, this suggests that CD147 is a direct marker for activated Tregs within the CD4(+)FoxP3(+) subset and may provide means to manipulate cells important for immune homeostasis.

  5. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism

    PubMed Central

    Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael

    2017-01-01

    Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516

  6. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  7. Cell cycle-coupled expansion of AR activity promotes cancer progression.

    PubMed

    McNair, C; Urbanucci, A; Comstock, C E S; Augello, M A; Goodwin, J F; Launchbury, R; Zhao, S G; Schiewer, M J; Ertel, A; Karnes, J; Davicioni, E; Wang, L; Wang, Q; Mills, I G; Feng, F Y; Li, W; Carroll, J S; Knudsen, K E

    2017-03-23

    The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.

  8. CD137 is a Useful Marker for Identifying CD4+ T Cell Responses to Mycobacterium tuberculosis.

    PubMed

    Yan, Z-H; Zheng, X-F; Yi, L; Wang, J; Wang, X-J; Wei, P-J; Jia, H-Y; Zhou, L-J; Zhao, Y-L; Zhang, H-T

    2017-05-01

    Upregulation of CD137 on recently activated CD8 + T cells has been used to identify rare viral and tumour antigen-specific T cells from the peripheral blood. We aimed to evaluate the accuracy of CD137 for identifying Mycobacterium tuberculosis (Mtb)-reactive CD4 + T cells in the peripheral blood of infected individuals by flow cytometry and to investigate the characteristics of these CD137 + CD4 + T cells. We initially enrolled 31 active tuberculosis (TB) patients, 31 individuals with latent TB infection (LTBI) and 25 healthy donors. The intracellular CD137 and interferon-γ (IFN-γ) production by CD4 + T cells was simultaneously detected under unstimulated and CFP10-stimulated (culture filtrate protein 10, a Mtb-specific antigen) conditions. In unstimulated CD4 + T cells, we found that the CD137 expression in the TB group was significantly higher than that in the LTBI group. Stimulation with CFP10 largely increased the CD4 + T cell CD137 expression in both the TB and LTBI groups. After CFP10 stimulation, the frequency of CD137 + CD4 + T cells was higher than that of IFN-γ + CD4 + T cells in both the TB and LTBI groups. Most of the CFP10-activated IFN-γ-secreting cells were CD137-positive, but only a small fraction of the CD137-positive cells expressed IFN-γ. An additional 20 patients with TB were enrolled to characterize the CD45RO + CCR7 + , CD45RO + CCR7 - and CD45RO - subsets in the CD137 + CD4 + T cell populations. The Mtb-specific CD137 + CD4 + T cells were mainly identified as having an effector memory phenotype. In conclusion, CD137 is a useful marker that can be used for identifying Mtb-reactive CD4 + T cells by flow cytometry. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  9. Cytoprotective dibenzoylmethane derivatives protect cells from oxidative stress-induced necrotic cell death.

    PubMed

    Hegedűs, Csaba; Lakatos, Petra; Kiss-Szikszai, Attila; Patonay, Tamás; Gergely, Szabolcs; Gregus, Andrea; Bai, Péter; Haskó, György; Szabó, Éva; Virág, László

    2013-06-01

    Screening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation. These compounds protected cells from necrotic cell death while caspase activation, a parameter of apoptotic cell death was not affected. Hydrogen peroxide activated extracellular signal regulated kinase (ERK1/2) and p38 MAP kinases but not c-Jun N-terminal kinase (JNK). The cytoprotective DBMs suppressed the activation of Erk1/2 but not that of p38. Cytoprotection was confirmed in another cell type (A549 lung epithelial cells), indicating that the cytoprotective effect is not cell type specific. In conclusion we identified DBM analogs as a novel class of cytoprotective compounds inhibiting ERK1/2 kinase and protecting from necrotic cell death by a mechanism independent of poly(ADP-ribose) polymerase inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Emodin is identified as the active component of ether extracts from Rhizoma Polygoni Cuspidati, for anti-MRSA activity.

    PubMed

    Cao, Feng; Peng, Wei; Li, Xiaoli; Liu, Ming; Li, Bin; Qin, Rongxin; Jiang, Weiwei; Cen, Yanyan; Pan, Xichun; Yan, Zifei; Xiao, Kangkang; Zhou, Hong

    2015-06-01

    This study investigated the anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity and chemical compositions of ether extracts from Rhizoma Polygoni Cuspidati (ET-RPC). Significant anti-MRSA activities of ET-RPC against MRSA252 and MRSA clinical strains were tested in in vitro antibacterial experiments, such as inhibition zone diameter test, minimal inhibitory concentration test, and dynamic bacterial growth assay. Subsequently, 7 major compounds of ET-RPC were purified and identified as polydatin, resveratrol-4-O-d-(6'-galloyl)-glucopyranoside, resveratrol, torachryson-8-O-glucoside, emodin-8-O-glucoside, 6-hydroxy-emodin, and emodin using liquid chromatography - electrospray ionization - tandem mass spectrometry. After investigation of anti-MRSA activities of the 7 major compounds, only emodin had significant anti-MRSA activity. Further, transmission electron microscopy was used to observe morphological changes in the cell wall of MRSA252, and the result revealed that emodin could damage the integrity of cell wall, leading to loss of intracellular components. In summary, our results showed ET-RPC could significantly inhibit bacterial growth of MRSA strains. Emodin was identified as the major compound with anti-MRSA activity; this activity was related to destruction of the integrity of the cell wall and cell membrane.

  11. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    NASA Astrophysics Data System (ADS)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic labels will allow in situ detection of metabolically-targeted active community members on complex natural substrates providing a crucial link between microbial activity and environmental context.

  12. Metabolomic Response of Human Embryonic Stem Cell Derived Germ-like Cells after Exposure to Steroid Hormones

    EPA Science Inventory

    To assess the potential risks of human exposure to endocrine active compounds (EACs), the mechanisms of toxicity must first be identified and characterized. Currently, there are no robust in vitro models for identifying the mechanisms of toxicity in germ cells resulting from EAC ...

  13. Quantitative High-throughput Luciferase Screening in Identifying CAR Modulators

    PubMed Central

    Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang

    2017-01-01

    Summary The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR. PMID:27518621

  14. Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators.

    PubMed

    Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang

    2016-01-01

    The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.

  15. MERTK as negative regulator of human T cell activation

    PubMed Central

    Cabezón, Raquel; Carrera-Silva, E. Antonio; Flórez-Grau, Georgina; Errasti, Andrea E.; Calderón-Gómez, Elisabeth; Lozano, Juan José; España, Carolina; Ricart, Elena; Panés, Julián; Rothlin, Carla Vanina; Benítez-Ribas, Daniel

    2015-01-01

    The aim of this study was to test the hypothesis whether MERTK, which is up-regulated in human DCs treated with immunosuppressive agents, is directly involved in modulating T cell activation. MERTK is a member of the TAM family and contributes to regulating innate immune response to ACs by inhibiting DC activation in animal models. However, whether MERTK interacts directly with T cells has not been addressed. Here, we show that MERTK is highly expressed on dex-induced human tol-DCs and participates in their tolerogenic effect. Neutralization of MERTK in allogenic MLR, as well as autologous DC–T cell cultures, leads to increased T cell proliferation and IFN-γ production. Additionally, we identify a previously unrecognized noncell-autonomous regulatory function of MERTK expressed on DCs. Mer-Fc protein, used to mimic MERTK on DCs, suppresses naïve and antigen-specific memory T cell activation. This mechanism is mediated by the neutralization of the MERTK ligand PROS1. We find that MERTK and PROS1 are expressed in human T cells upon TCR activation and drive an autocrine proproliferative mechanism. Collectively, these results suggest that MERTK on DCs controls T cell activation and expansion through the competition for PROS1 interaction with MERTK in the T cells. In conclusion, this report identified MERTK as a potent suppressor of T cell response. PMID:25624460

  16. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruel, Nancy; Zago, Anna; Spear, Patricia G.

    2006-03-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutantmore » forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.« less

  17. Opposing roles of PGD2 in GBM.

    PubMed

    Ferreira, Matthew Thomas; Gomes, Renata Nascimento; Panagopoulos, Alexandros Theodoros; de Almeida, Fernando Gonçalves; Veiga, José Carlos Esteves; Colquhoun, Alison

    2018-01-01

    The World Health Organization classifies glioblastoma (GBM) as a grade IV astrocytoma. Despite the advances in chemotherapy, surgery, and radiation treatments that improve a patient's length of survival, the overall trajectory of the disease remains unchanged. GBM cells produce significant levels of various types of bioactive lipids. Prostaglandin D 2 (PGD 2 ) influences both pro- and anti-tumorigenic activities in the cell; however, its role in GBM is unclear. Therefore, this study aimed to identify the impact of PGD 2 on GBM cell activities in vitro. First we looked to identify the presence of the PGD 2 synthesis pathway through RT-PCR, immunohistochemistry, and HPLC-MS/MS in three GBM cell lines. Then, to observe PGD 2 's effects on cell count and apoptosis/mitosis (Hoechst 33342 stain), and migration (Transwell Assay), the cells were treated in vitro with physiological (<1μM) and/or supraphysiological (>1μM) concentrations of PGD 2 over 72h. HPLC-MS/MS was used to identify the lipid composition of patients with either Grade II/III gliomas or GBM. We identified the presence of endogenous PGD 2 with its corresponding enzymes and receptors. Exogenous PGD 2 both increased cell count (<1μM) and decreased cell count (10μM) in a concentration-dependent manner. There were no significant effects on apoptosis. A significant decrease in mitotic activity was seen only in U251MG, and a significant increase was seen in migration with 5μM PGD 2 treatments. A very significant increase of PGD 2 was seen from Grade II/III gliomas to GBM. Our study demonstrates that prostaglandin D 2 possesses a dynamic, concentration-dependent effect in GBM cell activities. The increase of PGD 2 production in GBM patients suggests a pro-tumorigenic role of PGD 2 in glioma growth and invasion. Therefore, prostaglandin signaling in GBM requires further investigation to identify new targets for more effective therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Terreic acid, a quinone epoxide inhibitor of Bruton’s tyrosine kinase

    PubMed Central

    Kawakami, Yuko; Hartman, Stephen E.; Kinoshita, Eiji; Suzuki, Hidefumi; Kitaura, Jiro; Yao, Libo; Inagaki, Naoki; Franco, Alessandra; Hata, Daisuke; Maeda-Yamamoto, Mari; Fukamachi, Hiromi; Nagai, Hiroichi; Kawakami, Toshiaki

    1999-01-01

    Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors. PMID:10051623

  19. Drug sensitivity profiling identifies potential therapies for lymphoproliferative disorders with overactive JAK/STAT3 signaling

    PubMed Central

    Kuusanmäki, Heikki; Dufva, Olli; Parri, Elina; van Adrichem, Arjan J.; Rajala, Hanna; Majumder, Muntasir M.; Yadav, Bhagwan; Parsons, Alun; Chan, Wing C.; Wennerberg, Krister; Mustjoki, Satu; Heckman, Caroline A.

    2017-01-01

    Constitutive JAK/STAT3 signaling contributes to disease progression in many lymphoproliferative disorders. Recent genetic analyses have revealed gain-of-function STAT3 mutations in lymphoid cancers leading to hyperactivation of STAT3, which may represent a potential therapeutic target. Using a functional reporter assay, we screened 306 compounds with selective activity against various target molecules to identify drugs capable of inhibiting the cellular activity of STAT3. Top hits were further validated with additional models including STAT3-mutated natural killer (NK)-cell leukemia/lymphoma cell lines and primary large granular lymphocytic (LGL) leukemia cells to assess their ability to inhibit STAT3 phosphorylation and STAT3 dependent cell viability. We identified JAK, mTOR, Hsp90 and CDK inhibitors as potent inhibitors of both WT and mutant STAT3 activity. The Hsp90 inhibitor luminespib was highly effective at reducing the viability of mutant STAT3 NK cell lines and LGL leukemia patient samples. Luminespib decreased the phosphorylation of mutant STAT3 at Y705, whereas JAK1/JAK2 inhibitor ruxolitinib had reduced efficacy on mutant STAT3 phosphorylation. Additionally, combinations involving Hsp90, JAK and mTOR inhibitors were more effective at reducing cell viability than single agents. Our findings show alternative approaches to inhibit STAT3 activity and suggest Hsp90 as a therapeutic target in lymphoproliferative disorders with constitutively active STAT3. PMID:29228628

  20. Methods and compositions for identifying cellular genes exploited by viral pathogens.

    USDA-ARS?s Scientific Manuscript database

    Methods and compositions for rapidly identifying CGEPs required for viral infection of mammalian cells are provided. Also provided are methods of inhibiting viral infection of mammalian cells by inhibiting the activity of one or more CGEPs (e.g., as identified in accordance with methods of the inve...

  1. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells.

    PubMed

    Wang, Rui; Kozhaya, Lina; Mercer, Frances; Khaitan, Alka; Fujii, Hodaka; Unutmaz, Derya

    2009-08-11

    The molecules that define human regulatory T cells (Tregs) phenotypically and functionally remain to be fully characterized. We recently showed that activated human Tregs express mRNA for a transmembrane protein called glycoprotein A repetitions predominant (GARP, or LRRC32). Here, using a GARP-specific mAb, we demonstrate that expression of GARP on activated Tregs correlates with their suppressive capacity. However, GARP was not induced on T cells activated in the presence of TGFbeta, which expressed high levels of FOXP3 and lacked suppressive function. Ectopic expression of FOXP3 in conventional T cells was also insufficient for induction of GARP expression in most donors. Functionally, silencing GARP in Tregs only moderately attenuated their suppressive activity. CD25+ T cells sorted for high GARP expression displayed more potent suppressive activity compared with CD25+GARP- cells. Remarkably, CD25+GARP- T cells expanded in culture contained 3-5 fold higher IL-17-secreting cells compared with either CD25+GARP+ or CD25-GARP- cells, suggesting that high GARP expression can potentially discriminate Tregs from those that have switched to Th17 lineage. We also determined whether GARP expression correlates with FOXP3-expressing T cells in human immunodeficiency virus (HIV) -infected subjects. A subset of HIV+ individuals with high percentages of FOXP3+ T cells did not show proportionate increase in GARP+ T cells. This finding suggests that higher FOXP3 levels observed in these HIV+ individuals is possibly due to immune activation rather than to an increase in Tregs. Our findings highlight the significance of GARP both in dissecting duality of Treg/Th17 cell differentiation and as a marker to identify bona fide Tregs during diseases with chronic immune activation.

  2. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells

    PubMed Central

    Wang, Rui; Kozhaya, Lina; Mercer, Frances; Khaitan, Alka; Fujii, Hodaka; Unutmaz, Derya

    2009-01-01

    The molecules that define human regulatory T cells (Tregs) phenotypically and functionally remain to be fully characterized. We recently showed that activated human Tregs express mRNA for a transmembrane protein called glycoprotein A repetitions predominant (GARP, or LRRC32). Here, using a GARP-specific mAb, we demonstrate that expression of GARP on activated Tregs correlates with their suppressive capacity. However, GARP was not induced on T cells activated in the presence of TGFβ, which expressed high levels of FOXP3 and lacked suppressive function. Ectopic expression of FOXP3 in conventional T cells was also insufficient for induction of GARP expression in most donors. Functionally, silencing GARP in Tregs only moderately attenuated their suppressive activity. CD25+ T cells sorted for high GARP expression displayed more potent suppressive activity compared with CD25+GARP− cells. Remarkably, CD25+GARP− T cells expanded in culture contained 3–5 fold higher IL-17-secreting cells compared with either CD25+GARP+ or CD25−GARP− cells, suggesting that high GARP expression can potentially discriminate Tregs from those that have switched to Th17 lineage. We also determined whether GARP expression correlates with FOXP3-expressing T cells in human immunodeficiency virus (HIV) −infected subjects. A subset of HIV+ individuals with high percentages of FOXP3+ T cells did not show proportionate increase in GARP+ T cells. This finding suggests that higher FOXP3 levels observed in these HIV+ individuals is possibly due to immune activation rather than to an increase in Tregs. Our findings highlight the significance of GARP both in dissecting duality of Treg/Th17 cell differentiation and as a marker to identify bona fide Tregs during diseases with chronic immune activation. PMID:19666573

  3. Feline Glycoprotein A Repetitions Predominant Anchors Transforming Growth Factor Beta on the Surface of Activated CD4+CD25+ Regulatory T Cells and Mediates AIDS Lentivirus-Induced T Cell Immunodeficiency

    PubMed Central

    Miller, Michelle M.; Fogle, Jonathan E.; Ross, Peter

    2013-01-01

    Abstract Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP+TGFb+ Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP+ Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb+ Treg-mediated T cell immune suppression during lentivirus infection. PMID:23373523

  4. Feline glycoprotein A repetitions predominant anchors transforming growth factor beta on the surface of activated CD4(+)CD25(+) regulatory T cells and mediates AIDS lentivirus-induced T cell immunodeficiency.

    PubMed

    Miller, Michelle M; Fogle, Jonathan E; Ross, Peter; Tompkins, Mary B

    2013-04-01

    Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP(+)TGFb(+) Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP(+) Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb(+) Treg-mediated T cell immune suppression during lentivirus infection.

  5. The Chinese Herbal Medicine Sophora flavescens Activates Pregnane X Receptor

    PubMed Central

    Wang, Laiyou; Li, Feng; Lu, Jie; Li, Guodong; Li, Dan; Zhong, Xiao-bo; Guo, Grace L.

    2010-01-01

    Sophora flavescens (SF) is an herbal medicine widely used for the treatment of viral hepatitis, cancer, viral myocarditis, gastrointestinal hemorrhage, and skin diseases. It was recently reported that SF up-regulates CYP3A expression. The mechanism of SF-induced CYP3A expression is unknown. In the current study, we tested the hypothesis that SF-induced CYP3A expression is mediated by the activation of pregnane X receptor (PXR). We used two cell lines, DPX2 and HepaRG, to investigate the role of PXR in SF-induced CYP3A expression. The DPX2 cell line is derived from HepG2 cells with the stable transfection of human PXR and a luciferase reporter gene linked with a human PXR response element identified in the CYP3A4 gene promoter. In DPX2 cells, SF activated PXR in a concentration-dependent manner. We used a metabolomic approach to identify the chemical constituents in SF, which were further analyzed for their effect on PXR activation and CYP3A regulation. One chemical in SF, N-methylcytisine, was identified as an individual chemical that activated PXR. HepaRG is a highly differentiated hepatoma cell line that mimics human hepatocytes. In HepaRG cells, N-methylcytisine significantly induced CYP3A4 expression, and this induction was suppressed by the PXR antagonist sulforaphane. These results suggest that SF induces CYP3A expression via the activation of PXR. PMID:20736322

  6. Calpain expression and activity during lens fiber cell differentiation.

    PubMed

    De Maria, Alicia; Shi, Yanrong; Kumar, Nalin M; Bassnett, Steven

    2009-05-15

    In animal models, the dysregulated activity of calcium-activated proteases, calpains, contributes directly to cataract formation. However, the physiological role of calpains in the healthy lens is not well defined. In this study, we examined the expression pattern of calpains in the mouse lens. Real time PCR and Western blotting data indicated that calpain 1, 2, 3, and 7 were expressed in lens fiber cells. Using controlled lysis, depth-dependent expression profiles for each calpain were obtained. These indicated that, unlike calpain 1, 2, and 7, which were most abundant in cells near the lens surface, calpain 3 expression was strongest in the deep cortical region of the lens. We detected calpain activities in vitro and showed that calpains were active in vivo by microinjecting fluorogenic calpain substrates into cortical fiber cells. To identify endogenous calpain substrates, membrane/cytoskeleton preparations were treated with recombinant calpain, and cleaved products were identified by two-dimensional difference electrophoresis/mass spectrometry. Among the calpain substrates identified by this approach was alphaII-spectrin. An antibody that specifically recognized calpain-cleaved spectrin was used to demonstrate that spectrin is cleaved in vivo, late in fiber cell differentiation, at or about the time that lens organelles are degraded. The generation of the calpain-specific spectrin cleavage product was not observed in lens tissue from calpain 3-null mice, indicating that calpain 3 is uniquely activated during lens fiber differentiation. Our data suggest a role for calpains in the remodeling of the membrane cytoskeleton that occurs with fiber cell maturation.

  7. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes

    PubMed Central

    Sykes, Melissa L.; Avery, Vicky M.

    2015-01-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. PMID:27120069

  8. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes.

    PubMed

    Sykes, Melissa L; Avery, Vicky M

    2015-12-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells.

    PubMed

    Campana, Wendy M; Mantuano, Elisabetta; Azmoon, Pardis; Henry, Kenneth; Banki, Michael A; Kim, John H; Pizzo, Donald P; Gonias, Steven L

    2017-04-01

    In the peripheral nervous system, Schwann cells (SCs) demonstrate surveillance activity, detecting injury and undergoing trans -differentiation to support repair. SC receptors that detect peripheral nervous system injury remain incompletely understood. We used RT-PCR to profile ionotropic glutamate receptor expression in cultured SCs. We identified subunits required for assembly of N -methyl-d-aspartic acid (NMDA) receptors (NMDA-Rs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and kainate receptors. Treatment of SCs with 40-100 µM glutamate or with 0.5-1.0 µM NMDA robustly activated Akt and ERK1/2. The response was transient and bimodal; glutamate concentrations that exceeded 250 µM failed to activate cell signaling. Phosphoprotein profiling identified diverse phosphorylated proteins in glutamate-treated SCs in addition to ERK1/2 and Akt, including p70 S6-kinase, glycogen synthase kinase-3, ribosomal S6 kinase, c-Jun, and cAMP response element binding protein. Activation of SC signaling by glutamate was blocked by EGTA and dizocilpine and by silencing expression of the NMDA-R NR1 subunit. Phosphoinositide 3-kinase/PI3K functioned as an essential upstream activator of Akt and ERK1/2 in glutamate-treated SCs. When glutamate or NMDA was injected directly into crush-injured rat sciatic nerves, ERK1/2 phosphorylation was observed in myelinated and nonmyelinating SCs. Glutamate promoted SC migration by a pathway that required PI3K and ERK1/2. These results identified ionotropic glutamate receptors and NMDA-Rs, specifically, as potentially important cell signaling receptors in SCs.-Campana, W. M., Mantuano, E., Azmoon, P., Henry, K., Banki, M. A., Kim, J. H., Pizzo, D. P., Gonias, S. L. Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells. © FASEB.

  10. A High-Throughput Screening Platform of Microbial Natural Products for the Discovery of Molecules with Antibiofilm Properties against Salmonella

    PubMed Central

    Paytubi, Sonia; de La Cruz, Mercedes; Tormo, Jose R.; Martín, Jesús; González, Ignacio; González-Menendez, Victor; Genilloud, Olga; Reyes, Fernando; Vicente, Francisca; Madrid, Cristina; Balsalobre, Carlos

    2017-01-01

    In this report, we describe a High-Throughput Screening (HTS) to identify compounds that inhibit biofilm formation or cause the disintegration of an already formed biofilm using the Salmonella Enteritidis 3934 strain. Initially, we developed a new methodology for growing Salmonella biofilms suitable for HTS platforms. The biomass associated with biofilm at the solid-liquid interface was quantified by staining both with resazurin and crystal violet, to detect living cells and total biofilm mass, respectively. For a pilot project, a subset of 1120 extracts from the Fundación MEDINA's collection was examined to identify molecules with antibiofilm activity. This is the first validated HTS assay of microbial natural product extracts which allows for the detection of four types of activities which are not mutually exclusive: inhibition of biofilm formation, detachment of the preformed biofilm and antimicrobial activity against planktonic cells or biofilm embedded cells. Currently, several extracts have been selected for further fractionation and purification of the active compounds. In one of the natural extracts patulin has been identified as a potent molecule with antimicrobial activity against both, planktonic cells and cells within the biofilm. These findings provide a proof of concept that the developed HTS can lead to the discovery of new natural compounds with antibiofilm activity against Salmonella and its possible use as an alternative to antimicrobial therapies and traditional disinfectants. PMID:28303128

  11. A Tumor Cell-Selective Inhibitor of Mitogen-Activated Protein Kinase Phosphatases Sensitizes Breast Cancer Cells to Lymphokine-Activated Killer Cell Activity

    PubMed Central

    Kaltenmeier, Christof T.; Vollmer, Laura L.; Vernetti, Lawrence A.; Caprio, Lindsay; Davis, Keanu; Korotchenko, Vasiliy N.; Day, Billy W.; Tsang, Michael; Hulkower, Keren I.; Lotze, Michael T.

    2017-01-01

    Dual specificity mitogen-activated protein kinase (MAPK) phosphatases [dual specificity phosphatase/MAP kinase phosphatase (DUSP-MKP)] have been hypothesized to maintain cancer cell survival by buffering excessive MAPK signaling caused by upstream activating oncogenic products. A large and diverse body of literature suggests that genetic depletion of DUSP-MKPs can reduce tumorigenicity, suggesting that hyperactivating MAPK signaling by DUSP-MKP inhibitors could be a novel strategy to selectively affect the transformed phenotype. Through in vivo structure-activity relationship studies in transgenic zebrafish we recently identified a hyperactivator of fibroblast growth factor signaling [(E)-2-benzylidene-5-bromo-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI-215)] that is devoid of developmental toxicity and restores defective MAPK activity caused by overexpression of DUSP1 and DUSP6 in mammalian cells. Here, we hypothesized that BCI-215 could selectively affect survival of transformed cells. In MDA-MB-231 human breast cancer cells, BCI-215 inhibited cell motility, caused apoptosis but not primary necrosis, and sensitized cells to lymphokine-activated killer cell activity. Mechanistically, BCI-215 induced rapid and sustained phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) in the absence of reactive oxygen species, and its toxicity was partially rescued by inhibition of p38 but not JNK or ERK. BCI-215 also hyperactivated MKK4/SEK1, suggesting activation of stress responses. Kinase phosphorylation profiling documented BCI-215 selectively activated MAPKs and their downstream substrates, but not receptor tyrosine kinases, SRC family kinases, AKT, mTOR, or DNA damage pathways. Our findings support the hypothesis that BCI-215 causes selective cancer cell cytotoxicity in part through non-redox-mediated activation of MAPK signaling, and the findings also identify an intersection with immune cell killing that is worthy of further exploration. PMID:28154014

  12. Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds.

    PubMed

    Lema, Carolina; Varela-Ramirez, Armando; Aguilera, Renato J

    As large quantities of novel synthetic molecules continue to be generated there is a challenge to identify therapeutic agents with cytotoxic activity. Here we introduce a Differential Nuclear Staining (DNS) assay adapted to live-cell imaging for high throughput screening (HTS) that utilizes two fluorescent DNA intercalators, Hoechst 33342 and Propidium iodide (PI). Since Hoechst can readily cross cell membranes to stain DNA of living and dead cells, it was used to label the total number of cells. In contrast, PI only enters cells with compromised plasma membranes, thus selectively labeling dead cells. The DNS assay was successfully validated by utilizing well known cytotoxic agents with fast or slow cytotoxic activities. The assay was found to be suitable for HTS with Z' factors ranging from 0.86 to 0.60 for 96 and 384-well formats, respectively. Furthermore, besides plate-to-plate reproducibility, assay quality performance was evaluated by determining ratios of signal-to-noise and signal-to-background, as well as coefficient of variation, which resulted in adequate values and validated the assay for HTS initiatives. As proof of concept, eighty structurally diverse compounds from a small molecule library were screened in a 96-well plate format using the DNS assay. Using this DNS assay, six hits with cytotoxic properties were identified and all of them were also successfully identified by using the commercially available MTS assay (CellTiter 96® Cell Proliferation Assay). In addition, the DNS and a flow cytometry assay were used to validate the activity of the cytotoxic compounds. The DNS assay was also used to generate dose-response curves and to obtain CC 50 values. The results indicate that the DNS assay is reliable and robust and suitable for primary and secondary screens of compounds with potential cytotoxic activity.

  13. Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds

    PubMed Central

    LEMA, Carolina; VARELA-RAMIREZ, Armando; AGUILERA, Renato J.

    2016-01-01

    As large quantities of novel synthetic molecules continue to be generated there is a challenge to identify therapeutic agents with cytotoxic activity. Here we introduce a Differential Nuclear Staining (DNS) assay adapted to live-cell imaging for high throughput screening (HTS) that utilizes two fluorescent DNA intercalators, Hoechst 33342 and Propidium iodide (PI). Since Hoechst can readily cross cell membranes to stain DNA of living and dead cells, it was used to label the total number of cells. In contrast, PI only enters cells with compromised plasma membranes, thus selectively labeling dead cells. The DNS assay was successfully validated by utilizing well known cytotoxic agents with fast or slow cytotoxic activities. The assay was found to be suitable for HTS with Z′ factors ranging from 0.86 to 0.60 for 96 and 384-well formats, respectively. Furthermore, besides plate-to-plate reproducibility, assay quality performance was evaluated by determining ratios of signal-to-noise and signal-to-background, as well as coefficient of variation, which resulted in adequate values and validated the assay for HTS initiatives. As proof of concept, eighty structurally diverse compounds from a small molecule library were screened in a 96-well plate format using the DNS assay. Using this DNS assay, six hits with cytotoxic properties were identified and all of them were also successfully identified by using the commercially available MTS assay (CellTiter 96® Cell Proliferation Assay). In addition, the DNS and a flow cytometry assay were used to validate the activity of the cytotoxic compounds. The DNS assay was also used to generate dose-response curves and to obtain CC50 values. The results indicate that the DNS assay is reliable and robust and suitable for primary and secondary screens of compounds with potential cytotoxic activity. PMID:27042697

  14. Multidimensional Single Cell Based STAT Phosphorylation Profiling Identifies a Novel Biosignature for Evaluation of Systemic Lupus Erythematosus Activity

    PubMed Central

    Huang, Xinfang; Guo, Yanzhi; Bao, Chunde; Shen, Nan

    2011-01-01

    Introduction Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE), a complex autoimmune disease. Comprehensively quantifying basal STATs phosphorylation and their signaling response to cytokines should help us to better understand the etiology of SLE. Methods Phospho-specific flow cytometry was used to measure the basal STAT signaling activation in three immune cell types of peripheral-blood mononuclear cells from 20 lupus patients, 9 rheumatoid arthritis (RA) patients and 13 healthy donors (HDs). A panel of 27 cytokines, including inflammatory cytokines, was measured with Bio-Plex™ Human Cytokine Assays. Serum Prolactin levels were measured with an immunoradiometric assay. STAT signaling responses to inflammatory cytokines (interferon α [IFNα], IFNγ, interleukin 2 [IL2], IL6, and IL10) were also monitored. Results We observed the basal activation of STAT3 in SLE T cells and monocytes, and the basal activation of STAT5 in SLE T cells and B cells. The SLE samples clustered into two main groups, which were associated with the SLE Disease Activity Index 2000, their erythrocyte sedimentation rate, and their hydroxychloroquine use. The phosphorylation of STAT5 in B cells was associated with cytokines IL2, granulocyte colony-stimulating factor (G-CSF), and IFNγ, whereas serum prolactin affected STAT5 activation in T cells. The responses of STAT1, STAT3, and STAT5 to IFNα were greatly reduced in SLE T cells, B cells, and monocytes, except for the STAT1 response to IFNα in monocytes. The response of STAT3 to IL6 was reduced in SLE T cells. Conclusions The basal activation of STATs signaling and reduced response to cytokines may be helpful us to identify the activity and severity of SLE. PMID:21799742

  15. PML–RARA-RXR Oligomers Mediate Retinoid and Rexinoid/cAMP Cross-Talk in Acute Promyelocytic Leukemia Cell Differentiation

    PubMed Central

    Kamashev, Dmitrii; Vitoux, Dominique; de Thé, Hugues

    2004-01-01

    PML–RARA was proposed to initiate acute promyelocytic leukemia (APL) through PML–RARA homodimer–triggered repression. Here, we examined the nature of the PML–RARA protein complex and of its DNA targets in APL cells. Using a selection/amplification approach, we demonstrate that PML–RARA targets consist of two AGGTCA elements in an astonishing variety of orientations and spacings, pointing to highly relaxed structural constrains for DNA binding and identifying a major gain of function of this oncogene. PML–RARA-specific response elements were identified, which all conveyed a major transcriptional response to RA only in APL cells. In these cells, we demonstrate that PML–RARA oligomers are complexed to RXR. Directly probing PML–RARA function in APL cells, we found that the differentiation enhancer cyclic AMP (cAMP) boosted transcriptional activation by RA. cAMP also reversed the normal silencing (subordination) of the transactivating function of RXR when bound to RARA or PML–RARA, demonstrating that the alternate rexinoid/cAMP-triggered APL differentiation pathway also activates PML–RARA targets. Finally, cAMP restored both RA-triggered differentiation and PML–RARA transcriptional activation in mutant RA-resistant APL cells. Collectively, our findings directly demonstrate that APL cell differentiation parallels transcriptional activation through PML–RARA-RXR oligomers and that those are functionally targeted by cAMP, identifying this agent as another oncogene-targeted therapy. PMID:15096541

  16. Feline mammary carcinoma stem cells are tumorigenic, radioresistant, chemoresistant and defective in activation of the ATM/p53 DNA damage pathway

    PubMed Central

    Pang, L.Y.; Blacking, T.M.; Else, R.W.; Sherman, A.; Sang, H.M.; Whitelaw, B.A.; Hupp, T.R.; Argyle, D.J.

    2013-01-01

    Cancer stem cells were identified in a feline mammary carcinoma cell line by demonstrating expression of CD133 and utilising the tumour sphere assay. A population of cells was identified that had an invasive, mesenchymal phenotype, expressed markers of pluripotency and enhanced tumour formation in the NOD-SCID mouse and chick embryo models. This population of feline mammary carcinoma stem cells was resistant to chemotherapy and radiation, possibly due to aberrant activation of the ATM/p53 DNA damage pathway. Epithelial–mesenchymal transition was a feature of the invasive phenotype. These data demonstrate that cancer stem cells are a feature of mammary cancer in cats. PMID:23219486

  17. The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs

    NASA Technical Reports Server (NTRS)

    Ricci, A. J.; Rennie, K. J.; Correia, M. J.

    1996-01-01

    Hair cells were dissociated from the semicircular canal, utricle, lagena and saccule of white king pigeons. Type I hair cells were identified morphologically based on the ratios of neck width to cuticular plate width (NPR < 0.72) as well as neck width to cell body width (NBR < 0.64). The perforated patch variant of the whole-cell recording technique was used to measure electrical properties from type I hair cells. In voltage-clamp, the membrane properties of all identified type I cells were dominated by a predominantly outward potassium current, previously characterized in semicircular canal as IKI. Zero-current potential, activation, deactivation, slope conductance, pharmacologic and steady-state properties of the complex currents were not statistically different between type I hair cells of different vestibular end organs. The voltage dependence causes a significant proportion of this conductance to be active about the cell's zero-current potential. The first report of the whole-cell activation kinetics of the conductance is presented, showing a voltage dependence that could be best fit by an equation for a single exponential. Results presented here are the first data from pigeon dissociated type I hair cells from utricle, saccule and lagena suggesting that the basolateral conductances of a morphologically identified population of type I hair cells are conserved between functionally different vestibular end organs; the major conductance being a delayed rectifier characterized previously in semicircular canal hair cells as IKI.

  18. Riluzole activates TRPC5 channels independently of PLC activity

    PubMed Central

    Richter, Julia M; Schaefer, Michael; Hill, Kerstin

    2014-01-01

    BACKGROUND AND PURPOSE The transient receptor potential channel C5 (TRPC5) is a Ca2+-permeable cation channel, which is predominantly expressed in the brain. TRPC5 is activated in a PLC-dependent manner by, as yet, unidentified endogenous messengers. Recently, modulators of TRPC5, like Ca2+, pH and phospholipids, have been identified. However, the role of TRPC5 in vivo is only poorly understood. Novel specific modulators of TRPC5 might help to elucidate its function. EXPERIMENTAL APPROACH Novel modulators of TRPC5 were identified in a compound screening of approved drugs and natural compounds. The potency and selectivity of TRPC5-activating compounds were determined by fluorometric calcium imaging. The biophysical properties of channel activation by these compounds were analysed using electrophysiological measurements. KEY RESULTS Riluzole was identified as a novel activator of TRPC5 (EC50 9.2 ± 0.5 μM) and its mechanism of action was shown to be independent of G protein signalling and PLC activity. Riluzole-induced TRPC5 currents were potentiated by La3+ and, utilizing TRPC5 mutants that lack La3+ binding sites, it was confirmed that riluzole and La3+ activate TRPC5 by different mechanisms. Recordings of excised inside-out patches revealed a relatively direct effect of riluzole on TRPC5. CONCLUSIONS AND IMPLICATIONS Riluzole can activate TRPC5 heterologously expressed in HEK293 cells as well as those endogenously expressed in the U-87 glioblastoma cell line. Riluzole does not activate any other member of the TRPC family and could, therefore, despite its action on other ion channels, be a useful pharmacological tool for identifying TRPC5-specific currents in immortalized cell lines or in acutely isolated primary cells. PMID:24117252

  19. Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

    PubMed Central

    Zhang, Sen; Wang, Frank; Keats, Jeffrey; Zhu, Xiaotian; Ning, Yaoyu; Wardwell, Scott D; Moran, Lauren; Mohemmad, Qurish K; Anjum, Rana; Wang, Yihan; Narasimhan, Narayana I; Dalgarno, David; Shakespeare, William C; Miret, Juan J; Clackson, Tim; Rivera, Victor M

    2011-01-01

    Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance. PMID:22034911

  20. CHEMOKINE RECEPTOR 7 (CCR7)-EXPRESSION AND IFNγ PRODUCTION DEFINE VACCINE-SPECIFIC CANINE T CELL SUBSETS

    PubMed Central

    Hartley, Ashley N.; Tarleton, Rick L.

    2015-01-01

    Canines suffer from and serve as strong translational animals models for many immunological disorders and infectious diseases. Routine vaccination has been a mainstay of protecting dogs through the stimulation of robust antibody responses and expansion of memory T cell populations. Commercially available reagents and described techniques are limited for identifying and characterizing canine T cell subsets and evaluating T cell-specific effector function. To define reagents for delineating naïve versus activated T cells and identify antigen-specific T cells, we tested anti-human and anti-bovine T-cell specific cell surface marker reagents for cross-reactivity with canine peripheral blood mononuclear cells (PBMCs. Both CD4+ and CD8+ T cells from healthy canine donors showed reactivity to CCL19-Ig, a CCR7 ligand, and coexpression with CD62L. An in vitro stimulation with concanavalin A validated downregulation of CCR7 and CD62L expression on stimulated healthy control PBMCs, consistent with an activated T cell phenotype. Anti-IFNγ antibodies identified antigen-specific IFNγ-producing CD4+ and CD8+ T cells upon in vitro vaccine antigen PBMC stimulation. PBMC isolation within 24 hours of sample collection allowed for efficient cell recovery and accurate T cell effector function characterization. These data provide a reagent and techniques platform via flow cytometry for identifying canine T cell subsets and characterizing circulating antigen-specific canine T cells for potential use in diagnostic and field settings. PMID:25758065

  1. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries.

    PubMed

    Park, Eun-Sil; Tilly, Jonathan L

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26(tdTm/tdTm) mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter 'leakiness' in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells

    PubMed Central

    Judson, Robert N.; Tremblay, Annie M.; Knopp, Paul; White, Robert B.; Urcia, Roby; De Bari, Cosimo; Zammit, Peter S.; Camargo, Fernando D.; Wackerhage, Henning

    2012-01-01

    Summary Satellite cells are the resident stem cells of skeletal muscle. Mitotically quiescent in mature muscle, they can be activated to proliferate and generate myoblasts to supply further myonuclei to hypertrophying or regenerating muscle fibres, or self-renew to maintain the resident stem cell pool. Here, we identify the transcriptional co-factor Yap as a novel regulator of satellite cell fate decisions. Yap expression increases during satellite cell activation and Yap remains highly expressed until after the differentiation versus self-renewal decision is made. Constitutive expression of Yap maintains Pax7+ and MyoD+ satellite cells and satellite cell-derived myoblasts, promotes proliferation but prevents differentiation. In contrast, Yap knockdown reduces the proliferation of satellite cell-derived myoblasts by ≈40%. Consistent with the cellular phenotype, microarrays show that Yap increases expression of genes associated with Yap inhibition, the cell cycle, ribosome biogenesis and that it represses several genes associated with angiotensin signalling. We also identify known regulators of satellite cell function such as BMP4, CD34 and Myf6 (Mrf4) as genes whose expression is dependent on Yap activity. Finally, we confirm in myoblasts that Yap binds to Tead transcription factors and co-activates MCAT elements which are enriched in the proximal promoters of Yap-responsive genes. PMID:23038772

  3. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease

    PubMed Central

    Bagnara, Davide; Kaufman, Matthew S.; Calissano, Carlo; Marsilio, Sonia; Patten, Piers E. M.; Simone, Rita; Chum, Philip; Yan, Xiao-Jie; Allen, Steven L.; Kolitz, Jonathan E.; Baskar, Sivasubramanian; Rader, Christoph; Mellstedt, Hakan; Rabbani, Hodjattallah; Lee, Annette; Gregersen, Peter K.; Rai, Kanti R.

    2011-01-01

    Chronic lymphocytic leukemia (CLL) is an incurable adult disease of unknown etiology. Understanding the biology of CLL cells, particularly cell maturation and growth in vivo, has been impeded by lack of a reproducible adoptive transfer model. We report a simple, reproducible system in which primary CLL cells proliferate in nonobese diabetes/severe combined immunodeficiency/γcnull mice under the influence of activated CLL-derived T lymphocytes. By cotransferring autologous T lymphocytes, activated in vivo by alloantigens, the survival and growth of primary CFSE-labeled CLL cells in vivo is achieved and quantified. Using this approach, we have identified key roles for CD4+ T cells in CLL expansion, a direct link between CD38 expression by leukemic B cells and their activation, and support for CLL cells preferentially proliferating in secondary lymphoid tissues. The model should simplify analyzing kinetics of CLL cells in vivo, deciphering involvement of nonleukemic elements and nongenetic factors promoting CLL cell growth, identifying and characterizing potential leukemic stem cells, and permitting preclinical studies of novel therapeutics. Because autologous activated T lymphocytes are 2-edged swords, generating unwanted graph-versus-host and possibly autologous antitumor reactions, the model may also facilitate analyses of T-cell populations involved in immune surveillance relevant to hematopoietic transplantation and tumor cytoxicity. PMID:21385850

  4. mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer.

    PubMed

    Hau, Andrew M; Leivo, Mariah Z; Gilder, Andrew S; Hu, Jing-Jing; Gonias, Steven L; Hansel, Donna E

    2017-01-01

    Mammalian target of rapamycin complex 2 (mTORC2) has been identified as a major regulator of bladder cancer cell migration and invasion. Upstream pathways that mediate mTORC2 activation remain poorly defined. Urokinase-type plasminogen activator receptor (uPAR) is a GPI-anchored membrane protein and known activator of cell-signaling. We identified increased uPAR expression in 94% of invasive human bladder cancers and in 54-71% of non-invasive bladder cancers, depending on grade. Normal urothelium was uPAR-immunonegative. Analysis of publicly available datasets identified uPAR gene amplification or mRNA upregulation in a subset of bladder cancer patients with reduced overall survival. Using biochemical approaches, we showed that uPAR activates mTORC2 in bladder cancer cells. Highly invasive bladder cancer cell lines, including T24, J82 and UM-UC-3 cells, showed increased uPAR mRNA expression and protein levels compared with the less aggressive cell lines, UROtsa and RT4. uPAR gene-silencing significantly reduced phosphorylation of Serine-473 in Akt, an mTORC2 target. uPAR gene-silencing also reduced bladder cancer cell migration and Matrigel invasion. S473 phosphorylation was observed by immunohistochemistry in human bladder cancers only when the tumors expressed high levels of uPAR. S473 phosphorylation was not controlled by uPAR in bladder cancer cell lines that are PTEN-negative; however, this result probably did not reflect altered mTORC2 regulation. Instead, PTEN deficiency de-repressed alternative kinases that phosphorylate S473. Our results suggest that uPAR and mTORC2 are components of a single cell-signaling pathway. Targeting uPAR or mTORC2 may be beneficial in patients with bladder cancer. Copyright © 2016. Published by Elsevier Inc.

  5. Statistical identification of stimulus-activated network nodes in multi-neuron voltage-sensitive dye optical recordings.

    PubMed

    Fathiazar, Elham; Anemuller, Jorn; Kretzberg, Jutta

    2016-08-01

    Voltage-Sensitive Dye (VSD) imaging is an optical imaging method that allows measuring the graded voltage changes of multiple neurons simultaneously. In neuroscience, this method is used to reveal networks of neurons involved in certain tasks. However, the recorded relative dye fluorescence changes are usually low and signals are superimposed by noise and artifacts. Therefore, establishing a reliable method to identify which cells are activated by specific stimulus conditions is the first step to identify functional networks. In this paper, we present a statistical method to identify stimulus-activated network nodes as cells, whose activities during sensory network stimulation differ significantly from the un-stimulated control condition. This method is demonstrated based on voltage-sensitive dye recordings from up to 100 neurons in a ganglion of the medicinal leech responding to tactile skin stimulation. Without relying on any prior physiological knowledge, the network nodes identified by our statistical analysis were found to match well with published cell types involved in tactile stimulus processing and to be consistent across stimulus conditions and preparations.

  6. A Quantitative RNAi Screen for JNK Modifiers Identifies Pvr as a Novel Regulator of Drosophila Immune Signaling

    PubMed Central

    Bond, David; Foley, Edan

    2009-01-01

    Drosophila melanogaster responds to gram-negative bacterial challenges through the IMD pathway, a signal transduction cassette that is driven by the coordinated activities of JNK, NF-κB and caspase modules. While many modifiers of NF-κB activity were identified in cell culture and in vivo assays, the regulatory apparatus that determines JNK inputs into the IMD pathway is relatively unexplored. In this manuscript, we present the first quantitative screen of the entire genome of Drosophila for novel regulators of JNK activity in the IMD pathway. We identified a large number of gene products that negatively or positively impact on JNK activation in the IMD pathway. In particular, we identified the Pvr receptor tyrosine kinase as a potent inhibitor of JNK activation. In a series of in vivo and cell culture assays, we demonstrated that activation of the IMD pathway drives JNK-dependent expression of the Pvr ligands, Pvf2 and Pvf3, which in turn act through the Pvr/ERK MAP kinase pathway to attenuate the JNK and NF-κB arms of the IMD pathway. Our data illuminate a poorly understood arm of a critical and evolutionarily conserved innate immune response. Furthermore, given the pleiotropic involvement of JNK in eukaryotic cell biology, we believe that many of the novel regulators identified in this screen are of interest beyond immune signaling. PMID:19893628

  7. Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT

    PubMed Central

    Holmes, Tim D.; Wilson, Erica B.; Black, Emma V. I.; Benest, Andrew V.; Vaz, Candida; Tan, Betty; Tanavde, Vivek M.; Cook, Graham P.

    2014-01-01

    Interactions between natural killer (NK) cells and dendritic cells (DCs) aid DC maturation and promote T-cell responses. Here, we have analyzed the response of human NK cells to tumor cells, and we identify a pathway by which NK–DC interactions occur. Gene expression profiling of tumor-responsive NK cells identified the very rapid induction of TNF superfamily member 14 [TNFSF14; also known as homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT)], a cytokine implicated in the enhancement of antitumor responses. TNFSF14 protein expression was induced by three primary mechanisms of NK cell activation, namely, via the engagement of CD16, by the synergistic activity of multiple target cell-sensing NK-cell activation receptors, and by the cytokines IL-2 and IL-15. For antitumor responses, TNFSF14 was preferentially produced by the licensed NK-cell population, defined by the expression of inhibitory receptors specific for self-MHC class I molecules. In contrast, IL-2 and IL-15 treatment induced TNFSF14 production by both licensed and unlicensed NK cells, reflecting the ability of proinflammatory conditions to override the licensing mechanism. Importantly, both tumor- and cytokine-activated NK cells induced DC maturation in a TNFSF14-dependent manner. The coupling of TNFSF14 production to tumor-sensing NK-cell activation receptors links the tumor immune surveillance function of NK cells to DC maturation and adaptive immunity. Furthermore, regulation by NK cell licensing helps to safeguard against TNFSF14 production in response to healthy tissues. PMID:25512551

  8. Antioxidant Peptides Identified from Ovotransferrin by the ORAC Method Did Not Show Anti-Inflammatory and Antioxidant Activities in Endothelial Cells.

    PubMed

    Jahandideh, Forough; Chakrabarti, Subhadeep; Davidge, Sandra T; Wu, Jianping

    2016-01-13

    Oxygen radical absorbance capacity (ORAC) is a widely used method of measuring antioxidant capacities of various antioxidant components. Surprisingly, 16 antioxidant peptides previously identified from egg protein ovotransferrin using the ORAC method did not show any anti-inflammatory and antioxidant activities in cells. After simulated gastro-intestinal digestion (GID), several peptide digests significantly reduced the expression of tumor necrosis factor-α (TNF-α)-induced pro-inflammatory intercellular cell adhesion molecule-1 (ICAM-1) by 65.7 ± 10.4% and vascular cell adhesion molecule-1 (VCAM-1) by 53.5 ± 9.6% to 61.0 ± 14.5%, but only GWNI reduced TNF-α-activated superoxide generation by 71.0 ± 12.9% when tested with dihydroethidium (DHE) assay. Mass spectrometer analysis identified two new peptides, GWN and GW, in the GWNI digest; however, only GW reduced TNF-α-induced VCAM-1 expression (64.3 ± 20.6%) significantly compared to the TNF-α treated cells. Our study suggested that ORAC lacked biological relevance in assessing bioactive peptides.

  9. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity

    PubMed Central

    Song, Lingyun; Zhang, Zhancheng; Grasfeder, Linda L.; Boyle, Alan P.; Giresi, Paul G.; Lee, Bum-Kyu; Sheffield, Nathan C.; Gräf, Stefan; Huss, Mikael; Keefe, Damian; Liu, Zheng; London, Darin; McDaniell, Ryan M.; Shibata, Yoichiro; Showers, Kimberly A.; Simon, Jeremy M.; Vales, Teresa; Wang, Tianyuan; Winter, Deborah; Zhang, Zhuzhu; Clarke, Neil D.; Birney, Ewan; Iyer, Vishwanath R.; Crawford, Gregory E.; Lieb, Jason D.; Furey, Terrence S.

    2011-01-01

    The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map “open chromatin.” Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease. PMID:21750106

  10. The interaction of gamma delta T cells with activated macrophages is a property of the V gamma 1 subset.

    PubMed

    Dalton, Jane E; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2003-12-15

    Immunoregulation is an emerging paradigm of gammadelta T cell function. The mechanisms by which gammadelta T cells mediate this function, however, are not clear. Studies have identified a direct role for gammadelta T cells in resolving the host immune response to infection, by eliminating populations of activated macrophages. The aim of this study was to identify macrophage-reactive gammadelta T cells and establish the requirements/outcomes of macrophage-gammadelta T cell interactions during the immune response to the intracellular bacterium, Listeria monocytogenes (Lm). Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta(-/-) mice were incubated with splenocytes from naive and Lm-infected alphabeta/gammadelta T cell-deficient and wild-type mice, the ability to bind macrophages was shown to be restricted to gammadelta T cells and the GV5S1 (Vgamma1) subset of gammadelta T cells. Macrophage adherence resulted in a 4- to 10-fold enrichment of Vgamma1(+) T cells. Enrichment of Vgamma1 T cells was dependent upon the activation status of macrophages, but independent of the activation status of gammadelta T cells. Vgamma1 T cells were cytotoxic for activated macrophages with both the binding to and killing of macrophages being TCR dependent because anti-TCRgammadelta Abs inhibited both Vgamma1 binding and killing activities. These studies establish the identity of macrophage cytotoxic gammadelta T cells, the conditions under which this interaction occurs, and the outcome of this interaction. These findings are concordant with the involvement of Vgamma1 T cells in macrophage homeostasis during the resolution of pathogen-mediated immune responses.

  11. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1.

    PubMed

    Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha

    2013-10-29

    Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers without prior knowledge of their antigen-specificity, using a subunit vaccine for proof-of-concept. Whether, whole parasite or adjuvanted protein vaccines will also induce {CD38 and HLA-DRhi}+ CD8+ T cell populations reflective of the antigen-specific response will the subject of future investigations.

  12. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control

    PubMed Central

    Grant, Gavin D.; Gamsby, Joshua; Martyanov, Viktor; Brooks, Lionel; George, Lacy K.; Mahoney, J. Matthew; Loros, Jennifer J.; Dunlap, Jay C.; Whitfield, Michael L.

    2012-01-01

    We developed a system to monitor periodic luciferase activity from cell cycle–regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle–regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle–dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant. PMID:22740631

  13. Dengue Virus Infection of Mast Cells Triggers Endothelial Cell Activation ▿

    PubMed Central

    Brown, Michael G.; Hermann, Laura L.; Issekutz, Andrew C.; Marshall, Jean S.; Rowter, Derek; Al-Afif, Ayham; Anderson, Robert

    2011-01-01

    Vascular perturbation is a hallmark of severe forms of dengue disease. We show here that antibody-enhanced dengue virus infection of primary human cord blood-derived mast cells (CBMCs) and the human mast cell-like line HMC-1 results in the release of factor(s) which activate human endothelial cells, as evidenced by increased expression of the adhesion molecules ICAM-1 and VCAM-1. Endothelial cell activation was prevented by pretreatment of mast cell-derived supernatants with a tumor necrosis factor (TNF)-specific blocking antibody, thus identifying TNF as the endothelial cell-activating factor. Our findings suggest that mast cells may represent an important source of TNF, promoting vascular endothelial perturbation following antibody-enhanced dengue virus infection. PMID:21068256

  14. QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors

    NASA Astrophysics Data System (ADS)

    Briard, Jennie G.; Fernandez, Michael; de Luna, Phil; Woo, Tom. K.; Ben, Robert N.

    2016-05-01

    Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.

  15. QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors

    PubMed Central

    Briard, Jennie G.; Fernandez, Michael; De Luna, Phil; Woo, Tom. K.; Ben, Robert N.

    2016-01-01

    Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds. PMID:27216585

  16. QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors.

    PubMed

    Briard, Jennie G; Fernandez, Michael; De Luna, Phil; Woo, Tom K; Ben, Robert N

    2016-05-24

    Ice recrystallization is the main contributor to cell damage and death during the cryopreservation of cells and tissues. Over the past five years, many small carbohydrate-based molecules were identified as ice recrystallization inhibitors and several were shown to reduce cryoinjury during the cryopreservation of red blood cells (RBCs) and hematopoietic stems cells (HSCs). Unfortunately, clear structure-activity relationships have not been identified impeding the rational design of future compounds possessing ice recrystallization inhibition (IRI) activity. A set of 124 previously synthesized compounds with known IRI activities were used to calibrate 3D-QSAR classification models using GRid INdependent Descriptors (GRIND) derived from DFT level quantum mechanical calculations. Partial least squares (PLS) model was calibrated with 70% of the data set which successfully identified 80% of the IRI active compounds with a precision of 0.8. This model exhibited good performance in screening the remaining 30% of the data set with 70% of active additives successfully recovered with a precision of ~0.7 and specificity of 0.8. The model was further applied to screen a new library of aryl-alditol molecules which were then experimentally synthesized and tested with a success rate of 82%. Presented is the first computer-aided high-throughput experimental screening for novel IRI active compounds.

  17. Podocalyxin EBP50 Ezrin Molecular Complex Enhances the Metastatic Potential of Renal Cell Carcinoma Through Recruiting Rac1 Guanine Nucleotide Exchange Factor ARHGEF7

    PubMed Central

    Hsu, Yung-Ho; Lin, Wei-Ling; Hou, Yi-Ting; Pu, Yeong-Shiau; Shun, Chia-Tung; Chen, Chi-Ling; Wu, Yih-Yiing; Chen, Jen-Yau; Chen, Tso-Hsiao; Jou, Tzuu-Shuh

    2010-01-01

    Podocalyxin was initially identified in glomerular podocytes to critically maintain the structural and functional integrity of the glomerular ultrafiltrative apparatus. Lately, it has emerged as a malignant marker in tumors arising from a variety of tissue origins. By immunohistochemistry, we identified that 9.6% of renal cell carcinoma patients overexpress this protein. This subset of patients had significantly shorter disease-specific and overall survivals, and, importantly, we established podocalyxin overexpression as an independent prognostic factor for latent distant metastasis with multivariate analysis. Podocalyxin down-regulation by small interfering RNA led to defective migration in model renal tubular cells, which was corrected by re-expression of podocalyxin. The activity of the small GTPase Rac1, a well-characterized modulator of cell migration, was diminished by podocalyxin knock-down. Conversely, podocalyxin overexpression in human embryonic kidney cells up-regulated Rac1 activity, which depended on a complex formed by podocalyxin, ERM-binding phosphoprotein 50, ezrin, and ARHGEF7, a Rac1 activator. Therefore, podocalyxin can serve as a biomarker to identify renal cell carcinoma patients with higher metastatic potential for more aggressive intervention at earlier clinical stages. PMID:20395446

  18. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins

    PubMed Central

    Wu, An-Guo; Kam-Wai Wong, Vincent; Zeng, Wu; Liu, Liang; Yuen-Kwan Law, Betty

    2015-01-01

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future. PMID:26598009

  19. Hcm1 integrates signals from Cdk1 and calcineurin to control cell proliferation

    PubMed Central

    Arsenault, Heather E.; Roy, Jagoree; Mapa, Claudine E.; Cyert, Martha S.; Benanti, Jennifer A.

    2015-01-01

    Cyclin-dependent kinase (Cdk1) orchestrates progression through the cell cycle by coordinating the activities of cell-cycle regulators. Although phosphatases that oppose Cdk1 are likely to be necessary to establish dynamic phosphorylation, specific phosphatases that target most Cdk1 substrates have not been identified. In budding yeast, the transcription factor Hcm1 activates expression of genes that regulate chromosome segregation and is critical for maintaining genome stability. Previously we found that Hcm1 activity and degradation are stimulated by Cdk1 phosphorylation of distinct clusters of sites. Here we show that, upon exposure to environmental stress, the phosphatase calcineurin inhibits Hcm1 by specifically removing activating phosphorylations and that this regulation is important for cells to delay proliferation when they encounter stress. Our work identifies a mechanism by which proliferative signals from Cdk1 are removed in response to stress and suggests that Hcm1 functions as a rheostat that integrates stimulatory and inhibitory signals to control cell proliferation. PMID:26269584

  20. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice.

    PubMed

    Loftus, Róisín M; Assmann, Nadine; Kedia-Mehta, Nidhi; O'Brien, Katie L; Garcia, Arianne; Gillespie, Conor; Hukelmann, Jens L; Oefner, Peter J; Lamond, Angus I; Gardiner, Clair M; Dettmer, Katja; Cantrell, Doreen A; Sinclair, Linda V; Finlay, David K

    2018-06-14

    Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system L-amino acid transport is blocked. We identify SLC7A5 as the predominant system L-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.

  1. Antidiabetes and Anti-obesity Activity of Lagerstroemia speciosa

    PubMed Central

    Klein, Guy; Kim, Jaekyung; Himmeldirk, Klaus; Cao, Yanyan

    2007-01-01

    The leaves of Lagerstroemia speciosa (Lythraceae), a Southeast Asian tree more commonly known as banaba, have been traditionally consumed in various forms by Philippinos for treatment of diabetes and kidney related diseases. In the 1990s, the popularity of this herbal medicine began to attract the attention of scientists worldwide. Since then, researchers have conducted numerous in vitro and in vivo studies that consistently confirmed the antidiabetic activity of banaba. Scientists have identified different components of banaba to be responsible for its activity. Using tumor cells as a cell model, corosolic acid was isolated from the methanol extract of banaba and shown to be an active compound. More recently, a different cell model and the focus on the water soluble fraction of the extract led to the discovery of other compounds. The ellagitannin Lagerstroemin was identified as an effective component of the banaba extract responsible for the activity. In a different approach, using 3T3-L1 adipocytes as a cell model and a glucose uptake assay as the functional screening method, Chen et al. showed that the banaba water extract exhibited an insulin-like glucose transport inducing activity. Coupling HPLC fractionation with a glucose uptake assay, gallotannins were identified in the banaba extract as components responsible for the activity, not corosolic acid. Penta-O-galloyl-glucopyranose (PGG) was identified as the most potent gallotannin. A comparison of published data with results obtained for PGG indicates that PGG has a significantly higher glucose transport stimulatory activity than Lagerstroemin. Chen et al. have also shown that PGG exhibits anti-adipogenic properties in addition to stimulating the glucose uptake in adipocytes. The combination of glucose uptake and anti-adipogenesis activity is not found in the current insulin mimetic drugs and may indicate a great therapeutic potential of PGG. PMID:18227906

  2. Characterizing the cytoprotective activity of Sarracenia purpurea L., a medicinal plant that inhibits glucotoxicity in PC12 cells.

    PubMed

    Harris, Cory S; Asim, Muhammad; Saleem, Ammar; Haddad, Pierre S; Arnason, John T; Bennett, Steffany A L

    2012-12-05

    The purple pitcher plant, Sarracenia purpurea L., is a widely distributed species in North America with a history of use as both a marketed pain therapy and a traditional medicine in many aboriginal communities. Among the Cree of Eeyou Istchee in northern Québec, the plant is employed to treat symptoms of diabetes and the leaf extract demonstrates multiple anti-diabetic activities including cytoprotection in an in vitro model of diabetic neuropathy. The current study aimed to further investigate this activity by identifying the plant parts and secondary metabolites that contribute to these cytoprotective effects. Ethanolic extracts of S. purpurea leaves and roots were separately administered to PC12 cells exposed to glucose toxicity with subsequent assessment by two cell viability assays. Assay-guided fractionation of the active extract and fractions was then conducted to identify active principles. Using high pressure liquid chromatography together with mass spectrometry, the presence of identified actives in both leaf and root extracts were determined. The leaf extract, but not that of the root, prevented glucose-mediated cell loss in a concentration-dependent manner. Several fractions elicited protective effects, indicative of multiple active metabolites, and, following subfractionation of the polar fraction, hyperoside (quercetin-3-O-galactoside) and morroniside were isolated as active constituents. Phytochemical analysis confirmed the presence of hyperoside in the leaf but not root extract and, although morroniside was detected in both organs, its concentration was seven times higher in the leaf. Our results not only support further study into the therapeutic potential and safety of S. purpurea as an alternative and complementary treatment for diabetic complications associated with glucose toxicity but also identify active principles that can be used for purposes of standardization and quality control.

