Sample records for cells plant

  1. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  2. Plant stem cell niches.

    PubMed

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  3. Single-Cell Genomic Analysis in Plants

    PubMed Central

    Hu, Haifei; Scheben, Armin; Edwards, David

    2018-01-01

    Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790

  4. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    PubMed

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  5. Stem cell function during plant vascular development

    PubMed Central

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-01

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537

  6. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.

    PubMed

    Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D

    2001-03-01

    Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.

  7. Cell-to-cell movement of plastids in plants.

    PubMed

    Thyssen, Gregory; Svab, Zora; Maliga, Pal

    2012-02-14

    Our objective was to test whether or not plastids and mitochondria, the two DNA-containing organelles, move between cells in plants. As our experimental approach, we grafted two different species of tobacco, Nicotiana tabacum and Nicotiana sylvestris. Grafting triggers formation of new cell-to-cell contacts, creating an opportunity to detect cell-to-cell organelle movement between the genetically distinct plants. We initiated tissue culture from sliced graft junctions and selected for clonal lines in which gentamycin resistance encoded in the N. tabacum nucleus was combined with spectinomycin resistance encoded in N. sylvestris plastids. Here, we present evidence for cell-to-cell movement of the entire 161-kb plastid genome in these plants, most likely in intact plastids. We also found that the related mitochondria were absent, suggesting independent movement of the two DNA-containing organelles. Acquisition of plastids from neighboring cells provides a mechanism by which cells may be repopulated with functioning organelles. Our finding supports the universality of intercellular organelle trafficking and may enable development of future biotechnological applications.

  8. Regulation of Water in Plant Cells

    ERIC Educational Resources Information Center

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  9. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  10. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  11. Morphological classification of plant cell deaths.

    PubMed

    van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V

    2011-08-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

  12. Building a plant cell wall at a glance.

    PubMed

    Lampugnani, Edwin R; Khan, Ghazanfar Abbas; Somssich, Marc; Persson, Staffan

    2018-01-29

    Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis . © 2018. Published by The Company of Biologists Ltd.

  13. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  14. Regio- and stereoselectivities in plant cell biotransformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, H.

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  15. Laser-mediated perforation of plant cells

    NASA Astrophysics Data System (ADS)

    Wehner, Martin; Jacobs, Philipp; Esser, Dominik; Schinkel, Helga; Schillberg, Stefan

    2007-07-01

    The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. Lasers are increasingly exploited for the manipulation of plant cells, enabling the study of biological processes on a subcellular scale including transformation to generate genetically modified plants. In our setup either a picosecond laser operating at 1064 nm wavelength or a continuous wave laser diode emitting at 405 nm are coupled into an inverse microscope. The beams are focused to a spot size of about 1.5 μm and the tobacco cell protoplasts are irradiated. Optoporation is achieved when targeting the laser focal spot at the outermost edge of the plasma membrane. In case of the picosecond laser a single pulse with energy of about 0.4 μJ was sufficient to perforate the plasma membrane enabling the uptake of dye or DNA from the surrounding medium into the cytosol. When the ultraviolet laser diode at a power level of 17 mW is employed an irradiation time of 200 - 500 milliseconds is necessary to enable the uptake of macromolecules. In the presence of an EYFP encoding plasmid with a C-terminal peroxisomal signal sequence in the surrounding medium transient transformation of tobacco protoplasts could be achieved in up to 2% of the optoporated cells. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.

  16. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  17. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  18. Super-resolution Microscopy in Plant Cell Imaging.

    PubMed

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Plant cell shape: modulators and measurements

    PubMed Central

    Ivakov, Alexander; Persson, Staffan

    2013-01-01

    Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation. PMID:24312104

  20. Cell fusion and nuclear fusion in plants.

    PubMed

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cell-to-cell communication via plasmodesmata in vascular plants

    PubMed Central

    Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä

    2013-01-01

    In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants. PMID:23076211

  2. Tocopherol production in plant cell cultures.

    PubMed

    Caretto, Sofia; Nisi, Rossella; Paradiso, Annalisa; De Gara, Laura

    2010-05-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, essential dietary components for mammals and exclusively synthesized by photosynthetic organisms. Of the four forms (alpha, beta, gamma and delta), alpha-tocopherol is the major vitamin E form present in green plant tissues, and has the highest vitamin E activity. Synthetic alpha-tocopherol, being a racemic mixture of eight different stereoisomers, always results less effective than the natural form (R,R,R) alpha-tocopherol. This raises interest in obtaining this molecule from natural sources, such as plant cell cultures. Plant cell and tissue cultures are able to produce and accumulate valuable metabolites that can be used as food additives, nutraceuticals and pharmaceuticals. Sunflower cell cultures, growing under heterotrophic conditions, were exploited to establish a suitable in vitro production system of natural alpha-tocopherol. Optimization of culture conditions, precursor feeding and elicitor application were used to improve the tocopherol yields of these cultures. Furthermore, these cell cultures were useful to investigate the relationship between alpha-tocopherol biosynthesis and photomixotrophic culture conditions, revealing the possibility to enhance tocopherol production by favouring sunflower cell photosynthetic properties. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism.

  3. Plant Systems Biology at the Single-Cell Level.

    PubMed

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    PubMed

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  5. Adaptive optical imaging through complex living plant cells

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Hayano, Yutaka; Murata, Takashi; Oya, Shin; Honma, Yusuke; Kanazawa, Minoru; Miura, Noriaki; Hasebe, Mitsuyasu; Kamei, Yasuhiro; Hattori, Masayuki

    2017-04-01

    Live-cell imaging using fluorescent molecules is now essential for biological researches. However, images of living cells are accompanied with blur, which becomes stronger according to the depth inside the cells and tissues. This image blur is caused by the disturbance on light that goes through optically inhomogeneous living cells and tissues. Here, we show adaptive optics (AO) imaging of living plant cells. AO has been developed in astronomy to correct the disturbance on light caused by atmospheric turbulence. We developed AO microscope effective for the observation of living plant cells with strong disturbance by chloroplasts, and successfully obtained clear images inside plant cells.

  6. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  7. Evolution and diversity of plant cell walls: from algae to flowering plants.

    PubMed

    Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

    2011-01-01

    All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.

  8. Spectro-microscopy of living plant cells.

    PubMed

    Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank

    2012-01-01

    Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into

  9. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Biosynthesis of plant cell wall polysaccharides.

    PubMed

    Gibeaut, D M; Carpita, N C

    1994-09-01

    The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.

  11. Biofunctionalized Plants as Diverse Biomaterials for Human Cell Culture.

    PubMed

    Fontana, Gianluca; Gershlak, Joshua; Adamski, Michal; Lee, Jae-Sung; Matsumoto, Shion; Le, Hau D; Binder, Bernard; Wirth, John; Gaudette, Glenn; Murphy, William L

    2017-04-01

    The commercial success of tissue engineering products requires efficacy, cost effectiveness, and the possibility of scaleup. Advances in tissue engineering require increased sophistication in the design of biomaterials, often challenging the current manufacturing techniques. Interestingly, several of the properties that are desirable for biomaterial design are embodied in the structure and function of plants. This study demonstrates that decellularized plant tissues can be used as adaptable scaffolds for culture of human cells. With simple biofunctionalization technique, it is possible to enable adhesion of human cells on a diverse set of plant tissues. The elevated hydrophilicity and excellent water transport abilities of plant tissues allow cell expansion over prolonged periods of culture. Moreover, cells are able to conform to the microstructure of the plant frameworks, resulting in cell alignment and pattern registration. In conclusion, the current study shows that it is feasible to use plant tissues as an alternative feedstock of scaffolds for mammalian cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  13. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  14. Redox regulation of plant stem cell fate.

    PubMed

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  15. Do cancer cells in human and meristematic cells in plant exhibit similar responses toward plant extracts with cytotoxic activities?

    PubMed

    Khalifa, Noha S; Barakat, Hoda S; Elhallouty, Salwa; Salem, Dina

    2015-01-01

    We examined the effect of water extracts of Persea americana fruit, and of the leaves of Tabernamontana divericata, Nerium oleander and Annona cherimolia (positive control) on Vicia faba root cells. We had confirmed in our previously published data the cytotoxicity of these plant extracts on four human cancer cell lines: liver (HepG-2), lung (A549), colon (HT-29) and breast (MCF-7). Vicia faba roots were soaked in plant extracts at dilutions of 100, 1,250, 2,500, 5,000, 10,000, 20,000 ppm for 4 and 24 h. All treatments resulted in a significant reduction in the mitotic index in a dose dependant manner. Root cells treated with T. divericata, N. oleander and A. cherimolia exhibited a decrease in prophase cell percentage, increase in micronuclei and chromosomal abnormalities as concentration increased. The P. americana treatment showed the highest cytotoxic effect on cancer cells, prophase cell percentage increased linearly with the applied concentration and no micronuclei were detected. This study shows that root tip assay of beans can be used in initial screening for new plant extracts to validate their use as candidates for containing active cytotoxic agents against malignant cells. This will greatly help in exploring new plant extracts as drugs for cancer treatment.

  16. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  17. Pathological modifications of plant stem cell destiny

    USDA-ARS?s Scientific Manuscript database

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  18. Quantification of plant cell coupling with live-cell microscopy.

    PubMed

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    Movement of nutrients and signaling compounds from cell to cell is an essential process for plant growth and development. To understand processes such as carbon allocation, cell communication, and reaction to pathogen attack it is important to know a specific molecule's capacity to pass a specific cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely determining the plasmodesmata-mediated cell wall permeability for small molecules in living cells.The method is based on photoactivation of the fluorescent tracer caged fluorescein. Non-fluorescent caged fluorescein is applied to a target tissue, where it is taken up passively into all cells. Imaged by confocal microscopy, loaded tracer is activated by UV illumination in a target cell and its spread to neighboring cells monitored. When combined with high-speed acquisition by resonant scanning or spinning disc confocal microscopy, the high signal-to-noise ratio of photoactivation allows collection of three-dimensional (3D) time series. These contain all necessary functional and anatomical data to measure cell coupling in complex tissues noninvasively.

  19. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Daniel J.

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potentialmore » pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.« less

  20. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every

  1. Plant and algal cell walls: diversity and functionality.

    PubMed

    Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S

    2014-10-01

    Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant

  2. Calcium signaling in plant cells in microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E.

    Changes in the intracellular Ca 2 + concentration in altered gravity (microgravity and clinostating) evidence that Ca2 + signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in eighties, a review highlighting the performed research and the possible significance of such Ca 2 + changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumably specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2 + ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravis ensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane

  3. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    PubMed

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Vacuolar processing enzyme: an executor of plant cell death.

    PubMed

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  5. Cell-phone based assistance for waterworks/sewage plant maintenance.

    PubMed

    Kawada, T; Nakamichi, K; Hisano, N; Kitamura, M; Miyahara, K

    2006-01-01

    Cell-phones are now incorporating the functions necessary for them to be used as mobile IT devices. In this paper, we present our results of the evaluation of cell-phones as the mobile IT device to assist workers in industrial plants. We use waterworks and sewage plants as examples. By employing techniques to squeeze the SCADA screen on CRT into a small cell-phone LCD, we have made it easier for a plant's field workers to access the information needed for effective maintenance, regardless of location. An idea to link SCADA information and the plant facility information on the cell-phone is also presented. Should an accident or emergency situation arise, these cell-phone-based IT systems can efficiently deliver the latest plant information, thus the worker out in the field can respond to and resolve the emergency.

  6. Teaching resources. Movement of macromolecules in plant cells through plasmodesmata.

    PubMed

    Jorgensen, Richard A; Lucas, William J

    2006-02-21

    Plasmodesmata are intercellular organelles in plants that allow the passage of molecules between plant cells. Movement through plasmodesmata may allow transcription factors expressed in one cell to move into adjacent cells, thereby regulating gene expression non-cell autonomously. The two animations illustrate (i) movement of a protein through an individual plasmodesma and (ii) an experiment to detect the movement of the transcription factor through plasmodesmata from the L1 layer of a plant meristem into the L2 and L3 layers. These two animations would be useful in teaching plant biology or plant development or a cell biology class discussing mechanisms of intercellular transport.

  7. Plant stem cells in cosmetics: current trends and future directions

    PubMed Central

    Trehan, Sonia; Michniak-Kohn, Bozena; Beri, Kavita

    2017-01-01

    Plant regeneration at the cellular and tissue level is a unique process. Similar to animals, the stem cells in plants have properties that help stimulate and regenerate plants after injury. The unique properties of plant stem cells have been a recent area of interest and focus both in developing new cosmetics and studying how these extracts/phytohormones will influence animal skin. This special report focuses on the current evidence-based trends in plant stem cell-based cosmetics and sheds light on the challenges that we need to overcome in order to see meaningful changes in human skin using topical cosmetics derived from plant stem cells. PMID:29134115

  8. Space radiation effects on plant and mammalian cells

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  9. Metabolism of fluoranthene in different plant cell cultures and intact plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, M.; Harms, H.

    The metabolism of fluoranthene was investigated in 11 cell cultures of different plant species using a [{sup 14}C]-labeled standard. Most species metabolized less than 5% of fluoranthene to soluble metabolites and formed less than 5% nonextractable residues during the standardized 48-h test procedure. Higher metabolic rates were observed in lettuce (Lactuca sativa, 6%), wheat (Tricitum aestivum, 9%), and tomato (Lycopersicon esculentum, 15%). A special high metabolic rate of nearly 50% was determined for the rose species Paul's Scarlet. Chromatographic analysis of metabolites extracted from aseptically grown tomato plants proved that the metabolites detected in the cell cultures were also formedmore » in the intact plants. Metabolites produced in tomato and rose cells from [{sup 14}C]-fluoranthene were conjugated with glucose, glucuronic acid, and other cell components. After acid hydrolyses, the main metabolite of both species was 1-hydroxyfluoranthene as identified by gas chromatography-mass spectrometry and high-performance liquid chromatography with diode array detection. The second metabolite formed by both species was 8-hydroxyfluoranthene. A third metabolite in tomatoes was 3-hydroxyfluoranthene.« less

  10. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.

    PubMed

    Majda, Mateusz; Grones, Peter; Sintorn, Ida-Maria; Vain, Thomas; Milani, Pascale; Krupinski, Pawel; Zagórska-Marek, Beata; Viotti, Corrado; Jönsson, Henrik; Mellerowicz, Ewa J; Hamant, Olivier; Robert, Stéphanie

    2017-11-06

    The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Green light for quantitative live-cell imaging in plants.

    PubMed

    Grossmann, Guido; Krebs, Melanie; Maizel, Alexis; Stahl, Yvonne; Vermeer, Joop E M; Ott, Thomas

    2018-01-29

    Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number of methodologies have been adapted or developed over the last decades that allow minimal or non-invasive live-cell imaging in the context of tissues. Combined with the ease to generate transgenic reporter lines in specific genetic backgrounds or accessions, we are witnessing a blooming in plant cell biology. However, the imaging of plant cells entails a number of specific challenges, such as high levels of autofluorescence, light scattering that is caused by cell walls and their sensitivity to environmental conditions. Quantitative live-cell imaging in plants therefore requires adapting or developing imaging techniques, as well as mounting and incubation systems, such as micro-fluidics. Here, we discuss some of these obstacles, and review a number of selected state-of-the-art techniques, such as two-photon imaging, light sheet microscopy and variable angle epifluorescence microscopy that allow high performance and minimal invasive live-cell imaging in plants. © 2018. Published by The Company of Biologists Ltd.

  12. Ion penetration depth in the plant cell wall

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Apavatjrut, P.; Anuntalabhochai, S.; Evans, P.; Brown, I. G.

    2003-05-01

    This study investigates the depth of ion penetration in plant cell wall material. Based on the biological structure of the plant cell wall, a physical model is proposed which assumes that the wall is composed of randomly orientated layers of cylindrical microfibrils made from cellulose molecules of C 6H 12O 6. With this model, we have determined numerical factors for ion implantation in the plant cell wall to correct values calculated from conventional ion implantation programs. Using these correction factors, it is possible to apply common ion implantation programs to estimate the ion penetration depth in the cell for bioengineering purposes. These estimates are compared with measured data from experiments and good agreement is achieved.

  13. Plant cell technologies in space: Background, strategies and prospects

    NASA Technical Reports Server (NTRS)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  14. Measuring the elasticity of plant cells with atomic force microscopy.

    PubMed

    Braybrook, Siobhan A

    2015-01-01

    The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes.

    PubMed

    Cosgrove, Daniel J

    2016-01-01

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*

    PubMed Central

    Dai, Shaojun; Chen, Sixue

    2012-01-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function. PMID:22982375

  17. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell.

    PubMed

    Helder, M; Strik, D P B T B; Hamelers, H V M; Kuijken, R C P; Buisman, C J N

    2012-01-01

    In a Plant-Microbial Fuel Cell anode-conditions must be created that are favorable for plant growth and electricity production. One of the major aspects in this is the composition of the plant-growth medium. Hoagland medium has been used until now, with added phosphate buffer to reduce potential losses over the membrane because of differences in pH between anode and cathode. We developed a new, improved plant-growth medium that improves current production, while the plant keeps growing. This medium is a nitrate-less, ammonium-rich medium that contains all macro- and micro-nutrients necessary for plant growth, with a balanced amount of bicarbonate buffer. Sulphate presence in the plant-growth medium helps to keep a low anode-potential. With the new plant-growth medium the maximum current production of the Plant-Microbial Fuel Cell increased from 186 mA/m(2) to 469 mA/m(2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Using Apple Peel Sections To Study Plant Cells and Water Relations.

    ERIC Educational Resources Information Center

    Silvius, John E.; Eckart, Christopher P.

    1997-01-01

    Suggests the cells of an apple peel as a plant species that can further enhance the plant cell laboratory. Describes the structure of apple peel cells and the benefits of including them in studies of plant cells. Suggests questions to stimulate further investigations for open-ended laboratories or independent studies. (PVD)

  19. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  20. Calcium signaling in plant cells in altered gravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.

    2003-10-01

    Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface

  1. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Plant cell tissue culture: A potential source of chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and developmentmore » opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.« less

  3. Fluorescent probes for exploring plant cell wall deconstruction: a review.

    PubMed

    Paës, Gabriel

    2014-07-03

    Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.

  4. Plant cell cultures: bioreactors for industrial production.

    PubMed

    Ruffoni, Barbara; Pistelli, Laura; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    The recent biotechnology boom has triggered increased interest in plant cell cultures, since a number of firms and academic institutions investigated intensively to rise the production of very promising bioactive compounds. In alternative to wild collection or plant cultivation, the production of useful and valuable secondary metabolites in large bioreactors is an attractive proposal; it should contribute significantly to future attempts to preserve global biodiversity and alleviate associated ecological problems. The advantages of such processes include the controlled production according to demand and a reduced man work requirement. Plant cells have been grown in different shape bioreactors, however, there are a variety of problems to be solved before this technology can be adopted on a wide scale for the production of useful plant secondary metabolites. There are different factors affecting the culture growth and secondary metabolite production in bioreactors: the gaseous atmosphere, oxygen supply and CO2 exchange, pH, minerals, carbohydrates, growth regulators, the liquid medium rheology and cell density. Moreover agitation systems and sterilization conditions may negatively influence the whole process. Many types ofbioreactors have been successfully used for cultivating transformed root cultures, depending on both different aeration system and nutrient supply. Several examples of medicinal and aromatic plant cultures were here summarized for the scale up cultivation in bioreactors.

  5. Nontransgenic Genome Modification in Plant Cells1[W][OA

    PubMed Central

    Marton, Ira; Zuker, Amir; Shklarman, Elena; Zeevi, Vardit; Tovkach, Andrey; Roffe, Suzy; Ovadis, Marianna; Tzfira, Tzvi; Vainstein, Alexander

    2010-01-01

    Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods. PMID:20876340

  6. Root Border Cells and Their Role in Plant Defense.

    PubMed

    Hawes, Martha; Allen, Caitilyn; Turgeon, B Gillian; Curlango-Rivera, Gilberto; Minh Tran, Tuan; Huskey, David A; Xiong, Zhongguo

    2016-08-04

    Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.

  7. How do plants achieve immunity? Defence without specialized immune cells.

    PubMed

    Spoel, Steven H; Dong, Xinnian

    2012-01-25

    Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.

  8. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell wallsmore » and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.« less

  9. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    PubMed

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  10. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  11. Eduard Strasburger (1844-1912): founder of modern plant cell biology.

    PubMed

    Volkmann, Dieter; Baluška, František; Menzel, Diedrik

    2012-10-01

    Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

  12. Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants.

    PubMed

    Siqueira, João Antonio; Hardoim, Pablo; Ferreira, Paulo C G; Nunes-Nesi, Adriano; Hemerly, Adriana S

    2018-06-19

    Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  14. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses

    DOE PAGES

    Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less

  15. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less

  16. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  17. On the track of transfer cell formation by specialized plant-parasitic nematodes.

    PubMed

    Rodiuc, Natalia; Vieira, Paulo; Banora, Mohamed Youssef; de Almeida Engler, Janice

    2014-01-01

    Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  18. Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi.

    PubMed

    Egan, Martin J; Talbot, Nicholas J

    2008-08-01

    This review describes current advances in our understanding of fungal-plant interactions. The widespread application of whole genome sequencing to a diverse range of fungal species has allowed new insight into the evolution of fungal pathogenesis and the definition of the gene inventories associated with important plant pathogens. This has also led to functional genomic approaches to carry out large-scale gene functional analysis. There has also been significant progress in understanding appressorium-mediated plant infection by fungi and its underlying genetic basis. The nature of biotrophic proliferation of fungal pathogens in host tissue has recently revealed new potential mechanisms for cell-to-cell movement by invading pathogens.

  19. Plant cell walls to ethanol.

    USDA-ARS?s Scientific Manuscript database

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  20. Passage of Trojan peptoids into plant cells.

    PubMed

    Eggenberger, Kai; Birtalan, Esther; Schröder, Tina; Bräse, Stefan; Nick, Peter

    2009-10-12

    Efficient drug delivery is essential for many therapeutic applications. In this context, Trojan peptoids have attracted attention as powerful tools to deliver bioactive molecules into living cells. Certain cell-penetrating peptides, peptide mimetics, and peptoids have been shown to be endowed with a transport function and the structural features of this function have been characterized. However, most of the research has been done by using mammalian cell cultures as model organisms and the actual cellular mechanism of membrane passage has not been elucidated. Plant cells, which are encased in a cellulosic cell wall and differ in membrane composition, represent an alternative experimental system to address this issue, but so far, have attracted only little attention for both peptide- and peptoid-based carrier systems. Moreover, efficient delivery of nonproteinaceous bioactive macromolecules into living plant cells could complement genetic engineering in biotechnological applications, such as metabolic engineering and molecular farming. In the present study, we investigated carrier peptoids with or without guanidinium side chains with regard to their uptake into plant cells, the cellular mechanism of uptake, and intracellular localization. We can show that in contrast to polyamine peptoids (polylysine-like) fluorescently labeled polyguanidine peptoids (polyarginine-like) enter rapidly into tobacco BY-2 cells without affecting the viability of these cells. A quantitative comparison of this uptake with endocytosis of fluorescently labeled dextranes indicates that the main uptake of the guanidinium peptoids occurs between 30-60 min after the start of incubation and clearly precedes endocytosis. Dual visualization with the endosomal marker FM4-64 shows that the intracellular guanidinium peptoid is distinct from endocytotic vesicles. Once the polyguanidine peptoids have entered the cell, they associate with actin filaments and microtubules. By pharmacological manipulation

  1. Plant cell wall sugars: sweeteners for a bio-based economy.

    PubMed

    Van de Wouwer, Dorien; Boerjan, Wout; Vanholme, Bartel

    2018-02-12

    Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development. This article is protected by copyright. All rights reserved.

  2. Plant Cell Adaptive Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  3. Response of γδ T cells to plant-derived tannins

    PubMed Central

    Holderness, Jeff; Hedges, Jodi F.; Daughenbaugh, Katie; Kimmel, Emily; Graff, Jill; Freedman, Brett; Jutila, Mark A.

    2008-01-01

    Many pharmaceutical drugs are isolated from plants used in traditional medicines. Through screening plant extracts, both traditional medicines and compound libraries, new pharmaceutical drugs continue to be identified. Currently, two plant-derived agonists for γδ T cells are described. These plant-derived agonists impart innate effector functions upon distinct γδ T cell subsets. Plant tannins represent one class of γδ T cell agonist and preferentially activate the mucosal population. Mucosal γδ T cells function to modulate tissue immune responses and induce epithelium repair. Select tannins, isolated from apple peel, rapidly induce immune gene transcription in γδ T cells, leading to cytokine production and increased responsiveness to secondary signals. Activity of these tannin preparations tracks to the procyanidin fraction, with the procyanidin trimer (C1) having the most robust activity defined to date. The response to the procyanidins is evolutionarily conserved in that responses are seen with human, bovine, and murine γδ T cells. Procyanidin-induced responses described in this review likely account for the expansion of mucosal γδ T cells seen in mice and rats fed soluble extracts of tannins. Procyanidins may represent a novel approach for treatment of tissue damage, chronic infection, and autoimmune therpies. PMID:19166386

  4. Twin plants from supernumerary egg cells in Arabidopsis.

    PubMed

    Kong, Jixiang; Lau, Steffen; Jürgens, Gerd

    2015-01-19

    Sexual reproduction of flowering plants is distinguished by double fertilization—the two sperm cells delivered by a pollen tube fuse with the two gametic cells of the female gametophyte, the egg and the central cell—inside the ovule to give rise to the embryo and the nutritive endosperm, respectively. The pollen tube is attracted by nongametic synergid cells, and how these two cells of the female gametophyte are specified is currently unclear. Here, we show that ALTERED MERISTEM PROGRAM 1 (AMP1), encoding a protein associated with the endoplasmic reticulum, is required for synergid cell fate during Arabidopsis female gametophyte development. Loss of AMP1 function leads to supernumerary egg cells at the expense of synergids, enabling the generation of dizygotic twins. However, if twin embryos are formed, endosperm formation is prevented, eventually resulting in ovule abortion. The latter can be overcome by the delivery of supernumerary sperm cells in tetraspore (tes) pollen, enabling the formation of twin plants. Thus, both primary and supernumerary egg cells are fully functional in amp1 mutant plants. Sporophytic AMP1 expression is sufficient to prevent cell-fate change of synergids, indicating that one or more AMP1-dependent mobile signals from outside the female gametophyte can contribute to its patterning, in addition to the previously reported lateral inhibition between gametophytic cells. Our results provide insight into the mechanism of synergid fate specification and emphasize the importance of specifying only one egg cell within the female gametophyte to ensure central-cell fertilization by the second sperm cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Plant cell wall: Never too much acetate

    DOE PAGES

    Scheller, Henrik V.

    2017-03-03

    Here, plant cell walls incorporate a variety of acetylated polysaccharides. In addition to enzymes catalysing acetylation (acetyltransferases), plants could produce enzymes to remove acetyl groups (acetylesterases). Previously, pectin acetylesterases were known and now a xylan acetylesterase has been identified — and it has many surprises.

  6. Apoptotic induction of skin cancer cell death by plant extracts.

    PubMed

    Thuncharoen, Walairat; Chulasiri, Malin; Nilwarangkoon, Sirinun; Nakamura, Yukio; Watanapokasin, Ramida

    2013-01-01

    The aim of the present study was to investigate the effects of plant extracts on cancer apoptotic induction. Human epidermoid carcinoma A431 cell line, obtained from the American Type Culture Collection (ATCC, Manassas, VA), was maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37 degrees C, 5% carbon dioxide (CO2). Plant extract solutions were obtained from S & J international enterprises public company limited. These plant extracts include 50% hydroglycol extracts from Etlingera elatior (Jack) R.M.Smith (torch ginger; EE), Rosa damascene (damask rose; DR) and Rafflesia kerrii Meijer (bua phut; RM). The cell viability, time and dose dependency were determined by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. A431 cells were treated with the plant extracts and stained with Hoechst 33342 fluorescent staining dye. Cell viability was demonstrated by the inhibitory concentration 50% (IC50). The anti-proliferative effects were shown to be dependent on time and dose. Typical characteristics of apoptosis which are cell morphological changes and chromatin condensation were clearly observed. The plant extracts was shown to be effective for anti-proliferation and induction of apoptosis cell death in skin cancer cells. Therefore, mechanisms underlying the cell death and its potential use for treatment of skin cancer will be further studied.

  7. Microanalysis of plant cell wall polysaccharides.

    PubMed

    Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus

    2009-09-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  8. Plant cells oxidize hydroxylamines to NO

    PubMed Central

    Rümer, Stefan; Gupta, Kapuganti Jagadis; Kaiser, Werner M.

