Sample records for cells methods human

  1. [Primary culture of human normal epithelial cells].

    PubMed

    Tang, Yu; Xu, Wenji; Guo, Wanbei; Xie, Ming; Fang, Huilong; Chen, Chen; Zhou, Jun

    2017-11-28

    The traditional primary culture methods of human normal epithelial cells have disadvantages of low activity of cultured cells, the low cultivated rate and complicated operation. To solve these problems, researchers made many studies on culture process of human normal primary epithelial cell. In this paper, we mainly introduce some methods used in separation and purification of human normal epithelial cells, such as tissue separation method, enzyme digestion separation method, mechanical brushing method, red blood cell lysis method, percoll layered medium density gradient separation method. We also review some methods used in the culture and subculture, including serum-free medium combined with low mass fraction serum culture method, mouse tail collagen coating method, and glass culture bottle combined with plastic culture dish culture method. The biological characteristics of human normal epithelial cells, the methods of immunocytochemical staining, trypan blue exclusion are described. Moreover, the factors affecting the aseptic operation, the conditions of the extracellular environment, the conditions of the extracellular environment during culture, the number of differential adhesion, and the selection and dosage of additives are summarized.

  2. Optimization of methods for the genetic modification of human T cells.

    PubMed

    Bilal, Mahmood Y; Vacaflores, Aldo; Houtman, Jon Cd

    2015-11-01

    CD4(+) T cells are not only critical in the fight against parasitic, bacterial and viral infections, but are also involved in many autoimmune and pathological disorders. Studies of protein function in human T cells are confined to techniques such as RNA interference (RNAi) owing to ethical reasons and relative simplicity of these methods. However, introduction of RNAi or genes into primary human T cells is often hampered by toxic effects from transfection or transduction methods that yield cell numbers inadequate for downstream assays. Additionally, the efficiency of recombinant DNA expression is frequently low because of multiple factors including efficacy of the method and strength of the targeting RNAs. Here, we describe detailed protocols that will aid in the study of primary human CD4(+) T cells. First, we describe a method for development of effective microRNA/shRNAs using available online algorithms. Second, we illustrate an optimized protocol for high efficacy retroviral or lentiviral transduction of human T-cell lines. Importantly, we demonstrate that activated primary human CD4(+) T cells can be transduced efficiently with lentiviruses, with a highly activated population of T cells receiving the largest number of copies of integrated DNA. We also illustrate a method for efficient lentiviral transduction of hard-to-transduce un-activated primary human CD4(+) T cells. These protocols will significantly assist in understanding the activation and function of human T cells and will ultimately aid in the development or improvement of current drugs that target human CD4(+) T cells.

  3. Novel Method To Differentiate Human Embryonic Stem Cells Into Dopaminergic Nerve Cells | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute on Drug Abuse's Development and Plasticity Section is seeking statements of capability or interest from parties interested in licensing opportunities to further develop, evaluate, or commercialize novel methods to differentiate human embryonic stem cells into dopaminergic nerve cells. The invention described here is a novel method of differentiating human embryonic stem cells (hESCs) into dopaminergic nerve cells, which is preferable to the currently available dopaminergic differentiation techniques.

  4. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    PubMed

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Establishment of a new immortalized human corneal epithelial cell line (iHCE-NY1) for use in evaluating eye irritancy by in vitro test methods.

    PubMed

    Yamamoto, Naoki; Kato, Yoshinao; Sato, Atsushi; Hiramatsu, Noriko; Yamashita, Hiromi; Ohkuma, Mahito; Miyachi, Ei-Ichi; Horiguchi, Masayuki; Hirano, Koji; Kojima, Hajime

    2016-08-01

    In vitro test methods that use human corneal epithelial cells to evaluate the eye irritation potency of chemical substances do not use human corneal epithelium because it has been difficult to maintain more than four passages. In this study, we make a new cell line comprising immortalized human corneal epithelial cells (iHCE-NY1). The IC50 of iHCE-NY1 cells is slightly higher than that of Statens Seruminstitut Rabbit Cornea (SIRC) cells, which are currently used in some in vitro test methods. CDKN1A in iHCE-NY1 cells was used as a marker of gene expression to indicate cell cycle activity. This enabled us to evaluate cell recovery characteristics at concentrations lower than the IC50 of cytotoxic tests.

  6. Noninvasive method for assessing the human circadian clock using hair follicle cells

    PubMed Central

    Akashi, Makoto; Soma, Haruhiko; Yamamoto, Takuro; Tsugitomi, Asuka; Yamashita, Shiko; Yamamoto, Takuya; Nishida, Eisuke; Yasuda, Akio; Liao, James K.; Node, Koichi

    2010-01-01

    A thorough understanding of the circadian clock requires qualitative evaluation of circadian clock gene expression. Thus far, no simple and effective method for detecting human clock gene expression has become available. This limitation has greatly hampered our understanding of human circadian rhythm. Here we report a convenient, reliable, and less invasive method for detecting human clock gene expression using biopsy samples of hair follicle cells from the head or chin. We show that the circadian phase of clock gene expression in hair follicle cells accurately reflects that of individual behavioral rhythms, demonstrating that this strategy is appropriate for evaluating the human peripheral circadian clock. Furthermore, using this method, we indicate that rotating shift workers suffer from a serious time lag between circadian gene expression rhythms and lifestyle. Qualitative evaluation of clock gene expression in hair follicle cells, therefore, may be an effective approach for studying the human circadian clock in the clinical setting. PMID:20798039

  7. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    This term reflects the method used to detect murine mammary stem cells which is based on their individual ability to regenerate an entire mammary tree......mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended

  8. Automating Cell Detection and Classification in Human Brain Fluorescent Microscopy Images Using Dictionary Learning and Sparse Coding

    PubMed Central

    Alegro, Maryana; Theofilas, Panagiotis; Nguy, Austin; Castruita, Patricia A.; Seeley, William; Heinsen, Helmut; Ushizima, Daniela M.

    2017-01-01

    Background Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. New method Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Results Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. Comparison with existing methods We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. Conclusion The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. PMID:28267565

  9. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae.

    PubMed

    Ishikawa, Masaaki; Ohnishi, Hiroe; Skerleva, Desislava; Sakamoto, Tatsunori; Yamamoto, Norio; Hotta, Akitsu; Ito, Juichi; Nakagawa, Takayuki

    2017-06-01

    The present study examined the efficacy of a neural induction method for human induced pluripotent stem (iPS) cells to eliminate undifferentiated cells and to determine the feasibility of transplanting neurally induced cells into guinea-pig cochleae for replacement of spiral ganglion neurons (SGNs). A stepwise method for differentiation of human iPS cells into neurons was used. First, a neural induction method was established on Matrigel-coated plates; characteristics of cell populations at each differentiation step were assessed. Second, neural stem cells were differentiated into neurons on a three-dimensional (3D) collagen matrix, using the same protocol of culture on Matrigel-coated plates; neuron subtypes in differentiated cells on a 3D collagen matrix were examined. Then, human iPS cell-derived neurons cultured on a 3D collagen matrix were transplanted into intact guinea-pig cochleae, followed by histological analysis. In vitro analyses revealed successful induction of neural stem cells from human iPS cells, with no retention of undifferentiated cells expressing OCT3/4. After the neural differentiation of neural stem cells, approximately 70% of cells expressed a neuronal marker, 90% of which were positive for vesicular glutamate transporter 1 (VGLUT1). The expression pattern of neuron subtypes in differentiated cells on a 3D collagen matrix was identical to that of the differentiated cells on Matrigel-coated plates. In addition, the survival of transplant-derived neurons was achieved when inflammatory responses were appropriately controlled. Our preparation method for human iPS cell-derived neurons efficiently eliminated undifferentiated cells and contributed to the settlement of transplant-derived neurons expressing VGLUT1 in guinea-pig cochleae. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  11. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  12. Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.

    PubMed

    Lapteva, Natalia; Parihar, Robin; Rollins, Lisa A; Gee, Adrian P; Rooney, Cliona M

    2016-01-01

    Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing.

  13. Effect of toll-like receptor 3 agonists on the functionality and metastatic properties of breast cancer cell model.

    PubMed

    Alizadeh, Nastaran; Amiri, Mohammad Mehdi; Salek Moghadam, Alireza; Zarnani, Amir Hassan; Saadat, Farshid; Safavifar, Farnaz; Berahmeh, Azar; Khorramizadeh, Mohammad Reza

    2013-05-15

    There exists compelling evidence that Toll-like receptor 3 (TLR3) agonists can directly affect human cancer cells. The aim of this study was to investigate anti-cancer effects of TLR3 agonist in human breast cell line. We assessed potential effects of poly (A:U) on human breast cell line (MDA-MB-231) on a dose-response and time-course basis. Human breast cell line MDA-MB-231 was treated with different concentrations of poly (A:U) and lipopolysaccharide (LPS). Then, the following assays were performed on the treated cells: dose-response and time-course cytotoxicity using colorimetric method; matrix metalloproteinase-2 (MMP-2) activity using gelatin zymography method; apoptosis using annexin-v flowcytometry method; and relative expression of TLR3 and MMP-2 mRNA using reverse transcriptase polymerase chain reaction (RT-PCR) method. Following treatments, dose- response and time-course cytotoxicity using a colorimetric method, (MMP-2) activity (using gelatin zymography), apoptosis (using annexin-v flowcytometry method) assays and expression of TLR3 and MMP-2 genes (using PCR method) were performed. Cytotoxicity and flowcytometry analysis of poly (A:U) showed that poly (A:U) do not have any cytotoxic and apoptotic effects in different concentrations used. MMP-2 activity analysis showed significant decrease in higher concentrations (50 and 100 μg/ ml) between treated and untreated cells. Moreover, poly A:U treated cells demonstrated decreased expression of MMP-2 gene in higher concentrations. Collectively, our data indicated that human breast cancer cell line (MDA-MB-231) was highly responsive to poly (A:U). The antimetastatic effect of direct poly (A:U) and TLR3 interactions in MDA-MB-231 cells could provide new approaches in malignant tumor therapeutic strategy.

  14. Direct cytotoxicity evaluation of 63S bioactive glass and bone-derived hydroxyapatite particles using yeast model and human chondrocyte cells by microcalorimetry.

    PubMed

    Doostmohammadi, A; Monshi, A; Fathi, M H; Karbasi, S; Braissant, O; Daniels, A U

    2011-10-01

    In this study, the cytotoxicity evaluation of prepared 63S bioactive glass and bone-derived hydroxyapatite particles with yeast and human chondrocyte cells was carried out using isothermal micro-nano calorimetry (IMNC), which is a new method for studying cell/biomaterial interactions. Bioactive glass particles were made via sol-gel method and hydroxyapatite was obtained from bovine bone. Elemental analysis was carried out by XRF and EDXRF. Amorphous structure of the glass and completely crystalline structure of HA were detected by XRD analysis. Finally, the cytotoxicity of bioactive glass and bone-derived HA particles with yeast and cultured human chondrocyte cells was evaluated using IMNC. The results confirmed the viability, growth and proliferation of human chondrocyte cells in contact with 63S bioactive glass, and bone-derived HA particles. Also the results indicated that yeast model which is much easier to handle, can be considered as a good proxy and can provide a rapid primary estimate of the ranges to be used in assays involving human cells. All of these results confirmed that IMNC is a convenient method which caters to measuring the cell-biomaterial interactions alongside the current methods.

  15. Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding.

    PubMed

    Alegro, Maryana; Theofilas, Panagiotis; Nguy, Austin; Castruita, Patricia A; Seeley, William; Heinsen, Helmut; Ushizima, Daniela M; Grinberg, Lea T

    2017-04-15

    Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Large-scale production of embryonic red blood cells from human embryonic stem cells.

    PubMed

    Olivier, Emmanuel N; Qiu, Caihong; Velho, Michelle; Hirsch, Rhoda Elison; Bouhassira, Eric E

    2006-12-01

    To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells. Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography. CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no beta-globin. We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion.

  17. Superior Red Blood Cell Generation from Human Pluripotent Stem Cells Through a Novel Microcarrier-Based Embryoid Body Platform.

    PubMed

    Sivalingam, Jaichandran; Lam, Alan Tin-Lun; Chen, Hong Yu; Yang, Bin Xia; Chen, Allen Kuan-Liang; Reuveny, Shaul; Loh, Yuin-Han; Oh, Steve Kah-Weng

    2016-08-01

    In vitro generation of red blood cells (RBCs) from human embryonic stem cells and human induced pluripotent stem cells appears to be a promising alternate approach to circumvent shortages in donor-derived blood supplies for clinical applications. Conventional methods for hematopoietic differentiation of human pluripotent stem cells (hPSC) rely on embryoid body (EB) formation and/or coculture with xenogeneic cell lines. However, most current methods for hPSC expansion and EB formation are not amenable for scale-up to levels required for large-scale RBC generation. Moreover, differentiation methods that rely on xenogenic cell lines would face obstacles for future clinical translation. In this study, we report the development of a serum-free and chemically defined microcarrier-based suspension culture platform for scalable hPSC expansion and EB formation. Improved survival and better quality EBs generated with the microcarrier-based method resulted in significantly improved mesoderm induction and, when combined with hematopoietic differentiation, resulted in at least a 6-fold improvement in hematopoietic precursor expansion, potentially culminating in a 80-fold improvement in the yield of RBC generation compared to a conventional EB-based differentiation method. In addition, we report efficient terminal maturation and generation of mature enucleated RBCs using a coculture system that comprised primary human mesenchymal stromal cells. The microcarrier-based platform could prove to be an appealing strategy for future scale-up of hPSC culture, EB generation, and large-scale generation of RBCs under defined and xeno-free conditions.

  18. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    PubMed

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  19. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    PubMed

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  20. Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells

    PubMed Central

    Gotoh, Shimpei; Ito, Isao; Nagasaki, Tadao; Yamamoto, Yuki; Konishi, Satoshi; Korogi, Yohei; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Funato, Michinori; Mae, Shin-Ichi; Toyoda, Taro; Sato-Otsubo, Aiko; Ogawa, Seishi; Osafune, Kenji; Mishima, Michiaki

    2014-01-01

    Summary No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we identified carboxypeptidase M (CPM) as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs) in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine. PMID:25241738

  1. Electrophoretic mobilities of cultured human embryonic kidney cells in various buffers

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Data on the electrophoretic mobility distributions of cells in the new D-1 buffer and the interlaboratory standardization of urokinase assay methods are presented. A table of cell strains and recent data on cell dispersal methods are also included. It was decided that glycerol in A-1 electrophoretic mobility data on cultured human embryonic kidney cells subjected to electrophoresis in this buffer. The buffer composition is presented.

  2. Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Wagner, Daniel S.; Brenner, Malcolm K.; Lapotko, Dmitri O.

    2012-01-01

    Optimal cell therapies require efficient, selective and rapid delivery of molecular cargo into target cells without compromising their viability. Achieving these goals ex vivo in bulk heterogeneous multi-cell systems such as human grafts is impeded by low selectivity and speed of cargo delivery and by significant damage to target and non-target cells. We have developed a cell level approach for selective and guided trans-membrane injection of extracellular cargo into specific target cells using transient plasmonic nanobubbles (PNB) as cell-specific nano-injectors. As a technical platform for this method we developed a laser flow cell processing system. The PNB injection method and flow system were tested in heterogeneous cell suspensions of target and non-target cells for delivery of Dextran-FITC dye into squamous cell carcinoma HN31 cells and transfection of human T-cells with a green fluorescent protein-encoding plasmid. In both models the method demonstrated single cell type selectivity, high efficacy of delivery (96% both for HN31 cells T-cells), speed of delivery (nanoseconds) and viability of treated target cells (96% for HN31 cells and 75% for T-cells). The PNB injection method may therefore be beneficial for real time processing of human grafts without removal of physiologically important cells. PMID:22521612

  3. Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Wagner, Daniel S; Brenner, Malcolm K; Lapotko, Dmitri O

    2012-07-01

    Optimal cell therapies require efficient, selective and rapid delivery of molecular cargo into target cells without compromising their viability. Achieving these goals ex vivo in bulk heterogeneous multi-cell systems such as human grafts is impeded by low selectivity and speed of cargo delivery and by significant damage to target and non-target cells. We have developed a cell level approach for selective and guided transmembrane injection of extracellular cargo into specific target cells using transient plasmonic nanobubbles (PNB) as cell-specific nano-injectors. As a technical platform for this method we developed a laser flow cell processing system. The PNB injection method and flow system were tested in heterogeneous cell suspensions of target and non-target cells for delivery of Dextran-FITC dye into squamous cell carcinoma HN31 cells and transfection of human T-cells with a green fluorescent protein-encoding plasmid. In both models the method demonstrated single cell type selectivity, high efficacy of delivery (96% both for HN31 cells T-cells), speed of delivery (nanoseconds) and viability of treated target cells (96% for HN31 cells and 75% for T-cells). The PNB injection method may therefore be beneficial for real time processing of human grafts without removal of physiologically important cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A sensitive ELISA for measuring the adhesion of leukocytic cells to human endothelial cells.

    PubMed

    Krakauer, T

    1994-12-28

    A new, sensitive ELISA using monoclonal antibodies reactive with surface molecules specific for various leukocytes was devised to measure the attachment of these cells to cultured monolayers of human umbilical vein endothelial cells. Preparations of peripheral blood mononuclear cells, a human monocytic cell line (THP-1) and a human lymphoblastic T cell line (MOLT-4) were used to test the sensitivity of this method and compare it with the conventional 51Cr-radiolabeled cell assay. The extent of adhesion to endothelial cells was assayed by measuring the optical density produced by a complex of peroxidase-labeled streptavidin, biotin-conjugated F(ab')2 anti-mouse Ig and monoclonal antibody on fixed leukocytic cells that had adhered to endothelial cells. This method is fast and sensitive, eliminates the use of radioisotopes, and, because the detection uses a specific marker on the cell of interest, can be used in preparations of unseparated mixtures of cells. As this is a microassay, using relatively small number of cells and reagents, the methodology can be applied to screen a large number of therapeutic agents that may regulate adhesion. Using this method, the anti-inflammatory corticosteroid, dexamethasone, was found to inhibit the adhesion of THP-1 and MOLT-4 cells to cytokine-activated endothelial cells.

  5. A Simple and Efficient Method of Slow Freezing for Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    PubMed

    Imaizumi, Keitaro; Iha, Momoe; Nishishita, Naoki; Kawamata, Shin; Nishikawa, Shinichi; Akuta, Teruo

    2016-01-01

    Protocols available for the cryopreservation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells are very inefficient and laborious compared to those for the cryopreservation of murine ES/iPS cells or other general cell lines. While the vitrification method may be adequate when working with small numbers of human ES/iPS cells, it requires special skills and is unsuitable when working with large cell numbers. Here, we describe a simple and efficient method for the cryopreservation of hES/hiPS cells that is based on a conventional slow freezing method that uses a combination of Pronase/EDTA for Stem™ and CP-5E™ [final concentrations: 6 % hydroxyethyl starch, 5 % DMSO, and 5 % ethylene glycol in saline]. CP-5E™ is highly effective for the cryopreservation of small cell clumps produced by hES/hiPS colony detachment in the presence of Pronase and EDTA (Pronase/EDTA for Stem™, a formulation containing multiple digestive enzymes from Streptomyces griseus). This novel method would be quite useful for large-scale hES/iPS cell banking for use in clinical applications.

  6. Validation of biological activity testing procedure of recombinant human interleukin-7.

    PubMed

    Lutsenko, T N; Kovalenko, M V; Galkin, O Yu

    2017-01-01

    Validation procedure for method of monitoring the biological activity of reсombinant human interleukin-7 has been developed and conducted according to the requirements of national and international recommendations. This method is based on the ability of recombinant human interleukin-7 to induce proliferation of T lymphocytes. It has been shown that to control the biological activity of recombinant human interleukin-7 peripheral blood mononuclear cells (PBMCs) derived from blood or cell lines can be used. Validation charac­teristics that should be determined depend on the method, type of product or object test/measurement and biological test systems used in research. The validation procedure for the method of control of biological activity of recombinant human interleukin-7 in peripheral blood mononuclear cells showed satisfactory results on all parameters tested such as specificity, accuracy, precision and linearity.

  7. Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs).

    PubMed

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Richter, Magdalena; Trzeciak, Tomasz

    2017-04-01

    Stem cells (SCs) are a promising approach to regenerative medicine, with the potential to treat numerous orthopedic disorders, including osteo-degenerative diseases. The development of human-induced pluripotent stem cells (hiPSCs) has increased the potential of SCs for new treatments. However, current methods of differentiating hiPSCs into chondrocyte-like cells are suboptimal and better methods are needed. The aim of the present study was to assess four different chondrogenic differentiation protocols to identify the most efficient method of generating hiPSC-derived chondrocytes. For this study, hiPSCs were obtained from primary human dermal fibroblasts (PHDFs) and differentiated into chondrocyte-like cells using four different protocols: 1) monolayer culture with defined growth factors (GF); 2) embryoid bodies (EBs) in a chondrogenic medium with TGF-β3 cells; 3) EBs in chondrogenic medium conditioned with human chondrocytes (HC-402-05a cell line) and 4) EBs in chondrogenic medium conditioned with human chondrocytes and supplemented with TGF-β3. The cells obtained through these four protocols were evaluated and compared at the mRNA and protein levels. Although chondrogenic differentiation of hiPSCs was successfully achieved with all of these protocols, the two fastest and most cost-effective methods were the monolayer culture with GFs and the medium conditioned with human chondrocytes. Both of these methods are superior to other available techniques. The main advantage of the conditioned medium is that the technique is relatively simple and inexpensive while the directed method (i.e., monolayer culture with GFs) is faster than any protocol described to date because it is does not require additional steps such as EB formation.

  8. Human pluripotent stem cells: Prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair.

    PubMed

    Hartman, Matthew E; Dai, Dao-Fu; Laflamme, Michael A

    2016-01-15

    Human pluripotent stem cells (PSCs) represent an attractive source of cardiomyocytes with potential applications including disease modeling, drug discovery and safety screening, and novel cell-based cardiac therapies. Insights from embryology have contributed to the development of efficient, reliable methods capable of generating large quantities of human PSC-cardiomyocytes with cardiac purities ranging up to 90%. However, for human PSCs to meet their full potential, the field must identify methods to generate cardiomyocyte populations that are uniform in subtype (e.g. homogeneous ventricular cardiomyocytes) and have more mature structural and functional properties. For in vivo applications, cardiomyocyte production must be highly scalable and clinical grade, and we will need to overcome challenges including graft cell death, immune rejection, arrhythmogenesis, and tumorigenic potential. Here we discuss the types of human PSCs, commonly used methods to guide their differentiation into cardiomyocytes, the phenotype of the resultant cardiomyocytes, and the remaining obstacles to their successful translation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Production and characterization of immortal human neural stem cell line with multipotent differentiation property.

    PubMed

    Kim, Seung U; Nagai, Atsushi; Nakagawa, Eiji; Choi, Hyun B; Bang, Jung H; Lee, Hong J; Lee, Myung A; Lee, Yong B; Park, In H

    2008-01-01

    We document the protocols and methods for the production of immortalized cell lines of human neural stem cells from the human fetal central nervous system (CNS) cells by using a retroviral vector encoding v-myc oncogene. One of the human neural stem cell lines (HB1.F3) was found to express nestin and other specific markers for human neural stem cells, giving rise to three fundamental cell types of the CNS: neurons, astrocytes, and oligodendrocytes. After transplantation into the brain of mouse model of stroke, implanted human neural stem cells were observed to migrate extensively from the site of implantation into other anatomical sites and to differentiate into neurons and glial cells.

  10. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    PubMed

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  11. Ratio of Circulating IFNγ (+) "Th17 Cells" in Memory Th Cells Is Inversely Correlated with the Titer of Anti-CCP Antibodies in Early-Onset Rheumatoid Arthritis Patients Based on Flow Cytometry Methods of the Human Immunology Project.

    PubMed

    Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi

    2016-01-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic joint inflammation characterized by activated T cells. IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. However, it remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we validated the methods of the Human Immunology Project using only the cell-surface marker through measuring the actual expression of IL-17 and IFNγ. We also evaluated the expression of CD161 in human Th17 cells. We then tried to identify Th17 cells, IL-17(+)Th17 cells, and IFNγ (+)Th17 cells in the peripheral blood of early-onset RA patients using the standardized method of the Human Immunology Project. Our findings validated the method and the expression of CD161. The ratio of IFNγ (+)Th17 cells in memory T cells was inversely correlated to the titers of anti-CCP antibodies in the early-onset RA patients. These findings suggest that Th17 cells play important roles in the early phase of RA and that anti-IL-17 antibodies should be administered to patients with early phase RA, especially those with high titers of CCP antibodies.

  12. Ratio of Circulating IFNγ + “Th17 Cells” in Memory Th Cells Is Inversely Correlated with the Titer of Anti-CCP Antibodies in Early-Onset Rheumatoid Arthritis Patients Based on Flow Cytometry Methods of the Human Immunology Project

    PubMed Central

    Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi

    2016-01-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic joint inflammation characterized by activated T cells. IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. However, it remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we validated the methods of the Human Immunology Project using only the cell-surface marker through measuring the actual expression of IL-17 and IFNγ. We also evaluated the expression of CD161 in human Th17 cells. We then tried to identify Th17 cells, IL-17+Th17 cells, and IFNγ +Th17 cells in the peripheral blood of early-onset RA patients using the standardized method of the Human Immunology Project. Our findings validated the method and the expression of CD161. The ratio of IFNγ +Th17 cells in memory T cells was inversely correlated to the titers of anti-CCP antibodies in the early-onset RA patients. These findings suggest that Th17 cells play important roles in the early phase of RA and that anti-IL-17 antibodies should be administered to patients with early phase RA, especially those with high titers of CCP antibodies. PMID:27294146

  13. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  14. EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs.

    PubMed

    Ebert, Allison D; Shelley, Brandon C; Hurley, Amanda M; Onorati, Marco; Castiglioni, Valentina; Patitucci, Teresa N; Svendsen, Soshana P; Mattis, Virginia B; McGivern, Jered V; Schwab, Andrew J; Sareen, Dhruv; Kim, Ho Won; Cattaneo, Elena; Svendsen, Clive N

    2013-05-01

    We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be expanded for long periods using a chopping method that maintained cell-cell contact. Early passage EZ spheres rapidly down-regulated OCT4 and up-regulated SOX2 and nestin expression. They retained the potential to form neural rosettes and consistently differentiated into a range of central and peripheral neural lineages. Thus, they represent a very early neural stem cell with greater differentiation flexibility than other previously described methods. As such, they will be useful for the rapidly expanding field of neurological development and disease modeling, high-content screening, and regenerative therapies based on pluripotent stem cell technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A two-step non-flowcytometry-based naïve B cell isolation method and its application in Staphylococcal enterotoxin B (SEB) presentation.

    PubMed

    Chokeshai-u-saha, Kaj; Buranapraditkun, Supranee; Jacquet, Alain; Nguyen, Catherine; Ruxrungtham, Kiat

    2012-09-01

    To study the role of human naïve B cells in antigen presentation and stimulation to naïve CD4+ T cell, a suitable method to reproducibly isolate sufficient naïve B cells is required. To improve the purity of isolated naive B cells obtained from a conventional one-step magnetic bead method, we added a rosetting step to enrich total B cell isolates from human whole blood samples prior to negative cell sorting by magnetic beads. The acquired naïve B cells were analyzed for phenotypes and for their role in Staphylococcal enterotoxin B (SEB) presentation to naïve CD4+ T cells. The mean (SD) naïve B cell (CD19+/CD27-) purity obtained from this two-step method compared with the one-step method was 97% (1.0) versus 90% (1.2), respectively. This two-step method can be used with a sample of whole blood as small as 10 ml. The isolated naive B cells were phenotypically at a resting state and were able to prime naïve CD4+ T cell activation by Staphylococcal enterotoxin B (SEB) presentation. This two-step non-flow cytometry-based approach improved the purity of isolated naïve B cells compared with conventional one-step magnetic bead method. It also worked well with a small blood volume. In addition, this study showed that the isolated naïve B cells can present a super-antigen "SEB" to activate naïve CD4 cells. These methods may thus be useful for further in vitro characterization of human naïve B cells and their roles as antigen presenting cells in various diseases.

  16. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    PubMed Central

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  17. A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells

    PubMed Central

    2011-01-01

    Background Cells of most human cancers have supernumerary centrosomes. To enable an accurate chromosome segregation and cell division, these cells developed a yet unresolved molecular mechanism, clustering their extra centrosomes at two poles, thereby mimicking mitosis in normal cells. Failure of this bipolar centrosome clustering causes multipolar spindle structures and aberrant chromosomes segregation that prevent normal cell division and lead to 'mitotic catastrophe cell death'. Methods We used cell biology and biochemical methods, including flow cytometry, immunocytochemistry and live confocal imaging. Results We identified a phenanthrene derived PARP inhibitor, known for its activity in neuroprotection under stress conditions, which exclusively eradicated multi-centrosomal human cancer cells (mammary, colon, lung, pancreas, ovarian) while acting as extra-centrosomes de-clustering agent in mitosis. Normal human proliferating cells (endothelial, epithelial and mesenchymal cells) were not impaired. Despite acting as PARP inhibitor, the cytotoxic activity of this molecule in cancer cells was not attributed to PARP inhibition alone. Conclusion We identified a water soluble phenanthridine that exclusively targets the unique dependence of most human cancer cells on their supernumerary centrosomes bi-polar clustering for their survival. This paves the way for a new selective cancer-targeting therapy, efficient in a wide range of human cancers. PMID:21943092

  18. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line

    PubMed Central

    Shipley, Mackenzie M.; Mangold, Colleen A.; Szpara, Moriah L.

    2016-01-01

    Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease. PMID:26967710

  19. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.

    PubMed

    Shipley, Mackenzie M; Mangold, Colleen A; Szpara, Moriah L

    2016-02-17

    Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.

  20. Preparation of pancreatic β-cells from human iPS cells with small molecules

    PubMed Central

    2012-01-01

    Human induced pluripotent stem (iPS) cells obtained from patients are expected to be a useful source for cell transplantation therapy, because many patients (including those with type 1 diabetes and severe type 2 diabetes) are on waiting lists for transplantation for a long time due to the shortage of donors. At present, many concerns related to clinical application of human iPS cells have been raised, but rapid development of methods for the establishment, culture, and standardization of iPS cells will lead autologous cell therapy to be realistic sooner or later. However, establishment of a method for preparing some of desired cell types is still challenging. Regarding pancreatic β-cells, there have been many reports about differentiation of these cells from human embryonic stem (ES)/iPS cells, but a protocol for clinical application has still not been established. Since there is clear proof that cell transplantation therapy is effective for diabetes based on the results of clinical islet transplantation, pancreatic β-cells prepared from human iPS cells are considered likely to be effective for reducing the burden on patients. In this article, the current status of procedures for preparing pancreatic β-cells from human ES/iPS cells, including effective use of small molecules, is summarized, and some of the problems that still need to be overcome are discussed. PMID:22722666

  1. The radiosensitivity of a murine fibrosarcoma as measured by three cell survival assays.

    PubMed Central

    Rice, L.; Urano, M.; Suit, H. D.

    1980-01-01

    The radiation sensitivity of a weakly immunogenic spontaneous fibrosarcoma of the C3Hf/Sed mouse (designated FSa-II) was assessed by three in vivo cell survival methods: end-point dilution (TD50) assay, lung colony (LC) assay, and agar diffusion chamber (ADC) assay. The hypoxic fraction of this tumour was also determined by the ADC method. Although there was a good agreement of the cell survival data between the ADC and LC methods, the TD50 method yielded a considerably less steep cell survival curve. Beneficial aspects and limitations of each assay are discussed. In addition, the use of the ADC method for the growth of xenogeneic cell lines and a preliminary experiment with human tumour cells in non-immunosuppressed hosts suggest that this method may be a valuable adjunct for studying the growth and therapeutic responses of human tumour cells. PMID:6932931

  2. Method and cell lines for the production of monoclonal antibodies to human glycophorin A

    DOEpatents

    Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  3. Alternative sources of pluripotency: science, ethics, and stem cells.

    PubMed

    Kastenberg, Zachary J; Odorico, Jon S

    2008-07-01

    Despite many advances in human embryonic stem cell (hESC) technology the ethical dilemma involving the destruction of a human embryo is one factor that has limited the development of hESC based clinical therapies. Two recent reports describing the production of pluripotent stem cells following the in vitro reprogramming of human somatic cells with certain defined factors illustrate one potential method of bypassing the ethical debate surrounding hESCs (Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec;318(5858):1917-1920; Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov;131(5): 861-872.). Other alternative methods include nuclear transfer, altered nuclear transfer, and parthenogenesis; each with its own set of advantages and disadvantages. This review discusses recent advances in these technologies with specific focus on the issues of embryo destruction, oocyte recovery, and the potential of each technology to produce large scale, patient specific cell transplantation therapies that would require little or no immunosuppression.

  4. Bioinspired Three-Dimensional Human Neuromuscular Junction Development in Suspended Hydrogel Arrays.

    PubMed

    Dixon, Thomas Anthony; Cohen, Eliad; Cairns, Dana M; Rodriguez, Maria; Mathews, Juanita; Jose, Rod R; Kaplan, David L

    2018-06-01

    The physical connection between motoneurons and skeletal muscle targets is responsible for the creation of neuromuscular junctions (NMJs), which allow electrical signals to be translated to mechanical work. NMJ pathology contributes to the spectrum of neuromuscular, motoneuron, and dystrophic disease. Improving in vitro tools that allow for recapitulation of the physiology of the neuromuscular connection will enable researchers to better understand the development and maturation of NMJs, and will help to decipher mechanisms leading to NMJ degeneration. In this work, we first describe robust differentiation of bungarotoxin-positive human myotubes, as well as a reproducible method for encapsulating and aligning human myoblasts in three-dimensional (3D) suspended culture using bioprinted silk fibroin cantilevers as cell culture supports. Further analysis with coculture of motoneuron-like cells demonstrates feasibility of fully human coculture using two-dimensional and 2.5-dimensional culture methods, with appropriate differentiation of both cell types. Using these coculture differentiation conditions with motoneuron-like cells added to monocultures of 3D suspended human myotubes, we then demonstrate synaptic colocalization in coculture as well as acetylcholine and glutamic acid stimulation of human myocytes. This method represents a unique platform to coculture suspended human myoblast-seeded 3D hydrogels with integrated motoneuron-like cells derived from human induced neural stem cells. The platform described is fully customizable using 3D freeform printing into standard laboratory tissue culture materials, and allows for human myoblast alignment in 3D with precise motoneuron integration into preformed myotubes. The coculture method will ideally be useful in observation and analysis of neurite outgrowth and myogenic differentiation in 3D with quantification of several parameters of muscle innervation and function.

  5. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method.

    PubMed

    Kim, So-Jung; Jung, Ji-Won; Ha, Hye-Yeong; Koo, Soo Kyung; Kim, Eung-Gook; Kim, Jung-Hyun

    2017-03-01

    Embryonic stem cells (ESCs) can be expanded infinitely in vitro and have the potential to differentiate into hematopoietic stem cells (HSCs); thus, they are considered a useful source of cells for HSC production. Although several technical in vitro methods for engineering HSCs from pluripotent stem cells have been developed, clinical application of HSCs engineered from pluripotent stem cells is restricted because of the possibility of xenogeneic contamination resulting from the use of murine materials. Human ESCs (CHA-hES15) were cultured on growth factor-reduced Matrigel-coated dishes in the mTeSR1 serum-free medium. When the cells were 70% confluent, we initiated HSC differentiation by three methods involving (1) knockout serum replacement (KSR), cytokines, TGFb1, EPO, and FLT3L; (2) KSR, cytokines, and bFGF; or (3) cytokines and bFGF. Among the three differentiation methods, the minimal number of cytokines without KSR resulted in the greatest production of HSCs. The optimized method resulted in a higher proportion of CD34 + CD43 + hematopoietic progenitor cells (HPCs) and CD34 + CD45 + HPCs compared to the other methods. In addition, the HSCs showed the potential to differentiate into multiple lineages of hematopoietic cells in vitro . In this study, we optimized a two-step, serum-free, animal protein-free, KSR-free, feeder-free, chemically defined monolayer culture method for generation of HSCs and hematopoietic stem and progenitor cells (HSPCs) from human ESCs.

  6. Cell Adhesion Minimization by a Novel Mesh Culture Method Mechanically Directs Trophoblast Differentiation and Self-Assembly Organization of Human Pluripotent Stem Cells.

    PubMed

    Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao

    2015-10-01

    Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.

  7. Method for restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    2000-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  8. A Facile Method to Establish Human Induced Pluripotent Stem Cells From Adult Blood Cells Under Feeder-Free and Xeno-Free Culture Conditions: A Clinically Compliant Approach

    PubMed Central

    Chou, Bin-Kuan; Gu, Haihui; Gao, Yongxing; Dowey, Sarah N.; Wang, Ying; Shi, Jun; Li, Yanxin; Ye, Zhaohui; Cheng, Tao

    2015-01-01

    Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10–50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications. PMID:25742692

  9. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

    PubMed

    Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui

    2016-08-04

    Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  11. Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium.

    PubMed

    Lidgerwood, Grace E; Lim, Shiang Y; Crombie, Duncan E; Ali, Ray; Gill, Katherine P; Hernández, Damián; Kie, Josh; Conquest, Alison; Waugh, Hayley S; Wong, Raymond C B; Liang, Helena H; Hewitt, Alex W; Davidson, Kathryn C; Pébay, Alice

    2016-04-01

    We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.

  12. Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population.

    PubMed

    Chichagova, Valeria; Sanchez-Vera, Irene; Armstrong, Lyle; Steel, David; Lako, Majlinda

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) provide a platform for studying human disease in vitro, increase our understanding of human embryonic development, and provide clinically relevant cell types for transplantation, drug testing, and toxicology studies. Since their discovery, numerous advances have been made in order to eliminate issues such as vector integration into the host genome, low reprogramming efficiency, incomplete reprogramming and acquisition of genomic instabilities. One of the ways to achieve integration-free reprogramming is by using RNA-based Sendai virus. Here we describe a method to generate hiPSCs with Sendai virus in both feeder-free and feeder-dependent culture systems. Additionally, we illustrate methods by which to validate pluripotency of the resulting stem cell population.

  13. Intracellular localization of pregnane X receptor in HepG2 cells cultured by the hanging drop method.

    PubMed

    Yokobori, Kosuke; Kobayashi, Kaoru; Azuma, Ikuko; Akita, Hidetaka; Chiba, Kan

    2017-10-01

    Pregnane X receptor (PXR) is localized in the cytoplasm of liver cells, whereas it is localized in the nucleus of monolayer-cultured HepG2 cells. Since cultured cells are affected by the microenvironment in which they are grown, we studied the effect of three-dimensional (3D) culture on the localization of PXR in HepG2 cells using the hanging drop method. The results showed that PXR was retained in the cytoplasm of HepG2 cells and other human hepatocarcinoma cell lines (FLC5, FLC7 and Huh7) when they were cultured by the hanging drop method. Treatment with rifampicin, a ligand of PXR, translocated PXR from the cytoplasm to nucleus and increased expression levels of CYP3A4 mRNA in HepG2 cells cultured by the hanging drop method. These findings suggest that 3D culture is a key factor determining the intracellular localization of PXR in human hepatocarcinoma cells and that PXR that becomes retained in the cytoplasm of HepG2 cells with 3D culture has functions of nuclear translocation and regulation of target genes in response to human PXR ligands. Three-dimensionally cultured hepatocarcinoma cells would be a useful tool to evaluate induction potency of drug candidates and also to study mechanisms of nuclear translocation of PXR by human PXR ligands. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  14. Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells

    PubMed Central

    Barberi, Tiziano; Willis, Lucy M; Socci, Nicholas D; Studer, Lorenz

    2005-01-01

    Background Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. Methods and Findings Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. Conclusion Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications. PMID:15971941

  15. Investigation of biomaterials by human epithelial gingiva cells: an in vitro study

    PubMed Central

    2012-01-01

    Introduction In modern medicine and dentistry the use of biomaterials is a fast developing field of increasing interest. Especially in dentistry the interaction between biomaterials like implant materials and the soft tissue in the oral cavity is in the focus of daily research. In this context the high importance of testing materials and their surfaces concerning their biocompatibility towards corresponding cells is very likely. For this purpose this study investigates cells derived from human gingival biopsies on different materials and surfaces. Methods Cells in this study were cultivated out of human biopsies by a grow out explant technique and were sub cultivated on titanium, zirconium dioxide and collagen membrane specimens. To characterise the cells on the material surfaces used in this study immunohistochemical and histological staining techniques as well as different methods of microscopy (light microscopy and SEM) were applied. Results With the aid of the explant technique and the chosen cell cultivation method it was possible to investigate the human gingiva derived cells on different materials. The data of the present study show that the human gingival cells attach and proliferate on all three tested materials by exhibiting characteristic gingival keratinocyte protein expression even after long periods of culture e.g. up to 70 days. Conclusions It could be shown that the three tested materials titanium, zirconium dioxide and collagen membrane (and their special surfaces) are good candidates for the application as materials in the dental gingival environment or, in the case of the collagen membrane as scaffold/cell-carrier for human gingival cells in tissue engineering. PMID:23241143

  16. Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells.

    PubMed

    Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori

    2017-10-01

    We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.

  17. Effects of chronic low dose rotenone treatment on human microglial cells

    PubMed Central

    2009-01-01

    Background Exposure to toxins/chemicals is considered to be a significant risk factor in the pathogenesis of Parkinson's disease (PD); one putative chemical is the naturally occurring herbicide rotenone that is now used widely in establishing PD models. We, and others, have shown that chronic low dose rotenone treatment induces excessive accumulation of Reactive Oxygen Species (ROS), inclusion body formation and apoptosis in dopaminergic neurons of animal and human origin. Some studies have also suggested that microglia enhance the rotenone induced neurotoxicity. While the effects of rotenone on neurons are well established, there is little or no information available on the effect of rotenone on microglial cells, and especially cells of human origin. The aim of the present study was to investigate the effects of chronic low dose rotenone treatment on human microglial CHME-5 cells. Methods We have shown previously that rotenone induced inclusion body formation in human dopaminergic SH-SY5Y cells and therefore used these cells as a control for inclusion body formation in this study. SH-SY5Y and CHME-5 cells were treated with 5 nM rotenone for four weeks. At the end of week 4, both cell types were analysed for the presence of inclusion bodies, superoxide dismutases and cell activation (only in CHME-5 cells) using Haematoxylin and Eosin staining, immunocytochemical and western blotting methods. Levels of active caspases and ROS (both extra and intra cellular) were measured using biochemical methods. Conclusion The results suggest that chronic low dose rotenone treatment activates human microglia (cell line) in a manner similar to microglia of animal origin as shown by others. However human microglia release excessive amounts of ROS extracellularly, do not show excessive amounts of intracellular ROS and active caspases and most importantly do not show any protein aggregation or inclusion body formation. Human microglia appear to be resistant to rotenone (chronic, low dose) induced damage. PMID:20042120

  18. Propagating Humanized BLT Mice for the Study of Human Immunology and Immunotherapy.

    PubMed

    Smith, Drake J; Lin, Levina J; Moon, Heesung; Pham, Alexander T; Wang, Xi; Liu, Siyuan; Ji, Sunjong; Rezek, Valerie; Shimizu, Saki; Ruiz, Marlene; Lam, Jennifer; Janzen, Deanna M; Memarzadeh, Sanaz; Kohn, Donald B; Zack, Jerome A; Kitchen, Scott G; An, Dong Sung; Yang, Lili

    2016-12-15

    The humanized bone marrow-liver-thymus (BLT) mouse model harbors a nearly complete human immune system, therefore providing a powerful tool to study human immunology and immunotherapy. However, its application is greatly limited by the restricted supply of human CD34 + hematopoietic stem cells and fetal thymus tissues that are needed to generate these mice. The restriction is especially significant for the study of human immune systems with special genetic traits, such as certain human leukocyte antigen (HLA) haplotypes or monogene deficiencies. To circumvent this critical limitation, we have developed a method to quickly propagate established BLT mice. Through secondary transfer of bone marrow cells and human thymus implants from BLT mice into NSG (NOD/SCID/IL-2Rγ -/- ) recipient mice, we were able to expand one primary BLT mouse into a colony of 4-5 proBLT (propagated BLT) mice in 6-8 weeks. These proBLT mice reconstituted human immune cells, including T cells, at levels comparable to those of their primary BLT donor mouse. They also faithfully inherited the human immune cell genetic traits from their donor BLT mouse, such as the HLA-A2 haplotype that is of special interest for studying HLA-A2-restricted human T cell immunotherapies. Moreover, an EGFP reporter gene engineered into the human immune system was stably passed from BLT to proBLT mice, making proBLT mice suitable for studying human immune cell gene therapy. This method provides an opportunity to overcome a critical hurdle to utilizing the BLT humanized mouse model and enables its more widespread use as a valuable preclinical research tool.

  19. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    PubMed

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  20. Development of an efficient, non-viral transfection method for studying gene function and bone growth in human primary cranial suture mesenchymal cells reveals that the cells respond to BMP2 and BMP3.

    PubMed

    Dwivedi, Prem P; Anderson, Peter J; Powell, Barry C

    2012-08-03

    Achieving efficient introduction of plasmid DNA into primary cultures of mammalian cells is a common problem in biomedical research. Human primary cranial suture cells are derived from the connective mesenchymal tissue between the bone forming regions at the edges of the calvarial plates of the skull. Typically they are referred to as suture mesenchymal cells and are a heterogeneous population responsible for driving the rapid skull growth that occurs in utero and postnatally. To better understand the molecular mechanisms involved in skull growth, and in abnormal growth conditions, such as craniosynostosis, caused by premature bony fusion, it is essential to be able to easily introduce genes into primary bone forming cells to study their function. A comparison of several lipid-based techniques with two electroporation-based techniques demonstrated that the electroporation method known as nucleofection produced the best transfection efficiency. The parameters of nucleofection, including cell number, amount of DNA and nucleofection program, were optimized for transfection efficiency and cell survival. Two different genes and two promoter reporter vectors were used to validate the nucleofection method and the responses of human primary suture mesenchymal cells by fluorescence microscopy, RT-PCR and the dual luciferase assay. Quantification of bone morphogenetic protein (BMP) signalling using luciferase reporters demonstrated robust responses of the cells to both osteogenic BMP2 and to the anti-osteogenic BMP3. A nucleofection protocol has been developed that provides a simple and efficient, non-viral alternative method for in vitro studies of gene and protein function in human skull growth. Human primary suture mesenchymal cells exhibit robust responses to BMP2 and BMP3, and thus nucleofection can be a valuable method for studying the potential competing action of these two bone growth factors in a model system of cranial bone growth.

  1. Development of a Monitoring Method for Nonlabeled Human Pluripotent Stem Cell Growth by Time-Lapse Image Analysis.

    PubMed

    Suga, Mika; Kii, Hiroaki; Niikura, Keiichi; Kiyota, Yasujiro; Furue, Miho K

    2015-07-01

    : Cell growth is an important criterion for determining healthy cell conditions. When somatic cells or cancer cells are dissociated into single cells for passaging, the cell numbers can be counted at each passage, providing information on cell growth as an indicator of the health conditions of these cells. In the case of human pluripotent stem cells (hPSCs), because the cells are usually dissociated into cell clumps of ∼50-100 cells for passaging, cell counting is time-consuming. In the present study, using a time-lapse imaging system, we developed a method to determine the growth of hPSCs from nonlabeled live cell phase-contrast images without damaging these cells. Next, the hPSC colony areas and number of nuclei were determined and used to derive equations to calculate the cell number in hPSC colonies, which were assessed on time-lapse images acquired using a culture observation system. The relationships between the colony areas and nuclei numbers were linear, although the equation coefficients were dependent on the cell line used, colony size, colony morphology, and culture conditions. When the culture conditions became improper, the change in cell growth conditions could be detected by analysis of the phase-contrast images. This method provided real-time information on colony growth and cell growth rates without using treatments that can damage cells and could be useful for basic research on hPSCs and cell processing for hPSC-based therapy. This is the first study to use a noninvasive method using images to systemically determine the growth of human pluripotent stem cells (hPSCs) without damaging or wasting cells. This method would be useful for quality control during cell culture of clinical hPSCs. ©AlphaMed Press.

  2. Accelerated generation of oligodendrocyte progenitor cells from human induced pluripotent stem cells by forced expression of Sox10 and Olig2.

    PubMed

    Li, Pengyan; Li, Mo; Tang, Xihe; Wang, Shuyan; Zhang, Y Alex; Chen, Zhiguo

    2016-11-01

    Oligodendrocyte progenitor cells (OPCs) hold great promise for treatment of dysmyelinating disorders, such as multiple sclerosis and cerebral palsy. Recent studies on generation of human OPCs mainly use human embryonic stem cells (hESCs) or neural stem cells (NSCs) as starter cell sources for the differentiation process. However, NSCs are restricted in availability and the present method for generation of oligodendrocytes (OLs) from ESCs often requires a lengthy period of time. Here, we demonstrated a protocol to efficiently derive OPCs from human induced pluripotent stem cells (hiPSCs) by forced expression of two transcription factors (2TFs), Sox10 and Olig2. With this method, PDGFRα + OPCs can be obtained in 14 days and O4 + OPCs in 56 days. Furthermore, OPCs may be able to differentiate to mature OLs that could ensheath axons when co-cultured with rat cortical neurons. The results have implications in the development of autologous cell therapies.

  3. Methods to Manipulate and Monitor Wnt Signaling in Human Pluripotent Stem Cells.

    PubMed

    Huggins, Ian J; Brafman, David; Willert, Karl

    2016-01-01

    Human pluripotent stem cells (hPSCs) may revolutionize medical practice by providing: (a) a renewable source of cells for tissue replacement therapies, (b) a powerful system to model human diseases in a dish, and (c) a platform for examining efficacy and safety of novel drugs. Furthermore, these cells offer a unique opportunity to study early human development in vitro, in particular, the process by which a seemingly uniform cell population interacts to give rise to the three main embryonic lineages: ectoderm, endoderm. and mesoderm. This process of lineage allocation is regulated by a number of inductive signals that are mediated by growth factors, including FGF, TGFβ, and Wnt. In this book chapter, we introduce a set of tools, methods, and protocols to specifically manipulate the Wnt signaling pathway with the intention of altering the cell fate outcome of hPSCs.

  4. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.

    PubMed

    Camp, J Gray; Treutlein, Barbara

    2017-05-01

    Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.

  5. Procedure for the Isolation of Endothelial Cells from Human Cerebral Arteriovenous Malformation (cAVM) Tissues.

    PubMed

    Hao, Qiang; Chen, Xiao-Lin; Ma, Li; Wang, Tong-Tong; Hu, Yue; Zhao, Yuan-Li

    2018-01-01

    In this study, we successfully established a stable method for the isolation of endothelial cells (ECs) from human cerebral arteriovenous malformation (cAVM) tissues. Despite human cAVM tissues having a minor population of ECs, they play an important role in the manifestation and development of cAVM as well as in hemorrhagic stroke and thrombogenesis. To characterize and understand the biology of ECs in human cAVM (cAVM-ECs), methods for the isolation and purification of these cells are necessary. We have developed this method to reliably obtain pure populations of ECs from cAVMs. To obtain pure cell populations, cAVM tissues were mechanically and enzymatically digested and the resulting single cAVM-ECs suspensions were then labeled with antibodies of specific cell antigens and selected by flow cytometry. Purified ECs were detected using specific makers of ECs by immunostaining and used to study different cellular mechanisms. Compared to the different methods of isolating ECs from tissues, we could isolate ECs from cAVMs confidently, and the numbers of cAVM-ECs harvested were almost similar to the amounts present in vessel components. In addition to optimizing the protocol for isolation of ECs from human cAVM tissues, the protocol could also be applied to isolate ECs from other human neurovascular-diseased tissues. Depending on the tissues, the whole procedure could be completed in about 20 days.

  6. Regional gene mapping using mixed radiation hybrids and reverse chromosome painting.

    PubMed

    Lin, J Y; Bedford, J S

    1997-11-01

    We describe a new approach for low-resolution physical mapping using pooled DNA probe from mixed (non-clonal) populations of human-CHO cell hybrids and reverse chromosome painting. This mapping method is based on a process in which the human chromosome fragments bearing a complementing gene were selectively retained in a large non-clonal population of CHO-human hybrid cells during a series of 12- to 15-Gy gamma irradiations each followed by continuous growth selection. The location of the gene could then be identified by reverse chromosome painting on normal human metaphase spreads using biotinylated DNA from this population of "enriched" hybrid cells. We tested the validity of this method by correctly mapping the complementing human HPRT gene, whose location is well established. We then demonstrated the method's usefulness by mapping the chromosome location of a human gene which complemented the defect responsible for the hypersensitivity to ionizing radiation in CHO irs-20 cells. This method represents an efficient alternative to conventional concordance analysis in somatic cell hybrids where detailed chromosome analysis of numerous hybrid clones is necessary. Using this approach, it is possible to localize a gene for which there is no prior sequence or linkage information to a subchromosomal region, thus facilitating association with known mapping landmarks (e.g. RFLP, YAC or STS contigs) for higher-resolution mapping.