  3. Characterizing the cytoprotective activity of Sarracenia purpurea L., a medicinal plant that inhibits glucotoxicity in PC12 cells

    PubMed Central

    2012-01-01

    Background The purple pitcher plant, Sarracenia purpurea L., is a widely distributed species in North America with a history of use as both a marketed pain therapy and a traditional medicine in many aboriginal communities. Among the Cree of Eeyou Istchee in northern Québec, the plant is employed to treat symptoms of diabetes and the leaf extract demonstrates multiple anti-diabetic activities including cytoprotection in an in vitro model of diabetic neuropathy. The current study aimed to further investigate this activity by identifying the plant parts and secondary metabolites that contribute to these cytoprotective effects. Methods Ethanolic extracts of S. purpurea leaves and roots were separately administered to PC12 cells exposed to glucose toxicity with subsequent assessment by two cell viability assays. Assay-guided fractionation of the active extract and fractions was then conducted to identify active principles. Using high pressure liquid chromatography together with mass spectrometry, the presence of identified actives in both leaf and root extracts were determined. Results The leaf extract, but not that of the root, prevented glucose-mediated cell loss in a concentration-dependent manner. Several fractions elicited protective effects, indicative of multiple active metabolites, and, following subfractionation of the polar fraction, hyperoside (quercetin-3-O-galactoside) and morroniside were isolated as active constituents. Phytochemical analysis confirmed the presence of hyperoside in the leaf but not root extract and, although morroniside was detected in both organs, its concentration was seven times higher in the leaf. Conclusion Our results not only support further study into the therapeutic potential and safety of S. purpurea as an alternative and complementary treatment for diabetic complications associated with glucose toxicity but also identify active principles that can be used for purposes of standardization and quality control. PMID:23216659

  4. New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases

    PubMed Central

    Su, Hua; Chen, Shan; He, Fang-Fang; Wang, Yu-Mei; Bondzie, Philip; Zhang, Chun

    2015-01-01

    The glomerular parietal epithelial cells (PECs) have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation. PMID:25866774

  5. Giardia lamblia: identification of molecules that contribute to direct mast cell activation.

    PubMed

    Muñoz-Cruz, Samira; Gomez-García, Argelia; Matadamas-Martínez, Félix; Alvarado-Torres, Juan A; Meza-Cervantez, Patricia; Arriaga-Pizano, Lourdes; Yépez-Mulia, Lilián

    2018-06-02

    Mast cells play a central role in the early clearance of the intestinal parasite Giardia lamblia. In a previous study, we reported that G. lamblia live trophozoites or trophozoite-derived total soluble extract induced direct activation (IgE-independent) of mast cells and release of IL-6 and TNF-α. To identify the Giardia molecules and the mast cell receptors involved in this activation, trophozoite-derived total soluble proteins separated into three fractions (F1-F3) were evaluated for its ability to activate mast cells in vitro. F2 activated mast cells in a greater extent than F1 and F3. Furthermore, F2 induced the release of IL-6 and TNF-α by mast cells. TLR2 and TLR4 expression increased slightly after mast cell stimulation with either F2 or total soluble extract; however, these receptors were not involved in F2 or total soluble extract-induced proinflammatory cytokine production. Proteins present in F2 as unique and high-intensity bands identified by liquid chromatography coupled with tandem mass spectrometry, include molecules with important biological activities such as enolase and arginine deiminase (ADI). Recombinant ADI and enolase were tested for their ability to activate mast cells, but only ADI induced a significant release of IL-6 and TNF-α. ADI product, citrulline but not ammonium, also induced mast cell release of TNF-α. Interestingly, recombinant ADI still stimulated the secretion of TNF-α by mast cells in a arginine-free medium, although in a lower extend that in the presence of arginine, indicating that either ADI itself can stimulate mast cells or through its metabolic product, citrulline.

  6. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production

    PubMed Central

    Sprokholt, Joris K.; Kaptein, Tanja M.; van Hamme, John L.; Overmars, Ronald J.; Gringhuis, Sonja I.

    2017-01-01

    Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies. PMID:29186193

  7. Systems-level identification of PKA-dependent signaling in epithelial cells.

    PubMed

    Isobe, Kiyoshi; Jung, Hyun Jun; Yang, Chin-Rang; Claxton, J'Neka; Sandoval, Pablo; Burg, Maurice B; Raghuram, Viswanathan; Knepper, Mark A

    2017-10-17

    G protein stimulatory α-subunit (G αs )-coupled heptahelical receptors regulate cell processes largely through activation of protein kinase A (PKA). To identify signaling processes downstream of PKA, we deleted both PKA catalytic subunits using CRISPR-Cas9, followed by a "multiomic" analysis in mouse kidney epithelial cells expressing the G αs -coupled V2 vasopressin receptor. RNA-seq (sequencing)-based transcriptomics and SILAC (stable isotope labeling of amino acids in cell culture)-based quantitative proteomics revealed a complete loss of expression of the water-channel gene Aqp2 in PKA knockout cells. SILAC-based quantitative phosphoproteomics identified 229 PKA phosphorylation sites. Most of these PKA targets are thus far unannotated in public databases. Surprisingly, 1,915 phosphorylation sites with the motif x-(S/T)-P showed increased phosphooccupancy, pointing to increased activity of one or more MAP kinases in PKA knockout cells. Indeed, phosphorylation changes associated with activation of ERK2 were seen in PKA knockout cells. The ERK2 site is downstream of a direct PKA site in the Rap1GAP, Sipa1l1, that indirectly inhibits Raf1. In addition, a direct PKA site that inhibits the MAP kinase kinase kinase Map3k5 (ASK1) is upstream of JNK1 activation. The datasets were integrated to identify a causal network describing PKA signaling that explains vasopressin-mediated regulation of membrane trafficking and gene transcription. The model predicts that, through PKA activation, vasopressin stimulates AQP2 exocytosis by inhibiting MAP kinase signaling. The model also predicts that, through PKA activation, vasopressin stimulates Aqp2 transcription through induction of nuclear translocation of the acetyltransferase EP300, which increases histone H3K27 acetylation of vasopressin-responsive genes (confirmed by ChIP-seq).

  8. Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach.

    PubMed

    Gestrich, Julia; Giese, Maria; Shen, Wen; Zhang, Yi; Voss, Alexandra; Popov, Cyril; Stengl, Monika; Wei, HongYing

    2018-02-01

    Transplantation studies have pinpointed the circadian clock of the Madeira cockroach to the accessory medulla (AME) of the brain's optic lobes. The AME is innervated by approximately 240 adjacent neuropeptidergic neurons, including 12 pigment-dispersing factor (PDF)-expressing neurons anterior to the AME (aPDFMEs). Four of the aPDFMEs project contralaterally, controlling locomotor activity rhythms of the night-active cockroach. The present in vitro Ca 2+ imaging analysis focuses on contralaterally projecting AME neurons and their responses to PDF, GABA, and acetylcholine (ACh). First, rhodamine-dextran backfills from the contralateral optic stalk identified contralaterally projecting AME neurons, which were then dispersed in primary cell cultures. After characterization of PDF, GABA, and ACh responses, PDF immunocytochemistry identified ipsilaterally and contralaterally projecting PDFMEs. All PDF-sensitive clock neurons, PDF-immunoreactive clock neurons, and the majority of ipsilaterally and contralaterally projecting cells were excited by ACh. GABA inhibited all PDF-expressing clock neurons, and about half of other ipsilaterally projecting and most contralaterally projecting clock neurons. For the first time, we identified PDF autoreceptors in PDF-secreting cockroach circadian pacemakers. The medium-sized aPDFMEs and all other contralaterally projecting PDF-sensitive clock cells were inhibited by PDF. The ipsilaterally remaining small PDF-sensitive clock cells were activated by PDF. Only the largest aPDFME did not express PDF autoreceptors. We hypothesize that opposing PDF signaling generates 2 different ensembles of clock cells with antiphasic activity, regulating and maintaining a constant phase relationship between rest and activity cycles of the night-active cockroach.

  9. Recent advances in inflammasome biology.

    PubMed

    Place, David E; Kanneganti, Thirumala-Devi

    2018-02-01

    The inflammasome is a complex of proteins that through the activity of caspase-1 and the downstream substrates gasdermin D, IL-1β, and IL-18 execute an inflammatory form of cell death termed pyroptosis. Activation of this complex often involves the adaptor protein ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. Here we discuss new regulatory mechanisms that have been identified for the canonical inflammasomes, the most recently identified NLRP9b inflammasome, and the new gasdermin family of proteins that mediate pyroptosis and other forms of regulated cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A frightening thought: Neuronal activity enhances tumor growth.

    PubMed

    Thompson, Emily G; Sontheimer, Harald

    2015-08-01

    Stem cells present in the adult brain are regulated by neuronal activity; malignant gliomas, which most likely originate from this population of cells, could also be regulated in this manner. A recent study by Venkatesh et al. published in Cell has identified Neuroligin-3 (NLGN3) as a mitogen promoting high-grade glioma growth.

  11. Osteoclast Progenitors Reside in the Peroxisome Proliferator-Activated Receptor γ-Expressing Bone Marrow Cell Population ▿

    PubMed Central

    Wei, Wei; Zeve, Daniel; Wang, Xueqian; Du, Yang; Tang, Wei; Dechow, Paul C.; Graff, Jonathan M.; Wan, Yihong

    2011-01-01

    Osteoclasts are bone-resorbing cells essential for skeletal development, homeostasis, and regeneration. They derive from hematopoietic progenitors in the monocyte/macrophage lineage and differentiate in response to RANKL. However, the precise nature of osteoclast progenitors is a longstanding and important question. Using inducible peroxisome proliferator-activated receptor γ (PPARγ)-tTA TRE-GFP (green fluorescent protein) reporter mice, we show that osteoclast progenitors reside specifically in the PPARγ-expressing hematopoietic bone marrow population and identify the quiescent PPARγ+ cells as osteoclast progenitors. Importantly, two PPARγ-tTA TRE-Cre-controlled genetic models provide compelling functional evidence. First, Notch activation in PPARγ+ cells causes high bone mass due to impaired osteoclast precursor proliferation. Second, selective ablation of PPARγ+ cells by diphtheria toxin also causes high bone mass due to decreased osteoclast numbers. Furthermore, PPARγ+ cells respond to both pathological and pharmacological resorption-enhancing stimuli. Mechanistically, PPARγ promotes osteoclast progenitors by activating GATA2 transcription. These findings not only identify the long-sought-after osteoclast progenitors but also establish unprecedented tools for their visualization, isolation, characterization, and genetic manipulation. PMID:21947280

  12. Engineering a biospecific communication pathway between cells and electrodes

    NASA Astrophysics Data System (ADS)

    Collier, Joel H.; Mrksich, Milan

    2006-02-01

    Methods for transducing the cellular activities of mammalian cells into measurable electronic signals are important in many biotechnical applications, including biosensors, cell arrays, and other cell-based devices. This manuscript describes an approach for functionally integrating cellular activities and electrical processes in an underlying substrate. The cells are engineered with a cell-surface chimeric receptor that presents the nonmammalian enzyme cutinase. Action of this cell-surface cutinase on enzyme substrate self-assembled monolayers switches a nonelectroactive hydroxyphenyl ester to an electroactive hydroquinone, providing an electrical activity that can be identified with cyclic voltammetry. In this way, cell-surface enzymatic activity is transduced into electronic signals. The development of strategies to directly interface the activities of cells with materials will be important to enabling a broad class of hybrid microsystems that combine living and nonliving components. biomaterial | extracellular matrix | signal transduction

  13. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53

    PubMed Central

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  14. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  15. Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma.

    PubMed

    Chew, Valerie; Lee, Yun Hua; Pan, Lu; Nasir, Nurul J M; Lim, Chun Jye; Chua, Camillus; Lai, Liyun; Hazirah, Sharifah Nur; Lim, Tony Kiat Hon; Goh, Brian K P; Chung, Alexander; Lo, Richard H G; Ng, David; Filarca, Rene L F; Albani, Salvatore; Chow, Pierce K H

    2018-02-13

    Yttrium-90 (Y90)-radioembolisation (RE) significantly regresses locally advanced hepatocellular carcinoma and delays disease progression. The current study is designed to deeply interrogate the immunological impact of Y90-RE, which elicits a sustained therapeutic response. Time-of-flight mass cytometry and next-generation sequencing (NGS) were used to analyse the immune landscapes of tumour-infiltrating leucocytes (TILs), tumour tissues and peripheral blood mononuclear cells (PBMCs) at different time points before and after Y90-RE. TILs isolated after Y90-RE exhibited signs of local immune activation: higher expression of granzyme B (GB) and infiltration of CD8 + T cells, CD56 + NK cells and CD8 + CD56 + NKT cells. NGS confirmed the upregulation of genes involved in innate and adaptive immune activation in Y90-RE-treated tumours. Chemotactic pathways involving CCL5 and CXCL16 correlated with the recruitment of activated GB + CD8 + T cells to the Y90-RE-treated tumours. When comparing PBMCs before and after Y90-RE, we observed an increase in tumour necrosis factor-α on both the CD8 + and CD4 + T cells as well as an increase in percentage of antigen-presenting cells after Y90-RE, implying a systemic immune activation. Interestingly, a high percentage of PD-1 + /Tim-3 + CD8 + T cells coexpressing the homing receptors CCR5 and CXCR6 denoted Y90-RE responders. A prediction model was also built to identify sustained responders to Y90-RE based on the immune profiles from pretreatment PBMCs. High-dimensional analysis of tumour and systemic immune landscapes identified local and systemic immune activation that corresponded to the sustained response to Y90-RE. Potential biomarkers associated with a positive clinical response were identified and a prediction model was built to identify sustained responders prior to treatment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. The glutaminase activity of l-asparaginase is not required for anticancer activity against ASNS-negative cells

    PubMed Central

    Chan, Wai Kin; Lorenzi, Philip L.; Anishkin, Andriy; Purwaha, Preeti; Rogers, David M.; Sukharev, Sergei; Rempe, Susan B.; Weinstein, John N.

    2014-01-01

    l-Asparaginase (l-ASP) is a key component of therapy for acute lymphoblastic leukemia. Its mechanism of action, however, is still poorly understood, in part because of its dual asparaginase and glutaminase activities. Here, we show that l-ASP’s glutaminase activity is not always required for the enzyme’s anticancer effect. We first used molecular dynamics simulations of the clinically standard Escherichia coli l-ASP to predict what mutated forms could be engineered to retain activity against asparagine but not glutamine. Dynamic mapping of enzyme substrate contacts identified Q59 as a promising mutagenesis target for that purpose. Saturation mutagenesis followed by enzymatic screening identified Q59L as a variant that retains asparaginase activity but shows undetectable glutaminase activity. Unlike wild-type l-ASP, Q59L is inactive against cancer cells that express measurable asparagine synthetase (ASNS). Q59L is potently active, however, against ASNS-negative cells. Those observations indicate that the glutaminase activity of l-ASP is necessary for anticancer activity against ASNS-positive cell types but not ASNS-negative cell types. Because the clinical toxicity of l-ASP is thought to stem from its glutaminase activity, these findings suggest the hypothesis that glutaminase-negative variants of l-ASP would provide larger therapeutic indices than wild-type l-ASP for ASNS-negative cancers. PMID:24659632

  17. Mechanotransduction through Integrins

    NASA Technical Reports Server (NTRS)

    Ingber, Donald

    2004-01-01

    The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses through cell surface integrin receptors and through their interconnections with the underlying cytoskeleton. Work completed and published in past funding period had provided direct support for this hypothesis. In particular, we demonstrated that application of mechanical stresses to activated integrin receptors (but not inactive integrins or other control transmembrane receptors) resulted in stress-dependent activation of the CAMP signaling pathway leading to gene transcription. We also showed that this form of mechanotransduction requires activation of heterotrimeric G proteins. In this grant, our specific aims included: 1) to characterize the signal processing capabilities of different integrins and other cell surface receptors, 2) to identify heterotrimeric G proteins that mediate CAMP signaling by stresses applied to integrins, 3) to identify molecules that mediate transmembrane mechanochemical coupling between integrins and G proteins, and 4) to use genome-wide gene expression profiling techniques to identify other genes and signaling pathways that are activated by mechanical forces transmitted over specific cell surface receptors. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation.

  18. Identification of small molecule inhibitors of ERCC1-XPF that inhibit DNA repair and potentiate cisplatin efficacy in cancer cells

    PubMed Central

    Arora, Sanjeevani; Heyza, Joshua; Zhang, Hao; Kalman-Maltese, Vivian; Tillison, Kristin; Floyd, Ashley M.; Chalfin, Elaine M.; Bepler, Gerold; Patrick, Steve M.

    2016-01-01

    ERCC1-XPF heterodimer is a 5′-3′ structure-specific endonuclease which is essential in multiple DNA repair pathways in mammalian cells. ERCC1-XPF (ERCC1-ERCC4) repairs cisplatin-DNA intrastrand adducts and interstrand crosslinks and its specific inhibition has been shown to enhance cisplatin cytotoxicity in cancer cells. In this study, we describe a high throughput screen (HTS) used to identify small molecules that inhibit the endonuclease activity of ERCC1-XPF. Primary screens identified two compounds that inhibit ERCC1-XPF activity in the nanomolar range. These compounds were validated in secondary screens against two other non-related endonucleases to ensure specificity. Results from these screens were validated using an in vitro gel-based nuclease assay. Electrophoretic mobility shift assays (EMSAs) further show that these compounds do not inhibit the binding of purified ERCC1-XPF to DNA. Next, in lung cancer cells these compounds potentiated cisplatin cytotoxicity and inhibited DNA repair. Structure activity relationship (SAR) studies identified related compounds for one of the original Hits, which also potentiated cisplatin cytotoxicity in cancer cells. Excitingly, dosing with NSC16168 compound potentiated cisplatin antitumor activity in a lung cancer xenograft model. Further development of ERCC1-XPF DNA repair inhibitors is expected to sensitize cancer cells to DNA damage-based chemotherapy. PMID:27650543

  19. CD6 as a potential target for treating multiple sclerosis

    PubMed Central

    Singer, Nora G.; Whitbred, Joy; Bowen, Michael A.; Lin, Feng

    2017-01-01

    CD6 was established as a marker of T cells more than three decades ago, and recent studies have identified CD6 as a risk gene for multiple sclerosis (MS), a disease in which autoreactive T cells are integrally involved. Nevertheless, the precise role of CD6 in regulating T-cell responses is controversial and its significance in the pathogenesis of various diseases remains elusive, partly due to the lack of animals engineered to alter expression of the CD6 gene. In this report, we found that CD6 KO mice showed decreased pathogenic T-cell responses, reduced spinal cord T-cell infiltration, and attenuated disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CD6-deficient T cells exhibited augmented activation, but also significantly reduced survival and proliferation after activation, leading to overall decreased Th1 and Th17 polarization. Activated CD6-deficient T cells also showed impaired infiltration through brain microvascular endothelial cell monolayers. Furthermore, by developing CD6 humanized mice, we identified a mouse anti-human CD6 monoclonal antibody that is highly effective in treating established EAE without depleting T cells. These results suggest that (i) CD6 is a negative regulator of T-cell activation, (ii) at the same time, CD6 is a positive regulator of activated T-cell survival/proliferation and infiltration; and (iii) CD6 is a potential new target for treating MS and potentially other T-cell–driven autoimmune conditions. PMID:28209777

  20. Viral antigen mediated NKp46 activation of NK cells results in tumor rejection via NK-DC crosstalk

    PubMed Central

    Chinnery, Fay; King, Catherine A.; Elliott, Tim; Bateman, Andrew R.; James, Edward

    2012-01-01

    Natural killer (NK) cells play a critical role in antitumor immunity, their activation being regulated through NK cell receptors. Although the endogenous ligands for these receptors are largely unknown, viral ligands have been identified. We investigated the ability of an activating NK receptor ligand derived from the mumps virus, haemagglutinin-neuraminidase (HN) to enhance NK activation against tumor cells. HN-expressing B16.OVA tumor cells induced stronger activation of NK cells compared with B16.OVA cells and also promoted dendritic cell (DC) activation toward a DC1 phenotype, in vitro. Moreover, incubation of DCs, NK cells and HN-expressing B16-OVA cells further enhanced NK cell activation through the NK-DC crosstalk, in a cell-to-cell contact- and IL-12-dependent fashion. Immunization of mice with HN-expressing B16-OVA cells resulted in > 85% survival rate after subsequent challenge with parental B16 or B16.OVA tumor cells. Tumor rejection was dependent on both NK and CD8+ T cells but not on CD4+ T cells, demonstrating induction of an effective adaptive immune response through innate immune cell activation. Our data indicate the potential of using robust NK cell activation, which through the NK-DC crosstalk stimulates effective antitumor responses, providing an alternate vaccine strategy. PMID:23162755

  1. Imatinib mesylate induction of ROS-dependent apoptosis in melanoma B16F0 cells.

    PubMed

    Chang, Shao-Ping; Shen, Shing-Chuan; Lee, Woan-Rouh; Yang, Ling-Ling; Chen, Yen-Chou

    2011-06-01

    Imatinib mesylate (STI571), a protein tyrosine kinase inhibitor, was shown to reduce the viability of several cancer cell lines via apoptosis induction; however, the role of reactive oxygen species (ROS) in STI571-induced melanoma cell apoptosis is still undefined. In this study, we investigated the contribution of ROS to STI571-induced apoptosis in melanoma B16F0 cells, and the apoptotic mechanism elicited by STI571 was illustrated. Using an in vitro cell culture system, the effects of STI571 on ROS production, cell cycle progression, caspase activation, and mitochondrial functions were examined via Western blotting, a flow cytometric analysis, an enzyme activity assay, and a DNA integrity assay. In pharmacological studies, the ROS scavenger, N-acetyl cysteine (NAC), the NADPH oxidase inhibitor, dipheylene iodide (DPI), and mitogen-activated protein kinase (MAPK) inhibitors (PD98059, SP600125, and SB203580) were applied to investigate the mechanism. STI571 reduced the viability of melanoma cells B16F0, but not human skin fibroblasts WS1, via apoptosis induction. Besides, apoptosis induced by STI571 was inhibited by the addition of NAC and DPI, and an increase in the intracellular peroxide level by STI571 was identified in melanoma B16F0 cells. Activation of caspases 3 and 9 enzyme activities accompanied by disrupting the mitochondria membrane potential in according with stimulating JNK and p38 protein phosphorylation was identified in STI571-treated B16F0 cells. STI571-mediated a ROS-dependent apoptosis potentiated by JNK inhibitor SP600125 was first identified in melanoma B16F0 cells. Our results support the idea that ROS-dependent apoptosis in STI571-treated melanoma cells B16F0. The combination of a JNK inhibitor with STI571 for treating melanomas is suggested for further in vivo studies. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen*

    PubMed Central

    Kozlov, Sergei V.; Waardenberg, Ashley J.; Engholm-Keller, Kasper; Arthur, Jonathan W.; Graham, Mark E.; Lavin, Martin

    2016-01-01

    Ataxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here, we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach to identify cytoplasmic proteins altered in their phosphorylation state in control and ataxia-telangiectasia (A-T) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites, including 6,686 high-confidence sites mapping to 2,536 unique proteins. A total of 62 differentially phosphorylated peptides were identified; of these, 43 were phosphorylated in control but not in A-T cells, and 19 varied in their level of phosphorylation. Motif enrichment analysis of phosphopeptides revealed that consensus ATM serine glutamine sites were overrepresented. When considering phosphorylation events, only observed in control cells (not observed in A-T cells), with predicted ATM sites phosphoSerine/phosphoThreonine glutamine, we narrowed this list to 11 candidate ATM-dependent cytoplasmic proteins. Two of these 11 were previously described as ATM substrates (HMGA1 and UIMCI/RAP80), another five were identified in a whole cell extract phosphoproteomic screens, and the remaining four proteins had not been identified previously in DNA damage response screens. We validated the phosphorylation of three of these proteins (oxidative stress responsive 1 (OSR1), HDGF, and ccdc82) as ATM dependent after H2O2 exposure, and another protein (S100A11) demonstrated ATM-dependence for translocation from the cytoplasm to the nucleus. These data provide new insights into the activation of ATM by oxidative stress through identification of novel substrates for ATM in the cytoplasm. PMID:26699800

  3. Platelets as Cellular Effectors of Inflammation in Vascular Diseases

    PubMed Central

    Rondina, Matthew T.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2013-01-01

    Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key “thromboinflammatory” activities in a variety of vascular disorders and vasculopathies. Recently-identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases. PMID:23704217

  4. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion.

    PubMed

    Venkatesh, Humsa S; Johung, Tessa B; Caretti, Viola; Noll, Alyssa; Tang, Yujie; Nagaraja, Surya; Gibson, Erin M; Mount, Christopher W; Polepalli, Jai; Mitra, Siddhartha S; Woo, Pamelyn J; Malenka, Robert C; Vogel, Hannes; Bredel, Markus; Mallick, Parag; Monje, Michelle

    2015-05-07

    Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Hypoxia-inducible factor-1α promotes cell survival during ammonia stress response in ovarian cancer stem-like cells

    PubMed Central

    Kitajima, Shojiro; Lee, Kian Leong; Hikasa, Hiroki; Sun, Wendi; Huang, Ruby Yun-Ju; Yang, Henry; Matsunaga, Shinji; Yamaguchi, Takehiro; Araki, Marito; Kato, Hiroyuki

    2017-01-01

    Ammonia is a toxic by-product of metabolism that causes cellular stresses. Although a number of proteins are involved in adaptive stress response, specific factors that counteract ammonia-induced cellular stress and regulate cell metabolism to survive against its toxicity have yet to be identified. We demonstrated that the hypoxia-inducible factor-1α (HIF-1α) is stabilized and activated by ammonia stress. HIF-1α activated by ammonium chloride compromises ammonia-induced apoptosis. Furthermore, we identified glutamine synthetase (GS) as a key driver of cancer cell proliferation under ammonia stress and glutamine-dependent metabolism in ovarian cancer stem-like cells expressing CD90. Interestingly, activated HIF-1α counteracts glutamine synthetase function in glutamine metabolism by facilitating glycolysis and elevating glucose dependency. Our studies reveal the hitherto unknown functions of HIF-1α in a biphasic ammonia stress management in the cancer stem-like cells where GS facilitates cell proliferation and HIF-1α contributes to the metabolic remodeling in energy fuel usage resulting in attenuated proliferation but conversely promoting cell survival. PMID:29383096

  6. Physiologically activated mammary fibroblasts promote postpartum mammary cancer

    PubMed Central

    Guo, Qiuchen; Burchard, Julja; Spellman, Paul

    2017-01-01

    Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)–dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer. PMID:28352652

  7. Study on activity measurement of Nostoc flagelliforme cells based on color identification

    NASA Astrophysics Data System (ADS)

    Wang, Yizhong; Su, Jianyu; Liu, Tiegen; Kong, Fanzhi; Jia, Shiru

    2008-12-01

    In order to measure the activities of Nostoc flagelliforme cells, a new method based on color identification was proposed in this paper. N. flagelliforme cells were colored with fluoreseein diaeetate. Then, an image of colored N. flagelliforme cells was taken, and changed from RGB model to HIS model. Its histogram of hue H was calculated, which was used as the input of a designed BP network. The output of the BP network was the description of measured activity of N. flagelliforme cells. After training, the activity of N. flagelliforme cells was identified by the BP network according to the histogram of H of their colored image. Experiments were conducted with satisfied results to show the feasibility and usefulness of activity measurement of N. flagelliforme cells based on color identification.

  8. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    PubMed

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  9. Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates

    PubMed Central

    Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A.; Yu, Shuai; Hans, Michael; Geahlen, Robert L.; Tao, W. Andy

    2012-01-01

    Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900

  10. Tuberculin-Specific T Cells Are Reduced in Active Pulmonary Tuberculosis Compared to LTBI or Status Post BCG Vaccination

    PubMed Central

    Streitz, Mathias; Fuhrmann, Stephan; Powell, Fiona; Quassem, Ali; Nomura, Laurel; Maecker, Holden; Martus, Peter; Volk, Hans-Dieter

    2011-01-01

    Functional characteristics of tuberculosis (TB)–specific CD4 T cells were studied in clinically active pulmonary TB (n = 21) and high TB exposure including LTBI (n = 17). Following tuberculin stimulation, activated CD4 T cells were identified by flow-cytometry (CD154 up-regulation, degranulation, interferon γ [IFN-γ], tumor necrosis factor α [TNF-α], and interleukin 2 [IL-2\\ production). Interestingly, CD154 up-regulation accounted for ∼80% of activated CD4 T cells in the active TB group but just 40% in the controls, whereas IFN-γ accounted for only ∼50% of activated cells in each group. The frequencies of CD4 T cells displaying at least 1 activation marker discriminated better between the groups than those displaying degranulation or IFN-γ production alone. PMID:21186260

  11. Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    PubMed Central

    Lee, Jeffrey C; Vivanco, Igor; Beroukhim, Rameen; Huang, Julie H. Y; Feng, Whei L; DeBiasi, Ralph M; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Greulich, Heidi; Thomas, Roman K; Paez, J. Guillermo; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawaguchi, Tomohiro; O'Neill, Keith; Khan, Haumith; Liau, Linda M; Nelson, Stanley F; Rao, P. Nagesh; Mischel, Paul; Pieper, Russell O; Cloughesy, Tim; Leahy, Daniel J; Sellers, William R; Sawyers, Charles L; Meyerson, Matthew; Mellinghoff, Ingo K

    2006-01-01

    Background Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma. PMID:17177598

  12. Tracking transcriptional activities with high-content epifluorescent imaging

    NASA Astrophysics Data System (ADS)

    Hua, Jianping; Sima, Chao; Cypert, Milana; Gooden, Gerald C.; Shack, Sonsoles; Alla, Lalitamba; Smith, Edward A.; Trent, Jeffrey M.; Dougherty, Edward R.; Bittner, Michael L.

    2012-04-01

    High-content cell imaging based on fluorescent protein reporters has recently been used to track the transcriptional activities of multiple genes under different external stimuli for extended periods. This technology enhances our ability to discover treatment-induced regulatory mechanisms, temporally order their onsets and recognize their relationships. To fully realize these possibilities and explore their potential in biological and pharmaceutical applications, we introduce a new data processing procedure to extract information about the dynamics of cell processes based on this technology. The proposed procedure contains two parts: (1) image processing, where the fluorescent images are processed to identify individual cells and allow their transcriptional activity levels to be quantified; and (2) data representation, where the extracted time course data are summarized and represented in a way that facilitates efficient evaluation. Experiments show that the proposed procedure achieves fast and robust image segmentation with sufficient accuracy. The extracted cellular dynamics are highly reproducible and sensitive enough to detect subtle activity differences and identify mechanisms responding to selected perturbations. This method should be able to help biologists identify the alterations of cellular mechanisms that allow drug candidates to change cell behavior and thereby improve the efficiency of drug discovery and treatment design.

  13. Identification of biomarkers of response to abatacept in patients with SLE using deconvolution of whole blood transcriptomic data from a phase IIb clinical trial.

    PubMed

    Bandyopadhyay, Somnath; Connolly, Sean E; Jabado, Omar; Ye, June; Kelly, Sheila; Maldonado, Michael A; Westhovens, Rene; Nash, Peter; Merrill, Joan T; Townsend, Robert M

    2017-01-01

    To characterise patients with active SLE based on pretreatment gene expression-defined peripheral immune cell patterns and identify clusters enriched for potential responders to abatacept treatment. This post hoc analysis used baseline peripheral whole blood transcriptomic data from patients in a phase IIb trial of intravenous abatacept (~10 mg/kg/month). Cell-specific genes were used with a published deconvolution algorithm to identify immune cell proportions in patient samples, and unsupervised consensus clustering was generated. Efficacy data were re-analysed. Patient data (n=144: abatacept: n=98; placebo: n=46) were grouped into four main clusters (C) by predominant characteristic cells: C1-neutrophils; C2-cytotoxic T cells, B-cell receptor-ligated B cells, monocytes, IgG memory B cells, activated T helper cells; C3-plasma cells, activated dendritic cells, activated natural killer cells, neutrophils; C4-activated dendritic cells, cytotoxic T cells. C3 had the highest baseline total British Isles Lupus Assessment Group (BILAG) scores, highest antidouble-stranded DNA autoantibody levels and shortest time to flare (TTF), plus trends in favour of response to abatacept over placebo: adjusted mean difference in BILAG score over 1 year, -4.78 (95% CI -12.49 to 2.92); median TTF, 56 vs 6 days; greater normalisation of complement component 3 and 4 levels. Differential improvements with abatacept were not seen in other clusters, except for median TTF in C1 (201 vs 109 days). Immune cell clustering segmented disease severity and responsiveness to abatacept. Definition of immune response cell types may inform design and interpretation of SLE trials and treatment decisions. NCT00119678; results.

  14. Natural and lesion-induced decrease in cell proliferation in the medial nucleus of the trapezoid body during hearing development.

    PubMed

    Saliu, Aminat; Adise, Shana; Xian, Sandy; Kudelska, Kamila; Rodríguez-Contreras, Adrián

    2014-04-01

    The functional interactions between neurons and glial cells that are important for nervous system function are presumably established during development from the activity of progenitor cells. In this study we examined proliferation of progenitor cells in the medial nucleus of the trapezoid body (MNTB) located in the rat auditory brainstem. We performed DNA synthesis labeling experiments to demonstrate changes in cell proliferation activity during postnatal stages of development. An increase in cell proliferation correlated with MNTB growth and the presence of S100β-positive astrocytes among MNTB neurons. In additional experiments we analyzed the fate of newly born cells. At perinatal ages, newly born cells colabeled with the astrocyte marker S100β in higher numbers than when cells were generated at postnatal day 6. Furthermore, we identified newly born cells that were colabeled with caspase-3 immunohistochemistry and performed comparative experiments to demonstrate that there is a natural decrease in cell proliferation activity during postnatal development in rats, mice, gerbils, and ferrets. Lastly, we found that there is a stronger decrease in MNTB cell proliferation after performing bilateral lesions of the auditory periphery in rats. Altogether, these results identify important stages in the development of astrocytes in the MNTB and provide evidence that the proliferative activity of the progenitor cells is developmentally regulated. We propose that the developmental reduction in cell proliferation may reflect coordinated signaling between the auditory brainstem and the auditory periphery. Copyright © 2013 The Authors. Wiley Periodicals, Inc.

  15. Cytoplasmic RAP1 mediates cisplatin resistance of non-small cell lung cancer.

    PubMed

    Xiao, Lu; Lan, Xiaoying; Shi, Xianping; Zhao, Kai; Wang, Dongrui; Wang, Xuejun; Li, Faqian; Huang, Hongbiao; Liu, Jinbao

    2017-05-18

    Cytotoxic chemotherapy agents (e.g., cisplatin) are the first-line drugs to treat non-small cell lung cancer (NSCLC) but NSCLC develops resistance to the agent, limiting therapeutic efficacy. Despite many approaches to identifying the underlying mechanism for cisplatin resistance, there remains a lack of effective targets in the population that resist cisplatin treatment. In this study, we sought to investigate the role of cytoplasmic RAP1, a previously identified positive regulator of NF-κB signaling, in the development of cisplatin resistance in NSCLC cells. We found that the expression of cytoplasmic RAP1 was significantly higher in high-grade NSCLC tissues than in low-grade NSCLC; compared with a normal pulmonary epithelial cell line, the A549 NSCLC cells exhibited more cytoplasmic RAP1 expression as well as increased NF-κB activity; cisplatin treatment resulted in a further increase of cytoplasmic RAP1 in A549 cells; overexpression of RAP1 desensitized the A549 cells to cisplatin, and conversely, RAP1 depletion in the NSCLC cells reduced their proliferation and increased their sensitivity to cisplatin, indicating that RAP1 is required for cell growth and has a key mediating role in the development of cisplatin resistance in NSCLC cells. The RAP1-mediated cisplatin resistance was associated with the activation of NF-κB signaling and the upregulation of the antiapoptosis factor BCL-2. Intriguingly, in the small portion of RAP1-depleted cells that survived cisplatin treatment, no induction of NF-κB activity and BCL-2 expression was observed. Furthermore, in established cisplatin-resistant A549 cells, RAP1 depletion caused BCL2 depletion, caspase activation and dramatic lethality to the cells. Hence, our results demonstrate that the cytoplasmic RAP1-NF-κB-BCL2 axis represents a key pathway to cisplatin resistance in NSCLC cells, identifying RAP1 as a marker and a potential therapeutic target for cisplatin resistance of NSCLC.

  16. The Chromatin Assembly Factor Complex 1 (CAF1) and 5-Azacytidine (5-AzaC) Affect Cell Motility in Src-transformed Human Epithelial Cells.

    PubMed

    Endo, Akinori; Ly, Tony; Pippa, Raffaella; Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I

    2017-01-06

    Tumor invasion into surrounding stromal tissue is a hallmark of high grade, metastatic cancers. Oncogenic transformation of human epithelial cells in culture can be triggered by activation of v-Src kinase, resulting in increased cell motility, invasiveness, and tumorigenicity and provides a valuable model for studying how changes in gene expression cause cancer phenotypes. Here, we show that epithelial cells transformed by activated Src show increased levels of DNA methylation and that the methylation inhibitor 5-azacytidine (5-AzaC) potently blocks the increased cell motility and invasiveness induced by Src activation. A proteomic screen for chromatin regulators acting downstream of activated Src identified the replication-dependent histone chaperone CAF1 as an important factor for Src-mediated increased cell motility and invasion. We show that Src causes a 5-AzaC-sensitive decrease in both mRNA and protein levels of the p150 (CHAF1A) and p60 (CHAF1B), subunits of CAF1. Depletion of CAF1 in untransformed epithelial cells using siRNA was sufficient to recapitulate the increased motility and invasive phenotypes characteristic of transformed cells without activation of Src. Maintaining high levels of CAF1 by exogenous expression suppressed the increased cell motility and invasiveness phenotypes when Src was activated. These data identify a critical role of CAF1 in the dysregulation of cell invasion and motility phenotypes seen in transformed cells and also highlight an important role for epigenetic remodeling through DNA methylation for Src-mediated induction of cancer phenotypes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. MTOR ACTIVATION TRIGGERS IL-4 PRODUCTION AND NECROTIC DEATH OF DOUBLE-NEGATIVE T CELLS IN PATIENTS WITH SYSTEMIC LUPUS ERYHTHEMATOSUS

    PubMed Central

    Lai, Zhi-Wei; Borsuk, Rebecca; Shadakshari, Ashwini; Yu, Jianghong; Dawood, Maha; Garcia, Ricardo; Francis, Lisa; Tily, Hajra; Bartos, Adam; Faraone, Stephen V.; Phillips, Paul; Perl, Andras

    2013-01-01

    The mechanistic target of rapamycin (mTOR) is recognized as a sensor of mitochondrial dysfunction and effector of T-cell lineage development, however, its role in autoimmunity, including systemic lupus erythematosus, remains unclear. Here, we prospectively evaluated mitochondrial dysfunction and mTOR activation in PBL relative to SLE disease activity index (SLEDAI) during 274 visits of 59 patients and 54 matched healthy subjects. Partial least square-discriminant analysis identified 15 of 212 parameters that accounted for 70.2% of the total variance and discriminated lupus and control samples (p<0.0005); increased mitochondrial mass of CD3+/CD4−/CD8− double-negative (DN) T cells (p=1.1×10−22) and FoxP3 depletion in CD4+/CD25+ T cells were top contributors (p=6.7×10−7). Prominent necrosis and mTOR activation were noted in DN T cells during 15 visits characterized by flares (SLEDAI increase ≥4) relative to 61 visits of remission (SLEDAI decrease ≥4). mTOR activation in DN T cells was also noted at pre-flare visits of SLE patients relative to those of stable disease or healthy controls. DN lupus T cells showed increased production of IL-4, which correlated with depletion of CD25+/CD19+B cells. Rapamycin treatment in vivo blocked the IL-4 production and necrosis of DN T cells, increased the expression of FoxP3 in CD25+/CD4+T cells, and expanded CD25+/CD19+ B cells. These results identify mTOR activation to be a trigger of IL-4 production and necrotic death of DN T cells in patients with SLE. PMID:23913957

  18. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    PubMed

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Diverse amide analogs of sulindac for cancer treatment and prevention.

    PubMed

    Mathew, Bini; Hobrath, Judith V; Connelly, Michele C; Kiplin Guy, R; Reynolds, Robert C

    2017-10-15

    Sulindac is a non-steroidal anti-inflammatory drug (NSAID) that has shown significant anticancer activity. Sulindac sulfide amide (1) possessing greatly reduced COX-related inhibition relative to sulindac displayed in vivo antitumor activity that was comparable to sulindac in a human colon tumor xenograft model. Inspired by these observations, a panel of diverse sulindac amide derivatives have been synthesized and their activity probed against three cancer cell lines (prostate, colon and breast). A neutral analog, compound 79 was identified with comparable potency relative to lead 1 and activity against a panel of lymphoblastic leukemia cell lines. Several new series also show good activity relative to the parent (1), including five analogs that also possess nanomolar inhibitory potencies against acute lymphoblastic leukemia cells. Several new analogs identified may serve as anticancer lead candidates for further development. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data.

    PubMed

    Zhang, Tianyu; Xu, Jielin; Deng, Siyuan; Zhou, Fengqi; Li, Jin; Zhang, Liwei; Li, Lang; Wang, Qi-En; Li, Fuhai

    2018-01-01

    Tumor recurrence occurs in more than 70% of ovarian cancer patients, and the majority eventually becomes refractory to treatments. Ovarian Cancer Stem Cells (OCSCs) are believed to be responsible for the tumor relapse and drug resistance. Therefore, eliminating ovarian CSCs is important to improve the prognosis of ovarian cancer patients. However, there is a lack of effective drugs to eliminate OCSCs because the core signaling pathways regulating OCSCs remain unclear. Also it is often hard for biologists to identify a few testable targets and infer driver signaling pathways regulating CSCs from a large number of differentially expression genes in an unbiased manner. In this study, we propose a straightforward and integrative analysis to identify potential core signaling pathways of OCSCs by integrating transcriptome data of OCSCs isolated based on two distinctive markers, ALDH and side population, with regulatory network (Transcription Factor (TF) and Target Interactome) and signaling pathways. We first identify the common activated TFs in two OCSC populations integrating the gene expression and TF-target Interactome; and then uncover up-stream signaling cascades regulating the activated TFs. In specific, 22 activated TFs are identified. Through literature search validation, 15 of them have been reported in association with cancer stem cells. Additionally, 10 TFs are found in the KEGG signaling pathways, and their up-stream signaling cascades are extracted, which also provide potential treatment targets. Moreover, 40 FDA approved drugs are identified to target on the up-stream signaling cascades, and 15 of them have been reported in literatures in cancer stem cell treatment. In conclusion, the proposed approach can uncover the activated up-stream signaling, activated TFs and up-regulated target genes that constitute the potential core signaling pathways of ovarian CSC. Also drugs and drug combinations targeting on the core signaling pathways might be able to eliminate OCSCs. The proposed approach can also be applied for identifying potential activated signaling pathways of other types of cancers.

  1. Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo.

    PubMed

    Nagahama, Kiyoko; Eto, Nozomu; Shimojo, Tomofumi; Kondoh, Tomomi; Nakahara, Keiko; Sakakibara, Yoichi; Fukui, Keiichi; Suiko, Masahito

    2015-01-01

    Natural killer (NK) cells play a key role in innate immune defense against infectious disease and cancer. A reduction of NK activity is likely to be associated with increased risk of these types of disease. In this study, we investigate the activation potential of kumquat pericarp acetone fraction (KP-AF) on NK cells. It is shown to significantly increase IFN-γ production and NK cytotoxic activity in human KHYG-1 NK cells. Moreover, oral administration of KP-AF significantly improves both suppressed plasma IFN-γ levels and NK cytotoxic activity per splenocyte in restraint-stressed mice. These results indicate that raw kumquat pericarp activates NK cells in vitro and in vivo. To identify the active constituents, we also examined IFN-γ production on KHYG-1 cells by the predicted active components. Only β-cryptoxanthin increased IFN-γ production, suggesting that NK cell activation effects of KP-AF may be caused by carotenoids such as β-cryptoxanthin.

  2. Three-dimensional spatiotemporal tracking of fluorine-18 radiolabeled yeast cells via positron emission particle tracking

    DOE PAGES

    Langford, Seth T.; Wiggins, Cody S.; Santos, Roque; ...

    2017-07-06

    A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less

  3. Three-dimensional spatiotemporal tracking of fluorine-18 radiolabeled yeast cells via positron emission particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langford, Seth T.; Wiggins, Cody S.; Santos, Roque

    A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less

  4. Invariant NKT cells provide innate and adaptive help for B cells

    PubMed Central

    Vomhof-DeKrey, Emilie E.; Yates, Jennifer; Leadbetter, Elizabeth A.

    2014-01-01

    B cells rely on CD4+ T cells helper signals to optimize their responses to T-dependent antigens. Recently another subset of T cells has been identified which provides help for B cells, invariant natural killer T (iNKT) cells. INKT cells are unique because they provide both innate and adaptive forms of help to B cells, with divergent outcomes. iNKT cells are widely distributed throughout the spleen at rest, consolidate in the marginal zone of the spleen early after activation, and are later found in germinal centers. Understanding the activation requirements for iNKT cells has led to the development of glycolipid containing nanoparticles which efficiently activate iNKT cells, enhance their cooperation with B cells, and which hold promise for vaccine development. PMID:24514004

  5. XET Activity is Found Near Sites of Growth and Cell Elongation in Bryophytes and Some Green Algae: New Insights into the Evolution of Primary Cell Wall Elongation

    PubMed Central

    Van Sandt, Vicky S. T.; Stieperaere, Herman; Guisez, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-01-01

    Background and Aims In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. Methods Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3′ RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. Key Results XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. Conclusions XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion. PMID:17098750

  6. Phosphotyrosine enrichment identifies focal adhesion kinase and other tyrosine kinases for targeting in canine hemangiosarcoma.

    PubMed

    Marley, K; Maier, C S; Helfand, S C

    2012-09-01

    Canine hemangiosarcoma (HSA) is an endothelial cell malignancy driven, in part, by activating mutations in receptor and non-receptor tyrosine kinases. Proteomics, Western blots and a tyrosine kinase inhibitor were used to elucidate activating mechanisms in HSA cell lines. Phosphotyrosine peptides from focal adhesion kinase (FAK) STAT3, Lyn, Fyn and other signal transduction kinases were identified by mass spectrometry. FAK was constitutively activated at tyrosine 397, the autophosphorylation site, and this was reversible with high concentrations of a FAK inhibitor. FAK inhibitor-14 suppressed migration and phosphorylation of FAK tyrosine 397 and tyrosines 576/577 and was cytotoxic to HSA cells suggesting FAK signalling may be an important contributor to canine HSA survival. © 2012 Blackwell Publishing Ltd.

  7. PCR array analysis of gene expression profiles in chronic active Epstein-Barr virus infection.

    PubMed

    Murakami, Masanao; Hashida, Yumiko; Imajoh, Masayuki; Maeda, Akihiko; Kamioka, Mikio; Senda, Yasutaka; Sato, Tetsuya; Fujieda, Mikiya; Wakiguchi, Hiroshi; Daibata, Masanori

    2014-07-01

    To determine the host cellular gene expression profiles in chronic active Epstein-Barr virus infection (CAEBV), peripheral blood samples were obtained from three patients with CAEBV and investigated using a PCR array analysis that focused on T-cell/B-cell activation. We identified six genes with expression levels that were tenfold higher in CAEBV patients compared with those in healthy controls. These results were verified by quantitative reverse transcription-PCR. We identified four highly upregulated genes, i.e., IL-10, IL-2, IFNGR1, and INHBA. These genes may be involved in inflammatory responses and cell proliferation, and they may contribute to the development and progression of CAEBV. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. LC-MS analysis of Hep-2 and Hek-293 cell lines treated with Brazilian red propolis reveals differences in protein expression.

    PubMed

    da Silva Frozza, Caroline O; da Silva Brum, Emyle; Alving, Anjali; Moura, Sidnei; Henriques, João A P; Roesch-Ely, Mariana

    2016-08-01

    Red propolis, an exclusive variety of propolis found in the northeast of Brazil has shown to present antitumour activity, among several other biological properties. This article aimed to help to evaluate the underlying molecular mechanisms of the potential anticancer effects of red propolis on tumour, Hep-2, and non-tumour cells, Hek-293. Differentially expressed proteins in human cell lines were identified through label-free quantitative MS-based proteomic platform, and cells were stained with Giemsa to show morphological changes. A total of 1336 and 773 proteins were identified for Hep-2 and Hek-293, respectively. Among the proteins here identified, 16 were regulated in the Hep-2 cell line and 04 proteins in the Hek-293 line. Over a total of 2000 proteins were identified under MS analysis, and approximately 1% presented differential expression patterns. The GO annotation using Protein Analysis THrough Evolutionary Relationships classification system revealed predominant molecular function of catalytic activity, and among the biological processes, the most prominent was associated to cell metabolism. The proteomic profile here presented should help to elucidate further molecular mechanisms involved in inhibition of cancer cell proliferation by red propolis, which remain unclear to date. © 2016 Royal Pharmaceutical Society.

  9. High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs.

    PubMed

    Endo, Kei; Hayashi, Karin; Saito, Hirohide

    2016-02-23

    The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.

  10. Identification of New Anti-inflammatory Peptides from Zein Hydrolysate after Simulated Gastrointestinal Digestion and Transport in Caco-2 Cells.

    PubMed

    Liang, Qiufang; Chalamaiah, Meram; Ren, Xiaofeng; Ma, Haile; Wu, Jianping

    2018-02-07

    Chronic inflammation is an underlying contributor to various chronic diseases. The objectives of this study were to investigate the anti-inflammatory activity of zein hydrolysate after simulated gastrointestinal digestion and Caco-2 cell absorption and to identify novel anti-inflammatory peptides after transport across Caco-2 cells. Three zein hydrolysates were prepared and further digested using gastrointestinal proteases; their transports were studied in Caco-2 cells. Anti-inflammatory activity was studied in endothelial EA.hy926 cells. Three zein hydrolysates and their digests significantly decreased the expression of tumor necrosis factor-α (TNF-α) induced pro-inflammatory vascular cell adhesion molecule-1 (VCAM-1) by 37.3-66.0%. Eleven novel peptides with 5-9 amino acid residues were sequenced; three peptides showed strong anti-inflammatory activity by inhibiting the VCAM-1 by 54-38.9% and intercellular cell adhesion molecule-1 (ICAM-1) by 36.5-28.6% at 0.2 mM. A new approach to identify novel anti-inflammatory peptides that could survive gastrointestinal digestion and absorption was developed.

  11. Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging.

    PubMed

    Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo

    2018-04-27

    Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.

  12. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, Anthony M.; Cheung, Pamela; Swartz, Talia H.

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors thatmore » block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.« less

  13. Phenyl Saligenin Phosphate Induced Caspase-3 and c-Jun N-Terminal Kinase Activation in Cardiomyocyte-Like Cells.

    PubMed

    Felemban, Shatha G; Garner, A Christopher; Smida, Fathi A; Boocock, David J; Hargreaves, Alan J; Dickenson, John M

    2015-11-16

    At present, little is known about the effect(s) of organophosphorous compounds (OPs) on cardiomyocytes. In this study, we have investigated the effects of phenyl saligenin phosphate (PSP), two organophosphorothioate insecticides (diazinon and chlorpyrifos), and their acutely toxic metabolites (diazoxon and chlorpyrifos oxon) on mitotic and differentiated H9c2 cardiomyoblasts. OP-induced cytotoxicity was assessed by monitoring MTT reduction, LDH release, and caspase-3 activity. Cytotoxicity was not observed with diazinon, diazoxon, or chlorpyrifos oxon (48 h exposure; 200 μM). Chlorpyrifos-induced cytotoxicity was only evident at concentrations >100 μM. In marked contrast, PSP displayed pronounced cytotoxicity toward mitotic and differentiated H9c2 cells. PSP triggered the activation of JNK1/2 but not ERK1/2, p38 MAPK, or PKB, suggesting a role for this pro-apoptotic protein kinase in PSP-induced cell death. The JNK1/2 inhibitor SP 600125 attenuated PSP-induced caspase-3 and JNK1/2 activation, confirming the role of JNK1/2 in PSP-induced cytotoxicity. Fluorescently labeled PSP (dansylated PSP) was used to identify novel PSP binding proteins. Dansylated PSP displayed cytotoxicity toward differentiated H9c2 cells. 2D-gel electrophoresis profiles of cells treated with dansylated PSP (25 μM) were used to identify proteins fluorescently labeled with dansylated PSP. Proteomic analysis identified tropomyosin, heat shock protein β-1, and nucleolar protein 58 as novel protein targets for PSP. In summary, PSP triggers cytotoxicity in differentiated H9c2 cardiomyoblasts via JNK1/2-mediated activation of caspase-3. Further studies are required to investigate whether the identified novel protein targets of PSP play a role in the cytotoxicity of this OP, which is usually associated with the development of OP-induced delayed neuropathy.

  14. Dual function of active constituents from bark of Ficus racemosa L in wound healing.

    PubMed

    Bopage, Nisansala Swarnamali; Kamal Bandara Gunaherath, G M; Jayawardena, Kithsiri Hector; Wijeyaratne, Sushila Chandrani; Abeysekera, Ajita Mahendra; Somaratne, Seneviratne

    2018-01-25

    Different parts including the latex of Ficus racemosa L. has been used as a medicine for wound healing in the Ayurveda and in the indigenous system of medicine in Sri Lanka. This plant has been evaluated for its wound healing potential using animal models. The aim of this study was to obtain an insight into the wound healing process and identify the potential wound healing active substance/s present in F. racemosa L. bark using scratch wound assay (SWA) as the in-vitro assay method. Stem bark extracts of F. racemosa were evaluated using scratch wound assay (SWA) on Baby Hamster Kidney (BHK 21) and Madin-Darby Canine Kidney (MDCK) cell lines and Kirby Bauer disc diffusion assay on common bacteria and fungi for cell migration enhancing ability and antimicrobial activity respectively. Dichloromethane and hexanes extracts which showed cell migration enhancement activity on SWA were subjected to bioactivity directed fractionation using column chromatography followed by preparative thin layer chromatography to identify the compounds responsible for the cell migration enhancement activity. Dichloromethane and hexanes extracts showed cell migration enhancement activity on both cell lines, while EtOAc and MeOH extracts showed antibacterial activity against Staphylococcus and Bacillus species and antifungal activity against Saccharomyces spp. and Candida albicans. Lupeol (1) and β-sitosterol (2) were isolated as the potential wound healing active compounds which exhibited significant cell migration enhancement activity on BHK 21 and MDCK cell lines (> 80%) in par with the positive control, asiaticoside at a concentration of 25 μM. The optimum concentration of each compound required for the maximum wound healing has been determined as 30 μM and 35 μM for 1 and 2 respectively on both cell lines. It is also established that lupeol acetate (3) isolated from the hexanes extract act as a pro-drug by undergoing hydrolysis into lupeol in the vicinity of cells. Different chemical constituents present in stem bark of Ficus racemosa L show enhancement of cell migration (which corresponds to the cell proliferation) as well as antimicrobial activity. This dual action of F. racemosa stem bark provides scientific support for its traditional use in wound healing.

  15. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells.

    PubMed

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F; Broering, Ruth

    2015-01-01

    Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Cell preparation yielded the following cell counts per gram of liver tissue: 2.0 ± 0.4 × 10(7) hepatocytes, 1.8 ± 0.5 × 10(6 )Kupffer cells, 4.3 ± 1.9 × 10(5) liver sinusoidal endothelial cells, and 3.2 ± 0.5 × 10(5) stellate cells. Hepatocytes were identified by albumin (95.5 ± 1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5 ± 1.2%) and exhibited phagocytic activity, as determined with 1 μm latex beads. Endothelial cells were CD146(+) (97.8 ± 1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1 ± 1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.

  16. Identification of a Raloxifene Analog That Promotes AhR-Mediated Apoptosis in Cancer Cells.

    PubMed

    Jang, Hyo Sang; Pearce, Martin; O'Donnell, Edmond F; Nguyen, Bach Duc; Truong, Lisa; Mueller, Monica J; Bisson, William H; Kerkvliet, Nancy I; Tanguay, Robert L; Kolluri, Siva Kumar

    2017-12-01

    We previously reported that raloxifene, an estrogen receptor modulator, is also a ligand for the aryl hydrocarbon receptor (AhR). Raloxifene induces apoptosis in estrogen receptor-negative human cancer cells through the AhR. We performed structure-activity studies with seven raloxifene analogs to better understand the structural requirements of raloxifene for induction of AhR-mediated transcriptional activity and apoptosis. We identified Y134 as a raloxifene analog that activates AhR-mediated transcriptional activity and induces apoptosis in MDA-MB-231 human triple negative breast cancer cells. Suppression of AhR expression strongly reduced apoptosis induced by Y134, indicating the requirement of AhR for Y134-induced apoptosis. Y134 also induced apoptosis in hepatoma cells without having an effect on cell cycle regulation. Toxicity testing on zebrafish embryos revealed that Y134 has a significantly better safety profile than raloxifene. Our studies also identified an analog of raloxifene that acts as a partial antagonist of the AhR, and is capable of inhibiting AhR agonist-induced transcriptional activity. We conclude that Y134 is a promising raloxifene analog for further optimization as an anti-cancer agent targeting the AhR.

  17. CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response.

    PubMed

    Qadir, Abdul S; Ceppi, Paolo; Brockway, Sonia; Law, Calvin; Mu, Liang; Khodarev, Nikolai N; Kim, Jung; Zhao, Jonathan C; Putzbach, William; Murmann, Andrea E; Chen, Zhuo; Chen, Wenjing; Liu, Xia; Salomon, Arthur R; Liu, Huiping; Weichselbaum, Ralph R; Yu, Jindan; Peter, Marcus E

    2017-03-07

    Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1) and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95 high -expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs) that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. The E3 ubiquitin ligase mind bomb-2 (MIB2) protein controls B-cell CLL/lymphoma 10 (BCL10)-dependent NF-κB activation.

    PubMed

    Stempin, Cinthia C; Chi, Liying; Giraldo-Vela, Juan P; High, Anthony A; Häcker, Hans; Redecke, Vanessa

    2011-10-28

    B-cell CLL/lymphoma 10 (BCL10) is crucial for the activation of NF-κB in numerous immune receptor signaling pathways, including the T-cell receptor (TCR) and B-cell receptor signaling pathways. However, the molecular mechanisms that lead to signal transduction from BCL10 to downstream NF-κB effector kinases, such as TAK1 and components of the IKK complex, are not entirely understood. Here we used a proteomic approach and identified the E3 ligase MIB2 as a novel component of the activated BCL10 complex. In vitro translation and pulldown assays suggest direct interaction between BCL10 and MIB2. Overexpression experiments show that MIB2 controls BCL10-mediated activation of NF-κB by promoting autoubiquitination and ubiquitination of IKKγ/NEMO, as well as recruitment and activation of TAK1. Knockdown of MIB2 inhibited BCL10-dependent NF-κB activation. Together, our results identify MIB2 as a novel component of the activated BCL10 signaling complex and a missing link in the BCL10-dependent NF-κB signaling pathway.

  19. Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury.

    PubMed

    Llorens-Bobadilla, Enric; Zhao, Sheng; Baser, Avni; Saiz-Castro, Gonzalo; Zwadlo, Klara; Martin-Villalba, Ana

    2015-09-03

    Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A Critical Role for IL-17RB Signaling in HTLV-1 Tax-Induced NF-κB Activation and T-Cell Transformation

    PubMed Central

    Lavorgna, Alfonso; Matsuoka, Masao; Harhaj, Edward William

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia (ATL) and the neuroinflammatory disease HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein functions as a potent viral oncogene that constitutively activates the NF-κB transcription factor to transform T cells; however, the underlying mechanisms remain obscure. Here, using next-generation RNA sequencing we identified the IL-25 receptor subunit IL-17RB as an aberrantly overexpressed gene in HTLV-1 immortalized T cells. Tax induced the expression of IL-17RB in an IκB kinase (IKK) and NF-κB-dependent manner. Remarkably, Tax activation of the canonical NF-κB pathway in T cells was critically dependent on IL-17RB expression. IL-17RB and IL-25 were required for HTLV-1-induced immortalization of primary T cells, and the constitutive NF-κB activation and survival of HTLV-1 transformed T cells. IL-9 was identified as an important downstream target gene of the IL-17RB pathway that drives the proliferation of HTLV-1 transformed cells. Furthermore, IL-17RB was overexpressed in leukemic cells from a subset of ATL patients and also regulated NF-κB activation in some, but not all, Tax-negative ATL cell lines. Together, our results support a model whereby Tax instigates an IL-17RB-NF-κB feed-forward autocrine loop that is obligatory for HTLV-1 leukemogenesis. PMID:25340344

  1. Antibiotic drug rifabutin is effective against lung cancer cells by targeting the eIF4E-β-catenin axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ji; Huang, Yijiang; Gao, Yunsuo

    The essential roles of overexpression of eukaryotic translation initiation factor 4E (eIF4E) and aberrant activation of β-catenin in lung cancer development have been recently identified. However, whether there is a direct connection between eIF4E overexpression and β-catenin activation in lung cancer cells is unknown. In this study, we show that antibiotic drug rifabutin targets human lung cancer cells via inhibition of eIF4E-β-catenin axis. Rifabutin is effectively against lung cancer cells in in vitro cultured cells and in vivo xenograft mouse model through inhibiting proliferation and inducing apoptosis. Mechanistically, eIF4E regulates β-catenin activity in lung cancer cells as shown by the increased β-cateninmore » phosphorylation and activity in cells overexpressing eIF4E, and furthermore that the regulation is dependent on phosphorylation at S209. Rifabutin suppresses eIF4E phosphorylation, leads to decreased β-catenin phosphorylation and its subsequent transcriptional activities. Depletion of eIF4E abolishes the inhibitory effects of rifabutin on β-catenin activities and overexpression of β-catenin reverses the inhibitory effects of rifabutin on cell growth and survival, further confirming that rifabutin acts on lung cancer cells via targeting eIF4E- β-catenin axis. Our findings identify the eIF4E- β-catenin axis as a critical regulator of lung cancer cell growth and survival, and suggest that its pharmacological inhibition may be therapeutically useful in lung cancer. - Highlights: • Rifabutin targets EGFR-mutated lung cancer cells in vitro and in vivo. • eIF4E phosphorylation regulates β-catenin activity in lung cancer cells. • Rifabutin acts on lung cancer cells via eIF4E- β-catenin axis. • Rifabutin can be repurposed for lung cancer treatment.« less

  2. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas

    PubMed Central

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B.; Zhang, Donna D.; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-01-01

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity. PMID:27573825

  3. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas.

    PubMed

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B; Zhang, Donna D; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-09-13

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity.

  4. Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154.