    2009-01-01

    Plants are known to produce NO via the reduction of nitrite. Oxidative NO production in plants has been considered only with respect to a nitric oxide synthase (NOS). Here it is shown that tobacco cell suspensions emitted NO when hydroxylamine (HA) or salicylhydroxamate (SHAM), a frequently used AOX inhibitor, was added. NG-hydroxy-L-arginine, a putative intermediate in the NOS-reaction, gave no NO emission. Only a minor fraction (≤1%) of the added HA or SHAM was emitted as NO. Production of NO was decreased by anoxia or by the addition of catalase, but was increased by conditions inducing reactive oxygen (ROS) or by the addition of hydrogen peroxide. Cell-free enzyme solutions generating superoxide or hydrogen peroxide also led to the formation of NO from HA or (with lower rates) from SHAM, and nitrite was also an oxidation product. Unexpectedly, the addition of superoxide dismutase (SOD) to cell suspensions stimulated NO formation from hydroxylamines, and SOD alone (without cells) also catalysed the production of NO from HA or SHAM. NO production by SOD plus HA was higher in nitrogen than in air, but from SOD plus SHAM it was lower in nitrogen. Thus, SOD-catalysed NO formation from SHAM and from HA may involve different mechanisms. While our data open a new possibility for oxidative NO formation in plants, the existence and role of these reactions under physiological conditions is not yet clear. PMID:19357430

  9. Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells.

    PubMed

    Kwon, Kwang-Chul; Daniell, Henry

    2016-08-01

    Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood-brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery.

  10. Universal rule for the symmetric division of plant cells

    PubMed Central

    Besson, Sébastien; Dumais, Jacques

    2011-01-01

    The division of eukaryotic cells involves the assembly of complex cytoskeletal structures to exert the forces required for chromosome segregation and cytokinesis. In plants, empirical evidence suggests that tensional forces within the cytoskeleton cause cells to divide along the plane that minimizes the surface area of the cell plate (Errera’s rule) while creating daughter cells of equal size. However, exceptions to Errera’s rule cast doubt on whether a broadly applicable rule can be formulated for plant cell division. Here, we show that the selection of the plane of division involves a competition between alternative configurations whose geometries represent local area minima. We find that the probability of observing a particular division configuration increases inversely with its relative area according to an exponential probability distribution known as the Gibbs measure. Moreover, a comparison across land plants and their most recent algal ancestors confirms that the probability distribution is widely conserved and independent of cell shape and size. Using a maximum entropy formulation, we show that this empirical division rule is predicted by the dynamics of the tense cytoskeletal elements that lead to the positioning of the preprophase band. Based on the fact that the division plane is selected from the sole interaction of the cytoskeleton with cell shape, we posit that the new rule represents the default mechanism for plant cell division when internal or external cues are absent. PMID:21383128

  11. Droplet-based microfluidic analysis and screening of single plant cells.

    PubMed

    Yu, Ziyi; Boehm, Christian R; Hibberd, Julian M; Abell, Chris; Haseloff, Jim; Burgess, Steven J; Reyna-Llorens, Ivan

    2018-01-01

    Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput. We report on-chip encapsulation and analysis of protoplasts isolated from the emergent plant model Marchantia polymorpha at processing rates of >100,000 cells per hour. We use our microfluidic system to quantify the stochastic properties of a heat-inducible promoter across a population of transgenic protoplasts to demonstrate its potential for assessing gene expression activity in response to environmental conditions. We further demonstrate on-chip sorting of droplets containing YFP-expressing protoplasts from wild type cells using dielectrophoresis force. This work opens the door to droplet-based microfluidic analysis of plant cells for applications ranging from high-throughput characterisation of DNA parts to single-cell genomics to selection of rare plant phenotypes.

  12. Quantitative Aspects of Cyclosis in Plant Cells.

    ERIC Educational Resources Information Center

    Howells, K. F.; Fell, D. A.

    1979-01-01

    Describes an exercise which is currently used in a course in cell physiology at Oxford Polytechnic in England. This exercise can give students some idea of the molecular events involved in bringing about movement of chloroplasts (and other organelles) in plant cells. (HM)

  13. Navigating the plant cell: intracellular transport logistics in the green kingdom

    PubMed Central

    Geitmann, Anja; Nebenführ, Andreas

    2015-01-01

    Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. PMID:26416952

  14. Effect of traditional plants in Sri Lanka on skin fibroblast cell number.

    PubMed

    Sano, Katsura; Someya, Takao; Hara, Kotaro; Sagane, Yoshimasa; Watanabe, Toshihiro; Wijesekara, R G S

    2018-08-01

    This article describes the effects of extracts of several plants collected in Sri Lanka on the cell number of human skin fibroblasts. This study especially focuses on the plants traditionally used in indigenous systems of medicine in Sri Lanka, such as Ayurveda, as described below (English name, "local name in Sri Lanka," scientific name). Bougainvillea plant, "bouganvilla," Bougainvillea grabla (Nature׳s Beauty Creations Ltd., 2014) [1], purple fruited pea eggplant,"welthibbatu," Solanum trilobatum (Nature׳s Beauty Creations Ltd., 2014) [2], country borage plant, "kapparawalliya," Plectranthus amboinicus  (Nature׳s Beauty Creations Ltd., 2014) [3], malabar nut plant, "adhatoda," Justicia adhatoda (Nature׳s Beauty Creations Ltd., 2014) [4], long pepper plant,"thippili," Piper longum (Nature׳s Beauty Creations Ltd., 2014) [5], holy basil plant, "maduruthala," Ocimum tenuiflorum (Nature׳s Beauty Creations Ltd., 2014) [6], air plant, "akkapana," Kalanchoe pinnata (Nature׳s Beauty Creations Ltd., 2014) [7], plumed cockscomb plant, "kiri-henda," Celosia argentea (Nature׳s Beauty Creations Ltd., 2014) [8], neem plant,"kohomba," Azadirachta indica (Nature׳s Beauty Creations Ltd., 2014) [9], emblic myrobalan plant, "nelli," Phyllanthus emblica (Nature׳s Beauty Creations Ltd., 2014) [10]. Human skin fibroblast cells were treated with various concentration of plant extracts (0-3.0%), and the cell viability of cells were detected using calcein assay. The cell viabillity profiles are provided as line graphs.

  15. A conversation across generations: soma-germ cell crosstalk in plants.

    PubMed

    Feng, Xiaoqi; Zilberman, Daniel; Dickinson, Hugh

    2013-02-11

    Plants undergo alternation of generation in which reproductive cells develop in the plant body ("sporophytic generation") and then differentiate into a multicellular gamete-forming "gametophytic generation." Different populations of helper cells assist in this transgenerational journey, with somatic tissues supporting early development and single nurse cells supporting gametogenesis. New data reveal a two-way relationship between early reproductive cells and their helpers involving complex epigenetic and signaling networks determining cell number and fate. Later, the egg cell plays a central role in specifying accessory cells, whereas in both gametophytes, companion cells contribute non-cell-autonomously to the epigenetic landscape of the gamete genomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Plant cell wall signalling and receptor-like kinases.

    PubMed

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    PubMed

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  18. Programmed cell death in C. elegans, mammals and plants.

    PubMed

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  19. Trafficking arms: oomycete effectors enter host plant cells.

    PubMed

    Birch, Paul R J; Rehmany, Anne P; Pritchard, Leighton; Kamoun, Sophien; Beynon, Jim L

    2006-01-01

    Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity.

  20. Methods of expressing and detecting activity of expansin in plant cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Elizabeth E.; Yoon, Sangwoong

    A method of expressing heterologous expansin in a plant cell is provided where a nucleic acid molecule encoding expansin is introduced into the plant cell and in an embodiment is operably linked to a promoter preferentially expressing in the seed tissue of the plant, and in another embodiment is linked to a promoter preferentially expressing in the embryo tissue of the seed. An embodiment provides the nucleic acid molecule is operably linked to a second nucleic acid molecule that directs expression to the endoplasmic reticulum, vacuole or cell wall. Plants and plant parts expressing expansin are provided. An assay formore » detection of expansin activity is also provided.« less

  1. Why plants make puzzle cells, and how their shape emerges.

    PubMed

    Sapala, Aleksandra; Runions, Adam; Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne Hk; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw; Smith, Richard S

    2018-02-27

    The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. © 2018, Sapala et al.

  2. Why plants make puzzle cells, and how their shape emerges

    PubMed Central

    Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne HK; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw

    2018-01-01

    The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. PMID:29482719

  3. SSD1, which encodes a plant-specific novel protein, controls plant elongation by regulating cell division in rice.

    PubMed

    Asano, Kenji; Miyao, Akio; Hirochika, Hirohiko; Kitano, Hidemi; Matsuoka, Makoto; Ashikari, Motoyuki

    2010-01-01

    Plant height is one of the most important traits in crop improvement. Therefore revealing the mechanism of plant elongation and controlling plant height in accordance with breeding object is important. In this study we analyzed a novel dwarf mutant, ssd1, of which phenotype is different from typical GA- or BR-related dwarf phenotype. ssd1 exhibits pleiotropic defects in elongation of various organs such as stems, roots, leaves, and flowers. ssd1 also shows abnormal cell files and shapes, which suggests defects of normal cell division in the mutant. Map-based cloning and complementation test demonstrated that the dwarf phenotype in ssd1 mutant was caused by insertion of retrotransposon in a gene, which encodes plant-specific protein with unknown biochemical function. A BLAST search revealed that SSD1-like genes exist in diverse plant species, including monocots and dicots, but not fern and moss. Our results demonstrate that SSD1 controls plant elongation by controlling cell division in higher plants.

  4. Emission spectra profiling of fluorescent proteins in living plant cells

    PubMed Central

    2013-01-01

    Background Fluorescence imaging at high spectral resolution allows the simultaneous recording of multiple fluorophores without switching optical filters, which is especially useful for time-lapse analysis of living cells. The collected emission spectra can be used to distinguish fluorophores by a computation analysis called linear unmixing. The availability of accurate reference spectra for different fluorophores is crucial for this type of analysis. The reference spectra used by plant cell biologists are in most cases derived from the analysis of fluorescent proteins in solution or produced in animal cells, although these spectra are influenced by both the cellular environment and the components of the optical system. For instance, plant cells contain various autofluorescent compounds, such as cell wall polymers and chlorophyll, that affect the spectral detection of some fluorophores. Therefore, it is important to acquire both reference and experimental spectra under the same biological conditions and through the same imaging systems. Results Entry clones (pENTR) of fluorescent proteins (FPs) were constructed in order to create C- or N-terminal protein fusions with the MultiSite Gateway recombination technology. The emission spectra for eight FPs, fused C-terminally to the A- or B-type cyclin dependent kinases (CDKA;1 and CDKB1;1) and transiently expressed in epidermal cells of tobacco (Nicotiana benthamiana), were determined by using the Olympus FluoView™ FV1000 Confocal Laser Scanning Microscope. These experimental spectra were then used in unmixing experiments in order to separate the emission of fluorophores with overlapping spectral properties in living plant cells. Conclusions Spectral imaging and linear unmixing have a great potential for efficient multicolor detection in living plant cells. The emission spectra for eight of the most commonly used FPs were obtained in epidermal cells of tobacco leaves and used in unmixing experiments. The generated set of

  5. Visualizing chemical functionality in plant cell walls.

    PubMed

    Zeng, Yining; Himmel, Michael E; Ding, Shi-You

    2017-01-01

    Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructively and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition-especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.

  6. Cell-to-cell communication in plants, animals, and fungi: a comparative review.

    PubMed

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  7. Cell-to-cell communication in plants, animals, and fungi: a comparative review

    NASA Astrophysics Data System (ADS)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  8. Selectively Structural Determination of Cellulose and Hemicellulose in Plant Cell Wall

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chun; Park, Yong; Cosgrove, Daniel; Maranas, Janna; Janna Maranas Team; Daniel Cosgrove Team

    2013-03-01

    Primary plant cell walls support the plant body, and regulate cell size, and plant growth. It contains several biopolymers that can be categorized into three groups: cellulose, hemicellulose and pectin. To determine the structure of plant cell wall, we use small angle neutron scattering in combination with selective deuteration and contrast matching method. We compare the structure between wild Arabidopsis thaliana and its xyloglucan-deficient mutant. Hemicellulose in both samples forms coil with similar radii of gyration, and weak scattering from the mutant suggests a limited amount of hemicellulose in the xyloglucan-deficient mutant. We observe good amount of hemicellulose coating on cellulose microfibrils only in wild Arabidopsis. The absence of coating in its xyloglucan-deficient mutation suggests the other polysaccharides do not have comparable interaction with cellulose. This highlights the importance of xyloglucan in plant cell wall. At larger scale, the average distance between cellulose fibril is found smaller than reported value, which directly reflects on their smaller matured plant size. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Center for LignoCellulose Structure and Formation

  9. A System for Modelling Cell–Cell Interactions during Plant Morphogenesis

    PubMed Central

    Dupuy, Lionel; Mackenzie, Jonathan; Rudge, Tim; Haseloff, Jim

    2008-01-01

    Background and aims During the development of multicellular organisms, cells are capable of interacting with each other through a range of biological and physical mechanisms. A description of these networks of cell–cell interactions is essential for an understanding of how cellular activity is co-ordinated in regionalized functional entities such as tissues or organs. The difficulty of experimenting on living tissues has been a major limitation to describing such systems, and computer modelling appears particularly helpful to characterize the behaviour of multicellular systems. The experimental difficulties inherent to the multitude of parallel interactions that underlie cellular morphogenesis have led to the need for computer models. Methods A new generic model of plant cellular morphogenesis is described that expresses interactions amongst cellular entities explicitly: the plant is described as a multi-scale structure, and interactions between distinct entities is established through a topological neighbourhood. Tissues are represented as 2D biphasic systems where the cell wall responds to turgor pressure through a viscous yielding of the cell wall. Key Results This principle was used in the development of the CellModeller software, a generic tool dedicated to the analysis and modelling of plant morphogenesis. The system was applied to three contrasting study cases illustrating genetic, hormonal and mechanical factors involved in plant morphogenesis. Conclusions Plant morphogenesis is fundamentally a cellular process and the CellModeller software, through its underlying generic model, provides an advanced research tool to analyse coupled physical and biological morphogenetic mechanisms. PMID:17921524

  10. Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells

    PubMed Central

    Kobayashi, Yuki; Kanesaki, Yu; Tanaka, Ayumi; Kuroiwa, Haruko; Kuroiwa, Tsuneyoshi; Tanaka, Kan

    2009-01-01

    Eukaryotic cells arose from an ancient endosymbiotic association of prokaryotes, with plant cells harboring 3 genomes as the remnants of such evolution. In plant cells, plastid and mitochondrial DNA replication [organelle DNA replication (ODR)] occurs in advance of the subsequent cell cycles composed of nuclear DNA replication (NDR) and cell division. However, the mechanism by which replication of these genomes with different origins is coordinated is largely unknown. Here, we show that NDR is regulated by a tetrapyrrole signal in plant cells, which has been suggested as an organelle-to-nucleus retrograde signal. In synchronized cultures of the primitive red alga Cyanidioschyzon merolae, specific inhibition of A-type cyclin-dependent kinase (CDKA) prevented NDR but not ODR after onset of the cell cycle. In contrast, inhibition of ODR by nalidixic acid also resulted in inhibition of NDR, indicating a strict dependence of NDR on ODR. The requirement of ODR for NDR was bypassed by addition of the tetrapyrrole intermediates protoporphyrin IX (ProtoIX) or Mg-ProtoIX, both of which activated CDKA without inducing ODR. This scheme was also observed in cultured tobacco cells (BY-2), where inhibition of ODR by nalidixic acid prevented CDKA activation and NDR, and these inhibitions were circumvented by Mg-ProtoIX without inducing ODR. We thus show that tetrapyrrole-mediated organelle–nucleus replicational coupling is an evolutionary conserved process among plant cells. PMID:19141634

  11. Effectors of root sedentary nematodes target diverse plant cell compartments to manipulate plant functions and promote infection.

    PubMed

    Jaouannet, Maëlle; Rosso, Marie-Noëlle

    2013-09-01

    Sedentary plant-parasitic nematodes maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors, which are synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet, play a central role in these processes. Previous work on nematode effectors has shown that the apoplasm is targeted during invasion of the host while the cytoplasm is targeted during the induction and the maintenance of the feeding site. A large number of candidate effectors potentially secreted by the nematode into the plant tissues to promote infection have now been identified. This work has shown that the targeting and the role of effectors are more complex than previously thought. This review will not cover the prolific recent findings in nematode effector function but will instead focus on recent selected examples that illustrate the variety of plant cell compartments that effectors are addressed to in order reach their plant targets.

  12. Polarity establishment, morphogenesis, and cultured plant cells in space

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  13. Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation

    PubMed Central

    Korkina, Liudmila G.; Mayer, Wolfgang; de Luca, Chiara

    2017-01-01

    Recently, aggressive advertisement claimed a “magic role” for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully “biological” anti-age cosmetics. PMID:28498360

  14. An introduction to plant cell culture: the future ahead.

    PubMed

    Loyola-Vargas, Víctor M; Ochoa-Alejo, Neftalí

    2012-01-01

    Plant cell, tissue, and organ culture (PTC) techniques were developed and established as an experimental necessity for solving important fundamental questions in plant biology, but they currently represent very useful biotechnological tools for a series of important applications such as commercial micropropagation of different plant species, generation of disease-free plant materials, production of haploid and doublehaploid plants, induction of epigenetic or genetic variation for the isolation of variant plants, obtention of novel hybrid plants through the rescue of hybrid embryos or somatic cell fusion from intra- or intergeneric sources, conservation of valuable plant germplasm, and is the keystone for genetic engineering of plants to produce disease and pest resistant varieties, to engineer metabolic pathways with the aim of producing specific secondary metabolites or as an alternative for biopharming. Some other miscellaneous applications involve the utilization of in vitro cultures to test toxic compounds and the possibilities of removing them (bioremediation), interaction of root cultures with nematodes or mycorrhiza, or the use of shoot cultures to maintain plant viruses. With the increased worldwide demand for biofuels, it seems that PTC will certainly be fundamental for engineering different plants species in order to increase the diversity of biofuel options, lower the price marketing, and enhance the production efficiency. Several aspects and applications of PTC such as those mentioned above are the focus of this edition.

  15. Cellular growth in plants requires regulation of cell wall biochemistry.

    PubMed

    Chebli, Youssef; Geitmann, Anja

    2017-02-01

    Cell and organ morphogenesis in plants are regulated by the chemical structure and mechanical properties of the extracellular matrix, the cell wall. The two primary load bearing components in the plant cell wall, the pectin matrix and the cellulose/xyloglucan network, are constantly remodelled to generate the morphological changes required during plant development. This remodelling is regulated by a plethora of loosening and stiffening agents such as pectin methyl-esterases, calcium ions, expansins, and glucanases. The tight spatio-temporal regulation of the activities of these agents is a sine qua non condition for proper morphogenesis at cell and tissue levels. The pectin matrix and the cellulose-xyloglucan network operate in concert and their behaviour is mutually dependent on their chemical, structural and mechanical modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High-resolution solution-state NMR of unfractionated plant cell walls

    Treesearch

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  17. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    PubMed

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The cell biology of lignification in higher plants

    PubMed Central

    Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard

    2015-01-01

    Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. PMID:25878140

  19. 3. Right side of Zinc Plant, from Cell Room midpoint ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Right side of Zinc Plant, from Cell Room midpoint to Plant Office (foreground) and #5 Roaster and Concentrate Handling (background). View is to the east. - Sullivan Electrolytic Zinc Plant, Government Gulch, Kellogg, Shoshone County, ID

  20. Visualizing chemical functionality in plant cell walls

    DOE PAGES

    Zeng, Yining; Himmel, Michael E.; Ding, Shi-You

    2017-11-30

    Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less

  1. Visualizing chemical functionality in plant cell walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yining; Himmel, Michael E.; Ding, Shi-You

    Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less

  2. Role of the plant cell wall in gravity resistance.

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    PubMed

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Unraveling the response of plant cells to cytotoxic saponins

    PubMed Central

    Balestrazzi, Alma; Macovei, Anca; Tava, Aldo; Avato, Pinarosa; Raimondi, Elena

    2011-01-01

    A wide range of pharmacological properties are ascribed to natural saponins, in addition to their biological activities against herbivores, plant soil-borne pathogens and pests. As for animal cells, the cytotoxicity and the chemopreventive role of saponins are mediated by a complex network of signal transduction pathways which include reactive oxygen species (ROS) and nitric oxide (NO). The involvement of other relevant components of the saponin-related signaling routes, such as the Tumor Necrosis Factor (TNF)α, the interleukin (IL)-6 and the Nuclear Transcription FactorκB (NFκB), has been highlighted in animal cells. By contrast, information concerning the response of plant cells to saponins and the related signal transduction pathways is almost missing. To date, there are only a few common features which link plant and animal cells in their response to saponins, such as the early burst in ROS and NO production and the induction of metallothioneins (MTs), small cysteine-rich, metal-binding proteins. This aspect is discussed in the present paper in view of the recent hypothesis that MTs and NO are part of a novel signal transduction pathway participating in the cell response to oxidative stress. PMID:21673512

  5. Plant cell walls throughout evolution: towards a molecular understanding of their design principles.

    PubMed

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-01-01

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche, which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  6. Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells.

    PubMed

    Okubo-Kurihara, Emiko; Matsui, Minami

    2018-01-01

    The plant cell wall is an important and abundant biomass with great potential for use as a modern recyclable resource. For effective utilization of this cellulosic biomass, its ability to degrade efficiently is key point. With the aim of modifying the cell wall to allow easy decomposition, we used chemical biological technology to alter its structure. As a first step toward evaluating the chemicals in the cell wall we employed a phenotype-based approach using high-throughput screening. As the plant cell wall is essential in determining cell morphology, phenotype-based screening is particularly effective in identifying compounds that bring about alterations in the cell wall. For rapid and reproducible screening, tobacco BY-2 cell is an excellent system in which to observe cell morphology. In this chapter, we provide a detailed chemical biological methodology for studying cell morphology using tobacco BY-2 cells.

  7. Live cell and immuno-labeling techniques to study gravitational effects on single plant cells.

    PubMed

    Chebli, Youssef; Geitmann, Anja

    2015-01-01

    The constant force of gravity plays a primordial role in the ontogeny of all living organisms. Plants, for example, develop their roots and shoots in accordance with the direction of the gravitational vector. Any change in the magnitude and/or the direction of gravity has an important impact on the development of tissues and cells. In order to understand how the gravitational force affects plant cell growth and differentiation, we established two complementary experimental procedures with which the effect of hyper-gravity on single plant cell development can be assessed. The single model cell system we used is the pollen tube or male gametophyte which, because of its rapid growth behavior, is known for its instant response to external stresses. The physiological response of the pollen tube can be assessed in a quantitative manner based on changes in the composition and spatial distribution of its cell wall components and in the precisely defined pattern of its very dynamic cytoplasmic streaming. Here, we provide a detailed description of the steps required for the immuno-localization of various cell wall components using microwave-assisted techniques and we explain how live imaging of the intracellular traffic can be achieved under hyper-gravity conditions.

  8. Estimation of turgor pressure through comparison between single plant cell and pressurized shell mechanics

    NASA Astrophysics Data System (ADS)

    Durand-Smet, P.; Gauquelin, E.; Chastrette, N.; Boudaoud, A.; Asnacios, A.

    2017-10-01

    While plant growth is well known to rely on turgor pressure, it is challenging to quantify the contribution of turgor pressure to plant cell rheology. Here we used a custom-made micro-rheometer to quantify the viscoelastic behavior of isolated plant cells while varying their internal turgor pressure. To get insight into how plant cells adapt their internal pressure to the osmolarity of their medium, we compared the mechanical behavior of single plant cells to that of a simple, passive, pressurized shell: a soccer ball. While both systems exhibited the same qualitative behavior, a simple mechanical model allowed us to quantify turgor pressure regulation at the single cell scale.

  9. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    PubMed Central

    Mikkelsen, Maria D.; Harholt, Jesper; Ulvskov, Peter; Johansen, Ida E.; Fangel, Jonatan U.; Doblin, Monika S.; Bacic, Antony; Willats, William G. T.

    2014-01-01

    Background and Aims The charophyte green algae (CGA) are thought to be the closest living relatives to the land plants, and ancestral CGA were unique in giving rise to the land plant lineage. The cell wall has been suggested to be a defining structure that enabled the green algal ancestor to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. Methods Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs characterized in land plants. In addition, gene cloning was employed in two cases to answer important evolutionary questions. Key Results Genetic evidence was obtained indicating that many of the most important core cell wall polysaccharides have their evolutionary origins in the CGA, including cellulose, mannan, xyloglucan, xylan and pectin, as well as arabino-galactan protein. Moreover, two putative cellulose synthase-like D family genes (CSLDs) from the CGA species Coleochaete orbicularis and a fragment of a putative CSLA/K-like sequence from a CGA Spirogyra species were cloned, providing the first evidence that all the cellulose synthase/-like genes present in early-divergent land plants were already present in CGA. Conclusions The results provide new insights into the evolution of

  10. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell wallsmore » display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.« less

  11. The role of endoxyloglucan transferase in the organization of plant cell walls.

    PubMed

    Nishitani, K

    1997-01-01

    The plant cell wall plays a central role in morphogenesis as well as responsiveness to environmental signals. Xyloglucans are the principal component of the plant cell wall matrix and serve as cross-links between cellulose microfibrils to form the cellulose-xyloglucan framework. Endoxyloglucan transferase (EXGT), which was isolated and characterized in 1992, is an enzyme that mediates molecular grafting reaction between xyloglucan molecules. Structural studies on cDNAs encoding EXGT and its related proteins have disclosed the ubiquitous presence in the plant kingdom of a large multigene family of xyloglucan-related proteins (XRPs). Each XRP functions as either hydrolase or transferase acting on xyloglucans and is considered to be responsible for rearrangement of the cellulose-xyloglucan framework, the processes essential for the construction, modification, and degradation of plant cell walls. Different XRP genes exhibit potentially different expression profiles with respect to tissue specificity and responsiveness to hormonal and mechanical signals. The molecular approach to individual XRP genes will open a new path for exploring the controlling mechanisms by which the plant cell wall is constructed and reformed during plant growth and development.

  12. The endoplasmic reticulum in plant immunity and cell death

    PubMed Central

    Eichmann, Ruth; Schäfer, Patrick

    2012-01-01

    The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants. PMID:22936941

  13. The endoplasmic reticulum in plant immunity and cell death.

    PubMed

    Eichmann, Ruth; Schäfer, Patrick

    2012-01-01

    The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants.

  14. ROS-mediated redox signaling during cell differentiation in plants.

    PubMed

    Schmidt, Romy; Schippers, Jos H M

    2015-08-01

    Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development.

    PubMed

    Marshall, Eleanor; Costa, Liliana M; Gutierrez-Marcos, Jose

    2011-03-01

    Cell-cell communication in plants is essential for the correct co-ordination of reproduction, growth, and development. Studies to dissect this mode of communication have previously focussed primarily on the action of plant hormones as mediators of intercellular signalling. In animals, peptide signalling is a well-documented intercellular communication system, however, relatively little is known about this system in plants. In recent years, numerous reports have emerged about small, secreted peptides controlling different aspects of plant reproduction. Interestingly, most of these peptides are cysteine-rich, and there is convincing evidence suggesting multiple roles for related cysteine-rich peptides (CRPs) as signalling factors in developmental patterning as well as during plant pathogen responses and symbiosis. In this review, we discuss how CRPs are emerging as key signalling factors in regulating multiple aspects of vegetative growth and reproductive development in plants.

  16. Navigating the plant cell: intracellular transport logistics in the green kingdom.

    PubMed

    Geitmann, Anja; Nebenführ, Andreas

    2015-10-01

    Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin-myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. © 2015 Geitmann and Nebenführ. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  18. Escherichia coli Common Pilus (ECP) Targets Arabinosyl Residues in Plant Cell Walls to Mediate Adhesion to Fresh Produce Plants*

    PubMed Central

    Rossez, Yannick; Holmes, Ashleigh; Lodberg-Pedersen, Henriette; Birse, Louise; Marshall, Jacqueline; Willats, William G. T.; Toth, Ian K.; Holden, Nicola J.

    2014-01-01

    Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR–GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells. PMID:25320086

  19. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants.

    PubMed

    Rossez, Yannick; Holmes, Ashleigh; Lodberg-Pedersen, Henriette; Birse, Louise; Marshall, Jacqueline; Willats, William G T; Toth, Ian K; Holden, Nicola J

    2014-12-05

    Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. My body is a cage: mechanisms and modulation of plant cell growth.

    PubMed

    Braidwood, Luke; Breuer, Christian; Sugimoto, Keiko

    2014-01-01

    388 I. 388 II. 389 III. 389 IV. 390 V. 391 VI. 393 VII. 394 VIII. 398 399 References 399 SUMMARY: The wall surrounding plant cells provides protection from abiotic and biotic stresses, and support through the action of turgor pressure. However, the presence of this strong elastic wall also prevents cell movement and resists cell growth. This growth can be likened to extending a house from the inside, using extremely high pressures to push out the walls. Plants must increase cell volume in order to explore their environment, acquire nutrients and reproduce. Cell wall material must stretch and flow in a controlled manner and, concomitantly, new cell wall material must be deposited at the correct rate and site to prevent wall and cell rupture. In this review, we examine biomechanics, cell wall structure and growth regulatory networks to provide a 'big picture' of plant cell growth. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  2. Differential distribution of proteins expressed in companion cells in the sieve element-companion cell complex of rice plants.