  7. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically significant differences in the variation of PAX6 and SOX1-positive NPCs between the two human pluripotent cell-derived methods; therefore, both methods are suitable for producing stable dorsal NPCs. When further differentiated into mature neurons, NPCs gave rise to a population of almost exclusively forebrain cortical neurons, confirming the dorsal fate commitment of the progenitors. The methods described in this study show improvements over previously published studies and are highly efficient at differentiating human and mouse pluripotent cell types into dorsal PAX6-positive NPCs and eventually into forebrain cortical neurons.

  8. Harnessing Gene Conversion in Chicken B Cells to Create a Human Antibody Sequence Repertoire

    PubMed Central

    Schusser, Benjamin; Yi, Henry; Collarini, Ellen J.; Izquierdo, Shelley Mettler; Harriman, William D.; Etches, Robert J.; Leighton, Philip A.

    2013-01-01

    Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens. PMID:24278246

  9. Cardiotoxicity evaluation using human embryonic stem cells and induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Zhao, Qi; Wang, Xijie; Wang, Shuyan; Song, Zheng; Wang, Jiaxian; Ma, Jing

    2017-03-09

    Cardiotoxicity remains an important concern in drug discovery. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate cardiotoxicity. However, the consistency between human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in prediction of cardiotoxicity has yet to be elucidated. Here we screened the toxicities of four representative drugs (E-4031, isoprenaline, quinidine, and haloperidol) using both hESC-CMs and hiPSC-CMs, combined with an impedance-based bioanalytical method. It showed that both hESC-CMs and hiPSC-CMs can recapitulate cardiotoxicity and identify the effects of well-characterized compounds. The combined platform of hPSC-CMs and an impedance-based bioanalytical method could improve preclinical cardiotoxicity screening, holding great potential for increasing drug development accuracy.

  10. Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin

    PubMed Central

    Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M.; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R.; Trumpp, Andreas

    2015-01-01

    Summary Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639

  11. Pluripotent Stem Cells and Gene Therapy

    PubMed Central

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  12. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, M.J.; Weaver, V.M.

    1998-12-08

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying {beta}{sub 1} integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive. 14 figs.

  13. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    1998-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  14. An in vitro monocyte culture method and establishment of a human monocytic cell line (K63).

    PubMed

    Kadoi, Katsuyuki

    2011-01-01

    A novel method of monocyte culture in vitro was developed. The fraction of monocytes was obtained by density centrifugation of heparinised human venous blood samples. Monocytes were suspended in a modified Rosewell Park Memorial Institute medium (RPMI)-1640 (mRPMI) supplemented with 10% non-inactivated autologous serum added to the feeder cells. An avian cell line was used for feeder cells. Only those monocytes that settled on feeder cells grew rapidly at 37°C-38°C into a formation of clumped masses within two to three days. The cell mass was harvested and subcultures were made without feeder cells. A stable cell line (K63) was established from subcultures using a limited dilution method and cell cloning in microplates. K63 cells were adapted for later growth in the mRPMI medium supplemented with 10% foetal calf serum. The cells were well maintained at over 50th passage levels. This method proved to be applicable for monocyte cultures of animals as well.

  15. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    PubMed

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  16. An optimized protocol for the generation and functional analysis of human mast cells from CD34+ enriched cell populations.

    PubMed

    Yin, Yuzhi; Bai, Yun; Olivera, Ana; Desai, Avanti; Metcalfe, Dean D

    2017-09-01

    The culture of mast cells from human tissues such a cord blood, peripheral blood or bone marrow aspirates has advanced our understanding of human mast cells (huMC) degranulation, mediator production and response to pharmacologic agents. However, existing methods for huMC culture tend to be laborious and expensive. Combining technical approaches from several of these protocols, we designed a simplified and more cost effective approach to the culture of mast cells from human cell populations including peripheral blood and cryopreserved cells from lymphocytapheresis. On average, we reduced by 30-50 fold the amount of culture media compared to our previously reported method, while the total MC number generated by this method (2.46±0.63×10 6 vs. 2.4±0.28×10 6 , respectively, from 1.0×10 8 lymphocytapheresis or peripheral blood mononuclear blood cells [PBMCs]) was similar to our previous method (2.36±0.70×10 6 ), resulting in significant budgetary savings. In addition, we compared the yield of huMCs with or without IL-3 added to early cultures in the presence of stem cell factor (SCF) and interlukin-6 (IL-6) and found that the total MC number generated, while higher with IL-3 in the culture, did not reach statistical significance, suggesting that IL-3, often recommended in the culture of huMCs, is not absolutely required. We then performed a functional analysis by flow cytometry using standard methods and which maximized the data we could obtain from cultured cells. We believe these approaches will allow more laboratories to culture and examine huMC behavior going forward. Published by Elsevier B.V.

  17. [A method for the primary culture of fibroblasts isolated from human airway granulation tissues].

    PubMed

    Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu-ling; Pei, Ying-hua

    2013-04-01

    To establish a feasible method to culture primary fibroblasts isolated from human airway granulation tissues, and therefore to provide experimental data for the investigation of the pathogenesis of benign airway stenosis. The granulation tissues were collected from 6 patients during routine bronchoscopy at our department of Beijing Tiantan Hospital from April to June 2011. Primary fibroblasts were obtained by culturing the explanted tissues. Cell growth was observed under inverted microscope. All of these 6 primary cultures were successful. Fibroblast-like cells were observed to migrate from the tissue pieces 3 d after inoculation. After 9-11 d of culture, cells reached to 90% confluence and could be sub-cultured. After passage, the cells were still in a typical elongated spindle-shape and grew well. The cells could be sub-cultured further when they formed a monolayer. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissues.

  18. [Effect of EMP-1 gene on human esophageal cancer cell line].

    PubMed

    Wang, Hai-tao; Liu, Zhi-hua; Wang, Xiu-qin; Wu, Min

    2002-03-01

    EMP-1 was selected from a series of differential expressed genes obtained from cDNA microarray in the authors' lab. Epithelial membrane pnteiu-1 gene (EMP-1) was expressed 6 fold lower in esophageal cancer than in normal tissue. The authors further designed the experiment to study the effect of human EMP-1 gene on human esophageal cancer cell line in order to explain the function of this gene on the carcinogensis and progression esophageal cancer. EMP-1 gene was cloned into eukaryotic vector and transfected into the human esophageal cancer cell line. The transfection effect was qualified by Western blot and RT-PCR method. The cell growth curve was observed and the cell cycle was checked by FACS method. EMP-1 was transfected into EC9706 cell line and its expression was up-regulated. The cell growth is accelerated and expression of EMP-1 is linked to induction of S phase arrest. EMP-1 gene has some relationship with carcinogenesis of esophagus.

  19. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs

    NASA Astrophysics Data System (ADS)

    Su, Long-Jyun; Wu, Meng-Shiue; Hui, Yuen Yung; Chang, Be-Ming; Pan, Lei; Hsu, Pei-Chen; Chen, Yit-Tsong; Ho, Hong-Nerng; Huang, Yen-Hua; Ling, Thai-Yen; Hsu, Hsao-Hsun; Chang, Huan-Cheng

    2017-03-01

    Cell therapy is a promising strategy for the treatment of human diseases. While the first use of cells for therapeutic purposes can be traced to the 19th century, there has been a lack of general and reliable methods to study the biodistribution and associated pharmacokinetics of transplanted cells in various animal models for preclinical evaluation. Here, we present a new platform using albumin-conjugated fluorescent nanodiamonds (FNDs) as biocompatible and photostable labels for quantitative tracking of human placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs) in miniature pigs by magnetic modulation. With this background-free detection technique and time-gated fluorescence imaging, we have been able to precisely determine the numbers as well as positions of the transplanted FND-labeled pcMSCs in organs and tissues of the miniature pigs after intravenous administration. The method is applicable to single-cell imaging and quantitative tracking of human stem/progenitor cells in rodents and other animal models as well.

  20. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  1. The Human Cell Atlas.

    PubMed

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  2. The Human Cell Atlas

    PubMed Central

    Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community. PMID:29206104

  3. Genome engineering in human cells.

    PubMed

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  4. Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells.

    PubMed

    Kime, Cody; Rand, Tim A; Ivey, Kathryn N; Srivastava, Deepak; Yamanaka, Shinya; Tomoda, Kiichiro

    2015-10-06

    The advent of induced pluripotent stem (iPS) cell technology has revolutionized biomedicine and basic research by yielding cells with embryonic stem (ES) cell-like properties. The use of iPS-derived cells for cell-based therapies and modeling of human disease holds great potential. While the initial description of iPS cells involved overexpression of four transcription factors via viral vectors that integrated within genomic DNA, advances in recent years by our group and others have led to safer and higher quality iPS cells with greater efficiency. Here, we describe commonly practiced methods for non-integrating induced pluripotent stem cell generation using nucleofection of episomal reprogramming plasmids. These methods are adapted from recent studies that demonstrate increased hiPS cell reprogramming efficacy with the application of three powerful episomal hiPS cell reprogramming factor vectors and the inclusion of an accessory vector expressing EBNA1. Copyright © 2015 John Wiley & Sons, Inc.

  5. Flow cytometric analysis of normal and neoplastic mast cells: role in diagnosis and follow-up of mast cell disease.

    PubMed

    Escribano, Luis; Garcia Montero, Andres C; Núñez, Rosa; Orfao, Alberto

    2006-08-01

    Human mast cells (MCs) are directly derived from human pluripotent CD34+ stem and progenitor hematopoietic cells with stem cell factor being a critical growth factor supporting human MC proliferation, differentiation, and survival. Because of the advantages that flow cytometry offers (it allows rapid, objective, and sensitive multiparameter analysis of high numbers of cells from a sample, with information being provided on the basis of a single cell), it has become the method of choice in the past decade for immunophenotypic identification, enumeration, and characterization of human MCs in bone marrow and other tissue specimens.

  6. Gene Therapy of Human Breast Cancer.

    DTIC Science & Technology

    1998-10-01

    gene product of human papilloma virus . They transduced this modified cell line with B7 and showed that immunization with the B7- transduced cell...adeno-LacZ virus , aliquots of 106 human breast cancer cells, purified using methods described above, will be incubated in suspension with adeno-LacZ...v.- Final Report:«DAMD17-94-J-4385 "Gene Therapy of Human Cancer" Page 1 AD GRANT NUMBER DAMD17-94-J-4385 TITLE: Gene Therapy of Human

  7. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.

    PubMed

    Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J

    2013-01-01

    Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.

  8. Human Urinary Epithelial Cells as a Source of Engraftable Hepatocyte-Like Cells Using Stem Cell Technology.

    PubMed

    Sauer, Vanessa; Tchaikovskaya, Tatyana; Wang, Xia; Li, Yanfeng; Zhang, Wei; Tar, Krisztina; Polgar, Zsuzsanna; Ding, Jianqiang; Guha, Chandan; Fox, Ira J; Roy-Chowdhury, Namita; Roy-Chowdhury, Jayanta

    2016-12-13

    Although several types of somatic cells have been reprogrammed into induced pluripotent stem cells (iPSCs) and then differentiated to hepatocyte-like cells (iHeps), the method for generating such cells from renal tubular epithelial cells shed in human urine and transplanting them into animal livers has not been described systematically. We report reprogramming of human urinary epithelial cells into iPSCs and subsequent hepatic differentiation, followed by a detailed characterization of the newly generated iHeps. The epithelial cells were reprogrammed into iPSCs by delivering the pluripotency factors OCT3/4, SOX2, KLF4, and MYC using methods that do not involve transgene integration, such as nucleofection of episomal (oriP/EBNA-1) plasmids or infection with recombinant Sendai viruses. After characterization of stable iPSC lines, a three-step differentiation toward hepatocytes was performed. The iHeps expressed a large number of hepatocyte-preferred genes, including nuclear receptors that regulate genes involved in cholesterol homeostasis, bile acid transport, and detoxification. MicroRNA profile of the iHeps largely paralleled that of primary human hepatocytes. The iHeps engrafted into the livers of Scid mice transgenic for mutant human SERPINA1 after intrasplenic injection. Thus, urine is a readily available source for generating human iHeps that could be potentially useful for disease modeling, pharmacological development, and regenerative medicine.

  9. Reconstruction of genome-scale human metabolic models using omics data.

    PubMed

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-08-01

    The impact of genome-scale human metabolic models on human systems biology and medical sciences is becoming greater, thanks to increasing volumes of model building platforms and publicly available omics data. The genome-scale human metabolic models started with Recon 1 in 2007, and have since been used to describe metabolic phenotypes of healthy and diseased human tissues and cells, and to predict therapeutic targets. Here we review recent trends in genome-scale human metabolic modeling, including various generic and tissue/cell type-specific human metabolic models developed to date, and methods, databases and platforms used to construct them. For generic human metabolic models, we pay attention to Recon 2 and HMR 2.0 with emphasis on data sources used to construct them. Draft and high-quality tissue/cell type-specific human metabolic models have been generated using these generic human metabolic models. Integration of tissue/cell type-specific omics data with the generic human metabolic models is the key step, and we discuss omics data and their integration methods to achieve this task. The initial version of the tissue/cell type-specific human metabolic models can further be computationally refined through gap filling, reaction directionality assignment and the subcellular localization of metabolic reactions. We review relevant tools for this model refinement procedure as well. Finally, we suggest the direction of further studies on reconstructing an improved human metabolic model.

  10. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, Martha R.

    1989-01-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

  11. Extensive Determination of Glycan Heterogeneity Reveals an Unusual Abundance of High Mannose Glycans in Enriched Plasma Membranes of Human Embryonic Stem Cells*

    PubMed Central

    An, Hyun Joo; Gip, Phung; Kim, Jaehan; Wu, Shuai; Park, Kun Wook; McVaugh, Cheryl T.; Schaffer, David V.; Bertozzi, Carolyn R.; Lebrilla, Carlito B.

    2012-01-01

    Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine cell surface glycosylation. PMID:22147732

  12. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells.

    PubMed

    Du, Zhong-Wei; Chen, Hong; Liu, Huisheng; Lu, Jianfeng; Qian, Kun; Huang, CindyTzu-Ling; Zhong, Xiaofen; Fan, Frank; Zhang, Su-Chun

    2015-03-25

    Human pluripotent stem cells (hPSCs) have opened new opportunities for understanding human development, modelling disease processes and developing new therapeutics. However, these applications are hindered by the low efficiency and heterogeneity of cell types, such as motorneurons (MNs), differentiated from hPSCs as well as our inability to maintain the potency of lineage-committed progenitors. Here by using a combination of small molecules that regulate multiple signalling pathways, we develop a method to guide human embryonic stem cells to a near-pure population (>95%) of motor neuron progenitors (MNPs) in 12 days, and an enriched population (>90%) of functionally mature MNs in an additional 16 days. More importantly, the MNPs can be expanded for at least five passages so that a single MNP can be amplified to 1 × 10(4). This method is reproducible in human-induced pluripotent stem cells and is applied to model MN-degenerative diseases and in proof-of-principle drug-screening assays.

  13. Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA

    PubMed Central

    Loh, Yuin-Han; Yang, Jimmy Chen; De Los Angeles, Alejandro; Guo, Chunguang; Cherry, Anne; Rossi, Derrick J.; Park, In-Hyun; Daley, George Q.

    2012-01-01

    The generation of patient-specific induced pluripotent stem (iPS) cells provides an invaluable resource for cell therapy, in vitro modeling of human disease, and drug screening. To date, most human iPS cells have been generated with integrating retro- and lenti-viruses and are limited in their potential utility because residual transgene expression may alter their differentiation potential or induce malignant transformation. Alternatively, transgene-free methods using adenovirus and protein transduction are limited by low efficiency. This report describes a protocol for the generation of transgene-free human induced pluripotent stem cells using retroviral transfection of a single vector, which includes the coding sequences of human OCT4, SOX2, KLF4, and cMYC linked with picornaviral 2A plasmids. Moreover, after reprogramming has been achieved, this cassette can be removed using mRNA transfection of Cre recombinase. The method described herein to excise reprogramming factors with ease and efficiency facilitates the experimental generation and use of transgene-free human iPS cells. PMID:22605648

  14. Tomographic brain imaging with nucleolar detail and automatic cell counting

    NASA Astrophysics Data System (ADS)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-09-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.

  15. Robust and Highly-Efficient Differentiation of Functional Monocytic Cells from Human Pluripotent Stem Cells under Serum- and Feeder Cell-Free Conditions

    PubMed Central

    Yanagimachi, Masakatsu D.; Niwa, Akira; Tanaka, Takayuki; Honda-Ozaki, Fumiko; Nishimoto, Seiko; Murata, Yuuki; Yasumi, Takahiro; Ito, Jun; Tomida, Shota; Oshima, Koichi; Asaka, Isao; Goto, Hiroaki; Heike, Toshio; Nakahata, Tatsutoshi; Saito, Megumu K.

    2013-01-01

    Monocytic lineage cells (monocytes, macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3×106±0.3×106 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5–6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery. PMID:23573196

  16. Canine macrophages can like human macrophages be in vitro activated toward the M2a subtype relevant in allergy.

    PubMed

    Herrmann, Ina; Gotovina, Jelena; Fazekas-Singer, Judit; Fischer, Michael B; Hufnagl, Karin; Bianchini, Rodolfo; Jensen-Jarolim, Erika

    2018-05-01

    The M2a subtype of macrophages plays an important role in human immunoglobulin E (IgE-mediated allergies) and other Th2 type immune reactions. In contrast, very little is known about these cells in the dog. Here we describe an in vitro method to activate canine histiocytic DH82 cells and primary canine monocyte-derived macrophages (MDMs) toward the M2a macrophages using human cytokines. For a side-by-side comparison, we compared the canine cells to human MDMs, and the human monocytic cell line U937 activated towards M1 and M2a cells on the cellular and molecular level. In analogy to activated human M2a cells, canine M2a, differentiated from both DH82 and MDMs, showed an increase in CD206 surface receptor expression compared to M1. Interestingly, canine M2a, but not M1 derived from MDM, upregulated the high-affinity IgE receptor (FcεRI). Transcription levels of M2a-associated genes (IL10, CCL22, TGFβ, CD163) showed a diverse pattern between the human and dog species, whereas M1 genes (IDO1, CXCL11, IL6, TNF-α) were similarly upregulated in canine and human M1 cells (cell lines and MDMs). We suggest that our novel in vitro method will be suitable in comparative allergology studies focussing on macrophages. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. A Method for Identification and Analysis of Non-Overlapping Myeloid Immunophenotypes in Humans

    PubMed Central

    Gustafson, Michael P.; Lin, Yi; Maas, Mary L.; Van Keulen, Virginia P.; Johnston, Patrick B.; Peikert, Tobias; Gastineau, Dennis A.; Dietz, Allan B.

    2015-01-01

    The development of flow cytometric biomarkers in human studies and clinical trials has been slowed by inconsistent sample processing, use of cell surface markers, and reporting of immunophenotypes. Additionally, the function(s) of distinct cell types as biomarkers cannot be accurately defined without the proper identification of homogeneous populations. As such, we developed a method for the identification and analysis of human leukocyte populations by the use of eight 10-color flow cytometric protocols in combination with novel software analyses. This method utilizes un-manipulated biological sample preparation that allows for the direct quantitation of leukocytes and non-overlapping immunophenotypes. We specifically designed myeloid protocols that enable us to define distinct phenotypes that include mature monocytes, granulocytes, circulating dendritic cells, immature myeloid cells, and myeloid derived suppressor cells (MDSCs). We also identified CD123 as an additional distinguishing marker for the phenotypic characterization of immature LIN-CD33+HLA-DR- MDSCs. Our approach permits the comprehensive analysis of all peripheral blood leukocytes and yields data that is highly amenable for standardization across inter-laboratory comparisons for human studies. PMID:25799053

  18. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells.

    PubMed

    Sanchez-Antequera, Yolanda; Mykhaylyk, Olga; van Til, Niek P; Cengizeroglu, Arzu; de Jong, J Henk; Huston, Marshall W; Anton, Martina; Johnston, Ian C D; Pojda, Zygmunt; Wagemaker, Gerard; Plank, Christian

    2011-04-21

    Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.

  19. Efficient Culture of Human Naïve and Memory B cells for Use as Antigen-presenting Cells

    PubMed Central

    Su, Kuei-Ying; Watanabe, Akiko; Yeh, Chen-Hao; Kelsoe, Garnett; Kuraoka, Masayuki

    2016-01-01

    The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B-cell culture is the capacity to support mature B-cell proliferation. We have developed a culture method to support the efficient activation and proliferation of both naïve and memory human B cells. This culture supports extensive B-cell proliferation, with approximately 103-fold increases following 8 days in culture, and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naïve B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved, and when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHCII, CD80, and CD86. CD B cells act as APCs and present both alloantigens and microbial antigens to T cells. We are able to activate and expand antigen-specific memory B cells; these cultured cells are highly effective in presenting antigen to T cells. We have characterized the TCR repertoire of rare antigen-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from both resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual. PMID:27815447

  20. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells

    NASA Astrophysics Data System (ADS)

    Roy, Prathik; Periasamy, Arun Prakash; Lin, Chiu-Ya; Her, Guor-Mour; Chiu, Wei-Jane; Li, Chi-Lin; Shu, Chia-Lun; Huang, Chih-Ching; Liang, Chi-Te; Chang, Huan-Tsung

    2015-01-01

    Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL-1 over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications.Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL-1 over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications. Electronic supplementary information (ESI) available: Experimental discussion on synthesis, characterization, cellular imaging, cytotoxicity of GQDs in addition to its effect on zebrafish embryos, preparation of annexin V (A5)-modified GQDs (AbA5-GQDs), staining procedures and imaging are given. Figures for XRD, UV-vis absorption, photoluminescence of GQDs, mortality of zebrafish, time course recording of morphology of zebrafish embryos and morphology of adult zebrafish exposed to GQDs are illustrated. See DOI: 10.1039/c4nr07005d

  1. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    PubMed

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  2. Handling, storage, and preparation of human tissues.

    PubMed

    Dressler, L G; Visscher, D

    2001-05-01

    Human tissue for flow cytometry must be prepared as an adequate single-cell suspension. The appropriate methods for tissue collection, transport, storage, and dissociation depend on the cell parameters being measured and the localization of the markers. This unit includes a general method for collecting and transporting human tissue and preparing a tissue imprint. Protocols are supplied for tissue disaggregation by either mechanical or enzymatic means and for preparation of single-cell suspensions of whole cells from fine-needle aspirates, pleural effusions, abdominal fluids, or other body fluids. Other protocols detail preparation of intact nuclei from fresh, frozen, or paraffin-embedded tissue. Support protocols cover fixation, cryospin preparation, cryopreservation, and removal of debris.

  3. Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood.

    PubMed

    Gu, Haihui; Huang, Xia; Xu, Jing; Song, Lili; Liu, Shuping; Zhang, Xiao-Bing; Yuan, Weiping; Li, Yanxin

    2018-06-15

    Generation of induced pluripotent stem cells (iPSCs) from human peripheral blood provides a convenient and low-invasive way to obtain patient-specific iPSCs. The episomal vector is one of the best approaches for reprogramming somatic cells to pluripotent status because of its simplicity and affordability. However, the efficiency of episomal vector reprogramming of adult peripheral blood cells is relatively low compared with cord blood and bone marrow cells. In the present study, integration-free human iPSCs derived from peripheral blood were established via episomal technology. We optimized mononuclear cell isolation and cultivation, episomal vector promoters, and a combination of transcriptional factors to improve reprogramming efficiency. Here, we improved the generation efficiency of integration-free iPSCs from human peripheral blood mononuclear cells by optimizing the method of isolating mononuclear cells from peripheral blood, by modifying the integration of culture medium, and by adjusting the duration of culture time and the combination of different episomal vectors. With this optimized protocol, a valuable asset for banking patient-specific iPSCs has been established.

  4. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture

    PubMed Central

    Pijuan-Galitó, Sara; Tamm, Christoffer; Schuster, Jens; Sobol, Maria; Forsberg, Lars; Merry, Catherine L. R.; Annerén, Cecilia

    2016-01-01

    Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. PMID:27405751

  5. Engineering Human Neural Tissue by 3D Bioprinting.

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Wallace, Gordon G; Crook, Jeremy M

    2018-01-01

    Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose. Importantly, the method could be adapted to fabricate neural and nonneural tissues from other cell types, with the potential to be applied for both research and clinical product development.

  6. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting

    PubMed Central

    von Bartheld, Christopher S.; Bahney, Jami; Herculano-Houzel, Suzana

    2016-01-01

    For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40–130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. PMID:27187682

  7. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting.

    PubMed

    von Bartheld, Christopher S; Bahney, Jami; Herculano-Houzel, Suzana

    2016-12-15

    For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Efficient and safe gene delivery to human corneal endothelium using magnetic nanoparticles.

    PubMed

    Czugala, Marta; Mykhaylyk, Olga; Böhler, Philip; Onderka, Jasmine; Stork, Björn; Wesselborg, Sebastian; Kruse, Friedrich E; Plank, Christian; Singer, Bernhard B; Fuchsluger, Thomas A

    2016-07-01

    To develop a safe and efficient method for targeted, anti-apoptotic gene therapy of corneal endothelial cells (CECs). Magnetofection (MF), a combination of lipofection with magnetic nanoparticles (MNPs; PEI-Mag2, SO-Mag5, PalD1-Mag1), was tested in human CECs and in explanted human corneas. Effects on cell viability and function were investigated. Immunocompatibility was assessed in human peripheral blood mononuclear cells. Silica iron-oxide MNPs (SO-Mag5) combined with X-tremeGENE-HP achieved high transfection efficiency in human CECs and explanted human corneas, without altering cell viability or function. Magnetofection caused no immunomodulatory effects in human peripheral blood mononuclear cells. Magnetofection with anti-apoptotic P35 gene effectively blocked apoptosis in CECs. Magnetofection is a promising tool for gene therapy of corneal endothelial cells with potential for targeted on-site delivery.

  9. Chapter 17 Sterile Plate-Based Vitrification of Adherent Human Pluripotent Stem Cells and Their Derivatives Using the TWIST Method.

    PubMed

    Neubauer, Julia C; Stracke, Frank; Zimmermann, Heiko

    2017-01-01

    Due to their high biological complexity, e.g., their close cell-to-cell contacts, cryopreservation of human pluripotent stem cells with standard slow-rate protocols often is inefficient and can hardly be standardized. Vitrification that means ultrafast freezing already showed very good viability and recovery rates for this sensitive cell system, but is only applicable for low cell numbers, bears a high risk of contamination, and can hardly be implemented under GxP regulations. In this chapter, a sterile plate-based vitrification method for adherent pluripotent stem cells and their derivatives is presented based on a procedure and device for human embryonic stem cells developed by Beier et al. (Cryobiology 66:8-16, 2013). This protocol overcomes the limitations of conventional vitrification procedures resulting in the highly efficient preservation of ready-to-use adherent pluripotent stem cells with the possibility of vitrifying cells in multi-well formats for direct application in high-throughput screenings.

  10. A Novel In Vitro Method for Detecting Undifferentiated Human Pluripotent Stem Cells as Impurities in Cell Therapy Products Using a Highly Efficient Culture System

    PubMed Central

    Tano, Keiko; Yasuda, Satoshi; Kuroda, Takuya; Saito, Hirohisa; Umezawa, Akihiro; Sato, Yoji

    2014-01-01

    Innovative applications of cell therapy products (CTPs) derived from human pluripotent stem cells (hPSCs) in regenerative medicine are currently being developed. The presence of residual undifferentiated hPSCs in CTPs is a quality concern associated with tumorigencity. However, no simple in vitro method for direct detection of undifferentiated hPSCs that contaminate CTPs has been developed. Here, we show a novel approach for direct and sensitive detection of a trace amount of undifferentiated human induced pluripotent stem cells (hiPSCs) using a highly efficient amplification method in combination with laminin-521 and Essential 8 medium. Essential 8 medium better facilitated the growth of hiPSCs dissociated into single cells on laminin-521 than in mTeSR1 medium. hiPSCs cultured on laminin-521 in Essential 8 medium were maintained in an undifferentiated state and they maintained the ability to differentiate into various cell types. Essential 8 medium allowed robust hiPSC proliferation plated on laminin-521 at low cell density, whereas mTeSR1 did not enhance the cell growth. The highly efficient culture system using laminin-521 and Essential 8 medium detected hiPSCs spiked into primary human mesenchymal stem cells (hMSCs) or human neurons at the ratio of 0.001%–0.01% as formed colonies. Moreover, this assay method was demonstrated to detect residual undifferentiated hiPSCs in cell preparations during the process of hMSC differentiation from hiPSCs. These results indicate that our highly efficient amplification system using a combination of laminin-521 and Essential 8 medium is able to detect a trace amount of undifferentiated hPSCs contained as impurities in CTPs and would contribute to quality assessment of hPSC-derived CTPs during the manufacturing process. PMID:25347300

  11. Screening Test for Shed Skin Cells by Measuring the Ratio of Human DNA to Staphylococcus epidermidis DNA.

    PubMed

    Nakanishi, Hiroaki; Ohmori, Takeshi; Hara, Masaaki; Takahashi, Shirushi; Kurosu, Akira; Takada, Aya; Saito, Kazuyuki

    2016-05-01

    A novel screening method for shed skin cells by detecting Staphylococcus epidermidis (S. epidermidis), which is a resident bacterium on skin, was developed. Staphylococcus epidermidis was detected using real-time PCR. Staphylococcus epidermidis was detected in all 20 human skin surface samples. Although not present in blood and urine samples, S. epidermidis was detected in 6 of 20 saliva samples, and 5 of 18 semen samples. The ratio of human DNA to S. epidermidisDNA was significantly smaller in human skin surface samples than in saliva and semen samples in which S. epidermidis was detected. Therefore, although skin cells could not be identified by detecting only S. epidermidis, they could be distinguished by measuring the S. epidermidis to human DNA ratio. This method could be applied to casework touch samples, which suggests that it is useful for screening whether skin cells and human DNA are present on potential evidentiary touch samples. © 2016 American Academy of Forensic Sciences.

  12. Soft fibrin gels promote selection and growth of tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo

    2012-08-01

    The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.

  13. Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes.

    PubMed

    Chen, Da-Chung; Chen, Li-Yu; Ling, Qing-Dong; Wu, Meng-Hsueh; Wang, Ching-Tang; Suresh Kumar, S; Chang, Yung; Munusamy, Murugan A; Alarfajj, Abdullah A; Wang, Han-Chow; Hsu, Shih-Tien; Higuchi, Akon

    2014-05-01

    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    PubMed

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.

  15. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors.

    PubMed

    Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H

    2014-07-01

    Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.

  16. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, M.R.

    1985-07-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.

  17. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  18. Scalable cultivation of human pluripotent stem cells on chemically-defined surfaces

    NASA Astrophysics Data System (ADS)

    Hsiung, Michael Chi-Wei

    Human stem cells (SCs) are classified as self-renewing cells possessing great ability in therapeutic applications due of their ability to differentiate along any major cell lineage in the human body. Despite their restorative potential, widespread use of SCs is hampered by strenuous control issues. Along with the need for strict xeno-free environments to sustain growth in culture, current methods for growing human pluripotent stem cells (hPSCs) rely on platforms which impede large-scale cultivation and therapeutic delivery. Hence, any progress towards development of large-scale culture systems is severely hindered. In a concentrated effort to develop a scheme that can serve as a model precursor for large scale SC propagation in clinical use, we have explored methods for cultivating hPSCs on completely defined surfaces. We discuss novel approaches with the potential to go beyond the limitations presented by current methods. In particular, we studied the cultivation of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) on surface which underwent synthetic or chemical modification. Current methods for hPSCs rely on animal-based extracellular matrices (ECMs) such as mouse embryonic fibroblasts (MEFs) or feeders and murine sacoma cell-derived substrates to facilitate their growth. While these layers or coatings can be used to maximize the output of hPSC production, they cannot be considered for clinical use because they risk introducing foreign pathogens into culture. We have identified and developed conditions for a completely defined xeno-free substrate used for culturing hPSCs. By utilizing coupling chemistry, we can functionalize ester groups on a given surface and conjugate synthetic peptides containing the arginine-glycine-aspartic acid (RGD) motif, known for their role in cell adhesion. This method offers advantages over traditional hPSC culture by keeping the modified substrata free of xenogenic response and can be scaled up in adherent microcarrier culture. To treat a major organ such as the heart or kidney, producing large quantities of clinical-grade pluripotent cells is a necessity for cell-based therapy. Here we apply our approach to spherical beads or microcarriers for large-scale cultivation of hPSCs in a stirred-suspension bioreactor. Stem cells seeded on microcarriers and cultivated for multiple six day passages in a stirred-suspension bioreactors remained viable (≥90%) and increased by an average of 25.0+/-7.2-fold in concentration. The cells maintained their expression of pluripotency markers POU5F1 and NANOG as assessed by RT-PCR and quantitative PCR. These findings aim at the development of a flexible cost-effect method for the generation of pluripotent cells which can be repurposed and utilized for cell therapies. This work also aims to promote exploration into different methods of surface modification to develop new tactics for culturing hPSCs that can achieve higher fold growth while maintaining overall therapeutic potential.

  19. Adult Human Neurogenesis: From Microscopy to Magnetic Resonance Imaging

    PubMed Central

    Sierra, Amanda; Encinas, Juan M.; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases. PMID:21519376

  20. Production Of Human Antibodies

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Neil, Garry A.

    1993-01-01

    Process for making human monoclonal antibodies based on combination of techniques. Antibodies made active against specific antigen. Process involves in vivo immunization of human B lymphocyte cells in mice. B cells of interest enriched in vitro before fusion. Method potentially applicable to any antigen. Does not rely on use of Epstein-Barr virus at any step. Human lymphocytes taken from any source.

  1. Towards early detection of cervical cancer: Fractal dimension of AFM images of human cervical epithelial cells at different stages of progression to cancer.

    PubMed

    Guz, Nataliia V; Dokukin, Maxim E; Woodworth, Craig D; Cardin, Andrew; Sokolov, Igor

    2015-10-01

    We used AFM HarmoniX modality to analyse the surface of individual human cervical epithelial cells at three stages of progression to cancer, normal, immortal (pre-malignant) and carcinoma cells. Primary cells from 6 normal strains, 6 cancer, and 6 immortalized lines (derived by plasmid DNA-HPV-16 transfection of cells from 6 healthy individuals) were tested. This cell model allowed for good control of the cell phenotype down to the single cell level, which is impractical to attain in clinical screening tests (ex-vivo). AFM maps of physical (nonspecific) adhesion are collected on fixed dried cells. We show that a surface parameter called fractal dimension can be used to segregate normal from both immortal pre-malignant and malignant cells with sensitivity and specificity of more than 99%. The reported method of analysis can be directly applied to cells collected in liquid cytology screening tests and identified as abnormal with regular optical methods to increase sensitivity. Despite cervical smear screening, sometimes it is very difficult to differentiate cancers cells from pre-malignant cells. By using AFM to analyze the surface properties of human cervical epithelial cells, the authors were able to accurately identify normal from abnormal cells. This method could augment existing protocols to increase diagnostic accuracy. Copyright © 2015. Published by Elsevier Inc.

  2. Application of adenosine triphosphate affinity probe and scheduled multiple-reaction monitoring analysis for profiling global kinome in human cells in response to arsenite treatment.

    PubMed

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-11-04

    Phosphorylation of cellular components catalyzed by kinases plays important roles in cell signaling and proliferation. Quantitative assessment of perturbation in global kinome may provide crucial knowledge for elucidating the mechanisms underlying the cytotoxic effects of environmental toxicants. Here, we utilized an adenosine triphosphate (ATP) affinity probe coupled with stable isotope labeling by amino acids in cell culture (SILAC) to assess quantitatively the arsenite-induced alteration of global kinome in human cells. We constructed a SILAC-compatible kinome library for scheduled multiple-reaction monitoring (MRM) analysis and adopted on-the-fly recalibration of retention time shift, which provided better throughput of the analytical method and enabled the simultaneous quantification of the expression of ∼300 kinases in two LC-MRM runs. With this improved analytical method, we conducted an in-depth quantitative analysis of the perturbation of kinome of GM00637 human skin fibroblast cells induced by arsenite exposure. Several kinases involved in cell cycle progression, including cyclin-dependent kinases (CDK1 and CDK4) and Aurora kinases A, B, and C, were found to be hyperactivated, and the altered expression of CDK1 was further validated by Western analysis. In addition, treatment with a CDK inhibitor, flavopiridol, partially restored the arsenite-induced growth inhibition of human skin fibroblast cells. Thus, sodium arsenite may confer its cytotoxic effect partly through the aberrant activation of CDKs and the resultant perturbation of cell cycle progression. Together, we developed a high-throughput, SILAC-compatible, and MRM-based kinome profiling method and demonstrated that the method is powerful in deciphering the molecular modes of action of a widespread environmental toxicant. The method should be generally applicable for uncovering the cellular pathways triggered by other extracellular stimuli.

  3. Application of Adenosine Triphosphate Affinity Probe and Scheduled Multiple-Reaction Monitoring Analysis for Profiling Global Kinome in Human Cells in Response to Arsenite Treatment

    PubMed Central

    2015-01-01

    Phosphorylation of cellular components catalyzed by kinases plays important roles in cell signaling and proliferation. Quantitative assessment of perturbation in global kinome may provide crucial knowledge for elucidating the mechanisms underlying the cytotoxic effects of environmental toxicants. Here, we utilized an adenosine triphosphate (ATP) affinity probe coupled with stable isotope labeling by amino acids in cell culture (SILAC) to assess quantitatively the arsenite-induced alteration of global kinome in human cells. We constructed a SILAC-compatible kinome library for scheduled multiple-reaction monitoring (MRM) analysis and adopted on-the-fly recalibration of retention time shift, which provided better throughput of the analytical method and enabled the simultaneous quantification of the expression of ∼300 kinases in two LC-MRM runs. With this improved analytical method, we conducted an in-depth quantitative analysis of the perturbation of kinome of GM00637 human skin fibroblast cells induced by arsenite exposure. Several kinases involved in cell cycle progression, including cyclin-dependent kinases (CDK1 and CDK4) and Aurora kinases A, B, and C, were found to be hyperactivated, and the altered expression of CDK1 was further validated by Western analysis. In addition, treatment with a CDK inhibitor, flavopiridol, partially restored the arsenite-induced growth inhibition of human skin fibroblast cells. Thus, sodium arsenite may confer its cytotoxic effect partly through the aberrant activation of CDKs and the resultant perturbation of cell cycle progression. Together, we developed a high-throughput, SILAC-compatible, and MRM-based kinome profiling method and demonstrated that the method is powerful in deciphering the molecular modes of action of a widespread environmental toxicant. The method should be generally applicable for uncovering the cellular pathways triggered by other extracellular stimuli. PMID:25301106

  4. Cryopreservation of Human Mesenchymal Stem Cells for Clinical Applications: Current Methods and Challenges.

    PubMed

    Yong, Kar Wey; Wan Safwani, Wan Kamarul Zaman; Xu, Feng; Wan Abas, Wan Abu Bakar; Choi, Jane Ru; Pingguan-Murphy, Belinda

    2015-08-01

    Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.

  5. EVALUATION OF HUMAN NEURAL PROGENITOR CELLS FOR DEVELOPMENTAL NEUROTOXICITY SCREENING: TIME COURSE OF EFFECTS ON CELL PROLIFERATION AND VIABILITY.

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating human neural progenitor cells (NPCs) as a screen for DNT. ReNcell CX (ReN CX) cells are a...

  6. Csa-19, a radiation-responsive human gene, identified by an unbiased two-gel cDNA library screening method in human cancer cells

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Meltzer, S. J.; Han, L. H.; Zhang, X. F.; Shi, Z. M.; Harrison, G. H.; Abraham, J. M.

    1997-01-01

    A novel polymerase chain reaction (PCR)-based method was used to identify candidate genes whose expression is altered in cancer cells by ionizing radiation. Transcriptional induction of randomly selected genes in control versus irradiated human HL60 cells was compared. Among several complementary DNA (cDNA) clones recovered by this approach, one cDNA clone (CL68-5) was downregulated in X-irradiated HL60 cells but unaffected by 12-O-tetradecanoyl phorbol-13-acetate, forskolin, or cyclosporin-A. DNA sequencing of the CL68-5 cDNA revealed 100% nucleotide sequence homology to the reported human Csa-19 gene. Northern blot analysis of RNA from control and irradiated cells revealed the expression of a single 0.7-kilobase (kb) messenger RNA (mRNA) transcript. This 0.7-kb Csa-19 mRNA transcript was also expressed in a variety of human adult and corresponding fetal normal tissues. Moreover, when the effect of X- or fission neutron-irradiation on Csa-19 mRNA was compared in cultured human cells differing in p53 gene status (p53-/- versus p53+/+), downregulation of Csa-19 by X-rays or fission neutrons was similar in p53-wild type and p53-null cell lines. Our results provide the first known example of a radiation-responsive gene in human cancer cells whose expression is not associated with p53, adenylate cyclase or protein kinase C.

  7. Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest

    PubMed Central

    2013-01-01

    Background Depletion of calcium (Ca2+) from the endoplasmic reticulum (ER) activates the ubiquitous store-operated Ca2+ entry (SOCE) pathway which sustains long-term Ca2+ signals and is critical for cellular functions. Stromal interacting molecule 1 (STIM1) serves a dual role as an ER Ca2+ sensor and activator of SOCE. Aberrant expression of STIM1 could be observed in several human cancer cells. However, the role of STIM1 in regulating tumorigenesis of human glioblastoma still remains unclear. Methods Expression of STIM1 protein in a panel of human glioblastoma cell lines (U251, U87 and U373) in different transformation level were evaluated by Western blot method. STIM1 loss of function was performed on U251 cells, derived from grade IV astrocytomas-glioblastoma multiforme with a lentvirus-mediated short harpin RNA (shRNA) method. The biological impacts after knock down of STIM1 on glioblastoma cells were investigated in vitro and in vivo. Results We discovered that STIM1 protein was expressed in U251, U87 and U373 cells, and especially higher in U251 cells. RNA interference efficiently downregulated the expression of STIM1 in U251 cells at both mRNA and protein levels. Specific downregulation of STIM1 inhibited U251 cell proliferation by inducing cell cycle arrest in G0/G1 phase through regulation of cell cycle-related genes, such as p21Waf1/Cip1, cyclin D1 and cyclin-dependent kinase 4 (CDK4), and the antiproliferative effect of STIM1 silencing was also observed in U251 glioma xenograft tumor model. Conclusion Our findings confirm STIM1 as a rational therapeutic target in human glioblastoma, and also indicate that lentivirus-mediated STIM1 silencing is a promising therapeutic strategy for human glioblastoma. PMID:23578185

  8. Isolation of osteoprogenitors from human jaw periosteal cells: a comparison of two magnetic separation methods.

    PubMed

    Olbrich, Marcus; Rieger, Melanie; Reinert, Siegmar; Alexander, Dorothea

    2012-01-01

    Human jaw periosteum tissue contains osteoprogenitors that have potential for tissue engineering applications in oral and maxillofacial surgeries. To isolate osteoprogenitor cells from heterogeneous cell populations, we used the specific mesenchymal stem cell antigen-1 (MSCA-1) antibody and compared two magnetic separation methods. We analyzed the obtained MSCA-1(+) and MSCA-1(-) fractions in terms of purity, yield of positive/negative cells and proliferative and mineralization potentials. The analysis of cell viability after separation revealed that the EasySep method yielded higher viability rates, whereas the flow cytometry results showed a higher purity for the MACS-separated cell fractions. The mineralization capacity of the osteogenic induced MSCA-1(+) cells compared with the MSCA-1(-) controls using MACS was 5-fold higher, whereas the same comparison after EasySep showed no significant differences between both fractions. By analyzing cell proliferation, we detected a significant difference between the proliferative potential of the osteogenic cells versus untreated cells after the MACS and EasySep separations. The differentiated cells after MACS separation adjusted their proliferative capacity, whereas the EasySep-separated cells failed to do so. The protein expression analysis showed small differences between the two separation methods. Our findings suggest that MACS is a more suitable separation method to isolate osteoprogenitors from the entire jaw periosteal cell population.

  9. Unbiased Analysis of TCRα/β Chains at the Single-Cell Level in Human CD8+ T-Cell Subsets

    PubMed Central

    Sun, Xiaoming; Saito, Masumichi; Sato, Yoshinori; Chikata, Takayuki; Naruto, Takuya; Ozawa, Tatsuhiko; Kobayashi, Eiji; Kishi, Hiroyuki; Muraguchi, Atsushi; Takiguchi, Masafumi

    2012-01-01

    T-cell receptor (TCR) α/β chains are expressed on the surface of CD8+ T-cells and have been implicated in antigen recognition, activation, and proliferation. However, the methods for characterization of human TCRα/β chains have not been well established largely because of the complexity of their structures owing to the extensive genetic rearrangements that they undergo. Here we report the development of an integrated 5′-RACE and multiplex PCR method to amplify the full-length transcripts of TCRα/β at the single-cell level in human CD8+ subsets, including naive, central memory, early effector memory, late effector memory, and effector phenotypic cells. Using this method, with an approximately 47% and 62% of PCR success rate for TCRα and for TCRβ chains, respectively, we were able to analyze more than 1,000 reads of transcripts of each TCR chain. Our comprehensive analysis revealed the following: (1) chimeric rearrangements of TCRδ-α, (2) control of TCRα/β transcription with multiple transcriptional initiation sites, (3) altered utilization of TCRα/β chains in CD8+ subsets, and (4) strong association between the clonal size of TCRα/β chains and the effector phenotype of CD8+ T-cells. Based on these findings, we conclude that our method is a useful tool to identify the dynamics of the TCRα/β repertoire, and provides new insights into the study of human TCRα/β chains. PMID:22792299

  10. Unbiased analysis of TCRα/β chains at the single-cell level in human CD8+ T-cell subsets.

    PubMed

    Sun, Xiaoming; Saito, Masumichi; Sato, Yoshinori; Chikata, Takayuki; Naruto, Takuya; Ozawa, Tatsuhiko; Kobayashi, Eiji; Kishi, Hiroyuki; Muraguchi, Atsushi; Takiguchi, Masafumi

    2012-01-01

    T-cell receptor (TCR) α/β chains are expressed on the surface of CD8(+) T-cells and have been implicated in antigen recognition, activation, and proliferation. However, the methods for characterization of human TCRα/β chains have not been well established largely because of the complexity of their structures owing to the extensive genetic rearrangements that they undergo. Here we report the development of an integrated 5'-RACE and multiplex PCR method to amplify the full-length transcripts of TCRα/β at the single-cell level in human CD8(+) subsets, including naive, central memory, early effector memory, late effector memory, and effector phenotypic cells. Using this method, with an approximately 47% and 62% of PCR success rate for TCRα and for TCRβ chains, respectively, we were able to analyze more than 1,000 reads of transcripts of each TCR chain. Our comprehensive analysis revealed the following: (1) chimeric rearrangements of TCRδ-α, (2) control of TCRα/β transcription with multiple transcriptional initiation sites, (3) altered utilization of TCRα/β chains in CD8(+) subsets, and (4) strong association between the clonal size of TCRα/β chains and the effector phenotype of CD8(+) T-cells. Based on these findings, we conclude that our method is a useful tool to identify the dynamics of the TCRα/β repertoire, and provides new insights into the study of human TCRα/β chains.

  11. Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors.

    PubMed

    Yang, Guanghua; Si-Tayeb, Karim; Corbineau, Sébastien; Vernet, Rémi; Gayon, Régis; Dianat, Noushin; Martinet, Clémence; Clay, Denis; Goulinet-Mainot, Sylvie; Tachdjian, Gérard; Tachdjian, Gérard; Burks, Deborah; Vallier, Ludovic; Bouillé, Pascale; Dubart-Kupperschmitt, Anne; Weber, Anne

    2013-07-19

    Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine. However, the safety of cell therapy using differentiated hPSC derivatives must be improved through methods that will permit the transplantation of homogenous populations of a specific cell type. To date, purification of progenitors and mature cells generated from either embryonic or induced pluripotent stem cells remains challenging with use of conventional methods. We used lentivectors encoding green fluorescent protein (GFP) driven by the liver-specific apoliprotein A-II (APOA-II) promoter to purify human hepatic progenitors. We evaluated both integrating and integration-defective lentivectors in combination with an HIV integrase inhibitor. A human embryonic stem cell line was differentiated into hepatic progenitors using a chemically defined protocol. Subsequently, cells were transduced and sorted at day 16 of differentiation to obtain a cell population enriched in hepatic progenitor cells. After sorting, more than 99% of these APOA-II-GFP-positive cells expressed hepatoblast markers such as α-fetoprotein and cytokeratin 19. When further cultured for 16 days, these cells underwent differentiation into more mature cells and exhibited hepatocyte properties such as albumin secretion. Moreover, they were devoid of vector DNA integration. We have developed an effective strategy to purify human hepatic cells from cultures of differentiating hPSCs, producing a novel tool that could be used not only for cell therapy but also for in vitro applications such as drug screening. The present strategy should also be suitable for the purification of a broad range of cell types derived from either pluripotent or adult stem cells.

  12. Flow cytometric monitoring of hormone receptor expression in human solid tumors

    NASA Astrophysics Data System (ADS)

    Krishan, Awtar

    2002-05-01

    Hormone receptor expression in human breast and prostate tumors is of diagnostic and therapeutic importance. With the availability of anti-estrogen, androgen and progesterone antibodies, immunohistochemistry has become a standard tool for determination of receptor expression in human tumor biopsies. However, this method is dependent on examination of a small number of cells under a microscope and the data obtained in most cases is not quantitative. As most of the commercially used anti-hormone antibodies have nuclear specificity, we have developed methods for isolation and antigen unmasking of nuclei from formalin fixed/paraffin embedded archival human tumors. After immunostaining with the antibodies and propidium iodide (for DNA content and cell cycle analysis), nuclei are analyzed by multiparametric laser flow cytometry for hormone receptor expression, DNA content, aneuploidy and cell cycle determination. These multiparametric methods are especially important for retrospective studies seeking to correlate hormone receptor expression with clinical response to anti-hormonal therapy of human breast and prostate tumors.

  13. Single-copy gene detection using branched DNA (bDNA) in situ hybridization.

    PubMed

    Player, A N; Shen, L P; Kenny, D; Antao, V P; Kolberg, J A

    2001-05-01

    We have developed a branched DNA in situ hybridization (bDNA ISH) method for detection of human papillomavirus (HPV) DNA in whole cells. Using human cervical cancer cell lines with known copies of HPV DNA, we show that the bDNA ISH method is highly sensitive, detecting as few as one or two copies of HPV DNA per cell. By modifying sample pretreatment, viral mRNA or DNA sequences can be detected using the same set of oligonucleotide probes. In experiments performed on mixed populations of cells, the bDNA ISH method is highly specific and can distinguish cells with HPV-16 from cells with HPV-18 DNA. Furthermore, we demonstrate that the bDNA ISH method provides precise localization, yielding positive signals retained within the subcellular compartments in which the target nucleic acid sequences are localized. As an effective and convenient means for nucleic acid detection, the bDNA ISH method is applicable to the detection of cancers and infectious agents. (J Histochem Cytochem 49:603-611, 2001)

  14. Altered Mitochondrial Membrane Potential, Mass, and Morphology in the Mononuclear Cells of Humans with Type 2 Diabetes

    PubMed Central

    Widlansky, Michael E.; Wang, Jingli; Shenouda, Sherene M.; Hagen, Tory M.; Smith, Anthony R.; Kizhakekuttu, Tinoy J.; Kluge, Matthew A.; Weihrauch, Dorothee; Gutterman, David D.; Vita, Joseph A.