    PubMed

    Kunnath-Velayudhan, Shajo; Goldberg, Michael F; Saini, Neeraj K; Johndrow, Christopher T; Ng, Tony W; Johnson, Alison J; Xu, Jiayong; Chan, John; Jacobs, William R; Porcelli, Steven A

    2017-10-01

    Analysis of Ag-specific CD4 + T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4 + T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4 + T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4 + T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154 + cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4 + CD154 + cells was distinct from that of CD154 - cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4 + T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4 + T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. CD4+ T cells defined by their Vβ T cell receptor expression are associated with immunoregulatory profiles and lesion size in human leishmaniasis

    PubMed Central

    Keesen, T S L; Antonelli, L R V; Faria, D R; Guimarães, L H; Bacellar, O; Carvalho, E M; Dutra, W O; Gollob, K J

    2011-01-01

    Leishmaniasis is caused by infection with the protozoan parasite, Leishmania, that parasitizes human cells, and the cellular immune response is essential for controlling infection. In order to measure the host T cell response to Leishmania infection, we have measured the expansion, activation state and functional potential of specific T cells as identified by their T cell receptor Vβ region expression. In a group of cutaneous leishmaniasis (CL) patients, we evaluated these characteristics in nine different T cell subpopulations as identified by their Vβ region expression, before and after specific Leishmania antigen stimulation. Our results show: (1) an increase in CD4+ T cells expressing Vβ 5·2 and Vβ 24 in CL compared to controls; (2) a Leishmania antigen-induced increase in CD4+ T cells expressing Vβ 5·2, 11, 12 and 17; (3) a profile of previous activation of CD4+ Vβ 5·2-, 11- and 24-positive T cells, with higher expression of CD45RO, HLA-DR, interferon-γ, tumour necrosis factor-α and interleukin-10 compared to other Vβ-expressing subpopulations; (4) a positive correlation between higher frequencies of CD4+Vβ5·2+ T cells and larger lesions; and (5) biased homing of CD4+ T cells expressing Vβ 5·2 to the lesion site. Given that CL disease involves a level of pathology (ulcerated lesions) and is often followed by long-lived protection and cure, the identification of specific subpopulations active in this form of disease could allow for the discovery of immunodominant Leishmania antigens important for triggering efficient host responses against the parasite, or identify cell populations most involved in pathology. PMID:21726211

  6. A leukocyte activation test identifies food items which induce release of DNA by innate immune peripheral blood leucocytes.

    PubMed

    Garcia-Martinez, Irma; Weiss, Theresa R; Yousaf, Muhammad N; Ali, Ather; Mehal, Wajahat Z

    2018-01-01

    Leukocyte activation (LA) testing identifies food items that induce a patient specific cellular response in the immune system, and has recently been shown in a randomized double blinded prospective study to reduce symptoms in patients with irritable bowel syndrome (IBS). We hypothesized that test reactivity to particular food items, and the systemic immune response initiated by these food items, is due to the release of cellular DNA from blood immune cells. We tested this by quantifying total DNA concentration in the cellular supernatant of immune cells exposed to positive and negative foods from 20 healthy volunteers. To establish if the DNA release by positive samples is a specific phenomenon, we quantified myeloperoxidase (MPO) in cellular supernatants. We further assessed if a particular immune cell population (neutrophils, eosinophils, and basophils) was activated by the positive food items by flow cytometry analysis. To identify the signaling pathways that are required for DNA release we tested if specific inhibitors of key signaling pathways could block DNA release. Foods with a positive LA test result gave a higher supernatant DNA content when compared to foods with a negative result. This was specific as MPO levels were not increased by foods with a positive LA test. Protein kinase C (PKC) inhibitors resulted in inhibition of positive food stimulated DNA release. Positive foods resulted in CD63 levels greater than negative foods in eosinophils in 76.5% of tests. LA test identifies food items that result in release of DNA and activation of peripheral blood innate immune cells in a PKC dependent manner, suggesting that this LA test identifies food items that result in release of inflammatory markers and activation of innate immune cells. This may be the basis for the improvement in symptoms in IBS patients who followed an LA test guided diet.

  7. The non-classical MAP kinase ERK3 controls T cell activation.

    PubMed

    Marquis, Miriam; Boulet, Salix; Mathien, Simon; Rousseau, Justine; Thébault, Paméla; Daudelin, Jean-François; Rooney, Julie; Turgeon, Benjamin; Beauchamp, Claudine; Meloche, Sylvain; Labrecque, Nathalie

    2014-01-01

    The classical mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 are activated upon stimulation of cells with a broad range of extracellular signals (including antigens) allowing cellular responses to occur. ERK3 is an atypical member of the MAPK family with highest homology to ERK1/2. Therefore, we evaluated the role of ERK3 in mature T cell response. Mouse resting T cells do not transcribe ERK3 but its expression is induced in both CD4⁺ and CD8⁺ T cells following T cell receptor (TCR)-induced T cell activation. This induction of ERK3 expression in T lymphocytes requires activation of the classical MAPK ERK1 and ERK2. Moreover, ERK3 protein is phosphorylated and associates with MK5 in activated primary T cells. We show that ERK3-deficient T cells have a decreased proliferation rate and are impaired in cytokine secretion following in vitro stimulation with low dose of anti-CD3 antibodies. Our findings identify the atypical MAPK ERK3 as a new and important regulator of TCR-induced T cell activation.

  8. The Non-Classical MAP Kinase ERK3 Controls T Cell Activation

    PubMed Central

    Mathien, Simon; Rousseau, Justine; Thébault, Paméla; Daudelin, Jean-François; Rooney, Julie; Turgeon, Benjamin; Beauchamp, Claudine; Meloche, Sylvain; Labrecque, Nathalie

    2014-01-01

    The classical mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 are activated upon stimulation of cells with a broad range of extracellular signals (including antigens) allowing cellular responses to occur. ERK3 is an atypical member of the MAPK family with highest homology to ERK1/2. Therefore, we evaluated the role of ERK3 in mature T cell response. Mouse resting T cells do not transcribe ERK3 but its expression is induced in both CD4+ and CD8+ T cells following T cell receptor (TCR)-induced T cell activation. This induction of ERK3 expression in T lymphocytes requires activation of the classical MAPK ERK1 and ERK2. Moreover, ERK3 protein is phosphorylated and associates with MK5 in activated primary T cells. We show that ERK3-deficient T cells have a decreased proliferation rate and are impaired in cytokine secretion following in vitro stimulation with low dose of anti-CD3 antibodies. Our findings identify the atypical MAPK ERK3 as a new and important regulator of TCR-induced T cell activation. PMID:24475167

  9. Simultaneous profiling of activity patterns in multiple neuronal subclasses.

    PubMed

    Parrish, R Ryley; Grady, John; Codadu, Neela K; Trevelyan, Andrew J; Racca, Claudia

    2018-06-01

    Neuronal networks typically comprise heterogeneous populations of neurons. A core objective when seeking to understand such networks, therefore, is to identify what roles these different neuronal classes play. Acquiring single cell electrophysiology data for multiple cell classes can prove to be a large and daunting task. Alternatively, Ca 2+ network imaging provides activity profiles of large numbers of neurons simultaneously, but without distinguishing between cell classes. We therefore developed a strategy for combining cellular electrophysiology, Ca 2+ network imaging, and immunohistochemistry to provide activity profiles for multiple cell classes at once. This involves cross-referencing easily identifiable landmarks between imaging of the live and fixed tissue, and then using custom MATLAB functions to realign the two imaging data sets, to correct for distortions of the tissue introduced by the fixation or immunohistochemical processing. We illustrate the methodology for analyses of activity profiles during epileptiform events recorded in mouse brain slices. We further demonstrate the activity profile of a population of parvalbumin-positive interneurons prior, during, and following a seizure-like event. Current approaches to Ca 2+ network imaging analyses are severely limited in their ability to subclassify neurons, and often rely on transgenic approaches to identify cell classes. In contrast, our methodology is a generic, affordable, and flexible technique to characterize neuronal behaviour with respect to classification based on morphological and neurochemical identity. We present a new approach for analysing Ca 2+ network imaging datasets, and use this to explore the parvalbumin-positive interneuron activity during epileptiform events. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase.

    PubMed

    Stein, E; Huynh-Do, U; Lane, A A; Cerretti, D P; Daniel, T O

    1998-01-16

    Eph family receptor tyrosine kinases signal axonal guidance, neuronal bundling, and angiogenesis; yet the signaling systems that couple these receptors to targeting and cell-cell assembly responses are incompletely defined. Functional links to regulators of cytoskeletal structure are anticipated based on receptor mediated cell-cell aggregation and migratory responses. We used two-hybrid interaction cloning to identify EphB1-interactive proteins. Six independent cDNAs encoding the SH2 domain of the adapter protein, Nck, were recovered in a screen of a murine embryonic library. We mapped the EphB1 subdomain that binds Nck and its Drosophila homologue, DOCK, to the juxtamembrane region. Within this subdomain, Tyr594 was required for Nck binding. In P19 embryonal carcinoma cells, activation of EphB1 (ELK) by its ligand, ephrin-B1/Fc, recruited Nck to native receptor complexes and activated c-Jun kinase (JNK/SAPK). Transient overexpression of mutant EphB1 receptors (Y594F) blocked Nck recruitment to EphB1, attenuated downstream JNK activation, and blocked cell attachment responses. These findings identify Nck as an important intermediary linking EphB1 signaling to JNK.

  11. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    PubMed

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Leaf and Root Extracts from Campomanesia adamantium (Myrtaceae) Promote Apoptotic Death of Leukemic Cells via Activation of Intracellular Calcium and Caspase-3

    PubMed Central

    Campos, Jaqueline F.; Espindola, Priscilla P. de Toledo; Torquato, Heron F. V.; Vital, Wagner D.; Justo, Giselle Z.; Silva, Denise B.; Carollo, Carlos A.; de Picoli Souza, Kely; Paredes-Gamero, Edgar J.; dos Santos, Edson L.

    2017-01-01

    Phytochemical studies are seeking new alternatives to prevent or treat cancer, including different types of leukemias. Campomanesia adamantium, commonly known as guavira or guabiroba, exhibits pharmacological properties including antioxidant, antimicrobial, and antiproliferative activities. Considering the anticancer potential of this plant species, the aim of this study was to evaluate the antileukemic activity and the chemical composition of aqueous extracts from the leaves (AECL) and roots (AECR) of C. adamantium and their possible mechanisms of action. The extracts were analyzed by LC-DAD-MS, and their constituents were identified based on the UV, MS, and MS/MS data. The AECL and AECR showed different chemical compositions, which were identified as main compounds glycosylated flavonols from AECL and ellagic acid and their derivatives from AECR. The cytotoxicity promoted by these extracts were evaluated using human peripheral blood mononuclear cells and Jurkat leukemic cell line. The cell death profile was evaluated using annexin-V-FITC and propidium iodide labeling. Changes in the mitochondrial membrane potential, the activity of caspases, and intracellular calcium levels were assessed. The cell cycle profile was evaluated using propidium iodide. Both extracts caused concentration-dependent cytotoxicity only in Jurkat cells via late apoptosis. This activity was associated with loss of the mitochondrial membrane potential, activation of caspases-9 and -3, changes in intracellular calcium levels, and cell cycle arrest in S-phase. Therefore, the antileukemic activity of the AECL and AECR is mediated by mitochondrial dysfunction and intracellular messengers, which activate the intrinsic apoptotic pathway. Hence, aqueous extracts of the leaves and roots of C. adamantium show therapeutic potential for use in the prevention and treatment of diseases associated the proliferation of tumor cell. PMID:28855870

  13. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells

    PubMed Central

    Lefrançais, Emma; Duval, Anais; Mirey, Emilie; Roga, Stéphane; Espinosa, Eric; Cayrol, Corinne; Girard, Jean-Philippe

    2014-01-01

    Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-3395–270, IL-33107–270, and IL-33109–270, were 30-fold more potent than full-length human IL-331–270 for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33–dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66–111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33–mediated responses in allergic asthma and other inflammatory diseases. PMID:25313073

  14. Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression.

    PubMed

    Easty, D J; Guthrie, B A; Maung, K; Farr, C J; Lindberg, R A; Toso, R J; Herlyn, M; Bennett, D C

    1995-06-15

    Epithelial cell kinase (ECK) is a receptor protein tyrosine kinase, the role of which in melanoma biology is unclear. Here we studied the role of ECK during melanoma progression. ECK mRNA was overexpressed in virtually all melanoma lines tested, and levels were significantly higher in cell lines from distant metastases than primary melanomas; melanocytes were negative. Gene amplification was not detected in melanomas. Levels of ECK protein corresponded well with mRNA levels. B61 or LERK-1, recently identified as an ECK ligand, stimulated the growth of ECK-expressing melanoma cell lines, its first identified biological activity. Melanoma chemotaxis and chemoinvasion were not affected by B61. Growth of normal melanocytes was not affected. mRNA for B61 was detected in both melanoma cell lines and normal melanocytes. B61 was also identified by Western blotting and ECK binding activity with the use of a BIAcore binding assay in melanoma cell-conditioned media. These results suggest that B61 is an autocrine growth factor for melanomas but not normal melanocytes.

  15. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    PubMed Central

    Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.

    2014-01-01

    During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068

  16. Construction and analysis of a modular model of caspase activation in apoptosis

    PubMed Central

    Harrington, Heather A; Ho, Kenneth L; Ghosh, Samik; Tung, KC

    2008-01-01

    Background A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic) and intracellular (intrinsic) signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC) and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins. Results A model of caspase activation is constructed and analyzed. The apoptosis signaling network is simplified through modularization methodologies and equilibrium abstractions for three functional modules. The mathematical model is composed of a system of ordinary differential equations which is numerically solved. Multiple linear regression analysis investigates the role of each module and reduced models are constructed to identify key contributions of the extrinsic and intrinsic pathways in triggering apoptosis for different cell lines. Conclusion Through linear regression techniques, we identified the feedbacks, dissociation of complexes, and negative regulators as the key components in apoptosis. The analysis and reduced models for our model formulation reveal that the chosen cell lines predominately exhibit strong extrinsic caspase, typical of type I cell, behavior. Furthermore, under the simplified model framework, the selected cells lines exhibit different modes by which caspase activation may occur. Finally the proposed modularized model of apoptosis may generalize behavior for additional cells and tissues, specifically identifying and predicting components responsible for the transition from type I to type II cell behavior. PMID:19077196

  17. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy.

    PubMed

    Zhang, Yi-Xiang; van Oosterwijk, Jolieke G; Sicinska, Ewa; Moss, Samuel; Remillard, Stephen P; van Wezel, Tom; Bühnemann, Claudia; Hassan, Andrew B; Demetri, George D; Bovée, Judith V M G; Wagner, Andrew J

    2013-07-15

    Chondrosarcomas are notoriously resistant to cytotoxic chemotherapeutic agents. We sought to identify critical signaling pathways that contribute to their survival and proliferation, and which may provide potential targets for rational therapeutic interventions. Activation of receptor tyrosine kinases (RTK) was surveyed using phospho-RTK arrays. S6 phosphorylation and NRAS mutational status were examined in chondrosarcoma primary tumor tissues. siRNA or small-molecule inhibitors against RTKs or downstream signaling proteins were applied to chondrosarcoma cells and changes in biochemical signaling, cell cycle, and cell viability were determined. In vivo antitumor activity of BEZ235, a phosphoinositide 3-kinase (PI3K)/mTOR inhibitor, was evaluated in a chondrosarcoma xenograft model. Several RTKs were identified as critical mediators of cell growth, but the RTK dependencies varied among cell lines. In exploration of downstream signaling pathways, strong S6 phosphorylation was found in 69% of conventional chondrosarcomas and 44% of dedifferentiated chondrosarcomas. Treatment with BEZ235 resulted in dramatic reduction in the growth of all chondrosarcoma cell lines. Tumor growth was similarly inhibited in a xenograft model of chondrosarcoma. In addition, chondrosarcoma cells with an NRAS mutation were sensitive to treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor. Functional NRAS mutations were found in 12% of conventional central chondrosarcomas. RTKs are commonly activated in chondrosarcoma, but because of their considerable heterogeneity, targeted inhibition of the PI3K/mTOR pathway represents a rational therapeutic strategy. Chondrosarcomas with NRAS mutations may benefit from treatment with MEK inhibitors.

  18. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling.

    PubMed

    Pawar, Archana; Meier, Jeremy A; Dasgupta, Anwesha; Diwanji, Neha; Deshpande, Neha; Saxena, Kritika; Buwa, Natasha; Inchanalkar, Siddhi; Schwartz, Martin Alexander; Balasubramanian, Nagaraj

    2016-09-01

    Integrin dependent regulation of growth factor signalling confers anchorage dependence that is deregulated in cancers. Downstream of integrins and oncogenic Ras the small GTPase Ral is a vital mediator of adhesion dependent trafficking and signalling. This study identifies a novel regulatory crosstalk between Ral and Arf6 that controls Ral function in cells. In re-adherent mouse fibroblasts (MEFs) integrin dependent activation of RalA drives Arf6 activation. Independent of adhesion constitutively active RalA and RalB could both however activate Arf6. This is further conserved in oncogenic H-Ras containing bladder cancer T24 cells, which express anchorage independent active Ral that supports Arf6 activation. Arf6 mediates active Ral-exocyst dependent delivery of raft microdomains to the plasma membrane that supports anchorage independent growth signalling. Accordingly in T24 cells the RalB-Arf6 crosstalk is seen to preferentially regulate anchorage independent Erk signalling. Active Ral we further find uses a Ral-RalBP1-ARNO-Arf6 pathway to mediate Arf6 activation. This study hence identifies Arf6, through this regulatory crosstalk, to be a key downstream mediator of Ral isoform function along adhesion dependent pathways in normal and cancer cells. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells

    PubMed Central

    Baker, Emma K; Taylor, Scott; Gupte, Ankita; Sharp, Phillip P; Walia, Mannu; Walsh, Nicole C; Zannettino, Andrew CW; Chalk, Alistair M; Burns, Christopher J; Walkley, Carl R

    2015-01-01

    Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS. PMID:25944566

  20. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes

    PubMed Central

    Liu, Qiaozhen; Yang, Rui; Huang, Xiuzhen; Zhang, Hui; He, Lingjuan; Zhang, Libo; Tian, Xueying; Nie, Yu; Hu, Shengshou; Yan, Yan; Zhang, Li; Qiao, Zengyong; Wang, Qing-Dong; Lui, Kathy O; Zhou, Bin

    2016-01-01

    Cardiac cells marked by c-Kit or Kit, dubbed cardiac stem cells (CSCs), are in clinical trials to investigate their ability to stimulate cardiac regeneration and repair. These studies were initially motivated by the purported cardiogenic activity of these cells. Recent lineage tracing studies using Kit promoter to drive expression of the inducible Cre recombinase showed that these CSCs had highly limited cardiogenic activity, inadequate to support efficient cardiac repair. Here we reassess the lineage tracing data by investigating the identity of cells immediately after Cre labeling. Our instant lineage tracing approach identifies Kit-expressing cardiomyocytes, which are labeled immediately after tamoxifen induction. In combination with long-term lineage tracing experiments, these data reveal that the large majority of long-term labeled cardiomyocytes are pre-existing Kit-expressing cardiomyocytes rather than cardiomyocytes formed de novo from CSCs. This study presents a new interpretation for the contribution of Kit+ cells to cardiomyocytes and shows that Kit genetic lineage tracing over-estimates the cardiogenic activity of Kit+ CSCs. PMID:26634606

  1. Selective arylsulfonamide inhibitors of ADAM-17: hit optimization and activity in ovarian cancer cell models.

    PubMed

    Nuti, Elisa; Casalini, Francesca; Santamaria, Salvatore; Fabbi, Marina; Carbotti, Grazia; Ferrini, Silvano; Marinelli, Luciana; La Pietra, Valeria; Novellino, Ettore; Camodeca, Caterina; Orlandini, Elisabetta; Nencetti, Susanna; Rossello, Armando

    2013-10-24

    Activated leukocyte cell adhesion molecule (ALCAM) is expressed at the surface of epithelial ovarian cancer (EOC) cells and is released in a soluble form (sALCAM) by ADAM-17-mediated shedding. This process is relevant to EOC cell motility and invasiveness, which is reduced by inhibitors of ADAM-17. In addition, ADAM-17 plays a key role in EGFR signaling and thus may represent a useful target in anticancer therapy. Herein we report our hit optimization effort to identify potent and selective ADAM-17 inhibitors, starting with previously identified inhibitor 1. A new series of secondary sulfonamido-based hydroxamates was designed and synthesized. The biological activity of the newly synthesized compounds was tested in vitro on isolated enzymes and human EOC cell lines. The optimization process led to compound 21, which showed an IC50 of 1.9 nM on ADAM-17 with greatly increased selectivity. This compound maintained good inhibitory properties on sALCAM shedding in several in vitro assays.

  2. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    PubMed

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  3. Molecular Mechanism for the Control of Eukaryotic Elongation Factor 2 Kinase by pH: Role in Cancer Cell Survival

    PubMed Central

    Xie, Jianling; Mikolajek, Halina; Pigott, Craig R.; Hooper, Kelly J.; Mellows, Toby; Moore, Claire E.; Mohammed, Hafeez; Werner, Jörn M.; Thomas, Gareth J.

    2015-01-01

    Acidification of the extracellular and/or intracellular environment is involved in many aspects of cell physiology and pathology. Eukaryotic elongation factor 2 kinase (eEF2K) is a Ca2+/calmodulin-dependent kinase that regulates translation elongation by phosphorylating and inhibiting eEF2. Here we show that extracellular acidosis elicits activation of eEF2K in vivo, leading to enhanced phosphorylation of eEF2. We identify five histidine residues in eEF2K that are crucial for the activation of eEF2K during acidosis. Three of them (H80, H87, and H94) are in its calmodulin-binding site, and their protonation appears to enhance the ability of calmodulin to activate eEF2K. The other two histidines (H227 and H230) lie in the catalytic domain of eEF2K. We also identify His108 in calmodulin as essential for activation of eEF2K. Acidification of cancer cell microenvironments is a hallmark of malignant solid tumors. Knocking down eEF2K in cancer cells attenuated the decrease in global protein synthesis when cells were cultured at acidic pH. Importantly, activation of eEF2K is linked to cancer cell survival under acidic conditions. Inhibition of eEF2K promotes cancer cell death under acidosis. PMID:25776553

  4. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways*

    PubMed Central

    Lecat, Sandra; Matthes, Hans W.D.; Pepperkok, Rainer; Simpson, Jeremy C.; Galzi, Jean-Luc

    2015-01-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. PMID:25759509

  5. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. B-Cell Maturation Antigen, A Proliferation-Inducing Ligand, and B-Cell Activating Factor Are Candidate Mediators of Spinal Cord Injury-Induced Autoimmunity

    PubMed Central

    Saltzman, Jonah W.; Battaglino, Ricardo A.; Salles, Loise; Jha, Prateek; Sudhakar, Supreetha; Garshick, Eric; Stott, Helen L.; Zafonte, Ross

    2013-01-01

    Abstract Autoimmunity is thought to contribute to poor neurological outcomes after spinal cord injury (SCI). There are few mechanism-based therapies, however, designed to reduce tissue damage and neurotoxicity after SCI because the molecular and cellular bases for SCI-induced autoimmunity are not completely understood. Recent groundbreaking studies in rodents indicate that B cells are responsible for SCI-induced autoimmunity. This novel paradigm, if confirmed in humans, could aid in the design of neuroprotective immunotherapies. The aim of this study was to investigate the molecular signaling pathways and mechanisms by which autoimmunity is induced after SCI, with the goal of identifying potential targets in therapies designed to reduce tissue damage and inflammation in the chronic phase of SCI. To that end, we performed an exploratory microarray analysis of peripheral blood mononuclear cells to identify differentially expressed genes in chronic SCI. We identified a gene network associated with lymphoid tissue structure and development that was composed of 29 distinct molecules and five protein complexes, including two cytokines, a proliferation-inducing ligand (APRIL) and B-cell–activating factor (BAFF), and one receptor, B-cell maturation antigen (BMCA) involved in B cell development, proliferation, activation, and survival. Real-time polymerase chain reaction analysis from ribonucleic acid samples confirmed upregulation of these three genes in SCI. To our knowledge, this is the first report that peripheral blood mononuclear cells produce increased levels of BAFF and APRIL in chronic SCI. This finding provides evidence of systemic regulation of SCI-autoimmunity via APRIL and BAFF mediated activation of B cells through BMCA and points toward these molecules as potential targets of therapies designed to reduce neuroinflammation after SCI. PMID:23088438

  7. Development of a High-Throughput Screening Cancer Cell-Based Luciferase Refolding Assay for Identifying Hsp90 Inhibitors

    PubMed Central

    Sadikot, Takrima; Swink, Megan; Eskew, Jeffery D.; Brown, Douglas; Zhao, Huiping; Kusuma, Bhaskar R.; Rajewski, Roger A.; Blagg, Brian S. J.; Matts, Robert L.; Holzbeierlein, Jeffrey M.

    2013-01-01

    Abstract The 90 kDa heat-shock protein (Hsp90) and other cochaperones allow for proper folding of nascent or misfolded polypeptides. Cancer cells exploit these chaperones by maintaining the stability of mutated and misfolded oncoproteins and allowing them to evade proteosomal degradation. Inhibiting Hsp90 is an attractive strategy for cancer therapy, as the concomitant degradation of multiple oncoproteins may lead to effective anti-neoplastic agents. Unfortunately, early clinical trials have been disappointing with N-terminal Hsp90 inhibitors, as it is unclear whether the problems that plague current Hsp90 inhibitors in clinical trials are related to on-target or off-target activity. One approach to overcome these pitfalls is to identify structurally diverse scaffolds that improve Hsp90 inhibitory activity in the cancer cell milieu. Utilizing a panel of cancer cell lines that express luciferase, we have designed an in-cell Hsp90-dependent luciferase refolding assay. The assay was optimized using previously identified Hsp90 inhibitors and experimental novobiocin analogues against prostate, colon, and lung cancer cell lines. This assay exhibits good interplate precision (% CV), a signal-to-noise ratio (S/N) of ≥7, and an approximate Z-factor ranging from 0.5 to 0.7. Novobiocin analogues that revealed activity in this assay were examined via western blot experiments for client protein degradation, a hallmark of Hsp90 inhibition. Subsequently, a pilot screen was conducted using the Prestwick library, and two compounds, biperiden and ethoxyquin, revealed significant activity. Here, we report the development of an in-cell Hsp90-dependent luciferase refolding assay that is amenable across cancer cell lines for the screening of inhibitors in their specific milieu. PMID:24127661

  8. An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation.

    PubMed

    Gross, Catharina; Holler, Ernst; Stangl, Stefan; Dickinson, Anne; Pockley, A Graham; Asea, Alexzander A; Mallappa, Nagaraja; Multhoff, Gabriele

    2008-04-01

    In contrast to solid tumors, leukemic blasts frequently present both Hsp70 and HLA-E on their cell surface and thereby present activating and inhibitory signals to CD94(+) NK cells. In the first 12 months after stem cell transplantation (SCT) CD94(+) NK cells clearly dominate over CD3(+)/CD16(-)/56(-) T and CD3(+)/CD16(+)/56(+) NK-like T cells. An incubation of post-SCT-derived peripheral blood lymphocytes with the Hsp70 peptide TKD and IL-15 enhances the cell surface density of CD56/CD94 and initiates the cytolytic activity of NK cells against Hsp70/HLA-E double-positive autologous and allogeneic leukemic blasts. Hsp70 was identified as the target structure for TKD-activated NK cells.

  9. Profiling EGFR activity in head and neck squamous cell carcinoma by using a novel layered membrane Western blot technology.

    PubMed

    Patel, Vyomesh; Ramesh, Arun; Traicoff, June L; Baibakov, Galina; Emmert-Buck, Michael R; Gutkind, J Silvio; Knezevic, Vladimir

    2005-05-01

    Given the role of epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinomas (HNSCC), several rational approaches have now been utilized to abrogate tyrosine kinase activity and its disengagement from downstream signal transducers. Monitoring the activity of these molecules could potentially be useful to determine not only drug efficacy but also to identify HNSCC patients most likely to benefit from this type of therapy. In this study we have used a novel high throughput multi-layered Western blotting (MLWestern) method that allows the detection of multiple proteins from a single experiment in order to characterize key components in the EGFR signaling pathway in HNSCC cells. Total and activated forms of EGFR and the downstream effectors, Erk and Akt were readily detected in HNSCC cells, where in the control cells (HaCaT) these proteins could only be detected in EGF stimulated cells. Results from conventional Western blot and MLWestern were comparable. Clustering analysis of protein expression revealed similarities in cellular response between some of the cell lines indicative of similarities in their biological response. The data indicate that MLWestern can be potentially applied to identify molecular targets that could be used for rational therapeutic intervention strategies.

  10. Discovery and characterization of inhibitors of human palmitoyl acyltransferases.

    PubMed

    Ducker, Charles E; Griffel, Lindsay K; Smith, Ryan A; Keller, Staci N; Zhuang, Yan; Xia, Zuping; Diller, John D; Smith, Charles D

    2006-07-01

    The covalent attachment of palmitate to specific proteins by the action of palmitoyl acyltransferases (PAT) plays critical roles in the biological activities of several oncoproteins. Two PAT activities are expressed by human cells: type 1 PATs that modify the farnesyl-dependent palmitoylation motif found in H- and N-Ras, and type 2 PATs that modify the myristoyl-dependent palmitoylation motif found in the Src family of tyrosine kinases. We have previously shown that the type 1 PAT HIP14 causes cellular transformation. In the current study, we show that mRNA encoding HIP14 is up-regulated in a number of types of human tumors. To assess the potential of HIP14 and other PATs as targets for new anticancer drugs, we developed three cell-based assays suitable for high-throughput screening to identify inhibitors of these enzymes. Using these screens, five chemotypes, with activity toward either type 1 or type 2 PAT activity, were identified. The activity of the hits were confirmed using assays that quantify the in vitro inhibition of PAT activity, as well as a cell-based assay that determines the abilities of the compounds to prevent the localization of palmitoylated green fluorescent proteins to the plasma membrane. Representative compounds from each chemotype showed broad antiproliferative activity toward a panel of human tumor cell lines and inhibited the growth of tumors in vivo. Together, these data show that PATs, and HIP14 in particular, are interesting new targets for anticancer compounds, and that small molecules with such activity can be identified by high-throughput screening.

  11. Discovery and characterization of inhibitors of human palmitoyl acyltransferases

    PubMed Central

    Ducker, Charles E.; Griffel, Lindsay K.; Smith, Ryan A.; Keller, Staci N.; Zhuang, Yan; Xia, Zuping; Diller, John D.; Smith, Charles D.

    2010-01-01

    The covalent attachment of palmitate to specific proteins by the action of palmitoyl acyltransferases (PAT) plays critical roles in the biological activities of several oncoproteins. Two PAT activities are expressed by human cells: type 1 PATs that modify the farnesyl-dependent palmitoylation motif found in H- and N-Ras, and type 2 PATs that modify the myristoyl-dependent palmitoylation motif found in the Src family of tyrosine kinases. We have previously shown that the type 1 PAT HIP14 causes cellular transformation. In the current study, we show that mRNA encoding HIP14 is up-regulated in a number of types of human tumors. To assess the potential of HIP14 and other PATs as targets for new anticancer drugs, we developed three cell-based assays suitable for high-throughput screening to identify inhibitors of these enzymes. Using these screens, five chemotypes, with activity toward either type 1 or type 2 PAT activity, were identified. The activity of the hits were confirmed using assays that quantify the in vitro inhibition of PAT activity, as well as a cell-based assay that determines the abilities of the compounds to prevent the localization of palmitoylated green fluorescent proteins to the plasma membrane. Representative compounds from each chemotype showed broad antiproliferative activity toward a panel of human tumor cell lines and inhibited the growth of tumors in vivo. Together, these data show that PATs, and HIP14 in particular, are interesting new targets for anticancer compounds, and that small molecules with such activity can be identified by high-throughput screening. PMID:16891450

  12. Identification of in vivo phosphorylation sites on human deoxycytidine kinase. Role of Ser-74 in the control of enzyme activity.

    PubMed

    Smal, Caroline; Vertommen, Didier; Bertrand, Luc; Ntamashimikiro, Sandrine; Rider, Mark H; Van Den Neste, Eric; Bontemps, Françoise

    2006-02-24

    Deoxycytidine kinase (dCK) catalyzes the rate-limiting step of the deoxyribonucleoside salvage pathway in mammalian cells and plays a key role in the activation of numerous nucleoside analogues used in anti-cancer and antiviral chemotherapy. Although compelling evidence indicated that dCK activity might be regulated by phosphorylation/dephosphorylation, direct demonstration was lacking. Here we showed that dCK overexpressed in HEK 293T cells was labeled after incubating the cells with [32P]orthophosphate. Sorbitol, which was reported to decrease dCK activity, also decreased the labeling of dCK. These results indicated that dCK may exist as a phosphoprotein in vivo and that its activity can be correlated with its phosphorylation level. After purification of 32P-labeled dCK, digestion by trypsin, and analysis of the radioactive peptides by tandem mass spectrometry, the following four in vivo phosphorylation sites were identified: Thr-3, Ser-11, Ser-15, and Ser-74, the latter being the major phosphorylation site. Site-directed mutagenesis and use of an anti-phospho-Ser-74 antibody demonstrated that Ser-74 phosphorylation was crucial for dCK activity in HEK 293T cells, whereas phosphorylation of other identified sites did not seem essential. Phosphorylation of Ser-74 was also detected on endogenous dCK in leukemic cells, in which the Ser-74 phosphorylation state was increased by agents that enhanced dCK activity. Our study provided direct evidence that dCK activity can be controlled by phosphorylation in intact cells and highlights the importance of Ser-74 for dCK activity.

  13. Identification of small molecule Hes1 modulators as potential anticancer chemotherapeutics.

    PubMed

    Sail, Vibhavari; Hadden, M Kyle

    2013-03-01

    Hes1 is a key transcriptional regulator primarily controlled by the Notch signaling pathway, and recent studies have demonstrated both an oncogenic and tumor suppressor role for Hes1, depending on the cell type. Small molecules that activate and inhibit Hes1 activity hold promise as future anticancer chemotherapeutics. We have utilized a cell-based dual luciferase assay to identify modulators of Hes1 expression in a medium-throughput format. A modest screen was performed in HCT-116 colon cancer cell lines, and two small molecules were identified and characterized as Hes1 regulators. Compound 3 induced Hes1 expression and exhibited anticancer effects in pulmonary carcinoid tumor cells, a cell type in which the upregulated Notch/Hes1 signaling plays a tumor suppressive role. Treatment of HCT-116 cells with compound 12 resulted in Hes1 downregulation and antitumor effects. © 2012 John Wiley & Sons A/S.

  14. The role of aquaporin-5 in cancer cell migration: A potential active participant.

    PubMed

    Jensen, Helene H; Login, Frédéric H; Koffman, Jennifer S; Kwon, Tae-Hwan; Nejsum, Lene N

    2016-10-01

    Emerging data identifies the water channel aquaporin-5 as a major player in multiple cancers. Over-expression of aquaporin-5 has been associated with increased metastasis and poor prognosis, suggesting that aquaporin-5 may enhance cancer cell migration. This review aims to highlight the current knowledge and hypothesis regarding downstream signaling partners of aquaporin-5 in relation to cancer cell migration. The molecular mechanisms that link aquaporin-5 to cell migration are not completely understood. Aquaporin-5 may promote cell movement by increasing water uptake into the front of the cell allowing local swelling. Aquaporin-5 may also activate extracellular-regulated kinases, increasing proliferation and potentially stimulating the migration machinery. Thus, further studies are warranted to identify the underlying mechanisms and signaling pathways. This will reveal whether aquaporin-5 and downstream effectors could be targets for developing new cancer therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cytoprotective effects of essential oil of Pinus halepensis L. against aspirin-induced toxicity in IEC-6 cells.

    PubMed

    Bouzenna, Hafsia; Hfaiedh, Najla; Bouaziz, Mouhamed; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-12-01

    Essential oils from Pinus species have been reported to have various therapeutic properties. This study was undertaken to identify the chemical composition and cytoprotective effects of the essential oil of Pinus halepensis L. against aspirin-induced damage in cells in vitro. The cytoprotection of the oil against toxicity of aspirin on the small intestine epithelial cells IEC-6 was tested. The obtained results have shown that 35 different compounds were identified. Aspirin induced a decrease in cell viability, and exhibited significant damage to their morphology and an increase in superoxide dismutase (SOD) and catalase (CAT) activities. However, the co-treatment of aspirin with the essential oil of Pinus induced a significant increase in cell viability and a decrease in SOD and CAT activities. Overall, these finding suggest that the essential oil of Pinus halepensis L. has potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  16. Aggressive Peripheral CD70-positive T-cell Lymphoma Associated with Severe Chronic Active EBV Infection

    PubMed Central

    Shaffer, Donald R.; Sheehan, Andrea M.; Yi, Zhongzhen; Rodgers, Cheryl C; Bollard, Catherine M; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E; Gottschalk, Stephen

    2011-01-01

    Severe chronic active Epstein-Barr virus infection (CAEBV) in T or NK cells is a rare complication of latent EBV infection. CAEBV associated T-cell lymphoproliferative disease (LPD) consists of polyclonal lesions as well as aggressive lymphomas. Here we report such a patient. In addition, we show that this primary CAEBV associated T-cell lymphoma expresses CD70 and is sensitive to killing by CD70-specific T cells, identifying CD70 as a potential immunotherapeutic target for CAEBV-associated T-cell lymphoma. PMID:21994111

  17. Potential Novel Antibiotics from HTS Targeting the Virulence-regulating Transcription Factor, VirF, from Shigella flexneri

    PubMed Central

    Emanuele, Anthony A.; Adams, Nancy E.; Chen, Yi-Chen; Maurelli, Anthony T.; Garcia, George A.

    2014-01-01

    VirF is an AraC-type transcriptional regulator responsible for activating the transcription of virulence genes required for the intracellular invasion and cell-to-cell spread of Shigella flexneri. Gene disruption studies have validated VirF as a potential target for an anti-virulence therapy to treat shigellosis by determining that VirF is necessary for virulence, but not required for bacterial viability. Using a bacteria-based, β-galactosidase reporter assay we completed a high-throughput screening (HTS) campaign monitoring VirF activity in the presence of over 140,000 small molecules. From our screening campaign we identified five lead compounds to pursue in tissue-culture-based invasion and cell-to-cell spread assays and toxicity screens. Our observations of activity in these models for infection have validated our approach of targeting virulence regulation and have allowed us to identify a promising chemical scaffold from our HTS for hit-to-lead development. Interestingly, differential effects on invasion versus cell-to-cell spread suggest that the compounds’ efficacies may depend, in part, on the specific promoter that VirF is recognizing. PMID:24549153

  18. Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer.

    PubMed

    Senkowski, Wojciech; Zhang, Xiaonan; Olofsson, Maria Hägg; Isacson, Ruben; Höglund, Urban; Gustafsson, Mats; Nygren, Peter; Linder, Stig; Larsson, Rolf; Fryknäs, Mårten

    2015-06-01

    Because dormant cancer cells in hypoxic and nutrient-deprived regions of solid tumors provide a major obstacle to treatment, compounds targeting those cells might have clinical benefits. Here, we describe a high-throughput drug screening approach, using glucose-deprived multicellular tumor spheroids (MCTS) with inner hypoxia, to identify compounds that specifically target this cell population. We used a concept of drug repositioning-using known molecules for new indications. This is a promising strategy to identify molecules for rapid clinical advancement. By screening 1,600 compounds with documented clinical history, we aimed to identify candidates with unforeseen potential for repositioning as anticancer drugs. Our screen identified five molecules with pronounced MCTS-selective activity: nitazoxanide, niclosamide, closantel, pyrvinium pamoate, and salinomycin. Herein, we show that all five compounds inhibit mitochondrial respiration. This suggests that cancer cells in low glucose concentrations depend on oxidative phosphorylation rather than solely glycolysis. Importantly, continuous exposure to the compounds was required to achieve effective treatment. Nitazoxanide, an FDA-approved antiprotozoal drug with excellent pharmacokinetic and safety profile, is the only molecule among the screening hits that reaches high plasma concentrations persisting for up to a few hours after single oral dose. Nitazoxanide activated the AMPK pathway and downregulated c-Myc, mTOR, and Wnt signaling at clinically achievable concentrations. Nitazoxanide combined with the cytotoxic drug irinotecan showed anticancer activity in vivo. We here report that the FDA-approved anthelmintic drug nitazoxanide could be a potential candidate for advancement into cancer clinical trials. ©2015 American Association for Cancer Research.

  19. TH9 cells in anti-tumor immunity.

    PubMed

    Rivera Vargas, Thaiz; Humblin, Etienne; Végran, Frédérique; Ghiringhelli, François; Apetoh, Lionel

    2017-01-01

    IL-9 was initially identified as a T cell growth factor with a potential oncogenic activity. Accordingly, IL-9 drives tumor growth in most hematological cancers. However, the links between IL-9 and cancer progression have been recently revisited following the discovery of T H 9 cells. T H 9 cells, which have been characterized in 2008 as a proinflammatory CD4 T cell subset that promotes protection against parasites and drives tissue inflammation in colitis, actually harbor potent IL-9-dependent anti-cancer properties in solid tumors and especially melanoma. While the molecular mechanisms underlying these observations are still being investigated, T H 9 cells were demonstrated to activate both innate and adaptive immune responses, thereby favoring anti-cancer immunity and tumor elimination. Human T H 9 cells have also been identified in cancer tissues, but their functions remain elusive. The present review aims to discuss the anti-cancer potential of T H 9 cells and their possible clinical relevance for cancer immunotherapy.

  20. Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells.

    PubMed

    Johannessen, Liv; Sundberg, Thomas B; O'Connell, Daniel J; Kolde, Raivo; Berstler, James; Billings, Katelyn J; Khor, Bernard; Seashore-Ludlow, Brinton; Fassl, Anne; Russell, Caitlin N; Latorre, Isabel J; Jiang, Baishan; Graham, Daniel B; Perez, Jose R; Sicinski, Piotr; Phillips, Andrew J; Schreiber, Stuart L; Gray, Nathanael S; Shamji, Alykhan F; Xavier, Ramnik J

    2017-10-01

    Enhancing production of the anti-inflammatory cytokine interleukin-10 (IL-10) is a promising strategy to suppress pathogenic inflammation. To identify new mechanisms regulating IL-10 production, we conducted a phenotypic screen for small molecules that enhance IL-10 secretion from activated dendritic cells. Mechanism-of-action studies using a prioritized hit from the screen, BRD6989, identified the Mediator-associated kinase CDK8, and its paralog CDK19, as negative regulators of IL-10 production during innate immune activation. The ability of BRD6989 to upregulate IL-10 is recapitulated by multiple, structurally differentiated CDK8 and CDK19 inhibitors and requires an intact cyclin C-CDK8 complex. Using a highly parallel pathway reporter assay, we identified a role for enhanced AP-1 activity in IL-10 potentiation following CDK8 and CDK19 inhibition, an effect associated with reduced phosphorylation of a negative regulatory site on c-Jun. These findings identify a function for CDK8 and CDK19 in regulating innate immune activation and suggest that these kinases may warrant consideration as therapeutic targets for inflammatory disorders.

  1. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M.

    PubMed

    Sampath, Srinath C; Sampath, Srihari C; Ho, Andrew T V; Corbel, Stéphane Y; Millstone, Joshua D; Lamb, John; Walker, John; Kinzel, Bernd; Schmedt, Christian; Blau, Helen M

    2018-04-18

    The balance between stem cell quiescence and proliferation in skeletal muscle is tightly controlled, but perturbed in a variety of disease states. Despite progress in identifying activators of stem cell proliferation, the niche factor(s) responsible for quiescence induction remain unclear. Here we report an in vivo imaging-based screen which identifies Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, as a potent inducer of muscle stem cell (MuSC, satellite cell) quiescence. OSM is produced by muscle fibers, induces reversible MuSC cell cycle exit, and maintains stem cell regenerative capacity as judged by serial transplantation. Conditional OSM receptor deletion in satellite cells leads to stem cell depletion and impaired regeneration following injury. These results identify Oncostatin M as a secreted niche factor responsible for quiescence induction, and for the first time establish a direct connection between induction of quiescence, stemness, and transplantation potential in solid organ stem cells.

  2. Verification of ALDH Activity as a Biomarker in Colon Cancer Stem Cells-Derived HT-29 Cell Line.

    PubMed

    Khorrami, Samaneh; Zavaran Hosseini, Ahmad; Mowla, Seyed Javad; Malekzadeh, Reza

    2015-10-01

    Recent evidence has suggested that epithelial cancers including colorectal cancer (CRC) have driven by a small population of self-renewing, multi-potent cells termed cancer stem cells (CSCs) which could be responsible for recurrence of cancer. Aldehyde dehydrogenase 1 (ALDH1) activity has used as a functional stem cell biomarker to isolate CSCs in different cancers such as colorectal cancer. The main aim of this research was to determine the utility of ALDH1 activity along with CD44 and EPCAM in identifying stem cell-like cells in human HT-29 colonic adenocarcinoma cell line. In this experimental study, colon CSCs biomarkers including CD44, EPCAM and ALDH1 in colonospheres and parent cells have analyzed by flow cytometry. The expression levels of stemness genes in spheroid and parental cells have investigated using SYBR Green real-time PCR. In addition, in vivo xenografts assay has performed to determine tumorigenic potential of tumor spheroid cells in nude mice. According to results, over 92% of spheroids were CD44+/EpCAM+, while parent cells only have expressed 38% of CD44/EpCAM biomarkers (P < 0.001). Controversially, ALDH activity was about 2-fold higher in the parent cells than spheroid cells (P < 0.05). In comparison with the parental cells, expression levels of ''stemness'' genes, like Sox2, Oct4, Nanog, C-myc, and Klf4 have significantly increased in colonosphere cells (P < 0.05). Further, administration of 2500 spheroids could be sufficient to initiate tumor growth in nude mice, while 1x106 of parental cells has needed to form tumor. For the first time, we have shown that colonospheres with low ALDH1 activity has indicated increased tumorigenic potential and stemness properties. So, it hasn't seemed that ALDH1 could become a useful biomarker to identify CSCs population in HT-29 cell line.

  3. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. | Office of Cancer Genomics

    Cancer.gov

    Mutations in the SMARCA4/BRG1 gene resulting in complete loss of its protein (BRG1) occur frequently in non-small cell lung cancer (NSCLC) cells. Currently, no single therapeutic agent has been identified as synthetically lethal with SMARCA4/BRG1 loss. We identify AURKA activity as essential in NSCLC cells lacking SMARCA4/BRG1. In these cells, RNAi-mediated depletion or chemical inhibition of AURKA induces apoptosis and cell death in vitro and in xenograft mouse models.

  4. ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth.

    PubMed

    Vijayakumar, Priya; Datta, Sourav; Dolan, Liam

    2016-12-01

    ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was elevated by induction of RSL4 activity in the presence of an inhibitor of translation. Thirty-four genes were identified as putative targets of RSL transcriptional regulation, and the results suggest that the activities of SUPPRESSOR OF ACTIN (SAC1), EXOCSYT SUBUNIT 70A1 (EXO70A1), PEROXIDASE7 (PRX7) and CALCIUM-DEPENDENT PROTEIN KINASE11 (CPK11) are required for root hair elongation. These data indicate that RSL4 controls cell growth by controlling the expression of genes encoding proteins involved in cell signalling, cell wall modification and secretion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Transcriptome and proteome analysis of tyrosine kinase inhibitor treated canine mast cell tumour cells identifies potentially kit signaling-dependent genes

    PubMed Central

    2012-01-01

    Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect. PMID:22747577

  6. Direct in vivo Evidence for Increased Proliferation of CLL Cells in Lymph Nodes Compared to Bone Marrow and Peripheral Blood

    PubMed Central

    Saba, Nakhle S.; Valdez, Janet; Emson, Claire; Gatmaitan, Michelle; Tian, Xin; Hughes, Thomas E.; Sun, Clare; Arthur, Diane C.; Stetler-Stevenson, Maryalice; Yuan, Constance M.; Niemann, Carsten U.; Marti, Gerald E.; Aue, Georg; Soto, Susan; Farooqui, Mohammed Z.H.; Herman, Sarah E.M.; Chiorazzi, Nicholas; Wiestner, Adrian

    2016-01-01

    Chronic Lymphocytic Leukemia (CLL) is a progressive malignancy of mature B-cells that involves the peripheral blood (PB), lymph nodes (LNs) and bone marrow (BM). While the majority of CLL cells are in a resting state, small populations of proliferating cells exist; however, the anatomical site of active cell proliferation remains to be definitively determined. Based on findings that CLL cells in LNs have increased expression of B-cell activation genes, we tested the hypothesis that the fraction of “newly born” cells would be highest in the LNs. Using a deuterium oxide (2H) in vivo labeling method in which patients consumed deuterated (heavy) water (2H2O), we determined CLL cell kinetics in concurrently obtained samples from LN, PB, and BM. The LN was identified as the anatomical site harboring the largest fraction of newly born cells, compared to PB and BM. In fact, the calculated birth rate in the LN reached as high a 3.3% of the clone per day. Subdivision of the bulk CLL population by flow cytometry identified the subpopulation with the CXCR4dimCD5bright phenotype as containing the highest proportion of newly born cells within each compartment, including the LN, identifying this subclonal population as an important target for novel treatment approaches. PMID:28074063

  7. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as amore » plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.« less

  8. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1)

    PubMed Central

    Liu, Xiaobin; Xavier, Christy; Jann, Jamieson; Wu, Hongli

    2016-01-01

    Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage. PMID:27827892

  9. Antimutagenic constituents of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) with potential cancer chemopreventive activity.

    PubMed

    Chen, Huang-Hui; Chiang, Wenchang; Chang, Jang-Yang; Chien, Ya-Lin; Lee, Ching-Kuo; Liu, Ko-Jiunn; Cheng, Yen-Ting; Chen, Ting-Fang; Kuo, Yueh-Hsiung; Kuo, Ching-Chuan

    2011-06-22

    Adlay has long been used in traditional Chinese medicine and as a nourishing food. The acetone extract of adlay hull had previously been demonstrated to possess potent antimutagenic activity. The aims of this study were to identify the antimutagenic constituents from adlay hull by using Ames antimutagenic activity-guide isolation procedures and to investigate their chemopreventive efficacies in cultured cells. The results demonstrated that six compounds showing great antimutagenic activity were identified by spectroscopic methods and by comparison with authentic samples to be p-hydroxybenzaldehyde, vanillin, syringaldehyde, trans-coniferylaldehyde, sinapaldehyde, and coixol. Two of them, trans-coniferylaldehyde and sinapaldehyde, exhibit relatively potent scavenging of DPPH radicals, inhibit TPA stimulated superoxide anion generation in neutrophil-like leukocytes, and induce Nrf2/ARE-driven luciferase activity in HSC-3 cells. Moreover, trans-coniferylaldehyde possesses cytoprotective efficacy against tert-butyl hydroperoxide-induced DNA double-strand breaks in cultured cells, and the chemopreventive potency induced by trans-coniferylaldehyde may be through the activation of kinase signals, including p38, ERK1/2, JNK, MEK1/2, and MSK1/2. In summary, we first identified six antimutagenic constituents from adlay hull. Among them, trans-coniferylaldehyde would be a highly promising agent for cancer chemoprevention and merits further investigation.

  10. In Vivo Functional Selection Identifies Cardiotrophin-1 as a Cardiac Engraftment Factor for Mesenchymal Stromal Cells.

    PubMed

    Bortolotti, Francesca; Ruozi, Giulia; Falcione, Antonella; Doimo, Sara; Dal Ferro, Matteo; Lesizza, Pierluigi; Zentilin, Lorena; Banks, Lawrence; Zacchigna, Serena; Giacca, Mauro

    2017-10-17

    Transplantation of cells into the infarcted heart has significant potential to improve myocardial recovery; however, low efficacy of cell engraftment still limits therapeutic benefit. Here, we describe a method for the unbiased, in vivo selection of cytokines that improve mesenchymal stromal cell engraftment into the heart both in normal conditions and after myocardial infarction. An arrayed library of 80 secreted factors, including most of the currently known interleukins and chemokines, were individually cloned into adeno-associated viral vectors. Pools from this library were then used for the batch transduction of bone marrow-derived mesenchymal stromal cells ex vivo, followed by intramyocardial cell administration in normal and infarcted mice. Three weeks after injection, vector genomes were recovered from the few persisting cells and identified by sequencing DNA barcodes uniquely labeling each of the tested cytokines. The most effective molecule identified by this competitive engraftment screening was cardiotrophin-1, a member of the interleukin-6 family. Intracardiac injection of mesenchymal stromal cells transiently preconditioned with cardiotrophin-1 preserved cardiac function and reduced infarct size, parallel to the persistence of the transplanted cells in the healing hearts for at least 2 months after injection. Engraftment of cardiotrophin-1-treated mesenchymal stromal cells was consequent to signal transducer and activator of transcription 3-mediated activation of the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of adhesive properties by the cells. These results support the feasibility of selecting molecules in vivo for their functional properties with adeno-associated viral vector libraries and identify cardiotrophin-1 as a powerful cytokine promoting cell engraftment and thus improving cell therapy of the infarcted myocardium. © 2017 American Heart Association, Inc.

  11. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    PubMed

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Metabolic regulation of cellular plasticity in the pancreas.

    PubMed

    Ninov, Nikolay; Hesselson, Daniel; Gut, Philipp; Zhou, Amy; Fidelin, Kevin; Stainier, Didier Y R

    2013-07-08

    Obese individuals exhibit an increase in pancreatic β cell mass; conversely, scarce nutrition during pregnancy has been linked to β cell insufficiency in the offspring [reviewed in 1, 2]. These phenomena are thought to be mediated mainly through effects on β cell proliferation, given that a nutrient-sensitive β cell progenitor population in the pancreas has not been identified. Here, we employed the fluorescent ubiquitination-based cell-cycle indicator system to investigate β cell replication in real time and found that high nutrient concentrations induce rapid β cell proliferation. Importantly, we found that high nutrient concentrations also stimulate β cell differentiation from progenitors in the intrapancreatic duct (IPD). Furthermore, using a new zebrafish line where β cells are constitutively ablated, we show that β cell loss and high nutrient intake synergistically activate these progenitors. At the cellular level, this activation process causes ductal cell reorganization as it stimulates their proliferation and differentiation. Notably, we link the nutrient-dependent activation of these progenitors to a downregulation of Notch signaling specifically within the IPD. Furthermore, we show that the nutrient sensor mechanistic target of rapamycin (mTOR) is required for endocrine differentiation from the IPD under physiological conditions as well as in the diabetic state. Thus, this study reveals critical insights into how cells modulate their plasticity in response to metabolic cues and identifies nutrient-sensitive progenitors in the mature pancreas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells.

    PubMed

    Gause, K C; Homma, M K; Licciardi, K A; Seger, R; Ahn, N G; Peterson, M J; Krebs, E G; Meier, K E

    1993-08-05

    Phorbol ester-sensitive and -resistant EL4 thymoma cell lines differ in their ability to activate mitogen-activated protein kinase (MAPK) in response to phorbol ester. Treatment of wild-type EL4 cells with phorbol ester results in the rapid activations of MAPK and pp90rsk kinase, a substrate for MAPK, while neither kinase is activated in response to phorbol ester in variant EL4 cells. This study examines the activation of MAPK kinase (MAPKK), an activator of MAPK, in wild-type and variant EL4 cells. Phosphorylation of a 40-kDa substrate, identified as MAPK, was observed following in vitro phosphorylation reactions using cytosolic extracts or Mono Q column fractions prepared from phorbol ester-treated wild-type EL4 cells. MAPKK activity coeluted with a portion of the inactive MAPK upon Mono Q anion-exchange chromatography, permitting detection of the MAPKK activity in fractions containing both kinases. This MAPKK activity was present in phorbol ester-treated wild-type cells, but not in phorbol ester-treated variant cells or in untreated wild-type or variant cells. The MAPKK from wild-type cells was able to activate MAPK prepared from either wild-type or variant cells. MAPKK activity could be stimulated in both wildtype and variant EL4 cells in response to treatment of cells with okadaic acid. These results indicate that the failure of variant EL4 cells to activate MAP kinase in response to phorbol ester is due to a failure to activate MAPKK. Therefore, the step that confers phorbol ester resistance to variant EL4 cells lies between the activation of protein kinase C and the activation of MAPKK.

  14. Vav1 GEF activity is required for T cell mediated allograft rejection

    PubMed Central

    Haubert, Dirk; Li, Jianping; Saveliev, Alexander; Calzascia, Thomas; Sutter, Esther; Metzler, Barbara; Kaiser, Daniel; Tybulewicz, Victor L.J.; Weckbecker, Gisbert

    2012-01-01

    The GDP exchange factor (GEF) Vav1 is a central signal transducer downstream of the T cell receptor and has been identified as a key factor for T cell activation in the context of allograft rejection. Vav1 has been shown to transduce signals both dependent and independent of its GEF function. The most promising approach to disrupt Vav1 activity by pharmacological inhibition would be to target its GEF function. However, the contribution of Vav1 GEF activity for allogeneic T cell activation has not been clarified yet. To address this question, we used knock-in mice bearing a mutated Vav1 with disrupted GEF activity but intact GEF-independent functions. T cells from these mice showed strongly reduced proliferation and activation in response to allogeneic stimulation. Furthermore, lack of Vav1 GEF activity strongly abrogated the in vivo expansion of T cells in a systemic graft-versus-host model. In a cardiac transplantation model, mice with disrupted Vav1 GEF activity show prolonged allograft survival. These findings demonstrate a strong requirement for Vav1 GEF activity for allogeneic T cell activation and graft rejection suggesting that disruption of Vav1 GEF activity alone is sufficient to induce significant immunosuppression. PMID:22456277

  15. Coriolus versicolor mushroom polysaccharides exert immunoregulatory effects on mouse B cells via membrane Ig and TLR-4 to activate the MAPK and NF-κB signaling pathways.

    PubMed

    Yang, Shu-fa; Zhuang, Tai-feng; Si, Yan-mei; Qi, Ke-yan; Zhao, Juan

    2015-03-01

    This study aimed to characterize the immunopotentiating effects and immune receptors for Coriolus versicolor mushroom polysaccharides (CVP), a Chinese medicinal fungus that exerts anti-tumor activities by enhancing host immunity. Proliferation assays were used to determine whether CVP could activate splenocytes. Flow cytometry analysis and IgM and IgG detection were used to characterize CVP-binding cells. Immune receptors were analyzed in immunoprecipitation and western blot assays. The downstream signaling pathways were identified by western blotting or immunostaining. CVP significantly stimulated the proliferation of mouse splenocytes. Fluorescence-labeled CVP (fl-CVP) selectively stained mouse B cells, but not T cells. CVP induced the production of IgM and IgG1 with or without exogenous IL-4. Membrane Ig (B cell antigen-receptor, BCR) was identified as a CVP-binding protein in immunoprecipitation and western blot experiments. CVP-induced B cell proliferation could be significantly inhibited by anti-mouse immunoglobulin (Ig) blocking antibody (Fab) or in cells from TLR4-mutant mice (C3H/HeJ). Phosphorylation of ERK-1/2 and p38 MAPK were clearly increased in a time-dependent manner, as was the nuclear translocation of the cytosolic NF-κB p65 subunit after CVP stimulation. Together, we demonstrate that CVP can bind and induce B cell activation using membrane Ig and TLR-4 as potential immune receptors. CVP activates mouse B cells through the MAPK and NF-κB signaling pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Hepatic dendritic cell subsets in the mouse.

    PubMed

    Jomantaite, Ieva; Dikopoulos, Nektarios; Kröger, Andrea; Leithäuser, Frank; Hauser, Hansjörg; Schirmbeck, Reinhold; Reimann, Jörg

    2004-02-01

    The CD11c(+) cell population in the non-parenchymal cell population of the mouse liver contains dendritic cells (DC), NK cells, B cells and T cells. In the hepatic CD11c(+) DC population from immunocompetent or immunodeficient [recombinase-activating gene-1 (RAG1)(-/-)] C57BL/6 mice (rigorously depleted of T cells, B cells and NK cells), we identified a B220(+) CD11c(int) subset of 'plasmacytoid' DC, and a B220(-) CD11c(+) DC subset. The latter DC population could be subdivided into a major, immature (CD40(lo) CD80(lo) CD86(lo) MHC class II(lo)) CD11c(int) subset, and a minor, mature (CD40(hi) CD80(hi) CD86(hi) MHC class II(hi)) CD11c(hi) subset. Stimulated B220(+) but not B220(-) DC produced type I interferon. NKT cell activation in vivo increased the number of liver B220(-) DC three- to fourfold within 18 h post-injection, and up-regulated their surface expression of activation marker, while it contracted the B220(+) DC population. Early in virus infection, the hepatic B220(+) DC subset expanded, and both, the B220(+) as well as B220(-) DC populations in the liver matured. In vitro, B220(-) but not B220(+) DC primed CD4(+) or CD8(+)T cells. Expression of distinct marker profiles and functions, and distinct early reaction to activation signals hence identify two distinct B220(+) and B220(-) subsets in CD11c(+) DC populations freshly isolated from the mouse liver.

  17. Screening the Budding Yeast Genome Reveals Unique Factors Affecting K2 Toxin Susceptibility

    PubMed Central

    Servienė, Elena; Lukša, Juliana; Orentaitė, Irma

    2012-01-01

    Background Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. Principal Findings We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. Significance Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action. PMID:23227207

  18. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility.

    PubMed

    Servienė, Elena; Lukša, Juliana; Orentaitė, Irma; Lafontaine, Denis L J; Urbonavičius, Jaunius

    2012-01-01

    Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action.

  19. miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells.

    PubMed

    Fujita, Yasunori; Kojima, Toshio; Kawakami, Kyojiro; Mizutani, Kosuke; Kato, Taku; Deguchi, Takashi; Ito, Masafumi

    2015-10-01

    The acquisition of drug resistance is one of the most malignant phenotypes of cancer and identification of its therapeutic target is a prerequisite for the development of novel therapy. MicroRNAs (miRNAs) have been implicated in various types of cancer and proposed as potential therapeutic targets for patients. In the present study, we aimed to identify miRNA that could serve as a therapeutic target for taxane-resistant prostate cancer. In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC-3 cells and paclitaxel-resistant PC-3 cell lines established from PC-3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. Luciferase reporter assay was performed to examine miRNA binding to the 3'-UTR of target genes. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity, and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC-3 cell line. The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC-3 cells. Based on mRNA microarray analysis and luciferase reporter assay, we identified SLAIN1 as a direct target gene for miR-130a. Transfection of a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. Our results suggested that reduced expression of miR-130a may be involved in the paclitaxel-resistance and that miR-130a could be a therapeutic target for taxane-resistant prostate cancer patients. © 2015 Wiley Periodicals, Inc.