    PubMed

    Fukuda, Akari; Fujimaki, Syu; Mori, Tomoko; Suzui, Nobuo; Ishiyama, Keiki; Hayakawa, Toshihiko; Yamaya, Tomoyuki; Fujiwara, Toru; Yoneyama, Tadakatsu; Hayashi, Hiroaki

    2005-11-01

    Sieve tubes are comprised of sieve elements, enucleated cells that are incapable of RNA and protein synthesis. The proteins in sieve elements are supplied from the neighboring companion cells through plasmodesmata. In rice plants, it was unclear whether or not all proteins produced in companion cells had the same distribution pattern in the sieve element-companion cell complex. In this study, the distribution pattern of four proteins, beta-glucuronidase (GUS), green fluorescent protein (GFP), thioredoxin h (TRXh) and glutathione S-transferase (GST) were analyzed. The foreign proteins GUS and GFP were expressed in transgenic rice plants under the control of the TRXh gene promoter (PTRXh), a companion cell-specific promoter. Analysis of leaf cross-sections of PTRXh-GUS and PTRXh-GFP plants indicated high accumulation of GUS and GFP, respectively, in companion cells rather than in sieve elements. GUS and GFP were also detected in phloem sap collected from leaf sheaths of the transgenic rice plants, suggesting these proteins could enter sieve elements. Relative amounts of GFP and endogenous phloem proteins, TRXh and GST, in phloem sap and total leaf extracts were compared. Compared to TRXh and GST, GFP content was higher in total leaf extracts, but lower in phloem sap, suggesting that GFP accumulated mainly in companion cells rather than in sieve elements. On the other hand, TRXh and GST appeared to accumulate in sieve elements rather than in companion cells. These results indicate the evidence for differential distribution of proteins between sieve elements and companion cells in rice plants.

  3. The Life and Death of a Plant Cell.

    PubMed

    Kabbage, Mehdi; Kessens, Ryan; Bartholomay, Lyric C; Williams, Brett

    2017-04-28

    Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.

  4. Cell surfaces in plant-microorganism interactions. I. A structural investigation of cell wall hydroxyproline-rich glycoproteins which accumulate in fungus-infected plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esquerre-Tugaye, M.T.; Lamport, D.T.A.

    1979-08-01

    Infection of muskmelon Cucumis melo seedlings by the fungus Colletotrichum lagenarium causes a 10-fold increase in the amount of cell wall hydroxyproline-rich glycoprotein. Evidence for this increase was provided by studying two specific markers of this glycoprotein, namely hydroxyproline and glycosylated serine. The lability of the O-glycosidic linkage of wall-bound glycosylated serine in the presence of hydrazine was used to determine the amount of serine which is glycosylated. A large increase in the hydroxyproline content of infected plants is shown, but the ratios of glycosylated serine to hydroxyproline are similar in healthy and infected plants. As far as these markersmore » are concerned, the hydroxyproline-rich glycoproteins secreted into the wall as a result of the disease are similar to those of healthy plants. In addition, the extent of glycosylation of the wall serine, in both healthy and infected plants, decreases as the plant ages. Serine- and hydroxyproline-rich (glyco)peptides were also isolated after trypsinolysis of the wall. These (glyco)peptides include the galactosyl-containing pentapeptide, serine-hydroxyproline. This pentapeptide is characteristic of cell wall protein.« less

  5. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  7. Cell proliferation and plant development under novel altered gravity environments.

    PubMed

    Herranz, R; Medina, F J

    2014-01-01

    Gravity is a key factor for life on Earth. It is the only environmental factor that has remained constant throughout evolution, and plants use it to modulate important physiological activities; gravity removal or alteration produces substantial changes in essential functions. For root gravitropism, gravity is sensed in specialised cells, which are capable of detecting magnitudes of the g vector lower than 10(-3) . Then, the mechanosignal is transduced to upper zones of the root, resulting in changes in the lateral distribution of auxin and in the rate of auxin polar transport. Gravity alteration has consequences for cell growth and proliferation rates in root meristems, which are the basis of the developmental programme of a plant, in which regulation via auxin is involved. The effect is disruption of meristematic competence, i.e. the strict coordination between cell proliferation and growth, which characterises meristematic cells. This effect can be related to changes in the transport and distribution of auxin throughout the root. However, similar effects of gravity alteration have been found in plant cell cultures in vitro, in which neither specialised structures for gravity sensing and signal transduction, nor apparent gravitropism have been described. We postulate that gravity resistance, a general mechanism of cellular origin for developing rigid structures in plants capable of resisting the gravity force, could also be responsible for the changes in cell growth and proliferation parameters detected in non-specialised cells. The mechanisms of gravitropism and graviresistance are complementary, the first being mostly sensitive to the direction of the gravity vector, and the second to its magnitude. At a global molecular level, the consequence of gravity alteration is that the genome should be finely tuned to counteract a type of stress that plants have never encountered before throughout evolution. Multigene families and redundant genes present an advantage in

  8. A plant cell division algorithm based on cell biomechanics and ellipse-fitting.

    PubMed

    Abera, Metadel K; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L A T M; Carmeliet, Jan; Nicolai, Bart M

    2014-09-01

    The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. The algorithm presented can produce different tissues varying in topological and geometrical

  9. A plant cell division algorithm based on cell biomechanics and ellipse-fitting

    PubMed Central

    Abera, Metadel K.; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L. A. T. M.; Carmeliet, Jan; Nicolai, Bart M.

    2014-01-01

    Background and Aims The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. Methods The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. Key Results The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. Conclusions The algorithm presented can produce different

  10. Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells

    PubMed Central

    Bao, Wenlong; Wang, Junya; Wang, Qiang; O’Hare, Dermot; Wan, Yinglang

    2016-01-01

    Here we report a powerful method that facilitates the transport of biologically active materials across the cell wall barrier in plant cells. Positively charged delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) with a 0.5‒2 nm thickness and 30‒60 nm diameter exhibit a high adsorptive capacity for negatively charged biomolecules, including fluorescent dyes such as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate isomer I(FITC) and DNA molecules, forming neutral LDH-nanosheet conjugates. These neutral conjugates can shuttle the bound fluorescent dye into the cytosol of intact plant cell very efficiently. Furthermore, typical inhibitors of endocytosis and low temperature incubation did not prevent LDH-lactate-NS internalization, suggesting that LDH-lactate-NS penetrated the plasma membrane via non-endocytic pathways, which will widen the applicability to a variety of plant cells. Moreover, the absence of unwanted side effects in our cytological studies, and the nuclear localization of ssDNA-FITC suggest that nano-LDHs have potential application as a novel gene carrier to plants. PMID:27221055

  11. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome.

    PubMed

    Pholo, Motlalepula; Coetzee, Beatrix; Maree, Hans J; Young, Philip R; Lloyd, James R; Kossmann, Jens; Hills, Paul N

    2018-05-17

    Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.

  12. The Specific Nature of Plant Cell Wall Polysaccharides 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1967-01-01

    Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594

  13. Enemy at the gates: traffic at the plant cell pathogen interface.

    PubMed

    Hoefle, Caroline; Hückelhoven, Ralph

    2008-12-01

    The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.

  14. A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies.

    PubMed

    Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah; Dallabernadina, Pietro; Boos, Irene; Andersen, Mathias C F; Kotake, Toshihisa; Knox, J Paul; Hahn, Michael G; Clausen, Mads H; Pfrengle, Fabian

    2017-11-01

    In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect.

    PubMed

    Xu, Jianfeng; Zhang, Ningning

    2014-12-01

    Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world's first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher's disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable.

  16. Compost in plant microbial fuel cell for bioelectricity generation.

    PubMed

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.

    PubMed

    Matthysse, A G; Wyman, P M; Holmes, K V

    1978-11-01

    Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five Ti-plasmid-containing virulent Agrobacterium strains showed greater attachment to tobacco cells than did five avirulent strains. Light and scanning electron microscopic observations confirmed that virulent strains showed little attachment. Bacterial attachment was blocked by prior incubation of the plant cells with lipopolysaccharide extracted from A. tumefaciens, but not from A. radiobacter, suggesting that bacterial lipopolysaccharide is one of the components involved in the attachment process. At least one other bacterial product may be required for attachment in tissue culture because the virulent A. tumefaciens NT1, which lacks the Ti plasmid, does not itself attach to tobacco cells, but its lipopolysaccharide does inhibit the attachment of virulent strains.

  18. Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.

    PubMed Central

    Matthysse, A G; Wyman, P M; Holmes, K V

    1978-01-01

    Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five Ti-plasmid-containing virulent Agrobacterium strains showed greater attachment to tobacco cells than did five avirulent strains. Light and scanning electron microscopic observations confirmed that virulent strains showed little attachment. Bacterial attachment was blocked by prior incubation of the plant cells with lipopolysaccharide extracted from A. tumefaciens, but not from A. radiobacter, suggesting that bacterial lipopolysaccharide is one of the components involved in the attachment process. At least one other bacterial product may be required for attachment in tissue culture because the virulent A. tumefaciens NT1, which lacks the Ti plasmid, does not itself attach to tobacco cells, but its lipopolysaccharide does inhibit the attachment of virulent strains. Images PMID:730370

  19. Plant cell wall lignification and monolignol metabolism

    PubMed Central

    Wang, Yin; Chantreau, Maxime; Sibout, Richard; Hawkins, Simon

    2013-01-01

    Plants are built of various specialized cell types that differ in their cell wall composition and structure. The cell walls of certain tissues (xylem, sclerenchyma) are characterized by the presence of the heterogeneous lignin polymer that plays an essential role in their physiology. This phenolic polymer is composed of different monomeric units – the monolignols – that are linked together by several covalent bonds. Numerous studies have shown that monolignol biosynthesis and polymerization to form lignin are tightly controlled in different cell types and tissues. However, our understanding of the genetic control of monolignol transport and polymerization remains incomplete, despite some recent promising results. This situation is made more complex since we know that monolignols or related compounds are sometimes produced in non-lignified tissues. In this review, we focus on some key steps of monolignol metabolism including polymerization, transport, and compartmentation. As well as being of fundamental interest, the quantity of lignin and its nature are also known to have a negative effect on the industrial processing of plant lignocellulose biomass. A more complete view of monolignol metabolism and the relationship that exists between lignin and other monolignol-derived compounds thereby appears essential if we wish to improve biomass quality. PMID:23847630

  20. Evolution of plant cell wall: Arabinogalactan-proteins from three moss genera show structural differences compared to seed plants.

    PubMed

    Bartels, Desirée; Baumann, Alexander; Maeder, Malte; Geske, Thomas; Heise, Esther Marie; von Schwartzenberg, Klaus; Classen, Birgit

    2017-05-01

    Arabinogalactan-proteins (AGPs) are important proteoglycans of plant cell walls. They seem to be present in most, if not all seed plants, but their occurrence and structure in bryophytes is widely unknown and actually the focus of AGP research. With regard to evolution of plant cell wall, we isolated AGPs from the three mosses Sphagnum sp., Physcomitrella patens and Polytrichastrum formosum. The moss AGPs show structural characteristics common for AGPs of seed plants, but also unique features, especially 3-O-methyl-rhamnose (trivial name acofriose) as terminal monosaccharide not found in arabinogalactan-proteins of angiosperms and 1,2,3-linked galactose as branching point never found in arabinogalactan-proteins before. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    PubMed

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  2. Mechanisms and effective control of physiological browning phenomena in plant cell cultures.

    PubMed

    Dong, Yan-Shan; Fu, Chun-Hua; Su, Peng; Xu, Xiang-Ping; Yuan, Jie; Wang, Sheng; Zhang, Meng; Zhao, Chun-Fang; Yu, Long-Jiang

    2016-01-01

    Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented. © 2015 Scandinavian Plant Physiology Society.

  3. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    PubMed

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  4. Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants

    PubMed Central

    Newman, Karyn L.; Almeida, Rodrigo P. P.; Purcell, Alexander H.; Lindow, Steven E.

    2004-01-01

    Xylella fastidiosa, which causes Pierce's disease of grapevine and other important plant diseases, is a xylem-limited bacterium that depends on insect vectors for transmission. Although many studies have addressed disease symptom development and transmission of the pathogen by vectors, little is known about the bacterial mechanisms driving these processes. Recently available X. fastidiosa genomic sequences and molecular tools have provided new routes for investigation. Here, we show that a diffusible signal molecule is required for biofilm formation in the vector and for vector transmission to plants. We constructed strains of X. fastidiosa mutated in the rpfF gene and determined that they are unable to produce the signal activity. In addition, rpfF mutants are more virulent than the wild type when mechanically inoculated into plants. This signal therefore directs interaction of X. fastidiosa with both its insect vector and plant host. Interestingly, rpfF mutants can still form in planta biofilms, which differ architecturally from biofilms in insects, suggesting that biofilm architecture, rather than a passive response to the environment, is actively determined by X. fastidiosa gene expression. This article reports a cell-cell signaling requirement for vector transmission. Identification of the genes regulated by rpfF should elucidate bacterial factors involved in transmission and biofilm formation in the insect. PMID:14755059

  5. Vacuolar processing enzyme in plant programmed cell death

    PubMed Central

    Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko

    2015-01-01

    Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711

  6. On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect

    PubMed Central

    Xu, Jianfeng; Zhang, Ningning

    2014-01-01

    Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world’s first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher’s disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable. PMID:25621170

  7. Problems and potentialities of cultured plant cells in retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Steward, F. C.; Krikorian, A. D.

    1979-01-01

    The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.

  8. Bacterial effectors target the plant cell nucleus to subvert host transcription.

    PubMed

    Canonne, Joanne; Rivas, Susana

    2012-02-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.

  9. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    PubMed

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  10. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.

    PubMed

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.

  11. The Structure of Plant Cell Walls

    PubMed Central

    Wilder, Barry M.; Albersheim, Peter

    1973-01-01

    The molecular structure and chemical properties of the hemicellulose present in the isolated cell walls of suspension cultures of sycamore (Acer pseudoplatanus) cells has recently been described by Bauer et al. (Plant Physiol. 51: 174-187). The hemicellulose of the sycamore primary cell wall is a xyloglucan. This polymer functions as an important cross-link in the structure of the cell wall; the xyloglucan is hydrogen-bonded to cellulose and covalently attached to the pectic polymers. The present paper describes the structure of a xyloglucan present in the walls and in the extracellular medium of suspension-cultured Red Kidney bean (Phaseolus vulgaris) cells and compares the structure of the bean xyloglucan with the structure of the sycamore xyloglucan. Although some minor differences were found, the basic structure of the xyloglucans in the cell walls of these distantly related species is the same. The structure is based on a repeating heptasaccharide unit which consists of four residues of β-1, 4-linked glucose and three residues of terminal xylose linked to the 6 position of three of the glucosyl residues. PMID:16658434

  12. Plant glycosylphosphatidylinositol (GPI) anchored proteins at the plasma membrane-cell wall nexus.

    PubMed

    Yeats, Trevor H; Bacic, Antony; Johnson, Kim L

    2018-04-18

    Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. While the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall and their potential to transduce the signal into the protoplast and thereby activate signal transduction pathways. This article is protected by copyright. All rights reserved.

  13. The plant cell wall in the feeding sites of cyst nematodes.

    PubMed

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  14. Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells.

    PubMed

    Kobylińska, Agnieszka; Borek, Sławomir; Posmyk, Małgorzata M

    2018-05-01

    Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin efficacy eliminates oxidative stress (direct and indirect antioxidant) and moreover induce plant stress reaction and switch on different defence strategies (preventively and interventively actions). In this report, the impact of exogenous melatonin on carbohydrate metabolism in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells during sugar starvation was examined. We analysed starch concentration, α-amylase and PEPCK activity as well as proteolytic activity in culture media. It has been shown that BY-2 cell treatment with 200 nM of melatonin improved viability of sugar-starved cells. It was correlated with higher starch content and phosphoenolpyruvate carboxykinase (PEPCK) activity. The obtained results revealed that exogenous melatonin under specific conditions (stress) can play regulatory role in sugar metabolism, and it may modulate carbohydrate concentration in etiolated BY-2 cells. Moreover, our results confirmed the hypothesis that if the starch is synthesised even in sugar-starved cells, it is highly probable that melatonin shifts the BY-2 cell metabolism on gluconeogenesis pathway and allows for synthesis of carbohydrates from nonsugar precursors, that is amino acids. These points to another defence strategy that was induced by exogenous melatonin applied in plants to overcome adverse environmental conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability.

    PubMed

    Qin, Peng; Xu, Lin; Zhong, Wenjing; Yu, Alfred C H

    2012-06-01

    The interaction between ultrasound pulses and microbubbles is known to generate acoustic cavitation that may puncture biological cells. This work presents new experimental findings on the bioeffects of ultrasound-microbubble mediated cavitation in plant cells with emphasis on direct observations of morphological impact and analysis of viability trends in tobacco BY-2 cells that are widely studied in higher plant physiology. The tobacco cell suspensions were exposed to 1 MHz ultrasound pulses in the presence of 1% v/v microbubbles (10% duty cycle; 1 kHz pulse repetition frequency; 70 mm between probe and cells; 1-min exposure time). Few bioeffects were observed at low peak negative pressures (<0.4 MPa) where stable cavitation presumably occurred. In contrast, at 0.9 MPa peak negative pressure (with more inertial cavitation activities according to our passive cavitation detection results), random pores were found on tobacco cell wall (observed via scanning electron microscopy) and enhanced exogenous uptake into the cytoplasm was evident (noted in our fluorescein isothiocyanate dextran uptake analysis). Also, instant lysis was observed in 23.4% of cells (found using trypan blue staining) and programmed cell death was seen in 23.3% of population after 12 h (determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]). These bioeffects generally correspond in trend with those for mammalian cells. This raises the possibility of developing ultrasound-microbubble mediated cavitation into a targeted gene transfection paradigm for plant cells and, conversely, adopting plant cells as experimental test-beds for sonoporation-based gene therapy in mammalian cells. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Remodelling of lace plant leaves: antioxidants and ROS are key regulators of programmed cell death.

    PubMed

    Dauphinee, Adrian N; Fletcher, Jacob I; Denbigh, Georgia L; Lacroix, Christian R; Gunawardena, Arunika H L A N

    2017-07-01

    Antioxidants and reactive oxygen species are integral for programmed cell death signaling during perforation formation in the lace plant ( Aponogeton madagascariensis ). The lace plant is an excellent model system for studying developmentally regulated programmed cell death (PCD). During early lace plant leaf development, PCD systematically deletes cells resulting in a perforated leaf morphology that is unique in planta. A distinct feature in young lace plant leaves is an abundance of anthocyanins, which have antioxidant properties. The first sign of PCD induction is the loss of anthocyanin pigmentation in cells that are targeted for destruction, which results in a visible gradient of cell death. The cellular dynamics and time course of lace plant PCD are well documented; however, the signals involved in the pathway remain elusive. This study investigates the roles of antioxidants and ROS in developmental PCD signaling during lace plant perforation formation. The involvement of antioxidants and ROS in the pathway was determined using a variety of techniques including pharmacological whole plant experimentation, long-term live cell imaging, the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid anti-radical activity assay, and western blot analysis. Results indicate that antioxidants and ROS are key regulators of PCD during the remodelling of lace plant leaves.

  17. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  18. High-Throughput Cryopreservation of Plant Cell Cultures for Functional Genomics

    PubMed Central

    Ogawa, Yoichi; Sakurai, Nozomu; Oikawa, Akira; Kai, Kosuke; Morishita, Yoshihiko; Mori, Kumiko; Moriya, Kanami; Fujii, Fumiko; Aoki, Koh; Suzuki, Hideyuki; Ohta, Daisaku; Saito, Kazuki; Shibata, Daisuke

    2012-01-01

    Suspension-cultured cell lines from plant species are useful for genetic engineering. However, maintenance of these lines is laborious, involves routine subculturing and hampers wider use of transgenic lines, especially when many lines are required for a high-throughput functional genomics application. Cryopreservation of these lines may reduce the need for subculturing. Here, we established a simple protocol for cryopreservation of cell lines from five commonly used plant species, Arabidopsis thaliana, Daucus carota, Lotus japonicus, Nicotiana tabacum and Oryza sativa. The LSP solution (2 M glycerol, 0.4 M sucrose and 86.9 mM proline) protected cells from damage during freezing and was only mildly toxic to cells kept at room temperature for at least 2 h. More than 100 samples were processed for freezing simultaneously. Initially, we determined the conditions for cryopreservation using a programmable freezer; we then developed a modified simple protocol that did not require a programmable freezer. In the simple protocol, a thick expanded polystyrene (EPS) container containing the vials with the cell–LSP solution mixtures was kept at −30°C for 6 h to cool the cells slowly (pre-freezing); samples from the EPS containers were then plunged into liquid nitrogen before long-term storage. Transgenic Arabidopsis cells were subjected to cryopreservation, thawed and then re-grown in culture; transcriptome and metabolome analyses indicated that there was no significant difference in gene expression or metabolism between cryopreserved cells and control cells. The simplicity of the protocol will accelerate the pace of research in functional plant genomics. PMID:22437846

  19. Defined plant extracts can protect human cells against combined xenobiotic effects

    PubMed Central

    2011-01-01

    Background Pollutants representative of common environmental contaminants induce intracellular toxicity in human cells, which is generally amplified in combinations. We wanted to test the common pathways of intoxication and detoxification in human embryonic and liver cell lines. We used various pollutants such as Roundup residues, Bisphenol-A and Atrazine, and five precise medicinal plant extracts called Circ1, Dig1, Dig2, Sp1, and Uro1 in order to understand whether specific molecular actions took place or not. Methods Kidney and liver are major detoxification organs. We have studied embryonic kidney and hepatic human cell lines E293 and HepG2. The intoxication was induced on the one hand by a formulation of one of the most common herbicides worldwide, Roundup 450 GT+ (glyphosate and specific adjuvants), and on the other hand by a mixture of Bisphenol-A and Atrazine, all found in surface waters, feed and food. The prevention and curative effects of plant extracts were also measured on mitochondrial succinate dehydrogenase activity, on the entry of radiolabelled glyphosate (in Roundup) in cells, and on cytochromes P450 1A2 and 3A4 as well as glutathione-S-transferase. Results Clear toxicities of pollutants were observed on both cell lines at very low sub-agricultural dilutions. The prevention of such phenomena took place within 48 h with the plant extracts tested, with success rates ranging between 25-34% for the E293 intoxicated by Roundup, and surprisingly up to 71% for the HepG2. By contrast, after intoxication, no plant extract was capable of restoring E293 viability within 48 h, however, two medicinal plant combinations did restore the Bisphenol-A/Atrazine intoxicated HepG2 up to 24-28%. The analysis of underlying mechanisms revealed that plant extracts were not capable of preventing radiolabelled glyphosate from entering cells; however Dig2 did restore the CYP1A2 activity disrupted by Roundup, and had only a mild preventive effect on the CYP3A4, and no effect

  20. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    PubMed Central

    Reynertson, Kurt A.; Charlson, Mary E.; Gudas, Lorraine J.

    2010-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly-cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from twelve species of ethnomedically utilized plants, we found fractions from three species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. PMID:20955699

  1. Biotechnological production of pharmaceuticals and biopharmaceuticals in plant cell and organ cultures.

    PubMed

    Hidalgo, Diego; Sanchez, Raul; Lalaleo, Liliana; Bonfill, Mercedes; Corchete, Purificacion; Palazon, Javier

    2018-03-09

    Plant biofactories are biotechnological platforms based on plant cell and organ cultures used for the production of pharmaceuticals and biopharmaceuticals, although to date only a few of these systems have successfully been implemented at an industrial level. Metabolic engineering is possibly the most straightforward strategy to boost pharmaceutical production in plant biofactories, but social opposition to the use of GMOs means empirical approaches are still being used. Plant secondary metabolism involves thousands of different enzymes, some of which catalyze specific reactions, giving one product from a particular substrate, whereas others can yield multiple products from the same substrate. This trait opens plant cell biofactories to new applications, in which the natural metabolic machinery of plants can be harnessed for the bioconversion of phytochemicals or even the production of new bioactive compounds. Synthetic biological pipelines involving the bioconversion of natural substrates into products with a high market value may be established by the heterologous expression of target metabolic genes in model plants. To summarize the state of the art of plant biofactories and their applications for the pipeline production of cosme-, pharma- and biopharmaceuticals. In order to demonstrate the great potential of plant biofactories for multiple applications in the biotechnological production of pharmaceuticals and biopharmaceuticals, this review broadly covers the following: plant biofactories based on cell and hairy root cultures; secondary metabolite production; biotransformation reactions; metabolic engineering tools applied in plant biofactories; and biopharmaceutical production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  3. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition

    PubMed Central

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3–) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as “ammonium toxicity syndrome.” NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension. PMID:28848567

  4. Introducing the Cell Concept with Both Animal and Plant Cells: A Historical and Didactic Approach

    ERIC Educational Resources Information Center

    Clement, Pierre

    2007-01-01

    In France, as well as in several other countries, the cell concept is introduced at school by two juxtaposed drawings, a plant cell and an animal cell. After indicating the didactic obstacles associated with this presentation, this paper focuses on the reasons underlying the persistence of these two prototypes, through three complementary…

  5. The Transport of Ions Across Plant Cell Membranes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1981-01-01

    Presented is one of a series of articles designed to help science teachers keep current on ideas in specific areas of biology. This article provides information about ion transport in plant cells. (PB)

  6. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.

    PubMed

    Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred

    2016-01-01

    Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization. © 2015 Wiley Periodicals, Inc.

  7. The plant secretory pathway seen through the lens of the cell wall.

    PubMed

    van de Meene, A M L; Doblin, M S; Bacic, Antony

    2017-01-01

    Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.

  8. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant.

    PubMed

    Lachenbruch, Barbara; McCulloh, Katherine A

    2014-12-01

    This review presents a framework for evaluating how cells, tissues, organs, and whole plants perform both hydraulic and mechanical functions. The morphological alterations that affect dual functionality are varied: individual cells can have altered morphology; tissues can have altered partitioning to functions or altered cell alignment; and organs and whole plants can differ in their allocation to different tissues, or in the geometric distribution of the tissues they have. A hierarchical model emphasizes that morphological traits influence the hydraulic or mechanical properties; the properties, combined with the plant unit's environment, then influence the performance of that plant unit. As a special case, we discuss the mechanisms by which the proxy property wood density has strong correlations to performance but without direct causality. Traits and properties influence multiple aspects of performance, and there can be mutual compensations such that similar performance occurs. This compensation emphasizes that natural selection acts on, and a plant's viability is determined by, its performance, rather than its contributing traits and properties. Continued research on the relationships among traits, and on their effects on multiple aspects of performance, will help us better predict, manage, and select plant material for success under multiple stresses in the future. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Oils from wild, micropropagated plants, calli, and suspended cells of Euphorbia characias L.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes-Ferreira, M.; Pais, M.S.S.; Novais, J.M.

    1991-12-31

    Micropropagated Euphorbia characias plants gave higher yields of crude oil than did wild ones. Leaves of either wild and micropropagated plants contained more oil than did stems. Triterpenols, hydrocarbons, and free and esterified fatty acids are components of the crude oil produced by stems, young and mature leaves of wild and micropropagated E. characias plants, as well as by calli and suspended cells. With the exception of the free fatty acids fraction, all crude oil fractions were higher in micropropagated plants than in the wild ones. The crude oil content of leaves of either wild or micropropagated plants was highermore » than that of stems. However the triterpenols yields were higher in stems than in leaves, both in wild and micropropagated plants. The composition of the triterpenol fraction of the crude oil obtained from calli and suspended cells is quite different from that produced by any in vivo parent plant organ studied. Free fatty acids constitute the main fraction of the crude oil obtained from calli and suspended cells.« less

  10. Characterization of Cellulose Synthesis in Plant Cells

    PubMed Central

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  11. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells.

    PubMed

    Saeed, Mohamed E M; Meyer, Marion; Hussein, Ahmed; Efferth, Thomas

    2016-06-20

    Traditional medicine plays a major role for primary health care worldwide. Cancer belongs to the leading disease burden in industrialized and developing countries. Successful cancer therapy is hampered by the development of resistance towards established anticancer drugs. In the present study, we investigated the cytotoxicity of 29 extracts from 26 medicinal plants of South-Africa against leukemia cell lines, most of which are used traditionally to treat cancer and related symptoms. We have investigated the plant extracts for their cytotoxic activity towards drug-sensitive parental CCRF-CEM leukemia cells and their multidrug-resistant P-glycoprotein-overexpressing subline, CEM/ADR5000 by means of the resazurin assay. A panel of 60 NCI tumor cell lines have been investigated for correlations between selected phytochemicals from medicinal plants and the expression of resistance-conferring genes (ABC-transporters, oncogenes, tumor suppressor genes). Seven extracts inhibited both cell lines (Acokanthera oppositifolia, Hypoestes aristata, Laurus nobilis, Leonotis leonurus, Plectranthus barbatus, Plectranthus ciliates, Salvia apiana). CEM/ADR5000 cells exhibited a low degree of cross-resistance (3.35-fold) towards the L. leonurus extract, while no cross-resistance was observed to other plant extracts, although CEM/ADR5000 cells were highly resistant to clinically established drugs. The log10IC50 values for two out of 14 selected phytochemicals from these plants (acovenoside A and ouabain) of 60 tumor cell lines were correlated to the expression of ABC-transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS) and tumor suppressors (TP53). Sensitivity or resistance of the cell lines were not statistically associated with the expression of these genes, indicating that multidrug-resistant, refractory tumors expressing these genes may still respond to acovenoside A and ouabain. The bioactivity of South African medicinal plants may represent a basis for the development

  12. Live-cell Imaging of Fungal Cells to Investigate Modes of Entry and Subcellular Localization of Antifungal Plant Defensins.