    2010-01-01

    Mitochondrial membrane hyperpolarization and morphological changes are important in inflammatory cell activation. Despite the pathophysiological relevance, no valid and reproducible method for measuring mitochondrial homeostasis in human inflammatory cells is currently available. This study's purpose was to define and validate reproducible methods for measuring relevant mitochondrial perturbations and to determine whether these methods could discern mitochondrial perturbations in type 2 diabetes mellitus (T2DM), a condition associated with altered mitochondrial homeostasis. We employed 5,5',6,6'-tetrachloro-1,1'3,3'-tetraethylbenzamidazol-carboncyanine (JC-1) to estimate mitochondrial membrane potential (ψm) and acridine orange 10-nonyl bromide (NAO) to assess mitochondrial mass in human mononuclear cells isolated from blood. Both assays were reproducible. We validated our findings by electron microscopy and pharmacological manipulation of ψm. We measured JC-1 and NAO fluorescence in the mononuclear cells of 27 T2DM patients and 32 controls. Mitochondria were more polarized (P=0.02) and mitochondrial mass was lower in T2DM (P=0.008). Electron microscopy demonstrated diabetic mitochondria were smaller, more spherical, and occupied less cellular area in T2DM. Mitochondrial superoxide production was higher in T2DM (P=0.01). Valid and reproducible measurements of mitochondrial homeostasis can be made in human mononuclear cells using these fluorophores. Further, potential clinically relevant perturbations in mitochondrial homeostasis in T2DM human mononuclear cells can be detected. PMID:20621033

  15. Immunofluorescence Analysis of Endogenous and Exogenous Centromere-kinetochore Proteins

    PubMed Central

    Niikura, Yohei; Kitagawa, Katsumi

    2016-01-01

    "Centromeres" and "kinetochores" refer to the site where chromosomes associate with the spindle during cell division. Direct visualization of centromere-kinetochore proteins during the cell cycle remains a fundamental tool in investigating the mechanism(s) of these proteins. Advanced imaging methods in fluorescence microscopy provide remarkable resolution of centromere-kinetochore components and allow direct observation of specific molecular components of the centromeres and kinetochores. In addition, methods of indirect immunofluorescent (IIF) staining using specific antibodies are crucial to these observations. However, despite numerous reports about IIF protocols, few discussed in detail problems of specific centromere-kinetochore proteins.1-4 Here we report optimized protocols to stain endogenous centromere-kinetochore proteins in human cells by using paraformaldehyde fixation and IIF staining. Furthermore, we report protocols to detect Flag-tagged exogenous CENP-A proteins in human cells subjected to acetone or methanol fixation. These methods are useful in detecting and quantifying endogenous centromere-kinetochore proteins and Flag-tagged CENP-A proteins, including those in human cells. PMID:26967065

  16. Efficient, Long Term Production of Monocyte-Derived Macrophages from Human Pluripotent Stem Cells under Partly-Defined and Fully-Defined Conditions

    PubMed Central

    van Wilgenburg, Bonnie; Browne, Cathy; Vowles, Jane; Cowley, Sally A.

    2013-01-01

    Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC) and multiple human induced Pluripotent Stem Cell (hiPSC) lines over time periods of up to one year. Cumulatively, up to ∼3×107 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14+, CD16low, CD163+). Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology. PMID:23951090

  17. Human induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer.

    PubMed

    Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang

    2015-09-01

    Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.

  18. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain largemore » amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of iPS cell technology to biomedical research.« less

  19. TMPYP4 exerted antitumor effects in human cervical cancer cells through activation of p38 mitogen-activated protein kinase.

    PubMed

    Cheng, Ming-Jun; Cao, Yun-Gui

    2017-07-03

    The aim of the present study was to investigate the potential effects of the 5,10,15,20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP4) on the proliferation and apoptosis of human cervical cancer cells and the underlying mechanisms by which TMPyP4 exerted its actions. After human cervical cancer cells were treated with different doses of TMPyP4, cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method, the apoptosis was observed by flow cytometry (FCM), and the expression of p38 mitogen-activated protein kinase (MAPK), phosphated p38 MAPK (p-p38 MAPK), capase-3, MAPKAPK2 (MK-2) and poly ADP-ribose polymerase (PARP) was measured by Western blot analysis. The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of human cervical cancer cells in a dose-dependent manner. In addition, the up-regulation of p-p38 MAPK expression levels was detected in TMPyP4-treated human cervical cancer cells. However, followed by the block of p38 MAPK signaling pathway using the inhibitor SB203580, the effects of TMPyP4 on proliferation and apoptosis of human cervical cancer cells were significantly changed. It was indicated that TMPyP4-inhibited proliferation and -induced apoptosis in human cervical cancer cells was accompanied by activating the p38 MAPK signaling pathway. Taken together, our study demonstrates that TMPyP4 may represent a potential therapeutic method for the treatment of cervical carcinoma.

  20. Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods

    PubMed Central

    Lin, Hong Reng; Heish, Chao-Wen; Liu, Cheng-Hui; Muduli, Saradaprasan; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Hsu, Shih-Tien; Chen, Da-Chung; Benelli, Giovanni; Murugan, Kadarkarai; Cheng, Nai-Chen; Wang, Han-Chow; Wu, Gwo-Jang

    2017-01-01

    Human adipose-derived stem cells (hADSCs) are easily isolated from fat tissue without ethical concerns, but differ in purity, pluripotency, differentiation ability, and stem cell marker expression, depending on the isolation method. We isolated hADSCs from a primary fat tissue solution using: (1) conventional culture, (2) a membrane filtration method, (3) a membrane migration method where the primary cell solution was permeated through membranes, adhered hADSCs were cultured, and hADSCs migrated out from the membranes. Expression of mesenchymal stem cell markers and pluripotency genes, and osteogenic differentiation were compared for hADSCs isolated by different methods using nylon mesh filter membranes with pore sizes ranging from 11 to 80 μm. hADSCs isolated by the membrane migration method had the highest MSC surface marker expression and efficient differentiation into osteoblasts. Osteogenic differentiation ability of hADSCs and MSC surface marker expression were correlated, but osteogenic differentiation ability and pluripotent gene expression were not. PMID:28071738

  1. Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.

    PubMed

    Santos, David P; Kiskinis, Evangelos

    2017-01-01

    Human embryonic stem cells (ESCs) are characterized by their unique ability to self-renew indefinitely, as well as to differentiate into any cell type of the human body. Induced pluripotent stem cells (iPSCs) share these salient characteristics with ESCs and can easily be generated from any given individual by reprogramming somatic cell types such as fibroblasts or blood cells. The spinal motor neuron (MN) is a specialized neuronal subtype that synapses with muscle to control movement. Here, we present a method to generate functional, postmitotic, spinal motor neurons through the directed differentiation of ESCs and iPSCs by the use of small molecules. These cells can be utilized to study the development and function of human motor neurons in healthy and disease states.

  2. Toward a systems-level analysis of infection biology: a new method for conducting genetic screens in human cells.

    PubMed

    Stanley, Sarah A; Hung, Deborah T

    2009-12-16

    Loss-of-function genetic screens have facilitated great strides in our understanding of the biology of model organisms but have not been possible in diploid human cells. A recent report by Brummelkamp's group in Science describes the use of insertional mutagenesis to generate loss-of-function alleles in a largely haploid human cell line and demonstrates the versatility of this method in screens designed to investigate the host/pathogen interaction. This approach has strengths that are complementary to existing strategies and will facilitate progress toward a systems-level understanding of infectious disease and ultimately the development of new therapeutics.

  3. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries

    PubMed Central

    Woods, Dori C; Tilly, Jonathan L

    2017-01-01

    Accruing evidence indicates that production of new oocytes (oogenesis) and their enclosure by somatic cells (folliculogenesis) are processes not limited to the perinatal period in mammals. Endpoints ranging from oocyte counts to genetic lineage tracing and transplantation experiments support a paradigm shift in reproductive biology involving active renewal of oocyte-containing follicles during postnatal life. The recent purification of mitotically active oocyte progenitor cells, termed female germline stem cells (fGSCs) or oogonial stem cells (OSCs), from mouse and human ovaries opens up new avenues for research into the biology and clinical utility of these cells. Here we detail methods for the isolation of mouse and human OSCs from adult ovarian tissue, cultivation of the cells after purification, and characterization of the cells before and after ex vivo expansion. The latter methods include analysis of germ cell–specific markers and in vitro oogenesis, as well as the use of intraovarian transplantation to test the oocyte-forming potential of OSCs in vivo. PMID:23598447

  4. Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies

    PubMed Central

    Bradshaw, Elizabeth M.; Kent, Sally C.; Tripuraneni, Vinay; Orban, Tihamer; Ploegh, Hidde L.; Hafler, David A.; Love, J. Christopher

    2008-01-01

    Cell surface determinants, cytokines and antibodies secreted by hematopoietic cells are used to classify their lineage and function. Currently available techniques are unable to elucidate multiple secreted proteins while also assigning phenotypic surface-displayed markers to the individual living cells. Here, a soft lithographic method, microengraving, was adapted for the multiplexed interrogation of populations of individual human peripheral blood mononuclear cells for secreted cytokines (IFN-γ and IL-6), antigen-specific antibodies, and lineage-specific surface-expressed markers. Application of the method to a clinical sample from a recent onset Type 1 diabetic subject with a positive titer of anti-insulin antibodies showed that ~0.58% of circulating CD19+ B cells secreted proinsulin-reactive antibodies of the IgG isotype and 2–3% of circulating cells secreted IL-6. These data demonstrate the utility of microengraving for interrogating multiple phenotypes of single human cells concurrently and for detecting rare populations of cells by their secreted products. PMID:18675591

  5. Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components.

    PubMed

    Glass, Joshua J; Li, Yang; De Rose, Robert; Johnston, Angus P R; Czuba, Ewa I; Khor, Song Yang; Quinn, John F; Whittaker, Michael R; Davis, Thomas P; Kent, Stephen J

    2017-04-12

    Directing nanoparticles to specific cell types using nonantibody-based methods is of increasing interest. Thiol-reactive nanoparticles can enhance the efficiency of cargo delivery into specific cells through interactions with cell-surface proteins. However, studies to date using this technique have been largely limited to immortalized cell lines or rodents, and the utility of this technology on primary human cells is unknown. Herein, we used RAFT polymerization to prepare pyridyl disulfide (PDS)-functionalized star polymers with a methoxy-poly(ethylene glycol) brush corona and a fluorescently labeled cross-linked core using an arm-first method. PDS star polymers were examined for their interaction with primary human blood components: six separate white blood cell subsets, as well as red blood cells and platelets. Compared with control star polymers, thiol-reactive nanoparticles displayed enhanced association with white blood cells at 37 °C, particularly the phagocytic monocyte, granulocyte, and dendritic cell subsets. Platelets associated with more PDS than control nanoparticles at both 37 °C and on ice, but they were not activated in the duration examined. Association with red blood cells was minor but still enhanced with PDS nanoparticles. Thiol-reactive nanoparticles represent a useful strategy to target primary human immune cell subsets for improved nanoparticle delivery.

  6. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells

    NASA Astrophysics Data System (ADS)

    Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo

    2016-04-01

    The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c

  7. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population

    PubMed Central

    WATANABE, YUSAKU; YOSHIMURA, KIYOSHI; YOSHIKAWA, KOICHI; TSUNEDOMI, RYOICHI; SHINDO, YOSHITARO; MATSUKUMA, SOU; MAEDA, NORIKO; KANEKIYO, SHINSUKE; SUZUKI, NOBUAKI; KURAMASU, ATSUO; SONODA, KOUHEI; TAMADA, KOJI; KOBAYASHI, SEI; SAYA, HIDEYUKI; HAZAMA, SHOICHI; OKA, MASAAKI

    2014-01-01

    Cancer stem cells (CSCs) have been studied for their self-renewal capacity and pluripotency, as well as their resistance to anticancer therapy and their ability to metastasize to distant organs. CSCs are difficult to study because their population is quite low in tumor specimens. To overcome this problem, we established a culture method to induce a pancreatic cancer stem-like cell (P-CSLC)-enriched population from human pancreatic cancer cell lines. Human pancreatic cancer cell lines established at our department were cultured in CSC-inducing media containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), neural cell survivor factor-1 (NSF-1), and N-acetylcysteine. Sphere cells were obtained and then transferred to a laminin-coated dish and cultured for approximately two months. The surface markers, gene expression, aldehyde dehydrogenase (ALDH) activity, cell cycle, and tumorigenicity of these induced cells were examined for their stem cell-like characteristics. The population of these induced cells expanded within a few months. The ratio of CD24high, CD44high, epithelial specific antigen (ESA) high, and CD44variant (CD44v) high cells in the induced cells was greatly enriched. The induced cells stayed in the G0/G1 phase and demonstrated mesenchymal and stemness properties. The induced cells had high tumorigenic potential. Thus, we established a culture method to induce a P-CSLCenriched population from human pancreatic cancer cell lines. The CSLC population was enriched approximately 100-fold with this method. Our culture method may contribute to the precise analysis of CSCs and thus support the establishment of CSC-targeting therapy. PMID:25118635

  8. Three-dimensional bioprinting of thick vascularized tissues

    NASA Astrophysics Data System (ADS)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  9. Mucosal-associated invariant T cells from induced pluripotent stem cells: A novel approach for modeling human diseases

    PubMed Central

    Sugimoto, Chie; Fujita, Hiroyoshi; Wakao, Hiroshi

    2016-01-01

    Mice have frequently been used to model human diseases involving immune dysregulation such as autoimmune and inflammatory diseases. These models help elucidate the mechanisms underlying the disease and in the development of novel therapies. However, if mice are deficient in certain cells and/or effectors associated with human diseases, how can their functions be investigated in this species? Mucosal-associated invariant T (MAIT) cells, a novel innate-like T cell family member, are a good example. MAIT cells are abundant in humans but scarce in laboratory mice. MAIT cells harbor an invariant T cell receptor and recognize nonpeptidic antigens vitamin B2 metabolites from bacteria and yeasts. Recent studies have shown that MAIT cells play a pivotal role in human diseases such as bacterial infections and autoimmune and inflammatory diseases. MAIT cells possess granulysin, a human-specific effector molecule, but granulysin and its homologue are absent in mice. Furthermore, MAIT cells show poor proliferation in vitro. To overcome these problems and further our knowledge of MAIT cells, we have established a method to expand MAIT cells via induced pluripotent stem cells (iPSCs). In this review, we describe recent advances in the field of MAIT cell research and our approach for human disease modeling with iPSC-derived MAIT cells. PMID:27114747

  10. A novel method to generate and culture human mast cells: Peripheral CD34+ stem cell-derived mast cells (PSCMCs).

    PubMed

    Schmetzer, Oliver; Valentin, Patricia; Smorodchenko, Anna; Domenis, Rossana; Gri, Giorgia; Siebenhaar, Frank; Metz, Martin; Maurer, Marcus

    2014-11-01

    The identification and characterization of human mast cell (MC) functions are hindered by the shortage of MC populations suitable for investigation. Here, we present a novel technique for generating large numbers of well differentiated and functional human MCs from peripheral stem cells (=peripheral stem cell-derived MCs, PSCMCs). Innovative and key features of this technique include 1) the use of stem cell concentrates, which are routinely discarded by blood banks, as the source of CD34+ stem cells, 2) cell culture in serum-free medium and 3) the addition of LDL as well as selected cytokines. In contrast to established and published protocols that use CD34+ or CD133+ progenitor cells from full blood, we used a pre-enriched cell population obtained from stem cell concentrates, which yielded up to 10(8) differentiated human MCs per batch after only three weeks of culture starting with 10(6) total CD34+ cells. The total purity on MCs (CD117+, FcεR1+) generated by this method varied between 55 and 90%, of which 4-20% were mature MCs that contain tryptase and chymase and show expression of FcεRI and CD117 in immunohistochemistry. PSCMCs showed robust histamine release in response to stimulation with anti-FcεR1 or IgE/anti-IgE, and increased proliferation and differentiation in response to IL-1β or IFN-γ. Taken together, this new protocol of the generation of large numbers of human MCs provides for an innovative and suitable option to investigate the biology of human MCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.

    PubMed

    Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay

    2018-01-24

    The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  13. Molecular expression in transfected corneal endothelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Miao, Zhuang; Lu, Chengwei; Hao, Jilong

    2017-10-01

    To investigate the capability of human corneal endothelial cells serving as immunological cells. Expression of HLA-DP, -DQ, -DR, CD40, CD80, and CD86 was determined by immunohistochemical methods. Meanwhile, purified peripheral blood mononuclear cells were cocultured with human corneal endothelial cells which were pre-treated with and without -IFN respectively, activation of lymphocytes was determined by FACS analysis. In coculture system, T lymphocyte was activated by corneal endothelial cells, HLA-DP, -DQ, -DR and CD40 expression were increased by - IFN induction. Costimulatory molecular CD80 was shown on the endothelial cells. Human corneal endothelial cells were assumed to be involved in the corneal transplantation rejection process as potential antigen presenting cells.

  14. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  15. Elimination of leukemic cells from human transplants by laser nano-thermolysis

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Potapnev, Michail; Aleinikova, Olga; Oraevsky, Alexander

    2006-02-01

    We describe novel ex vivo method for elimination of tumor cells from bone marrow and blood, Laser Activated Nano-Thermolysis for Cell Elimination Technology (LANTCET) and propose this method for purging of transplants during treatment of leukemia. Human leukemic cells derived from real patients with different diagnoses (acute lymphoblastic leukemias) were selectively damaged by LANTCET in the experiments by laser-induced micro-bubbles that emerge inside individual specifically-targeted cells around the clusters of light-absorbing gold nanoparticles. Pretreatment of the transplants with diagnosis-specific primary monoclonal antibodies and gold nano-particles allowed the formation of nanoparticle clusters inside leukemic cells only. Electron microscopy found the nanoparticulate clusters inside the cells. Total (99.9%) elimination of leukemic cells targeted with specific antibodies and nanoparticles was achieved with single 10-ns laser pulses with optical fluence of 0.2 - 1.0 J/cm2 at the wavelength of 532 nm without significant damage to normal bone marrow cells in the same transplant. All cells were studied for the damage/viability with several control methods after their irradiation by laser pulses. Presented results have proved potential applicability of developed LANTCET technology for efficient and safe purging (cleaning of residual tumor cells) of human bone marrow and blood transplants. Design of extra-corporeal system was proposed that can process the transplant for one patient for less than an hour with parallel detection and counting residual leukemic cells.

  16. Isolation of Small SSEA-4-Positive Putative Stem Cells from the Ovarian Surface Epithelium of Adult Human Ovaries by Two Different Methods

    PubMed Central

    Virant-Klun, Irma; Skutella, Thomas; Hren, Matjaz; Gruden, Kristina; Cvjeticanin, Branko; Vogler, Andrej; Sinkovec, Jasna

    2013-01-01

    The adult ovarian surface epithelium has already been proposed as a source of stem cells and germinal cells in the literature, therefore it has been termed the “germinal epithelium”. At present more studies have confirmed the presence of stem cells expressing markers of pluripotency in adult mammalian ovaries, including humans. The aim of this study was to isolate a population of stem cells, based on the expression of pluripotency-related stage-specific embryonic antigen-4 (SSEA-4) from adult human ovarian surface epithelium by two different methods: magnetic-activated cell sorting and fluorescence-activated cell sorting. Both methods made it possible to isolate a similar, relatively homogenous population of small, SSEA-4-positive cells with diameters of up to 4 μm from the suspension of cells retrieved by brushing of the ovarian cortex biopsies in reproductive-age and postmenopausal women and in women with premature ovarian failure. The immunocytochemistry and genetic analyses revealed that these small cells—putative stem cells—expressed some primordial germ cell and pluripotency-related markers and might be related to the in vitro development of oocyte-like cells expressing some oocyte-specific transcription factors in the presence of donated follicular fluid with substances important for oocyte growth and development. The stemness of these cells needs to be further researched. PMID:23509763

  17. Transcriptional Inducers of Acetylcholinesterase Expression as Novel Antidotes for Protection Against Chemical Warfare Agents

    DTIC Science & Technology

    2005-10-01

    neuroblastoma cell line , P19 and a human neuroblastoma cell line SH - SY5Y (data not shown). Effect of trichostatin A on...mouse neuroblastoma P19 cell line and a human neuroblastoma cell line SH - SY5Y . More experiments are needed to prove the potential of AChE expression in...treatment of nerve agent exposure. MATERIALS AND METHODS Neuronal cell lines and

  18. Statistics of single unit responses in the human medial temporal lobe: A sparse and overdispersed code

    NASA Astrophysics Data System (ADS)

    Magyar, Andrew

    The recent discovery of cells that respond to purely conceptual features of the environment (particular people, landmarks, objects, etc) in the human medial temporal lobe (MTL), has raised many questions about the nature of the neural code in humans. The goal of this dissertation is to develop a novel statistical method based upon maximum likelihood regression which will then be applied to these experiments in order to produce a quantitative description of the coding properties of the human MTL. In general, the method is applicable to any experiments in which a sequence of stimuli are presented to an organism while the binary responses of a large number of cells are recorded in parallel. The central concept underlying the approach is the total probability that a neuron responds to a random stimulus, called the neuronal sparsity. The model then estimates the distribution of response probabilities across the population of cells. Applying the method to single-unit recordings from the human medial temporal lobe, estimates of the sparsity distributions are acquired in four regions: the hippocampus, the entorhinal cortex, the amygdala, and the parahippocampal cortex. The resulting distributions are found to be sparse (large fraction of cells with a low response probability) and highly non-uniform, with a large proportion of ultra-sparse neurons that possess a very low response probability, and a smaller population of cells which respond much more frequently. Rammifications of the results are discussed in relation to the sparse coding hypothesis, and comparisons are made between the statistics of the human medial temporal lobe cells and place cells observed in the rodent hippocampus.

  19. Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells.

    PubMed

    Qu, Xiying; Wang, Pengfei; Ding, Donglin; Wang, Xiaohui; Zhang, Gongmin; Zhou, Xin; Liu, Lin; Zhu, Xiaoli; Zeng, Hanxian; Zhu, Huanzhang

    2014-09-01

    A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.

  20. Single-Factor SOX2 Mediates Direct Neural Reprogramming of Human Mesenchymal Stem Cells via Transfection of In Vitro Transcribed mRNA.

    PubMed

    Kim, Bo-Eun; Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Kang, Insung; Lee, Byung-Chul; Lee, Jin Young; Kook, Myoung Geun; Kang, Kyung-Sun

    2018-01-01

    Neural stem cells (NSCs) are a prominent cell source for understanding neural pathogenesis and for developing therapeutic applications to treat neurodegenerative disease because of their regenerative capacity and multipotency. Recently, a variety of cellular reprogramming technologies have been developed to facilitate in vitro generation of NSCs, called induced NSCs (iNSCs). However, the genetic safety aspects of established virus-based reprogramming methods have been considered, and non-integrating reprogramming methods have been developed. Reprogramming with in vitro transcribed (IVT) mRNA is one of the genetically safe reprogramming methods because exogenous mRNA temporally exists in the cell and is not integrated into the chromosome. Here, we successfully generated expandable iNSCs from human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via transfection with IVT mRNA encoding SOX2 (SOX2 mRNA) with properly optimized conditions. We confirmed that generated human UCB-MSC-derived iNSCs (UM-iNSCs) possess characteristics of NSCs, including multipotency and self-renewal capacity. Additionally, we transfected human dermal fibroblasts (HDFs) with SOX2 mRNA. Compared with human embryonic stem cell-derived NSCs, HDFs transfected with SOX2 mRNA exhibited neural reprogramming with similar morphologies and NSC-enriched mRNA levels, but they showed limited proliferation ability. Our results demonstrated that human UCB-MSCs can be used for direct reprogramming into NSCs through transfection with IVT mRNA encoding a single factor, which provides an integration-free reprogramming tool for future therapeutic application.

  1. High-throughput monitoring of major cell functions by means of lensfree video microscopy

    PubMed Central

    Kesavan, S. Vinjimore; Momey, F.; Cioni, O.; David-Watine, B.; Dubrulle, N.; Shorte, S.; Sulpice, E.; Freida, D.; Chalmond, B.; Dinten, J. M.; Gidrol, X.; Allier, C.

    2014-01-01

    Quantification of basic cell functions is a preliminary step to understand complex cellular mechanisms, for e.g., to test compatibility of biomaterials, to assess the effectiveness of drugs and siRNAs, and to control cell behavior. However, commonly used quantification methods are label-dependent, and end-point assays. As an alternative, using our lensfree video microscopy platform to perform high-throughput real-time monitoring of cell culture, we introduce specifically devised metrics that are capable of non-invasive quantification of cell functions such as cell-substrate adhesion, cell spreading, cell division, cell division orientation and cell death. Unlike existing methods, our platform and associated metrics embrace entire population of thousands of cells whilst monitoring the fate of every single cell within the population. This results in a high content description of cell functions that typically contains 25,000 – 900,000 measurements per experiment depending on cell density and period of observation. As proof of concept, we monitored cell-substrate adhesion and spreading kinetics of human Mesenchymal Stem Cells (hMSCs) and primary human fibroblasts, we determined the cell division orientation of hMSCs, and we observed the effect of transfection of siCellDeath (siRNA known to induce cell death) on hMSCs and human Osteo Sarcoma (U2OS) Cells. PMID:25096726

  2. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells.

    PubMed

    Dubois, Nicole C; Craft, April M; Sharma, Parveen; Elliott, David A; Stanley, Edouard G; Elefanty, Andrew G; Gramolini, Anthony; Keller, Gordon

    2011-10-23

    To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.

  3. Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells.

    PubMed

    Wu, Xunwei; Scott, Larry; Washenik, Ken; Stenn, Kurt

    2014-12-01

    The goal of regenerative medicine is to reconstruct fully functional organs from tissue culture expanded human cells. In this study, we report a method for human reconstructed skin (hRSK) when starting with human cells. We implanted tissue culture expanded human epidermal and dermal cells into an excision wound on the back of immunodeficient mice. Pigmented skin covered the wound 4 weeks after implantation. Hair shafts were visible at 12 weeks and prominent at 14 weeks. Histologically, the hRSK comprises an intact epidermis and dermis with mature hair follicles, sebaceous glands and most notably, and unique to this system, subcutis. Morphogenesis, differentiation, and maturation of the hRSK mirror the human fetal process. Human antigen markers demonstrate that the constituent cells are of human origin for at least 6 months. The degree of new skin formation is most complete when using tissue culture expanded cells from fetal skin, but it also occurs with expanded newborn and adult cells; however, no appendages formed when we grafted both adult dermal and epidermal cells. The hRSK system promises to be valuable as a laboratory model for studying biological, pathological, and pharmaceutical problems of human skin.

  4. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture

    PubMed Central

    Takeuchi, Hiroki; Nakatsuji, Norio; Suemori, Hirofumi

    2014-01-01

    Insulin-producing cells (IPCs) derived from human pluripotent stem cells (hPSCs) may be useful in cell therapy and drug discovery for diabetes. Here, we examined various growth factors and small molecules including those previously reported to develop a robust differentiation method for induction of mature IPCs from hPSCs. We established a protocol that induced PDX1-positive pancreatic progenitor cells at high efficiency, and further induced mature IPCs by treatment with forskolin, dexamethasone, Alk5 inhibitor II and nicotinamide in 3D culture. The cells that differentiated into INSULIN-positive and C-PEPTIDE-positive cells secreted insulin in response to glucose stimulation, indicating a functional IPC phenotype. We also found that this method was applicable to different types of hPSCs. PMID:24671046

  5. Enhanced growth medium and method for culturing human mammary epithelial cells

    DOEpatents

    Stampfer, Martha R.; Smith, Helene S.; Hackett, Adeline J.

    1983-01-01

    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  6. Gene Editing in Human Lymphoid Cells: Role for Donor DNA, Type of Genomic Nuclease and Cell Selection Method.

    PubMed

    Zotova, Anastasia; Lopatukhina, Elena; Filatov, Alexander; Khaitov, Musa; Mazurov, Dmitriy

    2017-11-02

    Programmable endonucleases introduce DNA breaks at specific sites, which are repaired by non-homologous end joining (NHEJ) or homology recombination (HDR). Genome editing in human lymphoid cells is challenging as these difficult-to-transfect cells may also inefficiently repair DNA by HDR. Here, we estimated efficiencies and dynamics of knockout (KO) and knockin (KI) generation in human T and B cell lines depending on repair template, target loci and types of genomic endonucleases. Using zinc finger nuclease (ZFN), we have engineered Jurkat and CEM cells with the 8.2 kb human immunodeficiency virus type 1 (HIV-1) ∆Env genome integrated at the adeno-associated virus integration site 1 (AAVS1) locus that stably produce virus particles and mediate infection upon transfection with helper vectors. Knockouts generated by ZFN or clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) double nicking techniques were comparably efficient in lymphoid cells. However, unlike polyclonal sorted cells, gene-edited cells selected by cloning exerted tremendous deviations in functionality as estimated by replication of HIV-1 and human T cell leukemia virus type 1 (HTLV-1) in these cells. Notably, the recently reported high-fidelity eCas9 1.1 when combined to the nickase mutation displayed gene-dependent decrease in on-target activity. Thus, the balance between off-target effects and on-target efficiency of nucleases, as well as choice of the optimal method of edited cell selection should be taken into account for proper gene function validation in lymphoid cells.

  7. Revocation of European patent for neural progenitors highlights patent challenges for inventions relating to human embryonic stem cells.

    PubMed

    Rigby, Barbara

    2013-11-01

    Cells derived from human embryonic stem cells have great therapeutic potential. Patents are key to allowing companies that develop methods of generating such cells to recuperate their investment. However, in Europe, inventions relating to the use of human embryos for commercial purposes are excluded from patentability on moral grounds. The scope of this morality exclusion was recently tested before Germany's highest court and before the European Patent Office (EPO), with diverging results. The decision by the EPO's Opposition Division to revoke EP1040185 relating to neural precursors and methods for their generation has received a mixed reception. The decision has very recently been appealed, and the outcome of this Appeal should provide more definitive guidance on the scope of the morality exclusion.

  8. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Kime, Cody; Mandegar, Mohammad A; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R; Rand, Tim A

    2016-01-01

    Human pluripotent stem cells (hPS cells) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem cells (hiPS cells) with human embryonic stem (hES)-cell-like properties has led to hPS cells with disease-specific genetic backgrounds for in vitro disease modeling and drug discovery as well as mechanistic and developmental studies. To fully realize this potential, it will be necessary to modify the genome of hPS cells with precision and flexibility. Pioneering experiments utilizing site-specific double-strand break (DSB)-mediated genome engineering tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPS cells. However, these methods are technically cumbersome and require significant expertise, which has limited adoption. A major recent advance involving the clustered regularly interspaced short palindromic repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPS cells. In this unit, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPS cells into cell lines containing genomes altered by insertion/deletion (indel) mutagenesis or insertion of recombinant genomic DNA. Copyright © 2016 John Wiley & Sons, Inc.

  9. Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers.

    PubMed

    Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus

    2008-09-01

    We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.

  10. Predicting Virulence of Aeromonas Isolates Based-on Changes in Transcription of c-jun and c-fos in Human Tissue Culture Cells

    EPA Science Inventory

    Aims: To assess virulence of Aeromonas isolates based on the change in regulation of c-jun and c-fos in the human intestinal tissue culture cell line Caco-2. Methods and Results: Aeromonas cells were added to Caco-2 cells at approximately a one to one ratio. After 1, 2 and 3 ...

  11. Chromatid Paints: A New Method for Detecting Tumor-Specific Chromosomal Inversions

    DTIC Science & Technology

    1999-10-01

    chromosomal DNA as a template for DNA polymerization. The cloning procedure requires copying DNA from fixed cells attached to a glass substrate. Any...achieved by initially fixing cells in methanol and adding acetic acid just before dropping cells onto coverslips. The procedure itself is a novel and...human hybrid cells containing one human #11 chromosome were fixed and dropped onto microscope coverslips. These cells had been synchronized by mitotic

  12. Early-stage detection of VE-cadherin during endothelial differentiation of human mesenchymal stem cells using SPR biosensor.

    PubMed

    Fathi, Farzaneh; Rezabakhsh, Aysa; Rahbarghazi, Reza; Rashidi, Mohammad-Reza

    2017-10-15

    Surface plasmon resonance (SPR) biosensors are most commonly applied for real-time dynamic analysis and measurement of interactions in bio-molecular studies and cell-surface analysis without the need for labeling processes. Up to present, SPR application in stem cell biology and biomedical sciences was underused. Herein, a very simple and sensitive method was developed to evaluate human mesenchymal stem cells trans-differentiation to endothelial lineage of over a period of 14 days based on VE-cadherin biomarker. The SPR signals increased with the increase of the amount of VE-cadherin expression on the cell surface during cell differentiation process. The method was able to detect ≈27 cells permm 2 . No significant effect was observed on the cell viability during the cell attachment to the surface of immune-reactive biochips and during the SPR analysis. Using this highly sensitive SPR method, it was possible to sense the early stage of endothelial differentiation on day 3 in label-free form, whereas flow cytometry and fluorescent microscopy methods were found unable to detect the cell differentiation at the same time. Therefore, the proposed method can rapidly and accurately detect cell differentiation in live cells and label-free manner without any need of cell breakage and has great potential for both diagnostic and experimental approaches. Copyright © 2017. Published by Elsevier B.V.

  13. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.

    PubMed

    Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad

    2017-01-05

    During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Method to Identify and Isolate Pluripotent Human Stem Cells and Mouse Epiblast Stem Cells Using Lipid Body-Associated Retinyl Ester Fluorescence

    PubMed Central

    Muthusamy, Thangaselvam; Mukherjee, Odity; Menon, Radhika; Megha, P.B.; Panicker, Mitradas M.

    2014-01-01

    Summary We describe the use of a characteristic blue fluorescence to identify and isolate pluripotent human embryonic stem cells and human-induced pluripotent stem cells. The blue fluorescence emission (450–500 nm) is readily observed by fluorescence microscopy and correlates with the expression of pluripotency markers (OCT4, SOX2, and NANOG). It allows easy identification and isolation of undifferentiated human pluripotent stem cells, high-throughput fluorescence sorting and subsequent propagation. The fluorescence appears early during somatic reprogramming. We show that the blue fluorescence arises from the sequestration of retinyl esters in cytoplasmic lipid bodies. The retinoid-sequestering lipid bodies are specific to human and mouse pluripotent stem cells of the primed or epiblast-like state and absent in naive mouse embryonic stem cells. Retinol, present in widely used stem cell culture media, is sequestered as retinyl ester specifically by primed pluripotent cells and also can induce the formation of these lipid bodies. PMID:25068130

  15. Abnormalities in human pluripotent cells due to reprogramming mechanisms

    PubMed Central

    Ma, Hong; Morey, Robert; O’Neil, Ryan C.; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D.; Hariharan, Manoj; Nery, Joseph R.; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D.; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P.; Ecker, Joseph R.; Laurent, Louise C.; Mitalipov, Shoukhrat

    2016-01-01

    Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the ‘gold standard’, they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies. PMID:25008523

  16. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    PubMed Central

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  17. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and thatmore » a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.« less

  18. Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Prioleau, John C.; Stampfer, Martha R.; Rhim, Johng S.

    1992-07-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  19. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  20. Rapamycin and CHIR99021 Coordinate Robust Cardiomyocyte Differentiation From Human Pluripotent Stem Cells Via Reducing p53-Dependent Apoptosis.

    PubMed

    Qiu, Xiao-Xu; Liu, Yang; Zhang, Yi-Fan; Guan, Ya-Na; Jia, Qian-Qian; Wang, Chen; Liang, He; Li, Yong-Qin; Yang, Huang-Tian; Qin, Yong-Wen; Huang, Shuang; Zhao, Xian-Xian; Jing, Qing

    2017-10-02

    Cardiomyocytes differentiated from human pluripotent stem cells can serve as an unexhausted source for a cellular cardiac disease model. Although small molecule-mediated cardiomyocyte differentiation methods have been established, the differentiation efficiency is relatively unsatisfactory in multiple lines due to line-to-line variation. Additionally, hurdles including line-specific low expression of endogenous growth factors and the high apoptotic tendency of human pluripotent stem cells also need to be overcome to establish robust and efficient cardiomyocyte differentiation. We used the H9-human cardiac troponin T-eGFP reporter cell line to screen for small molecules that promote cardiac differentiation in a monolayer-based and growth factor-free differentiation model. We found that collaterally treating human pluripotent stem cells with rapamycin and CHIR99021 during the initial stage was essential for efficient and reliable cardiomyocyte differentiation. Moreover, this method maintained consistency in efficiency across different human embryonic stem cell and human induced pluripotent stem cell lines without specifically optimizing multiple parameters (the efficiency in H7, H9, and UQ1 human induced pluripotent stem cells is 98.3%, 93.3%, and 90.6%, respectively). This combination also increased the yield of cardiomyocytes (1:24) and at the same time reduced medium consumption by about 50% when compared with the previous protocols. Further analysis indicated that inhibition of the mammalian target of rapamycin allows efficient cardiomyocyte differentiation through overcoming p53-dependent apoptosis of human pluripotent stem cells during high-density monolayer culture via blunting p53 translation and mitochondrial reactive oxygen species production. We have demonstrated that mammalian target of rapamycin exerts a stage-specific and multifaceted regulation over cardiac differentiation and provides an optimized approach for generating large numbers of functional cardiomyocytes for disease modeling and in vitro drug screening. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Extraction of immune and inflammatory cells from human lung parenchyma: evaluation of an enzymatic digestion procedure.

    PubMed Central

    Holt, P G; Robinson, B W; Reid, M; Kees, U R; Warton, A; Dawson, V H; Rose, A; Schon-Hegrad, M; Papadimitriou, J M

    1986-01-01

    The inflammatory and immune cell populations of the human lung parenchyma have not been characterized in detail. This report describes a novel and efficient procedure for their extraction. Histologically normal human lung tissue samples from pneumonectomy specimens were sliced to 0.5 mm, and digested in collagenase/DNAse. Viable mononuclear cell yields ranged from 15-48 X 10(6)/g, and were markedly in excess of reported methods employing mechanical tissue disruption, which normally yield populations containing almost exclusively macrophages. The lung digest population was examined by flow cytometry using monoclonal antibodies against cell surface receptors, and found to comprise up to 40% T lymphocytes, 10% B lymphocytes and 30% macrophages, contaminated by less than 1% peripheral blood cells. Based upon these figures, the recoverable lung parenchymal lymphoid cell pool appears considerably larger than previously recognized, being of the same order as the peripheral blood pool. Initial functional studies suggest that such cellular activities as antigen-specific T cell proliferation, antigen-presentation, interleukin 1 production and natural killer cell activity survive the extraction process, and controlled enzymatic digestion experiments with peripheral blood cells indicate that the degree of enzyme-mediated damage to these functions and to cell-surface structures, was minimal. The extraction method thus appears suitable for studying the types and functions of human parenchymal lung cells in health and disease. Images Fig. 2 p195-a PMID:3026698

  2. Cloning Mice and Men: Prohibiting the Use of iPS Cells for Human Reproductive Cloning

    PubMed Central

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2014-01-01

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. PMID:20085739

  3. Improved method increases sensitivity for circulating hepatocellular carcinoma cells

    PubMed Central

    Liu, Hui-Ying; Qian, Hai-Hua; Zhang, Xiao-Feng; Li, Jun; Yang, Xia; Sun, Bin; Ma, Jun-Yong; Chen, Lei; Yin, Zheng-Feng

    2015-01-01

    AIM: To improve an asialoglycoprotein receptor (ASGPR)-based enrichment method for detection of circulating tumor cells (CTCs) of hepatocellular carcinoma (HCC). METHODS: Peripheral blood samples were collected from healthy subjects, patients with HCC or various other cancers, and patients with hepatic lesions or hepatitis. CTCs were enriched from whole blood by extracting CD45-expressing leukocytes with monoclonal antibody coated-beads following density gradient centrifugation. The remaining cells were cytocentrifuged on polylysine-coated slides. Isolated cells were treated by triple immunofluorescence staining with CD45 antibody and a combination of antibodies against ASGPR and carbamoyl phosphate synthetase 1 (CPS1), used as liver-specific markers, and costained with DAPI. The cell slide was imaged and stained tumor cells that met preset criteria were counted. Recovery, sensitivity and specificity of the detection methods were determined and compared by spiking experiments with various types of cultured human tumor cell lines. Expression of ASGPR and CPS1 in cultured tumor cells and tumor tissue specimens was analyzed by flow cytometry and triple immunofluorescence staining, respectively. RESULTS: CD45 depletion of leukocytes resulted in a significantly greater recovery of multiple amounts of spiked HCC cells than the ASGPR+ selection (Ps < 0.05). The expression rates of either ASGPR or CPS1 were different in various liver cancer cell lines, ranging between 18% and 99% for ASGPR and between 9% and 98% for CPS1. In both human HCC tissues and liver cancer cell lines, there were a few HCC cells that did not stain positive for ASGPR or CPS1. The mixture of monoclonal antibodies against ASGPR and CPS1 identified more HCC cells than either antibody alone. However, these antibodies did not detect any tumor cells in blood samples spiked with the human breast cancer cell line MCF-7 and the human renal cancer cell line A498. ASGPR+ or/and CPS1+ CTCs were detected in 29/32 (91%) patients with HCC, but not in patients with any other kind of cancer or any of the other test subjects. Furthermore, the improved method detected a higher CTC count in all patients examined than did the previous method (P = 0.001), and consistently achieved 12%-21% higher sensitivity of CTC detection in all seven HCC patients with more than 40 CTCs. CONCLUSION: Negative depletion enrichment combined with identification using a mixture of antibodies against ASGPR and CPS1 improves sensitivity and specificity for detecting circulating HCC cells. PMID:25780289

  4. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues.

    PubMed

    Hendijani, Fatemeh

    2017-04-01

    Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits. © 2017 John Wiley & Sons Ltd.

  5. Isolation of Primary Human Skeletal Muscle Cells

    PubMed Central

    Spinazzola, Janelle M.; Gussoni, Emanuela

    2017-01-01

    Primary myoblast culture is a valuable tool in research of muscle disease, pathophysiology, and pharmacology. This protocol describes techniques for dissociation of cells from human skeletal muscle biopsies and enrichment for a highly myogenic population by fluorescence-activated cell sorting (FACS). We also describe methods for assessing myogenicity and population expansion for subsequent in vitro study. PMID:29152538

  6. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    PubMed

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  7. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    NASA Astrophysics Data System (ADS)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  8. Short tandem repeat profiling: part of an overall strategy for reducing the frequency of cell misidentification.

    PubMed

    Nims, Raymond W; Sykes, Greg; Cottrill, Karin; Ikonomi, Pranvera; Elmore, Eugene

    2010-12-01

    The role of cell authentication in biomedical science has received considerable attention, especially within the past decade. This quality control attribute is now beginning to be given the emphasis it deserves by granting agencies and by scientific journals. Short tandem repeat (STR) profiling, one of a few DNA profiling technologies now available, is being proposed for routine identification (authentication) of human cell lines, stem cells, and tissues. The advantage of this technique over methods such as isoenzyme analysis, karyotyping, human leukocyte antigen typing, etc., is that STR profiling can establish identity to the individual level, provided that the appropriate number and types of loci are evaluated. To best employ this technology, a standardized protocol and a data-driven, quality-controlled, and publically searchable database will be necessary. This public STR database (currently under development) will enable investigators to rapidly authenticate human-based cultures to the individual from whom the cells were sourced. Use of similar approaches for non-human animal cells will require developing other suitable loci sets. While implementing STR analysis on a more routine basis should significantly reduce the frequency of cell misidentification, additional technologies may be needed as part of an overall authentication paradigm. For instance, isoenzyme analysis, PCR-based DNA amplification, and sequence-based barcoding methods enable rapid confirmation of a cell line's species of origin while screening against cross-contaminations, especially when the cells present are not recognized by the species-specific STR method. Karyotyping may also be needed as a supporting tool during establishment of an STR database. Finally, good cell culture practices must always remain a major component of any effort to reduce the frequency of cell misidentification.

  9. A Convenient and Efficient Method to Enrich and Maintain Highly Proliferative Human Fetal Liver Stem Cells

    PubMed Central

    Guo, Xuan; Wang, Shu; Dou, Ya-ling; Guo, Xiang-fei; Chen, Zhao-li; Wang, Xin-wei; Shen, Zhi-qiang; Qiu, Zhi-gang

    2015-01-01

    Abstract Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies. PMID:25556695

  10. A Convenient and Efficient Method to Enrich and Maintain Highly Proliferative Human Fetal Liver Stem Cells.

    PubMed

    Guo, Xuan; Wang, Shu; Dou, Ya-ling; Guo, Xiang-fei; Chen, Zhao-li; Wang, Xin-wei; Shen, Zhi-qiang; Qiu, Zhi-gang; Jin, Min; Li, Jun-wen

    2015-06-01

    Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies.

  11. Protocol to Isolate a Large Amount of Functional Oligodendrocyte Precursor Cells from the Cerebral Cortex of Adult Mice and Humans

    PubMed Central

    Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando

    2013-01-01

    During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair. PMID:24303061

  12. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans.

    PubMed

    Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando

    2013-01-01

    During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.

  13. Elimination of Mycoplasma Contamination from Infected Human Hepatocyte C3A Cells by Intraperitoneal Injection in BALB/c Mice.

    PubMed

    Weng, Jun; Li, Yang; Cai, Lei; Li, Ting; Peng, Gongze; Fu, Chaoyi; Han, Xu; Li, Haiyan; Jiang, Zesheng; Zhang, Zhi; Du, Jiang; Peng, Qing; Gao, Yi

    2017-01-01

    Background/Aims: The use of antibiotics to eliminate Mycoplasma contamination has some serious limitations. Mycoplasma contamination can be eliminated by intraperitoneal injection of BALB/c mice with contaminated cells combined with screening monoclonal cells. However, in vivo passage in mice after injection with contaminated cells requires a long duration (20-54 days). Furthermore, it is important to monitor for cross-contamination of mouse and human cells, xenotropic murine leukemia virus-related virus (XMRV) infection, and altered cell function after the in vivo treatment. The present study aimed to validate a reliable and simplified method to eliminate mycoplasma contamination from human hepatocytes. BALB/c mice were injected with paraffin oil prior to injection with cells, in order to shorten duration of intraperitoneal passage. Cross-contamination of mouse and human cells, XMRV infection and cell function-related genes and proteins were also evaluated. Methods: PCR and DNA sequencing were used to confirm Mycoplasma hyorhinis ( M. hyorhinis ) contamination in human hepatocyte C3A cells. Five BALB/c mice were intraperitoneally injected with 0.5 ml paraffin oil 1 week before injection of the cells. The mice were then intraperitoneally injected with C3A hepatocytes (5.0 × 10 6 /ml) contaminated with M. hyorhinis (6.2 ± 2.2 × 10 8 CFU/ml). Ascites were collected for monoclonal cell screening on the 14th day after injection of contaminated cells. Elimination of mycoplasma from cells was determined by PCR and Transmission Electron Microscopy (TEM). Human-mouse cell and XMRV contamination were also detected by PCR. Quantitative reverse transcription PCR and western blotting were used to compare the expression of genes and proteins among treated cells, non-treated infected cells, and uninfected cells. Results: Fourteen days after injection with cells, 4 of the 5 mice had ascites. Hepatocyte colonies extracted from the ascites of four mice were all mycoplasma-free. There was no cell cross-contamination or XMRV infection in treated cell cultures. Elimination of Mycoplasma resulted in partial or complete recovery in the expression of ALB, TF, and CYP3A4 genes as well as proteins. Proliferation of the treated cells was not significantly affected by this management. Conclusion: The method of elimination of Mycoplasma contamination in this study was validated and reproducible. Success was achieved in four of five cases examined. Compared to the previous studies, the duration of intraperitoneal passage in this study was significantly shorter.

  14. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.

    PubMed

    Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D

    2005-01-01

    I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.

  15. Highly Expandable Human iPS Cell-Derived Neural Progenitor Cells (NPC) and Neurons for Central Nervous System Disease Modeling and High-Throughput Screening.

    PubMed

    Cheng, Chialin; Fass, Daniel M; Folz-Donahue, Kat; MacDonald, Marcy E; Haggarty, Stephen J

    2017-01-11

    Reprogramming of human somatic cells into induced pluripotent stem (iPS) cells has greatly expanded the set of research tools available to investigate the molecular and cellular mechanisms underlying central nervous system (CNS) disorders. Realizing the promise of iPS cell technology for the identification of novel therapeutic targets and for high-throughput drug screening requires implementation of methods for the large-scale production of defined CNS cell types. Here we describe a protocol for generating stable, highly expandable, iPS cell-derived CNS neural progenitor cells (NPC) using multi-dimensional fluorescence activated cell sorting (FACS) to purify NPC defined by cell surface markers. In addition, we describe a rapid, efficient, and reproducible method for generating excitatory cortical-like neurons from these NPC through inducible expression of the pro-neural transcription factor Neurogenin 2 (iNgn2-NPC). Finally, we describe methodology for the use of iNgn2-NPC for probing human neuroplasticity and mechanisms underlying CNS disorders using high-content, single-cell-level automated microscopy assays. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  16. Molecular Interactions of High Energy Fuels and Jet Fuels with Oncogenic Viruses and Endogenous Viruses.

    DTIC Science & Technology

    1984-05-01

    chemicals used by the U.S. Air Force. Snyder-Theilen Feline Sarcoma Virus (ST-FeSV), quantitatively transforms human skin fibroblasts following second...Objective 1 The cell line used for this aspect of this program was Detroit 550, a human diploid skin fibroblast line from the American Type Culture...Branch of the National Cancer Institute. The results are presented herein. Materials and Methods 1. Cells. Detroit 550 human skin fibroblast (HSF) cells

  17. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles.

    PubMed

    Tichy, Elisia D; Sidibe, David K; Tierney, Matthew T; Stec, Michael J; Sharifi-Sanjani, Maryam; Hosalkar, Harish; Mubarak, Scott; Johnson, F Brad; Sacco, Alessandra; Mourkioti, Foteini

    2017-10-10

    Muscle stem cells (MuSCs) contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Single-cell RNA-seq of human induced pluripotent stem cells reveals cellular heterogeneity and cell state transitions between subpopulations.

    PubMed

    Nguyen, Quan; Lukowski, Samuel; Chiu, Han; Senabouth, Anne; Bruxner, Timothy; Christ, Angelika; Palpant, Nathan; Powell, Joseph

    2018-05-11

    Heterogeneity of cell states represented in pluripotent cultures have not been described at the transcriptional level. Since gene expression is highly heterogeneous between cells, single-cell RNA sequencing can be used to identify how individual pluripotent cells function. Here, we present results from the analysis of single-cell RNA sequencing data from 18,787 individual WTC CRISPRi human induced pluripotent stem cells. We developed an unsupervised clustering method, and through this identified four subpopulations distinguishable on the basis of their pluripotent state including: a core pluripotent population (48.3%), proliferative (47.8%), early-primed for differentiation (2.8%) and late-primed for differentiation (1.1%). For each subpopulation we were able to identify the genes and pathways that define differences in pluripotent cell states. Our method identified four discrete predictor gene sets comprised of 165 unique genes that denote the specific pluripotency states; and using these sets, we developed a multigenic machine learning prediction method to accurately classify single cells into each of the subpopulations. Compared against a set of established pluripotency markers, our method increases prediction accuracy by 10%, specificity by 20%, and explains a substantially larger proportion of deviance (up to 3-fold) from the prediction model. Finally, we developed an innovative method to predict cells transitioning between subpopulations, and support our conclusions with results from two orthogonal pseudotime trajectory methods. Published by Cold Spring Harbor Laboratory Press.

  19. Range of protein detection by selected/multiple reaction monitoring mass spectrometry in an unfractionated human cell culture lysate.

    PubMed

    Ebhardt, H Alexander; Sabidó, Eduard; Hüttenhain, Ruth; Collins, Ben; Aebersold, Ruedi

    2012-04-01

    Selected or multiple reaction monitoring is a targeted mass spectrometry method (S/MRM-MS), in which many peptides are simultaneously and consistently analyzed during a single liquid chromatography-mass spectrometry (LC-S/MRM-MS) measurement. These capabilities make S/MRM-MS an attractive method to monitor a consistent set of proteins over various experimental conditions. To increase throughput for S/MRM-MS it is advantageous to use scheduled methods and unfractionated protein extracts. Here, we established the practically measurable dynamic range of proteins reliably detectable and quantifiable in an unfractionated protein extract from a human cell line using LC-S/MRM-MS. Initially, we analyzed S/MRM transition peak groups in terms of interfering signals and compared S/MRM transition peak groups to MS1-triggered MS2 spectra using dot-product analysis. Finally, using unfractionated protein extract from human cell lysate, we quantified the upper boundary of copies per cell to be 35 million copies per cell, while 7500 copies per cell represents a lower boundary using a single 35 min linear gradient LC-S/MRM-MS measurement on a current, standard commercial instrument. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Culturing of respiratory viruses in well-differentiated pseudostratified human airway epithelium as a tool to detect unknown viruses

    PubMed Central

    Jazaeri Farsani, Seyed Mohammad; Deijs, Martin; Dijkman, Ronald; Molenkamp, Richard; Jeeninga, Rienk E; Ieven, Margareta; Goossens, Herman; van der Hoek, Lia

    2015-01-01

    Background Currently, virus discovery is mainly based on molecular techniques. Here, we propose a method that relies on virus culturing combined with state-of-the-art sequencing techniques. The most natural ex vivo culture system was used to enable replication of respiratory viruses. Method Three respiratory clinical samples were tested on well-differentiated pseudostratified tracheobronchial human airway epithelial (HAE) cultures grown at an air–liquid interface, which resemble the airway epithelium. Cells were stained with convalescent serum of the patients to identify infected cells and apical washes were analyzed by VIDISCA-454, a next-generation sequencing virus discovery technique. Results Infected cells were observed for all three samples. Sequencing subsequently indicated that the cells were infected by either human coronavirus OC43, influenzavirus B, or influenzavirus A. The sequence reads covered a large part of the genome (52%, 82%, and 57%, respectively). Conclusion We present here a new method for virus discovery that requires a virus culture on primary cells and an antibody detection. The virus in the harvest can be used to characterize the viral genome sequence and cell tropism, but also provides progeny virus to initiate experiments to fulfill the Koch's postulates. PMID:25482367

  1. Adaptation of the human Cell Line Activation Test (h-CLAT) to Animal-Product-Free Conditions.

    PubMed

    Edwards, Alexander; Roscoe, Lottie; Longmore, Christopher; Bailey, Fiona; Sim, Bushra; Treasure, Carol

    2018-06-13

    Skin sensitisers are substances that can elicit allergic responses following skin contact and the process by which this occurs is described as skin sensitisation. Skin sensitisation is defined as a series of key events, that form an adverse outcome pathway (AOP). Key event three in the AOP is dendritic cell activation that can be modelled by the human Cell Line Activation Test (h-CLAT) and is typified by changes in cell surface markers CD54 and CD86 in dendritic cells. The h-CLAT is accepted at a regulatory level (OECD Test-Guideline (TG)442E) and can be used to assess skin sensitisation potential as part of an integrated approach to testing and assessment (IATA). Stakeholders in the cosmetics and chemical industries have scientific and ethical concerns relating to use of animal derived material and have communicated a strong preference for fully human based in vitro methods. Therefore, we adapted the h-CLAT to animal-product-free conditions and validated the adapted method with the proficiency panel substances in Annex II of TG442E, using 3 independent batches of pooled human serum. The modified method showed equivalence to the validated reference method (VRM), as all proficiency substances were correctly classified. Comparable values for CV75 (concentration yielding 75% cell viability), EC150 and EC200 (concentration yielding RFI of ≥150 for CD86 and ≥200 for CD54) were obtained. Data generated using the adapted method may be used in European REACH submissions, provided the proficiency data is included. We are seeking formal inclusion of the adaptation into TG442E, enabling compliance with global regulations.