  20. Glycogen synthase kinase 3 regulates PAX3-FKHR-mediated cell proliferation in human alveolar rhabdomyosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Fu-Yue; Dong, Hanqing; Cui, Jimmy

    2010-01-01

    Patients with alveolar rhabdomyosarcoma (ARMS) have poorer response to conventional chemotherapy and lower survival rates than those with embryonal RMS (ERMS). To identify compounds that preferentially block the growth of ARMS, we conducted a small-scale screen of 160 kinase inhibitors against the ARMS cell line Rh30 and ERMS cell line RD and identified inhibitors of glycogen synthase kinase 3 (GSK3), including TWS119 as ARMS-selective inhibitors. GSK3 inhibitors inhibited cell proliferation and induced apoptosis more effectively in Rh30 than RD cells. Ectopic expression of fusion protein PAX3-FKHR in RD cells significantly increased their sensitivity to TWS119. Down-regulation of GSK3 by GSK3more » inhibitors or siRNA significantly reduced the transcriptional activity of PAX3-FKHR. These results suggest that GSK3 is directly involved in regulating the transcriptional activity of PAX3-FKHR. Also, GSK3 phosphorylated PAX3-FKHR in vitro, suggesting that GSK3 might regulate PAX3-FKHR activity via phosphorylation. These findings support a novel mechanism of PAX3-FKHR regulation by GSK3 and provide a novel strategy to develop GSK inhibitors as anti-ARMS therapies.« less

  1. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement

    PubMed Central

    Smith, Nikaïa; Pietrancosta, Nicolas; Davidson, Sophia; Dutrieux, Jacques; Chauveau, Lise; Cutolo, Pasquale; Dy, Michel; Scott-Algara, Daniel; Manoury, Bénédicte; Zirafi, Onofrio; McCort-Tranchepain, Isabelle; Durroux, Thierry; Bachelerie, Françoise; Schwartz, Olivier; Münch, Jan; Wack, Andreas; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2017-01-01

    Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. PMID:28181493

  2. ATM and MET kinases are synthetic lethal with non-genotoxic activation of p53

    PubMed Central

    Sullivan, Kelly D.; Padilla-Just, Nuria; Henry, Ryan E.; Porter, Christopher C.; Kim, Jihye; Tentler, John J.; Eckhardt, S. Gail; Tan, Aik Choon; DeGregori, James; Espinosa, Joaquín M.

    2012-01-01

    The p53 tumor suppressor orchestrates alternative stress responses including cell cycle arrest and apoptosis, but the mechanisms defining cell fate upon p53 activation are poorly understood. Several small molecule activators of p53 have been developed, including Nutlin-3, but their therapeutic potential is limited by the fact that they induce reversible cell cycle arrest in most cancer cell types. We report here the results of a ‘Synthetic Lethal with Nutlin-3’ genome-wide shRNA screen, which revealed that the ATM and MET kinases govern cell fate choice upon p53 activation. Genetic or pharmacological interference with ATM or MET activity converts the cellular response from cell cycle arrest into apoptosis in diverse cancer cell types without affecting expression of key p53 target genes. ATM and MET inhibitors enable Nutlin-3 to kill tumor spheroids. These results identify novel pathways controlling the cellular response to p53 activation and aid in the design of p53-based therapies. PMID:22660439

  3. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    PubMed Central

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-01-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172

  4. Discovery of stimulation-responsive immune enhancers with CRISPR activation.

    PubMed

    Simeonov, Dimitre R; Gowen, Benjamin G; Boontanrart, Mandy; Roth, Theodore L; Gagnon, John D; Mumbach, Maxwell R; Satpathy, Ansuman T; Lee, Youjin; Bray, Nicolas L; Chan, Alice Y; Lituiev, Dmytro S; Nguyen, Michelle L; Gate, Rachel E; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M; Mitros, Therese; Ray, Graham J; Curie, Gemma L; Naddaf, Nicki; Chu, Julia S; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R; Schumann, Kathrin; Daly, Mark J; Farh, Kyle K; Ansel, K Mark; Ye, Chun J; Greenleaf, William J; Anderson, Mark S; Bluestone, Jeffrey A; Chang, Howard Y; Corn, Jacob E; Marson, Alexander

    2017-09-07

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (T H 17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  5. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    NASA Astrophysics Data System (ADS)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  6. Hox proteins activate the IGFBP-1 promoter and suppress the function of hPR in human endometrial cells.

    PubMed

    Gao, Jiaguo; Mazella, James; Tseng, Linda

    2002-11-01

    Previous studies have shown that progestin activates the transcription of IGFBP-1 (insulin-like growth factor binding protein-1). Four regions in the IGFBP-1 promotor have been identified to enhance the transcription. Two of the regions, located at -73 to -65 bp and -319 to -311 bp formed identical DNA-protein complexes with the nuclear extracts of endometrial stromal/decidual cells. To identify the binding protein(s) in endometrial cells that interact with these two regions, we have used the TGTCAATTA repeats (-319 to -11 bp of the IGFBP-1 promoter) to screen the human decidual cDNA library by yeast one-hybrid system. We found that Hox A10, HoxA11, HoxB2, HoxB4, and HoxD11 interacted with the TGTCAATTA repeats in yeast cells. Among these hox genes, the full-length coding region of HoxA10, HoxA11, and HoxB4 were used for functional analysis in three types of endometrial cells, undifferentiated endometrial stromal cells, decidual cells (differentiated stromal cells) and endometrial adenocarcinoma cell line (HEC1-B). All these endometrial cells produce IGFBP-1. Transient transfection assay showed that HoxA10 expression vector increased the promoter activity (the IGFBP-1 proximal promoter containing TGC/TCAATTA and two functional PRE sites) in endometrial stromal cells and in HEC-1B cells, but not in decidual cells. HoxB4 enhanced the promoter activity only in decidual cells, while HoxA11 had no apparent effect in all three types of cells. To evaluate whether Hox proteins would interact with progesterone receptor (hPR), cells were transfected with the promoter construct, Hox and hPR expression vectors. hPR alone activated the IGFBP-1 promoter activity, but expression of Hox gene suppressed the activation. Hox proteins also suppressed the hPR enhanced promoter activities of MMTV (containing consensus-PRE sites) and glycodelin (GdA, containing Sp1 site which mediates the hPR function). These data showed that Hox genes selectively activate the transcription of the IGFBP-1 and GdA genes in different types of endometrial cells. Hox genes, however, suppress the hPR enhanced activities. In addition, we found that HoxB4 expression was induced by estrogen and progestin. Other investigators have shown that HoxA10 and 11 were stimulated by progestin. These findings show that Hox proteins are molecular mediators of the steroid hormones during endometrial cell development.

  7. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  8. Data-driven analysis of immune infiltrate in a large cohort of breast cancer and its association with disease progression, ER activity, and genomic complexity

    PubMed Central

    Dannenfelser, Ruth; Nome, Marianne; Tahiri, Andliena; Ursini-Siegel, Josie; Vollan, Hans Kristian Moen; Haakensen, Vilde D.; Helland, Åslaug; Naume, Bjørn; Caldas, Carlos; Børresen-Dale, Anne-Lise; Kristensen, Vessela N.; Troyanskaya, Olga G.

    2017-01-01

    The tumor microenvironment is now widely recognized for its role in tumor progression, treatment response, and clinical outcome. The intratumoral immunological landscape, in particular, has been shown to exert both pro-tumorigenic and anti-tumorigenic effects. Identifying immunologically active or silent tumors may be an important indication for administration of therapy, and detecting early infiltration patterns may uncover factors that contribute to early risk. Thus far, direct detailed studies of the cell composition of tumor infiltration have been limited; with some studies giving approximate quantifications using immunohistochemistry and other small studies obtaining detailed measurements by isolating cells from excised tumors and sorting them using flow cytometry. Herein we utilize a machine learning based approach to identify lymphocyte markers with which we can quantify the presence of B cells, cytotoxic T-lymphocytes, T-helper 1, and T-helper 2 cells in any gene expression data set and apply it to studies of breast tissue. By leveraging over 2,100 samples from existing large scale studies, we are able to find an inherent cell heterogeneity in clinically characterized immune infiltrates, a strong link between estrogen receptor activity and infiltration in normal and tumor tissues, changes with genomic complexity, and identify characteristic differences in lymphocyte expression among molecular groupings. With our extendable methodology for capturing cell type specific signal we systematically studied immune infiltration in breast cancer, finding an inverse correlation between beneficial lymphocyte infiltration and estrogen receptor activity in normal breast tissue and reduced infiltration in estrogen receptor negative tumors with high genomic complexity. PMID:28915659

  9. Triple DMARD treatment in early rheumatoid arthritis modulates synovial T cell activation and plasmablast/plasma cell differentiation pathways.

    PubMed

    Walsh, Alice M; Wechalekar, Mihir D; Guo, Yanxia; Yin, Xuefeng; Weedon, Helen; Proudman, Susanna M; Smith, Malcolm D; Nagpal, Sunil

    2017-01-01

    This study sought to investigate the genome-wide transcriptional effects of a combination of disease modifying anti-rheumatic drugs (tDMARD; methotrexate, sulfasalazine and hydroxychloroquine) in synovial tissues obtained from early rheumatoid arthritis (RA) patients. While combination DMARD strategies have been investigated for clinical efficacy, very little data exists on the potential molecular mechanism of action. We hypothesized that tDMARD would impact multiple biological pathways, but the specific pathways were unknown. Paired synovial biopsy samples from early RA patients before and after 6 months of tDMARD therapy were collected by arthroscopy (n = 19). These biopsies as well as those from subjects with normal synovium (n = 28) were profiled by total RNA sequencing. Large differences in gene expression between RA and control biopsies (over 5000 genes) were identified. Despite clinical efficacy, the expression of a restricted set of less than 300 genes was reversed after 6 months of treatment. Many genes remained elevated, even in patients who achieved low disease activity. Interestingly, tDMARD downregulated genes included those involved in T cell activation and signaling and plasmablast/plasma cell differentiation and function. We have identified transcriptomic signatures that characterize synovial tissue from RA patients with early disease. Analysis after 6 months of tDMARD treatment highlight consistent alterations in expression of genes related to T cell activation and plasmablast/plasma cell differentiation. These results provide novel insight into the biology of early RA and the mechanism of tDMARD action and may help identify novel drug targets to improve rates of treatment-induced disease remission.

  10. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells

    PubMed Central

    Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A.; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication. PMID:26270679

  11. Infection-induced regulation of NK cells by macrophages and collagen at the lymph node subcapsular sinus

    PubMed Central

    Coombes, Janine L.; Han, Seong-Ji; van Rooijen, Nico; Raulet, David H.; Robey, Ellen A.

    2012-01-01

    Summary Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii-mouse infection models to address this question. We found that NK cells accumulated in the subcapsular region of the lymph node following infection where they formed low motility contacts with collagen fibers and CD169+ macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169+ macrophages increase the activation state of NK cells. Interestingly, a subset of CD169+ macrophages that co-express the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated following infection, and identify an important accessory cell population for activation of NK cell responses in lymph nodes. PMID:22840403

  12. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells.

    PubMed

    Uosaki, Hideki; Magadum, Ajit; Seo, Kinya; Fukushima, Hiroyuki; Takeuchi, Ayako; Nakagawa, Yasuaki; Moyes, Kara White; Narazaki, Genta; Kuwahara, Koichiro; Laflamme, Michael; Matsuoka, Satoshi; Nakatsuji, Norio; Nakao, Kazuwa; Kwon, Chulan; Kass, David A; Engel, Felix B; Yamashita, Jun K

    2013-12-01

    The proliferation of cardiomyocytes is highly restricted after postnatal maturation, limiting heart regeneration. Elucidation of the regulatory machineries for the proliferation and growth arrest of cardiomyocytes is imperative. Chemical biology is efficient to dissect molecular mechanisms of various cellular events and often provides therapeutic potentials. We have been investigating cardiovascular differentiation with pluripotent stem cells. The combination of stem cell and chemical biology can provide novel approaches to investigate the molecular mechanisms and manipulation of cardiomyocyte proliferation. To identify chemicals that regulate cardiomyocyte proliferation, we performed a screening of a defined chemical library based on proliferation of mouse pluripotent stem cell-derived cardiomyocytes and identified 4 chemical compound groups: inhibitors of glycogen synthase kinase-3, p38 mitogen-activated protein kinase, and Ca(2+)/calmodulin-dependent protein kinase II, and activators of extracellular signal-regulated kinase. Several appropriate combinations of chemicals synergistically enhanced proliferation of cardiomyocytes derived from both mouse and human pluripotent stem cells, notably up to a 14-fold increase in mouse cardiomyocytes. We also examined the effects of identified chemicals on cardiomyocytes in various developmental stages and species. Whereas extracellular signal-regulated kinase activators and Ca(2+)/calmodulin-dependent protein kinase II inhibitors showed proliferative effects only on cardiomyocytes in early developmental stages, glycogen synthase kinase-3 and p38 mitogen-activated protein kinase inhibitors substantially and synergistically induced re-entry and progression of cell cycle in neonatal but also as well as adult cardiomyocytes. Our approach successfully uncovered novel molecular targets and mechanisms controlling cardiomyocyte proliferation in distinct developmental stages and offered pluripotent stem cell-derived cardiomyocytes as a potent tool to explore chemical-based cardiac regenerative strategies.

  13. Downstream effects of ROCK signaling in cultured human corneal stromal cells: microarray analysis of gene expression.

    PubMed

    Harvey, Stephen A K; Anderson, Susan C; SundarRaj, Nirmala

    2004-07-01

    Rho-associated coiled-coil-containing protein kinase (ROCK) is a downstream target of Rho GTPase signaling and regulates the assembly of stress fibers. Previous reports indicate that Rho/ROCK signaling is involved in the regulation of several cellular processes, some of which may be cell-type specific and are probably critical to corneal stromal cell activation. The present study identified ROCK-regulated gene expression in corneal stromal cells. Corneal stromal cells derived from eyes of three different donors were cultured to yield the following designated phenotypes: baseline fibroblasts (DMEM with 10% serum), activated fibroblasts (10% serum+bFGF+heparin), and myofibroblasts (1% serum+TGF-beta 1). Cells were exposed to the ROCK inhibitor Y-27632 or vehicle for 12 hours, and transcript levels altered by ROCK inhibition were identified with oligonucleotide microarrays (GeneChips; Affymetrix, Santa Clara, CA). In these phenotypes, Y-27632 caused marked (twofold or more) increases or decreases in 14/4, 12/3, and 15/10 transcripts. In both fibroblast groups Y-27632-treatment increased expression of endothelin receptors and of parathyroid hormone-like hormone. The upregulation of alpha-smooth muscle actin in myofibroblasts was attenuated by Y-27632. Combining data from all groups identified ROCK-supported (Y-27632 inhibitable) expression of 10 transcripts, including ribonucleotide reductase M2, the cyclin B1-CDC2-CKS2 system, and four mitotic spindle-associated proteins. ROCK inhibition causes broad inhibition of DNA synthesis and mitosis and causes changes that are different between (bFGF-activated) fibroblasts and (TGF-beta 1-induced) myofibroblasts. Thus, Rho/ROCK signaling regulates both common and distinct downstream events in corneal stromal cells activated (differentiated) to fibroblast or myofibroblast phenotype.

  14. A Phase I Clinical Trial of Systemically Delivered NEMO Binding Domain Peptide in Dogs with Spontaneous Activated B-Cell like Diffuse Large B-Cell Lymphoma

    PubMed Central

    Habineza Ndikuyeze, Georges; Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Flood, Patrick; Krick, Erika; Propert, Kathleen J.; Mason, Nicola J.

    2014-01-01

    Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-κB signaling. Inhibition of NF-κB signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-κB activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-κB signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-κB activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-κB signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL. PMID:24798348

  15. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  16. Cell Cycle Reprogramming for PI3K Inhibition Overrides Relapse-Specific C481S BTK Mutation Revealed by Longitudinal Functional Genomics in Mantle Cell Lymphoma

    PubMed Central

    Chiron, David; Di Liberto, Maurizio; Martin, Peter; Huang, Xiangao; Sharman, Jeff; Blecua, Pedro; Mathew, Susan; Vijay, Priyanka; Eng, Ken; Ali, Siraj; Johnson, Amy; Chang, Betty; Ely, Scott; Elemento, Olivier; Mason, Christopher E.; Leonard, John P.; Chen-Kiang, Selina

    2014-01-01

    Despite the unprecedented clinical activity of the Bruton’s tyrosine kinase inhibitor ibrutinib in MCL, acquired-resistance is common. By longitudinal integrative whole-exome and whole-transcriptome sequencing and targeted sequencing, we identified the first relapse-specific C481S mutation at the ibrutinib-binding site of BTK in MCL cells at progression following a durable response. This mutation enhanced BTK and AKT activation and tissue-specific proliferation of resistant MCL cells driven by CDK4 activation. It was absent, however, in patients with primary-resistance or progression following transient response to ibrutinib, suggesting alternative mechanisms of resistance. Through synergistic induction of PIK3IP1 and inhibition of PI3K-AKT activation, prolonged early G1 arrest induced by PD 0332991 (palbociclib) inhibition of CDK4 sensitized resistant lymphoma cells to ibrutinib killing when BTK was unmutated, and to PI3K inhibitors independent of C481S mutation. These data identify a genomic basis for acquired-ibrutinib resistance in MCL and suggest a strategy to override both primary- and acquired-ibrutinib resistance. PMID:25082755

  17. Next-generation sequencing identifies the natural killer cell microRNA transcriptome

    PubMed Central

    Fehniger, Todd A.; Wylie, Todd; Germino, Elizabeth; Leong, Jeffrey W.; Magrini, Vincent J.; Koul, Sunita; Keppel, Catherine R.; Schneider, Stephanie E.; Koboldt, Daniel C.; Sullivan, Ryan P.; Heinz, Michael E.; Crosby, Seth D.; Nagarajan, Rakesh; Ramsingh, Giridharan; Link, Daniel C.; Ley, Timothy J.; Mardis, Elaine R.

    2010-01-01

    Natural killer (NK) cells are innate lymphocytes important for early host defense against infectious pathogens and surveillance against malignant transformation. Resting murine NK cells regulate the translation of effector molecule mRNAs (e.g., granzyme B, GzmB) through unclear molecular mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate the translation of their mRNA targets, and are therefore candidates for mediating this control process. While the expression and importance of miRNAs in T and B lymphocytes have been established, little is known about miRNAs in NK cells. Here, we used two next-generation sequencing (NGS) platforms to define the miRNA transcriptomes of resting and cytokine-activated primary murine NK cells, with confirmation by quantitative real-time PCR (qRT-PCR) and microarrays. We delineate a bioinformatics analysis pipeline that identified 302 known and 21 novel mature miRNAs from sequences obtained from NK cell small RNA libraries. These miRNAs are expressed over a broad range and exhibit isomiR complexity, and a subset is differentially expressed following cytokine activation. Using these miRNA NGS data, miR-223 was identified as a mature miRNA present in resting NK cells with decreased expression following cytokine activation. Furthermore, we demonstrate that miR-223 specifically targets the 3′ untranslated region of murine GzmB in vitro, indicating that this miRNA may contribute to control of GzmB translation in resting NK cells. Thus, the sequenced NK cell miRNA transcriptome provides a valuable framework for further elucidation of miRNA expression and function in NK cell biology. PMID:20935160

  18. A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells

    PubMed Central

    Walko, Gernot; Woodhouse, Samuel; Pisco, Angela Oliveira; Rognoni, Emanuel; Liakath-Ali, Kifayathullah; Lichtenberger, Beate M.; Mishra, Ajay; Telerman, Stephanie B.; Viswanathan, Priyalakshmi; Logtenberg, Meike; Renz, Lisa M.; Donati, Giacomo; Quist, Sven R.; Watt, Fiona M.

    2017-01-01

    Individual human epidermal cells differ in their self-renewal ability. To uncover the molecular basis for this heterogeneity, we performed genome-wide pooled RNA interference screens and identified genes conferring a clonal growth advantage on normal and neoplastic (cutaneous squamous cell carcinoma, cSCC) human epidermal cells. The Hippo effector YAP was amongst the top positive growth regulators in both screens. By integrating the Hippo network interactome with our data sets, we identify WW-binding protein 2 (WBP2) as an important co-factor of YAP that enhances YAP/TEAD-mediated gene transcription. YAP and WPB2 are upregulated in actively proliferating cells of mouse and human epidermis and cSCC, and downregulated during terminal differentiation. WBP2 deletion in mouse skin results in reduced proliferation in neonatal and wounded adult epidermis. In reconstituted epidermis YAP/WBP2 activity is controlled by intercellular adhesion rather than canonical Hippo signalling. We propose that defective intercellular adhesion contributes to uncontrolled cSCC growth by preventing inhibition of YAP/WBP2. PMID:28332498

  19. High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer

    PubMed Central

    Liu, Shu-Yan; Zheng, Peng-Sheng

    2013-01-01

    High aldehyde dehydrogenase (ALDH) activity characterizes a subpopulation of cells with cancer stem cell (CSC) properties in several malignancies. To clarify whether ALDH can be used as a marker of cervical cancer stem cells (CCSCs), ALDHhigh and ALDHlow cells were sorted from 4 cervical cancer cell lines and 5 primary tumor xenografts and examined for CSC characteristics. Here, we demonstrate that cervical cancer cells with high ALDH activity fulfill the functional criteria for CSCs: (1) ALDHhigh cells, unlike ALDHlow cells, are highly tumorigenic in vivo; (2) ALDHhigh cells can give rise to both ALDHhigh and ALDHlow cells in vitro and in vivo, thereby establishing a cellular hierarchy; and (3) ALDHhigh cells have enhanced self-renewal and differentiation potentials. Additionally, ALDHhigh cervical cancer cells are more resistant to cisplatin treatment than ALDHlow cells. Finally, expression of the stem cell self-renewal-associated transcription factors OCT4, NANOG, KLF4 and BMI1 is elevated in ALDHhigh cervical cancer cells. Taken together, our data indicated that high ALDH activity may represent both a functional marker for CCSCs and a target for novel cervical cancer therapies. PMID:24318570

  20. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    PubMed

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  1. T Cell Costimulation by CD6 Is Dependent on Bivalent Binding of a GADS/SLP-76 Complex.

    PubMed

    Breuning, Johannes; Brown, Marion H

    2017-06-01

    The cell surface receptor CD6 regulates T cell activation in both activating and inhibitory manners. The adaptor protein SLP-76 is recruited to the phosphorylated CD6 cytoplasmic Y662 residue during T cell activation, providing an activating signal to T cells. In this study, a biochemical approach identified the SH2 domain-containing adaptor protein GADS as the dominant interaction partner for the CD6 cytoplasmic Y629 residue. Functional experiments in human Jurkat and primary T cells showed that both mutations Y629F and Y662F abolished costimulation by CD6. In addition, a restraint on T cell activation by CD6 was revealed in primary T cells expressing CD6 mutated at Y629 and Y662. These data are consistent with a model in which bivalent recruitment of a GADS/SLP-76 complex is required for costimulation by CD6. Copyright © 2017 Breuning and Brown.

  2. Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3

    NASA Astrophysics Data System (ADS)

    Yu, Leiye; Sun, Guojie; Wei, Jingfang; Wang, Yingze; Du, Chao; Li, Jiang

    2016-09-01

    An exopolysaccharide (EPS) was isolated and purified from an Antarctic psychrophilic bacterium B-3, identified as Psychrobacter sp., and the activation of RAW264.7 cells by B-3 EPS was investigated. The results show that B-3 EPS, over a certain concentration range, promoted cell viability, nitric oxide production, tumor necrosis factor (TNF)α secretion, and phagocytic ability. Furthermore, TAK-242, an inhibitor of the toll-like receptor 4 (TLR4) significantly reduced nitric oxide production by these cells after stimulation with B-3 EPS. Moreover, B-3 EPS induced p65 phosphorylation and IκBα degradation in these cells. In conclusion, B-3 EPS might have activated RAW264.7 cells by combining with TLR4 on cell surface and triggering activation of NF-κB signaling pathways, implying that this EPS could activate macrophages and regulate initial immune response.

  3. Pnp gene modification for improved xylose utilization in Zymomonas

    DOEpatents

    Caimi, Perry G G; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2014-12-16

    The endogenous pnp gene encoding polynucleotide phosphorylase in the Zymomonas genome was identified as a target for modification to provide improved xylose utilizing cells for ethanol production. The cells are in addition genetically modified to have increased expression of ribose-5-phosphate isomerase (RPI) activity, as compared to cells without this genetic modification, and are not limited in xylose isomerase activity in the absence of the pnp modification.

  4. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hcm1 integrates signals from Cdk1 and calcineurin to control cell proliferation.

    PubMed

    Arsenault, Heather E; Roy, Jagoree; Mapa, Claudine E; Cyert, Martha S; Benanti, Jennifer A

    2015-10-15

    Cyclin-dependent kinase (Cdk1) orchestrates progression through the cell cycle by coordinating the activities of cell-cycle regulators. Although phosphatases that oppose Cdk1 are likely to be necessary to establish dynamic phosphorylation, specific phosphatases that target most Cdk1 substrates have not been identified. In budding yeast, the transcription factor Hcm1 activates expression of genes that regulate chromosome segregation and is critical for maintaining genome stability. Previously we found that Hcm1 activity and degradation are stimulated by Cdk1 phosphorylation of distinct clusters of sites. Here we show that, upon exposure to environmental stress, the phosphatase calcineurin inhibits Hcm1 by specifically removing activating phosphorylations and that this regulation is important for cells to delay proliferation when they encounter stress. Our work identifies a mechanism by which proliferative signals from Cdk1 are removed in response to stress and suggests that Hcm1 functions as a rheostat that integrates stimulatory and inhibitory signals to control cell proliferation. © 2015 Arsenault, Roy, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver

    PubMed Central

    Wang, Bruce; Zhao, Ludan; Fish, Matt; Logan, Catriona Y.; Nusse, Roel

    2015-01-01

    Summary The source of new hepatocytes in the uninjured liver has remained an open question. By lineage tracing using the Wnt-responsive gene Axin2, we identify a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells express the early liver progenitor marker Tbx3, are diploid, and thus differ from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiate into Tbx3-negative, polyploid hepatocytes and can replace all hepatocytes along the liver lobule during homeostatic renewal. Adjacent central vein endothelial cells provide Wnt signals that maintain the pericentral cells, thereby constituting the niche. Thus, we identify a cell population in the liver that subserves homeostatic hepatocyte renewal, characterize its anatomical niche, and identify molecular signals that regulate its activity. PMID:26245375

  7. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    PubMed Central

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  8. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Lei; Sasai, Ken; Akagi, Tsuyoshi

    2008-08-29

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed bymore » the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development.« less

  9. A Novel Single-Cell FISH-Flow Assay Identifies Effector Memory CD4+ T cells as a Major Niche for HIV-1 Transcription in HIV-Infected Patients.

    PubMed

    Grau-Expósito, Judith; Serra-Peinado, Carla; Miguel, Lucia; Navarro, Jordi; Curran, Adrià; Burgos, Joaquin; Ocaña, Imma; Ribera, Esteban; Torrella, Ariadna; Planas, Bibiana; Badía, Rosa; Castellví, Josep; Falcó, Vicenç; Crespo, Manuel; Buzon, Maria J

    2017-07-11

    Cells that actively transcribe HIV-1 have been defined as the "active viral reservoir" in HIV-infected individuals. However, important technical limitations have precluded the characterization of this specific viral reservoir during both treated and untreated HIV-1 infections. Here, we used a novel single-cell RNA fluorescence in situ hybridization-flow cytometry (FISH-flow) assay that requires only 15 million unfractionated peripheral blood mononuclear cells (PBMCs) to characterize the specific cell subpopulations that transcribe HIV RNA in different subsets of CD4 + T cells. In samples from treated and untreated HIV-infected patients, effector memory CD4 + T cells were the main cell population supporting HIV RNA transcription. The number of cells expressing HIV correlated with the plasma viral load, intracellular HIV RNA, and proviral DNA quantified by conventional methods and inversely correlated with the CD4 + T cell count and the CD4/CD8 ratio. We also found that after ex vivo infection of unstimulated PBMCs, HIV-infected T cells upregulated the expression of CD32. In addition, this new methodology detected increased numbers of primary cells expressing viral transcripts and proteins after ex vivo viral reactivation with latency reversal agents. This RNA FISH-flow technique allows the identification of the specific cell subpopulations that support viral transcription in HIV-1-infected individuals and has the potential to provide important information on the mechanisms of viral pathogenesis, HIV persistence, and viral reactivation. IMPORTANCE Persons infected with HIV-1 contain several cellular viral reservoirs that preclude the complete eradication of the viral infection. Using a novel methodology, we identified effector memory CD4 + T cells, immune cells preferentially located in inflamed tissues with potent activity against pathogens, as the main cells encompassing the transcriptionally active HIV-1 reservoir in patients on antiretroviral therapy. Importantly, the identification of such cells provides us with an important target for new therapies designed to target the hidden virus and thus to eliminate the virus from the human body. In addition, because of its ability to identify cells forming part of the viral reservoir, the assay used in this study represents an important new tool in the field of HIV pathogenesis and viral persistence. Copyright © 2017 Grau-Expósito et al.

  10. Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus.

    PubMed

    Hagberg, Niklas; Theorell, Jakob; Hjorton, Karin; Spee, Pieter; Eloranta, Maija-Leena; Bryceson, Yenan T; Rönnblom, Lars

    2015-04-01

    Recently we serendipitously identified a patient with systemic lupus erythematosus (SLE) who was positive for autoantibodies to CD94/natural killer receptor group 2A (NKG2A). The present study was undertaken to investigate the occurrence and function of autoantibodies targeting lectin-like NK cell receptors in SLE. Sera from 203 SLE patients and 90 healthy individuals were analyzed, by flow cytometry, for Ig binding to Ba/F3 cells transfected with CD94/NKG2A, CD94/NKG2C, or NKG2D. Autoantibodies identified were characterized with regard to interference with HLA-E binding, effect on NK cell activation in response to HLA-E-transfected K562 cells, and capacity to facilitate antibody-dependent cell-mediated cytotoxicity (ADCC). Levels of autoantibodies were determined in longitudinally sampled sera, and correlations with disease activity (SLE Disease Activity Index 2000) and severity (Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index) were investigated. Anti-CD94/NKG2A autoantibodies were identified in 7 SLE patients. The autoantibodies from 6 patients inhibited binding of HLA-E to CD94/NKG2A, whereas those from the seventh patient augmented this binding. Autoantibodies from 2 patients also reacted with the activating receptor CD94/NKG2C, with inhibition of the binding of HLA-E to CD94/NKG2C observed in 1 case and enhancement of this binding in the other. None of the sera contained anti-NKG2D autoantibodies. The levels of anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies correlated with disease activity and with a more severe SLE phenotype. Mechanistically, anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies both interfered with HLA-E-mediated regulation of NK cell activation and facilitated the elimination of target cells expressing CD94/NKG2A or CD94/NKG2C through ADCC. Anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies occur in a subset of patients with clinically active SLE. Given their capacity to deplete certain NK cell subsets and interfere with particular NK cell function, such autoantibodies may promote the pathogenesis of SLE. Copyright © 2015 by the American College of Rheumatology.

  11. MHC class II molecules control murine B cell responsiveness to lipopolysaccharide stimulation.

    PubMed

    Rodo, Joana; Gonçalves, Lígia A; Demengeot, Jocelyne; Coutinho, António; Penha-Gonçalves, Carlos

    2006-10-01

    LPS is a strong stimulator of the innate immune system and inducer of B lymphocyte activation. Two TLRs, TLR4 and RP105 (CD180), have been identified as mediators of LPS signaling in murine B cells, but little is known about genetic factors that are able to control LPS-induced cell activation. We performed a mouse genome-wide screen that aside from identifying a controlling locus mapping in the TLR4 region (logarithm of odds score, 2.77), also revealed that a locus closely linked to the MHC region (logarithm of odds score, 3.4) governed B cell responsiveness to LPS stimulation. Using purified B cells obtained from MHC congenic strains, we demonstrated that the MHC(b) haplotype is accountable for higher cell activation, cell proliferation, and IgM secretion, after LPS stimulation, when compared with the MHC(d) haplotype. Furthermore, B cells from MHC class II(-/-) mice displayed enhanced activation and proliferation in response to LPS. In addition, we showed that the MHC haplotype partially controls expression of RP105 (a LPS receptor molecule), following a pattern that resembles the LPS responsiveness phenotype. Together, our results strongly suggest that murine MHC class II molecules play a role in constraining the B cell response to LPS and that genetic variation at the MHC locus is an important component in controlling B cell responsiveness to LPS stimulation. This work raises the possibility that constraining of B cell responsiveness by MHC class II molecules may represent a functional interaction between adaptive and innate immune systems.

  12. STANDARDIZATION OF A FLUORESCENT-BASED QUANTITATIVE ADHESION ASSAY TO STUDY ATTACHMENT OF Taenia solium ONCOSPHERE TO EPITHELIAL CELLS In Vitro

    PubMed Central

    Chile, Nancy; Evangelista, Julio; Gilman, Robert H.; Arana, Yanina; Palma, Sandra; Sterling, Charles R; Garcia, Hector H.; Gonzalez, Armando; Verastegui, Manuela

    2012-01-01

    To fully understand the preliminary stages of Taenia solium oncosphere attachment in the gut, adequate tools and assays are necessary to observe and quantify this event that leads to infection. A fluorescent-based quantitative adhesion assay, using biotinylated activated-oncospheres and monolayers of Chinese hamster ovary cells (CHO-K1) or human intestinal monolayer cells (INT-407, HCT-8 or HT-29), was developed to study initial events during the infection of target cells and to rapidly quantify the in vitro adhesion of T. solium oncospheres. Fluorescein streptavidin was used to identify biotinylated activated-oncospheres adhered to cells. This adherence was quantified using an automated fluorescence plate reader, and the results were expressed as fluorescence intensity values. A series of three assays were performed. The first was to identify the optimum number of biotinylated activated-oncospheres to be used in the adhesion assay. The goal of the second assay was to validate this novel method with the established oncosphere-binding system using the immunofluorescent-antibody assay (IFA) method to quantify oncosphere adhesion. A total of 10,000 biotinylated activated-oncospheres were utilized to assess the role of sera and laminin (LM) in oncosphere adherence to a CHO-K1 cell monolayer. The findings that sera and LM increase the adhesion of oncospheres to monolayer cells were similar to results that were previously obtained using the IFA method. The third assay compared the adherence of biotinylated activated-oncospheres to different types of human intestinal monolayer cells. In this case, the fluorescence intensity was greatest when using the INT-407 cell monolayer. We believe this new method of quantification offers the potential for rapid, large-scale screening to study and elucidate specific molecules and mechanisms involved in oncosphere-host cell attachment. PMID:22178422

  13. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy

    PubMed Central

    Webb, Thomas R; Slavish, Jake; George, Rani E; Look, A Thomas; Xue, Liquan; Jiang, Qin; Cui, Xiaoli; Rentrop, Walter B; Morris, Stephan W

    2009-01-01

    Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms – the most common being nucleophosmin-ALK – in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies – including glioblastoma and breast cancer – via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors. PMID:19275511

  14. A Conserved RhoGAP Limits M-phase Contractility and Coordinates with Microtubule Asters to Restrict Active RhoA to the Cell Equator During Cytokinesis

    PubMed Central

    Zanin, Esther; Desai, Arshad; Poser, Ina; Toyoda, Yusuke; Andree, Cordula; Moebius, Claudia; Bickle, Marc; Conradt, Barbara; Piekny, Alisa; Oegema, Karen

    2014-01-01

    SUMMARY During animal cell cytokinesis, the spindle directs contractile ring assembly by activating RhoA in a narrow equatorial zone. Rapid GTPase activating protein (GAP)-mediated inactivation (RhoA flux) is proposed to limit RhoA zone dimensions. Testing the significance of RhoA flux has been hampered by the fact that the GAP targeting RhoA is not known. Here, we identify M-phase GAP (MP-GAP) as the primary GAP targeting RhoA during mitosis/cytokinesis. MP-GAP inhibition caused excessive RhoA activation in M-phase leading to the uncontrolled formation of large cortical protrusions and late cytokinesis failure. RhoA zone width was broadened by attenuation of the centrosomal asters but was not affected by MP-GAP inhibition alone. Simultaneous aster attenuation and MP-GAP inhibition led to RhoA accumulation around the entire cell periphery. These results identify the major GAP restraining RhoA during cell division and delineate the relative contributions of RhoA flux and centrosomal asters in controlling RhoA zone dimensions. PMID:24012485

  15. Development of a cell-based high throughput luciferase enzyme fragment complementation assay to identify nuclear-factor-e2-related transcription factor 2 activators.

    PubMed

    Xie, Wensheng; Pao, Christina; Graham, Taylor; Dul, Ed; Lu, Quinn; Sweitzer, Thomas D; Ames, Robert S; Li, Hu

    2012-12-01

    Nuclear-factor-E2-related transcription factor 2 (Nrf2) regulates a large panel of Phase II genes and plays an important role in cell survival. Nrf2 activation has been shown as preventing cigarette smoke-induced alveolar enlargement in mice. Therefore, activation of the Nrf2 protein by small-molecule activators represents an attractive therapeutic strategy that is used for chronic obstructive pulmonary disease. In this article, we describe a cell-based luciferase enzyme fragment complementation assay that identifies Nrf2 activators. This assay is based on the interaction of Nrf2 with its nuclear partner MafK or runt-related transcription factor 2 (RunX2) and is dependent on the reconstitution of a "split" luciferase. Firefly luciferase is split into two fragments, which are genetically fused to Nrf2 and MafK or RunX2, respectively. BacMam technology was used to deliver the fusion constructs into cells for expression of the tagged proteins. When the BacMam-transduced cells were treated with Nrf2 activators, the Nrf2 protein was stabilized and translocated into the nucleus where it interacted with MafK or RunX2. The interaction of Nrf2 and MafK or RunX2 brought together the two luciferase fragments that form an active luciferase. The assay was developed in a 384-well format and was optimized by titrating the BacMam concentration, transduction time, cell density, and fetal bovine serum concentration. It was further validated with known Nrf2 activators. Our data show that this assay is robust, sensitive, and amenable to high throughput screening of a large compound collection for the identification of novel Nrf2 activators.

  16. Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity

    PubMed Central

    Malle, Elisabeth K.; Zammit, Nathan W.; Walters, Stacey N.; Koay, Yen Chin; Wu, Jianmin; Tan, Bernice M.; Villanueva, Jeanette E.; Brink, Robert; Loudovaris, Tom; Cantley, James; McAlpine, Shelli R.; Hesselson, Daniel

    2015-01-01

    The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB–inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell–intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity. PMID:26122662

  17. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive nanoLC-MS.

    PubMed

    Zhu, Ying; Clair, Geremy; Chrisler, William; Shen, Yufeng; Zhao, Rui; Shukla, Anil; Moore, Ronald; Misra, Ravi; Pryhuber, Gloria; Smith, Richard; Ansong, Charles; Kelly, Ryan T

    2018-05-24

    We report on the quantitative proteomic analysis of single mammalian cells. Fluorescence-activated cell sorting was employed to deposit cells into a newly developed nanodroplet sample processing chip, after which samples were analysed by ultrasensitive nanoLC-MS. An average of ~670 protein groups were confidently identified from single HeLa cells, which is a far greater level of proteome coverage for single cells than has been previously reported. We demonstrate that the single cell proteomics platform can be used to differentiate cell types from enzyme-dissociated human lung primary cells and identify specific protein markers for epithelial and mesenchymal cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. De-repression of the RAC activator ELMO1 in cancer stem cells drives progression of TGFβ-deficient squamous cell carcinoma from transition zones

    PubMed Central

    McCauley, Heather A; Chevrier, Véronique; Birnbaum, Daniel; Guasch, Géraldine

    2017-01-01

    Squamous cell carcinomas occurring at transition zones are highly malignant tumors with poor prognosis. The identity of the cell population and the signaling pathways involved in the progression of transition zone squamous cell carcinoma are poorly understood, hence representing limited options for targeted therapies. Here, we identify a highly tumorigenic cancer stem cell population in a mouse model of transitional epithelial carcinoma and uncover a novel mechanism by which loss of TGFβ receptor II (Tgfbr2) mediates invasion and metastasis through de-repression of ELMO1, a RAC-activating guanine exchange factor, specifically in cancer stem cells of transition zone tumors. We identify ELMO1 as a novel target of TGFβ signaling and show that restoration of Tgfbr2 results in a complete block of ELMO1 in vivo. Knocking down Elmo1 impairs metastasis of carcinoma cells to the lung, thereby providing insights into the mechanisms of progression of Tgfbr2-deficient invasive transition zone squamous cell carcinoma. DOI: http://dx.doi.org/10.7554/eLife.22914.001 PMID:28219480

  19. Aggressive peripheral CD70-positive T-cell lymphoma associated with severe chronic active EBV infection.

    PubMed

    Shaffer, Donald R; Sheehan, Andrea M; Yi, Zhongzhen; Rodgers, Cheryl C; Bollard, Catherine M; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E; Gottschalk, Stephen

    2012-10-01

    Severe chronic active Epstein-Barr virus infection (CAEBV) in T or NK cells is a rare complication of latent EBV infection. CAEBV associated T-cell lymphoproliferative disease (LPD) consists of polyclonal lesions as well as aggressive lymphomas. Here, we report such a patient. In addition, we show that this primary CAEBV associated T-cell lymphoma expresses CD70 and is sensitive to killing by CD70-specific T cells, identifying CD70 as a potential immunotherapeutic target for CAEBV-associated T-cell lymphoma. Copyright © 2011 Wiley Periodicals, Inc.

  20. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-07-26

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.

  1. A Systems Biology Approach To Identify the Combination Effects of Human Herpesvirus 8 Genes on NF-κB Activation▿

    PubMed Central

    Konrad, Andreas; Wies, Effi; Thurau, Mathias; Marquardt, Gaby; Naschberger, Elisabeth; Hentschel, Sonja; Jochmann, Ramona; Schulz, Thomas F.; Erfle, Holger; Brors, Benedikt; Lausen, Berthold; Neipel, Frank; Stürzl, Michael

    2009-01-01

    Human herpesvirus 8 (HHV-8) is the etiologic agent of Kaposi's sarcoma and primary effusion lymphoma. Activation of the cellular transcription factor nuclear factor-kappa B (NF-κB) is essential for latent persistence of HHV-8, survival of HHV-8-infected cells, and disease progression. We used reverse-transfected cell microarrays (RTCM) as an unbiased systems biology approach to systematically analyze the effects of HHV-8 genes on the NF-κB signaling pathway. All HHV-8 genes individually (n = 86) and, additionally, all K and latent genes in pairwise combinations (n = 231) were investigated. Statistical analyses of more than 14,000 transfections identified ORF75 as a novel and confirmed K13 as a known HHV-8 activator of NF-κB. K13 and ORF75 showed cooperative NF-κB activation. Small interfering RNA-mediated knockdown of ORF75 expression demonstrated that this gene contributes significantly to NF-κB activation in HHV-8-infected cells. Furthermore, our approach confirmed K10.5 as an NF-κB inhibitor and newly identified K1 as an inhibitor of both K13- and ORF75-mediated NF-κB activation. All results obtained with RTCM were confirmed with classical transfection experiments. Our work describes the first successful application of RTCM for the systematic analysis of pathofunctions of genes of an infectious agent. With this approach, ORF75 and K1 were identified as novel HHV-8 regulatory molecules on the NF-κB signal transduction pathway. The genes identified may be involved in fine-tuning of the balance between latency and lytic replication, since this depends critically on the state of NF-κB activity. PMID:19129458

  2. NG2 expression in glioblastoma identifies an actively proliferating population with an aggressive molecular signature

    PubMed Central

    Al-Mayhani, M. Talal F.; Grenfell, Richard; Narita, Masashi; Piccirillo, Sara; Kenney-Herbert, Emma; Fawcett, James W.; Collins, V. Peter; Ichimura, Koichi; Watts, Colin

    2011-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary brain tumor and a highly malignant and heterogeneous cancer. Current conventional therapies fail to eradicate or curb GBM cell growth. Hence, exploring the cellular and molecular basis of GBM cell growth is vital to develop novel therapeutic approaches. Neuroglia (NG)-2 is a transmembrane proteoglycan expressed by NG2+ progenitors and is strongly linked to cell proliferation in the normal brain. By using NG2 as a biomarker we identify a GBM cell population (GBM NG2+ cells) with robust proliferative, clonogenic, and tumorigenic capacity. We show that a significant proportion (mean 83%) of cells proliferating in the tumor mass express NG2 and that over 50% of GBM NG2+ cells are proliferating. Compared with the GBM NG2− cells from the same tumor, the GBM of NG2+ cells overexpress genes associated with aggressive tumorigenicity, including overexpression of Mitosis and Cell Cycling Module genes (e.g., MELK, CDC, MCM, E2F), which have been previously shown to correlate with poor survival in GBM. We also show that the coexpression pattern of NG2 with other glial progenitor markers in GBM does not recapitulate that described in the normal brain. The expression of NG2 by such an aggressive and actively cycling GBM population combined with its location on the cell surface identifies this cell population as a potential therapeutic target in a subset of patients with GBM. PMID:21798846

  3. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals.

    PubMed

    Qi, Jingjing; Yu, Yong; Akilli Öztürk, Özlem; Holland, Jane D; Besser, Daniel; Fritzmann, Johannes; Wulf-Goldenberg, Annika; Eckert, Klaus; Fichtner, Iduna; Birchmeier, Walter

    2016-10-01

    We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    PubMed

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity.

    PubMed

    Chew, Yik Ling; Mahadi, Adlina Maisarah; Wong, Kak Ming; Goh, Joo Kheng

    2018-02-20

    Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds. Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.

  6. Computer-based identification of a novel LIMK1/2 inhibitor that synergizes with salirasib to destabilize the actin cytoskeleton.

    PubMed

    Mashiach-Farkash, Efrat; Rak, Roni; Elad-Sfadia, Galit; Haklai, Roni; Carmeli, Shmuel; Kloog, Yoel; Wolfson, Haim J

    2012-06-01

    Neurofibromin regulates cell motility via three distinct GTPase pathways acting through two different domains, the Ras GTPase-activating protein-related domain (GRD) and the pre-GRD domain. First, the GRD domain inhibits Ras-dependent changes in cell motility through the mitogen activated protein cascade. Second, it also regulates Rho-dependent (Ras-independent) changes by activating LIM kinase 2 (LIMK2), an enzyme that phosphorylates and inactivates cofilin (an actin-depolymerizing factor). Third, the pre-GRD domain acts through the Rac1 GTPase, that activate the P21 activated kinase 1 (PAK1)-LIMK1-cofilin pathway. We employed molecular modeling to identify a novel inhibitor of LIMK1/2. The active sites of an ephrin-A receptor (EphA3) and LIMK2 showed marked similarity (60%). On testing a known inhibitor of EphA3, we found that it fits to the LIMK1/2-ATP binding site and to the latter's substrate-binding pockets. We identified a similar compound, T56-LIMKi, and found that it inhibits LIMK1/2 kinase activities. It blocked the phosphorylation of cofilin which led to actin severance and inhibition of tumor cell migration, tumor cell growth, and anchorage-independent colony formation in soft agar. Because modulation of LIMK by neurofibromin is not affected by the Ras inhibitor Salirasib, we examined the combined effect of Salirasib and T56-LIMKi each of which can affect cell motility by a distinct pathway. We found that their combined action on cell proliferation and stress-fiber formation in neurofibromin-deficient cells was synergistic. We suggest that this drug combination may be developed for treatment of neurofibromatosis and cancer.

  7. Computer-Based Identification of a Novel LIMK1/2 Inhibitor that Synergizes with Salirasib to Destabilize the Actin Cytoskeleton

    PubMed Central

    Elad-Sfadia, Galit; Haklai, Roni; Carmeli, Shmuel; Kloog, Yoel; Wolfson, Haim J.

    2012-01-01

    Neurofibromin regulates cell motility via three distinct GTPase pathways acting through two different domains, the Ras GTPase-activating protein-related domain (GRD) and the pre-GRD domain. First, the GRD domain inhibits Ras-dependent changes in cell motility through the mitogen activated protein cascade. Second, it also regulates Rho-dependent (Ras-independent) changes by activating LIM kinase 2 (LIMK2), an enzyme that phosphorylates and inactivates cofilin (an actin-depolymerizing factor). Third, the pre-GRD domain acts through the Rac1 GTPase, that activate the P21 activated kinase 1 (PAK1)-LIMK1-cofilin pathway. We employed molecular modeling to identify a novel inhibitor of LIMK1/2. The active sites of an ephrin-A receptor (EphA3) and LIMK2 showed marked similarity (60%). On testing a known inhibitor of EphA3, we found that it fits to the LIMK1/2-ATP binding site and to the latter's substrate-binding pockets. We identified a similar compound, T56-LIMKi, and found that it inhibits LIMK1/2 kinase activities. It blocked the phosphorylation of cofilin which led to actin severance and inhibition of tumor cell migration, tumor cell growth, and anchorage-independent colony formation in soft agar. Because modulation of LIMK by neurofibromin is not affected by the Ras inhibitor Salirasib, we examined the combined effect of Salirasib and T56-LIMKi each of which can affect cell motility by a distinct pathway. We found that their combined action on cell proliferation and stress-fiber formation in neurofibromin-deficient cells was synergistic. We suggest that this drug combination may be developed for treatment of neurofibromatosis and cancer. PMID:22776759

  8. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system.

    PubMed

    Lemaire, Géraldine; Mnif, Wissem; Pascussi, Jean-Marc; Pillon, Arnaud; Rabenoelina, Fanja; Fenet, Hélène; Gomez, Elena; Casellas, Claude; Nicolas, Jean-Claude; Cavaillès, Vincent; Duchesne, Marie-Josèphe; Balaguer, Patrick

    2006-06-01

    Pregnane X receptor (PXR, NR1I2) is activated by various chemically unrelated compounds, including environmental pollutants and drugs. We proceeded here to in vitro screening of 28 pesticides with a new reporter system that detects human pregnane X receptor (hPXR) activators. The cell line was obtained by a two-step stable transfection of cervical cancer HeLa cells. The first transfected cell line, HG5LN, contained an integrated luciferase reporter gene under the control of a GAL4 yeast transcription factor-binding site. The second cell line HGPXR was derived from HG5LN and stably expressed hPXR ligand-binding domain fused to GAL4 DNA-binding domain (DBD). The HG5LN cells were used as a control to detect nonspecific activities. Pesticides from various chemical classes were demonstrated, for the first time, to be hPXR activators: (1) herbicides: pretilachlor, metolachlor, and alachlor chloracetanilides, oxadiazon oxiconazole, and isoproturon urea; (2) fungicides: bupirimate and fenarimol pyrimidines, propiconazole, fenbuconazole, prochloraz conazoles, and imazalil triazole; and (3) insecticides: toxaphene organochlorine, permethrin pyrethroid, fipronil pyrazole, and diflubenzuron urea. Pretilachlor, metolachlor, bupirimate, and oxadiazon had an affinity for hPXR equal to or greater than the positive control rifampicin. Some of the newly identified hPXR activators were also checked for their ability to induce cytochrome P450 3A4 expression in a primary culture of human hepatocytes. HGPXR, with HG5LN as a reference, was grafted onto nude mice to assess compound bioavailability through in vivo quantification of hPXR activation. Altogether, our data indicate that HGPXR cells are an efficient tool for identifying hPXR ligands and establishing pesticides as hPXR activators.

  9. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells

    PubMed Central

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M.; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F.; Broering, Ruth

    2015-01-01

    Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease. PMID:26407160

  10. Chemical constituents and anti-inflammatory activities of Maqian (Zanthoxylum myriacanthum var. pubescens) bark extracts

    PubMed Central

    Zhang, Huan-li; Gan, Xiao-qing; Fan, Qing-fei; Yang, Jing-jing; Zhang, Ping; Hu, Hua-bin; Song, Qi-shi

    2017-01-01

    In this study, 44 compounds in the petroleum ether extract of Maqian (Zanthoxylum myriacanthum var. pubescens) bark, a traditional Dai herbal medicine, were identified by GC-MS. Major components included 3(2H)-benzofuranone, asarinin and (dimethoxymethyl)-3-methoxy-benzene. A total of 18 compounds were isolated from the ethyl acetate extracts of Maqian bark by column chromatography and identified by chemical and spectral analyses. Rhoifoline B, zanthoxyline dimethoxy derivative, N-nortidine, nitidine, decarine are the major alkaloids. Both the petroleum ether and ethyl acetate extracts showed significant inhibition on NO production, which imply anti-inflammatory activity, in lipopolysaccharide-induced RAW 264.7 cells without cell toxicity. Decarine is the major anti-inflammatory constituent with NO IC50 values of 48.43 μM on RAW264.7 cells. The petroleum ether extract, the ethyl acetate extract and decarine showed anti-inflammatory activities through inhibiting TNF-α and IL-1β production in lipopolysaccharide-stimulated THP-1 cells without cell toxicity too. Decarine showed anti-inflammatory activity on human colon cells by reducing IL-6 and IL-8 production in TNF-α+IL-1β-induced Caco-2 cells. These results support the use of Maqian bark as a remedy for enteritis and colitis recorded by Dai medicine in China, and elucidate the major pharmacological compounds in Maqian bark. PMID:28383530

  11. Metabolic modulation of Ewing sarcoma cells inhibits tumor growth and stem cell properties

    PubMed Central

    Dasgupta, Atreyi; Trucco, Matteo; Rainusso, Nino; Bernardi, Ronald J.; Shuck, Ryan; Kurenbekova, Lyazat; Loeb, David M.; Yustein, Jason T.

    2017-01-01

    Ewing sarcoma (EWS) is a highly aggressive and metabolically active malignant tumor. Metabolic activity can broadly be characterized by features of glycolytic activity and oxidative phosphorylation. We have further characterized metabolic features of EWS cells to identify potential therapeutic targets. EWS cells had significantly more glycolytic activity compared to their non-malignant counterparts. Thus, metabolic inhibitors of glycolysis such as 2-deoxy-D-glucose (2DG) and of the mitochondrial respiratory pathway, such as metformin, were evaluated as potential therapeutic agents against a panel of EWS cell lines in vitro. Results indicate that 2DG alone or in combination with metformin was effective at inducing cell death in EWS cell lines. The predominant mechanism of cell death appears to be through stimulating apoptosis leading into necrosis with concomitant activation of AMPK-α. Furthermore, we demonstrate that the use of metabolic modulators can target putative EWS stem cells, both in vitro and in vivo, and potentially overcome chemotherapeutic resistance in EWS. Based on these data, clinical strategies using drugs targeting tumor cell metabolism present a viable therapeutic modality against EWS. PMID:29100387

  12. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

    PubMed Central

    Tsakmaki, Anastasia; Mousavy Gharavy, S Neda; Murawala, Priyanka; Konantz, Judith; Birke, Sarah; Hodson, David J; Rutter, Guy A; Bewick, Gavin A

    2018-01-01

    The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age. PMID:29624168

  13. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis.

    PubMed

    Niso-Santano, Mireia; González-Polo, Rosa A; Bravo-San Pedro, José M; Gómez-Sánchez, Rubén; Lastres-Becker, Isabel; Ortiz-Ortiz, Miguel A; Soler, Germán; Morán, José M; Cuadrado, Antonio; Fuentes, José M

    2010-05-15

    Although oxidative stress is fundamental to the etiopathology of Parkinson disease, the signaling molecules involved in transduction after oxidant exposure to cell death are ill-defined, thus making it difficult to identify molecular targets of therapeutic relevance. We have addressed this question in human dopaminergic neuroblastoma SH-SY5Y cells exposed to the parkinsonian toxin paraquat (PQ). This toxin elicited a dose-dependent increase in reactive oxygen species and cell death that correlated with activation of ASK1 and the stress kinases p38 and JNK. The relevance of these kinases in channeling PQ neurotoxicity was demonstrated with the use of interference RNA for ASK1 and two well-established pharmaceutical inhibitors for JNK and p38. The toxic effect of PQ was substantially attenuated by preincubation with vitamin E, blocking ASK1 pathways and preventing oxidative stress and cell death. In a search for a physiological pathway that might counterbalance PQ-induced ASK1 activation, we analyzed the role of the transcription factor Nrf2, master regulator of redox homeostasis, and its target thioredoxin (Trx), which binds and inhibits ASK1. Trx levels were undetectable in Nrf2-deficient mouse embryo fibroblasts (MEFs), whereas they were constitutively high in Keap1-deficient MEFs as well as in SH-SY5Y cells treated with sulforaphane (SFN). Consistent with these data, Nrf2-deficient MEFs were more sensitive and Keap1-deficient MEFs and SH-SY5Y cells incubated with SFN were more resistant to PQ-induced cell death. This study identifies ASK1/JNK and ASK1/p38 as two critical pathways involved in the activation of cell death under oxidative stress conditions and identifies the Nrf2/Trx axis as a new target to block these pathways and protect from oxidant exposure such as that found in Parkinson and other neurodegenerative diseases. Copyright 2010 Elsevier Inc. All rights reserved.

  14. ECT2 and RASAL2 mediate mesenchymal-amoeboid transition in human astrocytoma cells.

    PubMed

    Weeks, Adrienne; Okolowsky, Nadia; Golbourn, Brian; Ivanchuk, Stacey; Smith, Christian; Rutka, James T

    2012-08-01

    Malignant astrocytomas are highly invasive brain tumors. The Rho family of cytoskeletal GTPases are key regulators of astrocytoma migration and invasion; expression of the guanine nucleotide exchange factor ECT2 is elevated in primary astrocytomas and predicts both survival and malignancy. Mice bearing orthotopically implanted astrocytoma cells with diminished ECT2 levels following ECT2 knockdown exhibit longer survival. Although ECT2 is normally expressed in the nucleus, we show that ECT2 is aberrantly localized to the cytoplasm in both astrocytoma cell lines and primary human astrocytomas, and colocalizes with RAC1 and CDC42 at the leading edge of migrating astrocytoma cells. Inhibition of ECT2 expression by RNA interference resulted in decreased RAC1 and CDC42 activity, but no change in RHO activity, suggesting that ECT2 is capable of activating these pro-migratory Rho family members. ECT2 overexpression in astrocytoma cells resulted in a transition to an amoeboid phenotype that was abolished with the ROCK inhibitor, Y-27632. Cytoplasmic fractionation of astrocytoma cells followed by ECT2 immunoprecipitation and mass spectrometry were used to identify protein-binding partners that modulate the activity of ECT2 toward RAC1 and RHO/ROCK. We identified RASAL2 as an ECT2-interacting protein that regulates RHO activity in astrocytoma cells. RASAL2 knockdown leads to a conversion to an amoeboid phenotype. Our studies reveal that ECT2 has a novel role in mesenchymal-amoeboid transition in human astrocytoma cells. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Cytotoxic, Anti-Proliferative and Apoptosis Activity of l-Amino Acid Oxidase from Malaysian Cryptelytrops purpureomaculatus (CP-LAAO) Venom on Human Colon Cancer Cells.

    PubMed

    Zainal Abidin, Syafiq Asnawi; Rajadurai, Pathmanathan; Hoque Chowdhury, Md Ezharul; Othman, Iekhsan; Naidu, Rakesh

    2018-06-08

    The aim of this study is to investigate the potential anti-cancer activity of l-amino acid oxidase (CP-LAAO) purified from the venom of Cryptelytrops purpureomaculatus on SW480 and SW620 human colon cancer cells. Mass spectrometry guided purification was able to identify and purify CP-LAAO. Amino acid variations identified from the partial protein sequence of CP-LAAO may suggest novel variants of these proteins. The activity of the purified CP-LAAO was confirmed with o-phenyldiamine (OPD)-based spectrophotometric assay. CP-LAAO demonstrated time- and dose-dependent cytotoxic activity and the EC 50 value was determined at 13 µg/mL for both SW480 and SW620 cells. Significant increase of caspase-3 activity, reduction of Bcl-2 levels, as well as morphological changes consistent with apoptosis were demonstrated by CP-LAAO. Overall, these data provide evidence on the potential anti-cancer activity of CP-LAAO from the venom of Malaysian C. purpureomaculatus for therapeutic intervention of human colon cancer.

  16. Separation of concanavalin A-induced human suppressor and helper T cells by the autologous erythrocyte rosette technique.

    PubMed

    Sakane, T; Honda, M; Taniguchi, Y; Kotani, H

    1981-08-01

    Very few normal human peripheral blood T cells are capable of binding autologous erythrocytes to form rosettes, whereas in the T cell population activated by concanavalin A (Con A) the autorosette levels are markedly enhanced. Fractionation of the Con A-activated T cells with autologous erythrocytes into autorosetting and nonrosetting cells demonstrates that suppressor, but not helper, activity resides in the autorosetting population, whereas the reverse is true of the nonrosetting population. Both these activities are found to be Con A dependent. The Con A-induced human suppressor cells can be identified and separated from the Con A-induced human helper cells by the autorosette technique. Studies on the surface properties of autorosetting and nonrosetting T cells indicate that there is little correlation between the activated suppressor and helper T cell subsets defined by autorosette technique and either those defined by monoclonal antibodies (which are able to distinguish these subsets in the resting but not activated T cells) or those defined by Fc receptors. Since the autorosetting T cell population (which acts as suppressor cells) bears receptors for peanut agglutinin, the nature of Con A-induced human suppressor cells appears to be analogous to that of Con A-induced murine suppressor cells.

  17. [Isolation, purification and primary culture of rat pancreatic beta-cells].

    PubMed

    Liu, Yu-Pu; Lü, Qing-Guo; Tong, Nan-Wei

    2009-01-01

    To isolate and purify rat pancreatic beta-cells and to explore the best conditions for the primary culture of the pancreatic beta-cells in vitro. The pancreas of Norman Wistar rats were digested by collagenase V. The islets were purified by mesh sieve. The activity of the islets was stimulated by different concentrations of glucose and detected by dithizone dye. The purified islets were put into RPMI-1640 nutritive medium for culture overnight. The cultured islets were digested again with trypsin and DNAase to obtain the suspension containing single pancreatic cells. The beta-cells were separated and purified in a fluorescence-activated cell sorter (FACS) in the medium containing 2.8 mmol/L glucose. The purified beta-cells were identified by immunohistochemistry and glucose stimulating test. Ham's F-10 with different concentrations of glucose and 3-Isobutyl-1-methylxanthine (IBMX) were used as nutritive medium for the primary cell culture for 24 hours. The best conditions for the culture were identified. An average of 550 +/- 90 islets with fine activities were obtained per rat. The purification with FACS obtained about 5688 beta-cells per rat, with a recovery rate of (93.69 +/- 1.26)% and a purity of (85.5 +/- 1.24)%. A concentration of 10.0 mmol/L and 16.0 mmol/L glucose in primary culture for 24 hours produced the highest survival rates of beta-cells, but IBMX did not increase the survival rates of beta-cells. FACS is effective in purifying pancreatic beta-cells from the suspension with a medium containing 2.8 mmol/L glucose. Pancreatic beta-cells maintain relatively high activities in Ham's F-10 medium containing 10.0-16.0 mmol/L glucose in primary culture.

  18. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

    PubMed

    Nagel, Stefan; Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A F; Drexler, Hans G

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.

  19. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia

    PubMed Central

    Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A. F.; Drexler, Hans G.