    PubMed

    Islam, Kazi T; Shah, Dilip M; El-Mounadi, Kaoutar

    2017-12-24

    Small cysteine-rich defensins are one of the largest groups of host defense peptides present in all plants. Many plant defensins exhibit potent in vitro antifungal activity against a broad-spectrum of fungal pathogens and therefore have the potential to be used as antifungal agents in transgenic crops. In order to harness the full potential of plant defensins for diseases control, it is crucial to elucidate their mechanisms of action (MOA). With the advent of advanced microscopy techniques, live-cell imaging has become a powerful tool for understanding the dynamics of the antifungal MOA of plant defensins. Here, a confocal microscopy based live-cell imaging method is described using two fluorescently labeled plant defensins (MtDef4 and MtDef5) in combination with vital fluorescent dyes. This technique enables real-time visualization and analysis of the dynamic events of MtDef4 and MtDef5 internalization into fungal cells. Importantly, this assay generates a wealth of information including internalization kinetics, mode of entry and subcellular localization of these peptides. Along with other cell biological tools, these methods have provided critical insights into the dynamics and complexity of the MOA of these peptides. These tools can also be used to compare the MOA of these peptides against different fungi.

  13. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.

    PubMed

    Ptashnyk, Mariya; Seguin, Brian

    2016-11-01

    The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.

  14. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  15. Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.

    PubMed

    Dörmann, Peter; Kim, Hyeran; Ott, Thomas; Schulze-Lefert, Paul; Trujillo, Marco; Wewer, Vera; Hückelhoven, Ralph

    2014-12-01

    Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact sites, including de novo cell wall biosynthesis. Alternatively, host cell reprogramming converges in the biogenesis of membrane-enveloped compartments for accommodation of beneficial bacteria or invasive infection structures of filamentous microbes. Recent advances have revealed that, in response to microbial encounters, plasma membrane symmetry is broken, membrane tethering and SNARE complexes are recruited, lipid composition changes and plasma membrane-to-cytoskeleton signaling is activated, either for pre-invasive defense or for microbial entry. We provide a critical appraisal on recent studies with a focus on how plant cells re-structure membranes and the associated cytoskeleton in interactions with microbial pathogens, nitrogen-fixing rhizobia and mycorrhiza fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Prospects for the use of plant cell cultures in food biotechnology.

    PubMed

    Davies, Kevin M; Deroles, Simon C

    2014-04-01

    Plant cell cultures can offer continuous production systems for high-value food and health ingredients, independent of geographical or environmental variations and constraints. Yet despite many improvements in culture technologies, cell line selection, and bioreactor design, there are few commercial successes. This is principally due to the culture yield and market price of food products not being sufficient to cover the plant cell culture production costs. A better understanding of the underpinning biological mechanisms that control the target metabolite biosynthetic pathways may allow the metabolic engineering of cell lines to provide for economically competitive product yields. However, uncertainty around the regulatory and public acceptance of products derived from engineered cell cultures presents a barrier to the uptake of the technology by food product companies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynertson, Kurt A.; Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065; Charlson, Mary E.

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extractsmore » for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells.« less

  18. Induction of murine embryonic stem cell differentiation by medicinal plant extracts.

    PubMed

    Reynertson, Kurt A; Charlson, Mary E; Gudas, Lorraine J

    2011-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Uptake of Uranium and Other Elements of Concern by Plants Growing on Uranium Mill Tailings Disposal Cells

    NASA Astrophysics Data System (ADS)

    Joseph, C. N.; Waugh, W.; Glenn, E.

    2015-12-01

    The U.S. Department of Energy (DOE) is responsible for long-term stewardship of disposal cells for uranium mill tailings throughout the United States. Rock-armored disposal cell covers create favorable habitat for deep-rooted plants by reducing soil evaporation, increasing soil water storage, and trapping windblown dust, thereby providing water and nutrients for plant germination and establishment. DOE is studying the tradeoffs of potential detrimental and beneficial effects of plants growing on disposal cell covers to develop a rational and consistent vegetation management policy. Plant roots often extend vertically through disposal cell covers into underlying tailings, therefore, uptake of tailings contaminants and dissemination through animals foraging on stems and leaves is a possible exposure pathway. The literature shows that plant uptake of contaminants in uranium mill tailings occurs, but levels can vary widely depending on plant species, tailings and soil chemistry, and cover soil hydrology. Our empirical field study measured concentrations of uranium, radium, thorium, molybdenum, selenium, manganese, lead, and arsenic in above ground tissues harvested from plants growing on disposal cells near Native American communities in western states that represent a range of climates, cover designs, cover soil types, and vegetation types. For risk screening, contaminant levels in above ground tissues harvested from plants on disposal cells were compared to Maximum Tolerance Levels (MTLs) set for livestock by the National Research Council, and to tissue levels in the same plant species growing in reference areas near disposal cells. Although tailings were covered with uncontaminated soils, for 14 of 46 comparisons, levels of uranium and other contaminants were higher in plants growing on disposal cells compared to reference area plants, indicating possible mobilization of these elements from the tailing into plant tissues. However, with one exception, all plant

  20. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy

    PubMed Central

    Verhertbruggen, Yves; Walker, Jesse L.; Guillon, Fabienne; Scheller, Henrik V.

    2017-01-01

    Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of these three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy. PMID:28900439

  1. Control of plant stem cell function by conserved interacting transcriptional regulators

    PubMed Central

    Zhou, Yun; Liu, Xing; Engstrom, Eric M.; Nimchuk, Zachary L.; Pruneda-Paz, Jose L.; Tarr, Paul T.; Yan, An; Kay, Steve A.; Meyerowitz, Elliot M.

    2014-01-01

    SUMMARY Plant stem cells in the shoot apical meristem (SAM) and root apical meristem (RAM) provide for postembryonic development of above-ground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development1–4. WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the SAM, is a key regulatory factor controlling stem cell populations in the Arabidopsis SAM5–6 and is thought to establish the shoot stem cell niche via a feedback circuit with the CLAVATA3 (CLV3) peptide signaling pathway7. WUSCHEL-RELATED HOMEOBOX5 (WOX5), specifically expressed in root quiescent center (QC), defines QC identity and functions interchangeably with WUS in control of shoot and root stem cell niches8. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem cell niche9–11. WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom12 and emerge as key actors in the specification and maintenance of stem cells within all meristems13. However, the nature of the genetic regime in stem cell niches that centers on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM)family transcription regulators act as conserved interacting co-factors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development. PMID:25363783

  2. Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation.

    PubMed

    Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P

    2010-09-01

    Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.

  3. Cell wall integrity signaling in plants: "To grow or not to grow that's the question".

    PubMed

    Voxeur, Aline; Höfte, Herman

    2016-09-01

    Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Identification of a Functional Plasmodesmal Localization Signal in a Plant Viral Cell-To-Cell-Movement Protein.

    PubMed

    Yuan, Cheng; Lazarowitz, Sondra G; Citovsky, Vitaly

    2016-01-19

    Our fundamental knowledge of the protein-sorting pathways required for plant cell-to-cell trafficking and communication via the intercellular connections termed plasmodesmata has been severely limited by the paucity of plasmodesmal targeting sequences that have been identified to date. To address this limitation, we have identified the plasmodesmal localization signal (PLS) in the Tobacco mosaic virus (TMV) cell-to-cell-movement protein (MP), which has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through plasmodesmata. We report here the identification of a bona fide functional TMV MP PLS, which encompasses amino acid residues between positions 1 and 50, with residues Val-4 and Phe-14 potentially representing critical sites for PLS function that most likely affect protein conformation or protein interactions. We then demonstrated that this PLS is both necessary and sufficient for protein targeting to plasmodesmata. Importantly, as TMV MP traffics to plasmodesmata by a mechanism that is distinct from those of the three plant cell proteins in which PLSs have been reported, our findings provide important new insights to expand our understanding of protein-sorting pathways to plasmodesmata. The science of virology began with the discovery of Tobacco mosaic virus (TMV). Since then, TMV has served as an experimental and conceptual model for studies of viruses and dissection of virus-host interactions. Indeed, the TMV cell-to-cell-movement protein (MP) has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through the plant intercellular connections termed plasmodesmata. However, one of the most fundamental and key functional features of TMV MP, its putative plasmodesmal localization signal (PLS), has not been identified. Here, we fill this gap in our knowledge and identify the TMV MP PLS. Copyright © 2016 Yuan et al.

  5. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell

    PubMed Central

    Sperschneider, Jana; Catanzariti, Ann-Maree; DeBoer, Kathleen; Petre, Benjamin; Gardiner, Donald M.; Singh, Karam B.; Dodds, Peter N.; Taylor, Jennifer M.

    2017-01-01

    Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/. PMID:28300209

  6. Only in dying, life: programmed cell death during plant development.

    PubMed

    Van Hautegem, Tom; Waters, Andrew J; Goodrich, Justin; Nowack, Moritz K

    2015-02-01

    Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development.

    PubMed

    Tucker, Matthew R; Lou, Haoyu; Aubert, Matthew K; Wilkinson, Laura G; Little, Alan; Houston, Kelly; Pinto, Sara C; Shirley, Neil J

    2018-05-31

    The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.

  8. Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa.

    PubMed

    Samal, Areejit; Craig, James P; Coradetti, Samuel T; Benz, J Philipp; Eddy, James A; Price, Nathan D; Glass, N Louise

    2017-01-01

    Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa . To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa . Here we built a network that serves as a scaffold for integration of diverse experimental datasets. This approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer industrially relevant hyper-production strains.

  9. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells

    PubMed Central

    Kwon, Kwang-Chul; Verma, Dheeraj; Singh, Nameirakpam D.; Herzog, Roland; Daniell, Henry

    2012-01-01

    Among 12 billion injections administered annually, unsafe delivery leads to >20 million infections and >100 million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections. PMID:23099275

  10. 31. SOUTH PLANT NORTHERN EDGE, SHOWING CELL BUILDING (BUILDING 242) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SOUTH PLANT NORTHERN EDGE, SHOWING CELL BUILDING (BUILDING 242) AT LEFT, LABORATORY (BUILDING 241) AT CENTER AND CAUSTIC FUSION PLANT (BUILDING 254) AT RIGHT. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  11. Calpain-Mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development

    USDA-ARS?s Scientific Manuscript database

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...

  12. Modulation of host cell biology by plant pathogenic microbes.

    PubMed

    Le Fevre, Ruth; Evangelisti, Edouard; Rey, Thomas; Schornack, Sebastian

    2015-01-01

    Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.

  13. The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton madagascariensis) leaves.

    PubMed

    Wertman, Jaime; Lord, Christina En; Dauphinee, Adrian N; Gunawardena, Arunika Hlan

    2012-07-25

    Developmentally regulated programmed cell death (PCD) is the controlled death of cells that occurs throughout the life cycle of both plants and animals. The lace plant (Aponogeton madagascariensis) forms perforations between longitudinal and transverse veins in spaces known as areoles, via developmental PCD; cell death begins in the center of these areoles and develops towards the margin, creating a gradient of PCD. This gradient was examined using both long- and short-term live cell imaging, in addition to histochemical staining, in order to establish the order of cellular events that occur during PCD. The first visible change observed was the reduction in anthocyanin pigmentation, followed by initial chloroplast changes and the bundling of actin microfilaments. At this stage, an increased number of transvacuolar strands (TVS) was evident. Perhaps concurrently with this, increased numbers of vesicles, small mitochondrial aggregates, and perinuclear accumulation of both chloroplasts and mitochondria were observed. The invagination of the tonoplast membrane and the presence of vesicles, both containing organelle materials, suggested evidence for both micro- and macro-autophagy, respectively. Mitochondrial aggregates, as well as individual chloroplasts were subsequently seen undergoing Brownian motion in the vacuole. Following these changes, fragmentation of nuclear DNA, breakdown of actin microfilaments and early cell wall changes were detected. The vacuole then swelled, causing nuclear displacement towards the plasma membrane (PM) and tonoplast rupture followed closely, indicating mega-autophagy. Subsequent to tonoplast rupture, cessation of Brownian motion occurred, as well as the loss of mitochondrial membrane potential (ΔΨm), nuclear shrinkage and PM collapse. Timing from tonoplast rupture to PM collapse was approximately 20 minutes. The entire process from initial chlorophyll reduction to PM collapse took approximately 48 hours. Approximately six hours

  14. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  15. Engineering secondary cell wall deposition in plants

    PubMed Central

    Yang, Fan; Mitra, Prajakta; Zhang, Ling; Prak, Lina; Verhertbruggen, Yves; Kim, Jin-Sun; Sun, Lan; Zheng, Kejian; Tang, Kexuan; Auer, Manfred; Scheller, Henrik V; Loqué, Dominique

    2013-01-01

    Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies—lignin rewiring with APFL insertion—enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis. PMID:23140549

  16. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  17. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  18. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    PubMed

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  19. Agrobacterium tumefaciens mutants affected in attachment to plant cells.

    PubMed Central

    Douglas, C J; Halperin, W; Nester, E W

    1982-01-01

    An analysis of Agrobacterium tumefaciens mutants with Tn5 insertions in chromosomal DNA showed that the chromosome of A. tumefaciens codes for a specific ability of this bacterium to attach to plant cells. This ability is associated with tumorigenesis by A. tumefaciens, the ability of avirulent A. tumefaciens to inhibit tumorigenesis, and the ability to adsorb certain phages. A second class of chromosomal mutations affects tumorigenesis without altering the ability to attach to plant cells. The attachment of A. tumefaciens to plant cells was assayed by mixing radiolabeled bacteria with suspensions of tobacco tissue culture cells or freshly isolated Zinnia leaf mesophyll cells. Under the conditions of this assay, an avirulent Ti plasmid-cured strain attached to the same extent as the same strain containing pTiB6806. Six of eight avirulent mutants with Tn5 insertions in chromosomal DNA showed defective attachment, whereas two retained wild-type attachment ability. In contrast to the strains showing wild-type attachment, the attachment-defective mutants failed to inhibit tumorigenesis when inoculated onto Jerusalem artichoke slices before inoculation of a virulent strain and also showed a loss of sensitivity to two Agrobacterium phages. The loss of phage sensitivity appeared to be due to a loss of ability to adsorb the phages. Staining with Calcofluor indicated that the mutants retained the ability to synthesize cellulose fibrils, which have been implicated in the attachment process. Southern filter hybridizations demonstrated that each mutant contained a single Tn5 insertion, and genetic linkage between the Tn5 insertion in one mutant and the attachment phenotype has also been demonstrated. Images PMID:6292165

  20. Live cell imaging of cytoskeletal and organelle dynamics in gravity-sensing cells in plant gravitropism.

    PubMed

    Nakamura, Moritaka; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao

    2015-01-01

    Plants sense gravity and change their morphology/growth direction accordingly (gravitropism). The early process of gravitropism, gravity sensing, is supposed to be triggered by sedimentation of starch-filled plastids (amyloplasts) in statocytes such as root columella cells and shoot endodermal cells. For several decades, many scientists have focused on characterizing the role of the amyloplasts and observed their intracellular sedimentation in various plants. Recently, it has been discovered that the complex sedimentary movements of the amyloplasts are created not only by gravity but also by cytoskeletal/organelle dynamics, such as those of actin filaments and the vacuolar membrane. Thus, to understand how plants sense gravity, we need to analyze both amyloplast movements and their regulatory systems in statocytes. We have developed a vertical-stage confocal microscope that allows multicolor fluorescence imaging of amyloplasts, actin filaments and vacuolar membranes in vertically oriented plant tissues. We also developed a centrifuge microscope that allows bright-field imaging of amyloplasts during centrifugation. These microscope systems provide new insights into gravity-sensing mechanisms in Arabidopsis.

  1. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells.

    PubMed

    Quentin, Michaëel; Abad, Pierre; Favery, Bruno

    2013-01-01

    Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.

  2. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation

    PubMed Central

    Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.

    2012-01-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130

  3. Gravity Research on Plants: Use of Single-Cell Experimental Models

    PubMed Central

    Chebli, Youssef; Geitmann, Anja

    2011-01-01

    Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided. PMID:22639598

  4. Intracellular Transport of Plant Viruses: Finding the Door out of the Cell

    PubMed Central

    Schoelz, James E.; Harries, Phillip A.; Nelson, Richard S.

    2011-01-01

    Plant viruses are a class of plant pathogens that specialize in movement from cell to cell. As part of their arsenal for infection of plants, every virus encodes a movement protein (MP), a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell. As our knowledge of intercellular transport has increased, it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD. Just as viruses are too large to fit through an unmodified plasmodesma, they are also too large to be freely diffused through the cytoplasm of the cell. Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP, including viral proteins originally associated with replication or gene expression. In this review, we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD, in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread. PMID:21896501

  5. Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus.

    PubMed

    Zeise, Ingrid; Heiner, Zsuzsanna; Holz, Sabine; Joester, Maike; Büttner, Carmen; Kneipp, Janina

    2018-01-25

    Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus , using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues.

  6. Phosphoinositide kinases and the synthesis of polyphosphoinositides in higher plant cells

    NASA Technical Reports Server (NTRS)

    Drobak, B. K.; Dewey, R. E.; Boss, W. F.; Davies, E. (Principal Investigator)

    1999-01-01

    Phosphoinositides are a family of inositol-containing phospholipids which are present in all eukaryotic cells. Although in most cells these lipids, with the exception of phosphatidylinositol, constitute only a very minor proportion of total cellular lipids, they have received immense attention by researchers in the past 15-20 years. This is due to the discovery that these lipids, rather than just having structural functions, play key roles in a wide range of important cellular processes. Much less is known about the plant phosphoinositides than about their mammalian counterparts. However, it has been established that a functional phosphoinositide system exists in plant cells and it is becoming increasingly clear that inositol-containing lipids are likely to play many important roles throughout the life of a plant. It is not our intention to give an exhaustive overview of all aspects of the field, but rather we focus on the phosphoinositide kinases responsible for the synthesis of all phosphorylated forms of phosphatidylinositol. Also, we mention some of the aspects of current phosphoinositide research which, in our opinion, are most likely to provide a suitable starting point for further research into the role of phosphoinositides in plants.

  7. The excitability of plant cells: with a special emphasis on characean internodal cells

    NASA Technical Reports Server (NTRS)

    Wayne, R.

    1994-01-01

    This review describes the basic principles of electrophysiology using the generation of an action potential in characean internodal cells as a pedagogical tool. Electrophysiology has proven to be a powerful tool in understanding animal physiology and development, yet it has been virtually neglected in the study of plant physiology and development. This review is, in essence, a written account of my personal journey over the past five years to understand the basic principles of electrophysiology so that I can apply them to the study of plant physiology and development. My formal background is in classical botany and cell biology. I have learned electrophysiology by reading many books on physics written for the lay person and by talking informally with many patient biophysicists. I have written this review for the botanist who is unfamiliar with the basics of membrane biology but would like to know that she or he can become familiar with the latest information without much effort. I also wrote it for the neurophysiologist who is proficient in membrane biology but knows little about plant biology (but may want to teach one lecture on "plant action potentials"). And lastly, I wrote this for people interested in the history of science and how the studies of electrical and chemical communication in physiology and development progressed in the botanical and zoological disciplines.

  8. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhertbruggen, Yves; Walker, Jesse L.; Guillon, Fabienne

    Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of thesemore » three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy.« less

  9. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy

    DOE PAGES

    Verhertbruggen, Yves; Walker, Jesse L.; Guillon, Fabienne; ...

    2017-08-29

    Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of thesemore » three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy.« less

  10. Copper Trafficking in Plants and Its Implication on Cell Wall Dynamics

    PubMed Central

    Printz, Bruno; Lutts, Stanley; Hausman, Jean-Francois; Sergeant, Kjell

    2016-01-01

    In plants, copper (Cu) acts as essential cofactor of numerous proteins. While the definitive number of these so-called cuproproteins is unknown, they perform central functions in plant cells. As micronutrient, a minimal amount of Cu is needed to ensure cellular functions. However, Cu excess may exert in contrast detrimental effects on plant primary production and even survival. Therefore it is essential for a plant to have a strictly controlled Cu homeostasis, an equilibrium that is both tissue and developmentally influenced. In the current review an overview is presented on the different stages of Cu transport from the soil into the plant and throughout the different plant tissues. Special emphasis is on the Cu-dependent responses mediated by the SPL7 transcription factor, and the crosstalk between this transcriptional regulation and microRNA-mediated suppression of translation of seemingly non-essential cuproproteins. Since Cu is an essential player in electron transport, we also review the recent insights into the molecular mechanisms controlling chloroplastic and mitochondrial Cu transport and homeostasis. We finally highlight the involvement of numerous Cu-proteins and Cu-dependent activities in the properties of one of the major Cu-accumulation sites in plants: the cell wall. PMID:27200069

  11. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  12. Central cell-derived peptides regulate early embryo patterning in flowering plants.

    PubMed

    Costa, Liliana M; Marshall, Eleanor; Tesfaye, Mesfin; Silverstein, Kevin A T; Mori, Masashi; Umetsu, Yoshitaka; Otterbach, Sophie L; Papareddy, Ranjith; Dickinson, Hugh G; Boutiller, Kim; VandenBosch, Kathryn A; Ohki, Shinya; Gutierrez-Marcos, José F

    2014-04-11

    Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non-cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.

  13. Cell Wall Assembly and Intracellular Trafficking in Plant Cells Are Directly Affected by Changes in the Magnitude of Gravitational Acceleration

    PubMed Central

    Chebli, Youssef; Pujol, Lauranne; Shojaeifard, Anahid; Brouwer, Iman; van Loon, Jack J. W. A.; Geitmann, Anja

    2013-01-01

    Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions. PMID:23516452

  14. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    Discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly c...

  15. Accommodation of powdery mildew fungi in intact plant cells.

    PubMed

    Eichmann, Ruth; Hückelhoven, Ralph

    2008-01-01

    Parasitic powdery mildew fungi have to overcome basic resistance and manipulate host cells to establish a haustorium as a functional feeding organ in a host epidermal cell. Currently, it is of central interest how plant factors negatively regulate basal defense or whether they even support fungal development in compatible interactions. Additionally, creation of a metabolic sink in infected cells may involve host activity. Here, we review the current progress in understanding potential fungal targets for host reprogramming and nutrient acquisition.

  16. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope

    PubMed Central

    2013-01-01

    Background Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. Results Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. Conclusions Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM. PMID:24135233

  17. The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants.

    PubMed

    Preis, Itan; Abramson, Miron; Shoseyov, Oded

    2018-04-01

    Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.

  18. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    PubMed Central

    Zhang, Li; Lilley, Catherine J.; Imren, Mustafa; Knox, J. Paul; Urwin, Peter E.

    2017-01-01

    Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function. PMID:28680436

  19. Efficient production of glycosylated Cypridina luciferase using plant cells.

    PubMed

    Mitani, Yasuo; Oshima, Yoshimi; Mitsuda, Nobutaka; Tomioka, Azusa; Sukegawa, Masako; Fujita, Mika; Kaji, Hiroyuki; Ohmiya, Yoshihiro

    2017-05-01

    Cypridina noctiluca luciferase has been utilized for biochemical and molecular biological applications, including bioluminescent enzyme immunoassays, far-red luminescence imaging, and high-throughput reporter assays. Some of these applications require a large amount of purified luciferase. However, conventional protein expression systems are not capable of producing sufficient quantities of protein with a high quality and purity without laborious and costly purification processes. To improve the productivity and expand the breadth of possibilities for Cypridina luciferase applications, we employed a variety of secretion expression systems, including yeast, mammalian cells, and silk worms. In this study, we established a simple production procedure using plant cell cultures. The plant cell culture BY-2 efficiently secreted luciferase, which was easily purified using a simple one-step ion-exchange chromatography method. The production yield was 20-30 mg of luciferase per liter of culture medium, and its Km for the luciferin (0.45 μM) was similar to that of the native protein. Additionally, we characterized its glycosylation pattern and confirmed that the two potential N-glycosylation sites were modified with plant-type oligosaccharide chains. Interestingly, the oligosaccharide chains could be trimmed without any detectable decrease in recombinant protein activity. Therefore, the results of our study indicate that this method offers a more cost-effective production method for Cypridina luciferase than conventional methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    PubMed Central

    Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor

    2013-01-01

    Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787

  1. Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas[OPEN

    PubMed Central

    Montenegro-Johnson, Thomas D.; Stamm, Petra; Strauss, Soeren; Topham, Alexander T.; Tsagris, Michail; Wood, Andrew T.A.; Smith, Richard S.; Bassel, George W.

    2015-01-01

    Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth. PMID:25901089

  2. Signal transduction networks and the biology of plant cells.

    PubMed

    Chrispeels, M J; Holuigue, L; Latorre, R; Luan, S; Orellana, A; Peña-Cortes, H; Raikhel, N V; Ronald, P C; Trewavas, A

    1999-01-01

    The development of plant transformation in the mid-1980s and of many new tools for cell biology, molecular genetics, and biochemistry has resulted in enormous progress in plant biology in the past decade. With the completion of the genome sequence of Arabidopsis thaliana just around the corner, we can expect even faster progress in the next decade. The interface between cell biology and signal transduction is emerging as a new and important field of research. In the past we thought of cell biology strictly in terms of organelles and their biogenesis and function, and researchers focused on questions such as, how do proteins enter chloroplasts? or, what is the structure of the macromolecules of the cell wall and how are these molecules secreted? Signal transduction dealt primarily with the perception of light (photomorphogenesis) or hormones and with the effect such signals have on enhancing the activity of specific genes. Now we see that the fields of cell biology and signal transduction are merging because signals pass between organelles and a single signal transduction pathway usually involves multiple organelles or cellular structures. Here are some examples to illustrate this new paradigm. How does abscisic acid (ABA) regulate stomatal closure? This pathway involves not only ABA receptors whose location is not yet known, but cation and anion channels in the plasma membrane, changes in the cytoskeleton, movement of water through water channels in the tonoplast and the plasma membrane, proteins with a farnesyl tail that can be located either in the cytosol or attached to a membrane, and probably unidentified ion channels in the tonoplast. In addition there are highly localized calcium oscillations in the cytoplasm resulting from the release of calcium stored in various compartments. The activities of all these cellular structures need to be coordinated during ABA-induced stomatal closure. For another example of the interplay between the proteins of signal

  3. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code? Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?

    PubMed

    Lord, Christina E N; Wertman, Jaime N; Lane, Stephanie; Gunawardena, Arunika H L A N

    2011-06-06

    Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar

  5. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?

    PubMed Central

    2011-01-01

    Background Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. Results The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. Conclusions Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts

  6. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance

    DOE PAGES

    Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan; ...

    2014-11-03

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less

  7. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less

  8. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production. Copyright © 2013. Published by Elsevier Ltd.

  9. Embryogenic plant cells in microgravity

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1991-01-01

    In view of circumstantial evidence for the role of gravity (g) in shaping the embryo environment, normal embryo development may not occur reliably and efficiently in the microgravity environment of space. Attention must accordingly be given to those aspects of higher plant reproductive biology in space environments required for the production of viable embryos in a 'seed to seed to seed' experiment. It is suggested that cultured cells can be grown to be morphogenetically competent, and can be evaluated as to their ability to simulate embryogenic events usually associated with fertilized eggs in the embryo sac of the ovule in the ovary.

  10. Protein Delivery into Plant Cells: Toward In vivo Structural Biology

    PubMed Central

    Cedeño, Cesyen; Pauwels, Kris; Tompa, Peter

    2017-01-01

    Understanding the biologically relevant structural and functional behavior of proteins inside living plant cells is only possible through the combination of structural biology and cell biology. The state-of-the-art structural biology techniques are typically applied to molecules that are isolated from their native context. Although most experimental conditions can be easily controlled while dealing with an isolated, purified protein, a serious shortcoming of such in vitro work is that we cannot mimic the extremely complex intracellular environment in which the protein exists and functions. Therefore, it is highly desirable to investigate proteins in their natural habitat, i.e., within live cells. This is the major ambition of in-cell NMR, which aims to approach structure-function relationship under true in vivo conditions following delivery of labeled proteins into cells under physiological conditions. With a multidisciplinary approach that includes recombinant protein production, confocal fluorescence microscopy, nuclear magnetic resonance (NMR) spectroscopy and different intracellular protein delivery strategies, we explore the possibility to develop in-cell NMR studies in living plant cells. While we provide a comprehensive framework to set-up in-cell NMR, we identified the efficient intracellular introduction of isotope-labeled proteins as the major bottleneck. Based on experiments with the paradigmatic intrinsically disordered proteins (IDPs) Early Response to Dehydration protein 10 and 14, we also established the subcellular localization of ERD14 under abiotic stress. PMID:28469623

  11. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.

    PubMed

    Olvera-Carrillo, Yadira; Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Huysmans, Marlies; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; Coll, Nuria S.; Coppens, Frederik; Maere, Steven; Nowack, Moritz K.