  2. Isolation of Human Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting for Successful Transplantation

    PubMed Central

    Doi, Daisuke; Samata, Bumpei; Katsukawa, Mitsuko; Kikuchi, Tetsuhiro; Morizane, Asuka; Ono, Yuichi; Sekiguchi, Kiyotoshi; Nakagawa, Masato; Parmar, Malin; Takahashi, Jun

    2014-01-01

    Summary Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (DA) neurons for cell replacement therapy for Parkinson’s disease. However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. Here, we show that human iPSC-derived DA progenitor cells can be efficiently isolated by cell sorting using a floor plate marker, CORIN. We induced DA neurons using scalable culture conditions on human laminin fragment, and the sorted CORIN+ cells expressed the midbrain DA progenitor markers, FOXA2 and LMX1A. When transplanted into 6-OHDA-lesioned rats, the CORIN+ cells survived and differentiated into midbrain DA neurons in vivo, resulting in significant improvement of the motor behavior, without tumor formation. In particular, the CORIN+ cells in a NURR1+ cell-dominant stage exhibited the best survival and function as DA neurons. Our method is a favorable strategy in terms of scalability, safety, and efficiency and may be advantageous for clinical application. PMID:24672756

  3. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells.

    PubMed

    Koehler, Karl R; Nie, Jing; Longworth-Mills, Emma; Liu, Xiao-Ping; Lee, Jiyoon; Holt, Jeffrey R; Hashino, Eri

    2017-06-01

    The derivation of human inner ear tissue from pluripotent stem cells would enable in vitro screening of drug candidates for the treatment of hearing and balance dysfunction and may provide a source of cells for cell-based therapies of the inner ear. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and WNT signaling to generate multiple otic-vesicle-like structures from a single stem-cell aggregate. Over 2 months, the vesicles develop into inner ear organoids with sensory epithelia that are innervated by sensory neurons. Additionally, using CRISPR-Cas9, we generate an ATOH1-2A-eGFP cell line to detect hair cell induction and demonstrate that derived hair cells exhibit electrophysiological properties similar to those of native sensory hair cells. Our culture system should facilitate the study of human inner ear development and research on therapies for diseases of the inner ear.

  4. Generation of human induced pluripotent stem cells from urinary cells of a healthy donor using a non-integration system.

    PubMed

    Uhm, Kyung-Ok; Jo, Eun Hee; Go, Gue Youn; Kim, So-Jung; Choi, Hye Young; Im, Young Sam; Ha, Hye-Yeong; Jung, Ji-Won; Koo, Soo Kyung

    2017-05-01

    Urinary cells can be an ideal source for generating hiPSCs and progenitors, as they are easily accessible, non-invasive, and universally available. We generated human induced pluripotent stem cells (hiPSCs) from the urinary cells of a healthy donor using a Sendai virus-based gene delivery method. The generated hiPSC line, KSCBi001-A, has a normal karyotype (46,XY). The pluripotency and capacity of multilineage differentiation were characterized by comparison with those of a human embryonic stem cell line. This cell line is registered and available from National Stem Cell Bank, Korea National Institute of Health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Smart fast blood counting of trace volumes of body fluids from various mammalian species using a compact custom-built microscope cytometer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Gao, Tingjuan; Lin, Tzu-Yin; Carrade-Holt, Danielle; Lane, Stephen M.; Matthews, Dennis L.; Dwyre, Denis M.; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Cell counting in human body fluids such as blood, urine, and CSF is a critical step in the diagnostic process for many diseases. Current automated methods for cell counting are based on flow cytometry systems. However, these automated methods are bulky, costly, require significant user expertise, and are not well suited to counting cells in fluids other than blood. Therefore, their use is limited to large central laboratories that process enough volume of blood to recoup the significant capital investment these instruments require. We present in this talk a combination of a (1) low-cost microscope system, (2) simple sample preparation method, and (3) fully automated analysis designed for providing cell counts in blood and body fluids. We show results on both humans and companion and farm animals, showing that accurate red cell, white cell, and platelet counts, as well as hemoglobin concentration, can be accurately obtained in blood, as well as a 3-part white cell differential in human samples. We can also accurately count red and white cells in body fluids with a limit of detection ~3 orders of magnitude smaller than current automated instruments. This method uses less than 1 microliter of blood, and less than 5 microliters of body fluids to make its measurements, making it highly compatible with finger-stick style collections, as well as appropriate for small animals such as laboratory mice where larger volume blood collections are dangerous to the animal's health.

  6. Productive vs non-productive infection by cell-free Varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral dose

    PubMed Central

    Sloutskin, Anna; Kinchington, Paul R.; Goldstein, Ronald S.

    2013-01-01

    Varicella Zoster virus (VZV) productively infects humans causing varicella upon primary infection and herpes zoster upon reactivation from latency in neurons. In-vitro studies using cell-associated VZV infection have demonstrated productive VZV-infection, while a few recent studies of human neurons derived from stem cells incubated with cell-free, vaccine-derived VZV did not result in generation of infectious virus. In the present study, 90%-pure human embryonic stem cell-derived neurons were incubated with recombinant cell-free pOka-derived made with an improved method or with VZV vaccine. We found that cell-free pOka and vOka at higher multiplicities of infection elicited productive infection in neurons followed by spread of infection, cytopathic effect and release of infectious virus into the medium. These results further validate the use of this unlimited source of human neurons for studying unexplored aspects of VZV interaction with neurons such as entry, latency and reactivation. PMID:23769240

  7. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    PubMed

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  8. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    DOEpatents

    Jensen, Ronald H.; Vanderlaan, Martin; Bigbee, William L.; Stanker, Larry H.; Branscomb, Elbert W.; Grabske, Robert J.

    1988-01-01

    The present invention provides monoclonal antibodies specific to and distinguish between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype.

  9. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors.

    PubMed

    Munikrishnappa, Chandrashekar Suradhenupura; Puranik, Sangamesh B; Kumar, G V Suresh; Prasad, Y Rajendra

    2016-08-25

    A novel series of 5-bromo-pyrimidine derivatives (5a-l, 6a-h, 9a-m and 10a-d) were synthesized through multi step reactions starting from 5-bromo-2,4-dichloro pyrimidine. The newly synthesized compounds were characterized using elemental analysis and spectral data (IR, (1)H NMR, (13)C NMR and LC-MS) analysis. The titled compounds were evaluated for their in vitro cytotoxic activity against tumor cell lines panel consisted of HCT116 (human colon cancer cell line), A549 (human lung cancer cell line), K562 (human chronic myeloid leukemia cell line), U937 (human acute monocytic myeloid leukemia cell line), and L02 (human normal cell line) by using MTT assay Mosmann's method. As most of the compounds are highly potent against K562 cells, all the synthesized compounds were evaluated for Bcr/Abl tyrosine kinase inhibitory activity by using well-established ADP-Glo assay method. Dasatinib was utilized as positive control to validate in both biological evaluations. The biological activity revealed that the compounds 5c, 5e, 6g, 9e, 9f and 10c were potent Bcr/Abl kinase inhibitors among the titled compounds. Thus these compounds may be promising lead compounds to be developed as an alternative for current Dasatinib therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel.

    PubMed

    Oyama, Hiroshi; Takahashi, Koji; Tanaka, Yoshikazu; Takemoto, Hiroshi; Haga, Hisashi

    2018-01-01

    It takes several months to form the 3-dimensional morphology of the human embryonic brain. Therefore, establishing a long-term culture method for neuronal tissues derived from human induced pluripotent stem (iPS) cells is very important for studying human brain development. However, it is difficult to keep primary neurons alive for more than 3 weeks in culture. Moreover, long-term adherent culture to maintain the morphology of telencephalic neuron aggregates induced from human iPS cells is also difficult. Although collagen gel has been widely used to support long-term culture of cells, it is not clear whether human iPS cell-derived neuron aggregates can be cultured for long periods on this substrate. In the present study, we differentiated human iPS cells to telencephalic neuron aggregates and examined long-term culture of these aggregates on collagen gel. The results indicated that these aggregates could be cultured for over 3 months by adhering tightly onto collagen gel. Furthermore, telencephalic neuronal precursors within these aggregates matured over time and formed layered structures. Thus, long-term culture of telencephalic neuron aggregates derived from human iPS cells on collagen gel would be useful for studying human cerebral cortex development.Key words: Induced pluripotent stem cell, forebrain neuron, collagen gel, long-term culture.

  11. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    PubMed

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  12. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs).

    PubMed

    Cutts, Josh; Brookhouser, Nicholas; Brafman, David A

    2016-01-01

    Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.

  13. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining.

    PubMed

    Huang, Hongyan; Chen, Ang; Wang, Ting; Wang, Manna; Ning, Xiangkai; He, Meifang; Hu, Yazhuo; Yuan, Long; Li, Shichong; Wang, Qiwei; Liu, Hong; Chen, Zhaolie; Ren, Jun; Sun, Qiang

    2015-08-21

    Although Cell-in-cell structures (CICs) had been documented in human tumors for decades, it is unclear what types of CICs were formed largely due to low resolution of traditional way such as H&E staining. In this work, we employed immunofluorescent method to stain a panel of human tumor samples simultaneously with antibodies against E-cadherin for Epithelium, CD68 for Macrophage and CD45 for Leukocytes, which we termed as "EML method" based on the cells detected. Detail analysis revealed four types of CICs, with tumor cells or macrophage engulfing tumor cells or leukocytes respectively. Interestingly, tumor cells seem to be dominant over macrophage (93% vs 7%) as the engulfer cells in all CICs detected, whereas the overall amount of internalized tumor cells is comparable to that of internalized CD45+ leukocytes (57% vs 43%). The CICs profiles vary from tumor to tumor, which may indicate different malignant stages and/or inflammatory conditions. Given the potential impacts different types of CICs might have on tumor growth, we therefore recommend EML analysis of tumor samples to clarify the correlation of CICs subtypes with clinical prognosis in future researches.

  14. Characterization of Human Neural Progenitor Cell Models for Developmental Neurotoxicity Screening

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating two different human neural progenitor cell (hNPC) models for their utility in screens for...

  15. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    PubMed

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  16. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells.

    PubMed

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). RESULTS/METHODOLOGY: We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease.

  17. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning.

    PubMed

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-08

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. Copyright 2010 Elsevier Inc. All rights reserved.

  18. NOTCH-Mediated Maintenance and Expansion of Human Bone Marrow Stromal/Stem Cells: A Technology Designed for Orthopedic Regenerative Medicine

    PubMed Central

    Dong, Yufeng; Long, Teng; Wang, Cuicui; Mirando, Anthony J.; Chen, Jianquan; O’Keefe, Regis J.

    2014-01-01

    Human bone marrow-derived stromal/stem cells (BMSCs) have great therapeutic potential for treating skeletal disease and facilitating skeletal repair, although maintaining their multipotency and expanding these cells ex vivo have proven difficult. Because most stem cell-based applications to skeletal regeneration and repair in the clinic would require large numbers of functional BMSCs, recent research has focused on methods for the appropriate selection, expansion, and maintenance of BMSC populations during long-term culture. We describe here a novel biological method that entails selection of human BMSCs based on NOTCH2 expression and activation of the NOTCH signaling pathway in cultured BMSCs via a tissue culture plate coated with recombinant human JAGGED1 (JAG1) ligand. We demonstrate that transient JAG1-mediated NOTCH signaling promotes human BMSC maintenance and expansion while increasing their skeletogenic differentiation capacity, both ex vivo and in vivo. This study is the first of its kind to describe a NOTCH-mediated methodology for the maintenance and expansion of human BMSCs and will serve as a platform for future clinical or translational studies aimed at skeletal regeneration and repair. PMID:25368376

  19. A simple and cost-effective method for isolation and expansion of human fetal pancreas derived mesenchymal stem cells.

    PubMed

    Larijani, Bagher; Arjmand, Babak; Ahmadbeigi, Naser; Falahzadeh, Khadijeh; Soleimani, Masoud; Sayahpour, Forough Azam; Aghayan, Hamid Reza

    2015-11-01

    Previous studies have suggested mesenchymal stem cells (MSCs) as a suitable source for cell replacement therapy in diabetes. MSCs have successfully isolated from different adult and fetal tissues, including the pancreas. In vitro studies have shown that human fetal pancreatic stem cells could be extensively expanded and differentiated into islet-like structures. Here, we introduce a simple and cost-effective method for the generation of MSCs from the human fetal pancreas (FPMSCs). To isolate FPMSCs, pancreata from four aborted fetuses (second trimester) were processed with short collagenase digestion. The resulting tissue fragments were transferred to a basic media (DMEM+15%FBS) without adding any growth factor. After 10 to14 days, fibroblast-like cells were harvested and passaged six times for further evaluations. Flow cytometry analysis and three-lineage differentiation capacity have demonstrated that these cells have MSC-like properties. We also continuously passaged samples of FPMSCs and found no evidence for chromosomal instability and morphological changes until 10th subculture. Moreover, our cell culture protocol can be easily modified and translated into a GMP-compliant one. The results of current study demonstrated that our simple and inexpensive method could yield a pure population of FPMSCs that might be suitable for transplantation.

  20. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  1. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines.

    PubMed

    Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J

    2015-12-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.

  2. Generation of Hepatocytes from Pluripotent Stem Cells for Drug Screening and Developmental Modeling.

    PubMed

    Gieseck, Richard L; Vallier, Ludovic; Hannan, Nicholas R F

    2015-01-01

    Hepatocytes produced from the differentiation of human pluripotent stem cells can be used to study human development and liver disease, to investigate the toxicological response of novel drug candidates, and as an alternative source of primary cells for transplantation therapies. Here, we describe a method to produce hepatocytes by differentiating human pluripotent stem cells into definitive endoderm, patterning definitive endoderm into anterior definitive endoderm, specifying anterior definitive endoderm into hepatic endoderm, and differentiating hepatic endoderm into immature hepatocytes. These cells are further matured in either two-dimensional or three-dimensional culture conditions to produce cells capable of metabolizing xenobiotics and generating liver-specific proteins, such as albumin and alpha 1 antitrypsin.

  3. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system.

    PubMed

    Li, Hongmei Lisa; Gee, Peter; Ishida, Kentaro; Hotta, Akitsu

    2016-05-15

    Precise gene correction using the CRISPR-Cas9 system in human iPS cells holds great promise for various applications, such as the study of gene functions, disease modeling, and gene therapy. In this review article, we summarize methods for effective editing of genomic sequences of iPS cells based on our experiences correcting dystrophin gene mutations with the CRISPR-Cas9 system. Designing specific sgRNAs as well as having efficient transfection methods and proper detection assays to assess genomic cleavage activities are critical for successful genome editing in iPS cells. In addition, because iPS cells are fragile by nature when dissociated into single cells, a step-by-step confirmation during the cell recovery process is recommended to obtain an adequate number of genome-edited iPS cell clones. We hope that the techniques described here will be useful for researchers from diverse backgrounds who would like to perform genome editing in iPS cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Determination of Urea Permeability in Red Cells by Minimum Method

    PubMed Central

    Sha'afi, R. I.; Rich, G. T.; Mikulecky, D. C.; Solomon, A. K.

    1970-01-01

    A new method has been developed for measuring the permeability coefficient, ω, of small nonelectrolytes. The method depends upon a mathematical analysis of the time course of cell volume changes in the neighborhood of the minimum volume following addition of a permeating solute to an isosmolal buffer. Coefficients determined by the minimum volume method agree with those obtained using radioactive tracers. ω for urea in human red cells was found to decrease as the volume flow, Jv, into the cell increased. Such behavior is entirely unexpected for a single uniform rate-limiting barrier on the basis of the linear phenomenological equations derived from irreversible thermodynamics. However, the present findings are consonant with a complex membrane system consisting of a tight barrier on the outer face of the human red cell membrane and a somewhat less restrictive barrier behind it closer to the inner membrane face. A theoretical analysis of such a series model has been made which makes predictions consistent with the experimental findings. PMID:5435779

  5. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections.

    PubMed

    Kühbacher, Andreas; Sohn, Kai; Burger-Kentischer, Anke; Rupp, Steffen

    2017-01-01

    Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.

  6. Preimplantation diagnosis of repeated miscarriage due to chromosomal translocations using metaphase chromosomes of a blastomere biopsied from 4- to 6-cell-stage embryos.

    PubMed

    Tanaka, Atsushi; Nagayoshi, Motoi; Awata, Shoichiro; Mawatari, Yoshifumi; Tanaka, Izumi; Kusunoki, Hiroshi

    2004-01-01

    To evaluate the safety and accuracy of karyotyping the blastomere chromosomes at metaphase in the natural cell cycle for preimplantation diagnosis. A pilot study. A private infertility clinic and a university laboratory. Eleven patients undergoing IVF and preimplantation diagnosis. Intact human embryos at the 4- to 6-cell stage and human-mouse heterokaryons were cultured and checked hourly for disappearance of the nuclear envelope. After it disappeared, the metaphase chromosomes were analyzed by fluorescence in situ hybridization. Percentage of analyzable metaphase plates and safety and accuracy of the method. The success rate of electrofusion to form human-mouse heterokaryons was 87.1% (27/31), and analyzable chromosomes were obtained from 77.4% (24/31) of the heterokaryons. On the other hand, disappearance of the nuclear envelope occurred in 89.5% (17/19) of the human embryos and it began earlier than that in the heterokaryons. Analyzable chromosomes were obtained and their translocation sites were identified in all blastomeres biopsied from the 17 embryos. After the biopsy, 67.0% of the embryos could develop to the blastocyst stage. The natural cell cycle method reported herein requires frequent observation, but it is safe, with no artificial effects on the chromosomes and without loss of or damage to blastomeres, which occurred with the electrofusion method. Using the natural cell cycle method, we could perform preimplantation diagnosis with nearly 100% accuracy.

  7. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity.

    PubMed

    Woll, Petter S; Martin, Colin H; Miller, Jeffrey S; Kaufman, Dan S

    2005-10-15

    Human embryonic stem cells (hESCs) provide a unique resource to analyze early stages of human hematopoiesis. However, little is known about the ability to use hESCs to evaluate lymphocyte development. In the present study, we use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. The CD56(+)CD45(+) hESC-derived lymphocytes express inhibitory and activating receptors typical of mature NK cells, including killer cell Ig-like receptors, natural cytotoxicity receptors, and CD16. Limiting dilution analysis suggests that these cells can be produced from hESC-derived hemopoietic progenitors at a clonal frequency similar to CD34(+) cells isolated from cord blood. The hESC-derived NK cells acquire the ability to lyse human tumor cells by both direct cell-mediated cytotoxicity and Ab-dependent cellular cytotoxicity. Additionally, activated hESC-derived NK cells up-regulate cytokine production. hESC-derived lymphoid progenitors provide a novel means to characterize specific cellular and molecular mechanisms that lead to development of specific human lymphocyte populations. These cells may also provide a source for innovative cellular immune therapies.

  8. Generation of Oligodendrogenic Spinal Neural Progenitor Cells From Human Induced Pluripotent Stem Cells.

    PubMed

    Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G

    2017-08-14

    This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  9. Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes.

    PubMed

    Przibilla, Sabine; Dartmann, Sebastian; Vollmer, Angelika; Ketelhut, Steffi; Greve, Burkhard; von Bally, Gert; Kemper, Björn

    2012-09-01

    The intracellular refractive index is an important parameter that describes the optical density of the cytoplasm and the concentration of the intracellular solutes. The refractive index of adherently grown cells is difficult to access. We present a method in which silica microspheres in living cells are used to determine the cytoplasm refractive index with quantitative phase microscopy. The reliability of our approach for refractive index retrieval is shown by data from a comparative study on osmotically stimulated adherent and suspended human pancreatic tumor cells. Results from adherent human fibro sarcoma cells demonstrate the capability of the method for sensing of dynamic refractive index changes and its usage with microfluidics.

  10. Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells.

    PubMed

    Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui

    2011-04-01

    Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo development research, along with clinical treatments for diabetes and some hepatic diseases.

  11. Monitoring Ecological Impacts of Environmental Surface ...

    EPA Pesticide Factsheets

    Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cell-based metabolomics is used to investigate the impacts of contaminants in surface waters on biological pathways in human and ecologically relevant cell lines. Water samples were collected from stream sites nationwide, where significant impacts have been estimated from the most potentially contaminated sources (i.e. waste water treatment plants, concentrated animal feeding operations, mining operations, and plant-based agricultural operations that use intensive chemical applications). Zebrafish liver cells (ZFL) were used to study exposure impacts on in vitro metabolomes. In addition, a small number of water samples were studied using two human cell lines (liver cells, HepG2 and brain cells, LN229). The cellular metabolites were profiled by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Detailed methods and results will be reported. Presented at SETAC North America 37th Annual Meeting

  12. Engineering of Pulsatile Conduits from Human Pluripotent Stem Cell Derived Cardiomyocytes

    DTIC Science & Technology

    2017-06-01

    patients with coronary heart disease . Oncotarget [Internet]. 2016 Nov 7; Available from: http://www.ncbi.nlm.nih.gov/pubmed/27835576. 4. Veronesi G...13. SUPPLEMENTARY NOTES 14. ABSTRACT We have derived cardiomyocytes ( heart cells) with high purity using an optimized approach that can coax human...induced pluripotent stem cells (hiPSCs) into heart cells in combination with a two-day lactate selection method that can remove non- cardiomyocytes from

  13. Methods in Molecular Biology Mouse Genetics: Methods and Protocols | Center for Cancer Research

    Cancer.gov

    Mouse Genetics: Methods and Protocols provides selected mouse genetic techniques and their application in modeling varieties of human diseases. The chapters are mainly focused on the generation of different transgenic mice to accomplish the manipulation of genes of interest, tracing cell lineages, and modeling human diseases.

  14. Identification of 6-methylsulfinylhexyl isothiocyanate as an apoptosis-inducing component in wasabi.

    PubMed

    Watanabe, Makoto; Ohata, Masahiko; Hayakawa, Sumio; Isemura, Mamoru; Kumazawa, Shigenori; Nakayama, Tsutomu; Furugori, Michiyo; Kinae, Naohide

    2003-03-01

    The ethanol extract from Japanese horseradish wasabi was found to inhibit cell proliferation in human monoblastic leukemia U937 cells by inducing apoptotic cell death. Separation by methods including silica gel chromatography and preparative HPLC gave an active compound, which was identified as 6-methylsulfinylhexyl isothiocyanate (6-HITC). Several lines of evidence indicated that 6-HITC induced apoptosis in U937 cells and human stomach cancer MKN45 cells. Thus, 6-HITC is potentially useful as a natural anti-cancer agent.

  15. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    PubMed

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  16. Flow Cytometry of Human Primary Epidermal and Follicular Keratinocytes

    PubMed Central

    Gragnani, Alfredo; Ipolito, Michelle Zampieri; Sobral, Christiane S; Brunialti, Milena Karina Coló; Salomão, Reinaldo; Ferreira, Lydia Masako

    2008-01-01

    Objective: The aim of this study was to characterize using flow cytometry cultured human primary keratinocytes isolated from the epidermis and hair follicles by different methods. Methods: Human keratinocytes derived from discarded fragments of total skin and scalp hair follicles from patients who underwent plastic surgery in the Plastic Surgery Division at UNIFESP were used. The epidermal keratinocytes were isolated by using 3 different methods: the standard method, upon exposure to trypsin for 30 minutes; the second, by treatment with dispase for 18 hours and with trypsin for 10 minutes; and the third, by treatment with dispase for 18 hours and with trypsin for 30 minutes. Follicular keratinocytes were isolated using the standard method. Results: On comparing the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with dispase for 18 hours and with trypsin for 30 minutes, it was observed that the first group presented the largest number of viable cells, the smallest number of cells in late apoptosis and necrosis with statistical significance, and no difference in apoptosis. When we compared the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with trypsin, the first group presented the largest number of viable cells, the smallest number of cells in apoptosis with statistical significance, and no difference in late apoptosis and necrosis. When we compared the results of the group treated with dispase for 18 hours and with trypsin for 10 minutes with the results for follical isolation, there was a statistical difference in apoptosis and viable cells. Conclusion: The isolation method of treatment with dispase for 18 hours and with trypsin for 10 minutes produced the largest number of viable cells and the smallest number of cells in apoptosis/necrosis. PMID:18350110

  17. Inhibitory effect of saponins and polysaccharides from Radix ranunculi ternati on human gastric cancer BGC823 cells.

    PubMed

    Niu, Lidan; Zhou, Yingfeng; Sun, Bing; Hu, Junling; Kong, Lingyu; Duan, Sufang

    2013-01-01

    The effects of different Radix ranunculi ternati extracts on human gastric cancer BGC823 cells were investigated, different methods were used to extract the saponins and polysaccharides from Radix ranunculi ternati, and MTT assay and colony formation assay were used to observe the effects of saponins and polysaccharides from Radix ranunculi ternati on in-vitro cultured human gastric cancer BGC823 cells. The results found that the saponins and polysaccharides from Radix Ranunculi Ternati had certain effects on both the growth and colony formation of human gastric cancer BGC823 cells, while improving the immune function of normal mice, of which saponins had more significant effects than polysaccharides.

  18. [In vitro activity of human bone marrow cells after cryopreservation in liquid nitrogen for 21 - 25 years].

    PubMed

    Huang, You-Zhang; Shen, Jian-Liang; Gong, Li-Zhong; Zheng, Pei-Hao; Liu, Yi; Yin, Wen-Jie; Cen, Jian; Wang, Ning; Zhao, De-Feng

    2010-02-01

    The aim of this study was to investigate the best method to preserve human bone marrow cells and the effectiveness of long term cryopreservation at -80 degrees C. The human bone marrow cells in 20 samples were firstly frozen by a programmed freezer or -80 degrees C refrigerator, and then were preserved in liquid nitrogen with DMSO-AuP (10% dimethylsulfonamide, 10% autologous plasma) or DMSO-HES-HuA (5% dimethylsulfonamide, 6% hydroxyethyl starch, 4% human serum albumin) as cryoprotectant for 21 to 25 years. They were thawed in 38 degrees C. The cell sample frozen in -80 degrees C refrigerator was frozen at a low frozen speed of 1 degrees C/min which was the same as the programmed freezer before -30 degrees C. Before detection the bone marrow cells were taken from liquid nitrogen and were thawed in 38 degrees C, then the suspension of bone marrow cells was prepared for detection. The cell morphology and recovery rate of erythrocytes, nucleocytes and platelets; the recovery rate of hematopoietic stem progenitors cells, as well as mesenchymal stem cells were determined. The results showed that the protective effectiveness of DMSO-HES-HuA was better than DMSO-AuP. The mature erythrocytes were destroyed lightly [(3.5 +/- 1.5)% versus (12.6 +/- 4.8)%], the hemolysis rate was lower [(3.3 +/- 1.6)% versus (23.1 +/- 5.1)%]. Osmotic fragility of erythrocytes in the former was not changed, but was dropped in the latter. The recovery rates of red cell, platelet, granulocyte-macrophage colony forming units and long term culture-initiating cells were higher in the former than that in the latter [(96.1 +/- 1.8)%, (70.0 +/- 9.5)%, (49.2 +/- 10.9)%, (54.2 +/- 13.8)% versus (76.3 +/- 5.6)%, (52.7 +/- 8.1)%, (43.5 +/- 12.3)%, (47.2 +/- 13.6)% respectively]. With each kind of cryoprotectant or frozen method, the frozen MSC could keep the original growth properties. With the same cryoprotectant and different frozen method, the cryopreservative effectiveness was not different. The influence of the cryoprotectant prescriptions and the frozen methods on the cryopreservative effectiveness was little. It is concluded that the human bone marrow cells with DMSO-AuP or DMSO-HES-HuA as cryoprotectant, frozen by a programmed freezer or -80 degrees C refrigerator, could be then preserved in liquid nitrogen for long time. When the preserving time was as long as 21 to 25 years, the morphology, the recovery rate and the activity of various kinds of cells were still good. The method of freezing by -80 degrees C refrigerator with 5% DMSO-6% HES-4% HuA and preserving in liquid nitrogen would be convenient, cheap and easily-manipulated for preservation of the human bone marrow cells.

  19. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    PubMed

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Accurate and reproducible functional maps in 127 human cell types via 2D genome segmentation

    PubMed Central

    Hardison, Ross C.

    2017-01-01

    Abstract The Roadmap Epigenomics Consortium has published whole-genome functional annotation maps in 127 human cell types by integrating data from studies of multiple epigenetic marks. These maps have been widely used for studying gene regulation in cell type-specific contexts and predicting the functional impact of DNA mutations on disease. Here, we present a new map of functional elements produced by applying a method called IDEAS on the same data. The method has several unique advantages and outperforms existing methods, including that used by the Roadmap Epigenomics Consortium. Using five categories of independent experimental datasets, we compared the IDEAS and Roadmap Epigenomics maps. While the overall concordance between the two maps is high, the maps differ substantially in the prediction details and in their consistency of annotation of a given genomic position across cell types. The annotation from IDEAS is uniformly more accurate than the Roadmap Epigenomics annotation and the improvement is substantial based on several criteria. We further introduce a pipeline that improves the reproducibility of functional annotation maps. Thus, we provide a high-quality map of candidate functional regions across 127 human cell types and compare the quality of different annotation methods in order to facilitate biomedical research in epigenomics. PMID:28973456

  1. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium

    PubMed Central

    Reichman, Sacha; Terray, Angélique; Slembrouck, Amélie; Nanteau, Céline; Orieux, Gaël; Habeler, Walter; Nandrot, Emeline F.; Sahel, José-Alain; Monville, Christelle; Goureau, Olivier

    2014-01-01

    Progress in retinal-cell therapy derived from human pluripotent stem cells currently faces technical challenges that require the development of easy and standardized protocols. Here, we developed a simple retinal differentiation method, based on confluent human induced pluripotent stem cells (hiPSC), bypassing embryoid body formation and the use of exogenous molecules, coating, or Matrigel. In 2 wk, we generated both retinal pigmented epithelial cells and self-forming neural retina (NR)-like structures containing retinal progenitor cells (RPCs). We report sequential differentiation from RPCs to the seven neuroretinal cell types in maturated NR-like structures as floating cultures, thereby revealing the multipotency of RPCs generated from integration-free hiPSCs. Furthermore, Notch pathway inhibition boosted the generation of photoreceptor precursor cells, crucial in establishing cell therapy strategies. This innovative process proposed here provides a readily efficient and scalable approach to produce retinal cells for regenerative medicine and for drug-screening purposes, as well as an in vitro model of human retinal development and disease. PMID:24912154

  2. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    PubMed

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    PubMed

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. Copyright © 2012 AlphaMed Press.

  4. 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate and its 4-formyl analog-Ultrasound assisted synthesis and in-vitro anticancer evaluation against human tumor cell lines.

    PubMed

    Bhosale, Sachin K; Deshpande, Shreenivas R; Wagh, Rajendra D

    2017-03-01

    The title compound, 3-(4-chlorophenyl)-4-formyl-[1, 2, 3] oxadiazol-3-ium-5-olate 5 was synthesized under ultrasonication by formylation of 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate 4 and characterized by spectral studies. The ultrasonic method of synthesis was found to be simple, ecofriendly, economical, reduces reaction time and gave good yield when compared with traditional methods of synthesis. Anticancer activity of the compounds were tested against 60 human tumor cell lines and compared with standard drug vincristine sulphate. Compound 5 was found to be active against CNS (SNB-75, %GI=46.71), renal (UO-31, %GI=31.52), non small cell lung (NCI-H522, %GI=25.65), leukemia (MOLT-4, %GI=23.02) human tumor cell lines whereas, compound 4 against breast (MDA-MB-231/ATCC, %GI=19.90, T-47D %GI=16.50, MCF-7 15.10) and ovarian (IGROV1 %GI=19.30, OVCAR-4 %GI=17.90) human tumor cell lines. Compound 5 showed higher cytotoxicity against NCI-H23 cells (non small lung cancer cell panel) as compared to standard drug vincristine sulphate. Further structural modification of these compounds may lead to potent anticancer activity.

  5. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    PubMed

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Characterization and Separation of Cancer Cells with a Wicking Fiber Device.

    PubMed

    Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L

    2017-12-01

    Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.

  7. Highly Efficient Differentiation and Enrichment of Spinal Motor Neurons Derived from Human and Monkey Embryonic Stem Cells

    PubMed Central

    Wada, Tamaki; Honda, Makoto; Minami, Itsunari; Tooi, Norie; Amagai, Yuji; Nakatsuji, Norio; Aiba, Kazuhiro

    2009-01-01

    Background There are no cures or efficacious treatments for severe motor neuron diseases. It is extremely difficult to obtain naïve spinal motor neurons (sMNs) from human tissues for research due to both technical and ethical reasons. Human embryonic stem cells (hESCs) are alternative sources. Several methods for MN differentiation have been reported. However, efficient production of naïve sMNs and culture cost were not taken into consideration in most of the methods. Methods/Principal Findings We aimed to establish protocols for efficient production and enrichment of sMNs derived from pluripotent stem cells. Nestin+ neural stem cell (NSC) clusters were induced by Noggin or a small molecule inhibitor of BMP signaling. After dissociation of NSC clusters, neurospheres were formed in a floating culture containing FGF2. The number of NSCs in neurospheres could be expanded more than 30-fold via several passages. More than 33% of HB9+ sMN progenitor cells were observed after differentiation of dissociated neurospheres by all-trans retinoic acid (ATRA) and a Shh agonist for another week on monolayer culture. HB9+ sMN progenitor cells were enriched by gradient centrifugation up to 80% purity. These HB9+ cells differentiated into electrophysiologically functional cells and formed synapses with myotubes during a few weeks after ATRA/SAG treatment. Conclusions and Significance The series of procedures we established here, namely neural induction, NSC expansion, sMN differentiation and sMN purification, can provide large quantities of naïve sMNs derived from human and monkey pluripotent stem cells. Using small molecule reagents, reduction of culture cost could be achieved. PMID:19701462

  8. Expression of HLA Class II Molecules in Humanized NOD.Rag1KO.IL2RgcKO Mice Is Critical for Development and Function of Human T and B Cells

    PubMed Central

    Danner, Rebecca; Chaudhari, Snehal N.; Rosenberger, John; Surls, Jacqueline; Richie, Thomas L.; Brumeanu, Teodor-Doru; Casares, Sofia

    2011-01-01

    Background Humanized mice able to reconstitute a surrogate human immune system (HIS) can be used for studies on human immunology and may provide a predictive preclinical model for human vaccines prior to clinical trials. However, current humanized mouse models show sub-optimal human T cell reconstitution and limited ability to support immunoglobulin class switching by human B cells. This limitation has been attributed to the lack of expression of Human Leukocyte Antigens (HLA) molecules in mouse lymphoid organs. Recently, humanized mice expressing HLA class I molecules have been generated but showed little improvement in human T cell reconstitution and function of T and B cells. Methods We have generated NOD.Rag1KO.IL2RγcKO mice expressing HLA class II (HLA-DR4) molecules under the I-Ed promoter that were infused as adults with HLA-DR-matched human hematopoietic stem cells (HSC). Littermates lacking expression of HLA-DR4 molecules were used as control. Results HSC-infused HLA-DR4.NOD.Rag1KO.IL-2RγcKO mice developed a very high reconstitution rate (>90%) with long-lived and functional human T and B cells. Unlike previous humanized mouse models reported in the literature and our control mice, the HLA-DR4 expressing mice reconstituted serum levels (natural antibodies) of human IgM, IgG (all four subclasses), IgA, and IgE comparable to humans, and elicited high titers of specific human IgG antibodies upon tetanus toxoid vaccination. Conclusions Our study demonstrates the critical role of HLA class II molecules for development of functional human T cells able to support immunoglobulin class switching and efficiently respond to vaccination. PMID:21611197

  9. In situ induction of dendritic cell–based T cell tolerance in humanized mice and nonhuman primates

    PubMed Central

    Jung, Kyeong Cheon; Jeon, Yoon Kyung; Ban, Young Larn; Min, Hye Sook; Kim, Eun Ji; Kim, Ju Hyun; Kang, Byung Hyun; Bae, Youngmee; Yoon, Il-Hee; Kim, Yong-Hee; Lee, Jae-Il; Kim, Jung-Sik; Shin, Jun-Seop; Yang, Jaeseok; Kim, Sung Joo; Rostlund, Emily; Muller, William A.

    2011-01-01

    Induction of antigen-specific T cell tolerance would aid treatment of diverse immunological disorders and help prevent allograft rejection and graft versus host disease. In this study, we establish a method of inducing antigen-specific T cell tolerance in situ in diabetic humanized mice and Rhesus monkeys receiving porcine islet xenografts. Antigen-specific T cell tolerance is induced by administration of an antibody ligating a particular epitope on ICAM-1 (intercellular adhesion molecule 1). Antibody-mediated ligation of ICAM-1 on dendritic cells (DCs) led to the arrest of DCs in a semimature stage in vitro and in vivo. Ablation of DCs from mice completely abrogated anti–ICAM-1–induced antigen-specific T cell tolerance. T cell responses to unrelated antigens remained unaffected. In situ induction of DC-mediated T cell tolerance using this method may represent a potent therapeutic tool for preventing graft rejection. PMID:22025302

  10. The anti-human immunodeficiency virus agent 3'-fluorothymidine induces DNA damage and apoptosis in human lymphoblastoid cells.

    PubMed Central

    Sundseth, R; Joyner, S S; Moore, J T; Dornsife, R E; Dev, I K

    1996-01-01

    Patients infected with the human immunodeficiency virus experienced severe hematopoietic toxicity after treatment with the deoxynucleoside analog 3'-fluorothymidine (FLT). Using several methods for the analysis of genome integrity, including histochemical staining of the 3' ends of DNA and both conventional and pulsed-field agarose gel electrophoresis, we demonstrated that FLT caused extensive DNA fragmentation in CEM cells that was not observed when these cells were treated with other, less toxic thymidine analogs. In addition, a distinctive pattern of small DNA fragments that is characteristic of cells in the process of programmed cell death was observed in the genomic DNA of CEM cells treated with FLT. We conclude that FLT induces DNA fragmentation and apoptosis in a human cell line of hematopoietic origin, and we offer this observation as a possible explanation for the severe toxicity of FLT observed in vivo. PMID:8834875

  11. INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO

    PubMed Central

    Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling

    2017-01-01

    Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells Materials and Methods: MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Results: Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Conclusion: Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug. PMID:28638890

  12. Detection and Phenotypic Characterization of Adult Neurogenesis

    PubMed Central

    Kuhn, H. Georg; Eisch, Amelia J.; Spalding, Kirsty; Peterson, Daniel A.

    2016-01-01

    Studies of adult neurogenesis have greatly expanded in the last decade, largely as a result of improved tools for detecting and quantifying neurogenesis. In this review, we summarize and critically evaluate detection methods for neurogenesis in mammalian and human brain tissue. Besides thymidine analog labeling, cell-cycle markers are discussed, as well as cell stage and lineage commitment markers. Use of these histological tools is critically evaluated in terms of their strengths and limitations, as well as possible artifacts. Finally, we discuss the method of radiocarbon dating for determining cell and tissue turnover in humans. PMID:26931327

  13. New medium used in the differentiation of human pluripotent stem cells to retinal cells is comparable to fetal human eye tissue.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lin, Cong; Lv, Lei; Chen, Jing; Xu, Chongchong; Wang, Songtao; Gu, Dandan; Zheng, Hua; Yu, Hurong; Li, Yan; Xiao, Honglei; Zhou, Guomin

    2015-06-01

    Human pluripotent stem cells (hPSCs) have the potential to differentiate along the retinal lineage. However, most induction systems are dependent on multiple small molecular compounds such as Dkk-1, Lefty-A, and retinoic acid. In the present study, we efficiently differentiated hPSCs into retinal cells using a retinal differentiation medium (RDM) without the use of small molecular compounds. This novel differentiation system recapitulates retinal morphogenesis in humans, i.e. hPSCs gradually differentiate into optic vesicle-shaped spheres, followed by optic cup-shaped spheres and, lastly, retinal progenitor cells. Furthermore, at different stages, hPSC-derived retinal cells mirror the transcription factor expression profiles seen in their counterparts during human embryogenesis. Most importantly, hinge epithelium was found between the hPSC-derived neural retina (NR) and retinal pigment epithelium (RPE). These data suggest that our culture system provides a new method for generating hPSC-derived retinal cells that, for the first time, might be used in human transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III.

    PubMed

    Fujimura, Tatsuya; Kurome, Mayuko; Murakami, Hiroshi; Takahagi, Yoichi; Matsunami, Katsuyoshi; Shimanuki, Shinichi; Suzuki, Kohei; Miyagawa, Shuji; Shirakura, Ryota; Shigehisa, Tamotsu; Nagashima, Hiroshi

    2004-01-01

    The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.

  15. ITE inhibits growth of human pulmonary artery endothelial cells.

    PubMed

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  16. Pigment Production Analysis in Human Melanoma Cells.

    PubMed

    Hopkin, Amelia Soto; Paterson, Elyse K; Ruiz, Rolando; Ganesan, Anand K

    2016-05-25

    The human epidermal melanocyte is a highly specialized pigmented cell that serves to protect the epidermis from ultraviolet (UV) damage through the production of melanin, or melanogenesis. Misregulation in melanogenesis leading to either hyper- or hypo-pigmentation is found in human diseases such as malasma and vitiligo. Current therapies for these diseases are largely unsuccessful and the need for new therapies is necessary. In order to identify genes and or compounds that can alter melanogenesis, methods are required that can detect changes in pigment production as well as expression of key melanogenesis transcription factors and enzymes. Here we describe methods to detect changes in melanogenesis in a human melanoma cell line, MNT-1, by (1) analyzing pigment production by measuring the absorbance of melanin present by spectrophotometry, (2) analyzing transcript expression of potent regulators of melanogenesis by qunatitative reverse-transcription (RT)PCR and (3) analyzing protein expression of potent regulators of melanogenesis by Western blot (WB).

  17. A Simplified and Systematic Method to Isolate, Culture, and Characterize Multiple Types of Human Dental Stem Cells from a Single Tooth.

    PubMed

    Bakkar, Mohammed; Liu, Younan; Fang, Dongdong; Stegen, Camille; Su, Xinyun; Ramamoorthi, Murali; Lin, Li-Chieh; Kawasaki, Takako; Makhoul, Nicholas; Pham, Huan; Sumita, Yoshinori; Tran, Simon D

    2017-01-01

    This chapter describes a simplified method that allows the systematic isolation of multiple types of dental stem cells such as dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC), and stem cells of the apical papilla (SCAP) from a single tooth. Of specific interest is the modified laboratory approach to harvest/retrieve the dental pulp tissue by minimizing trauma to DPSC by continuous irrigation, reduction of frictional heat from the bur rotation, and reduction of the bur contact time with the dentin. Also, the use of a chisel and a mallet will maximize the number of live DPSC for culture. Steps demonstrating the potential for multiple cell differentiation lineages of each type of dental stem cell into either osteocytes, adipocytes, or chondrocytes are described. Flow cytometry, with a detailed strategy for cell gating and analysis, is described to verify characteristic markers of human mesenchymal multipotent stromal cells (MSC) from DPSC, PDLSC, or SCAP for subsequent experiments in cell therapy and in tissue engineering. Overall, this method can be adapted to any laboratory with a general setup for cell culture experiments.

  18. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    DOEpatents

    Jensen, R.H.; Vanderlaan, M.; Bigbee, W.L.; Stanker, L.H.; Branscomb, E.W.; Grabske, R.J.

    1984-11-29

    The present invention provides monoclonal antibodies specific to and distinguishing between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype. 4 figs.

  19. Machine Learning Approach to Automated Quality Identification of Human Induced Pluripotent Stem Cell Colony Images.

    PubMed

    Joutsijoki, Henry; Haponen, Markus; Rasku, Jyrki; Aalto-Setälä, Katriina; Juhola, Martti

    2016-01-01

    The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient's cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using a k-NN classifier showing improved accuracy compared to earlier studies.

  20. Isolation and characterization of human umbilical cord-derived endothelial colony-forming cells

    PubMed Central

    Zhang, Hao; Tao, Yanling; Ren, Saisai; Liu, Haihui; Zhou, Hui; Hu, Jiangwei; Tang, Yongyong; Zhang, Bin; Chen, Hu

    2017-01-01

    Endothelial colony-forming cells (ECFCs) are a population of endothelial progenitor cells (EPCs) that display robust proliferative potential and vessel-forming capability. Previous studies have demonstrated that a limited number of ECFCs may be obtained from adult bone marrow, peripheral blood and umbilical cord (UC) blood. The present study describes an effective method for isolating ECFCs from human UC. The ECFCs derived from human UC displayed the full properties of EPCs. Analysis of the growth kinetics, cell cycle and colony-forming ability of the isolated human UC-ECFCs indicated that the cells demonstrated properties of stem cells, including relative stability and rapid proliferation in vitro. Gene expression of Fms related tyrosine kinase 1, kinase insert domain receptor, vascular endothelial cadherin, cluster of differentiation (CD)31, CD34, epidermal growth factor homology domains-2, von Willebrand factor and endothelial nitric oxide synthase was assessed by reverse transcription-polymerase chain reaction. The cells were positive for CD34, CD31, CD73, CD105 and vascular endothelial growth factor receptor-2, and negative for CD45, CD90 and human leukocyte antigen-antigen D related protein according to flow cytometry. 1,1′-dioctadecyl-3,3,3′,3′-tetra-methyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein and fluorescein isothiocyanate-Ulex europaeus-l were used to verify the identity of the UC-ECFCs. Matrigel was used to investigate tube formation capability. The results demonstrated that the reported technique is a valuable method for isolating human UC-ECFCs, which have potential for use in vascular regeneration. PMID:29067104

  1. Da0324, an inhibitor of nuclear factor-κB activation, demonstrates selective antitumor activity on human gastric cancer cells

    PubMed Central

    Jin, Rong; Xia, Yiqun; Chen, Qiuxiang; Li, Wulan; Chen, Dahui; Ye, Hui; Zhao, Chengguang; Du, Xiaojing; Shi, Dengjian; Wu, Jianzhang; Liang, Guang

    2016-01-01

    Background The transcription factor nuclear factor-κB (NF-κB) is constitutively activated in a variety of human cancers, including gastric cancer. NF-κB inhibitors that selectively kill cancer cells are urgently needed for cancer treatment. Curcumin is a potent inhibitor of NF-κB activation. Unfortunately, the therapeutic potential of curcumin is limited by its relatively low potency and poor cellular bioavailability. In this study, we presented a novel NF-κB inhibitor named Da0324, a synthetic asymmetric mono-carbonyl analog of curcumin. The purpose of this study is to research the expression of NF-κB in gastric cancer and the antitumor activity and mechanism of Da0324 on human gastric cancer cells. Methods The expressions between gastric cancer tissues/cells and normal gastric tissues/cells of NF-κB were evaluated by Western blot. The inhibition viability of compounds on human gastric cancer cell lines SGC-7901, BGC-823, MGC-803, and normal gastric mucosa epithelial cell line GES-1 was assessed with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Absorption spectrum method and high-performance liquid chromatography method detected the stability of the compound in vitro. The compound-induced changes of inducible NF-κB activation in the SGC-7901 and BGC-823 cells were examined by Western blot analysis and immunofluorescence methods. The antitumor activity of compound was performed by clonogenic assay, matrigel invasion assay, flow cytometric analysis, Western blot analysis, and Hoechst 33258 staining assay. Results High levels of p65 were found in gastric cancer tissues and cells. Da0324 displayed higher growth inhibition against several types of gastric cancer cell lines and showed relatively low toxicity to GES-1. Moreover, Da0324 was more stable than curcumin in vitro. Western blot analysis and immunofluorescence methods showed that Da0324 blocked NF-κB activation. In addition, Da0324 significantly inhibited tumor proliferation and invasion, arrested the cell cycle, and induced apoptosis in vitro. Conclusion The asymmetric mono-carbonyl analog of curcumin Da0324 exhibited significantly improved antigastric cancer activity. Da0324 may be a promising NF-κB inhibitor for the selective targeting of cancer cells. However, further studies are needed in animals to validate these findings for the therapeutic use of Da0324. PMID:27042000

  2. The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells.

    PubMed

    Zhu, Yanxia; Liang, Yuhong; Zhu, Hongxia; Lian, Cuihong; Wang, Liang; Wang, Yiwei; Gu, Hongsheng; Zhou, Guangqian; Yu, Xiaoping

    2017-06-27

    Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.

  3. Generation of a conditional analog-sensitive kinase in human cells using CRISPR/Cas9-mediated genome engineering.

    PubMed

    Moyer, Tyler C; Holland, Andrew J

    2015-01-01

    The ability to rapidly and specifically modify the genome of mammalian cells has been a long-term goal of biomedical researchers. Recently, the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system from bacteria has been exploited for genome engineering in human cells. The CRISPR system directs the RNA-guided Cas9 nuclease to a specific genomic locus to induce a DNA double-strand break that may be subsequently repaired by homology-directed repair using an exogenous DNA repair template. Here we describe a protocol using CRISPR/Cas9 to achieve bi-allelic insertion of a point mutation in human cells. Using this method, homozygous clonal cell lines can be constructed in 5-6 weeks. This method can also be adapted to insert larger DNA elements, such as fluorescent proteins and degrons, at defined genomic locations. CRISPR/Cas9 genome engineering offers exciting applications in both basic science and translational research. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. High throughput single cell counting in droplet-based microfluidics.

    PubMed

    Lu, Heng; Caen, Ouriel; Vrignon, Jeremy; Zonta, Eleonora; El Harrak, Zakaria; Nizard, Philippe; Baret, Jean-Christophe; Taly, Valérie

    2017-05-02

    Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.

  5. Increase in apoptosis by combination of metformin with silibinin in human colorectal cancer cells

    PubMed Central

    Tsai, Cheng-Chia; Chuang, Tang-Wei; Chen, Li-Jen; Niu, Ho-Shan; Chung, Kun-Ming; Cheng, Juei-Tang; Lin, Kao-Chang

    2015-01-01

    AIM: To investigate the effect of metformin on silibinin-induced apoptosis in human colorectal cancer (COLO 205) cells. METHODS: MTT assays were performed to quantify cell viability. Western blot assays were applied to identify the expression of signaling proteins. RESULTS: The combined treatment of COLO 205 cells with metformin and silibinin decreased cell survival at a dose insufficient to influence the non-malignant cells [Human colonic epithelial cells (HCoEpiC)]. Silibinin and metformin increased phosphatase and tensin homolog and 5’-adenosine monophosphate-activated protein kinase expression in COLO 205 cells and inhibited the phosphorylation of mammol/Lalian target of rapamycin. This combined treatment resulted in an increase in the expression of activated caspase 3 and apoptosis inducing factor, indicating apoptosis. CONCLUSION: The combined treatment of human colorectal cancer cells with silibinin and metformin may induce apoptosis at a dose that does not affect HCoEpiC. This finding reveals a potential therapeutic strategy for the treatment of colorectal cancer. PMID:25892866

  6. Generation of transgene-free induced pluripotent stem cells with non-viral methods.

    PubMed

    Wang, Tao; Zhao, Hua-shan; Zhang, Qiu-ling; Xu, Chang-lin; Liu, Chang-bai

    2013-03-01

    Induced pluripotent stem (iPS) cells were originally generated from mouse fibroblasts by enforced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc). The technique was quickly reproduced with human fibroblasts or mesenchymal stem cells. Although having been showed therapeutic potential in animal models of sickle cell anemia and Parkinson's disease, iPS cells generated by viral methods do not suit all the clinical applications. Various non-viral methods have appeared in recent years for application of iPS cells in cell transplantation therapy. These methods mainly include DNA vector-based approaches, transfection of mRNA, and transduction of reprogramming proteins. This review summarized these non-viral methods and compare the advantages, disadvantages, efficiency, and safety of these methods.