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation. PMID:28151996

  20. Discovery Proteomics Identifies a Molecular Link between the Coatomer Protein Complex I and Androgen Receptor-dependent Transcription*

    PubMed Central

    Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Lee, Jinhee; Wright, Michael E.

    2016-01-01

    Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR-interacting proteins influence AR activation and contribute to aberrant AR-dependent transcription that underlies the majority of human prostate cancers. PMID:27365400

  1. Application of a phenotypic drug discovery strategy to identify biological and chemical starting points for inhibition of TSLP production in lung epithelial cells

    PubMed Central

    Orellana, Adelina; García-González, Vicente; López, Rosa; Pascual-Guiral, Sonia; Lozoya, Estrella; Díaz, Julia; Casals, Daniel; Barrena, Antolín; Paris, Stephane; Andrés, Miriam; Segarra, Victor; Vilella, Dolors; Malhotra, Rajneesh; Eastwood, Paul; Planagumà, Anna; Miralpeix, Montserrat

    2018-01-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine released by human lung epithelium in response to external insult. Considered as a master switch in T helper 2 lymphocyte (Th2) mediated responses, TSLP is believed to play a key role in allergic diseases including asthma. The aim of this study was to use a phenotypic approach to identify new biological and chemical starting points for inhibition of TSLP production in human bronchial epithelial cells (NHBE), with the objective of reducing Th2-mediated airway inflammation. To this end, a phenotypic screen was performed using poly I:C / IL-4 stimulated NHBE cells interrogated with a 44,974 compound library. As a result, 85 hits which downregulated TSLP protein and mRNA levels were identified and a representative subset of 7 hits was selected for further characterization. These molecules inhibited the activity of several members of the MAPK, PI3K and tyrosine kinase families and some of them have been reported as modulators of cellular phenotypic endpoints like cell-cell contacts, microtubule polymerization and caspase activation. Characterization of the biological profile of the hits suggested that mTOR could be a key activity involved in the regulation of TSLP production in NHBE cells. Among other targeted kinases, inhibition of p38 MAPK and JAK kinases showed different degrees of correlation with TSLP downregulation, while Syk kinase did not seem to be related. Overall, inhibition of TSLP production by the selected hits, rather than resulting from inhibition of single isolated targets, appeared to be due to a combination of activities with different levels of relevance. Finally, a hit expansion exercise yielded additional active compounds that could be amenable to further optimization, providing an opportunity to dissociate TSLP inhibition from other non-desired activities. This study illustrates the potential of phenotypic drug discovery to complement target based approaches by providing new chemistry and biology leads. PMID:29320511

  2. ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death

    PubMed Central

    Kuriakose, Teneema; Malireddi, R.K. Subbarao; Mishra, Ashutosh

    2017-01-01

    Innate sensing of influenza virus infection induces activation of programmed cell death pathways. We have recently identified Z-DNA–binding protein 1 (ZBP1) as an innate sensor of influenza A virus (IAV). ZBP1-mediated IAV sensing is critical for triggering programmed cell death in the infected lungs. Surprisingly, little is known about the mechanisms regulating ZBP1 activation to induce programmed cell death. Here, we report that the sensing of IAV RNA by retinoic acid inducible gene I (RIG-I) initiates ZBP1-mediated cell death via the RIG-I–MAVS–IFN-β signaling axis. IAV infection induces ubiquitination of ZBP1, suggesting potential regulation of ZBP1 function through posttranslational modifications. We further demonstrate that ZBP1 senses viral ribonucleoprotein (vRNP) complexes of IAV to trigger cell death. These findings collectively indicate that ZBP1 activation requires RIG-I signaling, ubiquitination, and vRNP sensing to trigger activation of programmed cell death pathways during IAV infection. The mechanism of ZBP1 activation described here may have broader implications in the context of virus-induced cell death. PMID:28634194

  3. Isothiocyanates from Broccolini seeds induce apoptosis in human colon cancer cells: proteomic and bioinformatic analyses.

    PubMed

    Yang, Yanjing; Yan, Huidan; Li, Yuqin; Yang, Shang-Tian; Zhang, Xuewu

    2011-05-01

    Isothiocyanates (ITCs) have been shown to possess antitumor activity in colon cancer, however, the detailed mechanism is still unclear. The objective of this study was to investigate apoptosis-inducing activity of ITCs from Broccolini seeds and proteomic changes in SW480 cells, and to identify the molecular pathways responsible for the anticancer action of ITCs. We found that ITCs induces SW480 cells apoptosis in a dose-dependent manner by using MTT assay, phase contrast microscope and flow cytometry, and the IC50 was calculated to be 77.72 microg/ml, superior to the chemotherapeutical drug 5-flurouracil. Subsequently, 15 altered proteins in ITCs treated SW480 cells were identified. Further bioinformatics analysis predicted the potential pathways for ITCs to induce apoptosis of SW480 cells. In conclusion, this is the first report to investigate anticancer activity of ITCs from Broccolini seeds and its mechanism of action by proteomics analysis. Our observations provide potential therapeutic targets for colon cancer inhibitor intervention and implicate the development of novel anti-cancer therapeutic strategies.

  4. Molecular cloning and characterization of a cytochrome P450 taxoid 9á-hydroxylase in Ginkgo biloba cells.

    PubMed

    Zhang, Nan; Han, Zhentai; Sun, Guiling; Hoffman, Angela; Wilson, Iain W; Yang, Yanfang; Gao, Qian; Wu, Jianqiang; Xie, Dan; Dai, Jungui; Qiu, Deyou

    2014-01-17

    Taxol is a well-known effective anticancer compound. Due to the inability to synthesize sufficient quantities of taxol to satisfy commercial demand, a biotechnological approach for a large-scale cell or cell-free system for its production is highly desirable. Several important genes in taxol biosynthesis are currently still unknown and have been shown to be difficult to isolate directly from Taxus, including the gene encoding taxoid 9α-hydroxylase. Ginkgo biloba suspension cells exhibit taxoid hydroxylation activity and provides an alternate means of identifying genes encoding enzymes with taxoid 9α-hydroxylation activity. Through analysis of high throughput RNA sequencing data from G. biloba, we identified two candidate genes with high similarity to Taxus CYP450s. Using in vitro cell-free protein synthesis assays and LC-MS analysis, we show that one candidate that belongs to the CYP716B, a subfamily whose biochemical functions have not been previously studied, possessed 9α-hydroxylation activity. This work will aid future identification of the taxoid 9α-hydroxylase gene from Taxus sp. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Two msh/msx-related genes, Djmsh1 and Djmsh2, contribute to the early blastema growth during planarian head regeneration.

    PubMed

    Mannini, Linda; Deri, Paolo; Gremigni, Vittorio; Rossi, Leonardo; Salvetti, Alessandra; Batistoni, Renata

    2008-01-01

    Regeneration in planarians is an intriguing phenomenon, based on the presence of pluripotent stem cells, known as neoblasts. Following amputation, these cells activate mitotic divisions, migrate distally and undergo differentiation, giving rise to the regeneration blastema. We have identified two msh/msx-related genes, Djmsh1 and Djmsh2, which are expressed in distinct cell populations of the planarian Dugesia japonica and activated, with different patterns, during head regeneration. We demonstrate that RNA interference of Djmsh1 or Djmsh2 generates a delay in the growth of cephalic blastema, interfering with the dynamics of mitoses during its initial formation. Our data also reveal that the activity of the two planarian msh genes is required to regulate Djbmp expression during head regeneration. This study identifies, for the first time, a functional association between muscle segment homeobox (MSH) homeoproteins and BMP signaling during stem cell-based regeneration of the planarian head and provides a functional analysis of how msh genes may regulate in vivo the regenerative response of planarian stem cells.

  6. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity

    PubMed Central

    Doddrell, Robin D.S.; Edwards, Philip; Morrison, Helen

    2017-01-01

    Loss of the Merlin tumor suppressor and activation of the Hippo signaling pathway play major roles in the control of cell proliferation and tumorigenesis. We have identified completely novel roles for Merlin and the Hippo pathway effector Yes-associated protein (YAP) in the control of Schwann cell (SC) plasticity and peripheral nerve repair after injury. Injury to the peripheral nervous system (PNS) causes a dramatic shift in SC molecular phenotype and the generation of repair-competent SCs, which direct functional repair. We find that loss of Merlin in these cells causes a catastrophic failure of axonal regeneration and remyelination in the PNS. This effect is mediated by activation of YAP expression in Merlin-null SCs, and loss of YAP restores axonal regrowth and functional repair. This work identifies new mechanisms that control the regenerative potential of SCs and gives new insight into understanding the correct control of functional nerve repair in the PNS. PMID:28137778

  7. Dual patch voltage clamp study of low membrane resistance astrocytes in situ.

    PubMed

    Ma, Baofeng; Xu, Guangjin; Wang, Wei; Enyeart, John J; Zhou, Min

    2014-03-17

    Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.

  8. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis

    PubMed Central

    Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V.; Sakurai, Masayuki; Yan, Jinchun; Li, Yan; Xu, Hua; Wang, Jian; Zhang, Paul J.; Zhang, Lin; Showe, Louise C.; Nishikura, Kazuko; Huang, Qihong

    2016-01-01

    Metastasis is a critical event affecting breast cancer patient survival. To identify molecules contributing to the metastatic process, we analysed The Cancer Genome Atlas (TCGA) breast cancer data and identified 41 genes whose expression is inversely correlated with survival. Here we show that GABAA receptor alpha3 (Gabra3), normally exclusively expressed in adult brain, is also expressed in breast cancer, with high expression of Gabra3 being inversely correlated with breast cancer survival. We demonstrate that Gabra3 activates the AKT pathway to promote breast cancer cell migration, invasion and metastasis. Importantly, we find an A-to-I RNA-edited form of Gabra3 only in non-invasive breast cancers and show that edited Gabra3 suppresses breast cancer cell invasion and metastasis. A-to-I-edited Gabra3 has reduced cell surface expression and suppresses the activation of AKT required for cell migration and invasion. Our study demonstrates a significant role for mRNA-edited Gabra3 in breast cancer metastasis. PMID:26869349

  9. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis.

    PubMed

    Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V; Sakurai, Masayuki; Yan, Jinchun; Li, Yan; Xu, Hua; Wang, Jian; Zhang, Paul J; Zhang, Lin; Showe, Louise C; Nishikura, Kazuko; Huang, Qihong

    2016-02-12

    Metastasis is a critical event affecting breast cancer patient survival. To identify molecules contributing to the metastatic process, we analysed The Cancer Genome Atlas (TCGA) breast cancer data and identified 41 genes whose expression is inversely correlated with survival. Here we show that GABAA receptor alpha3 (Gabra3), normally exclusively expressed in adult brain, is also expressed in breast cancer, with high expression of Gabra3 being inversely correlated with breast cancer survival. We demonstrate that Gabra3 activates the AKT pathway to promote breast cancer cell migration, invasion and metastasis. Importantly, we find an A-to-I RNA-edited form of Gabra3 only in non-invasive breast cancers and show that edited Gabra3 suppresses breast cancer cell invasion and metastasis. A-to-I-edited Gabra3 has reduced cell surface expression and suppresses the activation of AKT required for cell migration and invasion. Our study demonstrates a significant role for mRNA-edited Gabra3 in breast cancer metastasis.

  10. Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex

    PubMed Central

    Allen, William E.; Kauvar, Isaac V.; Chen, Michael Z.; Richman, Ethan B.; Yang, Samuel J.; Chan, Ken; Gradinaru, Viviana; Deverman, Benjamin E.; Luo, Liqun; Deisseroth, Karl

    2017-01-01

    SUMMARY The successful planning and execution of adaptive behaviors in mammals may require long-range coordination of neural networks throughout cerebral cortex. The neuronal implementation of signals that could orchestrate cortex-wide activity remains unclear. Here, we develop and apply methods for cortex-wide Ca2+ imaging in mice performing decision-making behavior and identify a global cortical representation of task engagement encoded in the activity dynamics of both single cells and superficial neuropil distributed across the majority of dorsal cortex. The activity of multiple molecularly defined cell types was found to reflect this representation with type-specific dynamics. Focal optogenetic inhibition tiled across cortex revealed a crucial role for frontal cortex in triggering this cortex-wide phenomenon; local inhibition of this region blocked both the cortex-wide response to task-initiating cues and the voluntary behavior. These findings reveal cell-type-specific processes in cortex for globally representing goal-directed behavior and identify a major cortical node that gates the global broadcast of task-related information. PMID:28521139

  11. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor.

    PubMed

    Williamson, Lynn L; Borlee, Bradley R; Schloss, Patrick D; Guan, Changhui; Allen, Heather K; Handelsman, Jo

    2005-10-01

    The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.

  12. Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin.

    PubMed

    Chen, Hsin-Yi; Shen, Che-Hung; Tsai, Yuh-Tyng; Lin, Feng-Chi; Huang, Yuan-Ping; Chen, Ruey-Hwa

    2004-12-01

    Brk (for breast tumor kinase) is a nonreceptor tyrosine kinase containing SH3, SH2, and tyrosine kinase catalytic domains. Brk was originally identified from a human metastatic breast tumor, and its overexpression is frequently observed in breast cancer and several other cancer types. However, the molecular mechanism by which this kinase participates in tumorigenesis remains poorly characterized. In the present study, we not only identified paxillin as the binding partner and substrate of Brk but also discovered a novel signaling pathway by which Brk mediates epidermal growth factor (EGF)-induced paxillin phosphorylation. We show that EGF stimulation activates the catalytic activity of Brk, which in turn phosphorylates paxillin at Y31 and Y118. These phosphorylation events promote the activation of small GTPase Rac1 via the function of CrkII. Through this pathway, Brk is capable of promoting cell motility and invasion and functions as a mediator of EGF-induced migration and invasion. In accordance with these functional roles, Brk translocates to membrane ruffles, where it colocalizes with paxillin during cell migration. Together, our findings identify novel signaling and biological roles of Brk and indicate the first potential link between Brk and metastatic malignancy.

  13. Serpin Facilitates Tumor-Suppressive Cell Competition by Blocking Toll-Mediated Yki Activation in Drosophila.

    PubMed

    Katsukawa, Mitsuko; Ohsawa, Shizue; Zhang, Lina; Yan, Yan; Igaki, Tatsushi

    2018-06-04

    Normal epithelial tissue exerts an intrinsic tumor-suppressive effect against oncogenically transformed cells. In Drosophila imaginal epithelium, clones of oncogenic polarity-deficient cells mutant for scribble (scrib) or discs large (dlg) are eliminated by cell competition when surrounded by wild-type cells. Here, through a genetic screen in Drosophila, we identify Serpin5 (Spn5), a secreted negative regulator of Toll signaling, as a crucial factor for epithelial cells to eliminate scrib mutant clones from epithelium. Downregulation of Spn5 in wild-type cells leads to elevation of Toll signaling in neighboring scrib cells. Strikingly, forced activation of Toll signaling or Toll-related receptor (TRR) signaling in scrib clones transforms scrib cells from losers to supercompetitors, resulting in tumorous overgrowth of mutant clones. Mechanistically, Toll activation in scrib clones leads to c-Jun N-terminal kinase (JNK) activation and F-actin accumulation, which cause strong activation of the Hippo pathway effector Yorkie that blocks cell death and promotes cell proliferation. Our data suggest that Spn5 secreted from normal epithelial cells acts as a component of the extracellular surveillance system that facilitates elimination of pre-malignant cells from epithelium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  15. An active learning approach for rapid characterization of endothelial cells in human tumors.

    PubMed

    Padmanabhan, Raghav K; Somasundar, Vinay H; Griffith, Sandra D; Zhu, Jianliang; Samoyedny, Drew; Tan, Kay See; Hu, Jiahao; Liao, Xuejun; Carin, Lawrence; Yoon, Sam S; Flaherty, Keith T; Dipaola, Robert S; Heitjan, Daniel F; Lal, Priti; Feldman, Michael D; Roysam, Badrinath; Lee, William M F

    2014-01-01

    Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.

  16. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    PubMed

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  17. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    PubMed

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Deletion of Wiskott–Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells

    PubMed Central

    Baptista, Marisa A. P.; Keszei, Marton; Oliveira, Mariana; Sunahara, Karen K. S.; Andersson, John; Dahlberg, Carin I. M.; Worth, Austen J.; Liedén, Agne; Kuo, I-Chun; Wallin, Robert P. A.; Snapper, Scott B.; Eidsmo, Liv; Scheynius, Annika; Karlsson, Mikael C. I.; Bouma, Gerben; Burns, Siobhan O.; Forsell, Mattias N. E.; Thrasher, Adrian J.; Nylén, Susanne; Westerberg, Lisa S.

    2016-01-01

    Wiskott–Aldrich syndrome (WAS) is caused by loss-of-function mutations in the WASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8+ T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFNγ-producing CD8+ T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8+ T cells at the expense of CD4+ T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8+ T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells. PMID:27425374

  19. Three distinct cell phenotypes of induced-TNF cytotoxicity and their relationship to apoptosis

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We have identified three distinct cell phenotypes with respect to the conditions under which cells became susceptible to TNF-mediated lysis. These conditions include: 1) treatment with the protein synthesis inhibitor, cycloheximide; 2) contact with activated macrophages, and 3) infection with vaccinia virus. Whereas vaccinia virus-infected 3T3 cells became sensitive to soluble TNF, F5b cells required contact with activated macrophages. We showed that the "macrophage-resistant" F5m cells did not become sensitive to TNF or to killing by activated macrophages after infection with vaccinia virus. Therefore, vaccinia infection does not sensitize all cells to TNF. We also determined the pathways of lysis for cells after sensitization. Whereas 3T3, LM929, and F5b cells were killed by the process of necrosis, F5m cells lysis was characterized by the release of low mol wt DNA fragments (apoptosis).

  20. Hippo signaling promotes JNK-dependent cell migration.

    PubMed

    Ma, Xianjue; Wang, Hongxiang; Ji, Jiansong; Xu, Wenyan; Sun, Yihao; Li, Wenzhe; Zhang, Xiaoping; Chen, Juxiang; Xue, Lei

    2017-02-21

    Overwhelming studies show that dysregulation of the Hippo pathway is positively correlated with cell proliferation, growth, and tumorigenesis. Paradoxically, the detailed molecular roles of the Hippo pathway in cell invasion remain debatable. Using a Drosophila invasion model in wing epithelium, we show herein that activated Hippo signaling promotes cell invasion and epithelial-mesenchymal transition through JNK, as inhibition of JNK signaling dramatically blocked Hippo pathway activation-induced matrix metalloproteinase 1 expression and cell invasion. Furthermore, we identify bantam -Rox8 modules as essential components downstream of Yorkie in mediating JNK-dependent cell invasion. Finally, we confirm that YAP (Yes-associated protein) expression negatively regulates TIA1 (Rox8 ortholog) expression and cell invasion in human cancer cells. Together, these findings provide molecular insights into Hippo pathway-mediated cell invasion and also raise a noteworthy concern in therapeutic interventions of Hippo-related cancers, as simply inhibiting Yorkie or YAP activity might paradoxically accelerate cell invasion and metastasis.

  1. Estrogenic Activity of Hyperforin in MCF-7 Human Breast Cancer Cells Transfected with Estrogen Receptor.

    PubMed

    Kwon, Joseph; Oh, Kyung Seo; Cho, Se-Young; Bang, Mi Ae; Kim, Hwan Seon; Vaidya, Bipin; Kim, Duwoon

    2016-11-01

    Hyperforin, a major active compound of St. John's wort extract, affects estrogenic activity. In this study, the compound evoked estrogen response element-dependent luciferase activity and cell proliferation in MCF-7 cells. Hyperforin-induced cell proliferation was significantly inhibited by the estrogen receptor antagonist ICI 182,780. These results suggested that hyperforin had estrogenic and cell proliferation activities, which were stimulated via the estrogen receptor. Compared to 17 β -estradiol, hyperforin showed significantly lower estrogenic activity and cell proliferation. The mechanism underlying the estrogenic activity of hyperforin was unknown, therefore, in this study, for the first time, the expression and post-translational modification of proteins were determined and compared among control, 17 β -estradiol-treated, and hyperforin-treated cells using proteomic techniques. A total of 453 proteins were identified, of which 282 proteins were significantly modulated in hyperforin-treated cells compared to 17 β -estradiol-treated cells. Ingenuity pathway analysis also demonstrated that hyperforin treatment induced less cell proliferation than 17 β -estradiol by downregulating estrogen receptor 1. Protein network analysis showed that cell proliferation was regulated mainly by cyclin D1 and extracellular signal-regulated kinases. In conclusion, although, hyperforin exhibited lower estrogenic activity than 17 β -estradiol, the compound induced lower levels of cancer cell proliferation in vitro . Georg Thieme Verlag KG Stuttgart · New York.

  2. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3.

    PubMed

    Wright, Paul D; Veale, Emma L; McCoull, David; Tickle, David C; Large, Jonathan M; Ococks, Emma; Gothard, Gemma; Kettleborough, Catherine; Mathie, Alistair; Jerman, Jeffrey

    2017-11-04

    Two-pore domain potassium channels (K2Ps) are characterized by their four transmembrane domain and two-pore topology. They carry background (or leak) potassium current in a variety of cell types. Despite a number of important roles there is currently a lack of pharmacological tools with which to further probe K2P function. We have developed a cell-based thallium flux assay, using baculovirus delivered TASK3 (TWIK-related acid-sensitive K + channel 3, KCNK9, K2P9.1) with the aim of identifying novel, selective TASK3 activators. After screening a library of 1000 compounds, including drug-like and FDA approved molecules, we identified Terbinafine as an activator of TASK3. In a thallium flux assay a pEC50 of 6.2 ( ±0.12) was observed. When Terbinafine was screened against TASK2, TREK2, THIK1, TWIK1 and TRESK no activation was observed in thallium flux assays. Several analogues of Terbinafine were also purchased and structure activity relationships examined. To confirm Terbinafine's activation of TASK3 whole cell patch clamp electrophysiology was carried out and clear potentiation observed in both the wild type channel and the pathophysiological, Birk-Barel syndrome associated, G236R TASK3 mutant. No activity at TASK1 was observed in electrophysiology studies. In conclusion, we have identified the first selective activator of the two-pore domain potassium channel TASK3. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  4. Increased peroxisome proliferator-activated receptor γ activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells

    PubMed Central

    Wang, Jueqiong; Lu, Liu; Kok, Chung H.; Saunders, Verity A.; Goyne, Jarrad M.; Dang, Phuong; Leclercq, Tamara M.; Hughes, Timothy P.; White, Deborah L.

    2017-01-01

    Imatinib is actively transported by organic cation transporter-1 (OCT-1) influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Herein we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1+ cell lines, peroxisome proliferator-activated receptor γ agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor γ antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to BCR-ABL kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor γ-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor γ transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; P<0.0001), suggesting that peroxisome proliferator-activated receptor γ activation has a negative impact on the intracellular uptake of imatinib and consequent BCR-ABL kinase inhibition. The inter-patient variability of peroxisome proliferator-activated receptor γ activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis. Recently, the peroxisome proliferator-activated receptor γ agonist pioglitazone was reported to act synergistically with imatinib, targeting the residual chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor γ ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor γ activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients with high peroxisome proliferator-activated receptor γ transcriptional activity. PMID:28154092

  5. Antifungal activity of rimocidin and a new rimocidin derivative BU16 produced by Streptomyces mauvecolor BU16 and their effects on pepper anthracnose.

    PubMed

    Jeon, B J; Kim, J D; Han, J W; Kim, B S

    2016-05-01

    The objective of this study was to explore antifungal metabolites targeting fungal cell envelope and to evaluate the control efficacy against anthracnose development in pepper plants. A natural product library comprising 3000 microbial culture extracts was screened via an adenylate kinase (AK)-based cell lysis assay to detect antifungal metabolites targeting the cell envelope of plant-pathogenic fungi. The culture extract of Streptomyces mauvecolor strain BU16 displayed potent AK-releasing activity. Rimocidin and a new rimocidin derivative, BU16, were identified from the extract as active constituents. BU16 is a tetraene macrolide containing a six-membered hemiketal ring with an ethyl group side chain instead of the propyl group in rimocidin. Rimocidin and BU16 showed broad-spectrum antifungal activity against various plant-pathogenic fungi and demonstrated potent control efficacy against anthracnose development in pepper plants. Antifungal metabolites produced by S. mauvecolor strain BU16 were identified to be rimocidin and BU16. The compounds displayed potent control efficacy against pepper anthracnose. Rimocidin and BU16 would be active ingredients of disease control agents disrupting cell envelope of plant-pathogenic fungi. The structure and antifungal activity of rimocidin derivative BU16 is first described in this study. © 2016 The Society for Applied Microbiology.

  6. Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line.

    PubMed

    Barrajón-Catalán, Enrique; Taamalli, Amani; Quirantes-Piné, Rosa; Roldan-Segura, Cristina; Arráez-Román, David; Segura-Carretero, Antonio; Micol, Vicente; Zarrouk, Mokhtar

    2015-02-01

    A new differential metabolomic approach has been developed to identify the phenolic cellular metabolites derived from breast cancer cells treated with a supercritical fluid extracted (SFE) olive leaf extract. The SFE extract was previously shown to have significant antiproliferative activity relative to several other olive leaf extracts examined in the same model. Upon SFE extract incubation of JIMT-1 human breast cancer cells, major metabolites were identified by using HPLC coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (ESI-Q-TOF-MS). After treatment, diosmetin was the most abundant intracellular metabolite, and it was accompanied by minor quantities of apigenin and luteolin. To identify the putative antiproliferative mechanism, the major metabolites and the complete extract were assayed for cell cycle, MAPK and PI3K proliferation pathways modulation. Incubation with only luteolin showed a significant effect in cell survival. Luteolin induced apoptosis, whereas the whole olive leaf extract incubation led to a significant cell cycle arrest at the G1 phase. The antiproliferative activity of both pure luteolin and olive leaf extract was mediated by the inactivation of the MAPK-proliferation pathway at the extracellular signal-related kinase (ERK1/2). However, the flavone concentration of the olive leaf extract did not fully explain the strong antiproliferative activity of the extract. Therefore, the effects of other compounds in the extract, probably at the membrane level, must be considered. The potential synergistic effects of the extract also deserve further attention. Our differential metabolomics approach identified the putative intracellular metabolites from a botanical extract that have antiproliferative effects, and this metabolomics approach can be expanded to other herbal extracts or pharmacological complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion.

    PubMed

    Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2014-10-15

    Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4 and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. microRNA-21-induced Dissociation of PDCD4 from Rictor Contributes to Akt-IKKβ-mTORC1 axis to Regulate Select Renal Cancer Cell Invasion

    PubMed Central

    Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2014-01-01

    Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4- and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells. PMID:25016284

  9. The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis

    PubMed Central

    Revilla-i-Domingo, Roger; Bilic, Ivan; Vilagos, Bojan; Tagoh, Hiromi; Ebert, Anja; Tamir, Ido M; Smeenk, Leonie; Trupke, Johanna; Sommer, Andreas; Jaritz, Markus; Busslinger, Meinrad

    2012-01-01

    Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis. PMID:22669466

  10. 6-Gingerdiols as the Major Metabolites of 6-Gingerol in Cancer Cells and in Mice and Their Cytotoxic Effects on Human Cancer Cells

    PubMed Central

    Lv, Lishuang; Chen, Huadong; Soroka, Dominique; Chen, Xiaoxin; Leung, TinChung; Sang, Shengmin

    2012-01-01

    6-Gingerol, a major pungent component of ginger (Zingiber officinale Roscoe, Zingiberaceae), has been reported to have anti-tumor activities. However, the metabolic fate of 6-gingerol and the contribution of its metabolites to the observed activities are still unclear. In the present study, we investigated the biotransformation of 6-gingerol in different cancer cells and in mice, purified and identified the major metabolites from human lung cancer cells, and determined the effects of the major metabolites on the proliferation of human cancer cells. Our results show that 6-gingerol is extensively metabolized in H-1299 human lung cancer cells, CL-13 mouse lung cancer cells, HCT-116 and HT-29 human colon cancer cells, and in mice. The two major metabolites in H-1299 cells were purified and identified as (3R,5S)-6-gingerdiol (M1) and (3S,5S)-6-gingerdiol (M2) based on the analysis of their 1D and 2D NMR data. Both metabolites induced cytotoxicity in cancer cells after 24 hours, with M1 having a comparable effect to 6-gingerol in H-1299 cells. PMID:23066935

  11. 6-gingerdiols as the major metabolites of 6-gingerol in cancer cells and in mice and their cytotoxic effects on human cancer cells.

    PubMed

    Lv, Lishuang; Chen, Huadong; Soroka, Dominique; Chen, Xiaoxin; Leung, TinChung; Sang, Shengmin

    2012-11-14

    6-Gingerol, a major pungent component of ginger (Zingiber officinale Roscoe, Zingiberaceae), has been reported to have antitumor activities. However, the metabolic fate of 6-gingerol and the contribution of its metabolites to the observed activities are still unclear. In the present study, we investigated the biotransformation of 6-gingerol in different cancer cells and in mice, purified and identified the major metabolites from human lung cancer cells, and determined the effects of the major metabolites on the proliferation of human cancer cells. Our results show that 6-gingerol is extensively metabolized in H-1299 human lung cancer cells, CL-13 mouse lung cancer cells, HCT-116 and HT-29 human colon cancer cells, and in mice. The two major metabolites in H-1299 cells were purified and identified as (3R,5S)-6-gingerdiol (M1) and (3S,5S)-6-gingerdiol (M2) based on the analysis of their 1D and 2D NMR data. Both metabolites induced cytotoxicity in cancer cells after 24 h, with M1 having a comparable effect to 6-gingerol in H-1299 cells.

  12. Newly identified bacteriolytic enzymes that target a wide range of clinical isolates of Clostridium difficile.

    PubMed

    Mehta, Krunal K; Paskaleva, Elena E; Wu, Xia; Grover, Navdeep; Mundra, Ruchir V; Chen, Kevin; Zhang, Yongrong; Yang, Zhiyong; Feng, Hanping; Dordick, Jonathan S; Kane, Ravi S

    2016-12-01

    Clostridium difficile has emerged as a major cause of infectious diarrhea in hospitalized patients, with increasing mortality rate and annual healthcare costs exceeding $3 billion. Since C. difficile infections are associated with the use of antibiotics, there is an urgent need to develop treatments that can inactivate the bacterium selectively without affecting commensal microflora. Lytic enzymes from bacteria and bacteriophages show promise as highly selective and effective antimicrobial agents. These enzymes often have a modular structure, consisting of a catalytic domain and a binding domain. In the current work, using consensus catalytic domain and cell-wall binding domain sequences as probes, we analyzed in silico the genome of C. difficile, as well as phages infecting C. difficile. We identified two genes encoding cell lytic enzymes with possible activity against C. difficile. We cloned the genes in a suitable expression vector, expressed and purified the protein products, and tested enzyme activity in vitro. These newly identified enzymes were found to be active against C. difficile cells in a dose-dependent manner. We achieved a more than 4-log reduction in the number of viable bacteria within 5 h of application. Moreover, we found that the enzymes were active against a wide range of C. difficile clinical isolates. We also characterized the biocatalytic mechanism by identifying the specific bonds cleaved by these enzymes within the cell wall peptidoglycan. These results suggest a new approach to combating the growing healthcare problem associated with C. difficile infections. Biotechnol. Bioeng. 2016;113: 2568-2576. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Comparison of NSAIDs activity in COX-2 expressing and non-expressing 2D and 3D pancreatic cancer cell cultures

    PubMed Central

    Čeponytė, Ugnė; Paškevičiūtė, Miglė; Petrikaitė, Vilma

    2018-01-01

    Purpose In this study, we evaluated the anticancer activity of non-steroidal anti-inflammatory drugs (NSAIDs) in BxPC-3 and MIA PaCa-2 pancreatic cancer cell cultures. Methods To test the effect of compounds on the viability of cells, the MTT assay was used. The activity of NSAIDs in 3D cell cultures was evaluated by measuring the size change of spheroids. The type of cell death was identified by cell staining with Hoechst 33342 and propidium iodide. To evaluate the effect on the colony-forming ability of cancer cells, the clonogenic assay was used. Results Five out of seven tested NSAIDs reduced the viability of BxPC-3 and MIA PaCa-2 cancer cells. Fenamates were more active against cyclooxygenase-2 expressing BxPC-3 than cyclooxygenase-2 non-expressing MIA PaCa-2 cell line. Fenamates and coxibs exerted higher activity in monolayer cultured cells, whereas salicylates were more active in 3D cultures. Fenamates and coxibs induced dose-dependent apoptosis and necrosis. NSAIDs also inhibited the colony-forming ability of cancer cells. Meclofenamic acid, niflumic acid, and parecoxib possessed higher activity on BxPC-3, and celecoxib possessed higher activity on MIA PaCa-2 cell colony formation. Conclusion Our results show that fenamates, coxibs, and salicylates possess anticancer activity on human pancreatic cancer BxPC-3 and MIA PaCa-2 cell cultures. PMID:29942156

  14. A gene expression signature that correlates with CD8+T cell expansion in acute Epstein Barr virus infection1

    PubMed Central

    Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.

    2015-01-01

    Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268

  15. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation.

    PubMed

    Kawakami, Akio; Aikawa, Masanori; Nitta, Noriko; Yoshida, Masayuki; Libby, Peter; Sacks, Frank M

    2007-01-01

    Plasma apolipoprotein CIII (apoCIII) independently predicts risk for coronary heart disease (CHD). We recently reported that apoCIII directly enhances adhesion of human monocytes to endothelial cells (ECs), and identified the activation of PKC alpha as a necessary upstream event of enhanced monocyte adhesion. This study tested the hypothesis that apoCIII activates PKC alpha in human monocytic THP-1 cells, leading to NF-kappaB activation. Among inhibitors specific to PKC activators, phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609 limited apoCIII-induced PKC alpha activation and THP-1 cell adhesion. ApoCIII increased PC-PLC activity in THP-1 cells, resulting in PKC alpha activation. Pertussis toxin (PTX) inhibited apoCIII-induced PC-PLC activation and subsequent PKC alpha activation, implicating PTX-sensitive G protein pathway. ApoCIII further activated nuclear factor-kappaB (NF-kappaB) through PKC alpha in THP-1 cells and augmented beta1-integrin expression. The NF-kappaB inhibitor peptide SN50 partially inhibited apoCIII-induced beta1-integrin expression and THP-1 cell adhesion. ApoCIII-rich VLDL had similar effects to apoCIII alone. PTX-sensitive G protein pathway participates critically in PKC alpha stimulation in THP-1 cells exposed to apoCIII, activating NF-kappaB, and increasing beta1-integrin. This action causes monocytic cells to adhere to endothelial cells. Furthermore, because leukocyte NF-kappaB activation contributes to inflammatory aspects of atherogenesis, apoCIII may stimulate diverse inflammatory responses through monocyte activation.

  16. Antiproliferative Activity of Cyanophora paradoxa Pigments in Melanoma, Breast and Lung Cancer Cells

    PubMed Central

    Baudelet, Paul-Hubert; Gagez, Anne-Laure; Bérard, Jean-Baptiste; Juin, Camille; Bridiau, Nicolas; Kaas, Raymond; Thiéry, Valérie; Cadoret, Jean-Paul; Picot, Laurent

    2013-01-01

    The glaucophyte Cyanophora paradoxa (Cp) was chemically investigated to identify pigments efficiently inhibiting malignant melanoma, mammary carcinoma and lung adenocarcinoma cells growth. Cp water and ethanol extracts significantly inhibited the growth of the three cancer cell lines in vitro, at 100 µg·mL−1. Flash chromatography of the Cp ethanol extract, devoid of c-phycocyanin and allophycocyanin, enabled the collection of eight fractions, four of which strongly inhibited cancer cells growth at 100 µg·mL−1. Particularly, two fractions inhibited more than 90% of the melanoma cells growth, one inducing apoptosis in the three cancer cells lines. The detailed analysis of Cp pigment composition resulted in the discrimination of 17 molecules, ten of which were unequivocally identified by high resolution mass spectrometry. Pheophorbide a, β-cryptoxanthin and zeaxanthin were the three main pigments or derivatives responsible for the strong cytotoxicity of Cp fractions in cancer cells. These data point to Cyanophora paradoxa as a new microalgal source to purify potent anticancer pigments, and demonstrate for the first time the strong antiproliferative activity of zeaxanthin and β-cryptoxanthin in melanoma cells. PMID:24189278

  17. Vav1 GEF activity is required for T cell mediated allograft rejection.

    PubMed

    Haubert, Dirk; Li, Jianping; Saveliev, Alexander; Calzascia, Thomas; Sutter, Esther; Metzler, Barbara; Kaiser, Daniel; Tybulewicz, Victor L J; Weckbecker, Gisbert

    2012-06-01

    The GDP exchange factor (GEF) Vav1 is a central signal transducer downstream of the T cell receptor and has been identified as a key factor for T cell activation in the context of allograft rejection. Vav1 has been shown to transduce signals both dependent and independent of its GEF function. The most promising approach to disrupt Vav1 activity by pharmacological inhibition would be to target its GEF function. However, the contribution of Vav1 GEF activity for allogeneic T cell activation has not been clarified yet. To address this question, we used knock-in mice bearing a mutated Vav1 with disrupted GEF activity but intact GEF-independent functions. T cells from these mice showed strongly reduced proliferation and activation in response to allogeneic stimulation. Furthermore, lack of Vav1 GEF activity strongly abrogated the in vivo expansion of T cells in a systemic graft-versus-host model. In a cardiac transplantation model, mice with disrupted Vav1 GEF activity show prolonged allograft survival. These findings demonstrate a strong requirement for Vav1 GEF activity for allogeneic T cell activation and graft rejection suggesting that disruption of Vav1 GEF activity alone is sufficient to induce significant immunosuppression. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Inflammatory Caspases: Activation and Cleavage of Gasdermin-D In Vitro and During Pyroptosis.

    PubMed

    Zhao, Yue; Shi, Jianjin; Shao, Feng

    2018-01-01

    Gasdermin-D (also known as GSDMD), the newly identified executioner of pyroptotic cell death, is cleaved by activated caspase-1 downstream of canonical inflammasome activation or caspase-4, 5, and 11 upon their ligation and activation by cytosolic LPS. Upon a single cleavage between the two domains in Gasdermin-D, the N-terminal domain binds to membrane lipids and lyses cells by forming pores of an inner diameter of 10-14 nm within the membrane. The inter-domain cleavage of Gasdermin-D is a reliable marker for the activation of inflammatory caspases and cell pyroptosis. Here, we describe the methods for examining Gasdermin-D cleavage by activated inflammatory caspases in vitro and upon inflammasome activation in vivo.

  19. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    PubMed

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival.

    PubMed

    Pfleger, J; He, M; Abdellatif, M

    2015-07-30

    The survival of a cell depends on its ability to meet its energy requirements. We hypothesized that the mitochondrial reserve respiratory capacity (RRC) of a cell is a critical component of its bioenergetics that can be utilized during an increase in energy demand, thereby, enhancing viability. Our goal was to identify the elements that regulate and contribute to the development of RRC and its involvement in cell survival. The results show that activation of metabolic sensors, including pyruvate dehydrogenase and AMP-dependent kinase, increases cardiac myocyte RRC via a Sirt3-dependent mechanism. Notably, we identified mitochondrial complex II (cII) as a target of these metabolic sensors and the main source of RRC. Moreover, we show that RRC, via cII, correlates with enhanced cell survival after hypoxia. Thus, for the first time, we show that metabolic sensors via Sirt3 maximize the cellular RRC through activating cII, which enhances cell survival after hypoxia.

  1. Fuel cells for automotive powertrains-A techno-economic assessment

    NASA Astrophysics Data System (ADS)

    Mock, Peter; Schmid, Stephan A.

    With the objective of identifying the hurdles currently preventing a widespread application of fuel cell technology in passenger cars an assessment of technical and economic parameters is carried out. Patent and publication analysis is used to assess current status of fuel cell technology regarding its position on technology life cycle. S-curve methodology leads to the conclusion that further scientific activity is to be expected but for today's low-temperature PEM fuel cell technology might level by 2015. Technical analysis identifies power density and platinum loading as parameters for which further improvements are necessary in order to satisfy future customer needs. A detailed cost evaluation suggests that in future for high production volumes (approx. 1 million vehicles cumulative) significantly lower costs for fuel cell stacks (12-40 kW -1) and systems (35-83 kW -1) will be viable. Reducing costs to such a level will have to be the main focus for upcoming research activities in order to make fuel cell driven road vehicles a competitive alternative.

  2. Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic β-Cells*

    PubMed Central

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-01-01

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945

  3. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells.

    PubMed

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-07-27

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.

  4. A Pharmacogenetic Approach to Identify Mutant Forms of α-Galactosidase A that Respond to a Pharmacological Chaperone for Fabry Disease

    PubMed Central

    Wu, Xiaoyang; Katz, Evan; Valle, Maria Cecilia Della; Mascioli, Kirsten; Flanagan, John J; Castelli, Jeffrey P; Schiffmann, Raphael; Boudes, Pol; Lockhart, David J; Valenzano, Kenneth J; Benjamin, Elfrida R

    2011-01-01

    Fabry disease is caused by mutations in the gene (GLA) that encodes α-galactosidase A (α-Gal A). The iminosugar AT1001 (GR181413A, migalastat hydrochloride, 1-deoxygalactonojirimycin) is a pharmacological chaperone that selectively binds and stabilizes α-Gal A, increasing total cellular levels and activity for some mutant forms (defined as “responsive”). In this study, we developed a cell-based assay in cultured HEK-293 cells to identify mutant forms of α-Gal A that are responsive to AT1001. Concentration-dependent increases in α-Gal A activity in response to AT1001 were shown for 49 (60%) of 81 mutant forms. The responses of α-Gal A mutant forms were generally consistent with the responses observed in male Fabry patient-derived lymphoblasts. Importantly, the HEK-293 cell responses of 19 α-Gal A mutant forms to a clinically achievable concentration of AT1001 (10 µM) were generally consistent with observed increases in α-Gal A activity in peripheral blood mononuclear cells from male Fabry patients orally administered AT1001 during Phase 2 clinical studies. This indicates that the cell-based responses can identify mutant forms of α-Gal A that are likely to respond to AT1001 in vivo. Thus, the HEK-293 cell-based assay may be a useful aid in the identification of Fabry patients with AT1001-responsive mutant forms. Hum Mutat 32:1–13, 2011. © 2011 Wiley-Liss, Inc. PMID:21598360

  5. Design and characterization of tunable hydrogels to examine microenvironmental regulation of breast cancer recurrence

    NASA Astrophysics Data System (ADS)

    Sawicki, Lisa A.

    Late recurrence of breast cancer within distant metastatic tissue sites is often difficult to diagnose and treat, resulting in poor prognosis for patients. It is hypothesized that cells may go dormant by interactions with or lack of adhesion to the extracellular matrix (ECM) within these tissues, which differs from native breast tissue. The metastatic ECM is a complex microenvironment, containing a mixture of mechanical and chemical cues to which cells respond. To investigate how the ECM regulates cancer recurrence, two-dimensional (2D, plates) and three-dimensional (3D, naturally-derived scaffolds) in vitro culture models have been used. However, lack of complexity (2D), mechanical property control (2D, 3D), and chemical property control (3D) makes it challenging to identify key factors involved in regulating dormancy or activation in these systems. The development of synthetic polymer-based scaffolds in recent years provides an alternate route to investigating cellular response to the presentation of microenvironmental cues in 3D. Initially bioinert, these scaffolds may be modified with chemical ligands to permit cell-matrix interactions and their mechanical properties may be precisely tuned to mimic different tissue sites. The goal of this dissertation is to develop and characterize a novel synthetic material for cell culture applications and to examine how physical and chemical factors in this microenvironment regulate breast cancer activation. Specifically, we have developed a novel poly(ethylene glycol) (PEG)-based hydrogel scaffold for in vitro cell culture. PEG modified with thiols and peptides containing alloxycarbonyl-protected lysines (containing a reactive vinyl) react rapidly upon the application of light in the presence of a photoinitiator, lithium acylphosphinate ( minutes). Scaffold mechanical properties are tuned by varying macromer concentration to mimic soft metastatic site tissue ECMs (Young's modulus 600 - 6000 Pa). These properties remain stable during long-term culture ( weeks). We also demonstrate the covalent attachment and spatial presentation of peptides mimicking proteins found within metastatic tissue ECMs in these scaffolds. All cell lines remain viable (>70%) after encapsulation, with many at greater than 90% viability, indicating minimal negative effects of light and radicals on cell survival post-polymerization. While initially well-defined, the properties of synthetic hydrogel scaffolds change as cells secrete soluble factors that permit cell-cell signaling and synthesize new proteins that provide additional binding sites with which cells may interact. To investigate these chemical property changes, we developed a shotgun proteomics technique to isolate and identify large proteins secreted within synthetic, polymer-based hydrogel scaffolds. Metastatic niche cells (adult human mesenchymal stem cells, hMSCs) were cultured within hydrogel scaffolds and large proteins, including fibronectin and collagen VI were identified. Additionally, a bead-based multiplex assay identified several soluble factors secreted by hMSCs (VEGF, IL-8), which may play a role in regulating cell function and fate. Finally, the response and activation of estrogen receptor negative (MDA-MB-231) and estrogen receptor positive (T-47D) breast cancer cells cultured within synthetic hydrogels with discrete mechanical and chemical properties was determined. The highly aggressive MDA-MB-231 cells demonstrated the greatest levels of activation and spread within these synthetic matrices, while T-47D cells, which have been associated with a dormant phenotype, exhibited only minimal response and formed multicellular spheroids. Specifically, hydrogels with high stiffness and matrix density restricted cancer cell growth, resulting in decreased spreading and smaller cell cluster volume. Individual and mixtures of peptides (GFOGER, RGDS, IKVAV) mimicking ECM proteins found within metastatic tissue sites and targeting cell surface receptors were also shown to affect response. GFOGER and RGDS, targeting integrin ?1, among others, resulted in the highest levels of activation observed within microenvironments. Collectively, this work describes the development of a novel material scaffold with well-defined chemical and physical properties that may be used to identify critical factors in metastatic microenvironments that regulate breast cancer activation toward development of new treatments for recurrent cancers.

  6. IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Benhui; Yang Xianzi; Department of Medical Oncology, Taihe Hospital, Yunyang Medical College, Shiyan, Hubei 442000

    2008-05-02

    IL-4-induced Stat6 signaling is active in a variety of cell types and plays a role in cell proliferation/growth and resistance to apoptosis. Using EMSA, we identified differential IL-4/Stat6 activities in colorectal cancer cell lines, HT-29 being active Stat6{sup high} phenotype and Caco-2 being defective Stat6{sup null} phenotype, respectively. Active Stat6{sup high} HT-29 cells exhibited resistance to apoptosis by flowcytometry and aggressive metastasis by Transwell assay compared with defective Stat6{sup null} Caco-2 cells. Comparing one another using RT-PCR, Stat6{sup high} HT-29 cells expressed more mRNA of anti-apoptotic and pro-metastatic genes Survivin, MDM2, and TMPRSS4, while Stat6{sup null} Caco-2 cells expressed moremore » mRNA of pro-apoptotic and anti-metastatic genes BAX, CAV1, and P53, respectively. This is the first study describing correlations of IL-4/Stat6 activities with apoptosis and metastasis in colon cancer. These findings, together with the observation of constitutive Stat6 activation in many human malignancies, suggest that Stat6 activities could be a biomarker for cancer cell's invasive/metastatic capability.« less

  7. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression.

    PubMed

    Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya

    2008-07-16

    Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.

  8. Inhibition of RhoA/Rho kinase pathway and smooth muscle contraction by hydrogen sulfide.

    PubMed

    Nalli, Ancy D; Wang, Hongxia; Bhattacharya, Sayak; Blakeney, Bryan A; Murthy, Karnam S

    2017-10-01

    Hydrogen sulfide (H 2 S) plays an important role in smooth muscle relaxation. Here, we investigated the expression of enzymes in H 2 S synthesis and the mechanism regulating colonic smooth muscle function by H 2 S. Expression of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), was identified in the colonic smooth muscle of rabbit, mouse, and human. Carbachol (CCh)-induced contraction in rabbit muscle strips and isolated muscle cells was inhibited by l-cysteine (substrate of CSE) and NaHS (an exogenous H 2 S donor) in a concentration-dependent fashion. H 2 S induced S-sulfhydration of RhoA that was associated with inhibition of RhoA activity. CCh-induced Rho kinase activity also was inhibited by l-cysteine and NaHS in a concentration-dependent fashion. Inhibition of CCh-induced contraction by l-cysteine was blocked by the CSE inhibitor, dl-propargylglycine (DL-PPG) in dispersed muscle cells. Inhibition of CCh-induced Rho kinase activity by l-cysteine was blocked by CSE siRNA in cultured cells and DL-PPG in dispersed muscle cells. Stimulation of Rho kinase activity and muscle contraction in response to CCh was also inhibited by l-cysteine or NaHS in colonic muscle cells from mouse and human. Collectively, our studies identified the expression of CSE in colonic smooth muscle and determined that sulfhydration of RhoA by H 2 S leads to inhibition of RhoA and Rho kinase activities and muscle contraction. The mechanism identified may provide novel therapeutic approaches to mitigate gastrointestinal motility disorders. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  9. Drug synergy screen and network modeling in dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug targets.

    PubMed

    Miller, Martin L; Molinelli, Evan J; Nair, Jayasree S; Sheikh, Tahir; Samy, Rita; Jing, Xiaohong; He, Qin; Korkut, Anil; Crago, Aimee M; Singer, Samuel; Schwartz, Gary K; Sander, Chris

    2013-09-24

    Dedifferentiated liposarcoma (DDLS) is a rare but aggressive cancer with high recurrence and low response rates to targeted therapies. Increasing treatment efficacy may require combinations of targeted agents that counteract the effects of multiple abnormalities. To identify a possible multicomponent therapy, we performed a combinatorial drug screen in a DDLS-derived cell line and identified cyclin-dependent kinase 4 (CDK4) and insulin-like growth factor 1 receptor (IGF1R) as synergistic drug targets. We measured the phosphorylation of multiple proteins and cell viability in response to systematic drug combinations and derived computational models of the signaling network. These models predict that the observed synergy in reducing cell viability with CDK4 and IGF1R inhibitors depends on the activity of the AKT pathway. Experiments confirmed that combined inhibition of CDK4 and IGF1R cooperatively suppresses the activation of proteins within the AKT pathway. Consistent with these findings, synergistic reductions in cell viability were also found when combining CDK4 inhibition with inhibition of either AKT or epidermal growth factor receptor (EGFR), another receptor similar to IGF1R that activates AKT. Thus, network models derived from context-specific proteomic measurements of systematically perturbed cancer cells may reveal cancer-specific signaling mechanisms and aid in the design of effective combination therapies.

  10. Drug Synergy Screen and Network Modeling in Dedifferentiated Liposarcoma Identifies CDK4 and IGF1R as Synergistic Drug Targets

    PubMed Central

    Miller, Martin L.; Molinelli, Evan J.; Nair, Jayasree S.; Sheikh, Tahir; Samy, Rita; Jing, Xiaohong; He, Qin; Korkut, Anil; Crago, Aimee M.; Singer, Samuel; Schwartz, Gary K.; Sander, Chris

    2014-01-01

    Dedifferentiated liposarcoma (DDLS) is a rare but aggressive cancer with high recurrence and low response rates to targeted therapies. Increasing treatment efficacy may require combinations of targeted agents that counteract the effects of multiple abnormalities. To identify a possible multicomponent therapy, we performed a combinatorial drug screen in a DDLS-derived cell line and identified cyclin-dependent kinase 4 (CDK4) and insulin-like growth factor 1 receptor (IGF1R) as synergistic drug targets. We measured the phosphorylation of multiple proteins and cell viability in response to systematic drug combinations and derived computational models of the signaling network. These models predict that the observed synergy in reducing cell viability with CDK4 and IGF1R inhibitors depend on activity of the AKT pathway. Experiments confirmed that combined inhibition of CDK4 and IGF1R cooperatively suppresses the activation of proteins within the AKT pathway. Consistent with these findings, synergistic reductions in cell viability were also found when combining CDK4 inhibition with inhibition of either AKT or epidermal growth factor receptor (EGFR), another receptor similar to IGF1R that activates AKT. Thus, network models derived from context-specific proteomic measurements of systematically perturbed cancer cells may reveal cancer-specific signaling mechanisms and aid in the design of effective combination therapies. PMID:24065146

  11. MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation

    PubMed Central

    Huang, Y; Thoms, JAI; Tursky, ML; Knezevic, K; Beck, D; Chandrakanthan, V; Suryani, S; Olivier, J; Boulton, A; Glaros, EN; Thomas, SR; Lock, RB; MacKenzie, KL; Bushweller, JH; Wong, JWH; Pimanda, JE

    2018-01-01

    Aberrant ERG (v-ets avian erythroblastosis virus E26 oncogene homolog) expression drives leukemic transformation in mice and high expression is associated with poor patient outcomes in acute myeloid leukemia (AML) and T-acute lymphoblastic leukemia (T-ALL). Protein phosphorylation regulates the activity of many ETS factors but little is known about ERG in leukemic cells. To characterize ERG phosphorylation in leukemic cells, we applied liquid chromatography coupled tandem mass spectrometry and identified five phosphorylated serines on endogenous ERG in T-ALL and AML cells. S283 was distinct as it was abundantly phosphorylated in leukemic cells but not in healthy hematopoietic stem and progenitor cells (HSPCs). Overexpression of a phosphoactive mutant (S283D) increased expansion and clonogenicity of primary HSPCs over and above wild-type ERG. Using a custom antibody, we screened a panel of primary leukemic xenografts and showed that ERG S283 phosphorylation was mediated by mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling and in turn regulated expression of components of this pathway. S283 phosphorylation facilitates ERG enrichment and transactivation at the ERG +85 HSPC enhancer that is active in AML and T-ALL with poor prognosis. Taken together, we have identified a specific post-translational modification in leukemic cells that promotes progenitor proliferation and is a potential target to modulate ERG-driven transcriptional programs in leukemia. PMID:27055868

  12. Glycogen synthase kinase-3 as drug target: from wallflower to center of attention.

    PubMed

    Van Wauwe, Jean; Haefner, Burkhard

    2003-11-01

    Some 20 years ago, glycogen synthase kinase-3 (GSK-3) was categorized as one of several protein kinases that could phosphorylate glycogen synthase and regulate the glucose metabolism pathway. Today, GSK-3 is being identified as a ubiquitous serine/threonine protein kinase that participates in a multitude of cellular processes, ranging from cell membrane-to-nucleus signaling, gene transcription, translation, cytoskeletal organization to cell cycle progression and survival. Two functional aspects make GSK-3 a peculiar kinase: its activity is constitutive and downregulated after cell activation by phosphorylation or interaction with inhibitory proteins, and the enzyme prefers substrates that are specifically prepared, that is prephosphorylated, by other kinases. Its pleiotropic but unique activities have made GSK-3 a much sought-after target for the treatment of prevalent human diseases such as type 2 diabetes and Alzheimer's disease. Recent drug discovery efforts have identified small-molecule, orally active inhibitors of GSK-3. This accomplishment may represent the first step toward the development of novel therapeutic agents.

  13. Alu expression in human cell lines and their retrotranspositional potential.

    PubMed

    Oler, Andrew J; Traina-Dorge, Stephen; Derbes, Rebecca S; Canella, Donatella; Cairns, Brad R; Roy-Engel, Astrid M

    2012-06-20

    The vast majority of the 1.1 million Alu elements are retrotranspositionally inactive, where only a few loci referred to as 'source elements' can generate new Alu insertions. The first step in identifying the active Alu sources is to determine the loci transcribed by RNA polymerase III (pol III). Previous genome-wide analyses from normal and transformed cell lines identified multiple Alu loci occupied by pol III factors, making them candidate source elements. Analysis of the data from these genome-wide studies determined that the majority of pol III-bound Alus belonged to the older subfamilies Alu S and Alu J, which varied between cell lines from 62.5% to 98.7% of the identified loci. The pol III-bound Alus were further scored for estimated retrotransposition potential (ERP) based on the absence or presence of selected sequence features associated with Alu retrotransposition capability. Our analyses indicate that most of the pol III-bound Alu loci candidates identified lack the sequence characteristics important for retrotransposition. These data suggest that Alu expression likely varies by cell type, growth conditions and transformation state. This variation could extend to where the same cell lines in different laboratories present different Alu expression patterns. The vast majority of Alu loci potentially transcribed by RNA pol III lack important sequence features for retrotransposition and the majority of potentially active Alu loci in the genome (scored high ERP) belong to young Alu subfamilies. Our observations suggest that in an in vivo scenario, the contribution of Alu activity on somatic genetic damage may significantly vary between individuals and tissues.

  14. Elevated phospholipase D activity in androgen-insensitive prostate cancer cells promotes both survival and metastatic phenotypes.

    PubMed

    Utter, Matthew; Chakraborty, Sohag; Goren, Limor; Feuser, Lucas; Zhu, Yuan-Shan; Foster, David A

    2018-06-01

    Prostate cells are hormonally driven to grow and divide. Typical treatments for prostate cancer involve blocking activation of the androgen receptor by androgens. Androgen deprivation therapy can lead to the selection of cancer cells that grow and divide independently of androgen receptor activation. Prostate cancer cells that are insensitive to androgens commonly display metastatic phenotypes and reduced long-term survival of patients. In this study we provide evidence that androgen-insensitive prostate cancer cells have elevated PLD activity relative to the androgen-sensitive prostate cancer cells. PLD activity has been linked with promoting survival in many human cancer cell lines; and consistent with the previous studies, suppression of PLD activity in the prostate cancer cells resulted in apoptotic cell death. Of significance, suppressing the elevated PLD activity in androgen resistant prostate cancer lines also blocked the ability of these cells to migrate and invade Matrigel™. Since survival signals are generally an early event in tumorigenesis, the apparent coupling of survival and metastatic phenotypes implies that metastasis is an earlier event in malignant prostate cancer than generally thought. This finding has implications for screening strategies designed to identify prostate cancers before dissemination. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans.

    PubMed

    Gorrepati, Lakshmi; Krause, Michael W; Chen, Weiping; Brodigan, Thomas M; Correa-Mendez, Margarita; Eisenmann, David M

    2015-06-05

    The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. Copyright © 2015 Gorrepati et al.

  16. Triple DMARD treatment in early rheumatoid arthritis modulates synovial T cell activation and plasmablast/plasma cell differentiation pathways

    PubMed Central

    Wechalekar, Mihir D.; Guo, Yanxia; Yin, Xuefeng; Weedon, Helen; Proudman, Susanna M.; Smith, Malcolm D.; Nagpal, Sunil

    2017-01-01

    Objectives This study sought to investigate the genome-wide transcriptional effects of a combination of disease modifying anti-rheumatic drugs (tDMARD; methotrexate, sulfasalazine and hydroxychloroquine) in synovial tissues obtained from early rheumatoid arthritis (RA) patients. While combination DMARD strategies have been investigated for clinical efficacy, very little data exists on the potential molecular mechanism of action. We hypothesized that tDMARD would impact multiple biological pathways, but the specific pathways were unknown. Methods Paired synovial biopsy samples from early RA patients before and after 6 months of tDMARD therapy were collected by arthroscopy (n = 19). These biopsies as well as those from subjects with normal synovium (n = 28) were profiled by total RNA sequencing. Results Large differences in gene expression between RA and control biopsies (over 5000 genes) were identified. Despite clinical efficacy, the expression of a restricted set of less than 300 genes was reversed after 6 months of treatment. Many genes remained elevated, even in patients who achieved low disease activity. Interestingly, tDMARD downregulated genes included those involved in T cell activation and signaling and plasmablast/plasma cell differentiation and function. Conclusions We have identified transcriptomic signatures that characterize synovial tissue from RA patients with early disease. Analysis after 6 months of tDMARD treatment highlight consistent alterations in expression of genes related to T cell activation and plasmablast/plasma cell differentiation. These results provide novel insight into the biology of early RA and the mechanism of tDMARD action and may help identify novel drug targets to improve rates of treatment-induced disease remission. PMID:28863153

  17. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    PubMed Central

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified PAK1 as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of Merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation. PMID:22105362

  18. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.

    PubMed

    Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C

    2012-07-19

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.

  19. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice

    PubMed Central

    Wright, Margaret C.; Reed-Geaghan, Erin G.; Bolock, Alexa M.; Fujiyama, Tomoyuki; Hoshino, Mikio

    2015-01-01

    Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1+ skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood. PMID:25624394

  20. Effects of Developmental Activation of the Aryl Hydrocarbon Receptor by 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Long-term Self-renewal of Murine Hematopoietic Stem Cells.

    PubMed

    Laiosa, Michael D; Tate, Everett R; Ahrenhoerster, Lori S; Chen, Yuhong; Wang, Demin

    2016-07-01

    Human epidemiological and animal studies suggest that developmental exposure to contaminants that activate the aryl hydrocarbon receptor (AHR) lead to suppression of immune system function throughout life. The persistence of immune deficiency throughout life suggests that the cellular target of AHR activation is a fetal hematopoietic progenitor or stem cell. The aim of this study was to identify the effects of transplacental exposure to an AHR agonist on long-term self-renewal of fetal hematopoietic stem cells. Pregnant C57BL/6 or AHR+/- mice were exposed to the AHR agonist, 2,3,7,8-tetra-​chlorodibenzo-p-dioxin (TCDD). On day 14 of gestation, hematopoietic progenitors from wild-type or AHR-deficient fetuses were placed into in vitro T-lymphocyte differentiation cultures to identify the effects of transplacental TCDD on AHR activation in the fetus. We next analyzed the fetal hematopoietic progenitor cells for changes in reactive oxygen species (ROS). Finally, hematopoietic progenitors from fetuses exposed transplacentally to TCDD were mixed 1:1 with cells from congenic controls and used to reconstitute lethally irradiated recipients for analysis of long-term self-renewal potential. Our findings suggested that the effects of TCDD on the developing hematopoietic system were mediated by direct AHR activation in the fetus. Furthermore, developmental AHR activation by TCDD increased ROS in the fetal hematopoietic stem cells, and the elevated ROS was associated with a reduced capacity of the TCDD-exposed fetal cells to compete with control cells in a mixed competitive irradiation/reconstitution assay. Our findings indicate that AHR activation by TCDD in the fetus during pregnancy leads to impairment of long-term self-renewal of hematopoietic stem cells. Laiosa MD, Tate ER, Ahrenhoerster LS, Chen Y, Wang D. 2016. Effects of developmental activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin on long-term self-renewal of murine hematopoietic stem cells. Environ Health Perspect 124:957-965; http://dx.doi.org/10.1289/ehp.1509820.