    2015-12-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus

    PubMed Central

    Zeise, Ingrid; Heiner, Zsuzsanna; Holz, Sabine; Joester, Maike; Büttner, Carmen

    2018-01-01

    Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus, using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues. PMID:29370089

  13. Analyzing Xyloglucan Endotransglycosylases by Incorporating Synthetic Oligosaccharides into Plant Cell Walls.

    PubMed

    Ruprecht, Colin; Dallabernardina, Pietro; Smith, Peter J; Urbanowicz, Breeanna R; Pfrengle, Fabian

    2018-04-16

    The plant cell wall is a cellular exoskeleton consisting predominantly of a complex polysaccharide network that defines the shape of cells. During growth, this network can be loosened through the action of xyloglucan endotransglycosylases (XETs), glycoside hydrolases that "cut and paste" xyloglucan polysaccharides through a transglycosylation process. We have analyzed cohorts of XETs in different plant species to evaluate the substrate specificities of xyloglucan acceptors by using a set of synthetic oligosaccharides obtained by automated glycan assembly. The ability of XETs to incorporate the oligosaccharides into polysaccharides printed as microarrays and into stem sections of Arabidopsis thaliana, beans, and peas was assessed. We found that single xylose substitutions are sufficient for transfer, and xylosylation of the terminal glucose residue is not required by XETs, independent of plant species. To obtain information on the potential xylosylation pattern of the natural acceptor of XETs, that is, the nonreducing end of xyloglucan, we further tested the activity of xyloglucan xylosyl transferase (XXT) 2 on the synthetic xyloglucan oligosaccharides. These data shed light on inconsistencies between previous studies towards determining the acceptor substrate specificities of XETs and have important implications for further understanding plant cell wall polysaccharide synthesis and remodeling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Onsite 40-kilowatt fuel cell power plant manufacturing and field test program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.

  15. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    PubMed

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates

    NASA Astrophysics Data System (ADS)

    Van Liedekerke, P.; Ghysels, P.; Tijskens, E.; Samaey, G.; Smeedts, B.; Roose, D.; Ramon, H.

    2010-06-01

    This paper is concerned with addressing how plant tissue mechanics is related to the micromechanics of cells. To this end, we propose a mesh-free particle method to simulate the mechanics of both individual plant cells (parenchyma) and cell aggregates in response to external stresses. The model considers two important features in the plant cell: (1) the cell protoplasm, the interior liquid phase inducing hydrodynamic phenomena, and (2) the cell wall material, a viscoelastic solid material that contains the protoplasm. In this particle framework, the cell fluid is modeled by smoothed particle hydrodynamics (SPH), a mesh-free method typically used to address problems with gas and fluid dynamics. In the solid phase (cell wall) on the other hand, the particles are connected by pairwise interactions holding them together and preventing the fluid to penetrate the cell wall. The cell wall hydraulic conductivity (permeability) is built in as well through the SPH formulation. Although this model is also meant to be able to deal with dynamic and even violent situations (leading to cell wall rupture or cell-cell debonding), we have concentrated on quasi-static conditions. The results of single-cell compression simulations show that the conclusions found by analytical models and experiments can be reproduced at least qualitatively. Relaxation tests revealed that plant cells have short relaxation times (1 µs-10 µs) compared to mammalian cells. Simulations performed on cell aggregates indicated an influence of the cellular organization to the tissue response, as was also observed in experiments done on tissues with a similar structure.

  17. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy and Live Cell Imaging

    PubMed Central

    Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Wasteneys, Geoffrey O.

    2016-01-01

    Microtubules are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labelling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography. PMID:26498784

  18. Inspirations on Virus Replication and Cell-to-Cell Movement from Studies Examining the Cytopathology Induced by Lettuce infectious yellows virus in Plant Cells

    PubMed Central

    Qiao, Wenjie; Medina, Vicente; Falk, Bryce W.

    2017-01-01

    Lettuce infectious yellows virus (LIYV) is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs) located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as ‘viral factories’ or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses. PMID:29021801

  19. Femtosecond optical injection of intact plant cells using a reconfigurable platform

    NASA Astrophysics Data System (ADS)

    Mitchell, Claire A.; Kalies, Stefan; Cizmar, Tomas; Bellini, Nicola; Kubasik-Thayil, Anisha; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G.; Gunn-Moore, Frank J.; Dholakia, Kishan

    2014-03-01

    The use of ultrashort-pulsed lasers for molecule delivery and transfection has proved to be a non-invasive and highly efficient technique for a wide range of mammalian cells. This present study investigates the effectiveness of femtosecond photoporation in plant cells, a hard-to-manipulate yet agriculturally relevant cell type, specifically suspension tobacco BY-2 cells. Both spatial and temporal shaping of the light field is employed to optimise the delivery of membrane impermeable molecules into plant cells using a reconfigurable optical system designed to be able to switch easily between different spatial modes and pulse durations. The use of a propagation invariant Bessel beam was found to increase the number of cells that could be viably optoinjected, when compared to the use of a Gaussian beam. Photoporation with a laser producing sub-12 fs pulses, coupled with a dispersion compensation system to retain the pulse duration at focus, reduced the power required for efficient optical injection by 1.5-1.8 times when compared to a photoporation with a 140 fs laser output.

  20. The plant cell cycle: Pre-Replication complex formation and controls

    PubMed Central

    Brasil, Juliana Nogueira; Costa, Carinne N. Monteiro; Cabral, Luiz Mors; Ferreira, Paulo C. G.; Hemerly, Adriana S.

    2017-01-01

    Abstract The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes. PMID:28304073

  1. Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell.

    PubMed

    Thuleau, P; Ward, J M; Ranjeva, R; Schroeder, J I

    1994-07-01

    Numerous biological assays and pharmacological studies on various higher plant tissues have led to the suggestion that voltage-dependent plasma membrane Ca2+ channels play prominent roles in initiating signal transduction processes during plant growth and development. However, to date no direct evidence has been obtained for the existence of such depolarization-activated Ca2+ channels in the plasma membrane of higher plant cells. Carrot suspension cells (Daucus carota L.) provide a well-suited system to determine whether voltage-dependent Ca2+ channels are present in the plasma membrane of higher plants and to characterize the properties of putative Ca2+ channels. It is known that both depolarization, caused by raising extracellular K+, and exposure to fungal toxins or oligogalacturonides induce Ca2+ influx into carrot cells. By direct application of patch-clamp techniques to isolated carrot protoplasts, we show here that depolarization of the plasma membrane positive to -135 mV activates Ca(2+)-permeable channels. These voltage-dependent ion channels were more permeable to Ca2+ than K+, while displaying large permeabilities to Ba2+ and Mg2+ ions. Ca(2+)-permeable channels showed slow and reversible inactivation. The single-channel conductance was 13 pS in 40 mM CaCl2. These data provide direct evidence for the existence of voltage-dependent Ca2+ channels in the plasma membrane of a higher plant cell and point to physiological mechanisms for plant Ca2+ channel regulation. The depolarization-activated Ca(2+)-permeable channels identified here could constitute a regulated pathway for Ca2+ influx in response to physiologically occurring stimulus-induced depolarizations in higher plant cells.

  2. Metal-accelerated oxidation in plant cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czuba, M.

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death aremore » Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.« less

  3. Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells.

    PubMed

    Yokota, Etsuo; Vidali, Luis; Tominaga, Motoki; Tahara, Hiroshi; Orii, Hidefumi; Morizane, Yosuke; Hepler, Peter K; Shimmen, Teruo

    2003-10-01

    In many cases, actin filaments are arranged into bundles and serve as tracks for cytoplasmic streaming in plant cells. We have isolated an actin-filament bundling protein, which is composed of 115-kDa polypeptide (P-115-ABP), from the germinating pollen of lily, Lilium longiflorum [Nakayasu et al. (1998) BIOCHEM: Biophys. Res. Commun. 249: 61]. P-115-ABP shared similar antigenicity with a plant 135-kDa actin-filament bundling protein (P-135-ABP), a plant homologue of villin. A full-length cDNA clone (ABP115; accession no. AB097407) was isolated from an expression cDNA library of lily pollen by immuno-screening using antisera against P-115-ABP and P-135-ABP. The amino acid sequence of P-115-ABP deduced from this clone showed high homology with those of P-135-ABP and four villin isoforms of Arabidopsis thaliana (AtVLN1, AtVLN2, AtVLN3 and AtVLN4), especially AtVLN4, indicating that P-115-ABP can also be classified as a plant villin. The P-115-ABP isolated biochemically from the germinating lily pollen was able to arrange F-actin filaments with uniform polarity into bundles and this bundling activity was suppressed by Ca2+-calmodulin (CaM), similar to the actin-filament bundling properties of P-135-ABP. The P-115-ABP type of plant villin was widely distributed in plant cells, from algae to land plants. In root hair cells of Hydrocharis dubia, this type of plant villin was co-localized with actin-filament bundles in the transvacuolar strands and the sub-cortical regions. Microinjection of the antiserum against P-115-ABP into living root hair cells caused the disappearance of transvaculor strands and alteration of the route of cytoplasmic streaming. In internodal cells of Chara corallina in which the P-135-ABP type of plant villin is lacking, the P-115-ABP type showed co-localization with actin-filament cables anchored on the intracellular surface of chloroplasts. These results indicated that plant villins are widely distributed and involved in the organization of actin

  4. Teaching about Water Relations in Plant Cells: An Uneasy Struggle.

    PubMed

    Malińska, Lilianna; Rybska, Eliza; Sobieszczuk-Nowicka, Ewa; Adamiec, Małgorzata

    University students often struggle to understand the role of water in plant cells. In particular, osmosis and plasmolysis appear to be challenging topics. This study attempted to identify student difficulties (including misconceptions) concerning osmosis and plasmolysis and examined to what extent the difficulties could be revised during a plant physiology course. A questionnaire was developed to monitor university students' conceptual knowledge before and after a course, and both qualitative and quantitative data were obtained. The data were analyzed using the constant comparison technique and descriptive statistics. Students were found to come to university with many misconceptions that had accumulated during their education. These misconceptions are extremely difficult to change during the traditional course, which comprises lectures and practical exercises. Students' misconceptions originate from commonly used sources such as textbooks, which are perceived as being reliable. Effective teaching of water relations in plant cells could include such didactic methods as "questioning the author," which allow teachers to monitor students' knowledge and help students acquire a more scientific understanding of key concepts. © 2016 L. Malińska et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst.

    PubMed

    Zárský, Viktor; Potocký, Martin

    2010-04-01

    The Rho/Rop small GTPase regulatory module is central for initiating exocytotically ACDs (active cortical domains) in plant cell cortex, and a growing array of Rop regulators and effectors are being discovered in plants. Structural membrane phospholipids are important constituents of cells as well as signals, and phospholipid-modifying enzymes are well known effectors of small GTPases. We have shown that PLDs (phospholipases D) and their product, PA (phosphatidic acid), belong to the regulators of the secretory pathway in plants. We have also shown that specific NOXs (NADPH oxidases) producing ROS (reactive oxygen species) are involved in cell growth as exemplified by pollen tubes and root hairs. Most plant cells exhibit several distinct plasma membrane domains (ACDs), established and maintained by endocytosis/exocytosis-driven membrane protein recycling. We proposed recently the concept of a 'recycling domain' (RD), uniting the ACD and the connected endosomal recycling compartment (endosome), as a dynamic spatiotemporal entity. We have described a putative GTPase-effector complex exocyst involved in exocytic vesicle tethering in plants. Owing to the multiplicity of its Exo70 subunits, this complex, along with many RabA GTPases (putative recycling endosome organizers), may belong to core regulators of RD organization in plants.

  6. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells.

    PubMed

    Kale, Shiv D; Gu, Biao; Capelluto, Daniel G S; Dou, Daolong; Feldman, Emily; Rumore, Amanda; Arredondo, Felipe D; Hanlon, Regina; Fudal, Isabelle; Rouxel, Thierry; Lawrence, Christopher B; Shan, Weixing; Tyler, Brett M

    2010-07-23

    Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues. Copyright 2010 Elsevier Inc. All rights reserved.

  7. A Microbial Avenue to Cell Cycle Control in the Plant Superkingdom[C][W][OPEN

    PubMed Central

    Tulin, Frej; Cross, Frederick R.

    2014-01-01

    Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage. PMID:25336509

  8. Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy

    PubMed Central

    Paës, Gabriel; Habrant, Anouck; Terryn, Christine

    2018-01-01

    Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in the architecture of plant cell walls is therefore important to understand and optimize transformation processes. For the first time, super-resolution imaging of poplar wood samples has been performed using the Stimulated Emission Depletion (STED) technique. In comparison to standard confocal images, STED reveals new details in cell wall structure, allowing the identification of secondary walls and middle lamella with fine details, while keeping open the possibility to perform topochemistry by the use of relevant fluorescent nano-probes. In particular, the deconvolution of STED images increases the signal-to-noise ratio so that images become very well defined. The obtained results show that the STED super-resolution technique can be easily implemented by using cheap commercial fluorescent rhodamine-PEG nano-probes which outline the architecture of plant cell walls due to their interaction with lignin. Moreover, the sample preparation only requires easily-prepared plant sections of a few tens of micrometers, in addition to an easily-implemented post-treatment of images. Overall, the STED super-resolution technique in combination with a variety of nano-probes can provide a new vision of plant cell wall imaging by filling in the gap between classical photon microscopy and electron microscopy. PMID:29415498

  9. Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy.

    PubMed

    Paës, Gabriel; Habrant, Anouck; Terryn, Christine

    2018-02-06

    Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in the architecture of plant cell walls is therefore important to understand and optimize transformation processes. For the first time, super-resolution imaging of poplar wood samples has been performed using the Stimulated Emission Depletion (STED) technique. In comparison to standard confocal images, STED reveals new details in cell wall structure, allowing the identification of secondary walls and middle lamella with fine details, while keeping open the possibility to perform topochemistry by the use of relevant fluorescent nano-probes. In particular, the deconvolution of STED images increases the signal-to-noise ratio so that images become very well defined. The obtained results show that the STED super-resolution technique can be easily implemented by using cheap commercial fluorescent rhodamine-PEG nano-probes which outline the architecture of plant cell walls due to their interaction with lignin. Moreover, the sample preparation only requires easily-prepared plant sections of a few tens of micrometers, in addition to an easily-implemented post-treatment of images. Overall, the STED super-resolution technique in combination with a variety of nano-probes can provide a new vision of plant cell wall imaging by filling in the gap between classical photon microscopy and electron microscopy.

  10. Cell Biology: Control of Partner Lifetime in a Plant-Fungus Relationship.

    PubMed

    Gutjahr, Caroline; Parniske, Martin

    2017-06-05

    Arbuscules are tree-shaped fungal structures inside plant root cells that facilitate the exchange of nutrients delivered by the fungus with carbon sources from the host. To maintain symbiotic efficiency, plant cells can trigger degeneration of underperforming arbuscules. A recent study reveals the first transcription factor, which induces genes encoding hydrolytic enzymes, to mediate arbuscule degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The molecular basis of plant cell wall extension.

    PubMed

    Darley, C P; Forrester, A M; McQueen-Mason, S J

    2001-09-01

    In all terrestrial and aquatic plant species the primary cell wall is a dynamic structure, adjusted to fulfil a diversity of functions. However a universal property is its considerable mechanical and tensile strength, whilst being flexible enough to accommodate turgor and allow for cell elongation. The wall is a composite material consisting of a framework of cellulose microfibrils embedded in a matrix of non-cellulosic polysaccharides, interlaced with structural proteins and pectic polymers. The assembly and modification of these polymers within the growing cell wall has, until recently, been poorly understood. Advances in cytological and genetic techniques have thrown light on these processes and have led to the discovery of a number of wall-modifying enzymes which, either directly or indirectly, play a role in the molecular basis of cell wall expansion.

  12. Turnover of galactans and other cell wall polysaccharides during development of flax plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshkova, T.A.; Chemikosova, S.B.; Lozovaya, V.V.

    1997-06-01

    We investigated the synthesis and turnover of cell wall polysaccharides of the flax (Linum usitatissimum L.) plant during development of the phloem fibers. One-month-old flax plants were exposed to a 40-min pulse with {sup 14}CO{sub 2} followed by 8-h, 24-h, and 1-month periods of chase with ambient CO{sub 2}, and radioactivity in cell wall sugars was determined in various plant parts. The relative radioactivity of glucose in noncellulosic polysaccharides was the highest compared with all other cell wall sugars immediately after the pulse and decreased substantially during the subsequent chase. The relative radioactivities of the other cell wall sugars changedmore » with differing rates, indicating turnover of specific polysaccharides. Notably, after 1 month of chase there was a marked decrease in the proportional mass and total radioactivity in cell wall galactose, indicating a long-term turnover of the galactans enriched in the fiber-containing tissues. The ratio of radiolabeled xylose to arabinose also increased during the chase, indicating a turnover of arabinose-containing polymers and interconversion to xylose. The pattern of label redistribution differed between organs, indicating that the cell wall turnover processes are tissue- and cell-specific.« less

  13. Label-free in situ Imaging of Lignification in Plant Cell Walls

    PubMed Central

    Schmidt, Martin; Perera, Pradeep; Schwartzberg, Adam M.; Adams, Paul D.; Schuck, P. James

    2010-01-01

    Meeting growing energy demands safely and efficiently is a pressing global challenge. Therefore, research into biofuels production that seeks to find cost-effective and sustainable solutions has become a topical and critical task. Lignocellulosic biomass is poised to become the primary source of biomass for the conversion to liquid biofuels1-6. However, the recalcitrance of these plant cell wall materials to cost-effective and efficient degradation presents a major impediment for their use in the production of biofuels and chemicals4. In particular, lignin, a complex and irregular poly-phenylpropanoid heteropolymer, becomes problematic to the postharvest deconstruction of lignocellulosic biomass. For example in biomass conversion for biofuels, it inhibits saccharification in processes aimed at producing simple sugars for fermentation7. The effective use of plant biomass for industrial purposes is in fact largely dependent on the extent to which the plant cell wall is lignified. The removal of lignin is a costly and limiting factor8 and lignin has therefore become a key plant breeding and genetic engineering target in order to improve cell wall conversion. Analytical tools that permit the accurate rapid characterization of lignification of plant cell walls become increasingly important for evaluating a large number of breeding populations. Extractive procedures for the isolation of native components such as lignin are inevitably destructive, bringing about significant chemical and structural modifications9-11. Analytical chemical in situ methods are thus invaluable tools for the compositional and structural characterization of lignocellulosic materials. Raman microscopy is a technique that relies on inelastic or Raman scattering of monochromatic light, like that from a laser, where the shift in energy of the laser photons is related to molecular vibrations and presents an intrinsic label-free molecular "fingerprint" of the sample. Raman microscopy can afford non

  14. A detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum.

    PubMed

    Cheng, Mengzhu; Wang, Lihong; Yang, Qing; Huang, Xiaohua

    2018-08-30

    The pollution of rare earth elements (REEs) in ecosystem is becoming more and more serious, so it is urgent to establish methods for monitoring the pollution of REEs. Monitoring environmental pollution via the response of plants to pollutants has become the most stable and accurate method compared with traditional methods, but scientists still need to find the primary response of plants to pollutants to improve the sensitivity and speed of this method. Based on the facts that the initiation of endocytosis is the primary cellular response of the plant leaf cells to REEs and the detection of endocytosis is complex and expensive, we constructed a detection method in living plant cells for rapidly monitoring the response of plants to exogenous lanthanum [La(III), a representative of REEs] by designing a new immuno-electrochemical method for detecting the content change in extracellular vitronectin-like protein (VN) that are closely related to endocytosis. Results showed that when 30 μM La(III) initiated a small amount of endocytosis, the content of extracellular VN increased by 5.46 times, but the structure and function of plasma membrane were not interfered by La(III); when 80 μM La(III) strongly initiated a large amount of endocytosis, the content of extracellular VN increased by 119 times, meanwhile, the structure and function of plasma membrane were damaged. In summary, the detection method can reflect the response of plants to La(III) via detecting the content change in extracellular VN, which provides an effective and convenient way to monitor the response of plants to exogenous REEs. Copyright © 2018. Published by Elsevier Inc.

  15. Establishment of Genetically Encoded Biosensors for Cytosolic Boric Acid in Plant Cells.

    PubMed

    Fukuda, Makiha; Wakuta, Shinji; Kamiyo, Jio; Fujiwara, Toru; Takano, Junpei

    2018-06-08

    Boron (B) is an essential micronutrient for plants. To maintain B concentration in tissues at appropriate levels, plants use boric acid channels belonging to the NIP subfamily of aquaporins and BOR borate exporters. To regulate B transport, these transporters exhibit different cell-type specific expression, polar localization, and B-dependent post-transcriptional regulation. Here, we describe the development of genetically encoded biosensors for cytosolic boric acid to visualize the spatial distribution and temporal dynamics of B in plant tissues. The biosensors were designed based on the function of the NIP5;1 5'-untranslated region (UTR), which promotes mRNA degradation in response to an elevated cytosolic boric acid concentration. The signal intensities of the biosensor coupled with Venus fluorescent protein and a nuclear localization signal (uNIP5;1-Venus) showed a negative correlation with intracellular B concentrations in cultured tobacco BY-2 cells. When expressed in Arabidopsis thaliana, uNIP5;1-Venus enabled quantification of the B distribution in roots at single-cell resolution. In mature roots, cytosolic B levels in stele were maintained under low-B supply, while those in epidermal, cortical, and endodermal cells were influenced by external B concentrations. Another biosensor coupled with a luciferase protein fused to a destabilization PEST sequence (uNIP5;1-Luc) was used to visualize changes in cytosolic boric acid concentrations. Thus, uNIP5;1-Venus/Luc enables visualization of B transport in various plant cells/tissues. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Regulation of plant cells, cell walls and development by mechanical signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyerowitz, Elliot M.

    2016-06-14

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization ofmore » the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.« less

  17. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    PubMed

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  18. Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics

    PubMed Central

    Jaipargas, Erica-Ashley; Barton, Kiah A.; Mathur, Neeta; Mathur, Jaideep

    2015-01-01

    Mitochondria are pleomorphic, double membrane-bound organelles involved in cellular energetics in all eukaryotes. Mitochondria in animal and yeast cells are typically tubular-reticulate structures and several micro-meters long but in green plants they are predominantly observed as 0.2–1.5 μm punctae. While fission and fusion, through the coordinated activity of several conserved proteins, shapes mitochondria, the endoplasmic reticulum (ER) has recently been identified as an additional player in this process in yeast and mammalian cells. The mitochondria-ER relationship in plant cells remains largely uncharacterized. Here, through live-imaging of the entire range of mitochondria pleomorphy we uncover the underlying basis for the predominantly punctate mitochondrial form in plants. We demonstrate that mitochondrial morphology changes in response to light and cytosolic sugar levels in an ER mediated manner. Whereas, large ER polygons and low dynamics under dark conditions favor mitochondrial fusion and elongation, small ER polygons result in increased fission and predominantly small mitochondria. Hypoxia also reduces ER dynamics and increases mitochondrial fusion to produce giant mitochondria. By observing elongated mitochondria in normal plants and fission-impaired Arabidopsis nmt1-2 and drp3a mutants we also establish that thin extensions called matrixules and a beads-on-a-string mitochondrial phenotype are direct consequences of mitochondria-ER interactions. PMID:26442089

  19. Plant cell nucleolus as a hot spot for iron.

    PubMed

    Roschzttardtz, Hannetz; Grillet, Louis; Isaure, Marie-Pierre; Conéjéro, Geneviève; Ortega, Richard; Curie, Catherine; Mari, Stéphane

    2011-08-12

    Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence. Pea (Pisum sativum) embryo was used as a model in this study because of its large cell size and high iron content. Histochemical staining with ferrocyanide and diaminobenzidine (Perls/diaminobenzidine) strongly labeled a unique structure in each cell, which co-labeled with the DNA fluorescent stain DAPI, thus corresponding to the nucleus. The unexpected presence of iron in the nucleus was confirmed by elemental imaging using micro particle-induced x-ray emission. X-ray fluorescence on cryo-sectioned embryos further established that, quantitatively, the iron concentration found in the nucleus was higher than in the expected iron-rich organelles such as plastids or vacuoles. Moreover, within the nucleus, iron was particularly accumulated in a subcompartment that was identified as the nucleolus as it was shown to transiently disassemble during cell division. Taken together, our data uncover an as yet unidentified although abundant iron pool in the cell, which is located in the nuclei of healthy, actively dividing plant tissues. This result paves the way for the discovery of a novel cellular function for iron related to nucleus/nucleolus-associated processes.

  20. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  1. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation

    PubMed Central

    Wallace, Ian S.

    2015-01-01

    The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071

  2. Subcellular impact of sonoporation on plant cells: issues to be addressed in ultrasound-mediated gene transfer.

    PubMed

    Qin, Peng; Xu, Lin; Cai, Ping; Hu, Yaxin; Yu, Alfred C H

    2013-01-01

    Sonoporation (membrane perforation via ultrasonic cavitation) is known to be realizable in plant cells on a reversible basis. However, cell viability may concomitantly be affected over the process, and limited knowledge is now available on how such cytotoxic impact comes about. This work has investigated how sonoporation may affect plant cells at a subcellular level and in turn activate programmed cell death (PCD). Tobacco BY-2 cells were used as the plant model, and sonoporation was applied through a microbubble-mediated approach with 100:1 cell-to-bubble ratio, free-field peak rarefaction pressure of either 0.4 or 0.9 MPa, and 1 MHz ultrasound frequency (administered in pulsed standing-wave mode at 10% duty cycle, 1 kHz pulse repetition frequency, and 1 min duration). Fluoroscopy results showed that sonoporated tobacco cells may undergo plasma membrane depolarization and reactive oxygen species elevation (two cellular disruption events closely connected to PCD). It was also found that the mitochondria of sonoporated tobacco cells may lose their outer membrane potential over time (observed using confocal microscopy) and consequently release stores of cytochrome-c proteins (determined by Western Blotting) into the cytoplasm to activate PCD. These findings provide insight into the underlying mechanisms responsible for sonoporation-induced cytotoxicity in plant cells. They should be taken into account when using this membrane perforation approach for gene transfection applications in plant biotechnology. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Phytotoxicity, uptake and metabolism of 1,4-dichlorobenzene by plant cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.J.; Bokern, M.; Boehme, C.

    1996-07-01

    Phytotoxicity, uptake, and metabolism of 1,4-dichlorobenzene (1,4-DCB) by carrot (Daucus carota L.), soybean (Glycine max. L.), tomato (Lycopersicon esculentum Mill.), and red goosefoot (Chenopodiun rubrum L.) cell suspension cultures were studied. Sealed glass systems were utilized for the investigation because 1,4-DCB is volatile. The sealed systems affect the growth of plant cells, but do not provide different results when testing xenobiotic uptake and metabolism. 1,4-Dichlorobenzene (40 {micro}g in 40 ml medium) was taken up by carrot (49%), soybean (50%), and red goosefoot (62%) cells. Only the soybean cell cultures provided evidence of the existence of metabolites of this compound, probablymore » conjugates of chlorophenols. Conditions for phytotoxicity tests were modified because the growth of cell cultures was affected when sealed for longer than 2 d. 1,4-Dichlorobenzene is toxic to cell cultures of the three tested plant species (tomato, soybean, and carrot). Concentrations of 0.5 mM caused 50% growth inhibition in carrot and soybean cultures. The tomato cultures were more sensitive, with 0.05 mM causing 50% growth inhibition.« less

  4. DREAMs make plant cells to cycle or to become quiescent.

    PubMed

    Magyar, Zoltán; Bögre, László; Ito, Masaki

    2016-12-01

    Cell cycle phase specific oscillation of gene transcription has long been recognized as an underlying principle for ordered processes during cell proliferation. The G1/S-specific and G2/M-specific cohorts of genes in plants are regulated by the E2F and the MYB3R transcription factors. Mutant analysis suggests that activator E2F functions might not be fully required for cell cycle entry. In contrast, the two activator-type MYB3Rs are part of positive feedback loops to drive the burst of mitotic gene expression, which is necessary at least to accomplish cytokinesis. Repressor MYB3Rs act outside the mitotic time window during cell cycle progression, and are important for the shutdown of mitotic genes to impose quiescence in mature organs. The two distinct classes of E2Fs and MYB3Rs together with the RETINOBLATOMA RELATED are part of multiprotein complexes that may be evolutionary related to what is known as DREAM complex in animals. In plants, there are multiple such complexes with distinct compositions and functions that may be involved in the coordinated cell cycle and developmental regulation of E2F targets and mitotic genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo

    PubMed Central

    1986-01-01

    The reorganization of the microtubular meshwork was studied in intact Haemanthus endosperm cells and cell fragments (cytoplasts). This higher plant tissue is devoid of a known microtubule organizating organelle. Observations on living cells were correlated with microtubule arrangements visualized with the immunogold method. In small fragments, reorganization did not proceed. In medium and large sized fragments, microtubular converging centers formed first. Then these converging centers reorganized into either closed bushy microtubular spiral or chromosome-free cytoplasmic spindles/phragmoplasts. Therefore, the final shape of organized microtubular structures, including spindle shaped, was determined by the initial size of the cell fragments and could be achieved without chromosomes or centrioles. Converging centers elongate due to the formation of additional structures resembling microtubular fir trees. These structures were observed at the pole of the microtubular converging center in anucleate fragments, accessory phragmoplasts in nucleated cells, and in the polar region of the mitotic spindle during anaphase. Therefore, during anaphase pronounced assembly of new microtubules occurs at the polar region of acentriolar spindles. Moreover, statistical analysis demonstrated that during the first two-thirds of anaphase, when chromosomes move with an approximately constant speed, kinetochore fibers shorten, while the length of the kinetochore fiber complex remains constant due to the simultaneous elongation of their integral parts (microtubular fir trees). The half-spindle shortens only during the last one-third of anaphase. These data contradict the presently prevailing view that chromosome-to-pole movements in acentriolar spindles of higher plants are concurrent with the shortening of the half-spindle, the self- reorganizing property of higher plant microtubules (tubulin) in vivo. It may be specific for cells without centrosomes and may be superimposed also on other

  6. Exact analytic solutions for a global equation of plant cell growth.

    PubMed

    Pietruszka, Mariusz

    2010-05-21

    A generalization of the Lockhart equation for plant cell expansion in isotropic case is presented. The goal is to account for the temporal variation in the wall mechanical properties--in this case by making the wall extensibility a time dependent parameter. We introduce a time-differential equation describing the plant growth process with some key biophysical aspects considered. The aim of this work was to improve prior modeling efforts by taking into account the dynamic character of the plant cell wall with characteristics reminiscent of damped (aperiodic) motion. The equations selected to encapsulate the time evolution of the wall extensibility offer a new insight into the control of cell wall expansion. We find that the solutions to the time dependent second order differential equation reproduce much of the known experimental data for long- and short-time scales. Additionally, in order to support the biomechanical approach, a new growth equation based on the action of expansin proteins is proposed. Remarkably, both methods independently converge to the same kind, sigmoid-shaped, growth description functional V(t) proportional, exp(-exp(-t)), properly describing the volumetric growth and, consequently, growth rate as its time derivative. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Apoplastic interactions between plants and plant root intruders.