  7. Generation and characterisation of human umbilical cord derived mesenchymal stem cells by explant method.

    PubMed

    Yusoff, Z; Maqbool, M; George, E; Hassan, R; Ramasamy, R

    2016-06-01

    Mesenchymal stem cells (MSCs) derived from human umbilical cord (UC) have been considered as an important tool for treating various malignancies, tissue repair and organ regeneration. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are better alternative to MSCs that derived from bone marrow (BM-MSCs) as they are regarded as medical waste with little ethical concern for research and easily culture-expanded. In this present study, the foetal distal end of human UC was utilised to generate MSC by explant method. Upon in vitro culture, adherent cells with fibroblastic morphology were generated with rapid growth kinetics. Under the respective inductive conditions, these cells were capable of differentiating into adipocytes and osteocytes; express an array of standard MSC's surface markers CD29, CD73, CD90, CD106 and MHC-class I. Further assessment of immunosuppression activity revealed that MSCs generated from UC had profoundly inhibited the proliferation of mitogen-activated T lymphocytes in a dosedependent manner. The current laboratory findings have reinforced the application of explant method to generate UCMSCs thus, exploring an ideal platform to fulfil the increasing demand of MSCs for research and potential clinical use.

  8. A highly relevant and efficient single step method for simultaneous depletion and isolation of human regulatory T cells in a clinical setting.

    PubMed

    Brezar, Vedran; Ruffin, Nicolas; Lévy, Yves; Seddiki, Nabila

    2014-09-01

    Regulatory T cells (Tregs) are pivotal in preventing autoimmunity. They play a major but still ambiguous role in cancer and viral infections. Functional studies of human Tregs are often hampered by numerous technical difficulties arising from imperfections in isolating and depleting protocols, together with the usual low cell number available from clinical samples. We standardized a simple procedure (Single Step Method, SSM), based on magnetic beads technology, in which both depletion and isolation of human Tregs with high purities are simultaneously achieved. SSM is suitable when using low cell numbers either fresh or frozen from both patients and healthy individuals. It allows simultaneous Tregs isolation and depletion that can be used for further functional work to monitor suppressive function of isolated Tregs (in vitro suppression assay) and also effector IFN-γ responses of Tregs-depleted cell fraction (OX40 assay). To our knowledge, there is no accurate standardized method for Tregs isolation and depletion in a clinical context. SSM could thus be used and easily standardized across different laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells

    PubMed Central

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Background Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). Results/Methodology We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Conclusion Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease. PMID:25826140

  10. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture.

    PubMed

    Levis, Hannah J; Massie, Isobel; Dziasko, Marc A; Kaasi, Andreas; Daniels, Julie T

    2013-11-01

    Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Generation of inner ear sensory cells from bone marrow-derived human mesenchymal stem cells.

    PubMed

    Durán Alonso, M Beatriz; Feijoo-Redondo, Ana; Conde de Felipe, Magnolia; Carnicero, Estela; García, Ana Sánchez; García-Sancho, Javier; Rivolta, Marcelo N; Giráldez, Fernando; Schimmang, Thomas

    2012-11-01

    Hearing loss is the most common sensory disorder in humans, its main cause being the loss of cochlear hair cells. We studied the potential of human mesenchymal stem cells (hMSCs) to differentiate towards hair cells and auditory neurons. hMSCs were first differentiated to neural progenitors and subsequently to hair cell- or auditory neuron-like cells using in vitro culture methods. Differentiation of hMSCs to an intermediate neural progenitor stage was critical for obtaining inner ear sensory lineages. hMSCs generated hair cell-like cells only when neural progenitors derived from nonadherent hMSC cultures grown in serum-free medium were exposed to EGF and retinoic acid. Auditory neuron-like cells were obtained when treated with retinoic acid, and in the presence of defined growth factor combinations containing Sonic Hedgehog. The results show the potential of hMSCs to give rise to inner ear sensory cells.

  12. Enhanced conversion of induced neuronal cells (iN cells) from human fibroblasts: utility in uncovering cellular deficits in mental illness-associated chromosomal abnormalities

    PubMed Central

    Passeri, Eleonora; Wilson, Ashley M.; Primerano, Amedeo; Kondo, Mari A.; Sengupta, Srona; Srivastava, Rupali; Koga, Minori; Obie, Cassandra; Zandi, Peter P.; Goes, Fernando S.; Valle, David; Rapoport, Judith L.; Sawa, Akira; Kano, Shin-ichi; Ishizuka, Koko

    2016-01-01

    The novel technology of induced neuronal cells (iN cells) is promising for translational neuroscience, as it allows the conversion of human fibroblasts into cells with postmitotic neuronal traits. However, a major technical barrier is the low conversion rate. To overcome this problem, we optimized the conversion media. Using our improved formulation, we studied how major mental illness-associated chromosomal abnormalities may impact the characteristics of iN cells. We demonstrated that our new iN cell culture protocol enabled us to obtain more precise measurement of neuronal cellular phenotypes than previous iN cell methods. Thus, this iN cell culture provides a platform to efficiently obtain possible cellular phenotypes caused by genetic differences, which can be more thoroughly studied in research using other human cell models such as induced pluripotent stem cells. PMID:26260244

  13. Exfoliated Human Olfactory Neuroepithelium: A Source of Neural Progenitor Cells.

    PubMed

    Jiménez-Vaca, Ana L; Benitez-King, Gloria; Ruiz, Víctor; Ramírez-Rodríguez, Gerardo B; Hernández-de la Cruz, Beatriz; Salamanca-Gómez, Fabio A; González-Márquez, Humberto; Ramírez-Sánchez, Israel; Ortíz-López, Leonardo; Vélez-Del Valle, Cristina; Ordoñez-Razo, Rosa Ma

    2018-03-01

    Neural progenitor cells (NPC) contained in the human adult olfactory neuroepithelium (ONE) possess an undifferentiated state, the capability of self-renewal, the ability to generate neural and glial cells as well as being kept as neurospheres in cell culture conditions. Recently, NPC have been isolated from human or animal models using high-risk surgical methods. Therefore, it was necessary to improve methodologies to obtain and maintain human NPC as well as to achieve better knowledge of brain disorders. In this study, we propose the establishment and characterization of NPC cultures derived from the human olfactory neuroepithelium, using non-invasive procedures. Twenty-two healthy individuals (29.7 ± 4.5 years of age) were subjected to nasal exfoliation. Cells were recovered and kept as neurospheres under serum-free conditions. The neural progenitor origin of these neurospheres was determined by immunocytochemistry and qPCR. Their ability for self-renewal and multipotency was analyzed by clonogenic and differentiation assays, respectively. In the cultures, the ONE cells preserved the phenotype of the neurospheres. The expression levels of Nestin, Musashi, Sox2, and βIII-tubulin demonstrated the neural origin of the neurospheres; 48% of the cells separated could generate neurospheres, determining that they retained their self-renewal capacity. Neurospheres were differentiated in the absence of growth factors (EGF and FGF), and their multipotency ability was maintained as well. We were also able to isolate and grow human neural progenitor cells (neurospheres) through nasal exfoliates (non-invasive method) of the ONE from healthy adults, which is an extremely important contribution for the study of brain disorders and for the development of new therapies.

  14. Magnetic-Activated Cell Sorting for the Fast and Efficient Separation of Human and Rodent Schwann Cells from Mixed Cell Populations.

    PubMed

    Ravelo, Kristine M; Andersen, Natalia D; Monje, Paula V

    2018-01-01

    To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75 NGFR , O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.

  15. Improved Serial Sectioning Techniques for Correlative Light-Electron Microscopy Mapping of Human Langerhans Islets

    PubMed Central

    Saitoh, Sei; Ohno, Nobuhiko; Saitoh, Yurika; Terada, Nobuo; Shimo, Satoshi; Aida, Kaoru; Fujii, Hideki; Kobayashi, Tetsuro; Ohno, Shinichi

    2018-01-01

    Combined analysis of immunostaining for various biological molecules coupled with investigations of ultrastructural features of individual cells is a powerful approach for studies of cellular functions in normal and pathological conditions. However, weak antigenicity of tissues fixed by conventional methods poses a problem for immunoassays. This study introduces a method of correlative light and electron microscopy imaging of the same endocrine cells of compact and diffuse islets from human pancreatic tissue specimens. The method utilizes serial sections obtained from Epon-embedded specimens fixed with glutaraldehyde and osmium tetroxide. Double-immunofluorescence staining of thick Epon sections for endocrine hormones (insulin and glucagon) and regenerating islet-derived gene 1 α (REG1α) was performed following the removal of Epoxy resin with sodium ethoxide, antigen retrieval by autoclaving, and de-osmification treatment with hydrogen peroxide. The immunofluorescence images of endocrine cells were superimposed with the electron microscopy images of the same cells obtained from serial ultrathin sections. Immunofluorescence images showed well-preserved secretory granules in endocrine cells, whereas electron microscopy observations demonstrated corresponding secretory granules and intracellular organelles in the same cells. In conclusion, the correlative imaging approach developed by us may be useful for examining ultrastructural features in combination with immunolocalisation of endocrine hormones in the same human pancreatic islets. PMID:29622846

  16. Isolation of uv-sensitive variants of human FL cells by a viral suicide method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiomi, T.; Sato, K.

    A new method (viral suicide method) for the isolation of uv-sensitive mutants is described. Colonies of mutagenized human FL cells were infected with uv-irradiated Herpes simplex viruses and surviving ones which seemed to be deficient in host cell reactivation (HCR) were examined for their uv sensitivity. Nineteen of 238 clones examined were sensitive to uv irradiation at the time of the isolation. After recloning, four of these clones have been studied and two (UVS-1 and UVS-2) of them are stable in their uv sensitivity for 4 months in culture. uv sensitivity of UVS-1, UVS-2, and the parental FL cells aremore » as follows: the extrapolation numbers (n) are 2.2, 2.1, and 1.8 and mean lethal doses (DO) are 2.9, 3.7, and 7.8 J/m/sup 2/ for UVS-1, UVS-2, and the parental FL cells, respectively. They are no more sensitive than FL cells to x-irradiation. The ability of HCR in UVS-2 cells is apparently lower than that in FL cells, whereas UVS-1 cells are the same as FL cells in the ability.« less

  17. Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest.

    PubMed

    Li, Guilin; Zhang, Zhenxing; Wang, Renzhi; Ma, Wenbin; Yang, Ying; Wei, Junji; Wei, Yanping

    2013-04-11

    Depletion of calcium (Ca2+) from the endoplasmic reticulum (ER) activates the ubiquitous store-operated Ca2+ entry (SOCE) pathway which sustains long-term Ca2+ signals and is critical for cellular functions. Stromal interacting molecule 1 (STIM1) serves a dual role as an ER Ca2+ sensor and activator of SOCE. Aberrant expression of STIM1 could be observed in several human cancer cells. However, the role of STIM1 in regulating tumorigenesis of human glioblastoma still remains unclear. Expression of STIM1 protein in a panel of human glioblastoma cell lines (U251, U87 and U373) in different transformation level were evaluated by Western blot method. STIM1 loss of function was performed on U251 cells, derived from grade IV astrocytomas-glioblastoma multiforme with a lentvirus-mediated short harpin RNA (shRNA) method. The biological impacts after knock down of STIM1 on glioblastoma cells were investigated in vitro and in vivo. We discovered that STIM1 protein was expressed in U251, U87 and U373 cells, and especially higher in U251 cells. RNA interference efficiently downregulated the expression of STIM1 in U251 cells at both mRNA and protein levels. Specific downregulation of STIM1 inhibited U251 cell proliferation by inducing cell cycle arrest in G0/G1 phase through regulation of cell cycle-related genes, such as p21Waf1/Cip1, cyclin D1 and cyclin-dependent kinase 4 (CDK4), and the antiproliferative effect of STIM1 silencing was also observed in U251 glioma xenograft tumor model. Our findings confirm STIM1 as a rational therapeutic target in human glioblastoma, and also indicate that lentivirus-mediated STIM1 silencing is a promising therapeutic strategy for human glioblastoma.

  18. Genome editing reveals a role for OCT4 in human embryogenesis.

    PubMed

    Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K

    2017-10-05

    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.

  19. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis

    PubMed Central

    2012-01-01

    Background Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Methods To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Results Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. Conclusions We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS. PMID:22480370

  20. Successful transplantation of in vitro expanded human cadaver corneal endothelial precursor cells on to a cadaver bovine's eye using a nanocomposite gel sheet.

    PubMed

    Parikumar, Periyasamy; Haraguchi, Kazutoshi; Ohbayashi, Akira; Senthilkumar, Rajappa; Abraham, Samuel J K

    2014-05-01

    In vitro expansion of human corneal endothelial precursor (HCEP) cells has been reported via production of cell aggregated spheres. However, to translate this procedure in human patients warrants maintaining the position of the eyeballs facing down for 36 h, which is not feasible. In this study, we report a method using a nanocomposite (NC) gel sheet to accomplish the integration of HCEP cells to the endothelium of cadaver bovine's eyes. HCEP cells were isolated from the corneal endothelium of a cadaver human eye and then expanded using a thermoreversible gelation polymer (TGP) as reported earlier. For the study, three cadaver bovine eyes were used. The NC gel sheets were inserted into the bovine eyes', aligned and suture-fixed in position under the host endothelium. HCEP cells previously expanded in the TGP were harvested and injected using a 26-gauge syringe between the endothelium and the NC gel sheet. The eyes were left undisturbed for three hours following which the NC gel sheets were gently removed. The corneas were harvested and subjected to histopathological studies. Histopathological studies showed that all the three corneas used for NC gel sheet implantation showed the presence of engrafted HCEP cells, seen as multi-layered cells over the native endothelium of the bovine cornea. Examination of the NC gel sheets used for implantation showed that only very few corneal endothelial cells remained on the sheets amounting to what could be considered negligible. The use of the NC gel sheet makes HCEP cell transplantation feasible for human patients. Further in vitro basic studies followed by translational studies are necessary to bring this method for clinical application in appropriate indications.

  1. Investigating the mincing method for isolation of adipose-derived stem cells from pregnant women fat.

    PubMed

    Li, Yuan-Sheng; Chen, Pao-Jen; Wu, Li-Wei; Chou, Pei-Wen; Sun, Li-Yi; Chiou, Tzyy-Wen

    2018-02-01

    The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.

  2. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells.

    PubMed

    Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen

    2015-12-01

    The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.

  3. Optimization and validation of FePro cell labeling method.

    PubMed

    Janic, Branislava; Rad, Ali M; Jordan, Elaine K; Iskander, A S M; Ali, Md M; Varma, N Ravi S; Frank, Joseph A; Arbab, Ali S

    2009-06-11

    Current method to magnetically label cells using ferumoxides (Fe)-protamine (Pro) sulfate (FePro) is based on generating FePro complexes in a serum free media that are then incubated overnight with cells for the efficient labeling. However, this labeling technique requires long (>12-16 hours) incubation time and uses relatively high dose of Pro (5-6 microg/ml) that makes large extracellular FePro complexes. These complexes can be difficult to clean with simple cell washes and may create low signal intensity on T2* weighted MRI that is not desirable. The purpose of this study was to revise the current labeling method by using low dose of Pro and adding Fe and Pro directly to the cells before generating any FePro complexes. Human tumor glioma (U251) and human monocytic leukemia cell (THP-1) lines were used as model systems for attached and suspension cell types, respectively and dose dependent (Fe 25 to 100 microg/ml and Pro 0.75 to 3 microg/ml) and time dependent (2 to 48 h) labeling experiments were performed. Labeling efficiency and cell viability of these cells were assessed. Prussian blue staining revealed that more than 95% of cells were labeled. Intracellular iron concentration in U251 cells reached approximately 30-35 pg-iron/cell at 24 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. However, comparable labeling was observed after 4 h across the described FePro concentrations. Similarly, THP-1 cells achieved approximately 10 pg-iron/cell at 48 h when labeled with 100 microg/ml of Fe and 3 microg/ml of Pro. Again, comparable labeling was observed after 4 h for the described FePro concentrations. FePro labeling did not significantly affect cell viability. There was almost no extracellular FePro complexes observed after simple cell washes. To validate and to determine the effectiveness of the revised technique, human T-cells, human hematopoietic stem cells (hHSC), human bone marrow stromal cells (hMSC) and mouse neuronal stem cells (mNSC C17.2) were labeled. Labeling for 4 hours using 100 microg/ml of Fe and 3 microg/ml of Pro resulted in very efficient labeling of these cells, without impairing their viability and functional capability. The new technique with short incubation time using 100 microg/ml of Fe and 3 microg/ml of Pro is effective in labeling cells for cellular MRI.

  4. Efficient and Controlled Generation of 2D and 3D Bile Duct Tissue from Human Pluripotent Stem Cell-Derived Spheroids.

    PubMed

    Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young

    2016-08-01

    While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future.

  5. Human β-cell Precursors Mature Into Functional Insulin-producing Cells in an Immunoisolation Device: Implications for Diabetes Cell Therapies

    PubMed Central

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y.; Geron, Ifat; Strongin, Alex Y.; Itkin-Ansari, Pamela

    2009-01-01

    Background Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human β-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human β-cells and their progenitors and (2) the engraftment of encapsulated murine β-cells in allo- and autoimmune settings. Methods Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Results Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary β-cells ameliorated diabetes without stimulating a detectable T-cell response. Conclusions We demonstrate for the first time that human β-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of β-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells. PMID:19352116

  6. Thermal phase transition behavior of lipid layers on a single human corneocyte cell.

    PubMed

    Imai, Tomohiro; Nakazawa, Hiromitsu; Kato, Satoru

    2013-09-01

    We have improved the selected area electron diffraction method to analyze the dynamic structural change in a single corneocyte cell non-invasively stripped off from human skin surface. The improved method made it possible to obtain reliable diffraction images to trace the structural change in the intercellular lipid layers on a single corneocyte cell during heating from 24°C to 100°C. Comparison of the results with those of synchrotron X-ray diffraction experiments on human stratum corneum sheets revealed that the intercellular lipid layers on a corneocyte cell exhibit essentially the same thermal phase transitions as those in a stratum corneum sheet. These results suggest that the structural features of the lipid layers are well preserved after the mechanical stripping of the corneocyte cell. Moreover, electron diffraction analyses of the thermal phase transition behaviors of the corneocyte cells that had the lipid layers with different distributions of orthorhombic and hexagonal domains at 24°C suggested that small orthorhombic domains interconnected with surrounding hexagonal domains transforms in a continuous manner into new hexagonal domains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    PubMed Central

    Mórocz, Mónika; Gali, Himabindu; Raskó, István; Downes, C. Stephen; Haracska, Lajos

    2013-01-01

    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. PMID:23936422

  8. Standardized Scalp Massage Results in Increased Hair Thickness by Inducing Stretching Forces to Dermal Papilla Cells in the Subcutaneous Tissue

    PubMed Central

    Kobayashi, Kazuhiro; Hama, Takanori; Murakami, Kasumi; Ogawa, Rei

    2016-01-01

    Objective: In this study, we evaluated the effect of scalp massage on hair in Japanese males and the effect of stretching forces on human dermal papilla cells in vitro. Methods: Nine healthy men received 4 minutes of standardized scalp massage per day for 24 weeks using a scalp massage device. Total hair number, hair thickness, and hair growth rate were evaluated. The mechanical effect of scalp massage on subcutaneous tissue was analyzed using a finite element method. To evaluate the effect of mechanical forces, human dermal papilla cells were cultured using a 72-hour stretching cycle. Gene expression change was analyzed using DNA microarray analyses. In addition, expression of hair cycle-related genes including IL6, NOGGIN, BMP4, and SMAD4 were evaluated using real-time reverse transcription-polymerase chain reaction. Results: Standardized scalp massage resulted in increased hair thickness 24 weeks after initiation of massage (0.085 ± 0.003 mm vs 0.092 ± 0.001 mm). Finite element method showed that scalp massage caused z-direction displacement and von Mises stress on subcutaneous tissue. In vitro, DNA microarray showed gene expression change significantly compared with nonstretching human dermal papilla cells. A total of 2655 genes were upregulated and 2823 genes were downregulated. Real-time reverse transcription-polymerase chain reaction demonstrated increased expression of hair cycle–related genes such as NOGGIN, BMP4, SMAD4, and IL6ST and decrease in hair loss–related genes such as IL6. Conclusions: Stretching forces result in changes in gene expression in human dermal papilla cells. Standardized scalp massage is a way to transmit mechanical stress to human dermal papilla cells in subcutaneous tissue. Hair thickness was shown to increase with standardized scalp massage. PMID:26904154

  9. Collection, Storage, and Preparation of Human Blood Cells

    PubMed Central

    Dagur, Pradeep K.; McCoy, J. Philip

    2015-01-01

    Human peripheral blood is often studied by flow cytometry in both the research and clinical laboratories. The methods for collection, storage, and preparation of peripheral blood will vary depending on the cell lineage to be examined as well as the type of assay to be performed. This unit presents protocols for collection of blood, separation of leukocytes from whole blood by lysis of erythrocytes, isolating mononuclear cells by density gradient separation, and assorted non-flow sorting methods, such as magnetic bead separations, for enriching specific cell populations, including monocytes, T lymphocytes, B lymphocytes, neutrophils,, , and platelets prior to flow cytometric analysis. A protocol is also offered for cryopreservation of cells since clinical research often involves retrospective flow cytometric analysis of samples stored over a period of months or years. PMID:26132177

  10. Establishment of feeder-free culture system for human induced pluripotent stem cell on DAS nanocrystalline graphene

    NASA Astrophysics Data System (ADS)

    Lee, Hyunah; Nam, Donggyu; Choi, Jae-Kyung; Araúzo-Bravo, Marcos J.; Kwon, Soon-Yong; Zaehres, Holm; Lee, Taehee; Park, Chan Young; Kang, Hyun-Wook; Schöler, Hans R.; Kim, Jeong Beom

    2016-02-01

    The maintenance of undifferentiated human pluripotent stem cells (hPSC) under xeno-free condition requires the use of human feeder cells or extracellular matrix (ECM) coating. However, human-derived sources may cause human pathogen contamination by viral or non-viral agents to the patients. Here we demonstrate feeder-free and xeno-free culture system for hPSC expansion using diffusion assisted synthesis-grown nanocrystalline graphene (DAS-NG), a synthetic non-biological nanomaterial which completely rule out the concern of human pathogen contamination. DAS-NG exhibited advanced biocompatibilities including surface nanoroughness, oxygen containing functional groups and hydrophilicity. hPSC cultured on DAS-NG could maintain pluripotency in vitro and in vivo, and especially cell adhesion-related gene expression profile was comparable to those of cultured on feeders, while hPSC cultured without DAS-NG differentiated spontaneously with high expression of somatic cell-enriched adhesion genes. This feeder-free and xeno-free culture method using DAS-NG will facilitate the generation of clinical-grade hPSC.

  11. Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon

    PubMed Central

    Baker, Ann-Marie; Cereser, Biancastella; Melton, Samuel; Fletcher, Alexander G.; Rodriguez-Justo, Manuel; Tadrous, Paul J.; Humphries, Adam; Elia, George; McDonald, Stuart A.C.; Wright, Nicholas A.; Simons, Benjamin D.; Jansen, Marnix; Graham, Trevor A.

    2014-01-01

    Summary Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+). Furthermore, we show that, in adenomatous crypts (APC−/−), there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics. PMID:25127143

  12. Expression and function of Allergin-1 on human primary mast cells.

    PubMed

    Nagai, Kei; Tahara-Hanaoka, Satoko; Morishima, Yuko; Tokunaga, Takahiro; Imoto, Yoshimasa; Noguchi, Emiko; Kanemaru, Kazumasa; Imai, Masamichi; Shibayama, Shiro; Hizawa, Nobuyuki; Fujieda, Shigeharu; Yamagata, Kunihiro; Shibuya, Akira

    2013-01-01

    Mast cells (MC) play an important role in allergic and non-allergic immune responses. Activation of human MC is modulated by several cell surface inhibitory receptors, including recently identified Allergin-1 expressed on both human and mouse MC. Although Allergin-1 suppresses IgE-mediated, mast cell-dependent anaphylaxis in mice, the expression profile and function of Allergin-1 on human primary MC remains undetermined. Here, we established a seven-color flow cytometry method for assessing expression and function of a very small number of human primary MC. We show that Allergin-1S1, a splicing isoform of Allergin-1, is predominantly expressed on human primary MC in both bronchoalveolar lavage (BAL) fluid and nasal scratching specimens. Moreover, Allergin-1S1 inhibits IgE-mediated activation from human primary MC in BAL fluid. These results indicate that Allergin-1 on human primary MC exhibits similar characteristics as mouse Allergin-1 in the expression profile and function.

  13. Teroxirone motivates apoptotic death in tumorspheres of human lung cancer cells.

    PubMed

    Ni, Yu-Ling; Hsieh, Chang-Heng; Wang, Jing-Ping; Fang, Kang

    2018-06-13

    Therapy by targeting cancer stem cells (CSCs) is an eligible method to eradicate malignant human tumors. A synthetic triepoxide derivative, teroxirone, was reported effective against growth of human lung cancer cells by injuring cellular mitochondria functions. And yet it remains unclear if the residual but malicious CSCs can be effectively dissipated as a result of treatment. The current study further affirmed that teroxirone inhibited propagation of CSCs as enriched from NSCLC cells by inducing p53 that lead to ultimate apoptosis. More evidence supported that the reduced stemness of the spheroids was associated with apoptotic death. The results consolidate the notion that teroxirone is a viable and effective therapeutic agent for eradicating human lung cancer. Copyright © 2018. Published by Elsevier B.V.

  14. Induction of human antigen-specific suppressor factors in vitro.

    PubMed Central

    Kontiainen, S; Woody, J N; Rees, A; Feldmann, M

    1981-01-01

    Based on methods used for the in vitro induction of antigen-specific suppressor cells in the mouse, we have cultured Ficoll-Isopaque-separated human blood cells with high dose of antigen (100 microgram/ml) in Marbrook culture vessels for 4 days. The resulting cells, when further recultured for 24 hr with a low dose of antigen (1 microgram/ml), released into the supernatant material, termed 'suppressor factor', which inhibited, in an antigen-specific manner, the antibody response of mouse spleen cells in culture. The suppressor factor was analysed using immunoabsorbents, and was bound to and eluted from specific antigen, concanavalin A and lentil lectin, anti-human Ia antibodies, and anti-mouse suppressor factor antibodies, but was not bound to antibodies against human IgG. PMID:6169475

  15. Characterization of human skeletal stem and bone cell populations using dielectrophoresis.

    PubMed

    Ismail, A; Hughes, M P; Mulhall, H J; Oreffo, R O C; Labeed, F H

    2015-02-01

    Dielectrophoresis (DEP) is a non-invasive cell analysis method that uses differences in electrical properties between particles and surrounding medium to determine a unique set of cellular properties that can be used as a basis for cell separation. Cell-based therapies using skeletal stem cells are currently one of the most promising areas for treating a variety of skeletal and muscular disorders. However, identifying and sorting these cells remains a challenge in the absence of unique skeletal stem cell markers. DEP provides an ideal method for identifying subsets of cells without the need for markers by using their dielectric properties. This study used a 3D dielectrophoretic well chip device to determine the dielectric characteristics of two osteosarcoma cell lines (MG-63 and SAOS-2) and an immunoselected enriched skeletal stem cell fraction (STRO-1 positive cell) of human bone marrow. Skeletal cells were exposed to a series of different frequencies to induce dielectrophoretic cell movement, and a model was developed to generate the membrane and cytoplasmic properties of the cell populations. Differences were observed in the dielectric properties of MG-63, SAOS-2 and STRO-1 enriched skeletal populations, which could potentially be used to sort cells in mixed populations. This study provide evidence of the ability to characterize different human skeletal stem and mature cell populations, and acts as a proof-of-concept that dielectrophoresis can be exploited to detect, isolate and separate skeletal cell populations from heterogeneous bone marrow cell populations. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells.

    PubMed

    Eiró, Noemí; Sendon-Lago, Juan; Seoane, Samuel; Bermúdez, María A; Lamelas, Maria Luz; Garcia-Caballero, Tomás; Schneider, José; Perez-Fernandez, Roman; Vizoso, Francisco J

    2014-11-15

    Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addition, hUCESCs-CM inhibited and reverted macrophage differentiation. The analysis of hUCESCs-CM (fresh and lyophilized) suggests that a complex paracrine signaling network could be implicated in the anti-tumor potential of hUCESCs. In light of their anti-tumor potential, the easy cell isolation method, and the fact that lyophilization of their CM conserves original properties make hUCESCs good candidates for experimental or clinical applications in anticancer therapy.

  17. Synthetic Capillaries to Control Microscopic Blood Flow

    NASA Astrophysics Data System (ADS)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  18. Synthetic Capillaries to Control Microscopic Blood Flow.

    PubMed

    Sarveswaran, K; Kurz, V; Dong, Z; Tanaka, T; Penny, S; Timp, G

    2016-02-24

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using "live cell lithography"(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision-no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  19. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells

    PubMed Central

    Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris

    2016-01-01

    The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority. PMID:27659167

  20. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells

    NASA Astrophysics Data System (ADS)

    Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris

    2016-09-01

    The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority.

  1. Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs.

    PubMed

    Bertero, Alessandro; Pawlowski, Matthias; Ortmann, Daniel; Snijders, Kirsten; Yiangou, Loukia; Cardoso de Brito, Miguel; Brown, Stephanie; Bernard, William G; Cooper, James D; Giacomelli, Elisa; Gambardella, Laure; Hannan, Nicholas R F; Iyer, Dharini; Sampaziotis, Fotios; Serrano, Felipe; Zonneveld, Mariëlle C F; Sinha, Sanjay; Kotter, Mark; Vallier, Ludovic

    2016-12-01

    Inducible loss of gene function experiments are necessary to uncover mechanisms underlying development, physiology and disease. However, current methods are complex, lack robustness and do not work in multiple cell types. Here we address these limitations by developing single-step optimized inducible gene knockdown or knockout (sOPTiKD or sOPTiKO) platforms. These are based on genetic engineering of human genomic safe harbors combined with an improved tetracycline-inducible system and CRISPR/Cas9 technology. We exemplify the efficacy of these methods in human pluripotent stem cells (hPSCs), and show that generation of sOPTiKD/KO hPSCs is simple, rapid and allows tightly controlled individual or multiplexed gene knockdown or knockout in hPSCs and in a wide variety of differentiated cells. Finally, we illustrate the general applicability of this approach by investigating the function of transcription factors (OCT4 and T), cell cycle regulators (cyclin D family members) and epigenetic modifiers (DPY30). Overall, sOPTiKD and sOPTiKO provide a unique opportunity for functional analyses in multiple cell types relevant for the study of human development. © 2016. Published by The Company of Biologists Ltd.

  2. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  3. Induced pluripotent stem cells as custom therapeutics for retinal repair: progress and rationale.

    PubMed

    Wright, Lynda S; Phillips, M Joseph; Pinilla, Isabel; Hei, Derek; Gamm, David M

    2014-06-01

    Human pluripotent stem cells have made a remarkable impact on science, technology and medicine by providing a potentially unlimited source of human cells for basic research and clinical applications. In recent years, knowledge gained from the study of human embryonic stem cells and mammalian somatic cell reprogramming has led to the routine production of human induced pluripotent stem cells (hiPSCs) in laboratories worldwide. hiPSCs show promise for use in transplantation, high throughput drug screening, "disease-in-a-dish" modeling, disease gene discovery, and gene therapy testing. This review will focus on the first application, beginning with a discussion of methods for producing retinal lineage cells that are lost in inherited and acquired forms of retinal degenerative disease. The selection of appropriate hiPSC-derived donor cell type(s) for transplantation will be discussed, as will the caveats and prerequisite steps to formulating a clinical Good Manufacturing Practice (cGMP) product for clinical trials. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. An Automated Classification Technique for Detecting Defects in Battery Cells

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2006-01-01

    Battery cell defect classification is primarily done manually by a human conducting a visual inspection to determine if the battery cell is acceptable for a particular use or device. Human visual inspection is a time consuming task when compared to an inspection process conducted by a machine vision system. Human inspection is also subject to human error and fatigue over time. We present a machine vision technique that can be used to automatically identify defective sections of battery cells via a morphological feature-based classifier using an adaptive two-dimensional fast Fourier transformation technique. The initial area of interest is automatically classified as either an anode or cathode cell view as well as classified as an acceptable or a defective battery cell. Each battery cell is labeled and cataloged for comparison and analysis. The result is the implementation of an automated machine vision technique that provides a highly repeatable and reproducible method of identifying and quantifying defects in battery cells.

  5. Induced pluripotent stem cells as custom therapeutics for retinal repair: Progress and rationale

    PubMed Central

    Wright, Lynda S.; Phillips, M. Joseph; Pinilla, Isabel; Hei, Derek; Gamm, David M.

    2014-01-01

    Human pluripotent stem cells have made a remarkable impact on science, technology and medicine by providing a potentially unlimited source of human cells for basic research and clinical applications. In recent years, knowledge gained from the study of human embryonic stem cells and mammalian somatic cell reprogramming has led to the routine production of human induced pluripotent stem cells (hiPSCs) in laboratories worldwide. hiPSCs show promise for use in transplantation, high throughput drug screening, “disease-in-a-dish” modeling, disease gene discovery, and gene therapy testing. This review will focus on the first application, beginning with a discussion of methods for producing retinal lineage cells that are lost in inherited and acquired forms of retinal degenerative disease. The selection of appropriate hiPSC-derived donor cell type(s) for transplantation will be discussed, as will the caveats and prerequisite steps to formulating a clinical Good Manufacturing Practice (cGMP) product for clinical trials. PMID:24534198

  6. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT.

    PubMed

    Sakaguchi, H; Ashikaga, T; Miyazawa, M; Yoshida, Y; Ito, Y; Yoneyama, K; Hirota, M; Itagaki, H; Toyoda, H; Suzuki, H

    2006-08-01

    Recent regulatory changes have placed a major emphasis on in vitro safety testing and alternative models. In regard to skin sensitization tests, dendritic cells (DCs) derived from human peripheral blood have been considered in the development of new in vitro alternatives. Human cell lines have been also reported recently. In our previous study, we suggested that measuring CD86 and/or CD54 expression on THP-1 cells (human monocytic leukemia cell line) could be used as an in vitro skin sensitization method. An inter-laboratory study among two laboratories was undertaken in Japan in order to further develop an in vitro skin sensitization model. In the present study, we used two human cell lines: THP-1 and U-937 (human histiocytic lymphoma cell line). First we optimized our test protocol (refer to the related paper entitled "optimization of the h-CLAT protocol" within this journal) and then we did an inter-laboratory validation with nine chemicals using the optimized protocol. We measured the expression of CD86 and CD54 on the above cells using flow cytometry after a 24h and 48h exposure to six known allergens (e.g., DNCB, pPD, NiSO(4)) and three non-allergens (e.g., SLS, tween 80). For the sample test concentration, four doses (0.1x, 0.5x, 1x, and 2x of the 50% inhibitory concentration (IC(50))) were evaluated. IC(50) was calculated using MTT assay. We found that allergens/non-allergens were better predicted using THP-1 cells compared to U-937 cells following a 24 h and a 48 h exposure. We also found that the 24h treatment time tended to have a better accuracy than the 48 h treatment time for THP-1 cells. Expression of CD86 and CD54 were good predictive markers for THP-1 cells, but for U-937 cells, expression of CD86 was a better predictor than CD54, at the 24h and the 48 h treatment time. The accuracy also improved when both markers (CD86 and CD54) were used as compared with a single marker for THP-1 cells. Both laboratories gave a good prediction of allergen/non-allergen, especially using THP-1 cells. These results suggest that our method, human Cell Line Activation Test (h-CLAT), using human cell lines THP-1 and U-937, but especially THP-1 cells at 24h treatment, may be a useful in vitro skin sensitization model to predict various contact allergens.

  7. Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring

    PubMed Central

    Cao, Yuhong; Chen, Haodong; Birey, Fikri; Leal-Ortiz, Sergio A.; Han, Crystal M.; Santiago, Juan G.; Paşca, Sergiu P.; Wu, Joseph C.; Melosh, Nicholas A.

    2017-01-01

    Here, we report a method for time-resolved, longitudinal extraction and quantitative measurement of intracellular proteins and mRNA from a variety of cell types. Cytosolic contents were repeatedly sampled from the same cell or population of cells for more than 5 d through a cell-culture substrate, incorporating hollow 150-nm-diameter nanostraws (NS) within a defined sampling region. Once extracted, the cellular contents were analyzed with conventional methods, including fluorescence, enzymatic assays (ELISA), and quantitative real-time PCR. This process was nondestructive with >95% cell viability after sampling, enabling long-term analysis. It is important to note that the measured quantities from the cell extract were found to constitute a statistically significant representation of the actual contents within the cells. Of 48 mRNA sequences analyzed from a population of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs), 41 were accurately quantified. The NS platform samples from a select subpopulation of cells within a larger culture, allowing native cell-to-cell contact and communication even during vigorous activity such as cardiomyocyte beating. This platform was applied both to cell lines and to primary cells, including CHO cells, hiPSC-CMs, and human astrocytes derived in 3D cortical spheroids. By tracking the same cell or group of cells over time, this method offers an avenue to understand dynamic cell behavior, including processes such as induced pluripotency and differentiation. PMID:28223521

  8. Enterochromaffin cells of the human gut: sensors for spices and odorants.

    PubMed

    Braun, Thomas; Voland, Petra; Kunz, Lars; Prinz, Christian; Gratzl, Manfred

    2007-05-01

    Release of serotonin from mucosal enterochromaffin cells triggered by luminal substances is the key event in the regulation of gut motility and secretion. We were interested to know whether nasal olfactory receptors are also expressed in the human gut mucosa by enterochromaffin cells and whether their ligands and odorants present in spices, fragrances, detergents, and cosmetics cause serotonin release. Receptor expression was studied by the reverse-transcription polymerase chain reaction method in human mucosal enterochromaffin cells isolated by laser microdissection and in a cell line derived from human enterochromaffin cells. Activation of the cells by odorants was investigated by digital fluorescence imaging using the fluorescent Ca(2+) indicator Fluo-4. Serotonin release was measured in culture supernatants by a serotonin enzyme immunoassay and amperometry using carbon fiber microelectrodes placed on single cells. We found expression of 4 olfactory receptors in microdissected human mucosal enterochromaffin cells and in a cell line derived from human enterochromaffin cells. Ca(2+) imaging studies revealed that odorant ligands of the identified olfactory receptors cause Ca(2+) influx, elevation of intracellular free Ca(2+) levels, and, consequently, serotonin release. Our results show that odorants present in the luminal environment of the gut may stimulate serotonin release via olfactory receptors present in human enterochromaffin cells. Serotonin controls both gut motility and secretion and is implicated in pathologic conditions such as vomiting, diarrhea, and irritable bowel syndrome. Thus, olfactory receptors are potential novel targets for the treatment of gastrointestinal diseases and motility disorders.

  9. Photonic approach to the selective inactivation of viruses with a near-infrared ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Fu, Q.; Lindsay, S. M.; Kibler, K.; Jacobs, B.; Wu, T. C.; Li, Zhe; Yan, Hao; Cope, Stephanie; Vaiana, Sara; Kiang, Juliann G.

    2010-02-01

    We report a photonic approach for selective inactivation of viruses with a near-infrared ultrashort pulsed (USP) laser. We demonstrate that this method can selectively inactivate viral particles ranging from nonpathogenic viruses such as M13 bacteriophage, tobacco mosaic virus (TMV) to pathogenic viruses like human papillomavirus (HPV) and human immunodeficiency virus (HIV). At the same time sensitive materials like human Jurkat T cells, human red blood cells, and mouse dendritic cells remain unharmed. Our photonic approach could be used for the disinfection of viral pathogens in blood products and for the treatment of blood-borne viral diseases in the clinic.

  10. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  11. Flow cytometry of human primary epidermal and follicular keratinocytes.

    PubMed

    Gragnani, Alfredo; Ipolito, Michelle Zampieri; Sobral, Christiane S; Brunialti, Milena Karina Coló; Salomão, Reinaldo; Ferreira, Lydia Masako

    2008-02-19

    The aim of this study was to characterize using flow cytometry cultured human primary keratinocytes isolated from the epidermis and hair follicles by different methods. Human keratinocytes derived from discarded fragments of total skin and scalp hair follicles from patients who underwent plastic surgery in the Plastic Surgery Division at UNIFESP were used. The epidermal keratinocytes were isolated by using 3 different methods: the standard method, upon exposure to trypsin for 30 minutes; the second, by treatment with dispase for 18 hours and with trypsin for 10 minutes; and the third, by treatment with dispase for 18 hours and with trypsin for 30 minutes. Follicular keratinocytes were isolated using the standard method. On comparing the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with dispase for 18 hours and with trypsin for 30 minutes, it was observed that the first group presented the largest number of viable cells, the smallest number of cells in late apoptosis and necrosis with statistical significance, and no difference in apoptosis. When we compared the group treated with dispase for 18 hours and with trypsin for 10 minutes with the group treated with trypsin, the first group presented the largest number of viable cells, the smallest number of cells in apoptosis with statistical significance, and no difference in late apoptosis and necrosis. When we compared the results of the group treated with dispase for 18 hours and with trypsin for 10 minutes with the results for follical isolation, there was a statistical difference in apoptosis and viable cells. The isolation method of treatment with dispase for 18 hours and with trypsin for 10 minutes produced the largest number of viable cells and the smallest number of cells in apoptosis/necrosis.

  12. Inspiration from heart development: Biomimetic development of functional human cardiac organoids.

    PubMed

    Richards, Dylan J; Coyle, Robert C; Tan, Yu; Jia, Jia; Wong, Kerri; Toomer, Katelynn; Menick, Donald R; Mei, Ying

    2017-10-01

    Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    PubMed

    Cecchelli, Romeo; Aday, Sezin; Sevin, Emmanuel; Almeida, Catarina; Culot, Maxime; Dehouck, Lucie; Coisne, Caroline; Engelhardt, Britta; Dehouck, Marie-Pierre; Ferreira, Lino

    2014-01-01

    The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  14. Comparative reactivity of human IgE to cynomolgus monkey and human effector cells and effects on IgE effector cell potency

    PubMed Central

    Saul, Louise; Saul, Louise; Josephs, Debra H; Josephs, Debra H; Cutler, Keith; Cutler, Keith; Bradwell, Andrew; Bradwell, Andrew; Karagiannis, Panagiotis; Karagiannis, Panagiotis; Selkirk, Chris; Selkirk, Chris; Gould, Hannah J; Gould, Hannah J; Jones, Paul; Jones, Paul; Spicer, James F; Spicer, James F; Karagiannis, Sophia N; Karagiannis, Sophia N

    2014-01-01

    Background: Due to genetic similarities with humans, primates of the macaque genus such as the cynomolgus monkey are often chosen as models for toxicology studies of antibody therapies. IgE therapeutics in development depend upon engagement with the FcεRI and FcεRII receptors on immune effector cells for their function. Only limited knowledge of the primate IgE immune system is available to inform the choice of models for mechanistic and safety evaluations.   Methods: The recognition of human IgE by peripheral blood lymphocytes from cynomolgus monkey and man was compared. We used effector cells from each species in ex vivo affinity, dose-response, antibody-receptor dissociation and potency assays. Results: We report cross-reactivity of human IgE Fc with cynomolgus monkey cells, and comparable binding kinetics to peripheral blood lymphocytes from both species. In competition and dissociation assays, however, human IgE dissociated faster from cynomolgus monkey compared with human effector cells. Differences in association and dissociation kinetics were reflected in effector cell potency assays of IgE-mediated target cell killing, with higher concentrations of human IgE needed to elicit effector response in the cynomolgus monkey system. Additionally, human IgE binding on immune effector cells yielded significantly different cytokine release profiles in each species. Conclusion: These data suggest that human IgE binds with different characteristics to human and cynomolgus monkey IgE effector cells. This is likely to affect the potency of IgE effector functions in these two species, and so has relevance for the selection of biologically-relevant model systems when designing pre-clinical toxicology and functional studies. PMID:24492303

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu; Wang, Kai; Chandramouli, Gadisetti V.R.

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomesmore » a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.« less

  16. Elevated ERCC-1 Gene Expression in blood cells associated with exposure to arsenic from drinking water in Inner Mongolia

    EPA Science Inventory

    Background: Chronic arsenic exposure has been associated with human cancers. The objective of this study was to investigate arsenic effects on a DNA nucleotide excision repair gene, ERCC1, expression in human blood cells. Material and Methods: Water and toe nail samples were coll...

  17. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review.

    PubMed

    Panchalingam, Krishna M; Jung, Sunghoon; Rosenberg, Lawrence; Behie, Leo A

    2015-11-23

    Human mesenchymal stem cells (hMSCs), also called mesenchymal stromal cells, have been of great interest in regenerative medicine applications because of not only their differentiation potential but also their ability to secrete bioactive factors that can modulate the immune system and promote tissue repair. This potential has initiated many early-phase clinical studies for the treatment of various diseases, disorders, and injuries by using either hMSCs themselves or their secreted products. Currently, hMSCs for clinical use are generated through conventional static adherent cultures in the presence of fetal bovine serum or human-sourced supplements. However, these methods suffer from variable culture conditions (i.e., ill-defined medium components and heterogeneous culture environment) and thus are not ideal procedures to meet the expected future demand of quality-assured hMSCs for human therapeutic use. Optimizing a bioprocess to generate hMSCs or their secreted products (or both) promises to improve the efficacy as well as safety of this stem cell therapy. In this review, current media and methods for hMSC culture are outlined and bioprocess development strategies discussed.

  18. Developmental insights from early mammalian embryos and core signaling pathways that influence human pluripotent cell growth and differentiation.

    PubMed

    Chen, Kevin G; Mallon, Barbara S; Johnson, Kory R; Hamilton, Rebecca S; McKay, Ronald D G; Robey, Pamela G

    2014-05-01

    Human pluripotent stem cells (hPSCs) have two potentially attractive applications: cell replacement-based therapies and drug discovery. Both require the efficient generation of large quantities of clinical-grade stem cells that are free from harmful genomic alterations. The currently employed colony-type culture methods often result in low cell yields, unavoidably heterogeneous cell populations, and substantial chromosomal abnormalities. Here, we shed light on the structural relationship between hPSC colonies/embryoid bodies and early-stage embryos in order to optimize current culture methods based on the insights from developmental biology. We further highlight core signaling pathways that underlie multiple epithelial-to-mesenchymal transitions (EMTs), cellular heterogeneity, and chromosomal instability in hPSCs. We also analyze emerging methods such as non-colony type monolayer (NCM) and suspension culture, which provide alternative growth models for hPSC expansion and differentiation. Furthermore, based on the influence of cell-cell interactions and signaling pathways, we propose concepts, strategies, and solutions for production of clinical-grade hPSCs, stem cell precursors, and miniorganoids, which are pivotal steps needed for future clinical applications. Published by Elsevier B.V.

  19. Properties of murine embryonic stem cells maintained on human foreskin fibroblasts without LIF.

    PubMed

    Meng, G L; Zur Nieden, N I; Liu, S Y; Cormier, J T; Kallos, M S; Rancourt, D E

    2008-04-01

    In embryonic stem (ES) cells, leukemia inhibitory factor (LIF)/STAT3, wnt and nodal/activin signaling are mainly active to control pluripotency during expansion. To maintain pluripotency, ES cells are typically cultured on feeder cells of varying origins. Murine ES cells are commonly cultured on murine embryonic fibroblasts (MEFs), which senesce early and must be frequently prepared. This process is laborious and leads to batch variation presenting a challenge for high-throughput ES cell expansion. Although some cell lines can be sustained by exogenous LIF, this method is costly. We present here a novel and inexpensive culture method for expanding murine ES cells on human foreskin fibroblast (HFF) feeders. After 20 passages on HFFs without LIF, ES cell lines showed normal expression levels of pluripotency markers, maintained a normal karyotype and retained the ability to contribute to the germline. As HFFs do not senesce for at least 62 passages, they present a vast supply of feeders. Copyright 2007 Wiley-Liss, Inc.

  20. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vectormore » containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.« less

  1. Localization of migraine susceptibility genes in human brain by single-cell RNA sequencing.

    PubMed

    Renthal, William

    2018-01-01

    Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.

  2. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  3. A novel method for evaluating antibody-dependent cell-mediated cytotoxicity by flowcytometry using cryopreserved human peripheral blood mononuclear cells

    PubMed Central

    Yamashita, Makiko; Kitano, Shigehisa; Aikawa, Hiroaki; Kuchiba, Aya; Hayashi, Mitsuhiro; Yamamoto, Noboru; Tamura, Kenji; Hamada, Akinobu

    2016-01-01

    Analyzing the cytotoxic functions of effector cells, such as NK cells against target cancer cells, is thought to be necessary for predicting the clinical efficacy of antibody-dependent cellular cytotoxicity (ADCC) -dependent antibody therapy. The 51Cr release assay has long been the most widely used method for quantification of ADCC activity. However, the reproducibilities of these release assays are not adequate, and they do not allow evaluation of the lysis susceptibilities of distinct cell types within the target cell population. In this study, we established a novel method for evaluating cytotoxicity, which involves the detection and quantification of dead target cells using flowcytometry. CFSE (carboxyfluorescein succinimidyl ester) was used as a dye to specifically stain and thereby label the target cell population, allowing living and dead cells, as well as both target and effector cells, to be quantitatively distinguished. Furthermore, with our new approach, ADCC activity was more reproducibly, sensitively, and specifically detectable, not only in freshly isolated but also in frozen human peripheral blood mononuclear cells (PBMCs), than with the calcein-AM release assay. This assay, validated herein, is expected to become a standard assay for evaluating ADCC activity which will ultimately contribute the clinical development of ADCC dependent-antibody therapies. PMID:26813960

  4. A novel method for evaluating antibody-dependent cell-mediated cytotoxicity by flowcytometry using cryopreserved human peripheral blood mononuclear cells.

    PubMed

    Yamashita, Makiko; Kitano, Shigehisa; Aikawa, Hiroaki; Kuchiba, Aya; Hayashi, Mitsuhiro; Yamamoto, Noboru; Tamura, Kenji; Hamada, Akinobu

    2016-01-27

    Analyzing the cytotoxic functions of effector cells, such as NK cells against target cancer cells, is thought to be necessary for predicting the clinical efficacy of antibody-dependent cellular cytotoxicity (ADCC) -dependent antibody therapy. The (51)Cr release assay has long been the most widely used method for quantification of ADCC activity. However, the reproducibilities of these release assays are not adequate, and they do not allow evaluation of the lysis susceptibilities of distinct cell types within the target cell population. In this study, we established a novel method for evaluating cytotoxicity, which involves the detection and quantification of dead target cells using flowcytometry. CFSE (carboxyfluorescein succinimidyl ester) was used as a dye to specifically stain and thereby label the target cell population, allowing living and dead cells, as well as both target and effector cells, to be quantitatively distinguished. Furthermore, with our new approach, ADCC activity was more reproducibly, sensitively, and specifically detectable, not only in freshly isolated but also in frozen human peripheral blood mononuclear cells (PBMCs), than with the calcein-AM release assay. This assay, validated herein, is expected to become a standard assay for evaluating ADCC activity which will ultimately contribute the clinical development of ADCC dependent-antibody therapies.

  5. Function of MYO7A in the Human RPE and the Validity of Shaker1 Mice as a Model for Usher Syndrome 1B

    PubMed Central

    Gibbs, Daniel; Diemer, Tanja; Khanobdee, Kornnika; Hu, Jane; Bok, Dean

    2010-01-01

    Purpose. To investigate the function of MYO7A in human RPE cells and to test the validity of using shaker1 RPE in preclinical studies on therapies for Usher syndrome 1B by comparing human and mouse cells. Methods. MYO7A was localized by immunofluorescence. Primary cultures of human and mouse RPE cells were used to measure melanosome motility and rod outer segment (ROS) phagocytosis and digestion. MYO7A was knocked down in the human RPE cells by RNAi to test for a mutant phenotype in melanosome motility. Results. The distribution of MYO7A in the RPE of human and mouse was found to be comparable, both in vivo and in primary cultures. Primary cultures of human RPE cells phagocytosed and digested ROSs with kinetics comparable to that of primary cultures of mouse RPE cells. Melanosome motility was also comparable, and, after RNAi knockdown, consisted of longer-range fast movements characteristic of melanosomes in shaker1 RPE. Conclusions. The localization and function of MYO7A in human RPE cells is comparable to that in mouse RPE cells. Although shaker1 retinas do not undergo degeneration, correction of mutant phenotypes in the shaker1 RPE represents a valid preclinical test for potential therapeutic treatments. PMID:19643958

  6. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    PubMed

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  7. Development of a microprocessing-assisted cell-systematic evolution of ligands by exponential enrichment method for human umbilical vein endothelial cells

    NASA Astrophysics Data System (ADS)

    Terazono, Hideyuki; Kim, Hyonchol; Nomura, Fumimasa; Yasuda, Kenji

    2016-06-01

    We developed a microprocessing-assisted technique to select single-strand DNA aptamers that bind to unknown targets on the cell surface by modifying the conventional systematic evolution of ligands by exponential enrichment (cell-SELEX). Our technique involves 1) the specific selection of target-cell-surface-bound aptamers without leakage of intracellular components by trypsinization and 2) cloning of aptamers by microprocessing-assisted picking of single cells using magnetic beads. After cell-SELEX, the enriched aptamers were conjugated with magnetic beads. The aptamer-magnetic beads conjugates attached to target cells were collected individually by microassisted procedures using microneedles under a microscope. After that, the sequences of the collected magnetic-bead-bound aptamers were identified. As a result, a specific aptamer for the surface of target cells, e.g., human umbilical vein endothelial cells (HUVECs), was chosen and its specificity was examined using other cell types, e.g., HeLa cells. The results indicate that this microprocessing-assisted cell-SELEX method for identifying aptamers is applicable in biological research and clinical diagnostics.