  1. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalova, Natalia, E-mail: kovalova@msu.edu

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized thatmore » TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes. - Highlights: • Kovalova TAAP Highlights Nov. 2016 • RNA-Seq identified TCDD-induced gene expression in PWM-activated primary B cells. • TCDD elicited differential expression of 515 human, 2371 mouse and 712 rat orthologs. • 28 orthologs were differentially expressed in response to TCDD in all three species. • TCDD elicits mostly species-specific gene expression changes in activated B cells.« less

  2. Metronomic chemotherapy: An attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance

    DOE PAGES

    Kareva, Irina; Waxman, David J.; Klement, Giannoula Lakka

    2014-12-23

    The administration of chemotherapy at reduced doses given at regular, frequent time intervals, termed ‘metronomic’ chemotherapy, presents an alternative to standard maximal tolerated dose (MTD) chemotherapy. The primary target of metronomic chemotherapy was originally identified as endothelial cells supporting the tumor vasculature, and not the tumor cells themselves, consistent with the emerging concept of cancer as a systemic disease involving both tumor cells and their microenvironment. While anti-angiogenesis is an important mechanism of action of metronomic chemotherapy, other mechanisms, including activation of anti-tumor immunity and a decrease in acquired therapeutic resistance, have also been identified. In this paper, we presentmore » evidence supporting a mechanistic explanation for the improved activity of cancer chemotherapy when administered on a metronomic, rather than an MTD schedule and discuss the implications of these findings for further translation into the clinic.« less

  3. Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance.

    PubMed

    Kareva, Irina; Waxman, David J; Lakka Klement, Giannoula

    2015-03-28

    The administration of chemotherapy at reduced doses given at regular, frequent time intervals, termed 'metronomic' chemotherapy, presents an alternative to standard maximal tolerated dose (MTD) chemotherapy. The primary target of metronomic chemotherapy was originally identified as endothelial cells supporting the tumor vasculature, and not the tumor cells themselves, consistent with the emerging concept of cancer as a systemic disease involving both tumor cells and their microenvironment. While anti-angiogenesis is an important mechanism of action of metronomic chemotherapy, other mechanisms, including activation of anti-tumor immunity and a decrease in acquired therapeutic resistance, have also been identified. Here we present evidence supporting a mechanistic explanation for the improved activity of cancer chemotherapy when administered on a metronomic, rather than an MTD schedule and discuss the implications of these findings for further translation into the clinic. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. STRUCTURE-FUNCTION RELATIONSHIPS IN THE ADIPOSE CELL

    PubMed Central

    Cushman, Samuel W.

    1970-01-01

    Pinocytic activity in the adipose cell has been examined by measuring the uptake of colloidal gold. Pinocytic activity occurs in the isolated adipose cell under all experimental conditions; a portion of the vesicular elements of the cell can be identified by electron microscopy as pinocytic in origin. The isolated adipose cell appears to take up serum albumin by pinocytosis. Pinocytic activity in the isolated adipose cell is enhanced by epinephrine, but not by insulin. The relationship between pinocytosis and the metabolic activity of the adipose cell has been studied by measuring simultaneously the uptake of radioactive colloidal gold, the incorporation of 14C-counts from U-glucose-14C into CO2, total lipid, triglyceride glycerol and triglyceride fatty acids, and the release of nonesterified fatty acids in the absence of hormones and in the presence of insulin or epinephrine. Correlations between hormone-produced alterations in lipid metabolism and in pinocytic activity suggest that intracellular nonesterified fatty acid levels are a factor in the regulation of both the cell's pinocytic activity and its metabolism and that pinocytosis in the adipose cell functions in the extracellular-intracellular transport of nonesterified fatty acids. PMID:5449179

  5. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages.

    PubMed

    Ouedraogo, Richard; Daumas, Aurélie; Ghigo, Eric; Capo, Christian; Mege, Jean-Louis; Textoris, Julien

    2012-10-22

    Whole-cell MALDI-TOF MS is routinely used to identify bacterial species in clinical samples. This technique has also proven to allow identification of intact mammalian cells, including macrophages. Here, we wondered whether this approach enabled the assessment human macrophages plasticity. The whole-cell MALDI-TOF spectra of macrophages stimulated with IFN-γ and IL-4, two inducers of M1 and M2 macrophage polarisation, consisted of peaks ranging from 2 to 12 kDa. The spectra of unstimulated and stimulated macrophages were clearly different. The fingerprints induced by the M1 agonists, IFN-γ, TNF, LPS and LPS+IFN-γ, and the M2 agonists, IL-4, TGF-β1 and IL-10, were specific and readily identifiable. Thus, whole-cell MALDI-TOF MS was able to characterise M1 and M2 macrophage subtypes. In addition, the fingerprints induced by extracellular (group B Streptococcus, Staphylococcus aureus) or intracellular (BCG, Orientia tsutsugamushi, Coxiella burnetii) bacteria were bacterium-specific. The whole-cell MALDI-TOF MS fingerprints therefore revealed the multifaceted activation of human macrophages. This approach opened a new avenue of studies to assess the immune response in the clinical setting, by monitoring the various activation patterns of immune cells in pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Distinct c-Met activation mechanisms induce cell rounding or invasion through pathways involving integrins, RhoA and HIP1.

    PubMed

    Mai, Anja; Muharram, Ghaffar; Barrow-McGee, Rachel; Baghirov, Habib; Rantala, Juha; Kermorgant, Stéphanie; Ivaska, Johanna

    2014-05-01

    Many carcinomas have acquired oncogenic mechanisms for activating c-Met, including c-Met overexpression and excessive autocrine or paracrine stimulation with hepatocyte growth factor (HGF). However, the biological outcome of c-Met activation through these distinct modes remains ambiguous. Here, we report that HGF-mediated c-Met stimulation triggers a mesenchymal-type collective cell invasion. By contrast, the overexpression of c-Met promotes cell rounding. Moreover, in a high-throughput siRNA screen that was performed using a library of siRNAs against putative regulators of integrin activity, we identified RhoA and the clathrin-adapter protein HIP1 as crucial c-Met effectors in these morphological changes. Transient RhoA activation was necessary for the HGF-induced invasion, whereas sustained RhoA activity regulated c-Met-induced cell rounding. In addition, c-Met-induced cell rounding correlated with the phosphorylation of filamin A and the downregulation of active cell-surface integrins. By contrast, a HIP1-mediated increase in β1-integrin turnover was required for the invasion triggered by HGF. Taken together, our results indicate that c-Met induces distinct cell morphology alterations depending on the stimulus that activates c-Met.

  7. Genomic pathway analysis reveals that EZH2 and HDAC4 represent mutually exclusive epigenetic pathways across human cancers

    PubMed Central

    2013-01-01

    Background Alterations in epigenetic marks, including methylation or acetylation, are common in human cancers. For many epigenetic pathways, however, direct measures of activity are unknown, making their role in various cancers difficult to assess. Gene expression signatures facilitate the examination of patterns of epigenetic pathway activation across and within human cancer types allowing better understanding of the relationships between these pathways. Methods We used Bayesian regression to generate gene expression signatures from normal epithelial cells before and after epigenetic pathway activation. Signatures were applied to datasets from TCGA, GEO, CaArray, ArrayExpress, and the cancer cell line encyclopedia. For TCGA data, signature results were correlated with copy number variation and DNA methylation changes. GSEA was used to identify biologic pathways related to the signatures. Results We developed and validated signatures reflecting downstream effects of enhancer of zeste homolog 2(EZH2), histone deacetylase(HDAC) 1, HDAC4, sirtuin 1(SIRT1), and DNA methyltransferase 2(DNMT2). By applying these signatures to data from cancer cell lines and tumors in large public repositories, we identify those cancers that have the highest and lowest activation of each of these pathways. Highest EZH2 activation is seen in neuroblastoma, hepatocellular carcinoma, small cell lung cancer, and melanoma, while highest HDAC activity is seen in pharyngeal cancer, kidney cancer, and pancreatic cancer. Across all datasets studied, activation of both EZH2 and HDAC4 is significantly underrepresented. Using breast cancer and glioblastoma as examples to examine intrinsic subtypes of particular cancers, EZH2 activation was highest in luminal breast cancers and proneural glioblastomas, while HDAC4 activation was highest in basal breast cancer and mesenchymal glioblastoma. EZH2 and HDAC4 activation are associated with particular chromosome abnormalities: EZH2 activation with aberrations in genes from the TGF and phosphatidylinositol pathways and HDAC4 activation with aberrations in inflammatory and chemokine related genes. Conclusion Gene expression patterns can reveal the activation level of epigenetic pathways. Epigenetic pathways define biologically relevant subsets of human cancers. EZH2 activation and HDAC4 activation correlate with growth factor signaling and inflammation, respectively, and represent two distinct states for cancer cells. This understanding may allow us to identify targetable drivers in these cancer subsets. PMID:24079712

  8. Dual Modifications of α-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity.

    PubMed

    Chennamadhavuni, Divya; Saavedra-Avila, Noemi Alejandra; Carreño, Leandro J; Guberman-Pfeffer, Matthew J; Arora, Pooja; Yongqing, Tang; Koay, Hui-Fern; Godfrey, Dale I; Keshipeddy, Santosh; Richardson, Stewart K; Sundararaj, Srinivasan; Lo, Jae Ho; Wen, Xiangshu; Gascón, José A; Yuan, Weiming; Rossjohn, Jamie; Le Nours, Jérôme; Porcelli, Steven A; Howell, Amy R

    2018-05-17

    Glycosylceramides that activate CD1d-restricted invariant natural killer T (iNKT) cells have potential therapeutic applications for augmenting immune responses against cancer and infections. Previous studies using mouse models identified sphinganine variants of α-galactosylceramide as promising iNKT cell activators that stimulate cytokine responses with a strongly proinflammatory bias. However, the activities of sphinganine variants in mice have generally not translated well to studies of human iNKT cell responses. Here, we show that strongly proinflammatory and anti-tumor iNKT cell responses were achieved in mice by a variant of α-galactosylceramide that combines a sphinganine base with a hydrocinnamoyl ester on C6″ of the sugar. Importantly, the activities observed with this variant were largely preserved for human iNKT cell responses. Structural and in silico modeling studies provided a mechanistic basis for these findings and suggested basic principles for capturing useful properties of sphinganine analogs of synthetic iNKT cell activators in the design of immunotherapeutic agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Functional cooperativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells.

    PubMed Central

    Okuda, A; Imagawa, M; Sakai, M; Muramatsu, M

    1990-01-01

    We have recently identified an enhancer, termed GPEI, in the 5'-flanking region of the rat glutathione transferase P gene, that is composed of two imperfect TPA (phorbol 12-O-tetradecanoate 13-acetate) responsive elements (TREs). Unlike other TRE-containing enhancers, GPEI exhibits a strong transcriptional enhancing activity in F9 embryonic stem cells. Mutational analyses have revealed that the high activity of GPEI is mediated by two imperfect TREs. Each TRE-like sequence has no activity by itself but acts synergistically to form a strong enhancer which is active even in the very low level of AP-1 activity in F9 cells. Furthermore, we show that synthetic DNAs containing two perfect TREs in certain arrangements have strong transcriptional enhancing activities in F9 cells and the activity is greatly influenced by the relative orientation and the distance of two TREs. Images Fig. 1. Fig. 2. Fig. 3. PMID:2323334

  10. Exclusive destruction of mitotic spindles in human cancer cells.

    PubMed

    Visochek, Leonid; Castiel, Asher; Mittelman, Leonid; Elkin, Michael; Atias, Dikla; Golan, Talia; Izraeli, Shai; Peretz, Tamar; Cohen-Armon, Malka

    2017-03-28

    We identified target proteins modified by phenanthrenes that cause exclusive eradication of human cancer cells. The cytotoxic activity of the phenanthrenes in a variety of human cancer cells is attributed by these findings to post translational modifications of NuMA and kinesins HSET/kifC1 and kif18A. Their activity prevented the binding of NuMA to α-tubulin and kinesins in human cancer cells, and caused aberrant spindles. The most efficient cytotoxic activity of the phenanthridine PJ34, caused significantly smaller aberrant spindles with disrupted spindle poles and scattered extra-centrosomes and chromosomes. Concomitantly, PJ34 induced tumor growth arrest of human malignant tumors developed in athymic nude mice, indicating the relevance of its activity for cancer therapy.

  11. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology

    PubMed Central

    Vyas, Sejal; Chesarone-Cataldo, Melissa; Todorova, Tanya; Huang, Yun-Han; Chang, Paul

    2013-01-01

    The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD+ as their substrate to modify acceptor proteins with adenosine diphosphate-ribose (ADPr) modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyze the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identify the knock-down phenotype of each protein and perform secondary assays to elucidate function. We show that most PARPs are cytoplasmic, identify cell cycle differences in the ratio of nuclear to cytoplasmic poly(ADP-ribose), and identify four phenotypic classes of PARP function. These include the regulation of membrane structures, cell viability, cell division, and the actin cytoskeleton. Further analysis of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motility and focal adhesion function. In total, we show that PARP proteins are critical regulators of eukaryotic physiology. PMID:23917125

  12. Canonical Wnt Signaling as a Specific Marker for Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2012-02-01

    These cells were identified by  flow   cytometry  to detect cells that were positive for CD24 and CD49f.   2. We have established that activation of Wnt...09-1-0072 TITLE: Canonical Wnt Signaling as a Specific marker for Normal and Tumorigenic Mammary Stem Cells PRINCIPAL...activation of canonical Wnt signaling may be a very specific marker for mammary stem cells and be a target for transformation that results in the

  13. Proteome analysis identifies L1CAM/CD171 and DPP4/CD26 as novel markers of human skin mast cells.

    PubMed

    Gschwandtner, M; Paulitschke, V; Mildner, M; Brunner, P M; Hacker, S; Eisenwort, G; Sperr, W R; Valent, P; Gerner, C; Tschachler, E

    2017-01-01

    The function of skin mast cells has been well documented in IgE-mediated allergic reactions, whereas other mast cell functions are poorly defined. This study aimed at identifying novel mast cell proteins by proteome analysis of primary human skin mast cells. The proteome of skin mast cells was compared to other cell types and analyzed using bioinformatics. The expression and function of two proteins hitherto not described in skin mast cells was investigated in isolated mast cells as well as in mast cells in situ. Within the mast cell proteome, we identified 49 highly expressed proteins previously not described in mast cells; 21 of these proteins were found to be selectively expressed in mast cells. Two proteins, the neural cell adhesion molecule L1 and dipeptidyl peptidase 4, were further studied. L1 was found to be highly expressed in mast cells in normal, psoriasis, and mastocytosis skin. Dipeptidyl peptidase 4 was found to be expressed in mast cells in normal, psoriasis, and mastocytosis skin as well as in bone marrow mast cells in patients with systemic mastocytosis. In normal skin, mast cells were identified as a major source of dipeptidyl peptidase 4 and we also found that skin mast cells and fibroblasts secrete an active form of this enzyme. In a systematic proteomics approach we identified two novel mast cell proteins potentially relevant to skin homeostasis: neural cell adhesion molecule L1 and dipeptidyl peptidase 4. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.

    PubMed

    Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul

    2016-04-01

    Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Mastocytosis Society survey on mast cell disorders: patient experiences and perceptions.

    PubMed

    Jennings, Susan; Russell, Nancy; Jennings, Blair; Slee, Valerie; Sterling, Lisa; Castells, Mariana; Valent, Peter; Akin, Cem

    2014-01-01

    Mast cell diseases include mastocytosis and mast cell activation syndromes, some of which have been shown to involve clonal defects in mast cells that result in abnormal cellular proliferation or activation. Numerous clinical studies of mastocytosis have been published, but no population-based comprehensive surveys of patients in the United States have been identified. Few mast cell disease specialty centers exist in the United States, and awareness of these mast cell disorders is limited among nonspecialists. Accordingly, information concerning the experiences of the overall estimated population of these patients has been lacking. To identify the experiences and perceptions of patients with mastocytosis, mast cell activation syndromes, and related disorders, The Mastocytosis Society (TMS), a US based patient advocacy, research, and education organization, conducted a survey of its members and other people known or suspected to be part of this patient population. A Web-based survey was publicized through clinics that treat these patients and through TMS's newsletter, Web site, and online blogs. Both online and paper copies of the questionnaire were provided, together with required statements of consent. The first results are presented for 420 patients. These results include demographics, diagnoses, symptoms, allergies, provoking factors of mast cell symptoms, and disease impact. Patients with mastocytosis and mast cell activation syndromes have provided clinical specialists, collaborators, and other patients with information to enable them to explore and deepen their understanding of the experiences and perceptions of people coping with these disorders. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Developing an Activity and Absorption-based Quality Control Platform for Chinese Traditional Medicine: Application to Zeng-Sheng-Ping

    PubMed Central

    Yin, Taijun; Yang, Guanyi; Ma, Yong; Xu, Beibei; Hu, Ming; You, Ming; Gao, Song

    2015-01-01

    Ethnopharmacological relevance Zeng-Sheng-Ping (ZSP) is a marketed Chinese traditional medicine used for cancer prevention. Aim of the study Currently, for the quality control of Chinese traditional medicines, marker compounds are not selected based on bioactivities and pharmaceutical behaviors in most of the cases. Therefore, even if the “quality” of the medicine is controlled, the pharmacological effect could still be inconsistent. The aim of this study is to establish an activity and absorption-based platform to select marker compound(s) for the quality control of Chinese traditional medicines. Materials and methods We used ZSP as a reference Chinese traditional medicine to establish the platform. Activity guided fractionation approach was used to purify the major components from ZSP. NMR and MS spectra were used to elucidate the structure of the isolated compounds. MTT assay against oral carcinoma cell line (SCC2095) was performed to evaluate the activities. UPLC-MS/MS was used to quantify the pure compounds in ZSP and the active fraction. The permeabilities of the identified compounds were evaluated in the Caco-2 cell culture model. The intracellular accumulation of the isolated compounds was evaluated in the SCC2095 cells. Results The major compounds were identified from ZSP. The contents, anti-proliferation activities, permeabilities, and intracellular accumulations of these compounds were also evaluated. The structure of these purified compounds were identified by comparing the NMR and MS data with those of references as rutaevine (1), limonin (2) , evodol (3), obacunone (4), fraxinellone (5), dictamnine (6), maackiain (7), trifolirhizin (8), and matrine (9). The IC50 of compounds 5, 6, and 7 against SCC2095 cells were significantly lower than that of ZSP. The uptake permeability of compounds 5, 6, and 7 were 2.58 ± 0. 3 × 10−5, 4.33 ± 0.5 × 10−5, and 4.27 ± 0.8 × 10−5 respectively in the Caco-2 cell culture model. The intracellular concentrations of these compounds showed that compounds 5, 6, and 7 were significantly accumulated inside the cells. Conclusion Based on the activity against oral carcinoma cell line as well as the absorption permeability, compound 5, 6, and 7 are selected as quality control markers for ZSP. A activity and absorption-based platform was established and successfully used for the quality control of ZSP. PMID:26099633

  17. Autocrine CSF-1R signaling drives mesothelioma chemoresistance via AKT activation

    PubMed Central

    Cioce, M; Canino, C; Goparaju, C; Yang, H; Carbone, M; Pass, H I

    2014-01-01

    Clinical management of malignant pleural mesothelioma (MPM) is very challenging because of the uncommon resistance of this tumor to chemotherapy. We report here increased expression of macrophage colony-stimulating-factor-1-receptor (M-CSF/CSF-1R) mRNA in mesothelioma versus normal tissue specimens and demonstrate that CSF-1R expression identifies chemoresistant cells of mesothelial nature in both primary cultures and mesothelioma cell lines. By using RNAi or ligand trapping, we demonstrate that the chemoresistance properties of those cells depend on autocrine CSF-1R signaling. At the single-cell level, the isolated CSF-1Rpos cells exhibit a complex repertoire of pluripotency, epithelial–mesenchymal transition and detoxifying factors, which define a clonogenic, chemoresistant, precursor-like cell sub-population. The simple activation of CSF-1R in untransformed mesothelial cells is sufficient to confer clonogenicity and resistance to pemetrexed, hallmarks of mesothelioma. In addition, this induced a gene expression profile highly mimicking that observed in the MPM cells endogenously expressing the receptor and the ligands, suggesting that CSF-1R expression is mainly responsible for the phenotype of the identified cell sub-populations. The survival of CSF1Rpos cells requires active AKT (v-akt murine thymoma viral oncogene homolog 1) signaling, which contributed to increased levels of nuclear, transcriptionally competent β-catenin. Inhibition of AKT reduced the transcriptional activity of β-catenin-dependent reporters and sensitized the cells to senescence-induced clonogenic death after pemetrexed treatment. This work expands what is known on the non-macrophage functions of CSF-1R and its role in solid tumors, and suggests that CSF-1R signaling may have a critical pathogenic role in a prototypical, inflammation-related cancer such as MPM and therefore may represent a promising target for therapeutic intervention. PMID:24722292

  18. R-Ras Regulates Migration through an Interaction with Filamin A in Melanoma Cells

    PubMed Central

    Gawecka, Joanna E.; Griffiths, Genevieve S.; Ek-Rylander, Barbro; Ramos, Joe W.; Matter, Michelle L.

    2010-01-01

    Background Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins. Methods and Findings We identified Filamin A (FLNa) as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin β1, β2 and β7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaΔ3) abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaΔ3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly. Conclusions These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration. PMID:20585650

  19. Effective modification of cell death-inducing intracellular peptides by means of a photo-cleavable peptide array-based screening system.

    PubMed

    Kozaki, Ikko; Shimizu, Kazunori; Honda, Hiroyuki

    2017-08-01

    Intracellular functional peptides that play a significant role inside cells have been receiving a lot of attention as regulators of cellular activity. Previously, we proposed a novel screening system for intracellular functional peptides; it combined a photo-cleavable peptide array system with cell-penetrating peptides (CPPs). Various peptides can be delivered into cells and intracellular functions of the peptides can be assayed by means of our system. The aim of the present study was to demonstrate that the proposed screening system can be used for assessing the intracellular activity of peptides. The cell death-inducing peptide (LNLISKLF) identified in a mitochondria-targeting domain (MTD) of the Noxa protein served as an original peptide sequence for screening of peptides with higher activity via modification of the peptide sequence. We obtained 4 peptides with higher activity, in which we substituted serine (S) at the fifth position with phenylalanine (F), valine (V), tryptophan (W), or tyrosine (Y). During analysis of the mechanism of action, the modified peptides induced an increase in intracellular calcium concentration, which was caused by the treatment with the original peptide. Higher capacity for cell death induction by the modified peptides may be caused by increased hydrophobicity or an increased number of aromatic residues. Thus, the present work suggests that the intracellular activity of peptides can be assessed using the proposed screening system. It could be used for identifying intracellular functional peptides with higher activity through comprehensive screening. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Discovery of Benzofuran Derivatives that Collaborate with Insulin-Like Growth Factor 1 (IGF-1) to Promote Neuroprotection.

    PubMed

    Wakabayashi, Takeshi; Tokunaga, Norihito; Tokumaru, Kazuyuki; Ohra, Taiichi; Koyama, Nobuyuki; Hayashi, Satoru; Yamada, Ryuji; Shirasaki, Mikio; Inui, Yoshitaka; Tsukamoto, Tetsuya

    2016-05-26

    A series of benzofuran derivatives with neuroprotective activity in collaboration with IGF-1 was discovered using a newly developed cell-based assay involving primary neural cells prepared from rat hippocampal and cerebral cortical tissues. A structure-activity relationship study identified compound 8 as exhibiting potent activity and brain penetrability. An in vitro pharmacological study demonstrated that although IGF-1 and 8 individually exhibited the neuroprotective effect, the latter acted in collaboration with IGF-1 to enhance neuroprotective activity.

  1. Development of coin-type cell and engineering of its compartments for rechargeable seawater batteries

    NASA Astrophysics Data System (ADS)

    Han, Jinhyup; Hwang, Soo Min; Go, Wooseok; Senthilkumar, S. T.; Jeon, Donghoon; Kim, Youngsik

    2018-01-01

    Cell design and optimization of the components, including active materials and passive components, play an important role in constructing robust, high-performance rechargeable batteries. Seawater batteries, which utilize earth-abundant and natural seawater as the active material in an open-structured cathode, require a new platform for building and testing the cells other than typical Li-ion coin-type or pouch-type cells. Herein, we present new findings based on our optimized cell. Engineering the cathode components-improving the wettability of cathode current collector and seawater catholyte flow-improves the battery performance (voltage efficiency). Optimizing the cell component and design is the key to identifying the electrochemical processes and reactions of active materials. Hence, the outcome of this research can provide a systematic study of potentially active materials used in seawater batteries and their effectiveness on the electrochemical performance.

  2. MET-activating Residues in the B-repeat of the Listeria monocytogenes Invasion Protein InlB*

    PubMed Central

    Bleymüller, Willem M.; Lämmermann, Nina; Ebbes, Maria; Maynard, Daniel; Geerds, Christina; Niemann, Hartmut H.

    2016-01-01

    The facultative intracellular pathogen Listeria monocytogenes causes listeriosis, a rare but life-threatening disease. Host cell entry begins with activation of the human receptor tyrosine kinase MET through the bacterial invasion protein InlB, which contains an internalin domain, a B-repeat, and three GW domains. The internalin domain is known to bind MET, but no interaction partner is known for the B-repeat. Adding the B-repeat to the internalin domain potentiates MET activation and is required to stimulate Madin-Darby canine kidney (MDCK) cell scatter. Therefore, it has been hypothesized that the B-repeat may bind a co-receptor on host cells. To test this hypothesis, we mutated residues that might be important for binding an interaction partner. We identified two adjacent residues in strand β2 of the β-grasp fold whose mutation abrogated induction of MDCK cell scatter. Biophysical analysis indicated that these mutations do not alter protein structure. We then tested these mutants in human HT-29 cells that, in contrast to the MDCK cells, were responsive to the internalin domain alone. These assays revealed a dominant negative effect, reducing the activity of a construct of the internalin domain and mutated B-repeat below that of the individual internalin domain. Phosphorylation assays of MET and its downstream targets AKT and ERK confirmed the dominant negative effect. Attempts to identify a host cell receptor for the B-repeat were not successful. We conclude that there is limited support for a co-receptor hypothesis and instead suggest that the B-repeat contributes to MET activation through low affinity homodimerization. PMID:27789707

  3. A homogeneous cell-based assay for measurement of endogenous paraoxonase 1 activity.

    PubMed

    Ahmad, Syed; Carter, Jade J; Scott, John E

    2010-05-01

    Paraoxonase 1 (PON1) is a high-density lipoprotein-associated enzyme that plays an important role in organophosphate detoxification and prevention of atherosclerosis. Thus, there is significant interest in identifying nutritional and pharmacological enhancers of PON1 activity. To identify such compounds, we developed a rapid homogeneous assay to detect endogenous cell-associated PON1 activity. PON1 activity was measured by the simple addition of fluorigenic PON1 substrate DEPFMU to live Huh7 cells in medium and monitoring change in fluorescence. A specific PON1 inhibitor, 2-hydroxyquinoline, was used to confirm that the observed activity was due to PON1. The assay was optimized and characterized with regard to time course, substrate and sodium chloride concentration, number of cells, and tolerance to dimethyl sulfoxide and serum. Aspirin, quercetin, and simvastatin are compounds reported to increase PON1 expression. Consistent with the literature and Western blot data, these compounds enhanced PON1 activity in this assay with comparable efficacies and potencies. A known toxic compound did not increase assay signal. This assay method also detected PON1 activity in normal hepatocytes. Thus, a novel homogeneous assay for detection of endogenous PON1 expression has been developed and is amenable to high-throughput screening for the identification of small molecules that enhance PON1 expression. 2010 Elsevier Inc. All rights reserved.

  4. Promoters active in interphase are bookmarked during mitosis by ubiquitination

    PubMed Central

    Arora, Mansi; Zhang, Jie; Heine, George F.; Ozer, Gulcin; Liu, Hui-wen; Huang, Kun; Parvin, Jeffrey D.

    2012-01-01

    We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis. PMID:22941662

  5. Infection-induced regulation of natural killer cells by macrophages and collagen at the lymph node subcapsular sinus.

    PubMed

    Coombes, Janine L; Han, Seong-Ji; van Rooijen, Nico; Raulet, David H; Robey, Ellen A

    2012-07-26

    Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii mouse infection models to address this question. We found that after infection, NK cells accumulated in the subcapsular region of the lymph node, where they formed low-motility contacts with collagen fibers and CD169(+) macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169(+) macrophages increase the activation state of NK cells. Interestingly, a subset of CD169(+) macrophages that coexpress the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated after infection and identify an important accessory cell population for activation of NK cell responses in lymph nodes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Cancer cells become less deformable and more invasive with activation of β-adrenergic signaling

    PubMed Central

    Gill, Navjot Kaur; Nyberg, Kendra D.; Nguyen, Angelyn V.; Hohlbauch, Sophia V.; Geisse, Nicholas A.; Nowell, Cameron J.; Sloan, Erica K.

    2016-01-01

    ABSTRACT Invasion by cancer cells is a crucial step in metastasis. An oversimplified view in the literature is that cancer cells become more deformable as they become more invasive. β-adrenergic receptor (βAR) signaling drives invasion and metastasis, but the effects on cell deformability are not known. Here, we show that activation of β-adrenergic signaling by βAR agonists reduces the deformability of highly metastatic human breast cancer cells, and that these stiffer cells are more invasive in vitro. We find that βAR activation also reduces the deformability of ovarian, prostate, melanoma and leukemia cells. Mechanistically, we show that βAR-mediated cell stiffening depends on the actin cytoskeleton and myosin II activity. These changes in cell deformability can be prevented by pharmacological β-blockade or genetic knockout of the β2-adrenergic receptor. Our results identify a β2-adrenergic–Ca2+–actin axis as a new regulator of cell deformability, and suggest that the relationship between cell mechanical properties and invasion might be dependent on context. PMID:27875276

  7. Adipose-Derived Stem Cells Enhance Cancer Stem Cell Property and Tumor Formation Capacity in Lewis Lung Carcinoma Cells Through an Interleukin-6 Paracrine Circuit.

    PubMed

    Lu, Jui-Hua; Wei, Hong-Jian; Peng, Bou-Yue; Chou, Hsin-Hua; Chen, Wei-Hong; Liu, Hen-Yu; Deng, Win-Ping

    2016-12-01

    Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention and emerged as therapeutic approaches in several medical fields. Although current knowledge of the biological impacts of ADSCs in cancer research is greatly improved, the underlying effects of ADSCs in tumor development remain controversial and cause the safety concerns in clinical utilization. Hence, we isolated primary ADSCs from the abdominal fat of mice and conducted interaction of ADSCs with Lewis lung carcinoma cells in culture and in mice to investigate the impacts of ADSCs on tumor development. Cytokine array and neutralizing antibody were further utilized to identify the key regulator and downstream signaling pathway. In this study, we demonstrated that ADSCs enhance the malignant characteristics of LLC1 cells, including cell growth ability and especially cancer stem cell property. ADSCs were then identified to promote tumor formation and growth in mice. We further determined that ADSC interaction with LLC1 cells stimulates increased secretion of interleukin-6 mainly from ADSCs, which then act in a paracrine manner on LLC1 cells to enhance their malignant characteristics. Interleukin-6 was also identified to regulate genes related to cell proliferation and cancer stem cell, as well as to activate JAK2/STAT3, a predominant interleukin-6-activated pathway, in LLC1 cells. Collectively, we demonstrated that ADSCs play a pro-malignant role in tumor development of Lewis lung carcinoma cells by particularly promoting cancer stem cell property through interleukin-6 paracrine circuit, which is important for safety considerations regarding the clinical application of ADSCs.

  8. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans

    PubMed Central

    Gorrepati, Lakshmi; Krause, Michael W.; Chen, Weiping; Brodigan, Thomas M.; Correa-Mendez, Margarita; Eisenmann, David M.

    2015-01-01

    The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type–specific "mRNA tagging" to enrich for VPC and seam cell–specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type–specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. PMID:26048561

  9. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women.

    PubMed

    White, Yvonne A R; Woods, Dori C; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L

    2012-02-26

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a fluorescence-activated cell sorting-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically active cells that have a gene expression profile that is consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and can spontaneously generate 35- to 50-μm oocytes, as determined by morphology, gene expression and haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1-2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, similar to adult mice, possess rare mitotically active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo.

  10. ATP1B3 Protein Modulates the Restriction of HIV-1 Production and Nuclear Factor κ Light Chain Enhancer of Activated B Cells (NF-κB) Activation by BST-2*

    PubMed Central

    Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi

    2016-01-01

    Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617

  11. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy

    PubMed Central

    Bridgeman, J S; Ladell, K; Sheard, V E; Miners, K; Hawkins, R E; Price, D A; Gilham, D E

    2014-01-01

    Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions. PMID:24116999

  12. Magnitude and kinetics of CD8+ T cell activation during hyperacute HIV infection impacts viral set point

    PubMed Central

    Ndhlovu, Zaza; Kamya, Philomena; Mewalal, Nikoshia; Kløverpris, Henrik N.; Nkosi, Thandeka; Pretorius, Karyn; Laher, Faatima; Ogunshola, Funsho; Chopera, Denis; Shekhar, Karthik; Ghebremichael, Musie; Ismail, Nasreen; Moodley, Amber; Malik, Amna; Leslie, Alasdair; Goulder, Philip J.R; Buus, Søren; Chakraborty, Arup; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.

    2015-01-01

    Summary CD8+ T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified twelve hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8+ T cell response, with limited bystander activation of non-HIV memory CD8+ T cells. HIV-specific CD8+ T cells secreted little interferon-γ, underwent rapid apoptosis and failed to upregulate the interleukin 7 receptor, known to be important for T cell survival. The rapidity to peak CD8+ T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8+ T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design. PMID:26362266

  13. Tartrate-resistant acid phosphatase (TRAP/ACP5) promotes metastasis-related properties via TGFβ2/TβR and CD44 in MDA-MB-231 breast cancer cells.

    PubMed

    Reithmeier, Anja; Panizza, Elena; Krumpel, Michael; Orre, Lukas M; Branca, Rui M M; Lehtiö, Janne; Ek-Rylander, Barbro; Andersson, Göran

    2017-09-15

    Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFβ) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFβ isoform 2 (TGFβ2), TGFβ receptor type 1 (TβR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical inhibition demonstrated that TRAP-dependent migration and proliferation is regulated via TGFβ2/TβR, whereas proliferation beyond basal levels is regulated through CD44. Altogether, TRAP promotes metastasis-related cell properties in MDA-MB-231 breast cancer cells via TGFβ2/TβR and CD44, thereby identifying a potential signaling mechanism associated to TRAP action in breast cancer cells.

  14. Alpha-Fetoprotein, Identified as a Novel Marker for the Antioxidant Effect of Placental Extract, Exhibits Synergistic Antioxidant Activity in the Presence of Estradiol

    PubMed Central

    Choi, Hye Yeon; Kim, Seung Woo; Kim, BongWoo; Lee, Hae Na; Kim, Su-Jeong; Song, Minjung; Kim, Sol; Kim, Jungho; Kim, Young Bong; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-01-01

    Placenta, as a reservoir of nutrients, has been widely used in medical and cosmetic materials. Here, we focused on the antioxidant properties of placental extract and attempted to isolate and identify the main antioxidant factors. Porcine placental extracts were prepared through homogenization or acid hydrolysis, and their antioxidant activity was investigated in the human keratinocyte HaCaT cell line. Treatment with homogenized placental extract (H-PE) increased the cell viability of H2O2-treated HaCaT cells more than two-fold. H-PE treatment suppressed H2O2-induced apoptotic and necrotic cell death and decreased intracellular ROS levels in H2O2-treated HaCaT cells. The antioxidant factors in H-PE were found to be thermo-unstable and were thus expected to include proteins. The candidate antioxidant proteins were fractionated with cation-exchange, anion-exchange, and size-exclusion chromatography, and the antioxidant properties of the chromatographic fractions were investigated. We obtained specific antioxidant fractions that suppressed ROS generation and ROS-induced DNA strand breaks. From silver staining and MALDI-TOF analyses, alpha-fetoprotein (AFP) precursor was identified as a main marker for the antioxidant effect of H-PE. Purified AFP or ectopically expressed AFP exhibited synergistic antioxidant activity in the presence of estradiol. Taken together, our data suggest that AFP, a serum glycoprotein produced at high levels during fetal development, is a novel marker protein for the antioxidant effect of the placenta that exhibits synergistic antioxidant activity in the presence of estradiol. PMID:24922551

  15. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate

    PubMed Central

    Yu, Wenxi; Daniel, Joshua; Mehta, Dhara; Maddipati, Krishna Rao

    2017-01-01

    Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS), which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA), which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA—inositol depletion and GSK3 inhibition. PMID:28817575

  16. PLCε1 regulates SDF-1α–induced lymphocyte adhesion and migration to sites of inflammation

    PubMed Central

    Strazza, Marianne; Azoulay-Alfaguter, Inbar; Peled, Michael; Smrcka, Alan V.; Skolnik, Edward Y.; Srivastava, Shekhar; Mor, Adam

    2017-01-01

    Regulation of integrins is critical for lymphocyte adhesion to endothelium and migration throughout the body. Inside-out signaling to integrins is mediated by the small GTPase Ras-proximate-1 (Rap1). Using an RNA-mediated interference screen, we identified phospholipase Cε 1 (PLCε1) as a crucial regulator of stromal cell-derived factor 1 alpha (SDF-1α)-induced Rap1 activation. We have shown that SDF-1α-induced activation of Rap1 is transient in comparison with the sustained level following cross-linking of the antigen receptor. We identified that PLCε1 was necessary for SDF-1α-induced adhesion using shear stress, cell morphology alterations, and crawling on intercellular adhesion molecule 1 (ICAM-1)–expressing cells. Structure–function experiments to separate the dual-enzymatic function of PLCε1 uncover necessary contributions of the CDC25, Pleckstrin homology, and Ras-associating domains, but not phospholipase activity, to this pathway. In the mouse model of delayed type hypersensitivity, we have shown an essential role for PLCε1 in T-cell migration to inflamed skin, but not for cytokine secretion and proliferation in regional lymph nodes. Our results reveal a signaling pathway where SDF-1α induces T-cell adhesion through activation of PLCε1, suggesting that PLCε1 is a specific potential target in treating conditions involving migration of T cells to inflamed organs. PMID:28213494

  17. Proton channel HVCN1 is required for effector functions of mouse eosinophils

    PubMed Central

    2013-01-01

    Background Proton currents are required for optimal respiratory burst in phagocytes. Recently, HVCN1 was identified as the molecule required for the voltage-gated proton channel activity associated with the respiratory burst in neutrophils. Although there are similarities between eosinophils and neutrophils regarding their mechanism for respiratory burst, the role of proton channels in eosinophil functions has not been fully understood. Results In the present study, we first identified the expression of the proton channel HVCN1 in mouse eosinophils. Furthermore, using HVCN1-deficient eosinophils, we demonstrated important cell-specific effector functions for HVCN1. Similar to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils produced significantly less reactive oxygen species (ROS) upon phorbol myristate acetate (PMA) stimulation compared with WT eosinophils. In contrast to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils did not show impaired calcium mobilization or migration ability compared with wild-type (WT) cells. Uniquely, HVCN1-deficient eosinophils underwent significantly increased cell death induced by PMA stimulation compared with WT eosinophils. The increased cell death was dependent on NADPH oxidase activation, and correlated with the failure of HVCN1-deficient cells to maintain membrane polarization and intracellular pH in the physiological range upon activation. Conclusions Eosinophils require proton channel HVCN1 for optimal ROS generation and prevention of activation-induced cell death. PMID:23705768

  18. MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate.

    PubMed

    Yu, Wenxi; Daniel, Joshua; Mehta, Dhara; Maddipati, Krishna Rao; Greenberg, Miriam L

    2017-01-01

    Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS), which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA), which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA-inositol depletion and GSK3 inhibition.

  19. Constitutive activation of alternative nuclear factor kappa B pathway in canine diffuse large B-cell lymphoma contributes to tumor cell survival and is a target of new adjuvant therapies.

    PubMed

    Seelig, Davis M; Ito, Daisuke; Forster, Colleen L; Yoon, Una A; Breen, Matthew; Burns, Linda J; Bachanova, Veronika; Lindblad-Toh, Kerstin; O'Brien, Timothy D; Schmechel, Stephen C; Rizzardi, Anthony E; Modiano, Jaime F; Linden, Michael A

    2017-07-01

    Activation of the classical nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway is a common molecular event observed in both human and canine diffuse large B-cell lymphoma (DLBCL). Although the oncogenic potential of the alternative NFκB pathway (ANFκBP) has also been recently identified in DLBCL, its precise role in tumor pathogenesis and potential as a treatment target is understudied. We hypothesized that up-regulation of the ANFκBP plays an important role in the proliferation and survival of canine DLBCL cells, and we demonstrate that the ANFκBP is constitutively active in primary canine DLBCL samples and a cell line (CLBL1). We further demonstrate that a small interfering RNA inhibits the activation of the NFκB pathway and induces apoptosis in canine DLBCL cells. In conclusion, the ANFκBP facilitates survival of canine DLBCL cells, and thus, dogs with spontaneous DLBCL can provide a useful large animal model to study therapies targeting the ANFκBP.

  20. A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells

    PubMed Central

    2011-01-01

    Background Cells of most human cancers have supernumerary centrosomes. To enable an accurate chromosome segregation and cell division, these cells developed a yet unresolved molecular mechanism, clustering their extra centrosomes at two poles, thereby mimicking mitosis in normal cells. Failure of this bipolar centrosome clustering causes multipolar spindle structures and aberrant chromosomes segregation that prevent normal cell division and lead to 'mitotic catastrophe cell death'. Methods We used cell biology and biochemical methods, including flow cytometry, immunocytochemistry and live confocal imaging. Results We identified a phenanthrene derived PARP inhibitor, known for its activity in neuroprotection under stress conditions, which exclusively eradicated multi-centrosomal human cancer cells (mammary, colon, lung, pancreas, ovarian) while acting as extra-centrosomes de-clustering agent in mitosis. Normal human proliferating cells (endothelial, epithelial and mesenchymal cells) were not impaired. Despite acting as PARP inhibitor, the cytotoxic activity of this molecule in cancer cells was not attributed to PARP inhibition alone. Conclusion We identified a water soluble phenanthridine that exclusively targets the unique dependence of most human cancer cells on their supernumerary centrosomes bi-polar clustering for their survival. This paves the way for a new selective cancer-targeting therapy, efficient in a wide range of human cancers. PMID:21943092

  1. Complementary Cell-Based High Throughput Screens Identify Novel Modulators of the Unfolded Protein Response

    PubMed Central

    Fribley, Andrew M.; Cruz, Patricia G.; Miller, Justin R.; Callaghan, Michael U.; Cai, Peter; Narula, Neha; Neubig, Richard R.; Showalter, Hollis D.; Larsen, Scott D.; Kirchhoff, Paul D.; Larsen, Martha J.; Burr, Douglas A.; Schultz, Pamela J.; Jacobs, Renju R.; Tamayo-Castillo, Giselle; Ron, David; Sherman, David H.; Kaufman, Randal J.

    2012-01-01

    Despite advances toward understanding the prevention and treatment of many cancers, patients who suffer from oral squamous cell carcinoma (OSCC) confront a survival rate that has remained unimproved for more than two decades indicating our ability to treat them pharmacologically has reached a plateau. In an ongoing effort to improve the clinical outlook for this disease, we previously reported that an essential component of the mechanism by which the proteasome inhibitor bortezomib (PS-341, Velcade) induced apoptosis in OSCC required the activation of a terminal unfolded protein response (UPR). Predicated on these studies, we hypothesized that high throughput screening (HTS) of large diverse chemical libraries might identify more potent or selective small molecule activators of the apoptotic arm of the UPR to control or kill OSCC. We have developed complementary cell-based assays using stably transfected CHO-K1 cell lines that individually assess the PERK/eIF2α/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR sub-pathways. A ~66K compound collection was screened at the University of Michigan Center for Chemical Genomics that included a unique library of pre-fractionated natural product extracts. The mycotoxin methoxycitrinin was isolated from a natural extract and found to selectively activate the CHOP-luciferase reporter at 80μM. A series of citrinin derivatives were isolated from these extracts, including a unique congener that has not been previously described. In an effort to identify more potent compounds we examined the ability of citrinin and the structurally related mycotoxins ochratoxin A and patulin to activate the UPR. Strikingly, we found that patulin at 2.5 – 10μM induced a terminal UPR in a panel of OSCC cells that was characterized by an increase in CHOP, GADD34 and ATF3 gene expression and XBP1 splicing. A luminescent caspase assay and the induction of several BH3-only genes indicated that patulin could induce apoptosis in OSCC cells. These data support the use of this complementary HTS strategy to identify novel modulators of UPR signaling and tumor cell death. PMID:21844328

  2. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia.

    PubMed

    Perez, Dominique R; Smagley, Yelena; Garcia, Matthew; Carter, Mark B; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S; Sklar, Larry A; Chigaev, Alexandre

    2016-06-07

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.

  3. p38α phosphorylates serine 258 within the cytoplasmic domain of tissue factor and prevents its incorporation into cell-derived microparticles.

    PubMed

    Ettelaie, Camille; Elkeeb, Azza M; Maraveyas, Anthony; Collier, Mary Elizabeth W

    2013-03-01

    We previously showed that the phosphorylation of Ser253 within the cytoplasmic domain of human tissue factor (TF) initiates the incorporation and release of this protein into cell-derived microparticles. Furthermore, subsequent phosphorylation of Ser258 terminates this process. However, the identity of the kinase responsible for the phosphorylation of Ser258 and mode of action of this enzyme remain unknown. In this study, p38α was identified as the proline-directed kinase capable of phosphorylating Ser258 specifically, and without any detectable activity towards Ser253. Furthermore, using synthetic peptides, it was shown that the Km for the reaction decreased by approximately 10 fold on substitution of Ser253 with phospho-Ser253. Either inhibition of p38 using SB202190 or knockdown of p38α expression in coronary artery endothelial cells overexpressing wild-type TF, resulted in decreased phosphorylation of Ser258, following activation of cells with PAR2-agonist peptide (PAR2-AP). In agreement with our previous data, inhibition of phosphorylation of this residue maintained the release of TF. Activation of PAR2 in cells transfected to overexpress TF, resulted in two separate peaks of p38 activity at approximately 40 and 120 min post-activation. Furthermore, overexpression of Ala253-substituted TF enhanced the second p38 activation peak. However, the second peak was absent in cells devoid of TF or in cells overexpressing the Asp253-substituted TF. Our data clearly identifies p38α as a kinase capable of phosphorylating Ser258 within the cytoplasmic domain of TF. Moreover, it appears that the presence of TF within the cells regulates the late activation of p38 and consequently the termination of TF release into microparticles. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling.

    PubMed

    Zhao, Yingxin; Valbuena, Gustavo; Walker, David H; Gazi, Michal; Hidalgo, Marylin; DeSousa, Rita; Oteo, Jose Antonio; Goez, Yenny; Brasier, Allan R

    2016-01-01

    Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from those produced by nonspecific LPS stimulation. These patterns of differentially expressed proteins suggest mechanisms of pathogenesis as well as methods for diagnosis and monitoring Rickettsia infections. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape

    PubMed Central

    Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter

    2018-01-01

    Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. PMID:29553368

  6. Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin.

    PubMed

    Shu, Benshui; Zhang, Jingjing; Sethuraman, Veeran; Cui, Gaofeng; Yi, Xin; Zhong, Guohua

    2017-10-16

    As an important botanical pesticide, azadirachtin demonstrates broad insecticidal activity against many agricultural pests. The results of a previous study indicated the toxicity and apoptosis induction of azadirachtin in Spodoptera frugiperda Sf9 cells. However, the lack of genomic data has hindered a deeper investigation of apoptosis in Sf9 cells at a molecular level. In the present study, the complete transcriptome data for Sf9 cell line was accomplished using Illumina sequencing technology, and 97 putative apoptosis-related genes were identified through BLAST and KEGG orthologue annotations. Fragments of potential candidate apoptosis-related genes were cloned, and the mRNA expression patterns of ten identified genes regulated by azadirachtin were examined using qRT-PCR. Furthermore, Western blot analysis showed that six putative apoptosis-related proteins were upregulated after being treated with azadirachtin while the protein Bcl-2 were downregulated. These data suggested that both intrinsic and extrinsic apoptotic signal pathways comprising the identified potential apoptosis-related genes were potentially active in S. frugiperda. In addition, the preliminary results revealed that caspase-dependent or caspase-independent apoptotic pathways could function in azadirachtin-induced apoptosis in Sf9 cells.

  7. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

    PubMed

    Sonveaux, Pierre; Copetti, Tamara; De Saedeleer, Christophe J; Végran, Frédérique; Verrax, Julien; Kennedy, Kelly M; Moon, Eui Jung; Dhup, Suveera; Danhier, Pierre; Frérart, Françoise; Gallez, Bernard; Ribeiro, Anthony; Michiels, Carine; Dewhirst, Mark W; Feron, Olivier

    2012-01-01

    Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

  8. Langerin+ dermal dendritic cells are critical for CD8+ T cell activation and IgH γ-1 class switching in response to gene gun vaccines.

    PubMed

    Stoecklinger, Angelika; Eticha, Tekalign D; Mesdaghi, Mehrnaz; Kissenpfennig, Adrien; Malissen, Bernard; Thalhamer, Josef; Hammerl, Peter

    2011-02-01

    The C-type lectin langerin/CD207 was originally discovered as a specific marker for epidermal Langerhans cells (LC). Recently, additional and distinct subsets of langerin(+) dendritic cells (DC) have been identified in lymph nodes and peripheral tissues of mice. Although the role of LC for immune activation or modulation is now being discussed controversially, other langerin(+) DC appear crucial for protective immunity in a growing set of infection and vaccination models. In knock-in mice that express the human diphtheria toxin receptor under control of the langerin promoter, injection of diphtheria toxin ablates LC for several weeks whereas other langerin(+) DC subsets are replenished within just a few days. Thus, by careful timing of diphtheria toxin injections selective states of deficiency in either LC only or all langerin(+) cells can be established. Taking advantage of this system, we found that, unlike selective LC deficiency, ablation of all langerin(+) DC abrogated the activation of IFN-γ-producing and cytolytic CD8(+) T cells after gene gun vaccination. Moreover, we identified migratory langerin(+) dermal DC as the subset that directly activated CD8(+) T cells in lymph nodes. Langerin(+) DC were also critical for IgG1 but not IgG2a Ab induction, suggesting differential polarization of CD4(+) T helper cells by langerin(+) or langerin-negative DC, respectively. In contrast, protein vaccines administered with various adjuvants induced IgG1 independently of langerin(+) DC. Taken together, these findings reflect a highly specialized division of labor between different DC subsets both with respect to Ag encounter as well as downstream processes of immune activation.

  9. Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis

    PubMed Central

    Sonveaux, Pierre; Copetti, Tamara; De Saedeleer, Christophe J.; Végran, Frédérique; Verrax, Julien; Kennedy, Kelly M.; Moon, Eui Jung; Dhup, Suveera; Danhier, Pierre; Frérart, Françoise; Gallez, Bernard; Ribeiro, Anthony; Michiels, Carine

    2012-01-01

    Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities. PMID:22428047

  10. Aronia melanocarpa juice induces a redox-sensitive p73-related caspase 3-dependent apoptosis in human leukemia cells.

    PubMed

    Sharif, Tanveer; Alhosin, Mahmoud; Auger, Cyril; Minker, Carole; Kim, Jong-Hun; Etienne-Selloum, Nelly; Bories, Pierre; Gronemeyer, Hinrich; Lobstein, Annelise; Bronner, Christian; Fuhrmann, Guy; Schini-Kerth, Valérie B

    2012-01-01

    Polyphenols are natural compounds widely present in fruits and vegetables, which have antimutagenic and anticancer properties. The aim of the present study was to determine the anticancer effect of a polyphenol-rich Aronia melanocarpa juice (AMJ) containing 7.15 g/L of polyphenols in the acute lymphoblastic leukemia Jurkat cell line, and, if so, to clarify the underlying mechanism and to identify the active polyphenols involved. AMJ inhibited cell proliferation, which was associated with cell cycle arrest in G(2)/M phase, and caused the induction of apoptosis. These effects were associated with an upregulation of the expression of tumor suppressor p73 and active caspase 3, and a downregulation of the expression of cyclin B1 and the epigenetic integrator UHRF1. AMJ significantly increased the formation of reactive oxygen species (ROS), decreased the mitochondrial membrane potential and caused the release of cytochrome c into the cytoplasm. Treatment with intracellular ROS scavengers prevented the AMJ-induced apoptosis and upregulation of the expression of p73 and active caspase 3. The fractionation of the AMJ and the use of identified isolated compounds indicated that the anticancer activity was associated predominantly with chlorogenic acids, some cyanidin glycosides, and derivatives of quercetin. AMJ treatment also induced apoptosis of different human lymphoblastic leukemia cells (HSB-2, Molt-4 and CCRF-CEM). In addition, AMJ exerted a strong pro-apoptotic effect in human primary lymphoblastic leukemia cells but not in human normal primary T-lymphocytes. Thus, the present findings indicate that AMJ exhibits strong anticancer activity through a redox-sensitive mechanism in the p53-deficient Jurkat cells and that this effect involves several types of polyphenols. They further suggest that AMJ has chemotherapeutic properties against acute lymphoblastic leukemia by selectively targeting lymphoblast-derived tumor cells.

  11. A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication.

    PubMed

    Luthra, Priya; Liang, Jue; Pietzsch, Colette A; Khadka, Sudip; Edwards, Megan R; Wei, Shuguang; De, Sampriti; Posner, Bruce; Bukreyev, Alexander; Ready, Joseph M; Basler, Christopher F

    2018-02-01

    Ebola virus (EBOV) is an enveloped negative-sense, single-stranded RNA virus of the filovirus family that causes severe disease in humans. Approved therapies for EBOV disease are lacking. EBOV RNA synthesis is carried out by a virus-encoded complex with RNA-dependent RNA polymerase activity that is required for viral propagation. This complex and its activities are therefore potential antiviral targets. To identify potential lead inhibitors of EBOV RNA synthesis, a library of small molecule compounds was screened against a previously established assay of EBOV RNA synthesis, the EBOV minigenome assay (MGA), in 384 well microplate format. The screen identified 56 hits that inhibited EBOV MGA activity by more than 70% while exhibiting less than 20% cell cytotoxicity. Inhibitory chemical scaffolds included angelicin derivatives, derivatives of the antiviral compound GSK983 and benzoquinolines. Structure-activity relationship (SAR) studies of the benzoquinoline scaffold produced ∼50 analogs and led to identification of an optimized compound, SW456, with a submicromolar IC 50 in the EBOV MGA and antiviral activity against infectious EBOV in cell culture. The compound was also active against a MGA for another deadly filovirus, Marburg virus. It also exhibited antiviral activity towards a negative-sense RNA virus from the rhabdovirus family, vesicular stomatitis virus, and a positive-sense RNA virus, Zika virus. Overall, these data demonstrate the potential of the EBOV MGA to identify anti-EBOV compounds and identifies the benzoquinoline series as a broad-spectrum antiviral lead. Copyright © 2017. Published by Elsevier B.V.

  12. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements

    PubMed Central

    Mumbach, Maxwell R; Satpathy, Ansuman T; Boyle, Evan A; Dai, Chao; Gowen, Benjamin G; Cho, Seung Woo; Nguyen, Michelle L; Rubin, Adam J; Granja, Jeffrey M; Kazane, Katelynn R; Wei, Yuning; Nguyen, Trieu; Greenside, Peyton G; Corces, M Ryan; Tycko, Josh; Simeonov, Dimitre R; Suliman, Nabeela; Li, Rui; Xu, Jin; Flynn, Ryan A; Kundaje, Anshul; Khavari, Paul A; Marson, Alexander; Corn, Jacob E; Quertermous, Thomas; Greenleaf, William J; Chang, Howard Y

    2018-01-01

    The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer–promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases. PMID:28945252

  13. Methamphetamine toxicity-induced calcineurin activation, nuclear translocation of nuclear factor of activated T-cells and elevation of cyclooxygenase 2 levels are averted by calpastatin overexpression in neuroblastoma SH-SY5Y cells.

    PubMed

    Chetsawang, Jirapa; Nudmamud-Thanoi, Sutisa; Phonchai, Ruchee; Abubakar, Zuroida; Govitrapong, Piyarat; Chetsawang, Banthit

    2018-06-23

    Methamphetamine (METH) is an addictive stimulant drug that has many negative consequences, including toxic effects to the brain. Recently, the induction of inflammatory processes has been identified as a potential contributing factor to induce neuronal cell degeneration. It has been demonstrated that the expression of inflammatory agents, such as cyclooxygenase 2 (COX-2), depends on the activation of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT). Moreover, the excessive elevation in cytosolic Ca 2+ levels activates the cell death process, including calpain activation in neurons, which was diminished by the overexpression of the calpain inhibitor protein, calpastatin. However, it is unclear whether calpain mediates CaN-NFAT activation in the neurotoxic process. In the present study, we observed that the toxic high dose of METH-treated neuroblastoma SH-SY5Y cells significantly decreased cell viability but increased apoptotic cell death, the active cleaved form of calcineurin, the nuclear translocation of NFAT, and COX-2 levels. Nevertheless, these toxic effects were diminished in METH-treated calpastatin-overexpressing SH-SY5Y cells. These findings might emphasize the role of calpastatin against METH-induced toxicity by a mechanism related to calpain-dependent CaN-NFAT activation-induced COX-2 expression. Copyright © 2018. Published by Elsevier B.V.

  14. The invisible addiction: Cell-phone activities and addiction among male and female college students

    PubMed Central

    PETNJI YAYA, LUC HONORE; MANOLIS, CHRIS

    2014-01-01

    Background and aims: The primary objective of the present study was to investigate which cell-phone activities are associated with cell-phone addiction. No research to date has studied the full-range of cell-phone activities, and their relationship to cell-phone addiction, across male and female cell-phone users. Methods: College undergraduates (N = 164) participated in an online survey. Participants completed the questionnaire as part of their class requirements. The questionnaire took 10 and 15 minutes to complete and contained a measure of cell-phone addiction and questions that asked how much time participants spent daily on 24 cell-phone activities. Results: Findings revealed cell-phone activities that are associated significantly with cell-phone addiction (e.g., Instagram, Pinterest), as well as activities that one might logically assume would be associated with this form of addiction but are not (e.g., Internet use and Gaming). Cell-phone activities that drive cell-phone addiction (CPA) were found to vary considerably across male and female cell-phone users. Although a strong social component drove CPA for both males and females, the specific activities associated with CPA differed markedly. Conclusions: CPA amongst the total sample is largely driven by a desire to connect socially. The activities found to be associated with CPA, however, differed across the sexes. As the functionality of cell-phones continues to expand, addiction to this seemingly indispensable piece of technology becomes an increasingly realistic possibility. Future research must identify the activities that push cell-phone use beyond its “;tipping point” where it crosses the line from a helpful tool to one that undermines our personal well-being and that of others. PMID:25595966

  15. The invisible addiction: cell-phone activities and addiction among male and female college students.

    PubMed

    Roberts, James A; Yaya, Luc Honore Petnji; Manolis, Chris

    2014-12-01

    The primary objective of the present study was to investigate which cell-phone activities are associated with cell-phone addiction. No research to date has studied the full-range of cell-phone activities, and their relationship to cell-phone addiction, across male and female cell-phone users. College undergraduates (N = 164) participated in an online survey. Participants completed the questionnaire as part of their class requirements. The questionnaire took 10 and 15 minutes to complete and contained a measure of cell-phone addiction and questions that asked how much time participants spent daily on 24 cell-phone activities. Findings revealed cell-phone activities that are associated significantly with cell-phone addiction (e.g., Instagram, Pinterest), as well as activities that one might logically assume would be associated with this form of addiction but are not (e.g., Internet use and Gaming). Cell-phone activities that drive cell-phone addiction (CPA) were found to vary considerably across male and female cell-phone users. Although a strong social component drove CPA for both males and females, the specific activities associated with CPA differed markedly. CPA amongst the total sample is largely driven by a desire to connect socially. The activities found to be associated with CPA, however, differed across the sexes. As the functionality of cell-phones continues to expand, addiction to this seemingly indispensable piece of technology becomes an increasingly realistic possibility. Future research must identify the activities that push cell-phone use beyond its “tipping point” where it crosses the line from a helpful tool to one that undermines our personal well-being and that of others.

  16. Conserved features of cancer cells define their sensitivity of HAMLET-induced death; c-Myc and glycolysis

    PubMed Central

    Storm, Petter; Puthia, Manoj Kumar; Aits, Sonja; Urbano, Alexander; Northen, Trent; Powers, Scott; Bowen, Ben; Chao, Yinxia; Reindl, Wolfgang; Lee, Do Yup; Sullivan, Nancy Liu; Zhang, Jianping; Trulsson, Maria; Yang, Henry; Watson, James; Svanborg, Catharina

    2014-01-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small hairpin RNA inhibition, proteomic and metabolomic technology we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted the sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, the HAMLET sensitivity was modified by the glycolytic state of the tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen Hexokinase 1, PFKFB1 and HIF1α modified HAMLET sensitivity. Hexokinase 1 was shown to bind HAMLET in a protein array containing approximately 8000 targets and Hexokinase activity decreased within 15 minutes of HAMLET treatment, prior to morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. The glycolytic machinery was modified and glycolysis was shifted towards the pentose phosphate pathway. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 minutes. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene-addiction or the Warburg effect. PMID:21643007

  17. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    PubMed

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  18. Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms.

    PubMed

    Johnson, Monica; Alsaleh, Nasser; Mendoza, Ryan P; Persaud, Indushekhar; Bauer, Alison K; Saba, Laura; Brown, Jared M

    2018-01-01

    Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.