    PubMed

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  8. Investigating Wound Healing in Plant Cells: This Spud's for You!

    ERIC Educational Resources Information Center

    Thomson, Norm

    2000-01-01

    Presents classroom inquiry-based investigations to investigate wound healing in plant tissues and cells. Students create their own research problems and the investigations can be related to the National Science Standards. (SAH)

  9. Teaching about Water Relations in Plant Cells: An Uneasy Struggle

    PubMed Central

    Malińska, Lilianna; Rybska, Eliza; Sobieszczuk-Nowicka, Ewa; Adamiec, Małgorzata

    2016-01-01

    University students often struggle to understand the role of water in plant cells. In particular, osmosis and plasmolysis appear to be challenging topics. This study attempted to identify student difficulties (including misconceptions) concerning osmosis and plasmolysis and examined to what extent the difficulties could be revised during a plant physiology course. A questionnaire was developed to monitor university students’ conceptual knowledge before and after a course, and both qualitative and quantitative data were obtained. The data were analyzed using the constant comparison technique and descriptive statistics. Students were found to come to university with many misconceptions that had accumulated during their education. These misconceptions are extremely difficult to change during the traditional course, which comprises lectures and practical exercises. Students’ misconceptions originate from commonly used sources such as textbooks, which are perceived as being reliable. Effective teaching of water relations in plant cells could include such didactic methods as “questioning the author,” which allow teachers to monitor students’ knowledge and help students acquire a more scientific understanding of key concepts. PMID:27909028

  10. Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches.

    PubMed

    Novák, Ondřej; Napier, Richard; Ljung, Karin

    2017-04-28

    Plant hormones are a group of naturally occurring, low-abundance organic compounds that influence physiological processes in plants. Our knowledge of the distribution profiles of phytohormones in plant organs, tissues, and cells is still incomplete, but advances in mass spectrometry have enabled significant progress in tissue- and cell-type-specific analyses of phytohormones over the last decade. Mass spectrometry is able to simultaneously identify and quantify hormones and their related substances. Biosensors, on the other hand, offer continuous monitoring; can visualize local distributions and real-time quantification; and, in the case of genetically encoded biosensors, are noninvasive. Thus, biosensors offer additional, complementary technologies for determining temporal and spatial changes in phytohormone concentrations. In this review, we focus on recent advances in mass spectrometry-based quantification, describe monitoring systems based on biosensors, and discuss validations of the various methods before looking ahead at future developments for both approaches.

  11. Phytocalpain controls the proliferation and differentiation fates of cells in plant organ development.

    PubMed

    Ahn, Joon-Woo; Kim, Moonil; Lim, Jeong Hwa; Kim, Gyung-Tae; Pai, Hyun-Sook

    2004-06-01

    Calpain, a calcium-dependent cysteine protease, plays an essential role in basic cellular processes in animal cells, including cell proliferation, apoptosis, and differentiation. NbDEK encodes the calpain homolog of N. benthamiana. In this study, virus-induced gene silencing (VIGS) of NbDEK resulted in arrested organ development and hyperplasia in all the major plant organs examined. The epidermal layers of the leaves and stems were covered with hyperproliferating cell masses, and stomata and trichome development was severely inhibited. During flower development, a single dome-like structure was grown from the flower meristem to generate a large cylinder-shaped flower lacking any floral organs. At the cellular level, cell division was sustained in tissues that were otherwise already differentiated, and cell differentiation was severely hampered. NbDEK is ubiquitously expressed in all the plant tissues examined. In the abnormal organs of the NbDEK VIGS lines, protein levels of D-type cyclins (CycD)2, CycD3, and proliferating cell nuclear antigen (PCNA) were greatly elevated, and transcription of E2F (E2 promoter binding factor), E2F-regulated genes, retinoblastoma (Rb), and KNOTTED1 (KN1)-type homeobox genes was also stimulated. These results suggest that phytocalpain is a key regulator of cell proliferation and differentiation during plant organogenesis, and that it acts partly by controlling the CycD/Rb pathway.

  12. The functions of the cytoskeleton and associated proteins during mitosis and cytokinesis in plant cells

    PubMed Central

    Li, Shanwei; Sun, Tiantian; Ren, Haiyun

    2015-01-01

    In higher plants, microtubule (MT)-based, and actin filament (AF)-based structures play important roles in mitosis and cytokinesis. Besides the mitotic spindle, the evolution of a band comprising cortical MTs and AFs, namely, the preprophase band (PPB), is evident in plant cells. This band forecasts a specific division plane before the initiation of mitosis. During cytokinesis, another plant-specific cytoskeletal structure called the phragmoplast guides vesicles in the creation of a new cell wall. In addition, a number of cytoskeleton-associated proteins are reportedly involved in the formation and function of the PPB, mitotic spindle, and phragmoplast. This review summarizes current knowledge on the cytoskeleton-associated proteins that mediate the cytoskeletal arrays during mitosis and cytokinesis in plant cells and discusses the interaction between MTs and AFs involved in mitosis and cytokinesis. PMID:25964792

  13. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    PubMed

    Appelhagen, Ingo; Wulff-Vester, Anders Keim; Wendell, Micael; Hvoslef-Eide, Anne-Kathrine; Russell, Julia; Oertel, Anne; Martens, Stefan; Mock, Hans-Peter; Martin, Cathie; Matros, Andrea

    2018-06-08

    Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the limited availability and diversity of anthocyanins commercially have initiated searches for alternative sources of these natural colourants. In plants, high-level production of secondary metabolites, such as anthocyanins, can be achieved by engineering of regulatory genes as well as genes encoding biosynthetic enzymes. We have used tobacco lines which constitutively produce high levels of cyanidin 3-O-rutinoside, delphinidin 3-O-rutinoside or a novel anthocyanin, acylated cyanidin 3-O-(coumaroyl) rutinoside to generate cell suspension cultures. The cell lines are stable in their production rates and superior to conventional plant cell cultures. Scale-up of anthocyanin production in small scale fermenters has been demonstrated. The cell cultures have also proven to be a suitable system for production of 13 C-labelled anthocyanins. Our method for anthocyanin production is transferable to other plant species, such as Arabidopsis thaliana, demonstrating the potential of this approach for making a wide range of highly-decorated anthocyanins. The tobacco cell cultures represent a customisable and sustainable alternative to conventional anthocyanin production platforms and have considerable potential for use in industrial and medical applications of anthocyanins. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Protein farnesyltransferase in plants: molecular characterization and involvement in cell cycle control.

    PubMed Central

    Qian, D; Zhou, D; Ju, R; Cramer, C L; Yang, Z

    1996-01-01

    Farnesylation is required for membrane targeting, protein-protein interactions, and the biological activity of key regulatory proteins, such as Ras small GTPases and protein kinases in a wide range of eukaryotes. In this report, we describe the molecular identification of a plant protein farnesyltransferase (FTase) and evidence for its role in the control of the cell cycle in plants. A pea gene encoding a homolog of the FTase beta subunit was previously cloned using a polymerase chain reaction-based strategy. A similar approach was used to clone a pea gene encoding a homolog of the FTase alpha subunit. The biochemical function of the pea FTase homologs was demonstrated by the reconstitution of FTase enzyme activity using FTase fusion proteins coexpressed in Escherichia coll. RNA gel blot analyses showed that levels of FTase mRNAs are generally higher in tissues, such as those of nodules, that are active in cell division. The relationship of FTase to cell division was further analyzed during the growth of suspension-cultured tobacco BY-2 cells. A biphasic fluctuation of FTase enzyme activity preceded corresponding changes in mitotic activity at the early log phase of cell growth. Moreover, manumycin, a specific inhibitor of FTase, was effective in inhibiting mitosis and growth in these cells. Using synchronized BY-2 cells, manumycin completely blocked mitosis when added at the early S phase but not when added at the G2 phase. These data suggest that FTase is required for the plant cell cycle, perhaps by modulating the progression through the S phase and the transition from G1 to the S phase. PMID:8989889

  15. Direct fuel cell power plants: the final steps to commercialization

    NASA Astrophysics Data System (ADS)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  16. Fuel Cell Balance-of-Plant Reliability Testbed Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sproat, Vern; LaHurd, Debbie

    Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEMmore » fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.« less

  17. Apoplastic interactions between plants and plant root intruders

    PubMed Central

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059

  18. Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay

    NASA Astrophysics Data System (ADS)

    Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong

    2005-12-01

    In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.

  19. Micromanipulation by laser microbeam and optical tweezers: from plant cells to single molecules.

    PubMed

    Greulich, K O; Pilarczyk, G; Hoffmann, A; Meyer Zu Hörste, G; Schäfer, B; Uhl, V; Monajembashi, S

    2000-06-01

    Complete manipulation by laser light allows precise and gentle treatment of plant cells, subcellular structures, and even individual DNA molecules. Recently, affordable lasers have become available for the construction of microbeams as well as for optical tweezers. This may generate new interest in these tools for plant biologists. Early experiments, reviewed in this journal, showed that laser supported microinjection of material into plant cells or tissues circumvents mechanical problems encountered in microinjection by fragile glass capillaries. Plant protoplasts could be fused with each other when under microscopical observation, and it was no major problem to generate a triple or quadruple fusion product. In the present paper we review experiments where membrane material was prepared from root hair tips and microgravity was simulated in algae. As many plant cells are transparent, it is possible to work inside living, intact cells. New experiments show that it is possible to release by optical micromanipulation, with high spatial resolutions, intracellular calcium from caged compounds and to study calcium oscillations. An example for avian cardiac tissue is given, but the technique is also suitable for plant cell research. As a more technical tool, optical tweezers can be used to spatially fix subcellular structures otherwise moving inside a cell and thus make them available for investigation with a confocal microscope even when the time for image formation is extended (for example at low fluorescence emission). A molecular biological example is the handling of chromosomes and isolated individual DNA molecules by laser microtools. For example, chromosomes can be cut along complex trajectories, not only perpendicular to their long axis. Single DNA molecules are cut by the laser microbeam and, after coupling such a molecule to a polystrene microbead, are handled in complex geometries. Here, the individual DNA molecules are made visible with a conventional

  20. Chloride regulates leaf cell size and water relations in tobacco plants

    PubMed Central

    Franco-Navarro, Juan D.; Brumós, Javier; Rosales, Miguel A.; Cubero-Font, Paloma; Talón, Manuel; Colmenero-Flores, José M.

    2016-01-01

    Chloride (Cl–) is a micronutrient that accumulates to macronutrient levels since it is normally available in nature and actively taken up by higher plants. Besides a role as an unspecific cell osmoticum, no clear biological roles have been explicitly associated with Cl– when accumulated to macronutrient concentrations. To address this question, the glycophyte tobacco (Nicotiana tabacum L. var. Habana) has been treated with a basal nutrient solution supplemented with one of three salt combinations containing the same cationic balance: Cl–-based (CL), nitrate-based (N), and sulphate+phosphate-based (SP) treatments. Under non-saline conditions (up to 5mM Cl–) and no water limitation, Cl– specifically stimulated higher leaf cell size and led to a moderate increase of plant fresh and dry biomass mainly due to higher shoot expansion. When applied in the 1–5mM range, Cl– played specific roles in regulating leaf osmotic potential and turgor, allowing plants to improve leaf water balance parameters. In addition, Cl– also altered water relations at the whole-plant level through reduction of plant transpiration. This was a consequence of a lower stomatal conductance, which resulted in lower water loss and greater photosynthetic and integrated water-use efficiency. In contrast to Cl–, these effects were not observed for essential anionic macronutrients such as nitrate, sulphate, and phosphate. We propose that the abundant uptake and accumulation of Cl– responds to adaptive functions improving water homeostasis in higher plants. PMID:26602947

  1. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    NASA Astrophysics Data System (ADS)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  2. Gravity resistance, another graviresponse in plants - role of microtubule-membrane-cell wall continuum

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Saito, Y.; Usui, S.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force has been a serious problem for plants to survive on land, after they first went ashore more than 400 million years ago. Thus, gravity resistance is the principal graviresponse in plants comparable to gravitropism. Nevertheless, only limited information has been obtained for this second gravity response. We have examined the mechanism of gravity resistance using hypergravity conditions produced by centrifugation. The results led a hypothesis on the mechanism of plant resistance to the gravitational force that the plant constructs a tough body by increasing the cell wall rigidity, which are brought about by modification of the cell wall metabolism and cell wall environment, especially pH. The hypothesis was further supported by space experiments during the Space Shuttle STS-95 mission. On the other hand, we have shown that gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and amyloplast sedimentation in statocytes is not involved in gravity resistance. Moreover, hypergravity treatment increased the expression levels of genes encoding alpha-tubulin, a component of microtubules and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols. The expression of HMGR and alpha- and beta-tubulin genes increased within several hours after hypergravity treatment, depending on the magnitude of gravity. The determination of levels of gene products as well as the analysis with knockout mutants of these genes by T-DNA insertions in Arabidopsis supports the involvement of both membrane sterols and microtubules in gravity resistance. These results suggest that structural or physiological continuum of microtubule-cell membrane-cell wall is responsible for plant resistance to the gravitational force.

  3. The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions

    PubMed Central

    Matsui, Hidenori; Nomura, Yuko; Egusa, Mayumi; Hamada, Takahiro; Hyon, Gang-Su; Kaminaka, Hironori; Ueda, Takashi

    2017-01-01

    The induction of rapid cell death is an effective strategy for plants to restrict biotrophic and hemi-biotrophic pathogens at the infection site. However, activation of cell death comes at a high cost, as dead cells will no longer be available for defense responses nor general metabolic processes. In addition, necrotrophic pathogens that thrive on dead tissue, take advantage of cell death-triggering mechanisms. Mechanisms by which plants solve this conundrum remain described. Here, we identify PLANT SMY2-TYPE ILE-GYF DOMAIN-CONTAINING PROTEIN 1 (PSIG1) and show that PSIG1 helps to restrict cell death induction during pathogen infection. Inactivation of PSIG1 does not result in spontaneous lesions, and enhanced cell death in psig1 mutants is independent of salicylic acid (SA) biosynthesis or reactive oxygen species (ROS) production. Moreover, PSIG1 interacts with SMG7, which plays a role in nonsense-mediated RNA decay (NMD), and the smg7-4 mutant allele mimics the cell death phenotype of the psig1 mutants. Intriguingly, the psig1 mutants display enhanced susceptibility to the hemi-biotrophic bacterial pathogen. These findings point to the existence and importance of the SA- and ROS-independent cell death constraining mechanism as a part of the plant immune system. PMID:29073135

  4. Plant metabolism and cell wall formation in space (microgravity) and on Earth

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.

    1994-01-01

    Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.

  5. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants.

    PubMed

    Tilsner, Jens; Nicolas, William; Rosado, Abel; Bayer, Emmanuelle M

    2016-04-29

    Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs.

  6. Imaging the Dynamics of Cell Wall Polymer Deposition in the Unicellular Model Plant, Penium margaritaceum.

    PubMed

    Domozych, David; Lietz, Anna; Patten, Molly; Singer, Emily; Tinaz, Berke; Raimundo, Sandra C

    2017-01-01

    The unicellular green alga, Penium margaritaceum, represents a novel and valuable model organism for elucidating cell wall dynamics in plants. This organism's cell wall contains several polymers that are highly similar to those found in the primary cell walls of land plants. Penium is easily grown in laboratory culture and is effectively manipulated in various experimental protocols including microplate assays and correlative microscopy. Most importantly, Penium can be live labeled with cell wall-specific antibodies or other probes and returned to culture where specific cell wall developmental events can be monitored. Additionally, live cells can be rapidly cryo-fixed and cell wall surface microarchitecture can be observed with variable pressure scanning electron microscopy. Here, we describe the methodology for maintaining Penium for experimental cell wall enzyme studies.

  7. Progesterone biotransformation by plant cell suspension cultures.

    PubMed Central

    Yagen, B; Gallili, G E; Mateles, R I

    1978-01-01

    Progesterone was converted to 5alpha-pregnane-3alpha-ol-20-one, delta4-pregnene-20alpha-ol-3-one, delta4-pregnene-14alpha-ol-3,20-dione, delta4-pregnene-7beta,14alpha-diol-3,20-dione, and delta4-pregnene-6beta,11alpha-diol-3,20-dione by cell cultures of Lycopersicon esculentum. Cell cultures of Capsicum frutescens (green) metabolized progesterone to delta4-pregnene-20alpha-ol-3-one in very high yield, and Vinca rosea yielded delta4-pregnene-20beta-ol-3-one and delta4-pregnene-14alpha-ol-3,20-dione. A stereospecific reduction of the keto groups and a double bond and stereospecific introduction of hydroxyl groups at the 6, 11, and 14 positions have been observed. The mono- and dihydroxylated progesterones have not previously been reported as metabolic products of progesterone by plant cell systems and represent de novo hydroxylation of a nonglycosylated steroid. PMID:697360

  8. Hybrid proline-rich proteins: novel players in plant cell elongation?

    PubMed Central

    Dvořáková, Lenka; Srba, Miroslav; Opatrny, Zdenek; Fischer, Lukas

    2012-01-01

    Background and Aims Hybrid proline-rich proteins (HyPRPs) represent a large family of putative cell-wall proteins characterized by the presence of a variable N-terminal domain and a conserved C-terminal domain that is related to non-specific lipid transfer proteins. The function of HyPRPs remains unclear, but their widespread occurrence and abundant expression patterns indicate that they may be involved in a basic cellular process. Methods To elucidate the cellular function of HyPRPs, we modulated the expression of three HyPRP genes in tobacco (Nicotiana tabacum) BY-2 cell lines and in potato (Solanum tuberosum) plants. Key Results In BY-2 lines, over-expression of the three HyPRP genes with different types of N-terminal domains resulted in similar phenotypic changes, namely increased cell elongation, both in suspension culture and on solid media where the over-expression resulted in enhanced calli size. The over-expressing cells showed increased plasmolysis in a hypertonic mannitol solution and accelerated rate of protoplast release, suggesting loosening of the cell walls. In contrast to BY-2 lines, no phenotypic changes were observed in potato plants over-expressing the same or analogous HyPRP genes, presumably due to more complex compensatory mechanisms in planta. Conclusions Based on the results from BY-2 lines, we propose that HyPRPs, more specifically their C-terminal domains, represent a novel group of proteins involved in cell expansion. PMID:22028464

  9. Variability in the production of tannins and other polyphenols in cell cultures of 12 Nordic plant species.

    PubMed

    Suvanto, Jussi; Nohynek, Liisa; Seppänen-Laakso, Tuulikki; Rischer, Heiko; Salminen, Juha-Pekka; Puupponen-Pimiä, Riitta

    2017-08-01

    The polyphenol profiles of 18 cell cultures from 12 plant species were screened. The detected polyphenol fingerprints were diverse and differed from polyphenol profiles typically found in corresponding plant species. Cell cultures originating from 12 different plant species growing or grown in the Nordic countries were screened for their ability to synthesize polyphenols to assess their suitability for future studies and applications. The focus was on plant families Rosaceae and Ericaceae. On average, the Rosaceae cultures were the most efficient to produce hydrolysable tannins and the Ericaceae cultures were the most efficient to produce proanthocyanidins. This is in line with the general trend of polyphenols found in Rosaceae and Ericaceae leaves and fruits, even though several individual cell cultures differed from natural plants in their polyphenolic composition. Overall, several of the studied cell cultures exhibited capability in producing a large variety of polyphenols, including tannins with a high molecular weight, thus also showing promise for further studies concerning, for example, the accumulation of specific polyphenols or biosynthesis of polyphenols in the cell cultures.

  10. Ball tonometry: a rapid, nondestructive method for measuring cell turgor pressure in thin-walled plant cells

    NASA Technical Reports Server (NTRS)

    Lintilhac, P. M.; Wei, C.; Tanguay, J. J.; Outwater, J. O.

    2000-01-01

    In this article we describe a new method for the determination of turgor pressures in living plant cells. Based on the treatment of growing plant cells as thin-walled pressure vessels, we find that pressures can be accurately determined by observing and measuring the area of the contact patch formed when a spherical glass probe is lowered onto the cell surface with a known force. Within the limits we have described, we can show that the load (determined by precalibration of the device) divided by the projected area of the contact patch (determined by video microscopy) provides a direct, rapid, and accurate measure of the internal turgor pressure of the cell. We demonstrate, by parallel measurements with the pressure probe, that our method yields pressure data that are consistent with those from the pressure probe. Also, by incubating target tissues in stepped concentrations of mannitol to incrementally reduce the turgor pressure, we show that the pressures measured by tonometry accurately reflect the predicted changes from the osmotic potential of the bathing medium. The advantages of this new method over the pressure probe are considerable, however, in that we can move rapidly from cell to cell, taking measurements every 20 s. In addition, the nondestructive nature of the method means that we can return to the same cell repeatedly for periodic pressure measurements. The limitations of the method lie in the fact that it is suitable only for superficial cells that are directly accessible to the probe and to cells that are relatively thin walled and not heavily decorated with surface features. It is also not suitable for measuring pressures in flaccid cells.

  11. Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution

    PubMed Central

    Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu

    2017-01-01

    WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. PMID:28053005

  12. Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution.

    PubMed

    Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu; Zhao, Huabin; Zhu, Yu-Xian

    2017-03-01

    WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Method for removal of explosives from aqueous solution using suspended plant cells

    DOEpatents

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1994-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells was also found to be of use in treating waste directly.

  14. 8th Annual Glycoscience Symposium: Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadi, Paratoo

    2015-09-24

    The Complex Carbohydrate Research Center (CCRC) of the University of Georgia holds a symposium yearly that highlights a broad range of carbohydrate research topics. The 8th Annual Georgia Glycoscience Symposium entitled “Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly” was held on April 7, 2014 at the CCRC. The focus of symposium was on the role of glycans in plant cell wall structure and synthesis. The goal was to have world leaders in conjunction with graduate students, postdoctoral fellows and research scientists to propose the newest plant cell wall models. The symposium program closely followed the DOE’s missionmore » and was specifically designed to highlight chemical and biochemical structures and processes important for the formation and modification of renewable plant cell walls which serve as the basis for biomaterial and biofuels. The symposium was attended by both senior investigators in the field as well as students including a total attendance of 103, which included 80 faculty/research scientists, 11 graduate students and 12 Postdoctoral students.« less

  15. Multiscale Investigation from Subcellular to Tissue Scale of Onion Epidermal Plant Cell Wall Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Zamil, Mohammad Shafayet

    The physical and mechanical properties of cell walls, their shape, how they are arranged and interact with each other determine the architecture of plant organs and how they mechanically respond to different environmental and loading conditions. Due to the distinctive hierarchy from subcellular to tissue scale, plant materials can exhibit remarkably different mechanical properties. To date, how the subcellular scale arrangement and the mechanical properties of plant cell wall structural constituents give rise to macro or tissue scale mechanical responses is not yet well understood. Although the tissue scale plant cell wall samples are easy to prepare and put to different types of mechanical tests, the hierarchical features that emerge when moving towards a higher scale make it complicated to link the macro scale results to micro or subcellular scale structural components. On the other hand, the microscale size of cell brings formidable challenges to prepare and grip samples and carry mechanical tests under tensile loading at subcellular scale. This study attempted to develop a set of test protocols based on microelectromechanical system (MEMS) tensile testing devices for characterizing plant cell wall materials at different length scales. For the ease of sample preparation and well established database of the composition and conformation of its structural constituents, onion epidermal cell wall profile was chosen as the study material. Based on the results and findings of multiscale mechanical characterization, a framework of architecture-based finite element method (FEM) computational model was developed. The computational model laid the foundation of bridging the subcellular or microscale to the tissue or macroscale mechanical properties. This study suggests that there are important insights of cell wall mechanics and structural features that can only be investigated by carrying tensile characterization of samples not confounded by extracellular parameters. To

  16. Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae.

    PubMed

    Kinnaert, Christine; Daugaard, Mathilde; Nami, Faranak; Clausen, Mads H

    2017-09-13

    Plant cell walls are composed of an intricate network of polysaccharides and proteins that varies during the developmental stages of the cell. This makes it very challenging to address the functions of individual wall components in cells, especially for highly complex glycans. Fortunately, structurally defined oligosaccharides can be used as models for the glycans, to study processes such as cell wall biosynthesis, polysaccharide deposition, protein-carbohydrate interactions, and cell-cell adhesion. Synthetic chemists have focused on preparing such model compounds, as they can be produced in good quantities and with high purity. This Review contains an overview of those plant and algal polysaccharides that have been elucidated to date. The majority of the content is devoted to detailed summaries of the chemical syntheses of oligosaccharide fragments of cellulose, hemicellulose, pectin, and arabinogalactans, as well as glycans unique to algae. Representative synthetic routes within each class are discussed in detail, and the progress in carbohydrate chemistry over recent decades is highlighted.

  17. Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan.

    PubMed

    Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep

    2015-11-01

    Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell-cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell-cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    PubMed

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  19. Live-cell CRISPR imaging in plants reveals dynamic telomere movements.

    PubMed

    Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F; Puchta, Holger; Houben, Andreas

    2017-08-01

    Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  20. Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

    PubMed Central

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G.; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H.; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  1. Gold Functionalized Mesoporous Silica Nanoparticle Mediated Protein and DNA Codelivery to Plant Cells Via the Biolistic Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Ortigosa, Susana; Valenstein, Justin S.; Lin, Victor S.-Y.

    2012-09-11

    The synthesis and characterization of a gold nanoparticle functionalized mesoporous silica nanoparticle (Au-MSN) platform for codelivery of proteins and plasmid DNA to plant tissues using a biolistic particle delivery system is reported. The in vitro uptake and release profiles of fluorescently labeled bovine serum albumin (BSA) and enhanced green fluorescent protein (eGFP) are investigated. As a proof-of-concept demonstration, Au-MSN with large average pore diameters (10 nm) are shown to deliver and subsequently release proteins and plasmid DNA to the same cell after passing through the plant cell wall upon bombardment. Release of fluorescent eGFP indicates the delivery of active, non-denaturedmore » proteins to plant cells. This advance represents the first example of biolistic-mediated codelivery of proteins and plasmid DNA to plant cells via gold-functionalized MSN and provides a powerful tool for both fundamental and applied research of plant sciences.« less

  2. Enhancing cellulose utilization for fuels and chemicals by genetic modification of plant cell wall architecture.

    PubMed

    Vermerris, Wilfred; Abril, Alejandra

    2015-04-01

    Cellulose from plant biomass can serve as a sustainable feedstock for fuels, chemicals and polymers that are currently produced from petroleum. In order to enhance economic feasibility, the efficiency of cell wall deconstruction needs to be enhanced. With the use of genetic and biotechnological approaches cell wall composition can be modified in such a way that interactions between the major cell wall polymers—cellulose, hemicellulosic polysaccharides and lignin—are altered. Some of the resulting plants are compromised in their growth and development, but this may be caused in part by the plant's overcompensation for metabolic perturbances. In other cases novel structures have been introduced in the cell wall without negative effects. The first field studies with engineered bioenergy crops look promising, while detailed structural analyses of cellulose synthase offer new opportunities to modify cellulose itself. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.