  8. Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity.

    PubMed

    Dias, Joana; Sobkowiak, Michał J; Sandberg, Johan K; Leeansyah, Edwin

    2016-07-01

    Mucosa-associated invariant T cells are a large and relatively recently described innate-like antimicrobial T-cell subset in humans. These cells recognize riboflavin metabolites from a range of microbes presented by evolutionarily conserved major histocompatibility complex, class I-related molecules. Given the innate-like characteristics of mucosa-associated invariant T cells and the novel type of antigens they recognize, new methodology must be developed and existing methods refined to allow comprehensive studies of their role in human immune defense against microbial infection. In this study, we established protocols to examine a range of mucosa-associated invariant T-cell functions as they respond to antigen produced by Escherichia coli These improved and dose- and time-optimized experimental protocols allow detailed studies of MR1-dependent mucosa-associated invariant T-cell responses to Escherichia coli pulsed antigen-presenting cells, as assessed by expression of activation markers and cytokines, by proliferation, and by induction of apoptosis and death in major histocompatibility complex, class I-related-expressing target cells. The novel and optimized protocols establish a framework of methods and open new possibilities to study mucosa-associated invariant T-cell immunobiology, using Escherichia coli as a model antigen. Furthermore, we propose that these robust experimental systems can also be adapted to study mucosa-associated invariant T-cell responses to other microbes and types of antigen-presenting cells. © The Author(s).

  9. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation.

    PubMed

    Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake; Nishinakamura, Ryuichi

    2016-06-01

    Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. Copyright © 2016 by the American Society of Nephrology.

  10. Application of immunogold-silver staining and immunoenzymatic methods in multiple labelling of human pancreatic Langerhans islet cells.

    PubMed

    Krenács, T; Lászik, Z; Dobó, E

    1989-01-01

    The use of immunogold-silver staining (IGSS) combined with immunoperoxidase and/or immunoalkaline phosphatase methods for the simultaneous demonstration of pancreatic islet cell hormones on routinely fixed paraffin-embedded human tissue sections was examined. If IGSS was applied first, the black colour of silver-enhanced colloidal gold on doubly immunostained sections contrasted with the colours of most of the chromogens used generally in the 2 immunoenzymatic methods. If IGSS was followed by immunoalkaline phosphatase and immunoperoxidase techniques in optional sequence, 3 different hormone-containing cell types could be stained simultaneously without non-specific cross-reactions. IGSS and immunoalkaline phosphatase methods, together with 2 kinds of non-cross-reacting immunoperoxidase systems, permitted the detection of 4 distinct antigens on the same tissue section. Multiple immunohistochemical labelling of the endocrine pancreas provides an opportunity for the correct and rapid analysis of the topographic and morphometric relationships between different hormone-producing cell populations under both normal and pathological conditions. IGSS is of great potential for the simultaneous immunolabelling of antigens situated within separate cells.

  11. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.

  12. Flow analysis of human chromosome sets by means of mixing-stirring device

    NASA Astrophysics Data System (ADS)

    Zenin, Valeri V.; Aksenov, Nicolay D.; Shatrova, Alla N.; Klopov, Nicolay V.; Cram, L. Scott; Poletaev, Andrey I.

    1997-05-01

    A new mixing and stirring device (MSD) was used to perform flow karyotype analysis of single human mitotic chromosomes analyzed so as to maintain the identity of chromosomes derived from the same cell. An improved method for cell preparation and intracellular staining of chromosomes was developed. The method includes enzyme treatment, incubation with saponin and separation of prestained cells from debris on a sucrose gradient. Mitotic cells are injected one by one in the MSD which is located inside the flow chamber where cells are ruptured, thereby releasing chromosomes. The set of chromosomes proceeds to flow in single file fashion to the point of analysis. The device works in a stepwise manner. The concentration of cells in the sample must be kept low to ensure that only one cell at a time enters the breaking chamber. Time-gated accumulation of data in listmode files makes it possible to separate chromosome sets comprising of single cells. The software that was developed classifies chromosome sets according to different criteria: total number of chromosomes, overall DNA content in the set, and the number of chromosomes of certain types. This approach combines the high performance of flow cytometry with the advantages of image analysis. Examples obtained with different human cell lines are presented.

  13. Computed aided system for separation and classification of the abnormal erythrocytes in human blood

    NASA Astrophysics Data System (ADS)

    Wąsowicz, Michał; Grochowski, Michał; Kulka, Marek; Mikołajczyk, Agnieszka; Ficek, Mateusz; Karpieńko, Katarzyna; Cićkiewicz, Maciej

    2017-12-01

    The human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified diamonds and oxidation modified. The blood was put under an impact of two diamond concentrations: 20μl and 100μl. The amount of abnormal cells increased with time. The percentage of echinocytes as a result of interaction with nanodiamonds in various time intervals for individual specimens was scarce. The impact of the two diamond types had no clinical importance on red blood cells. It is supposed that as a result of longlasting exposure a dehydratation of red cells takes place, because of the function of the cells. The analysis of an influence of nanodiamond particles on blood elements was supported by computer system designed for automatic counting and classification of the Red Blood Cells (RBC). The system utilizes advanced image processing methods for RBCs separation and counting and Eigenfaces method coupled with the neural networks for RBCs classification into normal and abnormal cells purposes.

  14. A novel dendritic cell-based direct ex vivo assay for detection and enumeration of circulating antigen-specific human T cells.

    PubMed

    Carrio, Roberto; Zhang, Ge; Drake, Donald R; Schanen, Brian C

    2018-05-07

    Although a variety of assays have been used to examine T cell responses in vitro, standardized ex vivo detection of antigen-specific CD4 + T cells from human circulatory PBMCs remains constrained by low-dimensional characterization outputs and the need for polyclonal, mitogen-induced expansion methods to generate detectable response signals. To overcome these limitations, we developed a novel methodology utilizing antigen-pulsed autologous human dendritic target cells in a rapid and sensitive assay to accurately enumerate antigen-specific CD4 + T cell precursor frequency by multiparametric flow cytometry. With this approach, we demonstrate the ability to reproducibly quantitate poly-functional T cell responses following both primary and recall antigenic stimulation. Furthermore, this approach enables more comprehensive phenotypic profiling of circulating antigen-specific CD4 + T cells, providing valuable insights into the pre-existing polarization of antigen-specific T cells in humans. Combined, this approach permits sensitive and detailed ex vivo detection of antigen-specific CD4 + T cells delivering an important tool for advancing vaccine, immune-oncology and other therapeutic studies.

  15. Characterization of the cell growth analysis for detection of immortal cellular impurities in human mesenchymal stem cells.

    PubMed

    Kono, Ken; Takada, Nozomi; Yasuda, Satoshi; Sawada, Rumi; Niimi, Shingo; Matsuyama, Akifumi; Sato, Yoji

    2015-03-01

    The analysis of in vitro cell senescence/growth after serial passaging can be one of ways to show the absence of immortalized cells, which are frequently tumorigenic, in human cell-processed therapeutic products (hCTPs). However, the performance of the cell growth analysis for detection of the immortalized cellular impurities has never been evaluated. In the present study, we examined the growth rates of human mesenchymal stem cells (hMSCs, passage 5 (P = 5)) contaminated with various doses of HeLa cells, and compared with that of hMSCs alone. The growth rates of the contaminated hMSCs were comparable to that of hMSCs alone at P = 5, but significantly increased at P = 6 (0.1% and 0.01% HeLa) or P = 7 (0.001% HeLa) within 30 days. These findings suggest that the cell growth analysis is a simple and sensitive method to detect immortalized cellular impurities in hCTPs derived from human somatic cells. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells.

    PubMed

    Matsuoka, Yoshikazu; Takahashi, Masaya; Sumide, Keisuke; Kawamura, Hiroshi; Nakatsuka, Ryusuke; Fujioka, Tatsuya; Sonoda, Yoshiaki

    2017-06-09

    In the murine hematopoietic stem cell (HSC) compartment, thrombopoietin (THPO)/MPL (THPO receptor) signaling plays an important role in the maintenance of adult quiescent HSCs. However, the role of THPO/MPL signaling in the human primitive HSC compartment has not yet been elucidated. We have identified very primitive human cord blood (CB)-derived CD34- severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection method. In this study, we investigated the roles of the MPL expression in the human primitive HSC compartment. The SRC activities of the highly purified CB-derived 18Lin-CD34+/-MPL+/- cells were analyzed using NOG mice. In the primary recipient mice, nearly all mice that received CD34+/-MPL+/- cells were repopulated with human CD45+ cells. Nearly all of these mice that received CD34+MPL+/- and CD34-MPL- cells showed a secondary repopulation. Interestingly, the secondary recipient mice that received CD34+/-MPL- cells showed a distinct tertiary repopulation. These results clearly indicate that the CD34+/- SRCs not expressing MPL sustain a long-term (LT) (>1 year) human cell repopulation in NOG mice. Moreover, CD34- SRCs generate CD34+CD38-CD90+ SRCs in vitro and in vivo. These findings provide a new concept that CD34-MPL- SRCs reside at the apex of the human HSC hierarchy.

  17. Overcoming the hurdles for a reproducible generation of human functionally mature reprogrammed neurons.

    PubMed

    Broccoli, Vania; Rubio, Alicia; Taverna, Stefano; Yekhlef, Latefa

    2015-06-01

    The advent of cell reprogramming technologies has widely disclosed the possibility to have direct access to human neurons for experimental and biomedical applications. Human pluripotent stem cells can be instructed in vitro to generate specific neuronal cell types as well as different glial cells. Moreover, new approaches of direct neuronal cell reprogramming can strongly accelerate the generation of different neuronal lineages. However, genetic heterogeneity, reprogramming fidelity, and time in culture of the starting cells can still significantly bias their differentiation efficiency and quality of the neuronal progenies. In addition, reprogrammed human neurons exhibit a very slow pace in gaining a full spectrum of functional properties including physiological levels of membrane excitability, sustained and prolonged action potential firing, mature synaptic currents and synaptic plasticity. This delay poses serious limitations for their significance as biological experimental model and screening platform. We will discuss new approaches of neuronal cell differentiation and reprogramming as well as methods to accelerate the maturation and functional activity of the converted human neurons. © 2015 by the Society for Experimental Biology and Medicine.

  18. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.

    PubMed

    Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya

    2017-01-01

    Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a dissociated monolayer and feeder-free culture system have the potential to generate oligodendrocyte progenitor cells and mature oligodendrocytes in vitro and in vivo. This culture method could be applied to prepare large amounts of oligodendrocyte progenitor cells and mature oligodendrocytes in a relatively short amount of time.

  19. Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes.

    PubMed

    Limat, A; Hunziker, T; Boillat, C; Bayreuther, K; Noser, F

    1989-05-01

    For growth at low seeding densities, keratinocytes isolated from human tissues like epidermis or hair follicles are dependent on mesenchyme-derived feeder cells such as the 3T3-cell employed so far. As an alternative method, the present study describes the use of post-mitotic human dermal fibroblasts sublethally irradiated or mitomycin C-treated. Special emphasis was put on efficient growth of primary keratinocyte cultures plated at very low seeding densities. Thus, outer root sheath cells isolated from two anagen human hair follicles and plated in a 35-mm culture dish (3 - 6 X 10(2) attached cells) grew to confluence within 3 weeks (6 - 8 X 10(5) cells). Similar results were obtained for interfollicular keratinocytes. A crucial point for the function of these fibroblast feeder cells is plating at appropriate densities, considering their tremendous increase in cell size at the post-mitotic state. Plating densities of 4 - 5 X 10(3/cm2 allow full spreading of the feeder cells and do not impede the settling and expansion of the keratinocytes. Major advantages of this system include easier handling and better reproducibility than using 3T3-cells. Moreover, homologous fibroblast feeders mimic more closely the physiologic situation and therefore might provide a valuable tool for studying interactions between human mesenchymal and epithelial cells. Finally, potential hazards of using transformed feeder cells from a different species in keratinocyte cultures raised for wound covering in humans could be thus avoided.

  20. Strand displacement amplification for ultrasensitive detection of human pluripotent stem cells.

    PubMed

    Wu, Wei; Mao, Yiping; Zhao, Shiming; Lu, Xuewen; Liang, Xingguo; Zeng, Lingwen

    2015-06-30

    Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a powerful model system for studies of cellular identity and early mammalian development, which hold great promise for regenerative medicine. It is necessary to develop a convenient method to discriminate hPSCs from other cells in clinics and basic research. Herein, a simple and reliable biosensor for stem cell detection was established. In this biosensor system, stage-specific embryonic antigen-3 (SSEA-3) and stage-specific embryonic antigen-4 (SSEA-4) were used to mark human pluripotent stem cells (hPSCs). Antibody specific for SSEA-3 was coated onto magnetic beads for hPSCs enrichment, and antibody specific for SSEA-4 was conjugated with carboxyl-modified tDNA sequence which was used as template for strand displacement amplification (SDA). The amplified single strand DNA (ssDNA) was detected with a lateral flow biosensor (LFB). This biosensor is capable of detecting a minimum of 19 human embryonic stem cells by a strip reader and 100 human embryonic stem cells by the naked eye within 80min. This approach has also shown excellent specificity to distinguish hPSCs from other types of cells, showing that it is promising for specific and handy detection of human pluripotent stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Applicability of integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies

    EPA Science Inventory

    A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...

  2. Generation of Cardiomyocytes from Pluripotent Stem Cells.

    PubMed

    Nakahama, Hiroko; Di Pasquale, Elisa

    2016-01-01

    The advent of pluripotent stem cells (PSCs) enabled a multitude of studies for modeling the development of diseases and testing pharmaceutical therapeutic potential in vitro. These PSCs have been differentiated to multiple cell types to demonstrate its pluripotent potential, including cardiomyocytes (CMs). However, the efficiency and efficacy of differentiation vary greatly between different cell lines and methods. Here, we describe two different methods for acquiring CMs from human pluripotent lines. One method involves the generation of embryoid bodies, which emulates the natural developmental process, while the other method chemically activates the canonical Wnt signaling pathway to induce a monolayer of cardiac differentiation.

  3. [Nuclear transfer of goat somatic cells transgenic for human lactoferrin].

    PubMed

    Li, Lan; Shen, Wei; Pan, Qing-Yu; Min, Ling-Jiang; Sun, Yu-Jiang; Fang, Yong-Wei; Deng, Ji-Xian; Pan, Qing-Jie

    2006-12-01

    Transgenic animal mammary gland bioreactors are being used to produce recombinant proteins with appropriate post-translational modifications, and nuclear transfer of transgenic somatic cells is a more powerful method to produce mammary gland bioreactor. Here we describe efficient gene transfer and nuclear transfer in goat somatic cells. Gene targeting vector pGBC2LF was constructed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene, and the endogenous start condon was replaced by that of human LF gene. Goat fetal fibroblasts were transfected with linearized pGBC2LF and 14 cell lines were positive according to PCR and Southern blot. The transgenic cells were used as donor cells of nuclear transfer, and some of reconstructed embryos could develop to blastocyst in vitro.

  4. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    PubMed

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hanging drop culture enhances differentiation of human adipose-derived stem cells into anterior neuroectodermal cells using small molecules.

    PubMed

    Amirpour, Noushin; Razavi, Shahnaz; Esfandiari, Ebrahim; Hashemibeni, Batoul; Kazemi, Mohammad; Salehi, Hossein

    2017-06-01

    Inspired by in vivo developmental process, several studies were conducted to design a protocol for differentiating of mesenchymal stem cells into neural cells in vitro. Human adipose-derived stem cells (hADSCs) as mesenchymal stem cells are a promising source for this purpose. At current study, we applied a defined neural induction medium by using small molecules for direct differentiation of hADSCs into anterior neuroectodermal cells. Anterior neuroectodermal differentiation of hADSCs was performed by hanging drop and monolayer protocols. At these methods, three small molecules were used to suppress the BMP, Nodal, and Wnt signaling pathways in order to obtain anterior neuroectodermal (eye field) cells from hADSCs. After two and three weeks of induction, the differentiated cells with neural morphology expressed anterior neuroectodermal markers such as OTX2, SIX3, β-TUB III and PAX6. The protein expression of such markers was confirmed by real time, RT-PCR and immunocytochemistry methods According to our data, it seems that the hanging drop method is a proper approach for neuroectodermal induction of hADSCs. Considering wide availability and immunosuppressive properties of hADSCs, these cells may open a way for autologous cell therapy of neurodegenerative disorders. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  6. Human relevance of an in vitro gene signature in HaCaT for skin sensitization.

    PubMed

    van der Veen, Jochem W; Hodemaekers, Henny; Reus, Astrid A; Maas, Wilfred J M; van Loveren, Henk; Ezendam, Janine

    2015-02-01

    The skin sensitizing potential of chemicals is mainly assessed using animal methods, such as the murine local lymph node assay. Recently, an in vitro assay based on a gene expression signature in the HaCaT keratinocyte cell line was proposed as an alternative to these animal methods. Here, the human relevance of this gene signature is assessed through exposure of freshly isolated human skin to the chemical allergens dinitrochlorobenzene (DNCB) and diphenylcyclopropenone (DCP). In human skin, the gene signature shows similar direction of regulation as was previously observed in vitro, suggesting that the molecular processes that drive expression of these genes are similar between the HaCaT cell line and freshly isolated skin, providing evidence for the human relevance of the gene signature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Investigation of Human Cancers for Retrovirus by Low-Stringency Target Enrichment and High-Throughput Sequencing.

    PubMed

    Vinner, Lasse; Mourier, Tobias; Friis-Nielsen, Jens; Gniadecki, Robert; Dybkaer, Karen; Rosenberg, Jacob; Langhoff, Jill Levin; Cruz, David Flores Santa; Fonager, Jannik; Izarzugaza, Jose M G; Gupta, Ramneek; Sicheritz-Ponten, Thomas; Brunak, Søren; Willerslev, Eske; Nielsen, Lars Peter; Hansen, Anders Johannes

    2015-08-19

    Although nearly one fifth of all human cancers have an infectious aetiology, the causes for the majority of cancers remain unexplained. Despite the enormous data output from high-throughput shotgun sequencing, viral DNA in a clinical sample typically constitutes a proportion of host DNA that is too small to be detected. Sequence variation among virus genomes complicates application of sequence-specific, and highly sensitive, PCR methods. Therefore, we aimed to develop and characterize a method that permits sensitive detection of sequences despite considerable variation. We demonstrate that our low-stringency in-solution hybridization method enables detection of <100 viral copies. Furthermore, distantly related proviral sequences may be enriched by orders of magnitude, enabling discovery of hitherto unknown viral sequences by high-throughput sequencing. The sensitivity was sufficient to detect retroviral sequences in clinical samples. We used this method to conduct an investigation for novel retrovirus in samples from three cancer types. In accordance with recent studies our investigation revealed no retroviral infections in human B-cell lymphoma cells, cutaneous T-cell lymphoma or colorectal cancer biopsies. Nonetheless, our generally applicable method makes sensitive detection possible and permits sequencing of distantly related sequences from complex material.

  8. Humanized Rag1−/−γc−/− Mice Support Multilineage Hematopoiesis and Are Susceptible to HIV-1 Infection via Systemic and Vaginal Routes

    PubMed Central

    Akkina, Ramesh; Berges, Bradford K.; Palmer, Brent E.; Remling, Leila; Neff, C. Preston; Kuruvilla, Jes; Connick, Elizabeth; Folkvord, Joy; Gagliardi, Kathy; Kassu, Afework; Akkina, Sarah R.

    2011-01-01

    Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2−/−γc−/−, NOD/SCID, NOD/SCIDγc−/− and NOD/SCIDβ2m−/− strains. Transplantation of these mice with CD34+ human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1−/−γ−/− strain for engraftment by human fetal liver derived CD34+ hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2−/−γc−/− mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1−/−γc−/− mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting. PMID:21695116

  9. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation

    PubMed Central

    Alsaweed, Mohammed; Hepworth, Anna R.; Lefèvre, Christophe; Hartmann, Peter E.; Geddes, Donna T.

    2015-01-01

    ABSTRACT MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column‐based phenol‐free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. J. Cell. Biochem. 116: 2397–2407, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:25925799

  10. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells.

    PubMed

    Rostovskaya, Maria; Bredenkamp, Nicholas; Smith, Austin

    2015-10-19

    Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification. © 2015 The Authors.

  11. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation

    PubMed Central

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-01-01

    Background The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Methods Embryo biopsy, whole genome amplification and semiconductor sequencing. Results A rapid (<15 h) NGS protocol was developed, with consumable cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (p<0.05), a finding suggestive of a link between mitochondria and chromosomal malsegregation. Conclusions This study demonstrates that NGS provides highly accurate, low-cost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. PMID:25031024

  12. Human adipose-derived stem cells promote vascularization of collagen-based scaffolds transplanted into nude mice

    PubMed Central

    Cherubino, Mario; Valdatta, Luigi; Balzaretti, Riccardo; Pellegatta, Igor; Rossi, Federica; Protasoni, Marina; Tedeschi, Alessandra; Accolla, Roberto S; Bernardini, Giovanni; Gornati, Rosalba

    2016-01-01

    Aim: After in vivo implantation of cell-loaded devices, only the cells close to the capillaries can obtain nutrients to maintain their functions. It is known that factors secreted by stem cells, rather than stem cells themselves, are fundamental to guarantee new vascularization in the area of implant. Materials & methods: To investigate this possibility, we have grafted mice with Bilayer and Flowable Integra® scaffolds, loaded or not with human adipose-derived stem cells. Results: Our results support the therapeutic potential of human adipose-derived stem cells to induce new vascular networks of engineered organs and tissues. Conclusion: This finding suggests that our approach can help to form new vascular networks that allow sufficient vascularization of engineered organs and tissues in cases of difficult wound healing due to ischemic conditions. PMID:26965659

  13. Endocrine cells in human Bartholin's glands. An immunohistochemical and ultrastructural analysis.

    PubMed

    Fetissof, F; Arbeille, B; Bellet, D; Barre, I; Lansac, J

    1989-01-01

    Endocrine cells were investigated in human Bartholin's glands by use of histochemical, immunohistochemical and ultrastructural methods. Endocrine cells represent normal constituents of these glands, being mainly distributed throughout the transitional epithelium of the major excretory duct; however, single elements are dispersed among the acinar lobules. Serotonin-, calcitonin-, katacalcin-, bombesin- and alpha-hCG-immunoreactive cells were recognized, with serotonin-immunoreactive cells predominating. Co-expression of calcitonin, katacalcin or alpha-hCG with serotonin was observed in single endocrine cells. At the ultrastructural level, these cells are richly granulated and show typical neuroendocrine features. Bartholin's glands display an endocrine profile quite similar to that of other cloacal-derived tissues.

  14. Highly specific detection of H2O2-dependent luminol chemiluminescence in stimulated human leukocytes using polyvinyl films.

    PubMed

    Moriguchi, K; Ohno, N; Ogawa, T; Hirai, K

    1999-01-01

    When human polymorphonuclear leukocytes (PMN) were attached to glass coverslips, cells always spread and formed reactive oxygen species prior to any experimental stimulation. To avoid this, a polyvinylidine chloride film was used as an inactive substance to place the cells. Cells engaged in phagocytosis on the film exhibited a specific H2O2-mediated luminol chemiluminescence (LCL) at the cell-particle interface; the cells stimulated with 12-O-tetradecanoylphorbol-13-acetate became aggregated and the LCL was observed at the cell-cell contact. These results corresponded well with those obtained by an electron microscopic H2O2-demonstration method.

  15. Therapeutic effects of autologous lymphocytes activated with trastuzumab for xenograft mouse models of human breast cancer.

    PubMed

    Nakagawa, Shinichiro; Matsuoka, Yusuke; Ichihara, Hideaki; Yoshida, Hitoji; Yoshida, Kenshi; Ueoka, Ryuichi

    2013-01-01

    Trastuzumab (TTZ) is molecular targeted drug used for metastatic breast cancer patients overexpressing human epidermal growth factor receptor 2 (HER2). Therapeutic effects of lymphocytes activated with TTZ (TTZ-LAK) using xenograft mouse models of human breast cancer (MDA-MB-453) cells were examined in vivo. Remarkable reduction of tumor volume in a xenograft mouse models intravenously treated with TTZ-LAK cells after the subcutaneously inoculated of MDA-MB-453 cells was verified in vivo. The migration of TTZ-LAK cells in tumor of mouse models subcutaneously inoculated MDA-MB-453 cells was observed on the basis of histological analysis using immunostaining with CD-3. Induction of apoptosis in tumor of xenograft mice treated with TTZ-LAK cells was observed in micrographs using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method. It was noteworthy that the therapeutic effects of TTZ-LAK cells along with apoptosis were obtained for xenograft mouse models of human breast tumor in vivo.

  16. High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells.

    PubMed

    Carlson-Stevermer, Jared; Goedland, Madelyn; Steyer, Benjamin; Movaghar, Arezoo; Lou, Meng; Kohlenberg, Lucille; Prestil, Ryan; Saha, Krishanu

    2016-01-12

    CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Primary culture of human Schwann and schwannoma cells: improved and simplified protocol.

    PubMed

    Dilwali, Sonam; Patel, Pratik B; Roberts, Daniel S; Basinsky, Gina M; Harris, Gordon J; Emerick, Kevin S; Stankovic, Konstantina M

    2014-09-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Primary culture of human Schwann and schwannoma cells: Improved and simplified protocol

    PubMed Central

    Dilwali, Sonam; Patel, Pratik B.; Roberts, Daniel S.; Basinsky, Gina M.; Harris, Gordon J.; Emerick, Kevin; Stankovic, Konstantina M.

    2014-01-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. PMID:24910344

  19. Search for infective mammalian type-C virus-related genes in the DNA of human sarcomas and leukemias.

    PubMed

    Nicolson, M O; Gilden, R V; Charman, H; Rice, N; Heberling, R; McAllister, R M

    1978-06-15

    DNA was extracted from two human sarcoma cell lines, TE-32 and TE-418, and the leukemic cells from five children with acute myelocytic leukemia, three children with acute lymphocytic leukemia and four adults with acute myelocytic leukemia. The DNAs, assayed for infectivity by transfection techniques, induced no measurable virus by methods which would detect known mammalian C-type antigens or RNA-directed DNA polymerase in TE-32, D-17 dog cells and other indicator cells, nor did they recombine with or rescue endogenous human or exogenous murine or baboon type-C virus. Model systems used as controls were human sarcoma cells, TE-32 and HT-1080, and human lymphoma cells TE-543, experimentally infected with KiMuLV, GaLV or baboon type-C virus, all of which released infectious virus and whose DNAs were infectious for TE-32 and D-17 dog cells. Other model systems included two baboon placentas and one embryonic cell strain spontaneously releasing infectious endogenous baboon virus and yielding DNAs infectious for D-17 dog cells but not for TE-32 cells. Four other baboon embryonic tissues and two embryonic cell strains, releasing either low levels of virus or no virus, did not yield infectious DNA.

  20. An in vitro model of Mycobacterium leprae induced granuloma formation

    PubMed Central

    2013-01-01

    Background Leprosy is a contagious and chronic systemic granulomatous disease caused by Mycobacterium leprae. In the pathogenesis of leprosy, granulomas play a key role, however, the mechanisms of the formation and maintenance of M. leprae granulomas are still not clearly understood. Methods To better understand the molecular physiology of M. leprae granulomas and the interaction between the bacilli and human host cells, we developed an in vitro model of human granulomas, which mimicked the in vivo granulomas of leprosy. Macrophages were differentiated from human monocytes, and infected with M. leprae, and then cultured with autologous human peripheral blood mononuclear cells (PBMCs). Results Robust granuloma-like aggregates were obtained only when the M. leprae infected macrophages were co-cultured with PBMCs. Histological examination showed M. leprae within the cytoplasmic center of the multinucleated giant cells, and these bacilli were metabolically active. Macrophages of both M1 and M2 types co-existed in the granuloma like aggregates. There was a strong relationship between the formation of granulomas and changes in the expression levels of cell surface antigens on macrophages, cytokine production and the macrophage polarization. The viability of M. leprae isolated from granulomas indicated that the formation of host cell aggregates benefited the host, but the bacilli also remained metabolically active. Conclusions A simple in vitro model of human M. leprae granulomas was established using human monocyte-derived macrophages and PBMCs. This system may be useful to unravel the mechanisms of disease progression, and subsequently develop methods to control leprosy. PMID:23782413

  1. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xia; Department of Neurology, The Fifth People's Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240; Zhao, Libo

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated tomore » metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.« less

  2. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.

    PubMed

    Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C

    2007-10-09

    High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  3. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy

    NASA Astrophysics Data System (ADS)

    Taik Lim, Yong; Cho, Mi Young; Noh, Young-Woock; Chung, Jin Woong; Chung, Bong Hyun

    2009-11-01

    This study describes the development of near-infrared optical imaging technology for the monitoring of immunotherapeutic cell-based cancer therapy using natural killer (NK) cells labeled with fluorescent nanocrystals. Although NK cell-based immunotherapeutic strategies have drawn interest as potent preclinical or clinical methods of cancer therapy, there are few reports documenting the molecular imaging of NK cell-based cancer therapy, primarily due to the difficulty of labeling of NK cells with imaging probes. Human natural killer cells (NK92MI) were labeled with anti-human CD56 antibody-coated quantum dots (QD705) for fluorescence imaging. FACS analysis showed that the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 have no effect on the cell viability. The effect of anti-human CD56 antibody-coated QD705 labeling on the NK92MI cell function was investigated by measuring interferon gamma (IFN- γ) production and cytolytic activity. Finally, the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 showed a therapeutic effect similar to that of unlabeled NK92MI cells. Images of intratumorally injected NK92MI cells labeled with anti-human CD56 antibody-coated could be acquired using near-infrared optical imaging both in vivo and in vitro. This result demonstrates that the immunotherapeutic cells labeled with fluorescent nanocrystals can be a versatile platform for the effective tracking of injected therapeutic cells using optical imaging technology, which is very important in cell-based cancer therapies.

  4. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    PubMed

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  5. [Isolation and identification of human periodontal ligament stem cells in vitro].

    PubMed

    Shen, Tao; Chang, Hui-jun; Jian, Cong-xiang; Yang, Yan-chun; Zhou, Ji-xiang

    2011-02-01

    To isolate and identify human periodontal ligament stem cells (PDLSC) by improved methods and assess the characteristics of PDLSC ex vivo. The periodontal ligament cells were obtained from the healthy impacted third molars and teeth extracted for orthodontic purposes and used to isolate PDLSC by limiting dilution assay. PDLSC were cultured and expanded in alpha-MEM supplemented with 10% FBS. Colony-forming assay, immunohistochemistry, flow cytometry, osteogenic and adipogenic induction were used to identify PDLSC. The obtained cells had high colony-forming efficiency and were positive staining for vimentin and negative for pancytokeratin. Flow cytometry revealed that the isolated cells were positive for STRO-1 and CD146 antibodies and most were in the G0/G1 phase of cell cycle. Under specific conditions, they could differentiate to the osteoblast and adipocyte lineages in vitro. Limiting dilution assay is an effective method to isolate PDLSC and the single-cell-derived colonies demonstrate the properties of stem cells in vitro.

  6. Transcriptome In Vivo Analysis (TIVA) of spatially defined single cells in intact live mouse and human brain tissue

    PubMed Central

    Lovatt, Ditte; Ruble, Brittani K.; Lee, Jaehee; Dueck, Hannah; Kim, Tae Kyung; Fisher, Stephen; Francis, Chantal; Spaethling, Jennifer M.; Wolf, John A.; Grady, M. Sean; Ulyanova, Alexandra V.; Yeldell, Sean B.; Griepenburg, Julianne C.; Buckley, Peter T.; Kim, Junhyong; Sul, Jai-Yoon; Dmochowski, Ivan J.; Eberwine, James

    2014-01-01

    Transcriptome profiling is an indispensable tool in advancing the understanding of single cell biology, but depends upon methods capable of isolating mRNA at the spatial resolution of a single cell. Current capture methods lack sufficient spatial resolution to isolate mRNA from individual in vivo resident cells without damaging adjacent tissue. Because of this limitation, it has been difficult to assess the influence of the microenvironment on the transcriptome of individual neurons. Here, we engineered a Transcriptome In Vivo Analysis (TIVA)-tag, which upon photoactivation enables mRNA capture from single cells in live tissue. Using the TIVA-tag in combination with RNA-seq to analyze transcriptome variance among single dispersed cells and in vivo resident mouse and human neurons, we show that the tissue microenvironment shapes the transcriptomic landscape of individual cells. The TIVA methodology provides the first noninvasive approach for capturing mRNA from single cells in their natural microenvironment. PMID:24412976

  7. Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny.

    PubMed

    Hookway, Tracy A; Butts, Jessica C; Lee, Emily; Tang, Hengli; McDevitt, Todd C

    2016-05-15

    Culture of human pluripotent stem cells (hPSC) as in vitro multicellular aggregates has been increasingly used as a method to model early embryonic development. Three-dimensional assemblies of hPSCs facilitate interactions between cells and their microenvironment to promote morphogenesis, analogous to the multicellular organization that accompanies embryogenesis. In this paper, we describe a method for reproducibly generating and maintaining populations of homogeneous three-dimensional hPSC aggregates using forced aggregation and rotary orbital suspension culture. We propose solutions to several challenges associated with the consistent formation and extended culture of cell spheroids generated from hPSCs and their differentiated progeny. Further, we provide examples to demonstrate how aggregation can be used as a tool to select specific subpopulations of cells to create homotypic spheroids, or as a means to introduce multiple cell types to create heterotypic tissue constructs. Finally, we demonstrate that the aggregation and rotary suspension method can be used to support culture and maintenance of hPSC-derived cell populations representing each of the three germ layers, underscoring the utility of this platform for culturing many different cell types. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. [Preliminary establishment of transplanted human chronic myeloid leukemia model in nude mice].

    PubMed

    Li, Xian-Min; Ding, Xin; Zhang, Long-Zhen; Cen, Jian-Nong; Chen, Zi-Xing

    2011-12-01

    Chronic myeloid leukemia (CML) is a malignant clonal disease derived from hematopoietic stem cells. CML stem cells were thought to be the root which could lead disease development and ultimately rapid change. However, a stable animal model for studying the characteristics of CML stem cells is currently lacking. This study was aimed to establish a transplanted human CML nude-mice model to further explore the biological behavior of CML stem cells in vivo, and to enrich CML stem cells in nude mice by series transplantation. The 4 - 6 weeks old BALB/c nude mice pretreated by splenectomy (S), cytoxan intraperitoneal injection (C) and sublethal irradiation (I) were transplanted intravenously with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase. Alternatively, 4 - 6 weeks old BALB/c nude mice pretreated by lethal irradiation were transplanted intravenously with 5 × 10(6) homologous bone marrow cells of BALB/c nude mice together with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase simultaneously. The leukemic cells engrafted and infiltrated in organs and bone marrow of the mice were tracked by reverse transcription-polymerase chain reaction (RT-PCR), plastic-embedded biopsy and flow cytometry. The results of these two methods were compared. The results showed that human CML cells engrafted and infiltrating into the bone marrow of two nude mice pretreated with SCI could be detected. In spite of the low successful rate, results suggested the feasibility of this method by using BALB/c nude mice as a human CML animal model. In contrast, in nude mice pretreated by the lethal dose irradiation, CML cells in the bone marrow could not be found. It is concluded that human bone marrow CML cells can results in leukemia in nude mice pretreated by SCI. Thus this study provides a new strategy for establishment of CML animal models which deserves further elaboration.

  9. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    PubMed Central

    Zhu, Wei; Teel, George; O’Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing bio-mimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327

  10. The preparation of ethylenediamine-modified fluorescent carbon dots and their use in imaging of cells.

    PubMed

    Dong, Wei; Zhou, Siqi; Dong, Yan; Wang, Jingwen; Ge, Xin; Sui, Lili

    2015-09-01

    In this work, fluorescent carbon dots (CDs) were synthesized using a hydrothermal method with glucose as the carbon source and were surface-modified with ethylenediamine. The properties of as-prepared CDs were analyzed by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), ultraviolet-visible light (UV/vis) absorption and fluorescent spectra. Furthermore, CDs conjugated with mouse anti-(human carcinoembryonic antigen) (CEA) monoclonal antibody were successful employed in the biolabeling and fluorescent imaging of human gastric carcinoma cells. In addition, the cytotoxicity of CDs was also tested using human gastric carcinoma cells. There was no apparent cytotoxicity on human gastric carcinoma cells. These results suggest the potential application of the as-prepared CDs in bioimaging and related fields. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway

    PubMed Central

    2011-01-01

    Background To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. Methods Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluorescent microscopy. The expressions of Cyclin B1, p-Cdc2, Bcl-2, Bax, t-Akt and p-Akt were evaluated by Western blotting. Results Osthole inhibited the growth of human lung cancer A549 cells by inducing G2/M arrest and apoptosis. Western blotting demonstrated that Osthole down-regulated the expressions of Cyclin B1, p-Cdc2 and Bcl-2 and up-regulated the expressions of Bax in A549 cells. Inhibition of PI3K/Akt signaling pathway was also observed after treating A549 cells with Osthole. Conclusions Our findings suggest that Osthole may have a therapeutic application in the treatment of human lung cancer. PMID:21447176

  12. Isolation of a hemidesmosome-rich fraction from a human squamous cell carcinoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirako, Yoshiaki, E-mail: s47526a@cc.nagoya-u.ac.jp; Yonemoto, Yuki; Yamauchi, Tomoe

    2014-06-10

    Hemidesmosomes are cell-to-matrix adhesion complexes anchoring keratinocytes to basement membranes. For the first time, we present a method to prepare a fraction from human cultured cells that are highly enriched in hemidesmosomal proteins. Using DJM-1 cells derived from human squamous cell carcinoma, accumulation of hemidesmosomes was observed when these cells were cultured for more than 10 days in a commercial serum-free medium without supplemental calcium. Electron microscopy demonstrated that numerous electron-dense adhesion structures were present along the basal cell membranes of DJM-1 cells cultured under the aforementioned conditions. After removing cellular materials using an ammonia solution, hemidesmosomal proteins and depositedmore » extracellular matrix were collected and separated by electrophoresis. There were eight major polypeptides, which were determined to be plectin, BP230, BP180, integrin α6 and β4 subunits, and laminin-332 by immunoblotting and mass spectrometry. Therefore, we designated this preparation as a hemidesmosome-rich fraction. This fraction contained laminin-332 exclusively in its unprocessed form, which may account for the promotion of laminin deposition, and minimal amounts of Lutheran blood group protein, a nonhemidesmosomal transmembrane protein. This hemidesmosome-rich fraction would be useful not only for biological research on hemidesmosomes but also for developing a serum test for patients with blistering skin diseases. - Highlights: • A defined condition promoted accumulation of hemidesmosomes in human cultured cells. • A fraction isolated from the cells contained eight major polypeptides. • The polypeptides were the five major hemidesmosome proteins and laminin-332. • The cultured cells deposited laminin-332 in its unprocessed form under the condition. • We report a method to prepare a fraction highly enriched in hemidesmosome proteins.« less

  13. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template.

    PubMed

    Sather, Blythe D; Romano Ibarra, Guillermo S; Sommer, Karen; Curinga, Gabrielle; Hale, Malika; Khan, Iram F; Singh, Swati; Song, Yumei; Gwiazda, Kamila; Sahni, Jaya; Jarjour, Jordan; Astrakhan, Alexander; Wagner, Thor A; Scharenberg, Andrew M; Rawlings, David J

    2015-09-30

    Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4(+) T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV)-mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP-modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34(+) cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties. Copyright © 2015, American Association for the Advancement of Science.

  14. Rapid micropatterning of cell lines and human pluripotent stem cells on elastomeric membranes.

    PubMed

    Paik, Isha; Scurr, David J; Morris, Bryan; Hall, Graham; Denning, Chris; Alexander, Morgan R; Shakesheff, Kevin M; Dixon, James E

    2012-10-01

    Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron-scale control of cell position can be achieved over centimeter-length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro-stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel™) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH-3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches. Copyright © 2012 Wiley Periodicals, Inc.

  15. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    PubMed Central

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  16. [Immunocytochemical localization of the GFAP in heterotransplanted human gliomas (author's transl)].

    PubMed

    Maunoury, R; Courdi, A; Vedrenne, C; Constans, J P

    1978-01-01

    Three cell lines derived in our laboratory from human malignant gliomas (SA 130, SA 132, SA 134) were injected subcutaneously into pathogen-free nude thymus less mice. These three cell lines gave origine to malignant tumors which, as original tumors, were positive for the glial fibrillary acidic protein (GFAP) revealed by immunoperoxidase method.

  17. Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation

    PubMed Central

    Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan

    2016-01-01

    Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747

  18. Rapid Column-Free Enrichment of Mononuclear Cells from Solid Tissues

    PubMed Central

    Scoville, Steven D.; Keller, Karen A.; Cheng, Stephanie; Zhang, Michael; Zhang, Xiaoli; Caligiuri, Michael A.; Freud, Aharon G.

    2015-01-01

    We have developed a rapid negative selection method to enrich rare mononuclear cells from human tissues. Unwanted and antibody-tethered cells are selectively depleted during a Ficoll separation step, and there is no need for magnetic-based reagents and equipment. The new method is fast, customizable, inexpensive, remarkably efficient, and easy to perform, and per sample the overall cost is less than one-tenth the cost associated with a magnetic column-based method. PMID:26223896

  19. Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells

    PubMed Central

    Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N.; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R.; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A.; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert

    2014-01-01

    Summary Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness. PMID:25418726

  20. Scalable generation of universal platelets from human induced pluripotent stem cells.

    PubMed

    Feng, Qiang; Shabrani, Namrata; Thon, Jonathan N; Huo, Hongguang; Thiel, Austin; Machlus, Kellie R; Kim, Kyungho; Brooks, Julie; Li, Feng; Luo, Chenmei; Kimbrel, Erin A; Wang, Jiwu; Kim, Kwang-Soo; Italiano, Joseph; Cho, Jaehyung; Lu, Shi-Jiang; Lanza, Robert

    2014-11-11

    Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.

  1. Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing

    PubMed Central

    Ay, Chyung; Young, Chao-Wang; Chen, Jhong-Yin

    2013-01-01

    The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937), the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method. PMID:23698272

  2. Novel Automated Blood Separations Validate Whole Cell Biomarkers

    PubMed Central

    Burger, Douglas E.; Wang, Limei; Ban, Liqin; Okubo, Yoshiaki; Kühtreiber, Willem M.; Leichliter, Ashley K.; Faustman, Denise L.

    2011-01-01

    Background Progress in clinical trials in infectious disease, autoimmunity, and cancer is stymied by a dearth of successful whole cell biomarkers for peripheral blood lymphocytes (PBLs). Successful biomarkers could help to track drug effects at early time points in clinical trials to prevent costly trial failures late in development. One major obstacle is the inaccuracy of Ficoll density centrifugation, the decades-old method of separating PBLs from the abundant red blood cells (RBCs) of fresh blood samples. Methods and Findings To replace the Ficoll method, we developed and studied a novel blood-based magnetic separation method. The magnetic method strikingly surpassed Ficoll in viability, purity and yield of PBLs. To reduce labor, we developed an automated platform and compared two magnet configurations for cell separations. These more accurate and labor-saving magnet configurations allowed the lymphocytes to be tested in bioassays for rare antigen-specific T cells. The automated method succeeded at identifying 79% of patients with the rare PBLs of interest as compared with Ficoll's uniform failure. We validated improved upfront blood processing and show accurate detection of rare antigen-specific lymphocytes. Conclusions Improving, automating and standardizing lymphocyte detections from whole blood may facilitate development of new cell-based biomarkers for human diseases. Improved upfront blood processes may lead to broad improvements in monitoring early trial outcome measurements in human clinical trials. PMID:21799852

  3. In vitro perforation of human epithelial carcinoma cell with antibody-conjugated biodegradable microspheres illuminated by a single 80 femtosecond near-infrared laser pulse

    PubMed Central

    Terakawa, Mitsuhiro; Tsunoi, Yasuyuki; Mitsuhashi, Tatsuki

    2012-01-01

    Pulsed laser interaction with small metallic and dielectric particles has been receiving attention as a method of drug delivery to many cells. However, most of the particles are attended by many risks, which are mainly dependent upon particle size. Unlike other widely used particles, biodegradable particles have advantages of being broken down and eliminated by innate metabolic processes. In this paper, the perforation of cell membrane by a focused spot with transparent biodegradable microspheres excited by a single 800 nm, 80 fs laser pulse is demonstrated. A polylactic acid (PLA) sphere, a biodegradable polymer, was used. Fluorescein isothiocyanate (FITC)-dextran and short interfering RNA were delivered into many human epithelial carcinoma cells (A431 cells) by applying a single 80 fs laser pulse in the presence of antibody-conjugated PLA microspheres. The focused intensity was also simulated by the three-dimensional finite-difference time-domain method. Perforation by biodegradable spheres compared with other particles has the potential to be a much safer phototherapy and drug delivery method for patients. The present method can open a new avenue, which is considered an efficient adherent for the selective perforation of cells which express the specific antigen on the cell membrane. PMID:22679375

  4. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A

    NASA Astrophysics Data System (ADS)

    Leserman, Lee D.; Barbet, Jacques; Kourilsky, François; Weinstein, John N.

    1980-12-01

    Many applications envisioned for liposomes in cell biology and chemotherapy require their direction to specific cellular targets1-3. The ability to use antibody as a means of conferring specificity to liposomes would markedly increase their usefulness. We report here a method for covalently coupling soluble proteins, including monoclonal antibody and Staphylococcus aureus protein A (ref. 4), to small sonicated liposomes, by using the heterobifunctional cross-linking reagent N-hydroxysuccinimidyl 3-(2-pyridyldithio)propionate (SPDP, Pharmacia). Liposomes bearing covalently coupled mouse monoclonal antibody against human β2-microglobulin [antibody B1.1G6 (IgG2a, κ) (B. Malissen et al., in preparation)] bound specifically to human, but not to mouse cells. Liposomes bearing protein A became bound to human cells previously incubated with the B1.1G6 antibody, but not to cells incubated without antibody. The coupling method results in efficient binding of protein to the liposomes without aggregation and without denaturation of the coupled ligand; at least 60% of liposomes bound functional protein. Further, liposomes did not leak encapsulated carboxyfluorescein (CF) as a consequence of the reaction.

  5. Maternal T-Cell Engraftment Interferes With Human Leukocyte Antigen Typing in Severe Combined Immunodeficiency.

    PubMed

    Liu, Chang; Duffy, Brian; Bednarski, Jeffrey J; Calhoun, Cecelia; Lay, Lindsay; Rundblad, Barrett; Payton, Jacqueline E; Mohanakumar, Thalachallour

    2016-02-01

    To report the laboratory investigation of a case of severe combined immunodeficiency (SCID) with maternal T-cell engraftment, focusing on the interference of human leukocyte antigen (HLA) typing by blood chimerism. HLA typing was performed with three different methods, including sequence-specific primer (SSP), sequence-specific oligonucleotide, and Sanger sequencing on peripheral blood leukocytes and buccal cells, from a 3-month-old boy and peripheral blood leukocytes from his parents. Short tandem repeat (STR) testing was performed in parallel. HLA typing of the patient's peripheral blood leukocytes using the SSP method demonstrated three different alleles for each of the HLA-B and HLA-C loci, with both maternal alleles present at each locus. Typing results from the patient's buccal cells showed a normal pattern of inheritance for paternal and maternal haplotypes. STR enrichment testing of the patient's CD3+ T lymphocytes and CD15+ myeloid cells confirmed maternal T-cell engraftment, while the myeloid cell profile matched the patient's buccal cells. Maternal T-cell engraftment may interfere with HLA typing in patients with SCID. Selection of the appropriate typing methods and specimens is critical for accurate HLA typing and immunologic assessment before allogeneic hematopoietic stem cell transplantation. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells.

    PubMed

    Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David A

    2017-02-06

    In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

  7. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells

    PubMed Central

    Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David. A.

    2017-01-01

    In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods. PMID:28178187

  8. Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle*

    PubMed Central

    Vogan, Jacob M.; Collins, Kathleen

    2015-01-01

    Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells. PMID:26170453

  9. Glucagon Like Peptide-1 Receptor Expression in the Human Thyroid Gland

    PubMed Central

    Gier, Belinda; Butler, Peter C.; Lai, Chi K.; Kirakossian, David; DeNicola, Matthew M.

    2012-01-01

    Background: Glucagon like peptide-1 (GLP-1) mimetic therapy induces medullary thyroid neoplasia in rodents. We sought to establish whether C cells in human medullary thyroid carcinoma, C cell hyperplasia, and normal human thyroid express the GLP-1 receptor. Methods: Thyroid tissue samples with medullary thyroid carcinoma (n = 12), C cell hyperplasia (n = 9), papillary thyroid carcinoma (n = 17), and normal human thyroid (n = 15) were evaluated by immunofluorescence for expression of calcitonin and GLP-1 receptors. Results: Coincident immunoreactivity for calcitonin and GLP-1 receptor was consistently observed in both medullary thyroid carcinoma and C cell hyperplasia. GLP-1 receptor immunoreactivity was also detected in 18% of papillary thyroid carcinoma (three of 17 cases). Within normal human thyroid tissue, GLP-1 receptor immunoreactivity was found in five of 15 of the examined cases in about 35% of the total C cells assessed. Conclusions: In humans, neoplastic and hyperplastic lesions of thyroid C cells express the GLP-1 receptor. GLP-1 receptor expression is detected in 18% papillary thyroid carcinomas and in C cells in 33% of control thyroid lobes. The consequence of long-term pharmacologically increased GLP-1 signaling on these GLP-1 receptor-expressing cells in the thyroid gland in humans remains unknown, but appropriately powered prospective studies to exclude an increase in medullary or papillary carcinomas of the thyroid are warranted. PMID:22031513

  10. A High-Throughput Assay for Screening of Natural Products that Enhanced Tumoricidal Activity of NK Cells.

    PubMed

    Gong, Chenyuan; Ni, Zhongya; Yao, Chao; Zhu, Xiaowen; Ni, Lulu; Wang, Lixin; Zhu, Shiguo

    2015-01-01

    Recently, immunotherapy has shown a lot of promise in cancer treatment and different immune cell types are involved in this endeavor. Among different immune cell populations, NK cells are also an important component in unleashing the therapeutic activity of immune cells. Therefore, in order to enhance the tumoricidal activity of NK cells, identification of new small-molecule natural products is important. Despite the availability of different screening methods for identification of natural products, a simple, economic and high-throughput method is lacking. Hence, in this study, we have developed a high-throughput assay for screening and indentifying natural products that can enhance NK cell-mediated killing of cancer cells. We expanded human NK cell population from human peripheral blood mononuclear cells (PBMCs) by culturing these PBMCs with membrane-bound IL-21 and CD137L engineered K562 cells. Next, expanded NK cells were co-cultured with non-small cell lung cancer (NSCLC) cells with or without natural products and after 24 h of co-culturing, harvested supernatants were analyzed for IFN-γ secretions by ELISA method. We screened 502 natural products and identified that 28 candidates has the potential to induce IFN-γ secretion by NK cells to varying degrees. Among the 28 natural product candidates, we further confirmed and analyzed the potential of one molecule, andrographolide. It actually increased IFN-γ secretion by NK cells and enhanced NK cell-mediated killing of NSCLC cells. Our results demonstrated that this IFN-γ based high-throughput assay for screening of natural products for NK cell tumoricidal activity is a simple, economic and reliable method.

  11. A green approach toward quinoxalines and bis-quinoxalines and their biological evaluation against A431, human skin cancer cell lines.

    PubMed

    Bandyopadhyay, Debasish; Cruz, Jessica; Morales, Liza D; Arman, Hadi D; Cuate, Erica; Lee, Young S; Banik, Bimal K; Kim, Dae J

    2013-08-01

    The objective of this study was to develop a practical green procedure to synthesize quinoxalines and bis-quinoxalines and evaluate their inhibitory effects on the viability of A431 human epidermoid carcinoma cells. A series of quinoxaline and bis-quinoxaline derivatives have been designed and synthesized following a microwave-assisted and bismuth nitrate-catalyzed eco-friendly route. A detailed comparison has been made between microwave-induced protocol with the reactions occurred at room temperature. The structure of the compounds have been elucidated by various spectroscopic methods and finally confirmed by x-ray crystallographic analyses. Two quinoxaline derivatives, compounds 6 and 12 have demonstrated inhibitory effects on the viability of A431 human epidermoid carcinoma cells when compared with HaCaT nontumorigenic human keratinocyte cells. Notably, compound 6 inhibits Stat3 phosphorylation/activation in A431 skin cancer cells.