  19. Anticancer activities of bovine and human lactoferricin-derived peptides.

    PubMed

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  20. An atlas of active enhancers across human cell types and tissues

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin

    2014-03-01

    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

  1. The haemagglutination activity of equine herpesvirus type 1 glycoprotein C.

    PubMed

    Andoh, Kiyohiko; Hattori, Shiho; Mahmoud, Hassan Y A H; Takasugi, Maaya; Shimoda, Hiroshi; Bannai, Hiroshi; Tsujimura, Koji; Matsumura, Tomio; Kondo, Takashi; Kirisawa, Rikio; Mochizuki, Masami; Maeda, Ken

    2015-01-02

    Equine herpesvirus type 1 (EHV-1) has haemagglutination (HA) activity toward equine red blood cells (RBCs), but the identity of its haemagglutinin is unknown. To identify the haemagglutinin of EHV-1, the major glycoproteins of EHV-1 were expressed in 293T cells, and the cells or cell lysates were mixed with equine RBCs. The results showed that only EHV-1 glycoprotein C (gC)-producing cells adsorbed equine RBCs, and that the lysate of EHV-1 gC-expressing cells agglutinated equine RBCs. EHV-1 lacking gC did not show HA activity. HA activity was inhibited by monoclonal antibodies (MAbs) specific for gC, but not by antibodies directed against other glycoproteins. In addition, HA activity was not inhibited by the addition of heparin. These results indicate that EHV-1 gC can bind equine RBCs irrespective of heparin, in contrast to other herpesvirus gC proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Isolation of a cDNA for a Growth Factor of Vascular Endothelial Cells from Human Lung Cancer Cells: Its Identity with Insulin‐like Growth Factor II

    PubMed Central

    Hagiwara, Koichi; Kobayashi, Tatsuo; Tobita, Masato; Kikyo, Nobuaki; Yazaki, Yoshio

    1995-01-01

    We have found growth‐promoting activity for vascular endothelial cells in the conditioned medium of a human lung cancer cell line, T3M‐11. Purification and characterization of the growth‐promoting activity have been carried out using ammonium sulfate precipitation and gel‐exclusion chromatography. The activity migrated as a single peak just after ribonuclease. It did not bind to a heparin affinity column. These results suggest that the activity is not a heparin‐binding growth factor (including fibroblast growth factors) or a vascular endothelial growth factor. To identify the molecule exhibiting the growth‐promoting activity, a cDNA encoding the growth factor was isolated through functional expression cloning in COS‐1 cells from a cDNA library prepared from T3M‐11 cells. The nucleotide sequence encoded by the cDNA proved to be identical with that of insulin‐like growth factor II. PMID:7730145

  3. Generators of the brainstem auditory evoked potential in cat. III: Identified cell populations.

    PubMed

    Melcher, J R; Kiang, N Y

    1996-04-01

    This paper examines the relationship between different brainstem cell populations and the brainstem auditory evoked potential (BAEP). First, we present a mathematical model relating the BAEP to underlying cellular activity. Then, we identify specific cellular generators of the click-evoked BAEP in cats by combining model-derived insights with key experimental data. These data include (a) a correspondence between particular brainstem regions and specific extrema in the BAEP waveform, determined from lesion experiments, and (b) values for model parameters derived from published physiological and anatomical information. Ultimately, we conclude (with varying degrees of confidence) that: (1) the earliest extrema in the BAEP are generated by spiral ganglion cells, (2) P2 is mainly generated by cochlear nucleus (CN) globular cells, (3) P3 is partly generated by CN spherical cells and partly by cells receiving inputs from globular cells, (4) P4 is predominantly generated by medial superior olive (MSO) principal cells, which are driven by spherical cells, (5) the generators of P5 are driven by MSO principal cells, and (6) the BAEP, as a whole, is generated mainly by cells with characteristic frequencies above 2 kHz. Thus, the BAEP in cats mainly reflects cellular activity in two parallel pathways, one originating with globular cells and the other with spherical cells. Since the globular cell pathway is poorly represented in humans, we suggest that the human BAEP is largely generated by brainstem cells in the spherical cell pathway. Given our conclusions, it should now be possible to relate activity in specific cell populations to psychophysical performance since the BAEP can be recorded in behaving humans and animals.

  4. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4

    PubMed Central

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M.; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L.; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A.; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L.; Burgdorf, Sven

    2016-01-01

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8+ T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte–associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality. PMID:27601670

  5. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.

    PubMed

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven

    2016-09-20

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.

  6. Estradiol targets T cell signaling pathways in human systemic lupus.

    PubMed

    Walters, Emily; Rider, Virginia; Abdou, Nabih I; Greenwell, Cindy; Svojanovsky, Stan; Smith, Peter; Kimler, Bruce F

    2009-12-01

    The major risk factor for developing systemic lupus erythematosus (SLE) is being female. The present study utilized gene profiles of activated T cells from females with SLE and healthy controls to identify signaling pathways uniquely regulated by estradiol that could contribute to SLE pathogenesis. Selected downstream pathway genes (+/- estradiol) were measured by real time polymerase chain amplification. Estradiol uniquely upregulated six pathways in SLE T cells that control T cell function including interferon-alpha signaling. Measurement of interferon-alpha pathway target gene expression revealed significant differences (p= 0.043) in DRIP150 (+/- estradiol) in SLE T cell samples while IFIT1 expression was bimodal and correlated moderately (r= 0.55) with disease activity. The results indicate that estradiol alters signaling pathways in activated SLE T cells that control T cell function. Differential expression of transcriptional coactivators could influence estrogen-dependent gene regulation in T cell signaling and contribute to SLE onset and disease pathogenesis.

  7. Ischemia Reperfusion Injury Triggers TNFα Induced-Necroptosis in Rat Retina.

    PubMed

    Kim, Cho Rong; Kim, Jie Hyun; Park, Hae-Young Lopilly; Park, Chan Kee

    2017-05-01

    A recent study revealed a novel form of cell death, termed necroptosis, or programmed necrosis. Previous research indicated that after ischemia-reperfusion (IR) injury to the retina, Tumor Necrosis Factor α (TNFα) is increased, which may activate necroptosis. This study observed macroglial cell activation, and in particular, astrocyte activation, after the release of TNFα and other necroptosis factors in the rat retina due to IR. IR was induced in the retinas of adult male Sprague-Dawley rats by increasing the intraocular pressure to 160 mmHg and then allowing reperfusion. In addition, to inhibit necroptosis, Nec-1 (necrostatin-1) was injected intravitreally after IR. Rats were sacrificed after reperfusion at 12 hours, 1, 3, and 5 days, and 1 and 2 weeks. Retinas from each time point were analyzed by immunohistochemistry (IHC) and Western blotting (WB) to identify the initiator of necroptosis, TNFα, the expression of necroptosis factors, such as receptor interacting protein (RIP) 1, 3, and inactive caspase 8, and Brn3a. Cell death in the IR-injured retinas was identified by cell counting. We found decreased retinal cell numbers in the inner and outer nuclear layers (INL and ONL), as well as in the ganglion cell layer (GCL). Increased glial cell activation was detected by using glial fibrillary acidic protein (GFAP) IHC. TNFα, RIP1, RIP3, and inactive caspase 8 were mainly expressed in the GCL after IR, as determined by IHC and WB. Nec-1 inhibited RIP1, a necroptosis factor, indicating protection against retinal cell loss after IR injury. We showed that IR injury triggered increases in both activation of astrocytes and the expression of TNFα. In addition, TNFα, which was activated by IR, triggered the release of necroptosis factors, particularly, in GCL. Inhibition of necroptosis using Nec-1 decreased the level of RIP1 and retinal cell loss in IR-injured retinas.

  8. Trastuzumab-Resistant Luminal B Breast Cancer Cells Show Basal-Like Cell Growth Features Through NF-κB-Activation

    PubMed Central

    Kanzaki, Hirotaka; Mukhopadhya, Nishit K.; Cui, Xiaojiang; Ramanujan, V. Krishnan

    2016-01-01

    A major clinical problem in the treatment of breast cancer is mortality due to metastasis. Understanding the molecular mechanisms associated with metastasis should aid in designing new therapeutic approaches for breast cancer. Trastuzumab is the main therapeutic option for HER2+ breast cancer patients; however, the molecular basis for trastuzumab resistance (TZR) and subsequent metastasis is not known. Earlier, we found expression of basal-like molecular markers in TZR tissues from patients with invasive breast cancer.(1) The basal-like phenotype is a particularly aggressive form of breast cancer. This observation suggests that TZR might contribute to an aggressive phenotype. To understand if resistance to TZR can lead to basal-like phenotype, we generated a trastuzumab-resistant human breast cancer cell line (BT-474-R) that maintained human epidermal growth factor receptor 2 (HER2) overexpression and HER2 mediated signaling. Analysis showed that nuclear factor-kappa B (NF-κB) was constitutively activated in the BT-474-R cells, a feature similar to the basal-like tumor phenotype. Pharmacologic inhibition of NF-κB improved sensitivity of BT-474-R cells to trastuzumab. Interestingly, activation of HER2 independent NF-κB is not shown in luminal B breast cancer cells. Our study suggests that by activating the NF-κB pathway, luminal B cells may acquire a HER2+ basal-like phenotype in which NF-κB is constitutively activated; this notion is consistent with the recently proposed “progression through grade” or “evolution of resistance” hypothesis. Furthermore, we identified IKK-α/IKK-β and nuclear accumulation of RelA/p65 as the major determinants in the resistant cells. Thus our study additionally suggests that the nuclear accumulation of p65 may be a useful marker for identifying metastasis-initiating tumor cells and targeting RelA/p65 may limit metastasis of breast and other cancers associated with NF-κB activation. PMID:26871511

  9. A Jagged road to lymphoma aggressiveness

    PubMed Central

    Radojcic, Vedran; Maillard, Ivan

    2014-01-01

    In this issue of Cancer Cell, Cao and colleagues identifyanFGF4/Jagged1-driven crosstalk between tumor cells and their vascular niche that activates Notch signaling, sustaining the aggressiveness of certain mouse and human B cell lymphomas. These findings identify new therapeutic opportunities to target pathogenic angiocrine functions in cancer. PMID:24651005

  10. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine

    USDA-ARS?s Scientific Manuscript database

    Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objectiv...

  11. Sox2, Tlx, Gli3, and Her9 converge on Rx2 to define retinal stem cells in vivo

    PubMed Central

    Reinhardt, Robert; Centanin, Lázaro; Tavhelidse, Tinatini; Inoue, Daigo; Wittbrodt, Beate; Concordet, Jean-Paul; Martinez-Morales, Juan Ramón; Wittbrodt, Joachim

    2015-01-01

    Transcriptional networks defining stemness in adult neural stem cells (NSCs) are largely unknown. We used the proximal cis-regulatory element (pCRE) of the retina-specific homeobox gene 2 (rx2) to address such a network. Lineage analysis in the fish retina identified rx2 as marker for multipotent NSCs. rx2-positive cells located in the peripheral ciliary marginal zone behave as stem cells for the neuroretina, or the retinal pigmented epithelium. We identified upstream regulators of rx2 interrogating the rx2 pCRE in a trans-regulation screen and focused on four TFs (Sox2, Tlx, Gli3, and Her9) activating or repressing rx2 expression. We demonstrated direct interaction of the rx2 pCRE with the four factors in vitro and in vivo. By conditional mosaic gain- and loss-of-function analyses, we validated the activity of those factors on regulating rx2 transcription and consequently modulating neuroretinal and RPE stem cell features. This becomes obvious by the rx2-mutant phenotypes that together with the data presented above identify rx2 as a transcriptional hub balancing stemness of neuroretinal and RPE stem cells in the adult fish retina. PMID:25908840

  12. Sox2, Tlx, Gli3, and Her9 converge on Rx2 to define retinal stem cells in vivo.

    PubMed

    Reinhardt, Robert; Centanin, Lázaro; Tavhelidse, Tinatini; Inoue, Daigo; Wittbrodt, Beate; Concordet, Jean-Paul; Martinez-Morales, Juan Ramón; Wittbrodt, Joachim

    2015-06-03

    Transcriptional networks defining stemness in adult neural stem cells (NSCs) are largely unknown. We used the proximal cis-regulatory element (pCRE) of the retina-specific homeobox gene 2 (rx2) to address such a network. Lineage analysis in the fish retina identified rx2 as marker for multipotent NSCs. rx2-positive cells located in the peripheral ciliary marginal zone behave as stem cells for the neuroretina, or the retinal pigmented epithelium. We identified upstream regulators of rx2 interrogating the rx2 pCRE in a trans-regulation screen and focused on four TFs (Sox2, Tlx, Gli3, and Her9) activating or repressing rx2 expression. We demonstrated direct interaction of the rx2 pCRE with the four factors in vitro and in vivo. By conditional mosaic gain- and loss-of-function analyses, we validated the activity of those factors on regulating rx2 transcription and consequently modulating neuroretinal and RPE stem cell features. This becomes obvious by the rx2-mutant phenotypes that together with the data presented above identify rx2 as a transcriptional hub balancing stemness of neuroretinal and RPE stem cells in the adult fish retina. © 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  13. Human NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase.

    PubMed

    Liu, Xiao; Pichulik, Tica; Wolz, Olaf-Oliver; Dang, Truong-Minh; Stutz, Andrea; Dillen, Carly; Delmiro Garcia, Magno; Kraus, Helene; Dickhöfer, Sabine; Daiber, Ellen; Münzenmayer, Lisa; Wahl, Silke; Rieber, Nikolaus; Kümmerle-Deschner, Jasmin; Yazdi, Amir; Franz-Wachtel, Mirita; Macek, Boris; Radsak, Markus; Vogel, Sebastian; Schulte, Berit; Walz, Juliane Sarah; Hartl, Dominik; Latz, Eicke; Stilgenbauer, Stephan; Grimbacher, Bodo; Miller, Lloyd; Brunner, Cornelia; Wolz, Christiane; Weber, Alexander N R

    2017-10-01

    The Nod-like receptor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) and Bruton tyrosine kinase (BTK) are protagonists in innate and adaptive immunity, respectively. NLRP3 senses exogenous and endogenous insults, leading to inflammasome activation, which occurs spontaneously in patients with Muckle-Wells syndrome; BTK mutations cause the genetic immunodeficiency X-linked agammaglobulinemia (XLA). However, to date, few proteins that regulate NLRP3 inflammasome activity in human primary immune cells have been identified, and clinically promising pharmacologic targeting strategies remain elusive. We sought to identify novel regulators of the NLRP3 inflammasome in human cells with a view to exploring interference with inflammasome activity at the level of such regulators. After proteome-wide phosphoproteomics, the identified novel regulator BTK was studied in human and murine cells by using pharmacologic and genetic BTK ablation. Here we show that BTK is a critical regulator of NLRP3 inflammasome activation: pharmacologic (using the US Food and Drug Administration-approved inhibitor ibrutinib) and genetic (in patients with XLA and Btk knockout mice) BTK ablation in primary immune cells led to reduced IL-1β processing and secretion in response to nigericin and the Staphylococcus aureus toxin leukocidin AB (LukAB). BTK affected apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and caspase-1 cleavage and interacted with NLRP3 and ASC. S aureus infection control in vivo and IL-1β release from cells of patients with Muckle-Wells syndrome were impaired by ibrutinib. Notably, IL-1β processing and release from immune cells isolated from patients with cancer receiving ibrutinib therapy were reduced. Our data suggest that XLA might result in part from genetic inflammasome deficiency and that NLRP3 inflammasome-linked inflammation could potentially be targeted pharmacologically through BTK. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Identification of LMO2 transcriptome and interactome in diffuse large B-cell lymphoma

    PubMed Central

    Cubedo, Elena; Gentles, Andrew J.; Huang, Chuanxin; Natkunam, Yasodha; Bhatt, Shruti; Lu, Xiaoqing; Jiang, Xiaoyu; Romero-Camarero, Isabel; Freud, Aharon; Zhao, Shuchun; Bacchi, Carlos E.; Martínez-Climent, Jose A.; Sánchez-García, Isidro; Melnick, Ari

    2012-01-01

    LMO2 regulates gene expression by facilitating the formation of multipartite DNA-binding complexes. In B cells, LMO2 is specifically up-regulated in the germinal center (GC) and is expressed in GC-derived non-Hodgkin lymphomas. LMO2 is one of the most powerful prognostic indicators in diffuse large B-cell (DLBCL) patients. However, its function in GC B cells and DLBCL is currently unknown. In this study, we characterized the LMO2 transcriptome and transcriptional complex in DLBCL cells. LMO2 regulates genes implicated in kinetochore function, chromosome assembly, and mitosis. Overexpression of LMO2 in DLBCL cell lines results in centrosome amplification. In DLBCL, the LMO2 complex contains some of the traditional partners, such as LDB1, E2A, HEB, Lyl1, ETO2, and SP1, but not TAL1 or GATA proteins. Furthermore, we identified novel LMO2 interacting partners: ELK1, nuclear factor of activated T-cells (NFATc1), and lymphoid enhancer-binding factor1 (LEF1) proteins. Reporter assays revealed that LMO2 increases transcriptional activity of NFATc1 and decreases transcriptional activity of LEF1 proteins. Overall, our studies identified a novel LMO2 transcriptome and interactome in DLBCL and provides a platform for future elucidation of LMO2 function in GC B cells and DLBCL pathogenesis. PMID:22517897

  15. Metabolic responses induced by DNA damage and poly (ADP-ribose) polymerase (PARP) inhibition in MCF-7 cells

    PubMed Central

    Bhute, Vijesh J.; Palecek, Sean P.

    2015-01-01

    Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage. PMID:26478723

  16. Putative identification of components in Zengye Decoction and their effects on glucose consumption and lipogenesis in insulin-induced insulin-resistant HepG2 cells.

    PubMed

    Liu, Zhenzhen; Kuang, Wenhua; Xu, Xi; Li, Dandan; Zhu, Wufu; Lan, Zhou; Zhang, Xu

    2018-01-15

    Zengye Decoction (ZYD) is a well-known traditional medicine in China used for treating diseases associated with "Yin deficiency" such as diabetes. However, little information is available on its components, pharmacological effects and underlying mechanisms. This study was designed to identify its active components and evaluate the effects and mechanisms of ZYD on glucose consumption and lipogenesis in insulin-induced insulin-resistant (IR)-HepG2 cells. In this study, 45 compounds of ZYD were putatively identified, in which the iridoid glycosides such as catalpol, aucubin and harpagide were identified as the main components. The insulin-resistant (IR)-HepG2 cell model was established and the effect of ZYD at three doses (0.17, 0.5 and 1.5 μg/mL) on cell growth was evaluated with an IncuCyte™ live-cell imaging system. The effects of ZYD on glucose consumption and uptake were evaluated by glucose consumption and uptake assay. Meanwhile, the effect of ZYD on lipogenesis was investigated in IR-HepG2 cells by oil red O (ORO) staining. Western blot was applied to observe the changes in some of the key factors involved in glucose metabolism and lipogenesis. It was found that the ZYD at a dose of 1.5 μg/mL exhibited an inhibitory activity on IR-HepG2 cell growth. Besides, ZYD at doses of 0.5 and 1.5 μg/mL accelerated the glucose consumption, glucose uptake and reduced the lipogenesis in the IR-HepG2 cells. Western blot studies revealed that ZYD phosphorylated AMP-activated protein kinase α subunits (AMPKα), upregulated hexokinase (HK), phosphorylated acetyl-CoA carboxylase alpha (pACC1) and carnitine palmitoyltransferase 1A (CPT1A) in the IR-HepG2 cells. These results indicate ZYD promotes glucose consumption and uptake, and attenuates lipogenesis in IR-HepG2 cells, which may be involved in activating AMPK and regulating its downstream factors including HK, pACC1 and CPT1A. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. PKC-Dependent Human Monocyte Adhesion Requires AMPK and Syk Activation

    PubMed Central

    Chang, Mei-Ying; Huang, Duen-Yi; Ho, Feng-Ming; Huang, Kuo-Chin; Lin, Wan-Wan

    2012-01-01

    PKC plays a pivotal role in mediating monocyte adhesion; however, the underlying mechanisms of PKC-mediated cell adhesion are still unclear. In this study, we elucidated the signaling network of phorbol ester PMA-stimulated human monocyte adhesion. Our results with pharmacological inhibitors suggested the involvement of AMPK, Syk, Src and ERK in PKC-dependent adhesion of THP-1 monocytes to culture plates. Biochemical analysis further confirmed the ability of PMA to activate these kinases, as well as the involvement of AMPK-Syk-Src signaling in this event. Direct protein interaction between AMPK and Syk, which requires the kinase domain of AMPK and linker region of Syk, was observed following PMA stimulation. Notably, we identified Syk as a novel downstream target of AMPK; AICAR can induce Syk phosphorylation at Ser178 and activation of this kinase. However, activation of AMPK alone, either by stimulation with AICAR or by overexpression, is not sufficient to induce monocyte adhesion. Studies further demonstrated that PKC-mediated ERK signaling independent of AMPK activation is also involved in cell adhesion. Moreover, AMPK, Syk, Src and ERK signaling were also required for PMA to induce THP-1 cell adhesion to endothelial cells as well as to induce adhesion response of human primary monocytes. Taken together, we propose a bifurcated kinase signaling pathway involved in PMA-mediated adhesion of monocytes. PKC can activate LKB1/AMPK, leading to phosphorylation and activation of Syk, and subsequent activation of Src and FAK. In addition, PKC-dependent ERK activation induces a coordinated signal for cytoskeleton rearrangement and cell adhesion. For the first time we demonstrate Syk as a novel substrate target of AMPK, and shed new light on the role of AMPK in monocyte adhesion, in addition to its well identified functions in energy homeostasis. PMID:22848421

  18. Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro.

    PubMed

    Hájos, Norbert; Karlócai, Mária R; Németh, Beáta; Ulbert, István; Monyer, Hannah; Szabó, Gábor; Erdélyi, Ferenc; Freund, Tamás F; Gulyás, Attila I

    2013-07-10

    Hippocampal sharp waves and the associated ripple oscillations (SWRs) are implicated in memory processes. These network events emerge intrinsically in the CA3 network. To understand cellular interactions that generate SWRs, we detected first spiking activity followed by recording of synaptic currents in distinct types of anatomically identified CA3 neurons during SWRs that occurred spontaneously in mouse hippocampal slices. We observed that the vast majority of interneurons fired during SWRs, whereas only a small portion of pyramidal cells was found to spike. There were substantial differences in the firing behavior among interneuron groups; parvalbumin-expressing basket cells were one of the most active GABAergic cells during SWRs, whereas ivy cells were silent. Analysis of the synaptic currents during SWRs uncovered that the dominant synaptic input to the pyramidal cell was inhibitory, whereas spiking interneurons received larger synaptic excitation than inhibition. The discharge of all interneurons was primarily determined by the magnitude and the timing of synaptic excitation. Strikingly, we observed that the temporal structure of synaptic excitation and inhibition during SWRs significantly differed between parvalbumin-containing basket cells, axoaxonic cells, and type 1 cannabinoid receptor (CB1)-expressing basket cells, which might explain their distinct recruitment to these synchronous events. Our data support the hypothesis that the active current sources restricted to the stratum pyramidale during SWRs originate from the synaptic output of parvalbumin-expressing basket cells. Thus, in addition to gamma oscillation, these GABAergic cells play a central role in SWR generation.

  19. Computational spatiotemporal analysis identifies WAVE2 and Cofilin as joint regulators of costimulation-mediated T cell actin dynamics

    PubMed Central

    Roybal, Kole T.; Buck, Taráz E.; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J.; Ambler, Rachel; Tunbridge, Helen M.; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F.

    2016-01-01

    Fluorescence microscopy is one of the most important tools in cell biology research and it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells; however, given extensive cell-to-cell variation, methods do not currently exist to assemble these data into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. Here, we have developed one such method and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28 and we have determined how CD28 modulates actin dynamics. We imaged actin and eight core actin regulators under conditions where CD28 in the context of a strong TCR signal was engaged or blocked to yield over a thousand movies. Our computational analysis identified diminished recruitment of the activator of actin nucleation WAVE2 and the actin severing protein cofilin to F-actin as the dominant difference upon costimulation blockade. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics upon costimulation blockade. Thus we have developed and validated an approach to quantify protein distributions in time and space for analysis of complex regulatory systems. PMID:27095595

  20. Leukemogenesis Induced by an Activating β-catenin mutation in Osteoblasts

    PubMed Central

    Kode, Aruna; Manavalan, John S.; Mosialou, Ioanna; Bhagat, Govind; Rathinam, Chozha V.; Luo, Na; Khiabanian, Hossein; Lee, Albert; Vundavalli, Murty; Friedman, Richard; Brum, Andrea; Park, David; Galili, Naomi; Mukherjee, Siddhartha; Teruya-Feldstein, Julie; Raza, Azra; Rabadan, Raul; Berman, Ellin; Kousteni, Stavroula

    2014-01-01

    Summary Cells of the osteoblast lineage affect homing, 1, 2 number of long term repopulating hematopoietic stem cells (HSCs) 3, 4, HSC mobilization and lineage determination and B lymphopoiesis 5-8. More recently osteoblasts were implicated in pre-leukemic conditions in mice 9, 10. Yet, it has not been shown that a single genetic event taking place in osteoblasts can induce leukemogenesis. We show here that in mice, an activating mutation of β-catenin in osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of acute myeloid leukemia (AML) with common chromosomal aberrations and cell autonomous progression. Activated β-catenin stimulates expression of the Notch ligand Jagged-1 in osteoblasts. Subsequent activation of Notch signaling in HSC progenitors induces the malignant changes. Demonstrating the pathogenetic role of the Notch pathway, genetic or pharmacological inhibition of Notch signaling ameliorates AML. Nuclear accumulation and increased β-catenin signaling in osteoblasts was also identified in 38% of patients with MDS/AML. These patients showed increased Notch signaling in hematopoietic cells. These findings demonstrate that genetic alterations in osteoblasts can induce AML, identify molecular signals leading to this transformation and suggest a potential novel pharmacotherapeutic approach to AML. PMID:24429522

  1. The therapeutic potential of cell cycle targeting in multiple myeloma.

    PubMed

    Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke

    2017-10-27

    Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

  2. Capacitance measurements of regulated exocytosis in mouse taste cells.

    PubMed

    Vandenbeuch, Aurelie; Zorec, Robert; Kinnamon, Sue C

    2010-11-03

    Exocytosis, consisting of the merger of vesicle and plasma membrane, is a common mechanism used by different types of nucleated cells to release their vesicular contents. Taste cells possess vesicles containing various neurotransmitters to communicate with adjacent taste cells and afferent nerve fibers. However, whether these vesicles engage in exocytosis on a stimulus is not known. Since vesicle membrane merger with the plasma membrane is reflected in plasma membrane area fluctuations, we measured membrane capacitance (C(m)), a parameter linearly related to membrane surface area. To investigate whether taste cells undergo regulated exocytosis, we used the compensated tight-seal whole-cell recording technique to monitor depolarization-induced changes in C(m) in the different types of taste cells. To identify taste cell types, mice expressing green fluorescent protein from the TRPM5 promoter or from the GAD67 promoter were used to discriminate type II and type III taste cells, respectively. Moreover, the cell types were also identified by monitoring their voltage-current properties. The results demonstrate that only type III taste cells show significant depolarization-induced increases in C(m), which were correlated to the voltage-activated calcium currents. The results suggest that type III, but neither type II nor type I cells exhibit depolarization-induced regulated exocytosis to release transmitter and activate gustatory afferent nerve fibers.

  3. Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite.

    PubMed

    Ricciardi, M R; Licchetta, R; Mirabilii, S; Scarpari, M; Parroni, A; Fabbri, A A; Cescutti, P; Reverberi, M; Fanelli, C; Tafuri, A

    2017-01-01

    Despite improvements that occurred in the last decades in the acute myeloid leukemia (AML) treatment, clinical results are still unsatisfactory. More effective therapies are required, and innovative approaches are ongoing, including the discovery of novel antileukemia natural compounds. Several studies have described the activity of extracts from mushrooms which produce compounds that exhibited immunological and antitumor activities. The latter has been demonstrated to be promoted in vitro by mushroom polysaccharides via induction of apoptosis. However, the antileukemia activity of these compounds on primary cells is still not reported. In the present study, we examined the in vitro effects of Tramesan (TR), a bioactive compound extracted from Trametes versicolor , on leukemic cell lines and primary cells. Our results demonstrated that TR induced a marked growth inhibition of leukemic cell lines and primary cells from AML patients. The antiproliferative effects of TR were associated in primary AML cells with a significant increase of apoptosis. No significant cytotoxic effects were observed in normal peripheral blood mononuclear cells (MNC) from healthy donors. Our data demonstrated a cytotoxic activity of TR on leukemia cells prompting further translational applications. Ongoing studies are elucidating the molecular mechanisms underlying its antileukemic activity.

  4. Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite

    PubMed Central

    Scarpari, M.; Parroni, A.; Fabbri, A. A.; Cescutti, P.; Reverberi, M.; Fanelli, C.

    2017-01-01

    Despite improvements that occurred in the last decades in the acute myeloid leukemia (AML) treatment, clinical results are still unsatisfactory. More effective therapies are required, and innovative approaches are ongoing, including the discovery of novel antileukemia natural compounds. Several studies have described the activity of extracts from mushrooms which produce compounds that exhibited immunological and antitumor activities. The latter has been demonstrated to be promoted in vitro by mushroom polysaccharides via induction of apoptosis. However, the antileukemia activity of these compounds on primary cells is still not reported. In the present study, we examined the in vitro effects of Tramesan (TR), a bioactive compound extracted from Trametes versicolor, on leukemic cell lines and primary cells. Our results demonstrated that TR induced a marked growth inhibition of leukemic cell lines and primary cells from AML patients. The antiproliferative effects of TR were associated in primary AML cells with a significant increase of apoptosis. No significant cytotoxic effects were observed in normal peripheral blood mononuclear cells (MNC) from healthy donors. Our data demonstrated a cytotoxic activity of TR on leukemia cells prompting further translational applications. Ongoing studies are elucidating the molecular mechanisms underlying its antileukemic activity. PMID:29270245

  5. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩

    PubMed Central

    Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.

    2009-01-01

    Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239

  6. The RhoU/Wrch1 Rho GTPase gene is a common transcriptional target of both the gp130/STAT3 and Wnt-1 pathways

    PubMed Central

    SCHIAVONE, Davide; DEWILDE, Sarah; VALLANIA, Francesco; TURKSON, James; CUNTO, Ferdinando DI; POLI, Valeria

    2010-01-01

    STAT3 (signal transducer and activator of transcription 3) is a transcription factor activated by cytokines, growth factors and oncogenes, whose activity is required for cell survival/proliferation of a wide variety of primary tumours and tumour cell lines. Prominent among its multiple effects on tumour cells is the stimulation of cell migration and metastasis, whose functional mechanisms are however not completely characterized. RhoU/Wrch1 (Wnt-responsive Cdc42 homologue) is an atypical Rho GTPase thought to be constitutively bound to GTP. RhoU was first identified as a Wnt-1-inducible mRNA and subsequently shown to act on the actin cytoskeleton by stimulating filopodia formation and stress fibre dissolution. It was in addition recently shown to localize to focal adhesions and to Src-induced podosomes and enhance cell migration. RhoU overexpression in mammary epithelial cells stimulates quiescent cells to re-enter the cell cycle and morphologically phenocopies Wnt-1-dependent transformation. In the present study we show that Wnt-1-mediated RhoU induction occurs at the transcriptional level. Moreover, we demonstrate that RhoU can also be induced by gp130 cytokines via STAT3, and we identify two functional STAT3-binding sites on the mouse RhoU promoter. RhoU induction by Wnt-1 is independent of β-catenin, but does not involve STAT3. Rather, it is mediated by the Wnt/planar cell polarity pathway through the activation of JNK (c-Jun N-terminal kinase). Both the so-called non-canonical Wnt pathway and STAT3 are therefore able to induce RhoU, which in turn may be involved in mediating their effects on cell migration. PMID:19397496

  7. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites

    PubMed Central

    LaRocca, Greg

    2017-01-01

    In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. SIGNIFICANCE STATEMENT The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. PMID:28003347

  8. Transcriptional activation of the suppressor of cytokine signaling-3 (SOCS-3) gene via STAT3 is increased in F9 REX1 (ZFP-42) knockout teratocarcinoma stem cells relative to wild-type cells.

    PubMed

    Xu, Juliana; Sylvester, Renia; Tighe, Ann P; Chen, Siming; Gudas, Lorraine J

    2008-03-14

    Rex1 (Zfp42), first identified as a gene that is transcriptionally repressed by retinoic acid (RA), encodes a zinc finger transcription factor expressed at high levels in F9 teratocarcinoma stem cells, embryonic stem cells, and other stem cells. Loss of both alleles of Rex1 by homologous recombination alters the RA-induced differentiation of F9 cells, a model of pluripotent embryonic stem cells. We identified Suppressor of Cytokine Signaling-3 (SOCS-3) as a gene that exhibits greatly increased transcriptional activation in RA, cAMP, and theophylline (RACT)-treated F9 Rex1(-/-) cells (approximately 25-fold) as compared to wild-type (WT) cells ( approximately 2.5-fold). By promoter deletion, mutation, and transient transfection analyses, we have shown that this transcriptional increase is mediated by the STAT3 DNA-binding elements located between -99 to -60 in the SOCS-3 promoter. Overexpression of STAT3 dominant-negative mutants greatly diminishes this SOCS-3 transcriptional increase in F9 Rex1(-/-) cells. This increase in SOCS-3 transcription is associated with a four- to fivefold higher level of tyrosine-phosphorylated STAT3 in the RACT-treated F9 Rex1(-/-) cells as compared to WT. Dominant-negative Src tyrosine kinase, Jak2, and protein kinase A partially reduce the transcriptional activation of the SOCS 3 gene in RACT-treated F9 Rex1 null cells. In contrast, parathyroid hormone peptide enhances the effect of RA in F9 Rex1(-/-) cells, but not in F9 WT. Thus, Rex1, which is highly expressed in stem cells, inhibits signaling via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, thereby modulating the differentiation of F9 cells.

  9. P-selectin mediates Ca(2+)-dependent adhesion of activated platelets to many different types of leukocytes: detection by flow cytometry.

    PubMed

    de Bruijne-Admiraal, L G; Modderman, P W; Von dem Borne, A E; Sonnenberg, A

    1992-07-01

    Previous studies have shown that thrombin-activated platelets interact through the P-selectin with neutrophils and monocytes. To identify other types of leukocytes capable of such an interaction, eosinophils, basophils, and lymphocytes were isolated from whole blood. Binding of these cells to activated platelets was examined in a double immunofluorescence assay and the results show that activated platelets not only bind to neutrophils and monocytes, but also to eosinophils, basophils, and subpopulations of T lymphocytes. Using monoclonal antibodies (MoAbs) specific for subsets of T cells, we could further demonstrate that the T cells which bind activated platelets are natural killer (NK) cells and an undefined subpopulation of CD4+ and CD8+ cells. All these interactions were dependent on divalent cations and were completely inhibited by an MoAb against P-selectin. Thus, P-selectin mediates the binding of activated platelets to many different types of leukocytes. Studies with leukocytes treated with proteases or neuraminidase have shown that the structures recognized by P-selectin are glycoproteins carrying sialic acid residues. Because the loss of binding of activated platelets to neuraminidase-treated neutrophils was almost complete, but only partial to treated eosinophils, basophils, and monocytes, the latter cell types may have different P-selectin ligands in addition to those present on neutrophils. We found that two previously identified ligands for P-selectin, the oligosaccharides Le(x) and sialyl-Le(x), had little or no inhibitory effect on adhesion of activated platelets to leukocytes and that binding was not inhibited by MoAbs against these oligosaccharides. In addition, there was no correlation between the expression of Le(x) on several cell types and their capacity to bind activated platelets. In contrast, the expression of sialyl-Le(x) on cells was almost perfectly correlated with their ability to bind activated platelets. Thus, while Le(x) cannot be a major ligand for P-selectin, a possible role for sialyl-Le(x) in P-selectin-mediated adhesion processes cannot be dismissed. Finally, activated platelets were found to bind normally to monocytes and neutrophils of patients with paroxysmal nocturnal hemoglobulinuria (PNH) and to neutrophils from which phosphatidyl inositol (PI)-linked proteins had been removed by glycosylphosphatidyl inositol-specific phospholipase C (GPI-PLC) digestion. This suggests that at least part of the P-selectin ligands on these cells are not GPI-anchored.

  10. Identification of Glial Activation Markers by Comparison of Transcriptome Changes between Astrocytes and Microglia following Innate Immune Stimulation.

    PubMed

    Madeddu, Silvia; Woods, Tyson A; Mukherjee, Piyali; Sturdevant, Dan; Butchi, Niranjan B; Peterson, Karin E

    2015-01-01

    The activation of astrocytes and microglia is often associated with diseases of the central nervous system (CNS). Understanding how activation alters the transcriptome of these cells may offer valuable insight regarding how activation of these cells mediate neurological damage. Furthermore, identifying common and unique pathways of gene expression during activation may provide new insight into the distinct roles these cells have in the CNS during infection and inflammation. Since recent studies indicate that TLR7 recognizes not only viral RNA but also microRNAs that are released by damaged neurons and elevated during neurological diseases, we first examined the response of glial cells to TLR7 stimulation using microarray analysis. Microglia were found to generate a much stronger response to TLR7 activation than astrocytes, both in the number of genes induced as well as fold induction. Although the primary pathways induced by both cell types were directly linked to immune responses, microglia also induced pathways associated with cellular proliferation, while astrocytes did not. Targeted analysis of a subset of the upregulated genes identified unique mRNA, including Ifi202b which was only upregulated by microglia and was found to be induced during both retroviral and bunyavirus infections in the CNS. In addition, other genes including Birc3 and Gpr84 as well as two expressed sequences AW112010 and BC023105 were found to be induced in both microglia and astrocytes and were upregulated in the CNS following virus infection. Thus, expression of these genes may a useful measurement of glial activation during insult or injury to the CNS.

  11. Effectiveness, active energy produced by molecular motors, and nonlinear capacitance of the cochlear outer hair cell.

    PubMed

    Spector, Alexander A

    2005-06-01

    Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell's length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell's molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors'active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor's effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%-30%.

  12. Therapeutic targeting of HES1 transcriptional programs in T-ALL

    PubMed Central

    Schnell, Stephanie A.; Ambesi-Impiombato, Alberto; Sanchez-Martin, Marta; Belver, Laura; Xu, Luyao; Qin, Yue; Kageyama, Ryoichiro

    2015-01-01

    Oncogenic activation of NOTCH1 signaling plays a central role in the pathogenesis of T-cell acute lymphoblastic leukemia, with mutations on this signaling pathway affecting more than 60% of patients at diagnosis. However, the transcriptional regulatory circuitries driving T-cell transformation downstream of NOTCH1 remain incompletely understood. Here we identify Hairy and Enhancer of Split 1 (HES1), a transcriptional repressor controlled by NOTCH1, as a critical mediator of NOTCH1-induced leukemogenesis strictly required for tumor cell survival. Mechanistically, we demonstrate that HES1 directly downregulates the expression of BBC3, the gene encoding the PUMA BH3-only proapoptotic factor in T-cell acute lymphoblastic leukemia. Finally, we identify perhexiline, a small-molecule inhibitor of mitochondrial carnitine palmitoyltransferase-1, as a HES1-signature antagonist drug with robust antileukemic activity against NOTCH1-induced leukemias in vitro and in vivo. PMID:25784680

  13. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells.

    PubMed

    Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L

    2014-10-16

    Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells

    PubMed Central

    Tam, Wai Leong; Lu, Haihui; Buikhuisen, Joyce; Soh, Boon Seng; Lim, Elgene; Reinhardt, Ferenc; Wu, Zhenhua Jeremy; Krall, Jordan A.; Bierie, Brian; Guo, Wenjun; Chen, Xi; Liu, Xiaole Shirley; Brown, Myles; Lim, Bing; Weinberg, Robert A.

    2014-01-01

    SUMMARY The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs, but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling, and results in the PKCα-dependent activation of FRA1. We identified an AP-1 molecular switch in which c-FOS and FRA1 are preferentially utilized in non-CSCs and CSCs, respectively. PKCα and FRA1 expression is associated with the aggressive triple-negative breast cancers and the depletion of FRA1 results in a mesenchymal-epithelial transition. Hence, identifying molecular features that shift between cell states can be exploited to target signaling components critical to CSCs. PMID:24029232

  15. Premature extravasation. A bleeding site identified during the dynamic phase of Tc-99m red blood cell bleeding scintigraphy.

    PubMed

    el-Shirbiny, A; Fernandez, R; Zuckier, L S

    1995-08-01

    Tc-99m RBC scintigraphy is favored by many investigators because it provides the ability to image the abdomen over a prolonged period of time, thereby allowing identification of delayed bleeding sites that are frequently encountered due to the intermittent nature of gastrointestinal bleeding. The authors describe a case of bleeding scintigraphy with labeled red blood cells in which the bleeding site was identifiable only on the dynamic blood-flow and first static images. On later images, the labeled blood cells had spread throughout the colon, rendering localization of the actual bleeding site impossible. Two previous red blood cell scintigraphies and a subsequent contrast angiogram did not reveal sites of active bleeding. As illustrated by this unusual case, factors governing timing and visualization of abnormal bleeding sites are discussed, as is a differential diagnosis of abnormal foci of activity seen on the dynamic phase of bleeding scintigraphy.

  16. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells.

    PubMed

    Tam, Wai Leong; Lu, Haihui; Buikhuisen, Joyce; Soh, Boon Seng; Lim, Elgene; Reinhardt, Ferenc; Wu, Zhenhua Jeremy; Krall, Jordan A; Bierie, Brian; Guo, Wenjun; Chen, Xi; Liu, Xiaole Shirley; Brown, Myles; Lim, Bing; Weinberg, Robert A

    2013-09-09

    The epithelial-mesenchymal transition program becomes activated during malignant progression and can enrich for cancer stem cells (CSCs). We report that inhibition of protein kinase C α (PKCα) specifically targets CSCs but has little effect on non-CSCs. The formation of CSCs from non-stem cells involves a shift from EGFR to PDGFR signaling and results in the PKCα-dependent activation of FRA1. We identified an AP-1 molecular switch in which c-FOS and FRA1 are preferentially utilized in non-CSCs and CSCs, respectively. PKCα and FRA1 expression is associated with the aggressive triple-negative breast cancers, and the depletion of FRA1 results in a mesenchymal-epithelial transition. Hence, identifying molecular features that shift between cell states can be exploited to target signaling components critical to CSCs. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Active Sampling State Dynamically Enhances Olfactory Bulb Odor Representation.

    PubMed

    Jordan, Rebecca; Fukunaga, Izumi; Kollo, Mihaly; Schaefer, Andreas T

    2018-06-27

    The olfactory bulb (OB) is the first site of synaptic odor information processing, yet a wealth of contextual and learned information has been described in its activity. To investigate the mechanistic basis of contextual modulation, we use whole-cell recordings to measure odor responses across rapid learning episodes in identified mitral/tufted cells (MTCs). Across these learning episodes, diverse response changes occur already during the first sniff cycle. Motivated mice develop active sniffing strategies across learning that robustly correspond to the odor response changes, resulting in enhanced odor representation. Evoking fast sniffing in different behavioral states demonstrates that response changes during active sampling exceed those predicted from feedforward input alone. Finally, response changes are highly correlated in tufted cells, but not mitral cells, indicating there are cell-type-specific effects on odor representation during active sampling. Altogether, we show that active sampling is strongly associated with enhanced OB responsiveness on rapid timescales. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  18. Production of novel cell-associated tannase from newly isolated Serratia ficaria DTC.

    PubMed

    Belur, Prasanna D; Gopal, Mugeraya; Nirmala, K R; Basavaraj, N

    2010-04-01

    Five strains of tannic acid degrading bacteria were isolated and identified by phenotypic characterization. All the five isolates showed cell-associated activity, where as only three showed extracellular activity. Serratia ficaria DTC showing highest cell-associated activity (0.29 U/l) was selected for further shake flask studies. Tannase synthesis was growth associated and reached the peak in the late stationary phase of growth. Organic nitrogen sources enhanced the tannase production. Peak tannase production of 0.56 U/l was recorded in the medium having the initial pH of 6. The pH and temperature optima of the enzyme were found to be 8.9 and 35 degrees , respectively. This is the first report of cell-associated activity in case of bacterial tannase. Cell-associated tannase of Serratia ficaria DTC could be industrially important from the perspective of its activity at broad temperature and pH range, its unusually high activity at pH 8.9.

  19. Non-T cell activation linker (NTAL) proteolytic cleavage as a terminator of activatory intracellular signals.

    PubMed

    Arbulo-Echevarria, Mikel M; Muñoz-Miranda, Juan Pedro; Caballero-García, Andrés; Poveda-Díaz, José L; Fernández-Ponce, Cecilia; Durán-Ruiz, M Carmen; Miazek, Arkadiusz; García-Cózar, Francisco; Aguado, Enrique

    2016-08-01

    Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors. © Society for Leukocyte Biology.

  20. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas.

    PubMed

    Van de Laar, Emily; Clifford, Monica; Hasenoeder, Stefan; Kim, Bo Ram; Wang, Dennis; Lee, Sharon; Paterson, Josh; Vu, Nancy M; Waddell, Thomas K; Keshavjee, Shaf; Tsao, Ming-Sound; Ailles, Laurie; Moghal, Nadeem

    2014-12-31

    The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.

  1. Apoptosis in activated T cells: what are the triggers, and what the signal transducers?

    PubMed

    Häcker, Georg; Bauer, Anette; Villunger, Andreas

    2006-11-01

    At the end of an immune response, apoptosis drastically reduces the numbers of activated T cells. It has been a matter of intense research how this form of apoptosis is regulated and initiated, and a number of proteins have been identified that contribute to this process. The present, widely accepted model assumes that the interplay of pro- and anti -apoptotic Bcl-2 family members determines the onset of activated T cell death, with the BH3-only protein Bim activating pro-apoptotic Bax/Bak. In the search for up-stream signals, factors from other immune cells have been shown to play a role, and the NFkappaB family member Bcl-3 has been implicated as a signalling-intermediate in T cells. Recent work has tested the interrelation of these factors and has suggested that Bcl-3 acts as a regulator of Bim activation, that the induction of apoptosis through Bim can be complemented by its relative Puma, and that the presence of certain cytokines during T cell activation delays the activation of Bim and Puma. Here we discuss these recent insights and provide a view on how the regulation of activated T cell death is achieved and how extrinsic signals may translate into the activation of the apoptotic pathway.

  2. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME).

    PubMed

    Petty, Robert D; McCarthy, Neil E; Le Dieu, Rifca; Kerr, Jonathan R

    2016-01-01

    Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients. miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets. Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology. This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function.

  3. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME)

    PubMed Central

    Petty, Robert D.; McCarthy, Neil E.; Le Dieu, Rifca; Kerr, Jonathan R.

    2016-01-01

    Background Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients. Methods miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets. Results Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology. Conclusion This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function. PMID:26967895

  4. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    PubMed

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.

  5. Genotoxic and endocrine activities of bis(hydroxyphenyl)methane (bisphenol F) and its derivatives in the HepG2 cell line.

    PubMed

    Cabaton, Nicolas; Dumont, Coralie; Severin, Isabelle; Perdu, Elisabeth; Zalko, Daniel; Cherkaoui-Malki, Mustapha; Chagnon, Marie-Christine

    2009-01-08

    Human can be exposed to bis(hydroxyphenyl)methane (bisphenol F or BPF) and its derivatives as environment and food's contaminants. This study was investigated to identify and to compare toxic potency of BPF, BFDGE, and two of BPF metabolites using in vitro methods. BPF did not induce any genic mutation in bacteria when the Ames test was performed according to the OECD guideline. In contrast, using Human cell lines and Comet assay, we demonstrated that BPF and Bisphenol F Diglycidyl Ether (BFDGE) were effective on HepG2 cell DNA fragmentation at non-cytotoxic concentrations. DHB was also positive but at higher concentrations, near its limit of solubility. Neither BPF, nor DHB induced a positive response in the micronucleus assay. The increase of micronuclei observed when cells were exposed to BFDGE was mostly due to a cytotoxic effect. Concerning endocrine activities, BPF increased the luciferase activity in HepG2 cells transiently transfected with a concentration dependant pattern, DHB also induced a positive response but at highest concentrations. Estrogenic responses in the HepG2 cells differed with the estrogen receptor (ER) involved. Using MDA-kb2 cell line stably transfected with pMMTV-neo-Luc, only BPF was anti-androgenic at the highest concentration (10(-5)M). Then, we demonstrated using human cell lines, especially HepG2, BPF was the most toxic compound in term of genotoxicity and endocrine activities compared to DHB and BPF-OH, the free metabolites identified in rat urine when BPF was administrated to rats.

  6. Approach for Identifying Human Leukocyte Antigen (HLA)-DR Bound Peptides from Scarce Clinical Samples *

    PubMed Central

    Heyder, Tina; Kohler, Maxie; Tarasova, Nataliya K.; Haag, Sabrina; Rutishauser, Dorothea; Rivera, Natalia V.; Sandin, Charlotta; Mia, Sohel; Malmström, Vivianne; Wheelock, Åsa M.; Wahlström, Jan; Holmdahl, Rikard; Eklund, Anders; Zubarev, Roman A.; Grunewald, Johan; Ytterberg, A. Jimmy

    2016-01-01

    Immune-mediated diseases strongly associating with human leukocyte antigen (HLA) alleles are likely linked to specific antigens. These antigens are presented to T cells in the form of peptides bound to HLA molecules on antigen presenting cells, e.g. dendritic cells, macrophages or B cells. The identification of HLA-DR-bound peptides presents a valuable tool to investigate the human immunopeptidome. The lung is likely a key player in the activation of potentially auto-aggressive T cells prior to entering target tissues and inducing autoimmune disease. This makes the lung of exceptional interest and presents an ideal paradigm to study the human immunopeptidome and to identify antigenic peptides. Our previous investigation of HLA-DR peptide presentation in the lung required high numbers of cells (800 × 106 bronchoalveolar lavage (BAL) cells). Because BAL from healthy nonsmokers typically contains 10–15 × 106 cells, there is a need for a highly sensitive approach to study immunopeptides in the lungs of individual patients and controls. In this work, we analyzed the HLA-DR immunopeptidome in the lung by an optimized methodology to identify HLA-DR-bound peptides from low cell numbers. We used an Epstein-Barr Virus (EBV) immortalized B cell line and bronchoalveolar lavage (BAL) cells obtained from patients with sarcoidosis, an inflammatory T cell driven disease mainly occurring in the lung. Specifically, membrane complexes were isolated prior to immunoprecipitation, eluted peptides were identified by nanoLC-MS/MS and processed using the in-house developed ClusterMHCII software. With the optimized procedure we were able to identify peptides from 10 × 106 cells, which on average correspond to 10.9 peptides/million cells in EBV-B cells and 9.4 peptides/million cells in BAL cells. This work presents an optimized approach designed to identify HLA-DR-bound peptides from low numbers of cells, enabling the investigation of the BAL immunopeptidome from individual patients and healthy controls in order to identify disease-associated peptides. PMID:27452731

  7. Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes.

    PubMed

    Koganti, Siva; Clark, Carissa; Zhi, Jizu; Li, Xiaofan; Chen, Emily I; Chakrabortty, Sharmistha; Hill, Erik R; Bhaduri-McIntosh, Sumita

    2015-05-01

    A major hurdle to killing Epstein-Barr virus (EBV)-infected tumor cells using oncolytic therapy is the presence of a substantial fraction of EBV-infected cells that does not support the lytic phase of EBV despite exposure to lytic cycle-promoting agents. To determine the mechanism(s) underlying this refractory state, we developed a strategy to separate lytic from refractory EBV-positive (EBV(+)) cells. By examining the cellular transcriptome in separated cells, we previously discovered that high levels of host STAT3 (signal transducer and activator of transcription 3) curtail the susceptibility of latently infected cells to lytic cycle activation signals. The goals of the present study were 2-fold: (i) to determine the mechanism of STAT3-mediated resistance to lytic activation and (ii) to exploit our findings to enhance susceptibility to lytic activation. We therefore analyzed our microarray data set, cellular proteomes of separated lytic and refractory cells, and a publically available STAT3 chromatin immunoprecipitation sequencing (ChIP-Seq) data set to identify cellular PCBP2 [poly(C)-binding protein 2], an RNA-binding protein, as a transcriptional target of STAT3 in refractory cells. Using Burkitt lymphoma cells and EBV(+) cell lines from patients with hypomorphic STAT3 mutations, we demonstrate that single cells expressing high levels of PCBP2 are refractory to spontaneous and induced EBV lytic activation, STAT3 functions via cellular PCBP2 to regulate lytic susceptibility, and suppression of PCBP2 levels is sufficient to increase the number of EBV lytic cells. We expect that these findings and the genome-wide resources that they provide will accelerate our understanding of a longstanding mystery in EBV biology and guide efforts to improve oncolytic therapy for EBV-associated cancers. Most humans are infected with Epstein-Barr virus (EBV), a cancer-causing virus. While EBV generally persists silently in B lymphocytes, periodic lytic (re)activation of latent virus is central to its life cycle and to most EBV-related diseases. However, a substantial fraction of EBV-infected B cells and tumor cells in a population is refractory to lytic activation. This resistance to lytic activation directly and profoundly impacts viral persistence and the effectiveness of oncolytic therapy for EBV(+) cancers. To identify the mechanisms that underlie susceptibility to EBV lytic activation, we used host gene and protein expression profiling of separated lytic and refractory cells. We find that STAT3, a transcription factor overactive in many cancers, regulates PCBP2, a protein important in RNA biogenesis, to regulate susceptibility to lytic cycle activation signals. These findings advance our understanding of EBV persistence and provide important leads on devising methods to improve viral oncolytic therapies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    PubMed

    Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.

  9. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing

    PubMed Central

    Voorhies, Alexander A.; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B.; Lorenzi, Hernan; Basler, Christopher F.; Shabman, Reed S.

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation. PMID:28636653

  10. TAP, a novel T cell-activating protein involved in the stimulation of MHC-restricted T lymphocytes

    PubMed Central

    1986-01-01

    Five mAbs have been generated and used to characterize TAP (T cell activating protein) a novel, functional murine T cell membrane antigen. The TAP molecule is a 12-kD protein that is synthesized by T cells. By antibody crossblocking, it appears to be closely associated with a 16- kD protein on the T cell membrane also identified with a novel mAb. These molecules are clearly distinct from the major well-characterized murine T cell antigens previously described. Antibody binding to TAP can result in the activation of MHC-restricted, antigen-specific inducer T cell hybridomas that is equivalent in magnitude to maximal antigen or lectin stimulation. This is a direct effect of soluble antibody and does not require accessory cells or other factors. The activating anti-TAP mAbs are also mitogenic for normal heterogeneous T lymphocytes in the presence of accessory cells or IL-1. In addition, these antibodies are observed to modulate specific immune stimulation. Thus, the activating anti-TAP mAbs synergise with antigen-specific stimulation of T cells, while a nonactivating anti-TAP mAb inhibits antigen driven activation. These observations suggest that the TAP molecule may participate in physiologic T cell activation. The possible relationship of TAP to known physiologic triggering structures, the T3- T cell receptor complex, is considered. TAP is expressed on 70% of peripheral T cells and therefore defines a major T cell subset, making it perhaps the first example of a murine subset-specific activating protein. PMID:2418146

  11. COX2 expression and Erk1/Erk2 activity mediate Cot-induced cell migration.

    PubMed

    Rodríguez, Cristina; López, Pilar; Pozo, Maite; Duce, Antonio Martín; López-Pelaéz, Marta; Fernández, Margarita; Alemany, Susana

    2008-09-01

    The MAPKKK8 Cot/tpl-2, identified as an oncogene (Cot-T), participates in the intracellular signaling activated by members of the TLR and TNFalpha receptor superfamilies. Here we demonstrate that Cot promotes cell migration by regulating different steps involved in this process, such as cell adhesion and metalloproteinase activity. Indeed, Cot also regulates the cytoskeleton and Cot-T overexpression provokes the polarization of microtubules and the loss of stress fibers. Moreover, and in accordance with the increased Rac-GTP levels observed, Cot-T overexpressing cells develop more lamellipodia than control cells. Conversely, depletion of endogenous Cot increases the formation of stress fibers which is correlated with the high levels of Rho-GTP observed in these cells. In addition, the increase in COX2 expression and the activation of Erk1/2 regulated by Cot are essential for the induction of cell migration. Together, these data provide evidence of a new role for both proto-oncogenic and oncogenic Cot.

  12. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell–like diffuse large B-cell lymphoma cells

    PubMed Central

    Mathews Griner, Lesley A.; Guha, Rajarshi; Shinn, Paul; Young, Ryan M.; Keller, Jonathan M.; Liu, Dongbo; Goldlust, Ian S.; Yasgar, Adam; McKnight, Crystal; Boxer, Matthew B.; Duveau, Damien Y.; Jiang, Jian-Kang; Michael, Sam; Mierzwa, Tim; Huang, Wenwei; Walsh, Martin J.; Mott, Bryan T.; Patel, Paresma; Leister, William; Maloney, David J.; Leclair, Christopher A.; Rai, Ganesha; Jadhav, Ajit; Peyser, Brian D.; Austin, Christopher P.; Martin, Scott E.; Simeonov, Anton; Ferrer, Marc; Staudt, Louis M.; Thomas, Craig J.

    2014-01-01

    The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug–drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell–like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton’s tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL. PMID:24469833

  13. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome

    PubMed Central

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-01-01

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086

  14. Changes in Dehydrodiferulic Acids and Peroxidase Activity against Ferulic Acid Associated with Cell Walls during Growth of Pinus pinaster Hypocotyl.

    PubMed Central

    Sanchez, M.; Pena, M. J.; Revilla, G.; Zarra, I.

    1996-01-01

    Hydroxycinnamic acids associated with hypocotyl cell walls of dark-grown seedlings of Pinus pinaster Aiton were extracted with 1 N NaOH and identified by gas chromatography-mass spectrometry. The main hydroxycinnamic acid found was ferulic acid. Diferulic acid dehydrodimers were also found, with the 8,8-coupled isomer (compound 11) being the dehydrodiferulate present in the highest amount. However, the 5,5-coupled isomer, commonly referred to referred to as diferulic acid, was not detected. Two truxillic acids, 4-4[prime]-dihydroxy-3-3[prime]-dimethoxy-[alpha]-truxillic acids I and II, were tentatively identified. The 8,8-coupled dehydrodiferulic acid (compound 11) was the phenolic acid that showed the most conspicuous changes with hypocotyl age as well as along the hypocotyl axis. Peroxidase activity against ferulic acid was found in the apoplastic fluid as well as being ionically and covalently bound to the cell walls. The peroxidase activity increased with hypocotyl age as well as from the subapical toward the basal region of the hypocotyls. A key role in the cell-wall stiffening of 8,8 but not 5,5 dimerization of ferulic acid catalyzed by cell-wall peroxidases is proposed. PMID:12226339

  15. The Induction Effect of Am80 and TSA on ESC Differentiation via Regulation of Stra8 in Chicken.

    PubMed

    Zhang, Yani; Zuo, Qisheng; Liu, Zhiyong; Li, Dong; Tang, Beibei; Xiao, Tian-Rong; Lian, Chao; Wang, Yingjie; Jin, Kai; Wang, Yilin; Zhang, Wenhui; Li, Bichun

    2015-01-01

    Stra8 encodes stimulated by retinoic acid gene 8, a protein that is important for initiation of meiosis in mammals and birds. This study was aimed at identifying the active control area of chicken STRA8 gene core promoter, to screen optimum inducers of the STRA8 gene, thus to enhance the differentiation of embryonic stem cells (ESCs) into spermatogonial stem cells. Fragments of chicken STRA8 gene promoter were cloned into fluorescent reporter plasmids and transfected into DF-1 cells. Then Dual-Luciferase® Reporter Assay System was used to identify the activity of the STRA8 gene under different inducers. Our studies showed that the promoter fragment -1055 bp to +54 bp of Suqin chicken Stra8 revealed the strongest activity. The dual-luciferase® reporter showed that Tamibarotene (Am80) and TrichostatinA (TSA) could significantly enhance STRA8 transcription. The in vitro inductive culture of chicken ESCs demonstrated that spermatogonial stem cells (SSC)-like cells appeared and Integrinβ1 protein was expressed on day 10, indicating that Am80 and TSA can promote ESCs differentiation into SSCs via regulation of Stra8.

  16. The Induction Effect of Am80 and TSA on ESC Differentiation via Regulation of Stra8 in Chicken

    PubMed Central

    Zhang, Yani; Zuo, Qisheng; Liu, Zhiyong; Li, Dong; Tang, Beibei; Xiao, Tian-rong; Lian, Chao; Wang, Yingjie; Jin, Kai; Wang, Yilin; Zhang, Wenhui; Li, Bichun

    2015-01-01

    Stra8 encodes stimulated by retinoic acid gene 8, a protein that is important for initiation of meiosis in mammals and birds. This study was aimed at identifying the active control area of chicken STRA8 gene core promoter, to screen optimum inducers of the STRA8 gene, thus to enhance the differentiation of embryonic stem cells (ESCs) into spermatogonial stem cells. Fragments of chicken STRA8 gene promoter were cloned into fluorescent reporter plasmids and transfected into DF-1 cells. Then Dual-Luciferase® Reporter Assay System was used to identify the activity of the STRA8 gene under different inducers. Our studies showed that the promoter fragment −1055 bp to +54 bp of Suqin chicken Stra8 revealed the strongest activity. The dual-luciferase® reporter showed that Tamibarotene (Am80) and TrichostatinA (TSA) could significantly enhance STRA8 transcription. The in vitro inductive culture of chicken ESCs demonstrated that spermatogonial stem cells (SSC)-like cells appeared and Integrinβ1 protein was expressed on day 10, indicating that Am80 and TSA can promote ESCs differentiation into SSCs via regulation of Stra8. PMID:26606052

  17. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells.

    PubMed

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-12-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH-) and CD44-negative/CD24-negative (CD44-/CD24-) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer.

  18. The activation of the G protein-coupled estrogen receptor (GPER) inhibits the proliferation of mouse melanoma K1735-M2 cells.

    PubMed

    Ribeiro, Mariana P C; Santos, Armanda E; Custódio, José B A

    2017-11-01

    The activation of the G protein-coupled estrogen receptor (GPER) by its specific agonist G-1 inhibits prostate cancer and 17β-estradiol-stimulated breast cancer cell proliferation. Tamoxifen (TAM), which also activates the GPER, decreases melanoma cell proliferation, but its action mechanism remains controversial. Here we investigated the expression and the effects of GPER activation by G-1, TAM and its key metabolite endoxifen (EDX) on melanoma cells. Mouse melanoma K1735-M2 cells expressed GPER and G-1 reduced cell biomass, and the number of viable cells, without increasing cell death. Rather, G-1 decreased cell division by blocking cell cycle progression in G2. Likewise, TAM and EDX exhibited an antiproliferative activity in melanoma cells due to decreased cell division. Both G-1 and the antiestrogens showed a trend to decrease the levels of phosphorylated ERK 1/2 after 1 h treatment, although only EDX, the most potent antiproliferative antiestrogen, induced significant effects. Importantly, the targeting of GPER with siRNA abolished the cytostatic activity of both G-1 and antiestrogens, suggesting that the antitumor actions of antiestrogens in melanoma cells involve GPER activation. Our results unveil a new target for melanoma therapy and identify GPER as a key mediator of antiestrogen antiproliferative effects, which may contribute to select the patients that benefit from an antiestrogen-containing regimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Yeseul

    This study investigated the effects of a silk peptide fraction obtained by incubating silk proteins with Protease N and Neutrase (SP-NN) on cognitive dysfunction of Alzheimer disease model rats. In order to elucidate underlying mechanisms, the effect of SP-NN on the expression of choline acetyltransferase (ChAT) mRNA was assessed in F3.ChAT neural stem cells and Neuro2a neuroblastoma cells; active amino acid sequence was identified using HPLC-MS. The expression of ChAT mRNA in F3.ChAT cells increased by 3.79-fold of the control level by treatment with SP-NN fraction. The active peptide in SP-NN was identified as tyrosine-glycine with 238.1 of molecular weight.more » Male rats were orally administered with SP-NN (50 or 300 mg/kg) and challenged with a cholinotoxin AF64A. As a result of brain injury and decreased brain acetylcholine level, AF64A induced astrocytic activation, resulting in impairment of learning and memory function. Treatment with SP-NN exerted recovering activities on acetylcholine depletion and brain injury, as well as cognitive deficit induced by AF64A. The results indicate that, in addition to a neuroprotective activity, the SP-NN preparation restores cognitive function of Alzheimer disease model rats by increasing the release of acetylcholine. - Highlights: • Cognition-enhancing effects of SP-NN, a silk peptide preparation, were investigated. • SP-NN enhanced ChAT mRNA expression in F3.ChAT neural stem cells and Neuro-2a neuroblastoma cells. • Active molecule was identified as a dipeptide composed of tyrosine-glycine. • SP-NN reversed cognitive dysfunction elicited by AF64A. • Neuroprotection followed by increased acetylcholine level was achieved with SP-NN.« less

  20. Active and Repressive Chromatin-Associated Proteome after MPA Treatment and the Role of Midkine in Epithelial Monolayer Permeability

    PubMed Central

    Khan, Niamat; Lenz, Christof; Binder, Lutz; Pantakani, Dasaradha Venkata Krishna; Asif, Abdul R.