    PubMed

    Tan, Michelle Sze-Fan; Moore, Sean C; Tabor, Rico F; Fegan, Narelle; Rahman, Sadequr; Dykes, Gary A

    2016-09-15

    Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by

  4. Three-Dimensional, Live-Cell Imaging of Chromatin Dynamics in Plant Nuclei Using Chromatin Tagging Systems.

    PubMed

    Hirakawa, Takeshi; Matsunaga, Sachihiro

    2016-01-01

    In plants, chromatin dynamics spatiotemporally change in response to various environmental stimuli. However, little is known about chromatin dynamics in the nuclei of plants. Here, we introduce a three-dimensional, live-cell imaging method that can monitor chromatin dynamics in nuclei via a chromatin tagging system that can visualize specific genomic loci in living plant cells. The chromatin tagging system is based on a bacterial operator/repressor system in which the repressor is fused to fluorescent proteins. A recent refinement of promoters for the system solved the problem of gene silencing and abnormal pairing frequencies between operators. Using this system, we can detect the spatiotemporal dynamics of two homologous loci as two fluorescent signals within a nucleus and monitor the distance between homologous loci. These live-cell imaging methods will provide new insights into genome organization, development processes, and subnuclear responses to environmental stimuli in plants.

  5. Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments.

    PubMed

    Weber, Alain; Braybrook, Siobhan; Huflejt, Michal; Mosca, Gabriella; Routier-Kierzkowska, Anne-Lise; Smith, Richard S

    2015-06-01

    Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Space stress and genome shock in developing plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1996-01-01

    In the present paper I review symptoms of stress at the level of the nucleus in cells of plants grown in space under nonoptimized conditions. It remains to be disclosed to what extent gravity "unloading" in the space environment directly contributes to the low mitotic index and the chromosomal anomalies and damage that is frequently, but not invariably, demonstrable in space-grown plants. Evaluation of the available facts indicates that indirect effects play a major role and that there is a significant biological component to the susceptibility to stress damage equation as well. Much remains to be learned on how to provide strictly controlled, optimal environments for plant growth in space. Only after optimized controls become possible will one be able to attribute any observed space effects to lowered gravity or to other significant but more indirect effects of the space environment.

  7. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  8. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    PubMed

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  9. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    PubMed

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  10. Plant regeneration from haploid cell suspension-derived protoplasts of Mediterranean rice (Oryza sativa L. cv. Miara).

    PubMed

    Guiderdoni, E; Chaïr, H

    1992-11-01

    More than 750 plants were regenerated from protoplasts isolated from microspore callus-derived cell suspensions of the Mediterranean japonica rice Miara, using a nurse-feeder technique and N6-based culture medium. The mean plating efficiency and the mean regeneration ability of the protocalluses were 0.5% and 49% respectively. Flow cytometric evaluation of the DNA contents of 7 month old-cell and protoplast suspensions showed that they were still haploid. Contrastingly, the DNA contents of leaf cell nuclei of the regenerated protoclones ranged from 1C to 5C including 60% 2C plants. This was consistent with the morphological type and the fertility of the mature plants. These results and the absence of chimeric plants suggest that polyploidization occurred during the early phase of protoplast culture.

  11. BcXYG1, a Secreted Xyloglucanase from Botrytis cinerea, Triggers Both Cell Death and Plant Immune Responses.

    PubMed

    Zhu, Wenjun; Ronen, Mordechi; Gur, Yonatan; Minz-Dub, Anna; Masrati, Gal; Ben-Tal, Nir; Savidor, Alon; Sharon, Itai; Eizner, Elad; Valerius, Oliver; Braus, Gerhard H; Bowler, Kyle; Bar-Peled, Maor; Sharon, Amir

    2017-09-01

    In search of Botrytis cinerea cell death-inducing proteins, we found a xyloglucanase (BcXYG1) that induced strong necrosis and a resistance response in dicot plants. Expression of the BcXYG1 gene was strongly induced during the first 12 h post inoculation, and analysis of disease dynamics using PathTrack showed that a B. cinerea strain overexpressing BcXYG1 produced early local necrosis, supporting a role of BcXYG1 as an early cell death-inducing factor. The xyloglucanase activity of BcXYG1 was not necessary for the induction of necrosis and plant resistance, as a mutant of BcXYG1 lacking the xyloglucanase enzymatic activity retained both functions. Residues in two exposed loops on the surface of BcXYG1 were found to be necessary for the induction of cell death but not to induce plant resistance. Further analyses showed that BcXYG1 is apoplastic and possibly interacts with the proteins of the plant cell membrane and also that the BcXYG1 cell death-promoting signal is mediated by the leucine-rich repeat receptor-like kinases BAK1 and SOBIR1. Our findings support the role of cell death-inducing proteins in establishing the infection of necrotrophic pathogens and highlight the recognition of fungal apoplastic proteins by the plant immune system as an important mechanism of resistance against this class of pathogens. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. The Utilization of Plant Facilities on the International Space Station—The Composition, Growth, and Development of Plant Cell Walls under Microgravity Conditions

    PubMed Central

    Jost, Ann-Iren Kittang; Hoson, Takayuki; Iversen, Tor-Henning

    2015-01-01

    In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8–14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station. PMID:27135317

  13. The Utilization of Plant Facilities on the International Space Station-The Composition, Growth, and Development of Plant Cell Walls under Microgravity Conditions.

    PubMed

    Jost, Ann-Iren Kittang; Hoson, Takayuki; Iversen, Tor-Henning

    2015-01-20

    In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8-14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station.

  14. In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh

    Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction remains primarily hypothetical. Effective detection of xylan, particularly by in situ imaging of xylan in the presence of other biopolymers, would provide critical information for tackling the challenges of understanding the assembly and enhancing the liberation of xylan from plant materials. Raman-based imaging techniques, especially the highly sensitive stimulated Raman scattering (SRS) microscopy, have provenmore » to be valuable tools for label-free imaging. However, due to the complex nature of plant materials, especially those same chemical groups shared between xylan and cellulose, the utility of specific Raman vibrational modes that are unique to xylan have been debated. Here, we report a novel approach based on combining spectroscopic analysis and chemical/enzymatic xylan removal from corn stover cell walls, to make progress in meeting this analytical challenge. We have identified several Raman peaks associated with xylan content in cell walls for label-free in situ imaging xylan in plant cell wall. We demonstrated that xylan can be resolved from cellulose and lignin in situ using enzymatic digestion and label-free SRS microscopy in both 2D and 3D. As a result, we believe that this novel approach can be used to map xylan in plant cell walls and that this ability will enhance our understanding of the role played by xylan in cell wall biosynthesis and deconstruction.« less

  15. In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy

    DOE PAGES

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; ...

    2016-11-22

    Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction remains primarily hypothetical. Effective detection of xylan, particularly by in situ imaging of xylan in the presence of other biopolymers, would provide critical information for tackling the challenges of understanding the assembly and enhancing the liberation of xylan from plant materials. Raman-based imaging techniques, especially the highly sensitive stimulated Raman scattering (SRS) microscopy, have provenmore » to be valuable tools for label-free imaging. However, due to the complex nature of plant materials, especially those same chemical groups shared between xylan and cellulose, the utility of specific Raman vibrational modes that are unique to xylan have been debated. Here, we report a novel approach based on combining spectroscopic analysis and chemical/enzymatic xylan removal from corn stover cell walls, to make progress in meeting this analytical challenge. We have identified several Raman peaks associated with xylan content in cell walls for label-free in situ imaging xylan in plant cell wall. We demonstrated that xylan can be resolved from cellulose and lignin in situ using enzymatic digestion and label-free SRS microscopy in both 2D and 3D. As a result, we believe that this novel approach can be used to map xylan in plant cell walls and that this ability will enhance our understanding of the role played by xylan in cell wall biosynthesis and deconstruction.« less

  16. Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization.

    PubMed

    Georgiev, Milen I; Weber, Jost

    2014-07-01

    Mass production of value-added molecules (including native and heterologous therapeutic proteins and enzymes) by plant cell culture has been demonstrated as an efficient alternative to classical technologies [i.e. natural harvest and chemical (semi)synthesis]. Numerous proof-of-concept studies have demonstrated the feasibility of scaling up plant cell culture-based processes (most notably to produce paclitaxel) and several commercial processes have been established so far. The choice of a suitable bioreactor design (or modification of an existing commercially available reactor) and the optimization of its internal environment have been proven as powerful tools toward successful mass production of desired molecules. This review highlights recent progress (mostly in the last 5 years) in hardware configuration and optimization of bioreactor culture conditions for suspended plant cells.

  17. Ethnomedicinal survey of medicinal plants used in the management of sickle cell disorder in Southern Nigeria.

    PubMed

    Amujoyegbe, O O; Idu, M; Agbedahunsi, J M; Erhabor, J O

    2016-06-05

    The present study entails the medicinal plant species used to manage sickle cell disorder in Southern States of Nigeria. The ethnomedicinal information was gathered through multistage approach from three geopolitical zones of Southern Nigeria, which were purposively selected. Semi-structured questionnaires were administered on 500 respondents in 125 locations. The ethnomedicinal data collected were analyzed using quantitative value indices such as fidelity level (percentage) and use value. The information got was cross checked using literature search and other related materials. Five hundred respondents comprising 53.12% females and 46.88% males were observed. It was noted that 26.70% were illiterate while 73.30% had formal education. Seventy-nine percent is traditional healers, 27% herb traders and the other 4% are those who have awareness of sickle cell disease . One hundred and seventy five plant species belonging to 70 families, of which Fabaceae made up 26.76% and Euphorbiaceae 16.90% forming the highest occurrence. It was observed that leaves were the most common plant part used (69.10%) followed by root (15%) and stem bark (14%) in the preparation for sickle cell management. Majority (48.57%) of these plants were harvested from wild with 38.86% being trees. Citrus aurantifolia and Newbouldia laevis had highest use values of 0.69 and 0.64 respectively. Plants with the least use value (0.001) include Abrus canescens, Acacia xanthophloea, Aerva lanata and Axonopus compressus. The result of fidelity level values of the plant species for the management of Sickle Cell Disorder (SCD) revealed that Citrus aurantifolia had the highest value of 70.2% while Angraecum distichum and Axonopus compressus had the lowest Fidelity Level value of 0.18%. The study revealed that people in the studied areas were well grounded in the medicinal plants used to manage sickle cell disease. This study reported for the first time 102 plant species having anti-sickling potentials with

  18. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans

    PubMed Central

    Tan, Li; Showalter, Allan M.; Egelund, Jack; Hernandez-Sanchez, Arianna; Doblin, Monika S.; Bacic, Antony

    2012-01-01

    Arabinogalactan-proteins (AGPs) are complex glycoconjugates that are commonly found at the cell surface and in secretions of plants. Their location and diversity of structures have made them attractive targets as modulators of plant development but definitive proof of their direct role(s) in biological processes remains elusive. Here we overview the current state of knowledge on AGPs, identify key challenges impeding progress in the field and propose approaches using modern bioinformatic, (bio)chemical, cell biological, molecular and genetic techniques that could be applied to redress these gaps in our knowledge. PMID:22754559

  19. Aquaporin structure-function relationships: water flow through plant living cells.

    PubMed

    Zhao, Chang-Xing; Shao, Hong-Bo; Chu, Li-Ye

    2008-04-01

    Plant aquaporins play an important role in water uptake and movement-an aquaporin that opens and closes a gate that regulates water movement in and out of cells. Some plant aquaporins also play an important role in response to water stress. Since their discovery, advancing knowledge of their structures and properties led to an understanding of the basic features of the water transport mechanism and increased illumination to water relations. Meanwhile, molecular and functional characterization of aquaporins has revealed the significance of their regulation in response to the adverse environments such as salinity and drought. This paper reviews the structure, species diversity, physiology function, regulation of plant aquaporins, and the relations between environmental factors and plant aquaporins. Complete understanding of aquaporin function and regulation is to integrate those mechanisms in time and space and to well regulate the permeation of water across biological membranes under changing environmental and developmental conditions.

  20. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution.

    PubMed

    Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina

    2017-12-25

    The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells

    PubMed Central

    Nowak, Jacqueline; Ivakov, Alexander; Somssich, Marc; Persson, Staffan; Nikoloski, Zoran

    2017-01-01

    The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms. PMID:28655850

  2. Cell Number Regulator1 Affects Plant and Organ Size in Maize: Implications for Crop Yield Enhancement and Heterosis[C][W

    PubMed Central

    Guo, Mei; Rupe, Mary A.; Dieter, Jo Ann; Zou, Jijun; Spielbauer, Daniel; Duncan, Keith E.; Howard, Richard J.; Hou, Zhenglin; Simmons, Carl R.

    2010-01-01

    Genes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number. To expand investigation of how related genes may impact other crop plant or organ sizes, we identified the maize (Zea mays) gene family of putative fw2.2 orthologs, naming them Cell Number Regulator (CNR) genes. This family represents an ancient eukaryotic family of Cys-rich proteins containing the PLAC8 or DUF614 conserved motif. We focused on native expression and transgene analysis of the two maize members closest to Le-fw2.2, namely, CNR1 and CNR2. We show that CNR1 reduced overall plant size when ectopically overexpressed and that plant and organ size increased when its expression was cosuppressed or silenced. Leaf epidermal cell counts showed that the increased or decreased transgenic plant and organ size was due to changes in cell number, not cell size. CNR2 expression was found to be negatively correlated with tissue growth activity and hybrid seedling vigor. The effects of CNR1 on plant size and cell number are reminiscent of heterosis, which also increases plant size primarily through increased cell number. Regardless of whether CNRs and other cell number–influencing genes directly contribute to, or merely mimic, heterosis, they may aid generation of more vigorous and productive crop plants. PMID:20400678

  3. Cell cycle-regulated PLEIADE/AtMAP65-3 links membrane and microtubule dynamics during plant cytokinesis.

    PubMed

    Steiner, Alexander; Rybak, Katarzyna; Altmann, Melina; McFarlane, Heather E; Klaeger, Susan; Nguyen, Ngoc; Facher, Eva; Ivakov, Alexander; Wanner, Gerhard; Kuster, Bernhard; Persson, Staffan; Braun, Pascal; Hauser, Marie-Theres; Assaad, Farhah F

    2016-11-01

    Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant-specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule-associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle-regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  4. Behind the lines–actions of bacterial type III effector proteins in plant cells

    PubMed Central

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715

  5. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties.

    PubMed

    Szechyńska-Hebda, Magdalena; Czarnocka, Weronika; Hebda, Marek; Bernacki, Maciej J; Karpiński, Stanisław

    2016-03-01

    Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition. The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.

  6. Plant regeneration from protoplasts of embryogenic cell suspensions of Coffea arabica L. cv. caturra.

    PubMed

    Acuna, J R; de Pena, M

    1991-09-01

    Coffee plants were regenerated from protoplasts isolated from embryogenic cell suspension cultures derived from somatic embryos of Coffea arabica L. cv. caturra. Yields of viable protoplasts ranged from 1×10(5) to 6×10(5) protoplast/g fresh weight. Protoplast preparations usually contained no contaminating cells, and when present, the number of cells never exceeded 0.1% of the total. Plating efficiencies of protoplast ranged from 1 to 10%. Embryogenic protocolonies obtained after several subcultures in a medium supplemented with 0.5 mg/l each of benzylaminopurine, 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid, were transferred to a medium lacking plant growth regulators. Well differentiated embryos were formed in selected protocolonies that contained many embryos-like structures. Approximately 70% of the somatic embryos developed into green rooted plantlets which were succesfully transferred to vessels containing sterilized scoria. Plants grown for two months in scoria were finally transferred to greenhouse.

  7. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    PubMed

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-07

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  8. From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress

    NASA Astrophysics Data System (ADS)

    Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek

    Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by

  9. Guiding plant virus particles to integrin-displaying cells

    NASA Astrophysics Data System (ADS)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity

  10. PhEXPA1, a Petunia hybrida expansin, is involved in cell wall metabolism and in plant architecture specification.

    PubMed

    Dal Santo, Silvia; Fasoli, Marianna; Cavallini, Erika; Tornielli, Giovanni Battista; Pezzotti, Mario; Zenoni, Sara

    2011-12-01

    Expansins are wall-loosening proteins that induce wall stress relaxation and irreversible wall extension in a pH-dependent manner. Despite a substantial body of work has been performed on the characterization of many expansins genes in different plant species, the knowledge about their precise biological roles during plant development remains scarce. To yield insights into the expansion process in Petunia hybrida, PhEXPA1, an expansin gene preferentially expressed in petal limb, has been characterized. The constitutive overexpression of PhEXPA1 significantly increased expansin activity, cells size and organ dimensions. Moreover, 35S::PhEXPA1 transgenic plants exhibited an altered cell wall polymer composition and a precocious timing of axillary meristem development compared with wild-type plants. These findings supported a previous hypothesis that expansins are not merely structural proteins involved in plant cell wall metabolism but they also take part in many plant development processes. Here, to support this expansins dual role, we discuss about differential cell wall-related genes expressed in PhEXPA1 expression mutants and gradients of altered petunia branching pattern. © 2011 Landes Bioscience

  11. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles.

    PubMed

    Mu, Jingyao; Zhuang, Xiaoying; Wang, Qilong; Jiang, Hong; Deng, Zhong-Bin; Wang, Baomei; Zhang, Lifeng; Kakar, Sham; Jun, Yan; Miller, Donald; Zhang, Huang-Ge

    2014-07-01

    Exosomes, small vesicles participating in intercellular communication, have been extensively studied recently; however, the role of edible plant derived exosomes in interspecies communication has not been investigated. Here, we investigate the biological effects of edible plant derived exosome-like nanoparticles (EPDENs) on mammalian cells. In this study, exosome-like nanoparticles from four edible plants were isolated and characterized. We show that these EPDENs contain proteins, lipids, and microRNA. EPDENs are taken up by intestinal macrophages and stem cells. The results generated from EPDEN-transfected macrophages indicate that ginger EPDENs preferentially induce the expression of the antioxidation gene, heme oxygenase-1 and the anti-inflammatory cytokine, IL-10; whereas grapefruit, ginger, and carrot EPDENs promote activation of nuclear factor like (erythroid-derived 2). Furthermore, analysis of the intestines of canonical Wnt-reporter mice, i.e. B6.Cg-Tg(BAT-lacZ)3Picc/J mice, revealed that the numbers of β-galactosidase(+) (β-Gal) intestinal crypts are increased, suggesting that EPDEN treatment of mice leads to Wnt-mediated activation of the TCF4 transcription machinery in the crypts. The data suggest a role for EPDEN-mediated interspecies communication by inducing expression of genes for anti-inflammation cytokines, antioxidation, and activation of Wnt signaling, which are crucial for maintaining intestinal homeostasis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles

    PubMed Central

    Mu, Jingyao; Zhuang, Xiaoying; Wang, Qilong; Jiang, Hong; Deng, Zhong-Bin; Wang, Baomei; Zhang, Lifeng; Kakar, Sham; Jun, Yan; Miller, Donald; Zhang, Huang-Ge

    2015-01-01

    Scope Exosomes, small vesicles participating in intercellular communication have been extensively studied recently; however, the role of edible plant derived exosomes in interspecies communication has not been investigated. Here, we investigate the biological effects of edible plant derived exosome-like nanoparticles (EPDEN) on mammalian cells. Methods and results In this study, exosome-like nanoparticles from four edible plants were isolated and characterized. We show that these EPDENs contain proteins, lipids and microRNA. EPDENs are taken up by intestinal macrophages and stem cells. The results generated from EPDEN transfected macrophages indicate that ginger EPDENs preferentially induce the expression of the anti-oxidation gene, heme oxygenase-1 (HO-1) and the anti-inflammatory cytokine, IL-10; whereas grapefruit, ginger, and carrot EPDENs promote activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Furthermore, analysis of the intestines of canonical Wnt reporter mice, i.e., B6.Cg-Tg(BAT-lacZ)3Picc/J mice, revealed that the numbers of β-galactosidase+ (β-Gal) intestinal crypts are increased, suggesting that EPDEN treatment of mice leads to Wnt mediated activation of the Tcf4 transcription machinery in the crypts. Conclusion The data suggest a role for EPDEN mediated interspecies communication by inducing expression of genes for anti-inflammation cytokines, anti-oxidation and activation of Wnt signaling, which are crucial for maintaining intestinal homeostasis. PMID:24842810

  13. Directed plant cell-wall accumulation of iron: Embedding co-catalyst for efficient biomass conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chien -Yuan; Jakes, Joseph E.; Donohoe, Bryon S.

    Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cellmore » walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. Here, the

  14. Directed plant cell-wall accumulation of iron: Embedding co-catalyst for efficient biomass conversion

    DOE PAGES

    Lin, Chien -Yuan; Jakes, Joseph E.; Donohoe, Bryon S.; ...

    2016-10-21

    Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cellmore » walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. Here, the

  15. Lifeact-mEGFP Reveals a Dynamic Apical F-Actin Network in Tip Growing Plant Cells

    PubMed Central

    Hepler, Peter K.; Bezanilla, Magdalena

    2009-01-01

    Background Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments. Methodology/Principal Findings In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore. Conclusions/Significance Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells. PMID:19478943

  16. Role of a Transcriptional Regulator in Programmed Cell Death and Plant Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie M. Stone

    2008-09-13

    The long-term goal of this research is to understand the role(s) and molecular mechanisms of programmed cell death (PCD) in the controlling plant growth, development and responses to biotic and abiotic stress. We developed a genetic selection scheme to identify A. thaliana FB1-resistant (fbr) mutants as a way to find genes involved in PCD (Stone et al., 2000; Stone et al., 2005; Khan and Stone, 2008). The disrupted gene in fbr6 (AtSPL14) responsible for the FB1-insensitivity and plant architecture phenotypes encodes a plant-specific SBP DNA-binding domain transcriptional regulator (Stone et al., 2005; Liang et al., 2008). This research plan ismore » designed to fill gaps in the knowledge about the role of SPL14 in plant growth and development. The work is being guided by three objectives aimed at determining the pathways in which SPL14 functions to modulate PCD and/or plant development: (1) determine how SPL14 functions in plant development, (2) identify target genes that are directly regulated by SPL14, and (3) identify SPL14 modifications and interacting proteins. We made significant progress during the funding period. Briefly, some major accomplishments are highlighted below: (1) To identify potential AtSPL14 target genes, we identified a consensus DNA binding site for the AtSPL14 SBP DNA-binding domain using systematic evolution of ligands by exponential selection (SELEX) and site-directed mutagenesis (Liang et al., 2008). This consensus binding site was used to analyze Affymetrix microarray gene expression data obtained from wild-type and fbr6 mutant plants to find possible AtSPL14-regulated genes. These candidate AtSPL14-regulated genes are providing new information on the molecular mechanisms linking plant PCD and plant development through modulation of the 26S proteasome. (2) Transgenic plants expressing epitope-tagged versions of AtSPL14 are being used to confirm the AtSPL14 targets (by ChIP-PCR) and further dissect the molecular interactions (Nazarenus

  17. Evaluation of diel patterns of relative changes in cell turgor of tomato plants using leaf patch clamp pressure probes.

    PubMed

    Lee, Kang M; Driever, Steven M; Heuvelink, Ep; Rüger, Simon; Zimmermann, Ulrich; de Gelder, Arie; Marcelis, Leo F M

    2012-12-01

    Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. LPCP changes, a measure for relative changes in cell turgor, were monitored at three different heights of transpiring and non-transpiring leaves of tomato plants on sunny and cloudy days simultaneously with whole plant water uptake. Clear diel patterns were observed for relative changes of cell turgor of both transpiring and non-transpiring leaves, which were stronger on sunny days than on cloudy days. A clear effect of canopy height was also observed. Non-transpiring leaves showed relative changes in cell turgor that closely followed plant water uptake throughout the day. However, in the afternoon the relative changes of cell turgor of the transpiring leaves displayed a delayed response in comparison to plant water uptake. Subsequent recovery of cell turgor loss of transpiring leaves during the following night appeared insufficient, as the pre-dawn turgescent state similar to the previous night was not attained. Copyright © Physiologia Plantarum 2012.

  18. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1988-01-01

    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  19. Dynamical and Microrheological Analysis of Amyloplasts in the Plant Root Gravity-Sensing Cells

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongyu; Zou, Junjie; Li, Hanhai; Xue, Shan; Le, Jie; Wang, Yuren

    2015-11-01

    Gravitropism in plants is one of the most controversial issues. In the most wildly accepted starch-statolith hypothesis the sedimentation movement of amyloplasts in the gravisensing columella cells primarily triggers the asymmetric distribution of auxin which leads to the differential growth of the plant root. It has been gradually recognized that the inhomogeneous structures in statocytes arising from intracellular components such as cytoskeletons significantly affect the complex movements of amyloplasts and the final gravimorphogenesis. In this letter, we implement a diffusive dynamics measurement and inplanta microrheological analysis of amyloplasts in the wild-type plants and actin cytoskeleton mutants for the first time. We found that the intracellular environment of columella cells exhibits the spatial heterogeneity and the cage-confinement on amyloplasts which is the typically characteristics in colloidal suspensions. By comparing the distinct diffusive dynamics of amyloplasts in different types of plants with the behaviors of colloidal systems in different states, we quantitatively characterized the influence of the actin organization dominated intracellular envoronments on the amyloplast movements. Furthermore, the cage-confinement strength was measured by calculating the spatial fluctuation of local apparent viscosity within the columella cells. Finally, a linear association between the initial mechanical stimulation in the columella cells the subsequent intercellular signal transduction and the final gravity response was observed and a possible gravity sensing mechanism was suggested. It suggests the existence of a potential gravity-sensing mechanism that dictates a linear frustration effect of the actin cytoskeleton on the conversion of the mechanical stimulation of amyloplasts into gravitropic signals.

  20. A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus.

    PubMed

    Mafurah, Joseph Juma; Ma, Huifei; Zhang, Meixiang; Xu, Jing; He, Feng; Ye, Tingyue; Shen, Danyu; Chen, Yanyu; Rajput, Nasir Ahmed; Dou, Daolong

    2015-01-01

    Phytophthora capsici is a soil-borne plant pathogen with a wide range of hosts. The pathogen secretes a large array of effectors during infection of host plants, including Crinkler (CRN) effectors. However, it remains largely unknown on the roles of these effectors in virulence especially in P. capsici. In this study, we identified a cell death-inducing CRN effector PcCRN4 using agroinfiltration approach. Transient expression of PcCRN4 gene induced cell death in N. benthamiana, N. tabacum and Solanum lycopersicum. Overexpression of the gene in N. benthamiana enhanced susceptibility to P. capsici. Subcellular localization results showed that PcCRN4 localized to the plant nucleus, and the localization was required for both of its cell death-inducing activity and virulent function. Silencing PcCRN4 gene in P. capsici significantly reduced pathogen virulence. The expression of the pathogenesis-related gene PR1b in N. benthamiana was significantly induced when plants were inoculated with PcCRN4-silenced P. capsici transformant compared to the wilt-type. Callose deposits were also abundant at sites inoculated with PcCRN4-silenced transformant, indicating that silencing of PcCRN4 in P. capsici reduced the ability of the pathogen to suppress plant defenses. Transcriptions of cell death-related genes were affected when PcCRN4-silenced line were inoculated on Arabidopsis thaliana, suggesting that PcCRN4 may induce cell death by manipulating cell death-related genes. Overall, our results demonstrate that PcCRN4 is a virulence essential effector and it needs target to the plant nucleus to suppress plant immune responses.

  1. Method for removal of metal atoms from aqueous solution using suspended plant cells

    DOEpatents

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1992-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be of use in treating waste directly.

  2. Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis

    DOE PAGES

    Jensen, Jacob Kruger; Busse-Wicher, Marta; Poulsen, Christian Peter; ...

    2018-02-20

    Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 inmore » plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall. Finally, these data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.« less

  3. Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Jacob Kruger; Busse-Wicher, Marta; Poulsen, Christian Peter

    Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 inmore » plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall. Finally, these data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.« less

  4. Light acclimation, retrograde signalling, cell death and immune defences in plants.

    PubMed

    Karpiński, Stanisław; Szechyńska-Hebda, Magdalena; Wituszyńska, Weronika; Burdiak, Paweł

    2013-04-01

    This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide-binding site leucine-rich repeat (NBS-LRR)-dependent recognition of pathogen effectors and to the role of plasma membrane-localized NADPH-dependent oxidoreductase (AtRbohD), reactive oxygen species (ROS) and salicylic acid (SA). However, recent results suggest that plant immune defence also depends on the absorption of excessive light energy and photorespiration. Rapid changes in light intensity and quality often cause the absorption of energy, which is in excess of that required for photosynthesis. Such excessive light energy is considered to be a factor triggering photoinhibition and disturbance in ROS/hormonal homeostasis, which leads to cell death in foliar tissues. We highlight here the tight crosstalk between ROS- and SA-dependent pathways leading to light acclimation, and defence responses leading to pathogen resistance. We also show that LESION SIMULATING DISEASE 1 (LSD1) regulates and integrates these processes. Moreover, we discuss the role of plastid-nucleus signal transduction, photorespiration, photoelectrochemical signalling and 'light memory' in the regulation of acclimation and immune defence responses. All of these results suggest that plants have evolved a genetic system that simultaneously regulates systemic acquired resistance (SAR), cell death and systemic acquired acclimation (SAA). © 2012 Blackwell Publishing Ltd.