  12. Effect of soy saponin on the growth of human colon cancer cells

    PubMed Central

    Tsai, Cheng-Yu; Chen, Yue-Hwa; Chien, Yi-Wen; Huang, Wen-Hsuan; Lin, Shyh-Hsiang

    2010-01-01

    AIM: To investigate the effect of extracted soybean saponins on the growth of human colon cancer cells. METHODS: WiDr human colon cancer cells were treated with 150, 300, 600 or 1200 ppm of soy saponin to determine the effect on cell growth, cell morphology, alkaline phosphatase (AP) and protein kinase C (PKC) activities, and P53 protein, c-Fos and c-Jun gene expression. RESULTS: Soy saponin decreased the number of viable cells in a dose-dependent manner and suppressed 12-O-tetradecanol-phorbol-13-acetate-stimulated PKC activity (P < 0.05). Cells treated with saponins developed cytoplasmic vesicles and the cell membrane became rougher and more irregular in a dose-dependent manner, and eventually disassembled. At 600 and 1200 ppm, the activity of AP was increased (P < 0.05). However, the apoptosis markers such as c-Jun and c-Fos were not significantly affected by saponin. CONCLUSION: Soy saponin may be effective in preventing colon cancer by affecting cell morphology, cell proliferation enzymes, and cell growth. PMID:20632438

  13. Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4α Transduction

    PubMed Central

    Takayama, Kazuo; Inamura, Mitsuru; Kawabata, Kenji; Katayama, Kazufumi; Higuchi, Maiko; Tashiro, Katsuhisa; Nonaka, Aki; Sakurai, Fuminori; Hayakawa, Takao; Kusuda Furue, Miho; Mizuguchi, Hiroyuki

    2012-01-01

    Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is known as a master regulator of liver-specific gene expression. Adenovirus vector-mediated overexpression of HNF4α in hepatoblasts induced by SOX17 and HEX transduction led to upregulation of epithelial and mature hepatic markers such as cytochrome P450 (CYP) enzymes, and promoted hepatic maturation by activating the mesenchymal-to-epithelial transition (MET). Thus HNF4α might play an important role in the hepatic differentiation from human ESC-derived hepatoblasts by activating the MET. Furthermore, the hepatocyte like-cells could catalyze the toxication of several compounds. Our method would be a valuable tool for the efficient generation of functional hepatocytes derived from human ESCs and iPSCs, and the hepatocyte-like cells could be used for predicting drug toxicity. PMID:22068426

  14. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells.

    PubMed

    Hakim, Farzana; Kaitsuka, Taku; Raeed, Jamiruddin Mohd; Wei, Fan-Yan; Shiraki, Nobuaki; Akagi, Tadayuki; Yokota, Takashi; Kume, Shoen; Tomizawa, Kazuhito

    2014-04-04

    Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.

  15. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells

    PubMed Central

    Seoane, Samuel; Bermúdez, María A.; Lamelas, Maria Luz; Garcia-Caballero, Tomás; Schneider, José; Perez-Fernandez, Roman; Vizoso, Francisco J.

    2014-01-01

    Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addition, hUCESCs-CM inhibited and reverted macrophage differentiation. The analysis of hUCESCs-CM (fresh and lyophilized) suggests that a complex paracrine signaling network could be implicated in the anti-tumor potential of hUCESCs. In light of their anti-tumor potential, the easy cell isolation method, and the fact that lyophilization of their CM conserves original properties make hUCESCs good candidates for experimental or clinical applications in anticancer therapy. PMID:25296979

  16. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  17. DETECTION OF HUMAN ENTERIC VIRUSES IN STREAM WATER WITH RT-PCR AND CELL CULTURE

    EPA Science Inventory

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison to traditional cell culture and Escherich...

  18. Ex Vivo Expanded Human Regulatory T Cells Can Prolong Survival of a Human Islet Allograft in a Humanized Mouse Model

    PubMed Central

    Wu, Douglas C.; Hester, Joanna; Nadig, Satish N.; Zhang, Wei; Trzonkowski, Piotr; Gray, Derek; Hughes, Stephen; Johnson, Paul; Wood, Kathryn J.

    2013-01-01

    Background Human regulatory T cells (Treg) offer an attractive adjunctive therapy to reduce current reliance on lifelong, nonspecific immunosuppression after transplantation. Here, we evaluated the ability of ex vivo expanded human Treg to prevent the rejection of islets of Langerhans in a humanized mouse model and examined the mechanisms involved. Methods We engrafted human pancreatic islets of Langerhans into the renal subcapsular space of immunodeficient BALB/c.rag2−/−.cγ−/− mice, previously rendered diabetic via injection of the β-cell toxin streptozocin. After the establishment of stable euglycemia, mice were reconstituted with allogeneic human peripheral blood mononuclear cells (PBMC) and the resultant alloreactive response studied. Ex vivo expanded CD25highCD4+ human Treg, which expressed FoxP3, CTLA-4, and CD62L and remained CD127low, were then cotransferred together with human PBMC and islet allografts and monitored for evidence of rejection. Results Human islets transplanted into diabetic immunodeficient mice reversed diabetes but were rejected rapidly after the mice were reconstituted with allogeneic human PBMC. Cotransfer of purified, ex vivo expanded human Treg prolonged islet allograft survival resulting in the accumulation of Treg in the peripheral lymphoid tissue and suppression of proliferation and interferon-γ production by T cells. In vitro, Treg suppressed activation of signal transducers and activators of transcription and inhibited the effector differentiation of responder T cells. Conclusions Ex vivo expanded Treg retain regulatory activity in vivo, can protect a human islet allograft from rejection by suppressing signal transducers and activators of transcription activation and inhibiting T-cell differentiation, and have clinical potential as an adjunctive cellular therapy. PMID:23917725

  19. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament.

    PubMed

    Torii, Daisuke; Konishi, Kiyoshi; Watanabe, Nobuyuki; Goto, Shinichi; Tsutsui, Takeki

    2015-01-01

    The periodontal ligament (PDL) consists of a group of specialized connective tissue fibers embedded in the alveolar bone and cementum that are believed to contain progenitors for mineralized tissue-forming cell lineages. These progenitors may contribute to regenerative cell therapy or tissue engineering methods aimed at recovery of tissue formation and functions lost in periodontal degenerative changes. Some reports using immortal clonal cell lines of cementoblasts, which are cells containing mineralized tissue-forming cell lineages, have shown that their phenotypic alteration and gene expression are associated with mineralization. Immortal, multipotential PDL-derived cell lines may be useful biological tools for evaluating differentiation-inducing agents. In this study, we confirmed the gene expression and mineralization potential of primary and immortal human PDL cells and characterized their immunophenotype. Following incubation with mineralization induction medium containing β-glycerophosphate, ascorbic acid, and dexamethasone, normal human PDL (Pel) cells and an immortal derivative line (Pelt) cells showed higher levels of mineralization compared with cells grown in normal growth medium. Both cell types were positive for putative surface antigens of mesenchymal cells (CD44, CD73, CD90, and CD105). They were also positive for stage-specific embryonic antigen-3, a marker of multipotential stem cells. Furthermore, PDL cells expressed cementum attachment protein and cementum protein 1 when cultured with recombinant human bone morphogenetic protein-2 or -7. The results suggest that normal and immortal human PDL cells contain multipotential mesenchymal stem cells with cementogenic potential.

  20. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium.

    PubMed

    Lindborg, Beth A; Brekke, John H; Vegoe, Amanda L; Ulrich, Connor B; Haider, Kerri T; Subramaniam, Sandhya; Venhuizen, Scott L; Eide, Cindy R; Orchard, Paul J; Chen, Weili; Wang, Qi; Pelaez, Francisco; Scott, Carolyn M; Kokkoli, Efrosini; Keirstead, Susan A; Dutton, James R; Tolar, Jakub; O'Brien, Timothy D

    2016-07-01

    Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. ©AlphaMed Press.

  1. Generation of human-induced pluripotent stem cells from burn patient-derived skin fibroblasts using a non-integrative method.

    PubMed

    Fu, Shangfeng; Ding, Jianwu; Liu, Dewu; Huang, Heping; Li, Min; Liu, Yang; Tu, Longxiang; Liu, Deming

    2018-01-01

    Patient specific induced pluripotent stem cells (iPSCs) have been recognized as a possible source of cells for skin tissue engineering. They have the potential to greatly benefit patients with large areas of burned skin or skin defects. However, the integration virus-based reprogramming method is associated with a high risk of genetic mutation and mouse embryonic fibroblast feeder-cells may be a pollutant. In the present study, human skin fibroblasts (HSFs) were successfully harvested from patients with burns and patient-specific iPSCs were generated using a non-integration method with a feeder-free approach. The octamer-binding transcription factor 4 (OCT4), sex-determining region Y box 2 (SOX2) and NANOG transcription factors were delivered using Sendai virus vectors. iPSCs exhibited representative human embryonic stem cell-like morphology and proliferation characteristics. They also expressed pluripotent markers, including OCT4, NANOG, SOX2, TRA181, stage-specific embryonic antigen 4 and TRA-160, and exhibited a normal karyotype. Teratoma and embryoid body formation revealed that iPSCs were able to differentiate into cells of all three germ layers in vitro and in vivo. The results of the present study demonstrate that HSFs derived from patients with burns, may be reprogrammed into stem cells with pluripotency, which provides a basis for cell‑based skin tissue engineering in the future.

  2. Cryopreservation of Human Pluripotent Stem Cells in Defined Medium

    PubMed Central

    Liu, Weiwei; Chen, Guokai

    2014-01-01

    This protocol describes a cryopreservation procedure using an enzyme-free dissociation method to harvest cells and preserve cells in albumin-free chemically defined E8 medium for human pluripotent stem cells (hPSCs). The dissociation by EDTA/PBS produces small cell aggregates that allow high survival efficiency in passaging and cryopreservation. The preservation in E8 medium eliminates serum or other animal products, and is suitable for the increasing demand for high quality hPSCs in translational research. In combination with the special feature of EDTA/PBS dissociation, this protocol allows efficient cryopreservation in more time-saving manner. PMID:25366897

  3. Robust measurement of telomere length in single cells

    PubMed Central

    Wang, Fang; Pan, Xinghua; Kalmbach, Keri; Seth-Smith, Michelle L.; Ye, Xiaoying; Antumes, Danielle M. F.; Yin, Yu; Liu, Lin; Keefe, David L.; Weissman, Sherman M.

    2013-01-01

    Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases. PMID:23661059

  4. Inhibin/activin-betaC and -betaE subunits in the Ishikawa human endometrial adenocarcinoma cell line.

    PubMed

    Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis

    2010-08-01

    Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in human endometrium.

  5. Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.

    PubMed

    Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2011-06-01

    Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.

  6. High-content screening of small compounds on human embryonic stem cells.

    PubMed

    Barbaric, Ivana; Gokhale, Paul J; Andrews, Peter W

    2010-08-01

    Human ES (embryonic stem) cells and iPS (induced pluripotent stem) cells have been heralded as a source of differentiated cells that could be used in the treatment of degenerative diseases, such as Parkinson's disease or diabetes. Despite the great potential for their use in regenerative therapy, the challenge remains to understand the basic biology of these remarkable cells, in order to differentiate them into any functional cell type. Given the scale of the task, high-throughput screening of agents and culture conditions offers one way to accelerate these studies. The screening of small-compound libraries is particularly amenable to such high-throughput methods. Coupled with high-content screening technology that enables simultaneous assessment of multiple cellular features in an automated and quantitative way, this approach is proving powerful in identifying both small molecules as tools for manipulating stem cell fates and novel mechanisms of differentiation not previously associated with stem cell biology. Such screens performed on human ES cells also demonstrate the usefulness of human ES/iPS cells as cellular models for pharmacological testing of drug efficacy and toxicity, possibly a more imminent use of these cells than in regenerative medicine.

  7. Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications.

    PubMed

    Di Baldassarre, Angela; Cimetta, Elisa; Bollini, Sveva; Gaggi, Giulia; Ghinassi, Barbara

    2018-05-25

    Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.

  8. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering.

    PubMed

    Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo

    2012-10-01

    Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways

    PubMed Central

    Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang

    2015-01-01

    Aim: Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Methods: Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Results: Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Conclusions: Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis. PMID:26722474

  10. Classification of human carcinoma cells using multispectral imagery

    NASA Astrophysics Data System (ADS)

    Ćinar, Umut; Y. Ćetin, Yasemin; Ćetin-Atalay, Rengul; Ćetin, Enis

    2016-03-01

    In this paper, we present a technique for automatically classifying human carcinoma cell images using textural features. An image dataset containing microscopy biopsy images from different patients for 14 distinct cancer cell line type is studied. The images are captured using a RGB camera attached to an inverted microscopy device. Texture based Gabor features are extracted from multispectral input images. SVM classifier is used to generate a descriptive model for the purpose of cell line classification. The experimental results depict satisfactory performance, and the proposed method is versatile for various microscopy magnification options.

  11. Identification of human-selective analogues of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA)

    PubMed Central

    Tijono, S M; Guo, K; Henare, K; Palmer, B D; Wang, L-C S; Albelda, S M; Ching, L-M

    2013-01-01

    Background: Species selectivity of DMXAA (5,6-dimethylxanthenone-4-acetic acid, Vadimezan) for murine cells over human cells could explain in part the recent disappointing phase III trials clinical results when preclinical studies were so promising. To identify analogues with greater human clinical potential, we compared the activity of xanthenone-4-acetic acid (XAA) analogues in murine or human cellular models. Methods: Analogues with a methyl group systematically substituted at different positions of the XAA backbone were evaluated for cytokine induction in cultured murine or human leukocytes; and for anti-vascular effects on endothelial cells on matrigel. In vivo antitumour activity and cytokine production by stromal or cancer cells was measured in human A375 and HCT116 xenografts. Results: Mono-methyl XAA analogues with substitutions at the seventh and eighth positions were the most active in stimulating human leukocytes to produce IL-6 and IL-8; and for inhibition of tube formation by ECV304 human endothelial-like cells, while 5- and 6-substituted analogues were the most active in murine cell systems. Conclusion: Xanthenone-4-acetic acid analogues exhibit extreme species selectivity. Analogues that are the most active in human systems are inactive in murine models, highlighting the need for the use of appropriate in vivo animal models in selecting clinical candidates for this class of compounds. PMID:23481185

  12. Osthole induces apoptosis, suppresses cell-cycle progression and proliferation of cancer cells.

    PubMed

    Jarząb, Agata; Grabarska, Aneta; Kiełbus, Michał; Jeleniewicz, Witold; Dmoszyńska-Graniczka, Magdalena; Skalicka-Woźniak, Krystyna; Sieniawska, Elwira; Polberg, Krzysztof; Stepulak, Andrzej

    2014-11-01

    The aim of the present study was to determine the effects of osthole on cell proliferation and viability, cell-cycle progression and induction of apoptosis in human laryngeal cancer RK33 and human medulloblastoma TE671 cell lines. Cell viability was measured by means of the MTT method and cell proliferation by the 5-bromo-2-deoxyuridine (BrdU) incorporation assay. Cell-cycle progression was determined by flow cytometry, and induction of apoptosis by release of oligonucleosomes to the cytosol. The gene expression was estimated by a quantitative polymerase chain reaction (qPCR) method. High-performance counter-current chromatography (HPCCC) was applied for isolation of osthole from fruits of Mutellina purpurea. Osthole decreased proliferation and cell viability of cancer cells in a dose-dependent manner. The tested compound induced apoptosis, increased the cell numbers in G1 and decreased cell number in S/G2 phases of the cell cycle, differentially regulating CDKN1A and TP53 gene expression depending on cancer cell type. Osthole could be considered as a potential compound for cancer therapy and chemoprevention. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9.

    PubMed

    Everman, Jamie L; Rios, Cydney; Seibold, Max A

    2018-01-01

    The adaptation of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated endonuclease 9 (CRISPR-Cas9) machinery from prokaryotic organisms has resulted in a gene editing system that is highly versatile, easily constructed, and can be leveraged to generate human cells knocked out (KO) for a specific gene. While standard transfection techniques can be used for the introduction of CRISPR-Cas9 expression cassettes to many cell types, delivery by this method is not efficient in many primary cell types, including primary human airway epithelial cells (AECs). More efficient delivery in AECs can be achieved through lentiviral-mediated transduction, allowing the CRISPR-Cas9 system to be integrated into the genome of the cell, resulting in stable expression of the nuclease machinery and increasing editing rates. In parallel, advancements have been made in the culture, expansion, selection, and differentiation of AECs, which allow the robust generation of a bulk edited AEC population from transduced cells. Applying these methods, we detail here our latest protocol to generate mucociliary epithelial cultures knocked out for a specific gene from donor-isolated primary human basal airway epithelial cells. This protocol includes methods to: (1) design and generate lentivirus which targets a specific gene for KO with CRISPR-Cas9 machinery, (2) efficiently transduce AECs, (3) culture and select for a bulk edited AEC population, (4) molecularly screen AECs for Cas9 cutting and specific sequence edits, and (5) further expand and differentiate edited cells to a mucociliary airway epithelial culture. The AEC knockouts generated using this protocol provide an excellent primary cell model system with which to characterize the function of genes involved in airway dysfunction and disease.

  14. Retinal Pigment Epithelium Culture;a Potential Source of Retinal Stem Cells

    PubMed Central

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-01-01

    Purpose To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Methods Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco’s Modified Eagle’s Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Results Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Conclusion Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered. PMID:23198062

  15. Commentary: is totipotency of a human cell a sufficient reason to exclude its patentability under the European law?

    PubMed

    Vrtovec, Katja Triller; Vrtovec, Bojan

    2007-12-01

    This article argues that totipotent character of human totipotent cells--defined as the capacity of a cell "to differentiate into all somatic lineages (ectoderm, mesoderm, endoderm), the germ line and extra-embryonic tissues such as the placenta"--is not a sufficient reason to exclude their patentability on the basis of Article 5(1) of the Directive 98/44/EC on the Legal Protection of Biotechnological Inventions (Biopatent Directive), which maintains that "the human body, at the various stages of its formation and development, [...] cannot constitute patentable inventions." Since human totipotent cells have both the potential to generate an entire new organism or to generate only different tissues or organs of an organism, they simultaneously fit the definition of the unpatentable human body at the earliest stage of its formation as well as of an element of the human body, which "may constitute a patentable invention" pursuant to Article 5(2) of the Biopatent Directive, whether that element is isolated from the human body or otherwise produced by means of a technical process. Therefore, this article suggests that, when evaluating patentability of human totipotent cells, they should be further evaluated according to their location and their method of derivation (i.e., whether human totipotent cells are located in the human body, whether they are isolated from the human body, or whether they are produced otherwise by means of a technical process). Disclosure of potential conflicts of interest is found at the end of this article.

  16. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations.

    PubMed

    Lin, Yao-Cheng; Boone, Morgane; Meuris, Leander; Lemmens, Irma; Van Roy, Nadine; Soete, Arne; Reumers, Joke; Moisse, Matthieu; Plaisance, Stéphane; Drmanac, Radoje; Chen, Jason; Speleman, Frank; Lambrechts, Diether; Van de Peer, Yves; Tavernier, Jan; Callewaert, Nico

    2014-09-03

    The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect.

  17. Immunohistochemical localisation of keratin and luminal epithelial antigen in myoepithelial and luminal epithelial cells of human mammary and salivary gland tumours.

    PubMed

    Nathrath, W B; Wilson, P D; Trejdosiewicz, L K

    1982-01-01

    Rabbit antisera to human 40-63 000 MW epidermal keratin, one batch with restricted distribution of reactivity from an initial (aK1) and one with "broad spectrum" distribution of reactivity from a late bleeding (aK), and to "luminal epithelial antigen" (aLEA) were applied to formalin fixed paraffin embedded sections of human normal and neoplastic mammary and salivary glands using an indirect immunoperoxidase method. aK1 reacted with myoepithelial cells, aLEA with luminal epithelial cells and aK with both cell types in normal mammary and salivary gland. In breast carcinomas the majority of intraluminal and infiltrating carcinoma cells reacted with aLEA but not with aK1 which reacted only with surrounding myoepithelial cells. aK reacted with both myoepithelial cells and with intraluminal and infiltrating tumour cells. In the salivary gland adenomas the majority of cells reacted with aK, and those cells arranged in a tubular fashion reacted with aLEA.

  18. Synthetic vs natural scaffolds for human limbal stem cells

    PubMed Central

    Tominac Trcin, Mirna; Dekaris, Iva; Mijović, Budimir; Bujić, Marina; Zdraveva, Emilija; Dolenec, Tamara; Pauk-Gulić, Maja; Primorac, Dragan; Crnjac, Josip; Špoljarić, Branimira; Mršić, Gordan; Kuna, Krunoslav; Špoljarić, Daniel; Popović, Maja

    2015-01-01

    Aim To investigate the impact of synthetic electrospun polyurethane (PU) and polycaprolactone (PCL) nanoscaffolds, before and after hydrolytic surface modification, on viability and differentiation of cultured human eye epithelial cells, in comparison with natural scaffolds: fibrin and human amniotic membrane. Methods Human placenta was taken at elective cesarean delivery. Fibrin scaffolds were prepared from commercial fibrin glue kits. Nanoscaffolds were fabricated by electrospinning. Limbal cells were isolated from surpluses of human cadaveric cornea and seeded on feeder 3T3 cells. The scaffolds used for viability testing and immunofluorescence analysis were amniotic membrane, fibrin, PU, and PCL nanoscaffolds, with or without prior NaOH treatment. Results Scanning electron microscope photographs of all tested scaffolds showed good colony spreading of seeded limbal cells. There was a significant difference in viability performance between cells with highest viability cultured on tissue culture plastic and cells cultured on all other scaffolds. On the other hand, electrospun PU, PCL, and electrospun PCL treated with NaOH had more than 80% of limbal cells positive for stem cell marker p63 compared to only 27%of p63 positive cells on fibrin. Conclusion Natural scaffolds, fibrin and amniotic membrane, showed better cell viability than electrospun scaffolds. On the contrary, high percentages of p63 positive cells obtained on these scaffolds still makes them good candidates for efficient delivery systems for therapeutic purposes. PMID:26088849

  19. Human Cells as Platform to Produce Gamma-Carboxylated Proteins.

    PubMed

    de Sousa Bomfim, Aline; de Freitas, Marcela Cristina Corrêa; Covas, Dimas Tadeu; de Sousa Russo, Elisa Maria

    2018-01-01

    The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.

  20. Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.

    PubMed

    Shi, Jian; Wang, Xinwen; Lyu, Lingyun; Jiang, Hui; Zhu, Hao-Jie

    2018-04-01

    Human hepatic cell lines are widely used as an in vitro model for the study of drug metabolism and liver toxicity. However, the validity of this model is still a subject of debate because the expressions of various proteins in the cell lines, including drug-metabolizing enzymes (DMEs), can differ significantly from those in human livers. In the present study, we first conducted an untargeted proteomics analysis of the microsomes of the cell lines HepG2, Hep3B, and Huh7, and compared them to human livers using a sequential window acquisition of all theoretical mass spectra (SWATH) method. Furthermore, high-resolution multiple reaction monitoring (MRM-HR), a targeted proteomic approach, was utilized to compare the expressions of pre-selected DMEs between human livers and the cell lines. In general, the SWATH quantifications were in good agreement with the MRM-HR analysis. Over 3000 protein groups were quantified in the cells and human livers, and the proteome profiles of human livers significantly differed from the cell lines. Among the 101 DMEs quantified with MRM-HR, most were expressed at substantially lower levels in the cell lines. Thus, appropriate caution must be exercised when using these cell lines for the study of hepatic drug metabolism and toxicity. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. CD34 Antigen and the MPL Receptor Expression Defines a Novel Class of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells

    PubMed Central

    Matsuoka, Yoshikazu; Takahashi, Masaya; Sumide, Keisuke; Kawamura, Hiroshi; Nakatsuka, Ryusuke; Fujioka, Tatsuya; Sonoda, Yoshiaki

    2017-01-01

    In the murine hematopoietic stem cell (HSC) compartment, thrombopoietin (THPO)/MPL (THPO receptor) signaling plays an important role in the maintenance of adult quiescent HSCs. However, the role of THPO/MPL signaling in the human primitive HSC compartment has not yet been elucidated. We have identified very primitive human cord blood (CB)-derived CD34– severe combined immunodeficiency (SCID)-repopulating cells (SRCs) using the intra-bone marrow injection method. In this study, we investigated the roles of the MPL expression in the human primitive HSC compartment. The SRC activities of the highly purified CB-derived 18Lin–CD34+/–MPL+/– cells were analyzed using NOG mice. In the primary recipient mice, nearly all mice that received CD34+/–MPL+/– cells were repopulated with human CD45+ cells. Nearly all of these mice that received CD34+MPL+/– and CD34–MPL– cells showed a secondary repopulation. Interestingly, the secondary recipient mice that received CD34+/–MPL– cells showed a distinct tertiary repopulation. These results clearly indicate that the CD34+/– SRCs not expressing MPL sustain a long-term (LT) (>1 year) human cell repopulation in NOG mice. Moreover, CD34– SRCs generate CD34+CD38–CD90+ SRCs in vitro and in vivo. These findings provide a new concept that CD34–MPL– SRCs reside at the apex of the human HSC hierarchy. PMID:27938494

  2. Completion of the swine genome will simplify the production of swine as a large animal biomedical model

    PubMed Central

    2012-01-01

    Background Anatomic and physiological similarities to the human make swine an excellent large animal model for human health and disease. Methods Cloning from a modified somatic cell, which can be determined in cells prior to making the animal, is the only method available for the production of targeted modifications in swine. Results Since some strains of swine are similar in size to humans, technologies that have been developed for swine can be readily adapted to humans and vice versa. Here the importance of swine as a biomedical model, current technologies to produce genetically enhanced swine, current biomedical models, and how the completion of the swine genome will promote swine as a biomedical model are discussed. Conclusions The completion of the swine genome will enhance the continued use and development of swine as models of human health, syndromes and conditions. PMID:23151353

  3. Advances in cell-free protein array methods.

    PubMed

    Yu, Xiaobo; Petritis, Brianne; Duan, Hu; Xu, Danke; LaBaer, Joshua

    2018-01-01

    Cell-free protein microarrays represent a special form of protein microarray which display proteins made fresh at the time of the experiment, avoiding storage and denaturation. They have been used increasingly in basic and translational research over the past decade to study protein-protein interactions, the pathogen-host relationship, post-translational modifications, and antibody biomarkers of different human diseases. Their role in the first blood-based diagnostic test for early stage breast cancer highlights their value in managing human health. Cell-free protein microarrays will continue to evolve to become widespread tools for research and clinical management. Areas covered: We review the advantages and disadvantages of different cell-free protein arrays, with an emphasis on the methods that have been studied in the last five years. We also discuss the applications of each microarray method. Expert commentary: Given the growing roles and impact of cell-free protein microarrays in research and medicine, we discuss: 1) the current technical and practical limitations of cell-free protein microarrays; 2) the biomarker discovery and verification pipeline using protein microarrays; and 3) how cell-free protein microarrays will advance over the next five years, both in their technology and applications.

  4. Human NK Cell Subset Functions Are Differentially Affected by Adipokines

    PubMed Central

    Huebner, Lena; Engeli, Stefan; Wrann, Christiane D.; Goudeva, Lilia; Laue, Tobias; Kielstein, Heike

    2013-01-01

    Background Obesity is a risk factor for various types of infectious diseases and cancer. The increase in adipose tissue causes alterations in both adipogenesis and the production of adipocyte-secreted proteins (adipokines). Since natural killer (NK) cells are the host’s primary defense against virus-infected and tumor cells, we investigated how adipocyte-conditioned medium (ACM) affects functions of two distinct human NK cell subsets. Methods Isolated human peripheral blood mononuclear cells (PBMCs) were cultured with various concentrations of human and murine ACM harvested on two different days during adipogenesis and analyzed by fluorescent-activated cell sorting (FACS). Results FACS analyses showed that the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), granzyme A (GzmA) and interferon (IFN)-γ in NK cells was regulated in a subset-specific manner. ACM treatment altered IFN-γ expression in CD56dim NK cells. The production of GzmA in CD56bright NK cells was differentially affected by the distinct adipokine compositions harvested at different states of adipogenesis. Comparison of the treatment with either human or murine ACM revealed that adipokine-induced effects on NK cell expression of the leptin receptor (Ob-R), TRAIL and IFN-γ were species-specific. Conclusion Considering the growing prevalence of obesity and the various disorders related to it, the present study provides further insights into the roles human NK cell subsets play in the obesity-associated state of chronic low-grade inflammation. PMID:24098717

  5. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells.

    PubMed

    Inada, Emi; Saitoh, Issei; Watanabe, Satoshi; Aoki, Reiji; Miura, Hiromi; Ohtsuka, Masato; Murakami, Tomoya; Sawami, Tadashi; Yamasaki, Youichi; Sato, Masahiro

    2015-09-14

    The ability of human deciduous tooth dental pulp cells (HDDPCs) to differentiate into odontoblasts that generate mineralized tissue holds immense potential for therapeutic use in the field of tooth regenerative medicine. Realization of this potential depends on efficient and optimized protocols for the genetic manipulation of HDDPCs. In this study, we demonstrate the use of a PiggyBac (PB)-based gene transfer system as a method for introducing nonviral transposon DNA into HDDPCs and HDDPC-derived inducible pluripotent stem cells. The transfection efficiency of the PB-based system was significantly greater than previously reported for electroporation-based transfection of plasmid DNA. Using the neomycin resistance gene as a selection marker, HDDPCs were stably transfected at a rate nearly 40-fold higher than that achieved using conventional methods. Using this system, it was also possible to introduce two constructs simultaneously into a single cell. The resulting stable transfectants, expressing tdTomato and enhanced green fluorescent protein, exhibited both red and green fluorescence. The established cell line did not lose the acquired phenotype over three months of culture. Based on our results, we concluded that PB is superior to currently available methods for introducing plasmid DNA into HDDPCs. There may be significant challenges in the direct clinical application of this method for human dental tissue engineering due to safety risks and ethical concerns. However, the high level of transfection achieved with PB may have significant advantages in basic scientific research for dental tissue engineering applications, such as functional studies of genes and proteins. Furthermore, it is a useful tool for the isolation of genetically engineered HDDPC-derived stem cells for studies in tooth regenerative medicine.

  6. Correlation of cytotoxicity with elimination of iodine-125 from nude mice inoculated with prelabeled human melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockshin, A.; Giovanella, B.C.; Quian, C.

    1984-08-01

    BRO human melanoma cells were prelabeled in vitro with (125I)5-iodo-2'-deoxyuridine ((125I)IdUrd) and inoculated into NIH-II nude mice ip, im, sc, or iv. Saline or diphtheria toxin (DT), which is selectively toxic to human cells compared to those of mice, was injected, and the loss of 125I from the animals was monitored daily with a whole-body gamma scintillation detector. For most of the inoculation sites DT accelerated the rate of 125I excretion and in all cases was cytotoxic for the inoculated cells as determined by host survival or measurement of visible tumor growth. Differences between the rates of 125I loss formore » DT-treated mice compared to untreated mice were most evident for cells inoculated ip or im. These results indicate that (125I)IdUrd prelabeling of human tumor cells inoculated in nude mice offers a rapid method for determination of cytotoxicity in vivo.« less

  7. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie; Bai, Yan; Huang, Liang

    2008-11-15

    Selenium nanoparticle (Nano-Se) is a novel Se species with novel biological activities and low toxicity. In the present study, we demonstrated a simple method for synthesis of size-controlled Nano-Se by adding Undaria pinnatifida polysaccharides to the redox system of selenite and ascorbic acid. A panel of four human cancer cell lines was shown to be susceptible to Nano-Se, with IC(50) values ranging from 3.0 to 14.1 microM. Treatment of A375 human melanoma cells with the Nano-Se resulted in dose-dependent cell apoptosis as indicated by DNA fragmentation and phosphatidylserine translocation. Further investigation on intracellular mechanisms found that Nano-Se treatment triggered apoptotic cell death in A375 cells with the involvement of oxidative stress and mitochondrial dysfunction. Our results suggest that Nano-Se may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma cancer.

  8. Comparison of three different methods for effective introduction of platelet-rich plasma on PLGA woven mesh.

    PubMed

    Lee, Ji-Hye; Nam, Jinwoo; Kim, Hee Joong; Yoo, Jeong Joon

    2015-03-11

    For successful tissue regeneration, effective cell delivery to defect site is very important. Various types of polymer biomaterials have been developed and applied for effective cell delivery. PLGA (poly lactic-co-glycolic acid), a synthetic polymer, is a commercially available and FDA approved material. Platelet-rich plasma (PRP) is an autologous growth factor cocktail containing various growth factors including PDGF, TGFβ-1 and BMPs, and has shown positive effects on cell behaviors. We hypothesized that PRP pretreatment on PLGA mesh using different methods would cause different patterns of platelet adhesion and stages which would modulate cell adhesion and proliferation on the PLGA mesh. In this study, we pretreated PRP on PLGA using three different methods including simple dripping (SD), dynamic oscillation (DO) and centrifugation (CE), then observed the amount of adhered platelets and their activation stage distribution. The highest amount of platelets was observed on CE mesh and calcium treated CE mesh. Moreover, calcium addition after PRP coating triggered dramatic activation of platelets which showed large and flat morphologies of platelets with rich fibrin networks. Human chondrocytes (hCs) and human bone marrow stromal cells (hBMSCs) were next cultured on PRP-pretreated PLGA meshes using different preparation methods. CE mesh showed a significant increase in the initial cell adhesion of hCs and proliferation of hBMSCs compared with SD and DO meshes. The results demonstrated that the centrifugation method can be considered as a promising coating method to introduce PRP on PLGA polymeric material which could improve cell-material interaction using a simple method.

  9. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced-Pluripotent Stem Cells.

    PubMed

    Kaitsuka, Taku; Tomizawa, Kazuhito

    2015-11-06

    Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS) cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies.

  10. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  11. Quercetin Inhibits the Migration and Invasion of HCCLM3 Cells by Suppressing the Expression of p-Akt1, Matrix Metalloproteinase (MMP) MMP-2, and MMP-9.

    PubMed

    Lu, Jun; Wang, Zhiqiang; Li, Shuyan; Xin, Qi; Yuan, Miaomiao; Li, Huanping; Song, Xiaoxia; Gao, Haijun; Pervaiz, Nabeel; Sun, Xudong; Lv, Wei; Jing, Tao; Zhu, Yanmei

    2018-04-27

    BACKGROUND Quercetin is a natural bioactive flavonoid that is present in a wide variety of vegetables and fruits and exhibits a promising anti-metastasis property in various human cancer cells. However, the effect of quercetin on human HCCLM3 cells is unclear. MATERIAL AND METHODS In the current study, a wound-healing assay was performed using quercetin-treated HCCLM3 cells to further explore whether quercetin affects the motility of human HCCLM3 cells. Transwell assay was used to explore the potential effect of quercetin in HCCLM3 cells on cell migration and cell invasion. Western blotting analysis was used to explore the expression of p-Akt1, MMP-2, and MMP-9 in quercetin-treated HCCLM3 cells. RESULTS The wound-healing time was delayed in quercetin-treated HCCLM3 cells, and the ability to migrate and invade was inhibited in quercetin-treated human HCCLM3 cells. Moreover, the protein levels of p-Akt1, MMP-2, and MMP-9 were down-regulated in quercetin-treated HCCLM3 cells, as detected by Western blotting. CONCLUSIONS Our data show that quercetin attenuated cell migration and invasion by suppressing the protein levels of p-Akt1, MMP-2, and MMP-9 in HCCLM3 cells.

  12. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  13. Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system.

    PubMed

    Wang, Hailong; Wang, Meng; Wang, Bing; Zheng, Lingna; Chen, Hanqing; Chai, Zhifang; Feng, Weiyue

    2017-02-01

    Cellular heterogeneity is an inherent condition of cell populations, which results from stochastic expression of genes, proteins, and metabolites. The heterogeneity of individual cells can dramatically influence cellular decision-making and cell fate. So far, our knowledge about how the variation of endogenous metals and non-metals in individual eukaryotic cells is limited. In this study, ICP-MS equipped with a high efficiency cell introduction system (HECIS) was developed as a method of single-cell ICP-MS (SC-ICP-MS). The method was applied to the single-cell analysis of Mn, Fe, Co, Cu, Zn, P, and S in human cancer cell lines (HeLa and A549) and normal human bronchial epithelial cell line (16HBE). The analysis showed obvious variation of the masses of Cu, Fe, Zn, and P in individual HeLa cells, and variation of Fe, Zn, and P in individual A549 cells. On the basis of the single-cell data, a multimodal distribution of the elements in the cell population was fitted, which showed marked differences among the various cell lines. Importantly, subpopulations of the elements were found in the cell populations, especially in the HeLa cancer cells. This study demonstrates that SC-ICP-MS is able to unravel the extent of variation of endogenous elements in individual cells, which will help to improve our fundamental understanding of cellular biology and reveal novel insights into human biology and medicine. Graphical abstract The variations of masses and distribution patterns of elements Mn, Fe, Co, Cu, Zn, P, and S in single cells were successfully detected by ICP-MS coupled with a high efficiency cell introduction system (HECIS).

  14. Pathways of cell-cell transmission of HTLV-1

    PubMed Central

    Pique, Claudine; Jones, Kathryn S.

    2012-01-01

    The deltaretroviruses human T cell lymphotropic virus type 1 (HTLV-1) and human T cell lymphotropic virus type 2 (HTLV-2) have long been believed to differ from retroviruses in other genera by their mode of transmission. While other retroviruses were thought to primarily spread by producing cell-free particles that diffuse through extracellular fluids prior to binding to and infecting target cells, HTLV-1 and HTLV-2 were believed to transmit the virus solely by cell–cell interactions. This difference in transmission was believed to reflect the fact that, relative to other retroviruses, the cell-free virions produced by HTLV-infected cells are very poorly infectious. Since HTLV-1 and HTLV-2 are primarily found in T cells in the peripheral blood, spread of these viruses was believed to occur between infected and uninfected, T cells, although little was known about the cellular and viral proteins involved in this interaction. Recent studies have revealed that the method of transmission of HTLV is not unique: other retroviruses including human immunodeficiency virus (HIV) are also transmitted from cell-to-cell, and this method is dramatically more efficient than cell-free transmission. Moreover, cell–cell transmission of HTLV-1, as well as HIV, can occur following interactions between dendritic cells and T cells, as well as between T cells. Conversely, other studies have shown that cell-free HTLV-1 is not as poorly infectious as previously thought, since it is capable of infecting certain cell types. Here we summarize the recent insights about the mechanisms of cell–cell transmission of HTLV-1 and other retroviruses. We also review in vitro and in vivo studies of infection and discuss how these finding may relate to the spread of HTLV-1 between individuals. PMID:23109932

  15. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time formore » the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.« less

  16. Protein Transfer Into Human Cells by VSV-G-induced Nanovesicles

    PubMed Central

    Mangeot, Philippe-Emmanuel; Dollet, Sandra; Girard, Mathilde; Ciancia, Claire; Joly, Stéphane; Peschanski, Marc; Lotteau, Vincent

    2011-01-01

    Identification of new techniques to express proteins into mammal cells is of particular interest for both research and medical purposes. The present study describes the use of engineered vesicles to deliver exogenous proteins into human cells. We show that overexpression of the spike glycoprotein of the vesicular stomatitis virus (VSV-G) in human cells induces the release of fusogenic vesicles named gesicles. Biochemical and functional studies revealed that gesicles incorporated proteins from producer cells and could deliver them to recipient cells. This protein-transduction method allows the direct transport of cytoplasmic, nuclear or surface proteins in target cells. This was demonstrated by showing that the TetR transactivator and the receptor for the murine leukemia virus (MLV) envelope [murine cationic amino acid transporter-1 (mCAT-1)] were efficiently delivered by gesicles in various cell types. We further shows that gesicle-mediated transfer of mCAT-1 confers to human fibroblasts a robust permissiveness to ecotropic vectors, allowing the generation of human-induced pluripotent stem cells in level 2 biosafety facilities. This highlights the great potential of mCAT-1 gesicles to increase the safety of experiments using retro/lentivectors. Besides this, gesicles is a versatile tool highly valuable for the nongenetic delivery of functions such as transcription factors or genome engineering agents. PMID:21750535

  17. [Rhythmic beating cardiomyocytes derived from human embryonic germ (EG) cells in vitro].

    PubMed

    Hua, Jinlian; Xu, Xiaoming; Dou, Zhongying

    2006-10-01

    Embryonic germ (EG) cells are pluripotent cells derived from primordial germ cells (PGCs) of gonads, gonadal ridges and mesenteries, analogies of fetuses,with the ability to undergo both highly self-renewal and multiple differentiation. These cells in vitro can differentiate into derivatives of all three embryonic germ layers when transferred to an in vitro environment and have the ability to form any fully differentiated cells of the body. The aim of this study is to investigate the potentiality of human EG cells differentiation into cardiomyocytes. Inducing human EG cells with the method of murine ES cells differentiation into cardiomyocytes, supplemented with 0.75%-1% DMSO, 20% NBS, 10(-7) mM RA and 20% cardiomyocytes conditioned medium. 20 heart-like (rhythmic beating cell masses were observed in vitro culture and delayed human EG cells, which beat spontaneously from 20-120 times per minute and maintained beating for 2-15 days, periodic acid's staining (PAS), Myoglobin and a-actin immunological histology positive were all positive and reacted with K+, Ca2+ and adrenalin. Relatively unorganized myofibrillar bundles or more organized sarcomeres, z-bands or a gap junction, the presence of desmosomes in a few cells of the cell masses was observed with transmision electron microscope, which initially demonstrated that these cells were cardiomyocytes. We could not get rhythmly beating cardiomyocytes with 0.75%-1% DMSO, 10-7 mM RA and 20% cardiomyocytes conditioned medium,but in which the percentage of cardiac alpha-actin immunostaining positive cells were increased. The results first demonstrated that human EG cells can differentiate into rhythmic beating cardiomyocytes in vitro and suggests that human EG cells may represent a new potent resource for cardiomyocytes transplantation therapy for myocardium infarction.

  18. Seven diverse human embryonic stem cell-derived chondrogenic clonal embryonic progenitor cell lines display site-specific cell fates.

    PubMed

    Sternberg, Hal; Kidd, Jennifer; Murai, James T; Jiang, Jianjie; Rinon, Ariel; Erickson, Isaac E; Funk, Walter D; Wang, Qian; Chapman, Karen B; Vangsness, C Thomas; West, Michael D

    2013-03-01

    The transcriptomes of seven diverse clonal human embryonic progenitor cell lines with chondrogenic potential were compared with that of bone marrow-derived mesenchymal stem cells (MSCs). The cell lines 4D20.8, 7PEND24, 7SMOO32, E15, MEL2, SK11 and SM30 were compared with MSCs using immunohistochemical methods, gene expression microarrays and quantitative real-time PCR. In the undifferentiated progenitor state, each line displayed unique combinations of site-specific markers, including AJAP1, ALDH1A2, BMP5, BARX1, HAND2, HOXB2, LHX1, LHX8, PITX1, TBX15 and ZIC2, but none of the lines expressed the MSC marker CD74. The lines showed diverse responses when differentiated in the presence of combinations of TGF-β3, BMP2, 4, 6 and 7 and GDF5, with the lines 4D20.8, SK11, SM30 and MEL2 showing osteogenic markers in some differentiation conditions. The line 7PEND24 showed evidence of regenerating articular cartilage and, in some conditions, markers of tendon differentiation. The scalability of site-specific clonal human embryonic stem cell-derived embryonic progenitor cell lines may provide novel models for the study of differentiation and methods for preparing purified and identified cells types for use in therapy.

  19. High-throughput and direct measurement of androgen levels using turbulent flow chromatography liquid chromatography-triple quadrupole mass spectrometry (TFC-LC-TQMS) to discover chemicals that modulate dihydrotestosterone production in human prostate cancer cells.

    PubMed

    Kang, Kyungsu; Peng, Lei; Jung, Yu-Jin; Kim, Joo Yeon; Lee, Eun Ha; Lee, Hee Ju; Kim, Sang Min; Sung, Sang Hyun; Pan, Cheol-Ho; Choi, Yongsoo

    2018-02-01

    To develop a high-throughput screening system to measure the conversion of testosterone to dihydrotestosterone (DHT) in cultured human prostate cancer cells using turbulent flow chromatography liquid chromatography-triple quadrupole mass spectrometry (TFC-LC-TQMS). After optimizing the cell reaction system, this method demonstrated a screening capability of 103 samples, including 78 single compounds and 25 extracts, in less than 12 h without manual sample preparation. Consequently, fucoxanthin, phenethyl caffeate, and Curcuma longa L. extract were validated as bioactive chemicals that inhibited DHT production in cultured DU145 cells. In addition, naringenin boosted DHT production in DU145 cells. The method can facilitate the discovery of bioactive chemicals that modulate the DHT production, and four phytochemicals are potential candidates of nutraceuticals to adjust DHT levels in male hormonal dysfunction.

  20. Proliferative human cell sources applied as biocomponent in bioartificial livers: a review.

    PubMed

    Nibourg, Geert A A; Chamuleau, Robert A F M; van Gulik, Thomas M; Hoekstra, Ruurdtje

    2012-07-01

    Bioartificial livers (BALs) are urgently needed to bridge severe liver failure patients to liver transplantation or liver regeneration. When based on primary hepatocytes, their efficacy has been shown in animal experiments and their safety was confirmed in clinical trials. However, a proliferative human cell source with therapeutic functionality is needed to secure availability and move BAL application forward. This review compares the performance of BALs based on proliferative human biocomponents and primary hepatocytes. This review evaluates relevant studies identified by searching the MEDLINE database until July 2011 and some of our own unpublished data. All the discussed hepatocyte-like biocomponents show deficiencies in their hepatic functionality compared with primary hepatocytes, particularly functions occurring late in liver development. Nonetheless, the HepaRG, HepG2-GS-CYP3A4, and mesenchymal stem cells show efficacy in a statistically well-powered animal model of acute liver failure, when applied in a BAL device. Various methods to gain higher functionality of BALs, including genetic modification, the usage of combinatory cell sources, and improvement of culture methods, have scarcely been applied, but may further pave the path for BAL application. Clinical implementation of a BAL based on a human proliferative biocomponent is still several years away.

  1. Human pluripotent stem cell-derived erythropoietin-producing cells ameliorate renal anemia in mice.

    PubMed

    Hitomi, Hirofumi; Kasahara, Tomoko; Katagiri, Naoko; Hoshina, Azusa; Mae, Shin-Ichi; Kotaka, Maki; Toyohara, Takafumi; Rahman, Asadur; Nakano, Daisuke; Niwa, Akira; Saito, Megumu K; Nakahata, Tatsutoshi; Nishiyama, Akira; Osafune, Kenji

    2017-09-27

    The production of erythropoietin (EPO) by the kidneys, a principal hormone for the hematopoietic system, is reduced in patients with chronic kidney disease (CKD), eventually resulting in severe anemia. Although recombinant human EPO treatment improves anemia in patients with CKD, returning to full red blood cell production without fluctuations does not always occur. We established a method to generate EPO-producing cells from human induced pluripotent stem cells (hiPSCs) by modifying previously reported hepatic differentiation protocols. These cells showed increased EPO expression and secretion in response to low oxygen conditions, prolyl hydroxylase domain-containing enzyme inhibitors, and insulin-like growth factor 1. The EPO protein secreted from hiPSC-derived EPO-producing (hiPSC-EPO) cells induced the erythropoietic differentiation of human umbilical cord blood progenitor cells in vitro. Furthermore, transplantation of hiPSC-EPO cells into mice with CKD induced by adenine treatment improved renal anemia. Thus, hiPSC-EPO cells may be a useful tool for clarifying the mechanisms of EPO production and may be useful as a therapeutic strategy for treating renal anemia. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Encapsulating Non-Human Primate Multipotent Stromal Cells in Alginate via High Voltage for Cell-Based Therapies and Cryopreservation

    PubMed Central

    Gryshkov, Oleksandr; Pogozhykh, Denys; Hofmann, Nicola; Pogozhykh, Olena; Mueller, Thomas; Glasmacher, Birgit

    2014-01-01

    Alginate cell-based therapy requires further development focused on clinical application. To assess engraftment, risk of mutations and therapeutic benefit studies should be performed in an appropriate non-human primate model, such as the common marmoset (Callithrix jacchus). In this work we encapsulated amnion derived multipotent stromal cells (MSCs) from Callithrix jacchus in defined size alginate beads using a high voltage technique. Our results indicate that i) alginate-cell mixing procedure and cell concentration do not affect the diameter of alginate beads, ii) encapsulation of high cell numbers (up to 10×106 cells/ml) can be performed in alginate beads utilizing high voltage and iii) high voltage (15–30 kV) does not alter the viability, proliferation and differentiation capacity of MSCs post-encapsulation compared with alginate encapsulated cells produced by the traditional air-flow method. The consistent results were obtained over the period of 7 days of encapsulated MSCs culture and after cryopreservation utilizing a slow cooling procedure (1 K/min). The results of this work show that high voltage encapsulation can further be maximized to develop cell-based therapies with alginate beads in a non-human primate model towards human application. PMID:25259731

  3. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation.

    PubMed

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-08-01

    The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Embryo biopsy, whole genome amplification and semiconductor sequencing. A rapid (<15 h) NGS protocol was developed, with consumable cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (p<0.05), a finding suggestive of a link between mitochondria and chromosomal malsegregation. This study demonstrates that NGS provides highly accurate, low-cost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Slow Cooling Cryopreservation Optimized to Human Pluripotent Stem Cells.

    PubMed

    Miyazaki, Takamichi; Suemori, Hirofumi

    2016-01-01

    Human pluripotent stem cells (hPSCs) have the potential for unlimited expansion and differentiation into cells that form all three germ layers. Cryopreservation is one of the key processes for successful applications of hPSCs, because it allows semi-permanent preservation of cells and their easy transportation. Most animal cell lines, including mouse embryonic stem cells, are standardly cryopreserved by slow cooling; however, hPSCs have been difficult to preserve and their cell viability has been extremely low whenever cryopreservation has been attempted.Here, we investigate the reasons for failure of slow cooling in hPSC cryopreservation. Cryopreservation involves a series of steps and is not a straightforward process. Cells may die due to various reasons during cryopreservation. Indeed, hPSCs preserved by traditional methods often suffer necrosis during the freeze-thawing stages, and the colony state of hPSCs prior to cryopreservation is a major factor contributing to cell death.It has now become possible to cryopreserve hPSCs using conventional cryopreservation methods without any specific equipment. This review summarizes the advances in this area and discusses the optimization of slow cooling cryopreservation for hPSC storage.

  5. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice.

    PubMed

    Chinnasamy, Dhanalakshmi; Yu, Zhiya; Theoret, Marc R; Zhao, Yangbing; Shrimali, Rajeev K; Morgan, Richard A; Feldman, Steven A; Restifo, Nicholas P; Rosenberg, Steven A

    2010-11-01

    Immunotherapies based on adoptive cell transfer are highly effective in the treatment of metastatic melanoma, but the use of this approach in other cancer histologies has been hampered by the identification of appropriate target molecules. Immunologic approaches targeting tumor vasculature provide a means for the therapy of multiple solid tumor types. We developed a method to target tumor vasculature, using genetically redirected syngeneic or autologous T cells. Mouse and human T cells were engineered to express a chimeric antigen receptor (CAR) targeted against VEGFR-2, which is overexpressed in tumor vasculature and is responsible for VEGF-mediated tumor progression and metastasis. Mouse and human T cells expressing the relevant VEGFR-2 CARs mediated specific immune responses against VEGFR-2 protein as well as VEGFR-2-expressing cells in vitro. A single dose of VEGFR-2 CAR-engineered mouse T cells plus exogenous IL-2 significantly inhibited the growth of 5 different types of established, vascularized syngeneic tumors in 2 different strains of mice and prolonged the survival of mice. T cells transduced with VEGFR-2 CAR showed durable and increased tumor infiltration, correlating with their antitumor effect. This approach provides a potential method for the gene therapy of a variety of human cancers.

  6. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells.

    PubMed

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G; Martin, Francisco

    2016-11-17

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.

  7. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells

    PubMed Central

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G.; Martin, Francisco

    2016-01-01

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny. PMID:27853296

  8. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury.

    PubMed

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-07-28

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.

  9. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury

    PubMed Central

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-01-01

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI. PMID:28751784

  10. Trend of telomerase activity change during human iPSC self-renewal and differentiation revealed by a quartz crystal microbalance based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Yitian; Zhou, Ping; Xin, Yinqiang; Wang, Jie; Zhu, Zhiqiang; Hu, Ji; Wei, Shicheng; Ma, Hongwei

    2014-11-01

    Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.