    2016-01-01

    Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system. This study investigates whether MPA induces epigenetic changes which lead to GI complications, especially diarrhea. Methods: We employed a Chromatin Immunoprecipitation-O-Proteomics (ChIP-O-Proteomics) approach to identify proteins associated with active (H3K4me3) as well as repressive (H3K27me3) chromatin histone modifications in MPA-treated cells, and further characterized the role of midkine, a H3K4me3-associated protein, in the context of epithelial monolayer permeability. Results: We identified a total of 333 and 306 proteins associated with active and repressive histone modification marks, respectively. Among them, 241 proteins were common both in active and repressive chromatin, 92 proteins were associated exclusively with the active histone modification mark, while 65 proteins remained specific to repressive chromatin. Our results show that 45 proteins which bind to the active and seven proteins which bind to the repressive chromatin region exhibited significantly altered abundance in MPA-treated cells as compared to DMSO control cells. A number of novel proteins whose function is not known in bowel barrier regulation were among the identified proteins, including midkine. Our functional integrity assays on the Caco-2 cell monolayer showed that the inhibition of midkine expression prior to MPA treatment could completely block the MPA-mediated increase in barrier permeability. Conclusions: The ChIP-O-Proteomics approach delivered a number of novel proteins with potential implications in MPA toxicity. Consequently, it can be proposed that midkine inhibition could be a potent therapeutic approach to prevent the MPA-mediated increase in TJ permeability and leak flux diarrhea in organ transplant patients. PMID:27104530

  1. mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1.

    PubMed

    Bu, Huajie; Baraldo, Giorgia; Lepperdinger, Günter; Jansen-Dürr, Pidder

    2016-03-01

    MicroRNAs (miRNAs) are a group of small non-coding executor RNAs. Their function as key modulators of cellular senescence has been widely recognized recently. By cross-comparing several human aging models we previously identified dozens of miRNAs being differentially regulated during aging. Here the functions of two miRNAs, mir-24 and mir-424, were investigated in an oxidative stress-induced fibroblast premature senescence model. Using pre-miRNA precursors, miRNAs were overexpressed in cells undergoing premature senescence induced by oxidative stress. More senescent cells were observed in mir-24 transfected cells. p53 was upregulated in mir-24 overexpressing cells, but downregulated in mir-424 overexpressing cells. DNA topoisomerase I (TOP1), an enzyme controlling DNA topology, was identified as a target of mir-24, whose expression was induced by oxidative stress. Knocking down TOP1 induced cellular senescence. These results suggest that mir-24 activity propagates stress-induced senescence by down regulating TOP1. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Localization of functional β-xylosidases, encoded by the same single gene, xlsIV (xlnD), from Aspergillus niger E-1.

    PubMed

    Inoue, Kotomi; Takahashi, Yui; Obara, Ken; Murakami, Shuichiro

    2017-03-01

    Cell wall-associated β-xylosidase was isolated from Aspergillus niger E-1 and identified as XlsIV, corresponding to the extracellular enzyme XlnD reported previously. xlsIV was transcribed only in the early cultivation period. Cell wall-associated enzyme activity gradually decreased, but extracellular activity increased as the strain grew. These results indicate that XlsIV (XlnD) was secreted into culture after localizing at cell wall.

  3. FOXP3 and GARP (LRRC32): the master and its minion.

    PubMed

    Probst-Kepper, Michael; Buer, Jan

    2010-02-05

    The transcription factor FOXP3 is essential for the development and function of CD4+CD25hiFOXP3+ regulatory T (T(reg)) cells, but also expressed in activated human helper T cells without acquisition of a regulatory phenotype. This comment focuses on glycoprotein-A repetitions predominant (GARP or LRRC32) recently identified as specific marker of activated human T(reg) cells, which may provide the missing link toward a better molecular definition of the regulatory phenotype.

  4. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology.

    PubMed

    Li, Chunjie; Imanishi, Ayako; Komatsu, Naoki; Terai, Kenta; Amano, Mutsuki; Kaibuchi, Kozo; Matsuda, Michiyuki

    2017-01-11

    Genetically-encoded biosensors based on Förster/fluorescence resonance energy transfer (FRET) are versatile tools for studying the spatio-temporal regulation of signaling molecules within not only the cells but also tissues. Perhaps the hardest task in the development of a FRET biosensor for protein kinases is to identify the kinase-specific substrate peptide to be used in the FRET biosensor. To solve this problem, we took advantage of kinase-interacting substrate screening (KISS) technology, which deduces a consensus substrate sequence for the protein kinase of interest. Here, we show that a consensus substrate sequence for ROCK identified by KISS yielded a FRET biosensor for ROCK, named Eevee-ROCK, with high sensitivity and specificity. By treating HeLa cells with inhibitors or siRNAs against ROCK, we show that a substantial part of the basal FRET signal of Eevee-ROCK was derived from the activities of ROCK1 and ROCK2. Eevee-ROCK readily detected ROCK activation by epidermal growth factor, lysophosphatidic acid, and serum. When cells stably-expressing Eevee-ROCK were time-lapse imaged for three days, ROCK activity was found to increase after the completion of cytokinesis, concomitant with the spreading of cells. Eevee-ROCK also revealed a gradual increase in ROCK activity during apoptosis. Thus, Eevee-ROCK, which was developed from a substrate sequence predicted by the KISS technology, will pave the way to a better understanding of the function of ROCK in a physiological context.

  5. PAI1 mediates fibroblast-mast cell interactions in skin fibrosis.

    PubMed

    Pincha, Neha; Hajam, Edries Yousaf; Badarinath, Krithika; Batta, Surya Prakash Rao; Masudi, Tafheem; Dey, Rakesh; Andreasen, Peter; Kawakami, Toshiaki; Samuel, Rekha; George, Renu; Danda, Debashish; Jacob, Paul Mazhuvanchary; Jamora, Colin

    2018-05-01

    Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.

  6. Identification of cytotoxic mediators and their putative role in the signaling pathways during docosahexaenoic acid (DHA)-induced apoptosis of cancer cells.

    PubMed

    Das, Moitreyi; Das, Sumantra

    2016-12-01

    Docosahexaenoic acid (DHA), an important w-3 fatty acid exhibits differential behavior in cancer cells of neural origin when compared to that in normal healthy astrocytes. Treatment of C6 glioma and SH-SY5Y cell lines and primary astrocytes, representing the neoplastic cells and normal healthy cells respectively, with 100 µM DHA for 24 h showed significant loss of cell viability in the both the cancer cells as determined by MTT assay, whereas the primary astrocytes cultures were unaffected. Such loss of cell viability was due to apoptosis as confirmed by TUNEL staining and caspase-3 activation in cancer cells. Proteomic approach, employing 2-dimensional gel electrophoresis (2DE), difference gel electrophoresis (DIGE), and MALDI-TOF-TOF analysis identified six proteins which unlike in the astrocytes, were differently altered in the cancer cells upon exposure to DHA, suggesting their putative contribution in causing apoptosis in these cells. Of these, annexin A2, calumenin, pyruvate kinase M2 isoform, 14-3-3ζ were downregulated while aldo keto reductase-1B8 (AKR1B8) and glutathione-S-transferase P1 subunit (GSTP1) showed upregulation by DHA in the cancer cells. siRNA-mediated knockdown of AKR1B8 and GSTP1 inhibit DHA-induced apoptosis confirming their role in apoptotic process. Furthermore, western blot analysis identified upregulation of PPARα and the MAP kinases, JNK and p38 as well as increased ROS production selectively in the cell lines. Results suggest that DHA selectively induces apoptosis in the neural cell lines by regulating the expression of the above proteins to activate multiple apoptotic pathways which in association with excess ROS and activated MAPKs promote cell death.

  7. Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus mirabilis.

    PubMed

    Howery, Kristen E; Clemmer, Katy M; Şimşek, Emrah; Kim, Minsu; Rather, Philip N

    2015-08-01

    A key regulator of swarming in Proteus mirabilis is the Rcs phosphorelay, which represses flhDC, encoding the master flagellar regulator FlhD4C2. Mutants in rcsB, the response regulator in the Rcs phosphorelay, hyperswarm on solid agar and differentiate into swarmer cells in liquid, demonstrating that this system also influences the expression of genes central to differentiation. To gain a further understanding of RcsB-regulated genes involved in swarmer cell differentiation, transcriptome sequencing (RNA-Seq) was used to examine the RcsB regulon. Among the 133 genes identified, minC and minD, encoding cell division inhibitors, were identified as RcsB-activated genes. A third gene, minE, was shown to be part of an operon with minCD. To examine minCDE regulation, the min promoter was identified by 5' rapid amplification of cDNA ends (5'-RACE), and both transcriptional lacZ fusions and quantitative real-time reverse transcriptase (qRT) PCR were used to confirm that the minCDE operon was RcsB activated. Purified RcsB was capable of directly binding the minC promoter region. To determine the role of RcsB-mediated activation of minCDE in swarmer cell differentiation, a polar minC mutation was constructed. This mutant formed minicells during growth in liquid, produced shortened swarmer cells during differentiation, and exhibited decreased swarming motility. This work describes the regulation and role of the MinCDE cell division system in P. mirabilis swarming and swarmer cell elongation. Prior to this study, the mechanisms that inhibit cell division and allow swarmer cell elongation were unknown. In addition, this work outlines for the first time the RcsB regulon in P. mirabilis. Taken together, the data presented in this study begin to address how P. mirabilis elongates upon contact with a solid surface. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Mass Cytometry Identifies Distinct Lung CD4+ T Cell Patterns in Löfgren’s Syndrome and Non-Löfgren’s Syndrome Sarcoidosis

    PubMed Central

    Kaiser, Ylva; Lakshmikanth, Tadepally; Chen, Yang; Mikes, Jaromir; Eklund, Anders; Brodin, Petter; Achour, Adnane; Grunewald, Johan

    2017-01-01

    Sarcoidosis is a granulomatous disorder of unknown etiology, characterized by accumulation of activated CD4+ T cells in the lungs. Disease phenotypes Löfgren’s syndrome (LS) and “non-LS” differ in terms of clinical manifestations, genetic background, HLA association, and prognosis, but the underlying inflammatory mechanisms largely remain unknown. Bronchoalveolar lavage fluid cells from four HLA-DRB1*03+ LS and four HLA-DRB1*03− non-LS patients were analyzed by mass cytometry, using a panel of 33 unique markers. Differentially regulated CD4+ T cell populations were identified using the Citrus algorithm, and t-stochastic neighborhood embedding was applied for dimensionality reduction and single-cell data visualization. We identified 19 individual CD4+ T cell clusters differing significantly in abundance between LS and non-LS patients. Seven clusters more frequent in LS patients were characterized by significantly higher expression of regulatory receptors CTLA-4, PD-1, and ICOS, along with low expression of adhesion marker CD44. In contrast, 12 clusters primarily found in non-LS displayed elevated expression of activation and effector markers HLA-DR, CD127, CD39, as well as CD44. Hierarchical clustering further indicated functional heterogeneity and diverse origins of T cell receptor Vα2.3/Vβ22-restricted cells in LS. Finally, a near-complete overlap of CD8 and Ki-67 expression suggested larger influence of CD8+ T cell activity on sarcoid inflammation than previously appreciated. In this study, we provide detailed characterization of pulmonary T cells and immunological parameters that define separate disease pathways in LS and non-LS. With direct association to clinical parameters, such as granuloma persistence, resolution, or chronic inflammation, these results provide a valuable foundation for further exploration and potential clinical application. PMID:28955342

  9. Activity of dorsal raphe cells across the sleep–waking cycle and during cataplexy in narcoleptic dogs

    PubMed Central

    Wu, M-F; John, J; Boehmer, L N; Yau, D; Nguyen, G B; Siegel, J M

    2004-01-01

    Cataplexy, a symptom associated with narcolepsy, represents a unique dissociation of behavioural states. During cataplectic attacks, awareness of the environment is maintained, as in waking, but muscle tone is lost, as in REM sleep. We have previously reported that, in the narcoleptic dog, noradrenergic cells of the locus coeruleus cease discharge during cataplexy. In the current study, we report on the activity of serotonergic cells of the dorsal raphe nucleus. The discharge patterns of serotonergic dorsal raphe cells across sleep–waking states did not differ from those of dorsal raphe and locus coeruleus cells recorded in normal rats, cats and monkeys, with tonic discharge in waking, reduced activity in non-REM sleep and cessation of activity in REM sleep. However, in contrast with locus coeruleus cells, dorsal raphe REM sleep-off neurones did not cease discharge during cataplexy. Instead, discharge continued at a level significantly higher than that seen in REM sleep and comparable to that seen in non-REM sleep. We also identified several cells in the dorsal raphe whose pattern of activity was the opposite of that of the presumed serotonergic cells. These cells were maximally active in REM sleep and minimally active in waking and increased activity during cataplexy. The difference between noradrenergic and serotonergic cell discharge profiles in cataplexy suggests different roles for these cell groups in the normal regulation of environmental awareness and muscle tone and in the pathophysiology of narcolepsy. PMID:14678502

  10. Cross-linking of surface Ig receptors on murine B lymphocytes stimulates the expression of nuclear tetradecanoyl phorbol acetate-response element-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiles, T.C.; Liu, J.L.; Rothstein, T.L.

    1991-03-15

    Cross-linking of sIg on primary B lymphocytes leads to increased nuclear DNA-binding activity specific for the tetradecanoyl phorbol acetate-response element (TRE), as judged by gel mobility shift assays. Stimulation of B cells to enter S phase of the cell cycle by treatment with the combination of phorbol ester plus calcium ionophore also stimulated nuclear TRE-binding activity within 2 h, with maximal expression at 4 h; however, phorbol ester and calcium ionophore were not as effective in stimulating binding activity when examined separately. Stimulated nuclear expression of TRE-binding activity appears to require protein synthesis. Fos- and Jun/AP-1-related proteins participate directly inmore » the identified nucleoprotein complex, as shown by the ability of c-fos- and c-jun-specific antisera to either alter or completely abolish electrophoretic migration of the complex in native gels. Further, UV photo-cross-linking studies identified two major TRE-binding protein species, whose sizes correspond to TRE-binding proteins derived from HeLa cell nuclear extracts. The results suggest that in primary B cells nuclear TRE-binding activity represents a downstream signaling event that occurs subsequent to changes in protein kinase C activity and intracellular Ca2+ but that can be triggered physiologically through sIg.« less

  11. Short term exposure to elevated levels of leptin reduces proximal tubule cell metabolic activity.

    PubMed

    Briffa, Jessica F; Grinfeld, Esther; McAinch, Andrew J; Poronnik, Philip; Hryciw, Deanne H

    2014-01-25

    Leptin plays a pathophysiological role in the kidney, however, its acute effects on the proximal tubule cells (PTCs) are unknown. In opossum kidney (OK) cells in vitro, Western blot analysis identified that exposure to leptin increases the phosphorylation of the mitogen-activated protein kinase (MAPK) p44/42 and the mammalian target of rapamycin (mTOR). Importantly leptin (0.05, 0.10, 0.25 and 0.50 μg/ml) significantly reduced the metabolic activity of PTCs, and significantly decreased protein content per cell. Investigation of the role of p44/42 and mTOR on metabolic activity and protein content per cell, demonstrated that in the presence of MAPK inhibitor U0126 and mTOR inhibitor Ku-63794, that the mTOR pathway is responsible for the reduction in PTC metabolic activity in response to leptin. However, p44/42 and mTOR play no role the reduced protein content per cell in OKs exposed to leptin. Therefore, leptin modulates metabolic activity in PTCs via an mTOR regulated pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    PubMed

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  13. Evidence for the opposing roles of different gamma delta T cell subsets in macrophage homeostasis.

    PubMed

    Tramonti, Daniela; Andrew, Elizabeth M; Rhodes, Kate; Newton, Darren J; Carding, Simon R

    2006-07-01

    To ensure invading pathogens are eliminated with minimal damage to host tissues it is essential that macrophage activation be tightly regulated. Previously we demonstrated that a subset of gammadelta T cells (Vgamma1(+)) contributes to resolving pathogen-induced immune responses by killing activated macrophages. However, the exaggerated macrophage response seen in infected Vgamma1(+) T cell-deficient mice suggests that gammadelta T cells play a broader role in macrophage homeostasis and other subsets might promote macrophage activation. Using a macrophage:gammadelta T cell co-culture system we have shown that gammadelta T cells increase the activity of macrophages activated in vivo by Listeria monocytogenes infection. In a dose-dependent manner, gammadelta T cells up-regulated production of cytokines (TNF-alpha, IL-6, IL-10) and chemokines (MIP-1alpha, MIP-1beta) by Listeria-elicited macrophages. The ability to increase macrophage cytokine production was prominent among Vgamma4(+) gammadelta T cells. Reciprocally, Vgamma4(+) gammadelta T cells were activated by Listeria-elicited macrophages, resulting in production of the anti-inflammatory cytokine, IL-10. gammadelta T cell adoptive transfer experiments showed that Vgamma4(+) T cells protected TCRdelta(-/-) mice against Listeria-induced liver injury and necrosis. These findings identify distinct and non-overlapping roles for gammadelta T cell subsets in regulating macrophage function during pathogen-induced immune responses.

  14. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery.

    PubMed

    Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-11-04

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.

  15. Differential gene expression analysis in glioblastoma cells and normal human brain cells based on GEO database.

    PubMed

    Wang, Anping; Zhang, Guibin

    2017-11-01

    The differentially expressed genes between glioblastoma (GBM) cells and normal human brain cells were investigated to performed pathway analysis and protein interaction network analysis for the differentially expressed genes. GSE12657 and GSE42656 gene chips, which contain gene expression profile of GBM were obtained from Gene Expression Omniub (GEO) database of National Center for Biotechnology Information (NCBI). The 'limma' data packet in 'R' software was used to analyze the differentially expressed genes in the two gene chips, and gene integration was performed using 'RobustRankAggreg' package. Finally, pheatmap software was used for heatmap analysis and Cytoscape, DAVID, STRING and KOBAS were used for protein-protein interaction, Gene Ontology (GO) and KEGG analyses. As results: i) 702 differentially expressed genes were identified in GSE12657, among those genes, 548 were significantly upregulated and 154 were significantly downregulated (p<0.01, fold-change >1), and 1,854 differentially expressed genes were identified in GSE42656, among the genes, 1,068 were significantly upregulated and 786 were significantly downregulated (p<0.01, fold-change >1). A total of 167 differentially expressed genes including 100 upregulated genes and 67 downregulated genes were identified after gene integration, and the genes showed significantly different expression levels in GBM compared with normal human brain cells (p<0.05). ii) Interactions between the protein products of 101 differentially expressed genes were identified using STRING and expression network was established. A key gene, called CALM3, was identified by Cytoscape software. iii) GO enrichment analysis showed that differentially expressed genes were mainly enriched in 'neurotransmitter:sodium symporter activity' and 'neurotransmitter transporter activity', which can affect the activity of neurotransmitter transportation. KEGG pathway analysis showed that the differentially expressed genes were mainly enriched in 'protein processing in endoplasmic reticulum', which can affect protein processing in endoplasmic reticulum. The results showed that: i) 167 differentially expressed genes were identified from two gene chips after integration; and ii) protein interaction network was established, and GO and KEGG pathway analyses were successfully performed to identify and annotate the key gene, which provide new insights for the studies on GBN at gene level.

  16. ABCB1 identifies a subpopulation of uveal melanoma cells with high metastatic propensity

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Kneass, Zachary T.; Salesse, Christian; Harbour, J. William

    2011-01-01

    SUMMARY Metastasis of tumor cells to distant organs is the leading cause of death in melanoma. Yet, the mechanisms of metastasis remain poorly understood. One key question is whether all cells in a primary tumor are equally likely to metastasize or whether subpopulations of cells preferentially give rise to metastases. Here, we identified a subpopulation of uveal melanoma cells expressing the multidrug resistance transporter ABCB1 that are highly metastatic compared to ABCB1− bulk tumor cells. ABCB1+ cells also exhibited enhanced clonogenicity, anchorage independent growth, tumorigenicity and mitochondrial activity compared to ABCB1− cells. A375 cutaneous melanoma cells contained a similar subpopulation of highly metastatic ABCB1+ cells. These findings suggest that some uveal melanoma cells have greater potential for metastasis than others, and that a better understanding of such cells may be necessary for more successful therapies for metastatic melanoma. PMID:21575142

  17. Connecting Neuronal Cell Protective Pathways and Drug Combinations in a Huntington's Disease Model through the Application of Quantitative Systems Pharmacology.

    PubMed

    Pei, Fen; Li, Hongchun; Henderson, Mark J; Titus, Steven A; Jadhav, Ajit; Simeonov, Anton; Cobanoglu, Murat Can; Mousavi, Seyed H; Shun, Tongying; McDermott, Lee; Iyer, Prema; Fioravanti, Michael; Carlisle, Diane; Friedlander, Robert M; Bahar, Ivet; Taylor, D Lansing; Lezon, Timothy R; Stern, Andrew M; Schurdak, Mark E

    2017-12-19

    Quantitative Systems Pharmacology (QSP) is a drug discovery approach that integrates computational and experimental methods in an iterative way to gain a comprehensive, unbiased understanding of disease processes to inform effective therapeutic strategies. We report the implementation of QSP to Huntington's Disease, with the application of a chemogenomics platform to identify strategies to protect neuronal cells from mutant huntingtin induced death. Using the STHdh Q111 cell model, we investigated the protective effects of small molecule probes having diverse canonical modes-of-action to infer pathways of neuronal cell protection connected to drug mechanism. Several mechanistically diverse protective probes were identified, most of which showed less than 50% efficacy. Specific combinations of these probes were synergistic in enhancing efficacy. Computational analysis of these probes revealed a convergence of pathways indicating activation of PKA. Analysis of phospho-PKA levels showed lower cytoplasmic levels in STHdh Q111 cells compared to wild type STHdh Q7 cells, and these levels were increased by several of the protective compounds. Pharmacological inhibition of PKA activity reduced protection supporting the hypothesis that protection may be working, in part, through activation of the PKA network. The systems-level studies described here can be broadly applied to any discovery strategy involving small molecule modulation of disease phenotype.

  18. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells.

    PubMed

    Dalton, Jane E; Howell, Gareth; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2004-09-15

    Gammadelta T cells have a direct role in resolving the host immune response to infection by eliminating populations of activated macrophages. Macrophage reactivity resides within the Vgamma1/Vdelta6.3 subset of gammadelta T cells, which have the ability to kill activated macrophages following infection with Listeria monocytogenes (Lm). However, it is not known how gammadelta T cell macrophage cytocidal activity is regulated, or what effector mechanisms gammadelta T cells use to kill activated macrophages. Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta-/- mice were incubated with splenocytes from wild-type and Fas ligand (FasL)-deficient mice (gld), the ability of Vgamma1 T cells to bind macrophages was shown to be dependent upon Fas-FasL interactions. Combinations of anti-TCR and FasL Abs completely abolished binding to and killing of activated macrophages by Vgamma1 T cells. In addition, confocal microscopy showed that Fas and the TCR colocalized on Vgamma1 T cells at points of contact with macrophages. Collectively, these studies identify an accessory or coreceptor-like function for Fas-FasL that is essential for the interaction of Vgamma1 T cells with activated macrophages and their elimination during the resolution stage of pathogen-induced immune responses. Copyright 2004 The American Association of Immunologists, Inc.

  19. Abcg2 expression marks tissue-specific stem cells in multiple organs in a mouse progeny tracking model.

    PubMed

    Fatima, Soghra; Zhou, Sheng; Sorrentino, Brian P

    2012-02-01

    The side population phenotype is associated with the Hoechst dye efflux activity of the Abcg2 transporter and identifies hematopoietic stem cells (HSCs) in the bone marrow. This association suggests the direct use of Abcg2 expression to identify adult stem cells in various other organs. We have generated a lineage tracing mouse model based on an allele that coexpresses both Abcg2 and a CreERT2 expression cassette. By crossing these mice with lox-STOP-lox reporter lines (LacZ or YFP), cells that express Abcg2 and their progeny were identified following treatment with tamoxifen (Tam). In the liver and kidney, in which mature cells express Abcg2, reporter gene expression verified the expected physiologic expression pattern of the recombinant allele. Long-term marking of HSCs was seen in multiple peripheral blood lineages from adult mice, demonstrating that Abcg2(+) bone marrow HSCs contribute to steady-state hematopoiesis. Stem cell tracing patterns were seen in the small intestine and in seminiferous tubules in the testis 20 months after Tam treatment, proving that stem cells from these organs express Abcg2. Interstitial cells from skeletal and cardiac muscle were labeled, and some cells were costained with endothelial markers, raising the possibility that these cells may function in the repair response to muscle injury. Altogether, these studies prove that Abcg2 is a stem cell marker for blood, small intestine, testicular germ cells, and possibly for injured skeletal and/or cardiac muscle and provide a new model for studying stem cell activity that does not require transplant-based assays. Copyright © 2011 AlphaMed Press.

  20. Analysis and functional annotation of expressed sequence tags from in vitro cell lines of elasmobranchs: Spiny dogfish shark (Squalus acanthias) and little skate (Leucoraja erinacea).

    PubMed

    Parton, Angela; Bayne, Christopher J; Barnes, David W

    2010-09-01

    Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories "envelope" and "oxidoreductase activity" but the SAE transcripts did not. GO analysis of SAE transcripts identified the category "anatomical structure formation" that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. Copyright 2010 Elsevier Inc. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kareva, Irina; Waxman, David J.; Klement, Giannoula Lakka

    The administration of chemotherapy at reduced doses given at regular, frequent time intervals, termed ‘metronomic’ chemotherapy, presents an alternative to standard maximal tolerated dose (MTD) chemotherapy. The primary target of metronomic chemotherapy was originally identified as endothelial cells supporting the tumor vasculature, and not the tumor cells themselves, consistent with the emerging concept of cancer as a systemic disease involving both tumor cells and their microenvironment. While anti-angiogenesis is an important mechanism of action of metronomic chemotherapy, other mechanisms, including activation of anti-tumor immunity and a decrease in acquired therapeutic resistance, have also been identified. In this paper, we presentmore » evidence supporting a mechanistic explanation for the improved activity of cancer chemotherapy when administered on a metronomic, rather than an MTD schedule and discuss the implications of these findings for further translation into the clinic.« less

  2. Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors

    PubMed Central

    Pauli, Andrea; Norris, Megan L.; Valen, Eivind; Chew, Guo-Liang; Gagnon, James A.; Zimmerman, Steven; Mitchell, Andrew; Ma, Jiao; Dubrulle, Julien; Reyon, Deepak; Tsai, Shengdar Q.; Joung, J. Keith; Saghatelian, Alan; Schier, Alexander F.

    2014-01-01

    It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein–coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals. PMID:24407481

  3. 6-Gingerol inhibits osteosarcoma cell proliferation through apoptosis and AMPK activation.

    PubMed

    Fan, Jingzhang; Yang, Xin; Bi, Zhenggang

    2015-02-01

    6-Gingerol, a major component of ginger, is demonstrated to possess a variety of pharmacological activities. Despite demonstration of its anti-cancer activity, the exact mechanism underlying the effects of 6-gingerol against sarcoma remains sketchy. In the present study, we investigated the anti-cancer effects of 6-gingerol on osteosarcoma cells. MTT assay was performed to determine cell viability. Phosphorylation and protein levels were determined by immunoblotting. Cell cycle was determined using flow cytometry. Quantitative polymerase chain reaction was employed to determine the changes in the messenger RNA (mRNA) expression of genes. Treatment with 6-gingerol resulted in a significant decrease in the viability of osteosarcoma cells in a dose-dependent fashion. In parallel, the number of cells arrested at the sub-G1 cell cycle phase was significantly increased. The results showed that 6-gingerol induced activation of caspase cascades and regulated cellular levels of Bcl2 and Bax. Moreover, 6-gingerol activated AMP-activated protein kinase (AMPK) signaling associated with the apoptotic pathways. Our findings suggest that 6-gingerol suppresses the growth of osteosarcoma cells. The anti-cancer activity is attributed to the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling incorporating with 6-gingerol-induced AMPK activation. The study identifies a new molecular mechanism by which AMPK is involved in anti-cancer effects of 6-gingerol.

  4. Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly.

    PubMed

    Harkness, Justine M; Li, Jihong; McClane, Bruce A

    2012-10-01

    Clostridium perfringens type B and D strains produce epsilon toxin (ETX), which is one of the most potent clostridial toxins and is involved in enteritis and enterotoxemias of domestic animals. ETX is produced initially as an inactive prototoxin that is typically then secreted and processed by intestinal proteases or possibly, for some strains, lambda toxin. During the current work a unique C. perfringens strain was identified that intracellularly processes epsilon prototoxin to an active form capable of killing MDCK cells. This activated toxin is not secreted but instead is apparently released upon lysis of bacterial cells entering stationary phase. These findings broaden understanding of the pathogenesis of type B and D infections by identifying a new mechanism of ETX activation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Liver myofibroblasts of murine origins express mesothelin: Identification of novel rat mesothelin splice variants*

    PubMed Central

    G. Lavoie, Elise; Dranoff, Jonathan A.

    2017-01-01

    Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrβ, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and cellular distribution in transfected COS7 fibroblasts. We conclude that mesothelin is a marker of activated murine liver myofibroblasts. Mesothelin gene expression and regulation may be critical in liver myofibroblasts functions and fibrosis progression. PMID:28898276

  6. Estrogen Receptor β as a Therapeutic Target in Breast Cancer Stem Cells

    PubMed Central

    Ma, Ran; Karthik, Govindasamy-Muralidharan; Lövrot, John; Haglund, Felix; Rosin, Gustaf; Katchy, Anne; Zhang, Xiaonan; Viberg, Lisa; Frisell, Jan; Williams, Cecilia; Linder, Stig; Fredriksson, Irma

    2017-01-01

    Abstract Background: Breast cancer cells with tumor-initiating capabilities (BSCs) are considered to maintain tumor growth and govern metastasis. Hence, targeting BSCs will be crucial to achieve successful treatment of breast cancer. Methods: We characterized mammospheres derived from more than 40 cancer patients and two breast cancer cell lines for the expression of estrogen receptors (ERs) and stem cell markers. Mammosphere formation and proliferation assays were performed on cells from 19 cancer patients and five healthy individuals after incubation with ER-subtype selective ligands. Transcriptional analysis was performed to identify pathways activated in ERβ-stimulated mammospheres and verified using in vitro experiments. Xenograft models (n = 4 or 5 per group) were used to study the role of ERs during tumorigenesis. Results: We identified an absence of ERα but upregulation of ERβ in BSCs associated with phenotypic stem cell markers and responsible for the proliferative role of estrogens. Knockdown of ERβ caused a reduction of mammosphere formation in cell lines and in patient-derived cancer cells (40.7%, 26.8%, and 39.1%, respectively). Gene set enrichment analysis identified glycolysis-related pathways (false discovery rate < 0.001) upregulated in ERβ-activated mammospheres. We observed that tamoxifen or fulvestrant alone was insufficient to block proliferation of patient-derived BSCs while this could be accomplished by a selective inhibitor of ERβ (PHTPP; 53.7% in luminal and 45.5% in triple-negative breast cancers). Furthermore, PHTPP reduced tumor initiation in two patient-derived xenografts (75.9% and 59.1% reduction in tumor volume, respectively) and potentiated tamoxifen-mediated inhibition of tumor growth in MCF7 xenografts. Conclusion: We identify ERβ as a mediator of estrogen action in BSCs and a novel target for endocrine therapy. PMID:28376210

  7. Characterization of the Apoptotic Response Induced by the Cyanine Dye D112: A Potentially Selective Anti-Cancer Compound

    PubMed Central

    Yang, Ning; Gilman, Paul; Mirzayans, Razmik; Sun, Xuejun; Touret, Nicolas; Weinfeld, Michael; Goping, Ing Swie

    2015-01-01

    Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation. PMID:25927702

  8. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.

    PubMed

    Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H

    2016-03-01

    Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.

  9. Reduction of endogenous nucleic acid in a single-cell protein.

    PubMed Central

    Yang, H H; Thayer, D W; Yang, S P

    1979-01-01

    The reduction of nucleic acid by an endogenous polynucleotide phosphorylase and ribonuclease in cells of Brevibacterium JM98A (ATCC 29895) was studied. A simple process was developed for the activation of the endogenous RNA-degrading enzyme(s). RNA degradation was activated by the presence of Pi with 14.2 mumol of ribonucleoside 5'-monophosphate per g of cell mass accumulating extracellularly. The optimum pH for degradation of RNA was 10.5 and the optimum temperature was 55 to 60 degrees C. Enzymatic activity was inhibited by the presence of Ca2+, Zn2+, or Mg2+. Although some of the RNA-degrading enzymatic activity was associated with the ribosomal fraction, most was soluble. Both polynucleotide phosphorylase and ribonuclease activities were identified. PMID:39504

  10. Crosstalk Between Activated Myofibroblasts and β Cells in Injured Mouse Pancreas.

    PubMed

    Bayan, Jennifer-Ann; Peng, Zhechu; Zeng, Ni; He, Lina; Chen, Jingyu; Stiles, Bangyan L

    2015-10-01

    In injury conditions, myofibroblasts are induced to lay down matrix proteins and support the repair process. In this study, we investigated the role of myofibroblasts, particularly stellate cells, in the growth and regeneration of pancreatic β cells. We used both in vitro and in vivo approaches to address whether stellate cells may promote the growth of β cells. Our experiments demonstrated that activated stellate cells support the proliferation of β cells in vitro. In vivo, mesenchymals surrounding the pancreatic islets are activated (induced to proliferate) in the islet regeneration model of Pten null mice. These mesenchymals display markers of pancreatic stellate cells, such as desmin and to a lesser extent, smooth muscle actin α. We have shown previously that targeted β-cell deletion of Pten lead to a significant increase in total islet mass. This phenotype was accompanied by an increase in peri-islet mitotic activity, particularly in islets injured by streptozotocin, a β cell-specific toxin. Together with the in vitro observations, our data, here, suggest that that these mesenchymal cells may support the regeneration of the islets. Identifying how the communication occurs may provide clinically relevant mechanism for inducing β-cell regeneration.

  11. Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity.

    PubMed

    Wu, Zeguang; Sinzger, Christian; Frascaroli, Giada; Reichel, Johanna; Bayer, Carina; Wang, Li; Schirmbeck, Reinhold; Mertens, Thomas

    2013-07-01

    Recent studies indicate that expansion of NKG2C-positive natural killer (NK) cells is associated with human cytomegalovirus (HCMV); however, their activity in response to HCMV-infected cells remains unclear. We show that NKG2C(hi) CD57(hi) NK cells gated on CD3(neg) CD56(dim) cells can be phenotypically identified as HCMV-induced NK cells that can be activated by HCMV-infected cells. Using HCMV-infected autologous macrophages as targets, we were able to show that these NKG2C(hi) CD57(hi) NK cells are highly responsive to HCMV-infected macrophages only in the presence of HCMV-specific antibodies, whereas they are functionally poor effectors of natural cytotoxicity. We further demonstrate that NKG2C(hi) CD57(hi) NK cells are intrinsically responsive to signaling through CD16 cross-linking. Our findings show that the activity of pathogen-induced innate immune cells can be enhanced by adaptive humoral immunity. Understanding the activity of NKG2C(hi) CD57(hi) NK cells against HCMV-infected cells will be of relevance for the further development of adoptive immunotherapy.

  12. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models.

    PubMed

    Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J

    2012-12-01

    The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria. © 2011 Blackwell Publishing Ltd.

  13. Biological activities and chemical composition of lichens from Serbia

    PubMed Central

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  14. Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction

    PubMed Central

    Malliaras, Konstantinos; Ibrahim, Ahmed; Tseliou, Eleni; Liu, Weixin; Sun, Baiming; Middleton, Ryan C; Seinfeld, Jeffrey; Wang, Lai; Sharifi, Behrooz G; Marbán, Eduardo

    2014-01-01

    Controversy surrounds the identity, origin, and physiologic role of endogenous cardiomyocyte progenitors in adult mammals. Using an inducible genetic labeling approach to identify small non-myocyte cells expressing cardiac markers, we find that activated endogenous cardioblasts are rarely evident in the normal adult mouse heart. However, myocardial infarction results in significant cardioblast activation at the site of injury. Genetically labeled isolated cardioblasts express cardiac transcription factors and sarcomeric proteins, exhibit spontaneous contractions, and form mature cardiomyocytes in vivo after injection into unlabeled recipient hearts. The activated cardioblasts do not arise from hematogenous seeding, cardiomyocyte dedifferentiation, or mere expansion of a preformed progenitor pool. Cell therapy with cardiosphere-derived cells amplifies innate cardioblast-mediated tissue regeneration, in part through the secretion of stromal cell-derived factor 1 by transplanted cells. Thus, stimulation of endogenous cardioblasts by exogenous cells mediates therapeutic regeneration of injured myocardium. PMID:24797668

  15. A Multiplexed High-Content Screening Approach Using the Chromobody Technology to Identify Cell Cycle Modulators in Living Cells.

    PubMed

    Schorpp, Kenji; Rothenaigner, Ina; Maier, Julia; Traenkle, Bjoern; Rothbauer, Ulrich; Hadian, Kamyar

    2016-10-01

    Many screening hits show relatively poor quality regarding later efficacy and safety. Therefore, small-molecule screening efforts shift toward high-content analysis providing more detailed information. Here, we describe a novel screening approach to identify cell cycle modulators with low toxicity by combining the Cell Cycle Chromobody (CCC) technology with the CytoTox-Glo (CTG) cytotoxicity assay. The CCC technology employs intracellularly functional single-domain antibodies coupled to a fluorescent protein (chromobodies) to visualize the cell cycle-dependent redistribution of the proliferating cell nuclear antigen (PCNA) in living cells. This image-based cell cycle analysis was combined with determination of dead-cell protease activity in cell culture supernatants by the CTG assay. We adopted this multiplex approach to high-throughput format and screened 960 Food and Drug Administration (FDA)-approved drugs. By this, we identified nontoxic compounds, which modulate different cell cycle stages, and validated selected hits in diverse cell lines stably expressing CCC. Additionally, we independently validated these hits by flow cytometry as the current state-of-the-art format for cell cycle analysis. This study demonstrates that CCC imaging is a versatile high-content screening approach to identify cell cycle modulators, which can be multiplexed with cytotoxicity assays for early elimination of toxic compounds during screening. © 2016 Society for Laboratory Automation and Screening.

  16. Comparison of the neuropoietic activity of gene-modified versus parental mesenchymal stromal cells and the identification of soluble and extracellular matrix-related neuropoietic mediators

    PubMed Central

    2014-01-01

    Introduction Transplanting mesenchymal stromal cells (MSCs) or their derivatives into a neurodegenerative environment is believed to be beneficial because of the trophic support, migratory guidance, immunosuppression, and neurogenic stimuli they provide. SB623, a cell therapy for the treatment of chronic stroke, currently in a clinical trial, is derived from bone marrow MSCs by using transient transfection with a vector encoding the human Notch1 intracellular domain. This creates a new phenotype, which is effective in experimental stroke, exhibits immunosuppressive and angiogenic activity equal or superior to parental MSCs in vitro, and produces extracellular matrix (ECM) that is exceptionally supportive for neural cell growth. The neuropoietic activity of SB623 and parental MSCs has not been compared, and the SB623-derived neuropoietic mediators have not been identified. Methods SB623 or parental MSCs were cocultured with rat embryonic brain cortex cells on cell-derived ECM in a previously characterized quantitative neuropoiesis assay. Changes in expression of rat neural differentiation markers were quantified by using rat-specific qRT-PCR. Human mediators were identified by using expression profiling, an enzymatic crosslinking activity, and functional interference studies by means of blocking antibodies, biologic inhibitors, and siRNA. Cocultures were immunolabeled for presynaptic vesicular transporters to assess neuronal specialization. Results Among six MSC/SB623 pairs, SB623 induced expression of rat neural precursor, oligodendrocyte, and astrocyte markers on average 2.6 to 3 times stronger than did their parental MSCs. SB623 expressed significantly higher FGF2, FGF1, and BMP4, and lower FGFR1 and FGFR2 levels; and human FGF1, FGF2, BMPs, and HGF were implicated as neuropoietic mediators. Neural precursors grew faster on SB623- than on MSC-derived ECM. SB623 exhibited higher expression levels and crosslinking activity of tissue transglutaminase (TGM2). TGM2 silencing reduced neural precursor growth on SB623-ECM. SB623 also promoted the induction of GABA-ergic, but not glutamatergic, neurons more effectively than did MSCs. Conclusions These data demonstrate that SB623 cells tend to support neural cell growth more effectively than their parental MSCs and identify both soluble and insoluble mediators responsible, at least in part, for enhanced neuropoietic potency of SB623. The neuropoiesis assay is a useful tool for identifying beneficial factors produced by MSCs and their derivatives. PMID:24572070

  17. Lipid degradation promotes prostate cancer cell survival.

    PubMed

    Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Ho Lau, Chung; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J; Takhar, Mandeep; Heemers, Hannelore V; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L; Clarke, Noel; Swinnen, Johan V; Keun, Hector C; Rekvig, Ole P; Mills, Ian G

    2017-06-13

    Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential.

  18. TRPV1 Agonist, Capsaicin, Induces Axon Outgrowth after Injury via Ca2+/PKA Signaling.

    PubMed

    Frey, Erin; Karney-Grobe, Scott; Krolak, Trevor; Milbrandt, Jeff; DiAntonio, Aaron

    2018-01-01

    Preconditioning nerve injuries activate a pro-regenerative program that enhances axon regeneration for most classes of sensory neurons. However, nociceptive sensory neurons and central nervous system neurons regenerate poorly. In hopes of identifying novel mechanisms that promote regeneration, we screened for drugs that mimicked the preconditioning response and identified a nociceptive ligand that activates a preconditioning-like response to promote axon outgrowth. We show that activating the ion channel TRPV1 with capsaicin induces axon outgrowth of cultured dorsal root ganglion (DRG) sensory neurons, and that this effect is blocked in TRPV1 knockout neurons. Regeneration occurs only in NF200-negative nociceptive neurons, consistent with a cell-autonomous mechanism. Moreover, we identify a signaling pathway in which TRPV1 activation leads to calcium influx and protein kinase A (PKA) activation to induce a preconditioning-like response. Finally, capsaicin administration to the mouse sciatic nerve activates a similar preconditioning-like response and induces enhanced axonal outgrowth, indicating that this pathway can be induced in vivo . These findings highlight the use of local ligands to induce regeneration and suggest that it may be possible to target selective neuronal populations for repair, including cell types that often fail to regenerate.

  19. Liver X receptor activation inhibits PC-3 prostate cancer cells via the beta-catenin pathway.

    PubMed

    Youlin, Kuang; Li, Zhang; Weiyang, He; Jian, Kang; Siming, Liang; Xin, Gou

    2017-03-01

    Liver X receptors (LXRs) are nuclear receptors family of ligand-dependent transcription factors that play a crucial role in regulating cholesterol metabolism and inflammation. Recent studies show that LXR agonists exhibit anti-cancer activities in a variety of cancer cell lines including prostate. To further identify the potential mechanisms of LXRα activation on prostate cancer, we investigated the effect of LXR agonist T0901317 on PC3 prostate cancer cell and in which activity of beta-catenin pathway involved. Prostate cancer PC3 cells were transfected with LXR-a siRNA and treated with LXR activator T0901317. qRT-PCR and western blot were used to detect the LXR-a expression. beta-catenin, cyclin D1 and c-MYC were analyzed by western blot. Cell apoptosis was examined by flow cytometry and Cell proliferation was assessed by Cell Counting Kit-8 assay. Cell migration was detected by Transwell chambers. Data showed that T0901317 significantly inhibited PC3 cell proliferation as well as invasion and increased apoptosis in vitro. Furthermore, we found that LXRα activation induced the reduction of beta-catenin expression in PC3 cells, and this inhibitory effect could be totally abolished when cells were treated with LXRα. Meanwhile, the expression of beta-catenin target gene cyclin D1 and c-MYC were also decreased. This study provided additional evidence that LXR activation inhibited PC-3 prostate cancer cells via suppressing beta-catenin pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression.

    PubMed

    Wezel, Anouk; Lagraauw, H Maxime; van der Velden, Daniël; de Jager, Saskia C A; Quax, Paul H A; Kuiper, Johan; Bot, Ilze

    2015-08-01

    Activated mast cells have been identified in the intima and perivascular tissue of human atherosclerotic plaques. As mast cells have been described to release a number of chemokines that mediate leukocyte fluxes, we propose that activated mast cells may play a pivotal role in leukocyte recruitment during atherosclerotic plaque progression. Systemic IgE-mediated mast cell activation in apoE(-/-)μMT mice resulted in an increase in atherosclerotic lesion size as compared to control mice, and interestingly, the number of neutrophils was highly increased in these lesions. In addition, peritoneal mast cell activation led to a massive neutrophil influx into the peritoneal cavity in C57Bl6 mice, whereas neutrophil numbers in mast cell deficient Kit(W(-sh)/W(-sh)) mice were not affected. Within the newly recruited neutrophil population, increased levels of CXCR2(+) and CXCR4(+) neutrophils were observed after mast cell activation. Indeed, mast cells were seen to contain and release CXCL1 and CXCL12, the ligands for CXCR2 and CXCR4. Intriguingly, peritoneal mast cell activation in combination with anti-CXCR2 receptor antagonist resulted in decreased neutrophil recruitment, thus establishing a prominent role for the CXCL1/CXCR2 axis in mast cell-mediated neutrophil recruitment. Our data suggest that chemokines, and in particular CXCL1, released from activated mast cells induce neutrophil recruitment to the site of inflammation, thereby aggravating the ongoing inflammatory response and thus affecting plaque progression and destabilization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22.

    PubMed

    Cheng, Fan; Ramos da Silva, Suzane; Huang, I-Chueh; Jung, Jae U; Gao, Shou-Jiang

    2018-02-15

    The recent outbreak of Zika virus (ZIKV), a reemerging flavivirus, and its associated neurological disorders, such as Guillain-Barré (GB) syndrome and microcephaly, have generated an urgent need to develop effective ZIKV vaccines and therapeutic agents. Here, we used human endothelial cells and astrocytes, both of which represent key cell types for ZIKV infection, to identify potential inhibitors of ZIKV replication. Because several pathways, including the AMP-activated protein kinase (AMPK), protein kinase A (PKA), and mitogen-activated protein kinase (MAPK) signaling pathways, have been reported to play important roles in flavivirus replication, we tested inhibitors and agonists of these pathways for their effects on ZIKV replication. We identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. PKI effectively suppressed the replication of ZIKV from both the African and Asian/American lineages with a high efficiency and minimal cytotoxicity. While ZIKV infection does not induce PKA activation, endogenous PKA activity is essential for supporting ZIKV replication. Interestingly, in addition to PKA, PKI also inhibited another unknown target(s) to block ZIKV replication. PKI inhibited ZIKV replication at the postentry stage by preferentially affecting negative-sense RNA synthesis as well as viral protein translation. Together, these results have identified a potential inhibitor of ZIKV replication which could be further explored for future therapeutic application. IMPORTANCE There is an urgent need to develop effective vaccines and therapeutic agents against Zika virus (ZIKV) infection, a reemerging flavivirus associated with neurological disorders, including Guillain-Barré (GB) syndrome and microcephaly. By screening for inhibitors of several cellular pathways, we have identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. We show that PKI effectively suppresses the replication of all ZIKV strains tested with minimal cytotoxicity to human endothelial cells and astrocytes, two key cell types for ZIKV infection. Furthermore, we show that PKI inhibits ZIKV negative-sense RNA synthesis and viral protein translation. This study has identified a potent inhibitor of ZIKV infection which could be further explored for future therapeutic application. Copyright © 2018 American Society for Microbiology.

  2. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuqin; Zheng, Lin; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Aktmore » pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.« less

  3. Methods for the Measurement of a Bacterial Enzyme Activity in Cell Lysates and Extracts

    PubMed Central

    Mendz, George; Hazell, Stuart

    1998-01-01

    The kinetic characteristics and regulation of aspartate carbamoyltransferase activity were studied in lysates and cell extracts of Helicobacter pylori by three diffirent methods. Nuclear magnetic resonance spectroscopy, radioactive tracer analysis, and spectrophotometry were employed in conjunction to identify the properties of the enzyme activity and to validate the results obtained with each assay. NMR spectroscopy was the most direct method to provide proof of ACTase activity; radioactive tracer analysis was the most sensitive technique and a microtitre-based colorimetric assay was the most cost-and time-efficient for large scale analyses. Freeze-thawing was adopted as the preferred method for cell lysis in studying enzyme activity in situ. This study showed the benefits of employing several different complementary methods to investigate bacterial enzyme activity. PMID:12734591

  4. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  5. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  6. Rhythmically Active Enkephalin-Expressing GABAergic Cells in the CA1 Area of the Hippocampus Project to the Subiculum and Preferentially Innervate Interneurons

    PubMed Central

    Fuentealba, Pablo; Tomioka, Ryohei; Dalezios, Yannis; Márton, László F.; Studer, Michele; Rockland, Kathleen; Klausberger, Thomas; Somogyi, Peter

    2015-01-01

    Enkephalins (ENKs) are endogenous opioids that regulate synaptic excitability of GABAergic networks in the cerebral cortex. Using retrograde tracer injections in the subiculum, we identified a hippocampal population of ENK-expressing projection neurons. In situ hybridization for GAD shows that ENK-expressing cells are a small GABAergic subpopulation. Furthermore, by extracellular recording and juxtacellular labeling in vivo, we identified an ENK-expressing cell in stratum radiatum of the CA1 area by its complete axodendritic arborization and characteristic spike timing during network oscillations. The somatodendritic membrane was immunopositive for mGluR1α, and there was both a rich local axon in CA1 and subicular-projecting branches. The boutons showed cell-type- and layer-specific innervation, i.e., interneurons were the main targets in the alveus, both interneurons and pyramidal cell dendrites were innervated in the other layers, and interneurons were exclusive targets in the subiculum. Parvalbumin-, but not somatostatin-, calbindin-, or cholecystokinin-expressing interneurons were preferred synaptic targets. During network activity, the juxtacellularly labeled ENK-expressing cell was phase modulated throughout theta oscillations, but silenced during sharp-wave/ripple episodes. After these episodes the interneuron exhibited rebound activity of high-frequency spike bursts, presumably causing peptide release. The ENK-expressing interneurons innervating parvalbumin-positive interneurons might contribute to the organization of the sharp-wave/ripple episodes by decreased firing during and rebound activity after the ripple episodes, as well as to the coordination of activity between the CA1 and subicular areas during network oscillations. PMID:18829959

  7. A biosensor generated via high throughput screening quantifies cell edge Src dynamics

    PubMed Central

    Gulyani, Akash; Vitriol, Eric; Allen, Richard; Wu, Jianrong; Gremyachinskiy, Dmitriy; Lewis, Steven; Dewar, Brian; Graves, Lee M.; Kay, Brian K.; Kuhlman, Brian; Elston, Tim; Hahn, Klaus M.

    2011-01-01

    Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high throughput screening. This Src family kinase (SFK) biosensor was made by derivatizing a monobody specific for activated SFK with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and alterations to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFK are activated specifically during protrusion. Activity correlates with velocity, and peaks 1–2 microns from the leading edge. PMID:21666688

  8. The E3 ligase c-Cbl regulates dendritic cell activation

    PubMed Central

    Chiou, Shin-Heng; Shahi, Payam; Wagner, Ryan T; Hu, Hongbo; Lapteva, Natalia; Seethammagari, Mamatha; Sun, Shao-Cong; Levitt, Jonathan M; Spencer, David M

    2011-01-01

    The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl––known for its roles in regulating lymphocyte signalling––as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50. PMID:21799517

  9. Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties

    PubMed Central

    Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.

    2010-01-01

    Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645

  10. Costimulation dependent expression of miR-214 increases the ability of T cells to proliferate by targeting Pten

    PubMed Central

    Jindra, Peter T.; Bagley, Jessamyn; Godwin, Jonathan G.; Iacomini, John

    2010-01-01

    T cell activation requires signaling through the T cell receptor (TCR) and costimulatory molecules such as CD28. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post transcriptionally and are also known to be involved in lymphocyte development and function. Here we set out to examine potential roles of miRNAs in T cell activation by using genome-wide expression profiling to identify miRNAs differentially regulated following T cell activation. One of the miRNAs up-regulated after T cell activation, miR-214, was predicted to be capable of targeting Pten based on bioinformatics and reports suggesting that it targets Pten in ovarian tumor cells. Up-regulation of miR-214 in T cells inversely correlated with PTEN levels. In vivo, transcripts containing the 3' untranslated region (3' UTR) of Pten including the miR-214 target sequence were negatively regulated after T cell activation, and forced expression of miR-214 in T cells led to increased proliferation after stimulation. Blocking CD28 signaling in vivo prevented miR-214 up-regulation in alloreactive T cells. Stimulation of T cells through the TCR alone was not sufficient to result in upregulation of miR-214. Thus, costimulation dependent up-regulation of miR-214 promotes T cell activation by targeting the negative regulator Pten. Thus, the requirement for T cell costimulation is in part related to its ability to regulate expression of miRNAs that control T cell activation. PMID:20548023

  11. C3 exoenzyme impairs cell proliferation and apoptosis by altering the activity of transcription factors.

    PubMed

    von Elsner, Leonie; Hagemann, Sandra; Just, Ingo; Rohrbeck, Astrid

    2016-09-01

    C3 exoenzyme from C. botulinum is an ADP-ribosyltransferase that inactivates selectively RhoA, B, and C by coupling an ADP-ribose moiety. Rho-GTPases are involved in various cellular processes, such as regulation of actin cytoskeleton, cell proliferation, and apoptosis. Previous studies of our group with the murine hippocampal cell line HT22 revealed a C3-mediated inhibition of cell proliferation after 48 h and a prevention of serum-starved cells from apoptosis. For both effects, alterations of various signaling pathways are already known, including also changes on the transcriptional level. Investigations on the transcriptional activity in HT22 cells treated with C3 for 48 h identified five out of 48 transcription factors namely Sp1, ATF2, E2F-1, CBF, and Stat6 with a significantly regulated activity. For validation of identified transcription factors, studies on the protein level of certain target genes were performed. Western blot analyses exhibited an enhanced abundance of Sp1 target genes p21 and COX-2 as well as an increase in phosphorylation of c-Jun. In contrast, the level of p53 and apoptosis-inducing GADD153, a target gene of ATF2, was decreased. Our results reveal that C3 regulates the transcriptional activity of Sp1 and ATF2 resulting downstream in an altered protein abundance of various target genes. As the affected proteins are involved in the regulation of cell proliferation and apoptosis, thus the C3-mediated anti-proliferative and anti-apoptotic effects are consequences of the Rho-dependent alterations of the activity of certain transcriptional factors.

  12. A Comprehensive in vitro and in silico Analysis of Antibiotics that Activate PXR and Induce CYP3A4 in Liver and Intestine

    PubMed Central

    Yasuda, Kazuto; Ranade, Aarati; Venkataramanan, Raman; Strom, Stephen; Chupka, Jonathan; Ekins, Sean; Schuetz, Erin; Bachmann, Kenneth

    2015-01-01

    We have investigated several in silico and in vitro methods in order to improve our ability to predict potential drug interactions of antibiotics. Our focus was to identify those antibiotics that activate PXR and induce CYP3A4 in human hepatocytes and intestinal cells. Human PXR activation was screened using reporter assays in HepG2 cells, kinetic measurements of PXR activation were made in DPX-2 cells, and induction of CYP3A4 expression and activity was verified by quantitative PCR, immunoblotting and testosterone 6β-hydroxylation in primary human hepatocytes and LS180 cells. We found that in HepG2 cells CYP3A4 transcription was activated strongly (>10-fold) by rifampin and troleandomycin; moderately (> 7-fold) by dicloxacillin, tetracycline, clindamycin, griseofulvin and (> 4-fold) by erythromycin; weakly (>2.4-fold) by nafcillin, cefaclor and sulfisoxazole; and (>2-fold) by cefadroxil and penicillin V. Similar though not identical results were obtained in DPX-2 cells. CYP3A4 mRNA and protein expression were induced by these antibiotics to differing extents in both liver and intestinal cells. CYP3A4 activity was significantly increased by rifampin (9.7-fold), nafcillin and dicloxacillin (5.9-fold), and weakly induced (2-fold) by tetracycline, sufisoxazole, troleandomycin and clindamycin. Multiple pharmacophore models and docking indicated a good fit for dicloxacillin and nafcillin in PXR. These results suggest that in vitro and in silico methods can help to prioritize and identify antibiotics that are most likely to reduce exposures of medications (such as oral contraceptive agents) which interact with enzymes and transporters regulated by PXR. In summary, nafcillin, dicloxacillin, cephradine, tetracycline, sulfixoxazole, erythromycin, clindamycin, and griseofulvin exhibit a clear propensity to induce CYP3A4 and warrant further clinical investigation. PMID:18505790

  13. Identification of legionella effectors using bioinformatic approaches.

    PubMed

    Segal, Gil

    2013-01-01

    Legionella pneumophila the causative agent of Legionnaires' disease, actively manipulates host cell processes to establish a replication niche inside host cells. The establishment of its replication niche requires a functional Icm/Dot type IV secretion system which translocates about 300 effector proteins into host cells during infection. Many of these effectors were first identified as effector candidates by several bioinformatic approaches, and these predicted effectors were later examined experimentally for translocation and a large number of which were validated as effector proteins. Here, I summarized the bioinformatic approaches that were used to identify these effectors.

  14. Rapid and highly fieldable viral diagnostic

    DOEpatents

    McKnight, Timothy E.

    2016-12-20

    The present invention relates to a rapid, highly fieldable, nearly reagentless diagnostic to identify active RNA viral replication in a live, infected cells, and more particularly in leukocytes and tissue samples (including biopsies and nasal swabs) using an array of a plurality of vertically-aligned nanostructures that impale the cells and introduce a DNA reporter construct that is expressed and amplified in the presence of active viral replication.

  15. Fluorescent Nanocrystals Reveal Regulated Portals of Entry into and Between the Cells of Hydra

    PubMed Central

    Tortiglione, Claudia; Quarta, Alessandra; Malvindi, Maria Ada; Tino, Angela; Pellegrino, Teresa

    2009-01-01

    Initially viewed as innovative carriers for biomedical applications, with unique photophysical properties and great versatility to be decorated at their surface with suitable molecules, nanoparticles can also play active roles in mediating biological effects, suggesting the need to deeply investigate the mechanisms underlying cell-nanoparticle interaction and to identify the molecular players. Here we show that the cell uptake of fluorescent CdSe/CdS quantum rods (QRs) by Hydra vulgaris, a simple model organism at the base of metazoan evolution, can be tuned by modifying nanoparticle surface charge. At acidic pH, amino-PEG coated QRs, showing positive surface charge, are actively internalized by tentacle and body ectodermal cells, while negatively charged nanoparticles are not uptaken. In order to identify the molecular factors underlying QR uptake at acidic pH, we provide functional evidence of annexins involvement and explain the QR uptake as the combined result of QR positive charge and annexin membrane insertion. Moreover, tracking QR labelled cells during development and regeneration allowed us to uncover novel intercellular trafficking and cell dynamics underlying the remarkable plasticity of this ancient organism. PMID:19888325

  16. Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia.

    PubMed

    Zambetti, Noemi A; Ping, Zhen; Chen, Si; Kenswil, Keane J G; Mylona, Maria A; Sanders, Mathijs A; Hoogenboezem, Remco M; Bindels, Eric M J; Adisty, Maria N; Van Strien, Paulina M H; van der Leije, Cindy S; Westers, Theresia M; Cremers, Eline M P; Milanese, Chiara; Mastroberardino, Pier G; van Leeuwen, Johannes P T M; van der Eerden, Bram C J; Touw, Ivo P; Kuijpers, Taco W; Kanaar, Roland; van de Loosdrecht, Arjan A; Vogl, Thomas; Raaijmakers, Marc H G P

    2016-11-03

    Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology

    PubMed Central

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M.; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-01-01

    Summary Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. PMID:26235896

  18. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction.

    PubMed

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J; Woodruff, Prescott G; Solberg, Owen D; Donne, Matthew L; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V; Wolters, Paul J; Hogan, Brigid L M; Finkbeiner, Walter E; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R

    2012-10-02

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.

  19. Photodynamic Cancer Therapy—Recent Advances

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2011-09-01

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when "photoradiation therapy" was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular localization of PS is of vital importance when cell death mechanism is identified. Programmed cell death (PCD) viz. apoptosis, necrosis and autophagy have all been identified as inducible cell death mechanisms during PDT. While apoptosis is probably the preferred cell death mechanism, understanding the molecular differences and identifying the cross-talk between these mechanisms are crucial to the development of new PSs aimed at improving the killing efficiency and overall effectiveness of PDT as a cancer treatment modality. This paper reviews the process of PDT cancer therapy, the available PSs, their effectiveness for different cancers as well as the cell death mechanisms identified during PDT of different cancers associated with specific PSs.

  20. Photodynamic Cancer Therapy - Recent Advances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamse, Heidi

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when 'photoradiation therapy' was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first ormore » second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular localization of PS is of vital importance when cell death mechanism is identified. Programmed cell death (PCD) viz. apoptosis, necrosis and autophagy have all been identified as inducible cell death mechanisms during PDT. While apoptosis is probably the preferred cell death mechanism, understanding the molecular differences and identifying the cross-talk between these mechanisms are crucial to the development of new PSs aimed at improving the killing efficiency and overall effectiveness of PDT as a cancer treatment modality. This paper reviews the process of PDT cancer therapy, the available PSs, their effectiveness for different cancers as well as the cell death mechanisms identified during PDT of different cancers associated with specific PSs.« less

Top