  11. A hanging drop culture method to study terminal erythroid differentiation.

    PubMed

    Gutiérrez, Laura; Lindeboom, Fokke; Ferreira, Rita; Drissen, Roy; Grosveld, Frank; Whyatt, David; Philipsen, Sjaak

    2005-10-01

    To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation. Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation. We describe a practical culture method by adapting the previously described hanging drop culture system to conditions allowing terminal differentiation of primary erythroid progenitors. Using minimal volumes of media and small numbers of cells, we obtained quantitative terminal erythroid differentiation within two days of culture in the case of murine cells and 4 days in the case of human cells. The established methods for ex vivo culture of primary erythroid progenitors, such as methylcellulose-based burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) assays, allow the detection of committed erythroid progenitors but are of limited value to study terminal erythroid differentiation. We show that the application of hanging drop cultures is a practical alternative that, in combination with clonogenic assays, enables a comprehensive assessment of the behavior of primary erythroid cells ex vivo in the context of genetic and drug-induced perturbations.

  12. Determining the origin of cells in tissue engineered skin substitutes: a pilot study employing in situ hybridization.

    PubMed

    Weber, Andreas Daniel; Pontiggia, Luca; Biedermann, Thomas; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2011-03-01

    Definitive and high-quality coverage of large and, in particular, massive skin defects remains a significant challenge in burn as well as plastic and reconstructive surgery because of donor site shortage. A novel and promising approach to overcome these problems is tissue engineering of skin. Clearly, before eventual clinical application, engineered skin substitutes of human origin must be grafted and then evaluated in animal models. For the various tests to be conducted it is indispensable to be able to identify human cells as such in culture and also to distinguish between graft and recipient tissue after transplantation. Here we describe a tool to identify human cells in vitro and in vivo. In situ hybridization allows for the detection and localization of specific DNA or RNA sequences in morphologically preserved cells in culture or tissue sections, respectively. We used digoxigenin-labeled DNA probes corresponding to human-specific Alu repeats in order to identify human keratinocytes grown in culture together with rat cells, and also to label split and full thickness skin grafts of human origin after transplantation on immuno-incompetent rats. Digoxigenin-labeled DNA probing resulted in an intensive nuclear staining of human cells, both in culture and after transplantation onto recipient animals, while recipient animal cells (rat cells) did not stain. In situ hybridization using primate-specific Alu probes reliably allows distinguishing between cells of human and non-human origin both in culture as well as in histological sections. This method is an essential tool for those preclinical experiments (performed on non-primate animals) that must be conducted before novel tissue engineered skin substitutes might be introduced into clinical practice.

  13. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods

    NASA Astrophysics Data System (ADS)

    Böhme, Steffi; Stärk, Hans-Joachim; Meißner, Tobias; Springer, Armin; Reemtsma, Thorsten; Kühnel, Dana; Busch, Wibke

    2014-09-01

    In order to quantify and compare the uptake of aluminum oxide nanoparticles of three different sizes into two human cell lines (skin keratinocytes (HaCaT) and lung epithelial cells (A549)), three analytical methods were applied: digestion followed by nebulization inductively coupled plasma mass spectrometry (neb-ICP-MS), direct laser ablation ICP-MS (LA-ICP-MS), and flow cytometry. Light and electron microscopy revealed an accumulation and agglomeration of all particle types within the cell cytoplasm, whereas no particles were detected in the cell nuclei. The internalized Al2O3 particles exerted no toxicity in the two cell lines after 24 h of exposure. The smallest particles with a primary particle size ( x BET) of 14 nm (Alu1) showed the lowest sedimentation velocity within the cell culture media, but were calculated to have settled completely after 20 h. Alu2 ( x BET = 111 nm) and Alu3 ( x BET = 750 nm) were calculated to reach the cell surface after 7 h and 3 min, respectively. The internal concentrations determined with the different methods lay in a comparable range of 2-8 µg Al2O3/cm2 cell layer, indicating the suitability of all methods to quantify the nanoparticle uptake. Nevertheless, particle size limitations of analytical methods using optical devices were demonstrated for LA-ICP-MS and flow cytometry. Furthermore, the consideration and comparison of particle properties as parameters for particle internalization revealed the particle size and the exposure concentration as determining factors for particle uptake.

  14. [Screening of full human anthrax lethal factor neutralizing antibody in transgenic mice].

    PubMed

    Wang, Xiaolin; Chi, Xiangyang; Liu, Ju; Liu, Weicen; Liu, Shuling; Qiu, Shunfang; Wen, Zhonghua; Fan, Pengfei; Liu, Kun; Song, Xiaohong; Fu, Ling; Zhang, Jun; Yu, Changming

    2016-11-25

    Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.

  15. Construction and evaluation of a novel humanized HER2-specific chimeric receptor

    PubMed Central

    2014-01-01

    Introduction The human epidermal growth factor receptor 2 (HER2) represents one of the most studied tumor-associated antigens (TAAs) for cancer immunotherapy. The monoclonal antibody (mAb) trastuzumab has improved the outcomes of patients with HER2+ breast cancer. However, a large number of HER2+ tumors are not responsive to, or become resistant to, trastuzumab-based therapy, and thus more effective therapies targeting HER2 are needed. Methods HER2-specific T cells were generated by the transfer of genes that encode chimeric antigen receptor (CAR). Using a multistep overlap extension PCR method, we constructed a novel, humanized HER2 CAR-containing, chA21 single-chain variable fragment (scFv) region of antigen-specific mAb and T-cell intracellular signaling chains made up of CD28 and CD3ζ. An interferon γ and interleukin 2 enzyme-linked immunosorbent assay and a chromium-51 release assay were used to evaluate the antitumor immune response of CAR T cells in coculture with tumor cells. Furthermore, SKBR3 tumor–bearing nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice were treated with HER2 CAR T cells to evaluate antitumor activity. Human CD3+ T cell accumulation in tumor xenograft was detected by immunohistochemistry. Results chA21-28z CAR was successfully constructed, and both CD4+ and CD8+ T cells were transduced. The expanded HER2 CAR T cells expressed a central memory phenotype and specifically reacted against HER2+ tumor cell lines. Furthermore, the SKBR3 tumor xenograft model revealed that HER2 CAR T cells significantly inhibited tumor growth in vivo. Immunohistochemical analysis showed robust accumulation of human CD3+ T cells in regressing SKBR3 lesions. Conclusions The results of this study show that novel chA21 scFv-based, HER2-specific CAR T cells not only recognized and killed HER2+ breast and ovarian cancer cells ex vivo but also induced regression of experimental breast cancer in vivo. Our data support further exploration of the HER2 CAR T-cell therapy for HER2-expressing cancers. PMID:24919843

  16. Standardized cryopreservation of human primary cells.

    PubMed

    Ramos, Thomas V; Mathew, Aby J; Thompson, Maria L; Ehrhardt, Rolf O

    2014-09-02

    Cryopreservation is the use of low temperatures to preserve structurally intact living cells. The cells that survive the thermodynamic journey from the 37 °C incubator to the -196 °C liquid nitrogen storage tank are free from the influences of time. Thus, cryopreservation is a critical component of cell culture and cell manufacturing protocols. Successful cryopreservation of human cells requires that the cells be derived from patient samples that are collected in a standardized manner, and carefully handled from blood draw through cell isolation. Furthermore, proper equipment must be in place to ensure consistency, reproducibility, and sterility. In addition, the correct choice and amount of cryoprotectant agent must be added at the correct temperature, and a controlled rate of freezing (most commonly 1 °C/min) must be applied prior to a standardized method of cryogenic storage. This appendix describes how human primary cells can be frozen for long-term storage and thawed for growth in a tissue culture vessel. Copyright © 2014 John Wiley & Sons, Inc.

  17. RNA analysis of inner ear cells from formalin fixed paraffin embedded (FFPE) archival human temporal bone section using laser microdissection--a technical report.

    PubMed

    Kimura, Yurika; Kubo, Sachiho; Koda, Hiroko; Shigemoto, Kazuhiro; Sawabe, Motoji; Kitamura, Ken

    2013-08-01

    Molecular analysis using archival human inner ear specimens is challenging because of the anatomical complexity, long-term fixation, and decalcification. However, this method may provide great benefit for elucidation of otological diseases. Here, we extracted mRNA for RT-PCR from tissues dissected from archival FFPE human inner ears by laser microdissection. Three human temporal bones obtained at autopsy were fixed in formalin, decalcified by EDTA, and embedded in paraffin. The samples were isolated into spiral ligaments, outer hair cells, spiral ganglion cells, and stria vascularis by laser microdissection. RNA was extracted and heat-treated in 10 mM citrate buffer to remove the formalin-derived modification. To identify the sites where COCH and SLC26A5 mRNA were expressed, semi-nested RT-PCR was performed. We also examined how long COCH mRNA could be amplified by semi-nested RT-PCR in archival temporal bone. COCH was expressed in the spiral ligament and stria vascularis. However, SLC26A5 was expressed only in outer hair cells. The maximum base length of COCH mRNA amplified by RT-PCR was 98 bp in 1 case and 123 bp in 2 cases. We detected COCH and SLC26A5 mRNA in specific structures and cells of the inner ear from archival human temporal bone. Our innovative method using laser microdissection and semi-nested RT-PCR should advance future RNA study of human inner ear diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The isolation of primary hepatocytes from human tissue: optimising the use of small non-encapsulated liver resection surplus.

    PubMed

    Green, Charlotte J; Charlton, Catriona A; Wang, Lai-Mun; Silva, Michael; Morten, Karl J; Hodson, Leanne

    2017-12-01

    Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of "healthy" resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.

  19. Analysis of Endothelial Adherence of Bartonella henselae and Acinetobacter baumannii Using a Dynamic Human Ex Vivo Infection Model

    PubMed Central

    Weidensdorfer, Marko; Chae, Ju Ik; Makobe, Celestine; Stahl, Julia; Averhoff, Beate; Müller, Volker; Schürmann, Christoph; Brandes, Ralf P.; Wilharm, Gottfried; Ballhorn, Wibke; Christ, Sara; Linke, Dirk; Fischer, Doris; Göttig, Stephan

    2015-01-01

    Bacterial adherence determines the virulence of many human-pathogenic bacteria. Experimental approaches elucidating this early infection event in greater detail have been performed using mainly methods of cellular microbiology. However, in vitro infections of cell monolayers reflect the in vivo situation only partially, and animal infection models are not available for many human-pathogenic bacteria. Therefore, ex vivo infection of human organs might represent an attractive method to overcome these limitations. We infected whole human umbilical cords ex vivo with Bartonella henselae or Acinetobacter baumannii under dynamic flow conditions mimicking the in vivo infection situation of human endothelium. For this purpose, methods for quantifying endothelium-adherent wild-type and trimeric autotransporter adhesin (TAA)-deficient bacteria were set up. Data revealed that (i) A. baumannii binds in a TAA-dependent manner to endothelial cells, (ii) this organ infection model led to highly reproducible adherence rates, and furthermore, (iii) this model allowed to dissect the biological function of TAAs in the natural course of human infections. These findings indicate that infection models using ex vivo human tissue samples (“organ microbiology”) might be a valuable tool in analyzing bacterial pathogenicity with the capacity to replace animal infection models at least partially. PMID:26712205

  20. Flow cytometric assay for analysis of cytotoxic effects of potential drugs on human peripheral blood leukocytes

    NASA Astrophysics Data System (ADS)

    Nieschke, Kathleen; Mittag, Anja; Golab, Karolina; Bocsi, Jozsef; Pierzchalski, Arkadiusz; Kamysz, Wojciech; Tarnok, Attila

    2014-03-01

    Toxicity test of new chemicals belongs to the first steps in the drug screening, using different cultured cell lines. However, primary human cells represent the human organism better than cultured tumor derived cell lines. We developed a very gentle toxicity assay for isolation and incubation of human peripheral blood leukocytes (PBL) and tested it using different bioactive oligopeptides (OP). Effects of different PBL isolation methods (red blood cell lysis; Histopaque isolation among others), different incubation tubes (e.g. FACS tubes), anticoagulants and blood sources on PBL viability were tested using propidium iodide-exclusion as viability measure (incubation time: 60 min, 36°C) and flow cytometry. Toxicity concentration and time-depended effects (10-60 min, 36 °C, 0-100 μg /ml of OP) on human PBL were analyzed. Erythrocyte lysis by hypotonic shock (dH2O) was the fastest PBL isolation method with highest viability (>85%) compared to NH4Cl-Lysis (49%). Density gradient centrifugation led to neutrophil granulocyte cell loss. Heparin anticoagulation resulted in higher viability than EDTA. Conical 1.5 mL and 2 mL micro-reaction tubes (both polypropylene (PP)) had the highest viability (99% and 97%) compared to other tubes, i.e. three types of 5.0 mL round-bottom tubes PP (opaque-60%), PP (blue-62%), Polystyrene (PS-64%). Viability of PBL did not differ between venous and capillary blood. A gentle reproducible preparation and analytical toxicity-assay for human PBL was developed and evaluated. Using our assay toxicity, time-course, dose-dependence and aggregate formation by OP could be clearly differentiated and quantified. This novel assay enables for rapid and cost effective multiparametric toxicological screening and pharmacological testing on primary human PBL and can be adapted to high-throughput-screening.°z

  1. Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin.

    PubMed

    Iancu, Cornel; Mocan, Lucian; Bele, Constantin; Orza, Anamaria Ioana; Tabaran, Flaviu A; Catoi, Cornel; Stiufiuc, Rares; Stir, Ariana; Matea, Cristian; Iancu, Dana; Agoston-Coldea, Lucia; Zaharie, Florin; Mocan, Teodora

    2011-01-17

    The main goal of this investigation was to develop and test a new method of treatment for human hepatocellular carcinoma (HCC). We present a method of carbon nanotube-enhanced laser thermal ablation of HepG2 cells (human hepatocellular liver carcinoma cell line) based on a simple multiwalled carbon nanotube (MWCNT) carrier system, such as human serum albumin (HSA), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. Both HepG2 cells and hepatocytes were treated with HSA-MWCNTs at various concentrations and at various incubation times and further irradiated using a 2 W, 808 nm laser beam. Transmission electron, phase contrast, and confocal microscopy combined with immunochemical staining were used to demonstrate the selective internalization of HSA-MWCNTs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. The postirradiation apoptotic rate of HepG2 cells treated with HSA-MWCNTs ranged from 88.24% (for 50 mg/L) at 60 sec to 92.34% (for 50 mg/L) at 30 min. Significantly lower necrotic rates were obtained when human hepatocytes were treated with HSA-MWCNTs in a similar manner. Our results clearly show that HSA-MWCNTs selectively attach on the albondin (aka Gp60) receptor located on the HepG2 membrane, followed by an uptake through a caveolin-dependent endocytosis process. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.

  2. Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin

    PubMed Central

    Iancu, Cornel; Mocan, Lucian; Bele, Constantin; Orza, Anamaria Ioana; Tabaran, Flaviu A; Catoi, Cornel; Stiufiuc, Rares; Stir, Ariana; Matea, Cristian; Iancu, Dana; Agoston-Coldea, Lucia; Zaharie, Florin; Mocan, Teodora

    2011-01-01

    The main goal of this investigation was to develop and test a new method of treatment for human hepatocellular carcinoma (HCC). We present a method of carbon nanotube-enhanced laser thermal ablation of HepG2 cells (human hepatocellular liver carcinoma cell line) based on a simple multiwalled carbon nanotube (MWCNT) carrier system, such as human serum albumin (HSA), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. Both HepG2 cells and hepatocytes were treated with HSA–MWCNTs at various concentrations and at various incubation times and further irradiated using a 2 W, 808 nm laser beam. Transmission electron, phase contrast, and confocal microscopy combined with immunochemical staining were used to demonstrate the selective internalization of HSA–MWCNTs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. The postirradiation apoptotic rate of HepG2 cells treated with HSA–MWCNTs ranged from 88.24% (for 50 mg/L) at 60 sec to 92.34% (for 50 mg/L) at 30 min. Significantly lower necrotic rates were obtained when human hepatocytes were treated with HSA–MWCNTs in a similar manner. Our results clearly show that HSA–MWCNTs selectively attach on the albondin (aka Gp60) receptor located on the HepG2 membrane, followed by an uptake through a caveolin-dependent endocytosis process. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating. PMID:21289990

  3. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    PubMed

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  4. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney.

    PubMed

    Lindström, Nils O; Guo, Jinjin; Kim, Albert D; Tran, Tracy; Guo, Qiuyu; De Sena Brandine, Guilherme; Ransick, Andrew; Parvez, Riana K; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-03-01

    Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2 + nephron progenitor cells (NPCs) and Foxd1 + interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1 , were readily detected within SIX2 + NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2 + NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2 , are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs. Copyright © 2018 by the American Society of Nephrology.

  5. Glioma Invasiveness Responds Variably to Irradiation in a Co-Culture Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Jean L.; Haas-Kogan, Daphne A.; Department of Neurological Surgery, University of California-San Francisco, San Francisco, CA

    2007-11-01

    Purpose: We developed a co-culture system to quantitate the growth and invasion of human malignant gliomas into a background of confluent normal human astrocytes, then used this assay to assess independently the effects of irradiating both cell types on glioma invasion. Methods and Materials: Enhanced green fluorescent protein (EGFP)-labeled immortalized human astrocytes, human malignant glioma cells, or transformed human astrocytes were focally plated onto a confluent layer of normal human astrocytes, and the invasiveness of EGFP-labeled cells was scored after 96 h. To address the consequences of irradiation on glioma invasion, the invasiveness of irradiated glioma cell lines and irradiatedmore » astrocytic backgrounds was assessed. Fluorescence-activated cell sorting was used to quantitate the total number of EGFP-labeled cells. Results: Growth in the co-culture assay consistently reflected transformation states of the plated cells. Immortalized, but untransformed human astrocytes failed even to establish growth on confluent normal human astrocytes. In contrast, all malignant human glioma cell lines and transformed human astrocytes demonstrated various degrees of infiltration into the astrocytic bed. Irradiation failed to alter the invasiveness of U87, A172, and U373. A 1-Gy dose slightly reduced the invasiveness of U251 MG by 75% (p < 0.05 by one-way analysis of variance and post hoc Neuman-Keuls), without reducing total cell numbers. Independently irradiating the human astrocytic bed did not alter the invasiveness of nonirradiated U251, whereas the matrix metalloproteinase (MMP) inhibitor GM6001 reduced U251 invasiveness in the co-culture assay. Conclusions: Growth in the co-culture assay reflects the transformation status and provides a useful in vitro model for assessing invasiveness. Human glioma invasiveness in the co-culture model responds variably to single low-dose fractions. MMP activity promotes invasiveness in the co-culture model. Reduced invasiveness in irradiated U251 appears to be mediated by MMP-independent mechanisms.« less

  6. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases.

    PubMed

    Sebastiano, Vittorio; Maeder, Morgan L; Angstman, James F; Haddad, Bahareh; Khayter, Cyd; Yeo, Dana T; Goodwin, Mathew J; Hawkins, John S; Ramirez, Cherie L; Batista, Luis F Z; Artandi, Steven E; Wernig, Marius; Joung, J Keith

    2011-11-01

    The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected, patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression, avoiding the risk of insertional mutagenesis by therapeutic vectors, and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However, gene targeting in human pluripotent cells has remained challenging and inefficient. Recently, engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs, raising the prospect of using this technology to correct disease causing mutations. Here, we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions, we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient, transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications. Copyright © 2011 AlphaMed Press.

  7. Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.

    PubMed

    Teo, Audrey S M; Verzotto, Davide; Yao, Fei; Nagarajan, Niranjan; Hillmer, Axel M

    2015-01-01

    Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35-300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116. High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥ 150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software. Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.

  8. Designing the Sniper: Improving Targeted Human Cytolytic Fusion Proteins for Anti-Cancer Therapy via Molecular Simulation.

    PubMed

    Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Perera, Rodrigo Casasnovas; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo

    2017-02-17

    Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to upregulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such "high-resolution" detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields.

  9. Designing the Sniper: Improving Targeted Human Cytolytic Fusion Proteins for Anti-Cancer Therapy via Molecular Simulation

    PubMed Central

    Bochicchio, Anna; Jordaan, Sandra; Losasso, Valeria; Chetty, Shivan; Casasnovas Perera, Rodrigo; Ippoliti, Emiliano; Barth, Stefan; Carloni, Paolo

    2017-01-01

    Targeted human cytolytic fusion proteins (hCFPs) are humanized immunotoxins for selective treatment of different diseases including cancer. They are composed of a ligand specifically binding to target cells genetically linked to a human apoptosis-inducing enzyme. hCFPs target cancer cells via an antibody or derivative (scFv) specifically binding to e.g., tumor associated antigens (TAAs). After internalization and translocation of the enzyme from endocytosed endosomes, the human enzymes introduced into the cytosol are efficiently inducing apoptosis. Under in vivo conditions such enzymes are subject to tight regulation by native inhibitors in order to prevent inappropriate induction of cell death in healthy cells. Tumor cells are known to up-regulate these inhibitors as a survival mechanism resulting in escape of malignant cells from elimination by immune effector cells. Cytosolic inhibitors of Granzyme B and Angiogenin (Serpin P9 and RNH1, respectively), reduce the efficacy of hCFPs with these enzymes as effector domains, requiring detrimentally high doses in order to saturate inhibitor binding and rescue cytolytic activity. Variants of Granzyme B and Angiogenin might feature reduced affinity for their respective inhibitors, while retaining or even enhancing their catalytic activity. A powerful tool to design hCFPs mutants with improved potency is given by in silico methods. These include molecular dynamics (MD) simulations and enhanced sampling methods (ESM). MD and ESM allow predicting the enzyme-protein inhibitor binding stability and the associated conformational changes, provided that structural information is available. Such “high-resolution” detailed description enables the elucidation of interaction domains and the identification of sites where particular point mutations may modify those interactions. This review discusses recent advances in the use of MD and ESM for hCFP development from the viewpoints of scientists involved in both fields. PMID:28536352

  10. A comparison of human and porcine acellularized dermis: interactions with human fibroblasts in vitro.

    PubMed

    Armour, Alexis D; Fish, Joel S; Woodhouse, Kimberly A; Semple, John L

    2006-03-01

    Dermal substitutes derived from xenograft materials require elaborate processing at a considerable cost. Acellularized porcine dermis is a readily available material associated with minimal immunogenicity. The objective of this study was to evaluate acellularized pig dermis as a scaffold for human fibroblasts. In vitro methods were used to evaluate fibroblast adherence, proliferation, and migration on pig acellularized dermal matrix. Acellular human dermis was used as a control. Pig acellularized dermal matrix was found to be inferior to human acellularized dermal matrix as a scaffold for human fibroblasts. Significantly more samples of human acellularized dermal matrix (83 percent, n = 24; p < 0.05) demonstrated fibroblast infiltration below the cell-seeded surface than pig acellularized dermal matrix (31 percent, n = 49). Significantly more (p < 0.05) fibroblasts infiltrated below the surface of human acellularized dermal matrix (mean, 1072 +/- 80 cells per section; n = 16 samples) than pig acellularized dermal matrix (mean, 301 +/- 48 cells per section; n = 16 samples). Fibroblasts migrated significantly less (p < 0.05) distance from the cell-seeded pig acellularized dermal matrix surface than in the human acellularized dermal matrix (78.8 percent versus 38.3 percent cells within 150 mum from the surface, respectively; n = 5). Fibroblasts proliferated more rapidly (p < 0.05) on pig acellularized dermal matrix (n = 9) than on the human acellularized dermal matrix (7.4-fold increase in cell number versus 1.8-fold increase, respectively; n = 9 for human acellularized dermal matrix). There was no difference between the two materials with respect to fibroblast adherence (8120 versus 7436 average adherent cells per section, for pig and human acellularized dermal matrix, respectively; n = 20 in each group; p > 0.05). Preliminary findings suggest that substantial differences may exist between human fibroblast behavior in cell-matrix interactions of porcine and human acellularized dermis.

  11. Emodin induces human T cell apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction

    PubMed Central

    Qu, Kai; Shen, Nai-ying; Xu, Xin-sen; Su, Hai-bo; Wei, Ji-chao; Tai, Ming-hui; Meng, Fan-di; Zhou, Lei; Zhang, Yue-lang; Liu, Chang

    2013-01-01

    Aim: To elucidate the molecular mechanisms underlying the immunosuppressive effects of emodin isolated from Rheum palmatum L. Methods: Human T cells were isolated from the peripheral venous blood of 10 healthy adult donors. Cell viability was analyzed with MTT assay. AO/EB and Annexin V/PI staining and DNA damage assay were used to detect cell apoptosis. Fluorescence staining was used to detect the levels of ROS, the mitochondrial membrane potential and intracellular Ca2+. Colorimetry was used to detect the levels of MDA and total SOD and GSH/GSSG ratio. The expression and activity of caspase-3, -4, and -9 were detected with Western blotting and a fluorometric assay. Western blotting was also used to detect the expression of Bcl-2, Bax, cytochrome C, and endoplasmic reticulum (ER) markers. Results: Emodin (1, 10, and 100 μmol/L) inhibited the growth of human T cells and induced apoptosis in dose- and time dependent manners. Emodin triggered ER stress and significantly elevated intracellular free Ca2+ in human T cells. It also disrupted mitochondrial membrane potential, and increased cytosolic level of cytochrome C, and the levels of activated cleavage fragments of caspase-3, -4, and -9 in human T cells. Furthermore, emodin significantly increased the levels of ROS and MDA, inhibited both SOD level and GSH/GSSG ratio in human T cells, whereas co-incubation with the ROS scavenger N-acetylcysteine (NAC, 20 μmol/L) almost completely blocked emodin-induced ER stress and mitochondrial dysfunction in human T cells, and decreased the caspase cascade-mediated apoptosis. Conclusion: Emodin exerts immunosuppressive actions at least partly by inducing apoptosis of human T cells, which is triggered by ROS-mediated ER stress and mitochondrial dysfunction. PMID:23811723

  12. Reprogramming human gallbladder cells into insulin-producing β-like cells

    PubMed Central

    Benedetti, Eric; Wang, Yuhan; Pelz, Carl; Schug, Jonathan; Kaestner, Klaus H.; Grompe, Markus

    2017-01-01

    The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to β-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic β-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall β-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to β cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs—derived from multiple unrelated donors—into pancreatic β-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes. PMID:28813430

  13. Rats, cats, and elephants, but still no unicorn: induced pluripotent stem cells from new species.

    PubMed

    Trounson, Alan

    2009-01-09

    Two independent studies in this issue of Cell Stem Cell (Liao et al., 2009; Li et al., 2009) derive rat induced pluripotent stem cells (iPSCs). In one report, the method used results in rat and human iPSCs that exhibit phenotypic traits similar to mouse embryonic stem cells.

  14. Application of an enzyme-labeled antigen method for visualizing plasma cells producing antibodies against Strep A, a carbohydrate antigen of Streptococcus pyogenes, in recurrent tonsillitis.

    PubMed

    Onouchi, Takanori; Mizutani, Yasuyoshi; Shiogama, Kazuya; Inada, Ken-ichi; Okada, Tatsuyoshi; Naito, Kensei; Tsutsumi, Yutaka

    2015-01-01

    Streptococcus pyogenes is the main causative pathogen of recurrent tonsillitis. Histologically, lesions of recurrent tonsillitis contain numerous plasma cells. Strep A is an antigenic carbohydrate molecule on the cell wall of S. pyogenes. As expected, plasma cells in subjects with recurrent tonsillitis secrete antibodies against Strep A. The enzyme-labeled antigen method is a novel histochemical technique that visualizes specific antibody-producing cells in tissue sections by employing a biotin-labeled antigen as a probe. The purpose of the present study was to visualize plasma cells producing antibodies reactive with Strep A in recurrent tonsillitis. Firstly, the lymph nodes of rats immunized with boiled S. pyogenes were paraformaldehyde-fixed and specific plasma cells localized in frozen sections with biotinylated Strep A. Secondly, an enzyme-labeled antigen method was used on human tonsil surgically removed from 12 patients with recurrent tonsillitis. S. pyogenes genomes were PCR-detected in all 12 specimens. The emm genotypes belonged to emm12 in nine specimens and emm1 in three. Plasma cells producing anti-Strep A antibodies were demonstrated in prefixed frozen sections of rat lymph nodes, 8/12 human specimens from patients with recurrent tonsillitis but not in two control tonsils. In human tonsils, Strep A-reactive plasma cells were observed within the reticular squamous mucosa and just below the mucosa, and the specific antibodies belonged to either IgA or IgG classes. Our technique is effective in visualizing immunocytes producing specific antibodies against the bacterial carbohydrate antigen, and is thus a novel histochemical tool for analyzing immune reactions in infectious disorders. © 2014 The Authors. Microbiology and Immunology Published by The Societies and Wiley Publishing Asia Pty Ltd.

  15. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Min Sun; Biosystems and Bioengineering Program, University of Science and Technology; Mun, Ji-Young

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineeredmore » the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.« less

  16. Human Papilloma Virus (HPV) Induced Head & Neck Squamous Cell Carcinoma: A Comprehensive Retrospect

    PubMed Central

    Nishat, Roquaiya; Ramachandra, Sujatha; Kumar, Harish; Bandyopadhyay, Alokenath

    2015-01-01

    Head and Neck Squamous Cell Carcinoma accounts for the sixth most common malignancy occurring worldwide with tobacco and alcohol being the two well established risk factors. In the recent years, substantial evidence has been obtained that Human Papilloma Virus (HPV) associated head and neck cancers are on the rise. This article provides an insight into the structure of HPV genome, molecular pathogenesis, detection methods and clinical implications of HPV positive Head and Neck Squamous Cell Carcinoma. PMID:26266234

  17. Multifactorial analysis of human blood cell responses to clinical total body irradiation

    NASA Technical Reports Server (NTRS)

    Yuhas, J. M.; Stokes, T. R.; Lushbaugh, C. C.

    1972-01-01

    Multiple regression analysis techniques are used to study the effects of therapeutic radiation exposure, number of fractions, and time on such quantal responses as tumor control and skin injury. The potential of these methods for the analysis of human blood cell responses is demonstrated and estimates are given of the effects of total amount of exposure and time of protraction in determining the minimum white blood cell concentration observed after exposure of patients from four disease groups.

  18. Th1 and Th17 Immunocompetence in Humanized NOD/SCID/γC-KO mice

    PubMed Central

    Rajesh, Deepika; Zhou, Ying; Jankowska-Gan, Ewa; Ronneburg, Drew Allan; Dart, Melanie M; Torrealba, Jose; Burlingham, William J

    2010-01-01

    We evaluated the immunocompetence of human T cells in humanized NOD-scid IL2r-γ-null (Hu—NSG) mice bearing a human thymic organoid, after multilinegage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of CB17 SCID mice [trans-vivo (tv) DTH]. Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45+ cells, including CD3+ T cells, CD68+ macrophages and murine Ly6G+ neutrophils. We observed a significant correlation between % circulating human CD4+ cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-IFNγ, while the tvDTH response to collagen V was inhibited by anti IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. Hu-NSG mice were also capable of mounting a B cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17 - dependent cellular immune response supports the utility of Hu-NSG mice as a surrogate model of allograft rejection and autoimmunity. PMID:20298731

  19. Micro-buffy coats of whole blood: a method for the electron microscopic study of mononuclear cells.

    PubMed

    Nunes, J F; Soares, J O; Alves de Matos, A P

    1979-09-01

    A method for the electron microscopic study of human peripheral lymphocytes by which very small buffy coats are obtained through centrifugation of heparinized whole blood in glass or plastic microhematocrit tubes is presented. This method is time saving and efficient, yielding well preserved material and a comparatively large number of mononuclear cells (mainly lymphocytes) in each thin section.

  20. Isolation and In Vitro Culture of Murine and Human Alveolar Macrophages.

    PubMed

    Nayak, Deepak K; Mendez, Oscar; Bowen, Sara; Mohanakumar, Thalachallour

    2018-04-20

    Alveolar macrophages are terminally differentiated, lung-resident macrophages of prenatal origin. Alveolar macrophages are unique in their long life and their important role in lung development and function, as well as their lung-localized responses to infection and inflammation. To date, no unified method for identification, isolation, and handling of alveolar macrophages from humans and mice exists. Such a method is needed for studies on these important innate immune cells in various experimental settings. The method described here, which can be easily adopted by any laboratory, is a simplified approach to harvesting alveolar macrophages from bronchoalveolar lavage fluid or from lung tissue and maintaining them in vitro. Because alveolar macrophages primarily occur as adherent cells in the alveoli, the focus of this method is on dislodging them prior to harvest and identification. The lung is a highly vascularized organ, and various cell types of myeloid and lymphoid origin inhabit, interact, and are influenced by the lung microenvironment. By using the set of surface markers described here, researchers can easily and unambiguously distinguish alveolar macrophages from other leukocytes, and purify them for downstream applications. The culture method developed herein supports both human and mouse alveolar macrophages for in vitro growth, and is compatible with cellular and molecular studies.

  1. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    PubMed Central

    Cornish, Toby C.; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K.

    2015-01-01

    Background: The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology. PMID:26167380

  2. Maleimide conjugation markedly enhances the immunogenicity of both human and murine idiotype-KLH vaccines

    PubMed Central

    Kafi, Kamran; Betting, David J.; Yamada, Reiko E.; Bacica, Michael; Steward, Kristopher K.; Timmerman, John M.

    2009-01-01

    The collection of epitopes present within the variable regions of the tumor-specific clonal immunoglobulin expressed by B cell lymphomas (idiotype, Id) can serve as a target for active immunotherapy. Traditionally, tumor-derived Id protein is chemically-conjugated to the immunogenic foreign carrier protein keyhole limpet hemocyanin (KLH) using glutaraldehyde to serve as a therapeutic vaccine. While this approach offered promising results for some patients treated in early clinical trials, glutaraldehyde Id-KLH vaccines have failed to induce immune and clinical responses in many vaccinated subjects. We recently described an alternative conjugation method employing maleimide-sulfhydryl chemistry that significantly increased the therapeutic efficacy of Id-KLH vaccines in three different murine B cell lymphoma models, with protection mediated by either CD8+ T cells or antibodies. We now define in detail the methods and parameters critical for enhancing the in vivo immunogenicity of human as well as murine Id-KLH conjugate vaccines. Optimal conditions for Id sulfhydryl pre-reduction were determined, and maleimide Id-KLH conjugates maintained stability and potency even after prolonged storage. Field flow fractionation analysis of Id-KLH particle size revealed that maleimide conjugates were far more uniform in size than glutaraldehyde conjugates. Under increasingly stringent conditions, maleimide Id-KLH vaccines maintained superior efficacy over glutaraldehyde Id-KLH in treating established, disseminated murine lymphoma. More importantly, human maleimide Id-KLH conjugates were consistently superior to glutaraldehyde Id-KLH conjugates in inducing Id-specific antibody and T cell responses. The described methods should be easily adaptable to the production of clinical grade vaccines for human trials in B cell malignancies. PMID:19046770

  3. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering

    PubMed Central

    Nourse, Marilyn B.; Halpin, Daniel E.; Scatena, Marta; Mortisen, Derek J.; Tulloch, Nathaniel L.; Hauch, Kip D.; Torok-Storb, Beverly; Ratner, Buddy D.; Pabon, Lil; Murry, Charles E.

    2010-01-01

    Objective Human embryonic stem cells (hESCs) offer a sustainable source of endothelial cells for therapeutic vascularization and tissue engineering, but current techniques for generating these cells remain inefficient. We endeavored to induce and isolate functional endothelial cells from differentiating hESCs. Methods and Results To enhance endothelial cell differentiation above a baseline of ∼2% in embryoid body (EB) spontaneous differentiation, three alternate culture conditions were compared. Vascular endothelial growth factor (VEGF) treatment of EBs showed the best induction, with markedly increased expression of endothelial cell proteins CD31, VE-Cadherin, and von Willebrand Factor, but not the hematopoietic cell marker CD45. CD31 expression peaked around days 10-14. Continuous VEGF treatment resulted in a four- to five-fold enrichment of CD31+ cells but did not increase endothelial proliferation rates, suggesting a primary effect on differentiation. CD31+ cells purified from differentiating EBs upregulated ICAM-1 and VCAM-1 in response to TNFα, confirming their ability to function as endothelial cells. These cells also expressed multiple endothelial genes and formed lumenized vessels when seeded onto porous poly(2-hydroxyethyl methacrylate) scaffolds and implanted in vivo subcutaneously in athymic rats. Collagen gel constructs containing hESC-derived endothelial cells and implanted into infarcted nude rat hearts formed robust networks of patent vessels filled with host blood cells. Conclusions VEGF induces functional endothelial cells from hESCs independent of endothelial cell proliferation. These enrichment methods increase endothelial cell yield, enabling applications for revascularization as well as basic studies of human endothelial biology. We demonstrate the ability of hESC-derived endothelial cells to facilitate vascularization of tissue-engineered implants. PMID:19875721

  4. Single-Cell Detection of Secreted Aβ and sAPPα from Human IPSC-Derived Neurons and Astrocytes.

    PubMed

    Liao, Mei-Chen; Muratore, Christina R; Gierahn, Todd M; Sullivan, Sarah E; Srikanth, Priya; De Jager, Philip L; Love, J Christopher; Young-Pearse, Tracy L

    2016-02-03

    Secreted factors play a central role in normal and pathological processes in every tissue in the body. The brain is composed of a highly complex milieu of different cell types and few methods exist that can identify which individual cells in a complex mixture are secreting specific analytes. By identifying which cells are responsible, we can better understand neural physiology and pathophysiology, more readily identify the underlying pathways responsible for analyte production, and ultimately use this information to guide the development of novel therapeutic strategies that target the cell types of relevance. We present here a method for detecting analytes secreted from single human induced pluripotent stem cell (iPSC)-derived neural cells and have applied the method to measure amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα), analytes central to Alzheimer's disease pathogenesis. Through these studies, we have uncovered the dynamic range of secretion profiles of these analytes from single iPSC-derived neuronal and glial cells and have molecularly characterized subpopulations of these cells through immunostaining and gene expression analyses. In examining Aβ and sAPPα secretion from single cells, we were able to identify previously unappreciated complexities in the biology of APP cleavage that could not otherwise have been found by studying averaged responses over pools of cells. This technique can be readily adapted to the detection of other analytes secreted by neural cells, which would have the potential to open new perspectives into human CNS development and dysfunction. We have established a technology that, for the first time, detects secreted analytes from single human neurons and astrocytes. We examine secretion of the Alzheimer's disease-relevant factors amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα) and present novel findings that could not have been observed without a single-cell analytical platform. First, we identify a previously unappreciated subpopulation that secretes high levels of Aβ in the absence of detectable sAPPα. Further, we show that multiple cell types secrete high levels of Aβ and sAPPα, but cells expressing GABAergic neuronal markers are overrepresented. Finally, we show that astrocytes are competent to secrete high levels of Aβ and therefore may be a significant contributor to Aβ accumulation in the brain. Copyright © 2016 the authors 0270-6474/16/361730-17$15.00/0.

  5. Differentiation of Human Dental Stem Cells Reveal a Role for microRNA-218

    PubMed Central

    Gay, Isabel; Cavender, Adriana; Peto, David; Sun, Zhao; Speer, Aline; Cao, Huojun; Amendt, Brad A.

    2013-01-01

    Background Regeneration of the lost periodontium is the ultimate goal of periodontal therapy. Advances in tissue engineering have demonstrated the multilineage potential and plasticity of adult stem cells located in the periodontal apparatus. However, it remains unclear how epigenetic mechanisms controlling signals determine tissue specification and cell lineage decisions. To date, no data is available on micro-RNAs (miRNAs) activity behind human-derived dental stem cells. Methods In this study, we isolated periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and gingival stem cells (GSCs) from extracted third molars; human bone marrow stem cells (BMSCs) were used as a positive control. The expression of OCT4A and NANOG was confirmed in these undifferentiated cells. All cells were cultured under osteogenic inductive conditions and RUNX2 expression was analyzed as a marker of mineralized tissue differentiation. A miRNA expression profile was obtained at baseline and after osteogenic induction in all cell types. Results RUNX2 expression demonstrated the successful osteogenic induction of all cell types, which was confirmed by alizarin red stain. The analysis of 765 miRNAs demonstrated a shift in miRNA expression occurred in all four stem cell types, including a decrease in hsa-mir-218 across all differentiated cell populations. Hsa-mir-218 targets RUNX2 and decreases RUNX2 expression in undifferentiated human dental stem cells (DSCs). DSC mineralized tissue type differentiation is associated with a decrease in hsa-mir-218 expression. Conclusions These data reveal a miRNA regulated pathway for the differentiation of human DSCs and a select network of human microRNAs that control DSC osteogenic differentiation. PMID:23662917

  6. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  7. Introduction to thematic minireview series: Development of human therapeutics based on induced pluripotent stem cell (iPSC) technology.

    PubMed

    Rao, Mahendra; Gottesfeld, Joel M

    2014-02-21

    With the advent of human induced pluripotent stem cell (hiPSC) technology, it is now possible to derive patient-specific cell lines that are of great potential in both basic research and the development of new therapeutics for human diseases. Not only do hiPSCs offer unprecedented opportunities to study cellular differentiation and model human diseases, but the differentiated cell types obtained from iPSCs may become therapeutics themselves. These cells can also be used in the screening of therapeutics and in toxicology assays for potential liabilities of therapeutic agents. The remarkable achievement of transcription factor reprogramming to generate iPSCs was recognized by the award of the Nobel Prize in Medicine to Shinya Yamanaka in 2012, just 6 years after the first publication of reprogramming methods to generate hiPSCs (Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Cell 131, 861-872). This minireview series highlights both the promises and challenges of using iPSC technology for disease modeling, drug screening, and the development of stem cell therapeutics.

  8. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  9. A human beta cell line with drug inducible excision of immortalizing transgenes

    PubMed Central

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  10. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold.

    PubMed

    Hassanein, Wessam; Uluer, Mehmet C; Langford, John; Woodall, Jhade D; Cimeno, Arielle; Dhru, Urmil; Werdesheim, Avraham; Harrison, Joshua; Rivera-Pratt, Carlos; Klepfer, Stephen; Khalifeh, Ali; Buckingham, Bryan; Brazio, Philip S; Parsell, Dawn; Klassen, Charlie; Drachenberg, Cinthia; Barth, Rolf N; LaMattina, John C

    2017-01-02

    Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.

  11. Bioimpedance measurements of human body composition: critical analysis and outlook.

    PubMed

    Matthie, James R

    2008-03-01

    Bioimpedance spectroscopy represents one of the largest emerging medical device technologies. The method is generally known as impedance spectroscopy and is an inexpensive, yet extremely powerful, analytical technique for studying the electrical properties of materials. Much of what we know about biological cells and tissues comes from use of this technique in vitro. Due to the high impedance of the cell membrane, current flow through the cell is frequency dependent and this allows the fluid volume inside versus outside the body's cells to be determined. The fluid outside the cells is primarily related to fluid volume status while the intracellular fluid also relates to the body's cellular mass. Technical advances have removed much of the method's basic complexities. The first commercial bioimpedance spectroscopy device for in vivo human body composition studies was introduced in 1990. Major strides have been made and the method is now poised to enter mainstream clinical medicine but the field is only in its infancy. This paper attempts to fully describe the current use of impedance in the body composition field.

  12. A polynomial based model for cell fate prediction in human diseases.

    PubMed

    Ma, Lichun; Zheng, Jie

    2017-12-21

    Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.

  13. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip

    PubMed Central

    Musah, Samira; Mammoto, Akiko; Ferrante, Thomas C.; Jeanty, Sauveur S. F.; Hirano-Kobayashi, Mariko; Mammoto, Tadanori; Roberts, Kristen; Chung, Seyoon; Novak, Richard; Ingram, Miles; Fatanat-Didar, Tohid; Koshy, Sandeep; Weaver, James C.; Church, George M.; Ingber, Donald E.

    2017-01-01

    An in vitro model of the human kidney glomerulus — the major site of blood filtration — could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes — the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (> 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers of the mature phenotype (nephrin+, WT1+, podocin+, Pax2−) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue/tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications. PMID:29038743

  14. Comparison of in vitro methods for carboxylesterase activity determination in immortalized cells representative of the intestine, liver and kidney.

    PubMed

    Lamego, Joana; Ferreira, Pedro; Alves, Márcia; Matias, Ana; Simplício, Ana Luisa

    2015-08-01

    Herein we compare the fluorimetric determination of total and specific carboxylesterase activity in immortalized human derived living cells and in cell lysates. The cell lines chosen are representative of metabolism occurring in the intestine (Caco-2 and HT-29), kidney (HEK-293T) and liver (Hep G2). Caco-2 and HT-29, as cells prone to differentiation, were tested along the differentiation time. For evaluation of both methods when distinguishing activity of different carboxylesterases, HEK-293T transfected with the human carboxylestarase-2 (hCES2) were also tested. Application to Caco-2 or HT-29 cells demonstrated higher activity detected in cell lysates than in cell monolayers. The difference is most striking when comparing the methods at different stages of Caco-2 and HT-29 cell maturation, highlighting substrate accessibility as a limiting step in the in vivo hydrolysis rates (possibly limited by plasma and Endoplasmic Reticulum membrane permeability) with increasing relevance as the cells differentiate. Application to Hep G2 or to hCES2 transfected and non-transfected HEK-293T cells, demonstrated a tendency for higher sensitivity in living cell suspensions than that obtained with the cell lysates which indicates the importance of cell environment in the maintenance of enzyme activity. However, quantification of hCES2 activity relative to total esterase, or to total carboxylesterase activity, was not significantly different in any case. The results herein presented help to clarify which method is best suited for evaluation of carboxylesterase activity in vitro depending on the final goal of the study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Human induced pluripotent stem cells and their use in drug discovery for toxicity testing.

    PubMed

    Scott, Clay W; Peters, Matthew F; Dragan, Yvonne P

    2013-05-10

    Predicting human safety risks of novel xenobiotics remains a major challenge, partly due to the limited availability of human cells to evaluate tissue-specific toxicity. Recent progress in the production of human induced pluripotent stem cells (hiPSCs) may fill this gap. hiPSCs can be continuously expanded in culture in an undifferentiated state and then differentiated to form most cell types. Thus, it is becoming technically feasible to generate large quantities of human cell types and, in combination with relatively new detection methods, to develop higher-throughput in vitro assays that quantify tissue-specific biological properties. Indeed, the first wave of large scale hiSC-differentiated cell types including patient-derived hiPSCS are now commercially available. However, significant improvements in hiPSC production and differentiation processes are required before cell-based toxicity assays that accurately reflect mature tissue phenotypes can be delivered and implemented in a cost-effective manner. In this review, we discuss the promising alignment of hiPSCs and recently emerging technologies to quantify tissue-specific functions. We emphasize liver, cardiovascular, and CNS safety risks and highlight limitations that must be overcome before routine screening for toxicity pathways in hiSC-derived cells can be established. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Two complementary fluorimetric assays for the determination of aminoquinoline binding and uptake by human erythrocytes in vitro.

    PubMed

    Basilico, Nicoletta; Cortelezzi, Lucia; Serpellini, Chiara; Taramelli, Donatella; Omodeo-Salè, Fausta; Salè, Fausta

    2009-02-15

    We provide two simple low-cost and low-tech procedures to measure with good precision and accuracy the binding and internalization into human erythrocytes of chloroquine and other aminoquinolines. The methods are based on the high fluorescence of the quinoline ring and are complementary. Method A evaluates residual drugs in the supernatants of treated erythrocytes, whereas method B quantifies the total uptake by whole cells and the fraction bound to the membranes. Drug uptake is dose dependent and related to the number of erythrocytes. These assays could be useful when studying the cell interaction of quinoline-type compounds not available in the radioactive form.

  17. Cryo-image Analysis of Tumor Cell Migration, Invasion, and Dispersal in a Mouse Xenograft Model of Human Glioblastoma Multiforme

    PubMed Central

    Qutaish, Mohammed Q.; Sullivant, Kristin E.; Burden-Gulley, Susan M.; Lu, Hong; Roy, Debashish; Wang, Jing; Basilion, James P.; Brady-Kalnay, Susann M.; Wilson, David L.

    2012-01-01

    Purpose The goals of this study were to create cryo-imaging methods to quantify characteristics (size, dispersal, and blood vessel density) of mouse orthotopic models of glioblastoma multiforme (GBM) and to enable studies of tumor biology, targeted imaging agents, and theranostic nanoparticles. Procedures Green fluorescent protein-labeled, human glioma LN-229 cells were implanted into mouse brain. At 20–38 days, cryo-imaging gave whole brain, 4-GB, 3D microscopic images of bright field anatomy, including vasculature, and fluorescent tumor. Image analysis/visualization methods were developed. Results Vessel visualization and segmentation methods successfully enabled analyses. The main tumor mass volume, the number of dispersed clusters, the number of cells/cluster, and the percent dispersed volume all increase with age of the tumor. Histograms of dispersal distance give a mean and median of 63 and 56 μm, respectively, averaged over all brains. Dispersal distance tends to increase with age of the tumors. Dispersal tends to occur along blood vessels. Blood vessel density did not appear to increase in and around the tumor with this cell line. Conclusion Cryo-imaging and software allow, for the first time, 3D, whole brain, microscopic characterization of a tumor from a particular cell line. LN-229 exhibits considerable dispersal along blood vessels, a characteristic of human tumors that limits treatment success. PMID:22125093

  18. Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders.

    PubMed

    Mohammadi, Alireza; Maleki-Jamshid, Ali; Sanooghi, Davood; Milan, Peiman Brouki; Rahmani, Arash; Sefat, Farshid; Shahpasand, Koorosh; Soleimani, Mansoureh; Bakhtiari, Mehrdad; Belali, Rafie; Faghihi, Faezeh; Joghataei, Mohammad Taghi; Perry, George; Mozafari, Masoud

    2018-03-16

    A neurological disorder is any disorder or abnormality in the nervous system. Among different neurological disorders, Alzheimer's disease (AD) is recognized as the sixth leading cause of death globally. Considerable research has been conducted to find pioneer treatments for this devastating disorder among which cell therapy has attracted remarkable attentions over the last decade. Up to now, targeted differentiation into specific desirable cell types has remained a major obstacle to clinical application of cell therapy. Also, potential risks including uncontrolled growth of stem cells could be disastrous. In our novel protocol, we used basal forebrain cholinergic progenitor cells (BFCN) derived from human chorion-derived mesenchymal stem cells (hC-MSCs) which made it possible to obtain high-quality population of cholinergic neurons and in vivo in much shorter time period than previous established methods. Remarkably, the transplanted progenitors fully differentiated to cholinergic neurons which in turn integrated in higher cortical networks of host brains, resulting in significant improvement in cognitive assessments. This method may have profound implications in cell therapies for any other neurodegenerative disorders. Graphical Abstract ᅟ.

  19. Method to investigate temporal dynamics of ganglion and other retinal cells in the living human eye

    NASA Astrophysics Data System (ADS)

    Kurokawa, Kazuhiro; Liu, Zhuolin; Crowell, James; Zhang, Furu; Miller, Donald T.

    2018-02-01

    The inner retina is critical for visual processing, but much remains unknown about its neural circuitry and vulnerability to disease. A major bottleneck has been our inability to observe the structure and function of the cells composing these retinal layers in the living human eye. Here, we present a noninvasive method to observe both structural and functional information. Adaptive optics optical coherence tomography (AO-OCT) is used to resolve the inner retinal cells in all three dimensions and novel post processing algorithms are applied to extract structure and physiology down to the cellular level. AO-OCT captured the 3D mosaic of individual ganglion cell somas, retinal nerve fiber bundles of micron caliber, and microglial cells, all in exquisite detail. Time correlation analysis of the AO-OCT videos revealed notable temporal differences between the principal layers of the inner retina. The GC layer was more dynamic than the nerve fiber and inner plexiform layers. At the cellular level, we applied a customized correlation method to individual GCL somas, and found a mean time constant of activity of 0.57 s and spread of +/-0.1 s suggesting a range of physiological dynamics even in the same cell type. Extending our method to slower dynamics (from minutes to one year), time-lapse imaging and temporal speckle contrast revealed appendage and soma motion of resting microglial cells at the retinal surface.

  20. Protein analysis through Western blot of cells excised individually from human brain and muscle tissue

    PubMed Central

    Koob, A.O.; Bruns, L.; Prassler, C.; Masliah, E.; Klopstock, T.; Bender, A.

    2016-01-01

    Comparing protein levels from single cells in tissue has not been achieved through Western blot. Laser capture microdissection allows for the ability to excise single cells from sectioned tissue and compile an aggregate of cells in lysis buffer. In this study we analyzed proteins from cells excised individually from brain and muscle tissue through Western blot. After we excised individual neurons from the substantia nigra of the brain, the accumulated surface area of the individual cells was 120,000, 24,000, 360,000, 480,000, 600,000 μm2. We used an optimized Western blot protocol to probe for tyrosine hydroxylase in this cell pool. We also took 360,000 μm2 of astrocytes (1700 cells) and analyzed the specificity of the method. In muscle we were able to analyze the proteins of the five complexes of the electron transport chain through Western blot from 200 human cells. With this method, we demonstrate the ability to compare cell-specific protein levels in the brain and muscle and describe for the first time how to visualize proteins through Western blot from cells captured individually. PMID:22402104

Top