  5. Mannose Induces an Endonuclease Responsible for DNA Laddering in Plant Cells

    PubMed Central

    Stein, Joshua C.; Hansen, Geneviève

    1999-01-01

    The effect of d-mannose (Man) on plant cells was studied in two different systems: Arabidopsis roots and maize (Zea mays) suspension-cultured cells. In both systems, exposure to d-Man was associated with a subset of features characteristic of apoptosis, as assessed by oligonucleosomal fragmentation and microscopy analysis. Furthermore, d-Man induced the release of cytochrome c from mitochondria. The specificity of d-Man was evaluated by comparing the effects of diastereomers such as l-Man, d-glucose, and d-galactose. Of these treatments, only d-Man caused a reduction in final fresh weight with concomitant oligonucleosomal fragmentation. Man-induced DNA laddering coincided with the activation of a DNase in maize cytosolic extracts and with the appearance of single 35-kD band detected using an in-gel DNase assay. The DNase activity was further confirmed by using covalently closed circular plasmid DNA as a substrate. It appears that d-Man, a safe and readily accessible compound, offers remarkable features for the study of apoptosis in plant cells. PMID:10482662

  6. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Treesearch

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  7. Decolorization of RBBR by plant cells and correlation with the transformation of PCBs.

    PubMed

    Chroma, Ludmila; Macek, Tomas; Demnerova, Katerina; Macková, Martina

    2002-11-01

    An extracellular H2O2-requiring Remazol Brilliant Blue R (RBBR) decolorizing enzyme activity was detected after cultivation of cells of various plant species both in liquid medium and when growing on agar plates containing RBBR. Level of the enzyme activity was compared with the ability to metabolize polychlorinated biphenyls (PCBs). The ability to decolorize RBBR was tested in the presence and absence of PCBs. The cultures with high PCB-transforming activity proved to exhibit RBBR oxidase much more resistant towards the influence of PCBs. In addition low activities of lignin peroxidase (LiP) and manganese dependent peroxidase (MnP) were detected in medium and in plant cells. No correlation of MnP and LiP activities with PCB degradation could be found. The RBBR decolorization could be used as a rough screening method for plant cultures able to metabolize PCBs.

  8. Sites and Regulation of Polyamine Catabolism in the Tobacco Plant. Correlations with Cell Division/Expansion, Cell Cycle Progression, and Vascular Development1

    PubMed Central

    Paschalidis, Konstantinos A.; Roubelakis-Angelakis, Kalliopi A.

    2005-01-01

    We previously gave a picture of the homeostatic characteristics of polyamine (PA) biosynthesis and conjugation in tobacco (Nicotiana tabacum) plant organs during development. In this work, we present the sites and regulation of PA catabolism related to cell division/expansion, cell cycle progression, and vascular development in the tobacco plant. Diamine oxidase (DAO), PA oxidase (PAO), peroxidases (POXs), and putrescine N-methyltransferase expressions follow temporally and spatially discrete patterns in shoot apical cells, leaves (apical, peripheral, and central regions), acropetal and basipetal petiole regions, internodes, and young and old roots in developing plants. DAO and PAO produce hydrogen peroxide, a plant signal molecule and substrate for POXs. Gene expression and immunohistochemistry analyses reveal that amine oxidases in developing tobacco tissues precede and overlap with nascent nuclear DNA and also with POXs and lignification. In mature and old tissues, flow cytometry indicates that amine oxidase and POX activities, as well as pao gene and PAO protein levels, coincide with G2 nuclear phase and endoreduplication. In young versus the older roots, amine oxidases and POX expression decrease with parallel inhibition of G2 advance and endoreduplication, whereas putrescine N-methyltransferase dramatically increases. In both hypergeous and hypogeous tissues, DAO and PAO expression occurs in cells destined to undergo lignification, suggesting a different in situ localization. DNA synthesis early in development and the advance in cell cycle/endocycle are temporally and spatially related to PA catabolism and vascular development. PMID:16040649

  9. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells.

    PubMed

    Saleh Al-Shehabi, Tuqa; Iratni, Rabah; Eid, Ali H

    2016-10-15

    Cardiovascular disease (CVD) remains the leading cause of global death, with atherosclerosis being a major contributor to this mortality. Several mechanisms are implicated in the pathogenesis of this disease. A key element in the development and progression of atherosclerotic lesions is the phenotype of vascular smooth muscle cells. Under pathophysiologic conditions such as injury, these cells switch from a contractile to a synthetic phenotype that often possesses high proliferative and migratory capacities. Despite major advances made in the management and treatment of atherosclerosis, mortality associated with this disease remains high. This mandates that other approaches be sought. Herbal medicine, especially for the treatment of CVD, has been gaining more attention in recent years. This is in no small part due to the evidence-based values associated with the consumption of many plants as well as the relatively cheaper prices, easier access and conventional folk medicine "inherited" over generations. Sections: In this review, we provide a brief introduction about the pathogenesis of atherosclerosis then we highlight the role of vascular smooth muscle cells in this disease, especially when a phenotypic switch of these cells arises. We then thoroughly discuss the various plants that show potentially beneficial effects as anti-atherosclerotic, with prime attention given to herbs and plants that inhibit the phenotypic switch of vascular smooth muscle cells. Accumulating evidence provides the justification for the use of botanicals in the treatment or prevention of atherosclerosis. However, further studies, especially clinical ones, are warranted to better define several pharmacological parameters of these herbs, such as toxicity, tolerability, and efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Teaching about Water Relations in Plant Cells: An Uneasy Struggle

    ERIC Educational Resources Information Center

    Malinska, Lilianna; Rybska, Eliza; Sobieszczuk-Nowicka, Ewa; Adamiec, Malgorzata

    2016-01-01

    University students often struggle to understand the role of water in plant cells. In particular, osmosis and plasmolysis appear to be challenging topics. This study attempted to identify student difficulties (including misconceptions) concerning osmosis and plasmolysis and examined to what extent the difficulties could be revised during a plant…

  11. Effects of crude aqueous medicinal plant extracts on growth and invasion of breast cancer cells.

    PubMed

    Van Slambrouck, Severine; Daniels, Amber L; Hooten, Carla J; Brock, Steven L; Jenkins, Aaron R; Ogasawara, Marcia A; Baker, Joann M; Adkins, Glen; Elias, Eerik M; Agustin, Vincent J; Constantine, Sarah R; Pullin, Michael J; Shors, Scott T; Kornienko, Alexander; Steelant, Wim F A

    2007-06-01

    Plants used in folklore medicine continue to be an important source of discovery and development of novel therapeutic agents. In the present study, we determined the effects of crude aqueous extracts of a panel of medicinal plants on the growth and invasion of cancer cells. Our results showed that extracts of L. tridentata (Creosote Bush) and J. communis L. (Juniper Berry) significantly decreased the growth of MCF-7/AZ breast cancer cells. The latter as well as A. californica (Yerba Mansa) inhibited invasion into the collagen type I gel layer. Furthermore, the phosphorylation levels of extracellular signal-regulated kinase 1 and 2 (ERK1/2) decreased when the cells were exposed to aqueous extracts of L. tridentata, J. communis L. and A. californica. This study provides original scientific data on the anticancer activity of selected aqueous medicinal plant extracts used in traditional medicine.

  12. Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L.

    PubMed

    Chee, P P; Tricoli, D M

    1988-06-01

    A procedure for the regeneration of whole cucumber plants (Cucumis sativus L. cv. Poinsett 76) by embryogenesis from cell suspension cultures is described. Embryogenic callus was initiated from the primary leaves of 14-17 day old plants. Suspension cultures of embryogenic cells were grown in liquid Murashige and Skoog basal medium containing 5 uM 2,4,5-trichlorophenoxyacetic acid and 4 uM 6-benzylaminopurine. Suspension cultures were composed of a population of cells that were densely cytoplasmic and potentially embryogenic. Differentiation of embryos was enhanced by washing the suspension culture cells with MS basal medium containing 0.5% activated charcoal and twice with MS basal medium followed by liquid shake cultures in MS basal medium. Sixty to 70 percent of the embryos prewashed with activated charcoal germinated into plantlets with normal morphology. Embryos obtained from suspension cultured cells without prewashing with activated charcoal organized into plantlets with abnormal primary leaves. Morphologically normal plantlets were obtained by excising the shoot tips and transferring them to fresh medium.

  13. CLC-mediated anion transport in plant cells

    PubMed Central

    De Angeli, Alexis; Monachello, Dario; Ephritikhine, Geneviève; Frachisse, Jean-Marie; Thomine, Sébastien; Gambale, Franco; Barbier-Brygoo, Hélène

    2008-01-01

    Plants need nitrate for growth and store the major part of it in the central vacuole of cells from root and shoot tissues. Based on few studies on the two model plants Arabidopsis thaliana and rice, members of the large ChLoride Channel (CLC) family have been proposed to encode anion channels/transporters involved in nitrate homeostasis. Proteins from the Arabidopsis CLC family (AtClC, comprising seven members) are present in various membrane compartments including the vacuolar membrane (AtClCa), Golgi vesicles (AtClCd and AtClCf) or chloroplast membranes (AtClCe). Through a combination of electrophysiological and genetic approaches, AtClCa was shown to function as a 2NO3−/1H+ exchanger that is able to accumulate specifically nitrate into the vacuole, in agreement with the main phenotypic trait of knockout mutant plants that accumulate 50 per cent less nitrate than their wild-type counterparts. The set-up of a functional complementation assay relying on transient expression of AtClCa cDNA in the mutant background opens the way for studies on structure–function relationships of the AtClCa nitrate transporter. Such studies will reveal whether important structural determinants identified in bacterial or mammalian CLCs are also crucial for AtClCa transport activity and regulation. PMID:18957376

  14. Plant Hsp90 Proteins Interact with B-Cells and Stimulate Their Proliferation

    PubMed Central

    Corigliano, Mariana G.; Maglioco, Andrea; Laguía Becher, Melina; Goldman, Alejandra; Martín, Valentina; Angel, Sergio O.; Clemente, Marina

    2011-01-01

    Background The molecular chaperone heat shock protein 90 (Hsp90) plays an important role in folding stabilization and activation of client proteins. Besides, Hsp90 of mammals and mammalian pathogens displays immunostimulatory properties. Here, we investigated the role of plant-derived Hsp90s as B-cell mitogens by measuring their proliferative responses in vitro. Methodology Plant cytosolic Hsp90 isoforms from Arabidopsis thaliana (AtHsp81.2) and Nicotiana benthamiana (NbHsp90.3) were expressed in E. coli. Over-expression of recombinant plant Hsp90s (rpHsp90s) was confirmed by SDS-PAGE and western blot using and anti-AtHsp81.2 polyclonal anti-body. Both recombinant proteins were purified by Ni-NTA affinity chromatography and their identity confirmed by MALDI-TOF-TOF. Recombinant AtHsp81.2 and NbHsp90.3 proteins induced prominent proliferative responses in spleen cells form BALB/c mice. Polymyxin-B, a potent inhibitor of lipopolysaccharide (LPS), did not eliminate the rpHsp90-induced proliferation. In addition, in vitro incubation of spleen cells with rpHsp90 led to the expansion of CD19-bearing populations, suggesting a direct effect of these proteins on B lymphocytes. This effect was confirmed by immunofluorescence analysis, where a direct binding of rpHsp90 to B- but not to T-cells was observed in cells from BALB/c and C3H/HeN mice. Finally, we examined the involvement of Toll Like Receptor 4 (TLR4) molecules in the rpHsp90s induction of B-cell proliferation. Spleen cells from C3H/HeJ mice, which carry a point mutation in the cytoplasmic region of TLR4, responded poorly to prAtHsp90. However, the interaction between rpHsp90 and B-cells from C3H/HeJ mice was not altered, suggesting that the mutation on TLR4 would be affecting the signal cascade but not the rpHsp90-TLR4 receptor interaction. Conclusions Our results show for the first time that spleen cell proliferation can be stimulated by a non-pathogen-derived Hsp90. Furthermore, our data provide a new example of

  15. Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites.

    PubMed

    Andrabi, Syed Bilal Ahmad; Tahara, Michiru; Matsubara, Ryuma; Toyama, Tomoko; Aonuma, Hiroka; Sakakibara, Hitoshi; Suematsu, Makoto; Tanabe, Kazuyuki; Nozaki, Tomoyoshi; Nagamune, Kisaburo

    2018-02-01

    Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. A fuel cell balance of plant test facility

    NASA Astrophysics Data System (ADS)

    Dicks, A. L.; Martin, P. A.

    Much attention is focused in the fuel cell community on the development of reliable stack technology, but to successfully exploit fuel cells, they must form part of integrated power generation systems. No universal test facilities exist to evaluate SOFC stacks and comparatively little research has been undertaken concerning the issues of the rest of the system, or balance of plant (BOP). BG, in collaboration with Eniricerche, has therefore recently designed and built a test facility to evaluate different configurations of the BOP equipment for a 1-5 kWe solid oxide fuel cell (SOFC) stack. Within this BOP project, integrated, dynamic models have been developed. These have shown that three characteristic response times exist when the stack load is changed and that three independent control loops are required to manage the almost instantaneous change in power output from an SOFC stack, maintain the fuel utilisation and control the stack temperature. Control strategies and plant simplifications, arising from the dynamic modelling, have also been implemented in the BOP test facility. An SOFC simulator was designed and integrated into the control system of the test rig to behave as a real SOFC stack, allowing the development of control strategies without the need for a real stack. A novel combustor has been specifically designed, built and demonstrated to be capable of burning the low calorific anode exhaust gas from an SOFC using the oxygen depleted cathode stream. High temperature, low cost, shell and tube heat exchangers have been shown to be suitable for SOFC systems. Sealing of high temperature anode recirculation fans has, however, been shown to be a major issue and identified as a key area for further investigation.

  17. Antitumor activities of extracts from selected desert plants against HepG2 human hepatocellular carcinoma cells.

    PubMed

    Thoppil, Roslin J; Harlev, Eli; Mandal, Animesh; Nevo, Eviatar; Bishayee, Anupam

    2013-05-01

    Phytochemicals are produced by desert plants to protect themselves against stressful environments. They have been shown to be useful in preventing and fighting adverse pathophysiological conditions and complex diseases, including cancer. Although many desert plants have been investigated for their antitumor properties, a large number of them still remain to be explored for possible therapeutic applications in oncologic diseases. To screen the antitumor effects of selected desert plants, namely Achillea fragrantissima (Forssk.) Sch. Bip. (Compositae), Ochradenus baccatus Delile (Resedaceae), Origanum dayi Post (Lamiaceae), Phlomis platystegia Post (Lamiaceae) and Varthemia iphionoides Boiss (Compositae), against an in vitro tumor model utilizing HepG2 human hepatocellular carcinoma cells. The aqueous extracts of aerial parts of the aforementioned plants were prepared and used for the in vitro experiments. The HepG2 cells were exposed to varying concentrations (0-4 mg/mL) of each plant extract for 24 or 48 h and the cytotoxicity was measured by the MTT assay. Following 24 h exposure, O. dayi extract exhibited a substantial antiproliferative effect in HepG2 cells (IC50 = 1.0 mg/mL) followed by O. baccatus (IC50 = 1.5 mg/mL). All plant extracts displayed cytotoxicity following 48 h exposure. Nevertheless, a substantial effect was observed with O. dayi (IC50 = 0.35 mg/mL) or O. baccatus (IC50 = 0.83 mg/mL). The aqueous extracts from aerial parts of O. dayi and O. baccatus possess antitumor effects against human liver cancer cells. These desert plants represent valuable resources for the development of potential anticancer agents.

  18. Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)

    PubMed Central

    Seidel, Robin; Bohn, Holger Florian; Speck, Thomas

    2012-01-01

    Summary Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring. PMID:22428097

  19. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

    PubMed

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile; Ordaz-Ortiz, José J; Farkas, Vladimir; Pedersen, Henriette L; Willats, William G T; Knox, J Paul

    2008-05-22

    Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re

  20. Plant cell division is specifically affected by nitrotyrosine

    PubMed Central

    Jovanović, Aleksandra M.; Durst, Steffen; Nick, Peter

    2010-01-01

    Virtually all eukaryotic α-tubulins harbour a C-terminal tyrosine that can be reversibly removed and religated, catalysed by a specific tubulin–tyrosine carboxypeptidase (TTC) and a specific tubulin–tyrosine ligase (TTL), respectively. The biological function of this post-translational modification has remained enigmatic. 3-nitro-L-tyrosine (nitrotyrosine, NO2Tyr), can be incorporated into detyrosinated α-tubulin instead of tyrosine, producing irreversibly nitrotyrosinated α-tubulin. To gain insight into the possible function of detyrosination, the effect of NO2Tyr has been assessed in two plant model organisms (rice and tobacco). NO2Tyr causes a specific, sensitive, and dose-dependent inhibition of cell division that becomes detectable from 1 h after treatment and which is not observed with non-nitrosylated tyrosine. These effects are most pronounced in cycling tobacco BY-2 cells, where the inhibition of cell division is accompanied by a stimulation of cell length, and a misorientation of cross walls. NO2Tyr reduces the abundance of the detyrosinated form of α-tubulin whereas the tyrosinated α-tubulin is not affected. These findings are discussed with respect to a model where NO2Tyr is accepted as substrate by TTL and subsequently blocks TTC activity. The irreversibly tyrosinated α-tubulin impairs microtubular functions that are relevant to cell division in general, and cell wall deposition in particular. PMID:20018903

  1. Cell Wall Modifications in Arabidopsis Plants with Altered α-l-Arabinofuranosidase Activity[C][W

    PubMed Central

    Chávez Montes, Ricardo A.; Ranocha, Philippe; Martinez, Yves; Minic, Zoran; Jouanin, Lise; Marquis, Mélanie; Saulnier, Luc; Fulton, Lynette M.; Cobbett, Christopher S.; Bitton, Frédérique; Renou, Jean-Pierre; Jauneau, Alain; Goffner, Deborah

    2008-01-01

    Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis. PMID:18344421

  2. Permanganate Fixation of Plant Cells

    PubMed Central

    Mollenhauer, Hilton H.

    1959-01-01

    In an evaluation of procedures explored to circumvent some of the problems of osmium tetroxide-fixation and methacrylate embedding of plant materials, excised segments of root tips of Zea mays were fixed for electron microscopy in potassium permanganate in the following treatment variations: unbuffered and veronal-acetate buffered solutions of 0.6, 2.0, and 5.0 per cent KMnO4 at pH 5.0, 6.0, 6.7, and 7.5, and temperatures of 2–4°C. and 22°C. After fixation the segments were dehydrated, embedded in epoxy resin, sectioned, and observed or photographed. The cells of the central region of the rootcap are described. The fixation procedures employing unbuffered solutions containing 2.0 to 5.0 per cent KMnO4 at a temperature of 22°C. gave particularly good preservation of cell structure and all membrane systems. Similar results were obtained using a solution containing 2.0 per cent KMnO4, buffered with veronal-acetate to pH 6.0, and a fixation time of 2 hours at 22°C. The fixation procedure utilizing veronal-acetate buffered, 0.6 per cent KMnO4 at 2–4°C. and pH 6.7 also gave relatively good preservation of most cellular constituents. However, preservation of the plasma membrane was not so good, nor was the intensity of staining so great, as that with the group of fixatives containing greater concentrations of KMnO4. The other fixation procedures did not give satisfactory preservation of fine structure. A comparison is made of cell structures as fixed in KMnO4 or OsO4. PMID:14423414

  3. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    PubMed Central

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  4. Cytorhabdovirus phosphoprotein shows RNA silencing suppressor activity in plants, but not in insect cells.

    PubMed

    Mann, Krin S; Johnson, Karyn N; Dietzgen, Ralf G

    2015-02-01

    RNA silencing in plants and insects provides an antiviral defense and as a countermeasure most viruses encode RNA silencing suppressors (RSS). For the family Rhabdoviridae, no detailed functional RSS studies have been reported in plant hosts and insect vectors. In agroinfiltrated Nicotiana benthamiana leaves we show for the first time for a cytorhabdovirus, lettuce necrotic yellows virus (LNYV), that one of the nucleocapsid core proteins, phosphoprotein (P) has relatively weak local RSS activity and delays systemic silencing of a GFP reporter. Analysis of GFP small RNAs indicated that the P protein did not prevent siRNA accumulation. To explore RSS activity in insects, we used a Flock House virus replicon system in Drosophila S2 cells. In contrast to the plant host, LNYV P protein did not exhibit RSS activity in the insect cells. Taken together our results suggest that P protein may target plant-specific components of RNA silencing post siRNA biogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation, Pollen Germination, and Plant Reproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou J. Y.; Liu C.; Miller, L. M.

    Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cottonwood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the levelmore » of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility.« less

  6. Phosphoric acid fuel cell 1.3 MW plant in Milan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colombo, M.; Vigano, A.

    1997-07-01

    At the end of the 80`s Aem, ENEA and Ansaldo Ricerche began to design and build a 1.3 MW phosphoric-acid-fuel-cell power plant for the production of electrical power and heat; this plant was built and installed in the Bicocca site, in the north-east area of Milan, where a great development is being promoted. Aem has been taking over the plant since July 1995. Its aim is to test the extensively advantages of this technology for both conversion efficiency and low environmental impact. The experimentation will have to recognize the key elements in order to plan and create the multi-megawatt plantsmore » with the phosphoric acid technology, opening the experimentation to international partners, like users, industries and Universities interested in the development and the application of these new systems of energy cogeneration.« less

  7. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass

    PubMed Central

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-01-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. PMID:25911738

  8. The impact of alterations in lignin deposition on cellulose organization of the plant cell wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiliang; Kim, Jeong Im; Cusumano, Joanne C.

    Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content weremore » grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples

  9. [Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants].

    PubMed

    Kuluev, B R; Safiullina, M G; Kniazev, A V; Chemeris, A V

    2013-01-01

    We obtained transgenic tobacco plants demonstrating overexpression of NtEXPA5 gene that encodes alpha-expansin of Nicotiana tabacum. The transgenic plants were characterized by increased size of leaves and stems. However, size of flowers remained almost unchanged. The increase of organ sizes was induced by cell stretching only. Moreover, the number of cell divisions was even decreased. The obtained data suggest tight interaction between cell stretching regulation and cell division, which together provide the basic mechanism aimed at the controlling of plant organ sizes.

  10. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    PubMed

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana

    To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed

  12. Direct and Indirect Visualization of Bacterial Effector Delivery into Diverse Plant Cell Types during Infection[OPEN

    PubMed Central

    Henry, Elizabeth; Jauneau, Alain; Deslandes, Laurent

    2017-01-01

    To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum. Thus, the GFP strand system can be broadly used to investigate effector biology in planta. PMID:28600390

  13. Carbohydrate Microarray Technology Applied to High-Throughput Mapping of Plant Cell Wall Glycans Using Comprehensive Microarray Polymer Profiling (CoMPP).

    PubMed

    Kračun, Stjepan Krešimir; Fangel, Jonatan Ulrik; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Vidal-Melgosa, Silvia; Willats, William George Tycho

    2017-01-01

    Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.

  14. Bioaerosols from a food waste composting plant affect human airway epithelial cell remodeling genes.

    PubMed

    Chang, Min-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-12-24

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 10(2) conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5-10 μm) having higher endotoxin levels than did fine particles (0.5-2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21 WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  15. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  16. Golgi-Mediated Synthesis and Secretion of Matrix Polysaccharides of the Primary Cell Wall of Higher Plants

    PubMed Central

    Driouich, Azeddine; Follet-Gueye, Marie-Laure; Bernard, Sophie; Kousar, Sumaira; Chevalier, Laurence; Vicré-Gibouin, Maïté; Lerouxel, Olivier

    2012-01-01

    The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin. PMID:22639665

  17. Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants.

    PubMed

    Driouich, Azeddine; Follet-Gueye, Marie-Laure; Bernard, Sophie; Kousar, Sumaira; Chevalier, Laurence; Vicré-Gibouin, Maïté; Lerouxel, Olivier

    2012-01-01

    The Golgi apparatus of eukaryotic cells is known for its central role in the processing, sorting, and transport of proteins to intra- and extra-cellular compartments. In plants, it has the additional task of assembling and exporting the non-cellulosic polysaccharides of the cell wall matrix including pectin and hemicelluloses, which are important for plant development and protection. In this review, we focus on the biosynthesis of complex polysaccharides of the primary cell wall of eudicotyledonous plants. We present and discuss the compartmental organization of the Golgi stacks with regards to complex polysaccharide assembly and secretion using immuno-electron microscopy and specific antibodies recognizing various sugar epitopes. We also discuss the significance of the recently identified Golgi-localized glycosyltransferases responsible for the biosynthesis of xyloglucan (XyG) and pectin.

  18. Inhibition of Th1 and Th17 Cells by Medicinal Plants and Their Derivatives: A Systematic Review.

    PubMed

    Asadi-Samani, Majid; Bagheri, Nader; Rafieian-Kopaei, Mahmoud; Shirzad, Hedayatollah

    2017-08-01

    Searching for new natural drugs that are capable of targeting Th1 and Th17 may lead to development of more effective treatments for inflammatory and autoimmune diseases. Most of the natural drugs can be derived from plants that are used in traditional medicine and folk medicine. The aim of this systematic review is to identify and introduce plants or plant derivatives that are effective on inflammatory diseases by inhibiting Th1 and Th17 responses. To achieve this purpose, the search terms herb, herbal medicine, herbal drug, medicinal plant, phytochemical, traditional Chinese medicine, Ayurvedic medicine, natural compound, inflammation, inflammatory diseases, Th1, Th17, T helper 1 or T helper 17 were used separately in Title/Keywords/Abstract in Web of Science and PubMed databases. In articles investigating the effect of the medicinal plants and their derivatives in inhibiting Th1 and Th17 cells, the effects of eight extracts of the medicinal plants, 21 plant-based compounds and some of their derivatives, and eight drugs derived from the medicinal plants' compounds in inhibiting Th1 and Th17 cells were reviewed. The results showed that medicinal plants and their derivates are able to suppress Th17 and Th1 T cell functions as well as cytokine secretion and differentiation. The results can be used to produce herbal drugs that suppress Th, especially Th17, responses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. A Green-Light-Responsive System for the Control of Transgene Expression in Mammalian and Plant Cells.

    PubMed

    Chatelle, Claire; Ochoa-Fernandez, Rocio; Engesser, Raphael; Schneider, Nils; Beyer, Hannes M; Jones, Alex R; Timmer, Jens; Zurbriggen, Matias D; Weber, Wilfried

    2018-05-18

    The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene repression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.

  20. Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts

    PubMed Central

    Komoda, Keisuke; Naito, Satoshi; Ishikawa, Masayuki

    2004-01-01

    The replication of eukaryotic positive-strand RNA virus genomes occurs through a complex process involving multiple viral and host proteins and intracellular membranes. Here we report a cell-free system that reproduces this process in vitro. This system uses a membrane-containing extract of uninfected plant protoplasts from which the vacuoles had been removed by Percoll gradient centrifugation. We demonstrate that the system supported translation, negative-strand RNA synthesis, genomic RNA replication, and subgenomic RNA transcription of tomato mosaic virus and two other plant positive-strand RNA viruses. The RNA synthesis, which depended on translation of the genomic RNA, produced virus-related RNA species similar to those that are generated in vivo. This system will aid in the elucidation of the mechanisms of genome replication in these viruses. PMID:14769932

  1. Induction of "pore" formation in plant cell membranes by toluene.

    PubMed

    Lerner, H R; Ben-Bassat, D; Reinhold, L; Poljakoff-Mayber, A

    1978-02-01

    Treatment with aqueous toluene-ethanol has been shown to induce "pore" formation in plant cell membranes. The evidence is as follows: [List: see text]While the principal experimental material was roots of Atriplex nummularia Lindl., the fact that similar results were also observed with leaves of Pisum sativum L. and with the alga Chlorella pyrenoidosa Chik. suggests that the phenomenon is general.Although the phenomenon of pore induction is qualitatively similar to that in microorganisms, the pores induced appear to be smaller. It is proposed that induced leakage could be the basis for the development of simple and rapid methods for plant biochemical studies.

  2. Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.

    PubMed

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2017-01-01

    Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.

  3. A fiber-reinforced-fluid model of anisotropic plant root cell growth

    NASA Astrophysics Data System (ADS)

    Jensen, Oliver E.; Dyson, Rosemary J.

    2009-11-01

    We present a theoretical model of a single cell in the expansion zone of the primary root of the plant Arabidopsis thaliana. The cell undergoes rapid elongation with approximately constant radius. Growth is driven by high internal turgor pressure causing viscous stretching of the cell wall, with embedded cellulose microfibrils providing the wall with strongly anisotropic properties. We represent the cell as a thin cylindrical fiber-reinforced viscous sheet between rigid end plates. Asymptotic reduction of the governing equations, under simple sets of assumptions about fiber and wall properties, yields variants of the traditional Lockhart equation that relates the axial cell growth rate to the internal pressure. The model provides insights into the geometric and biomechanical parameters underlying bulk quantities such as wall extensibility and shows how either dynamical changes in wall material properties or passive fibre reorientation may suppress cell elongation.

  4. Biosynthesis and Immunolocalization of Lewis a-Containing N-Glycans in the Plant Cell1

    PubMed Central

    Fitchette, Anne-Catherine; Cabanes-Macheteau, Marion; Marvin, Laure; Martin, Barry; Satiat-Jeunemaitre, Béatrice; Gomord, Véronique; Crooks, Kim; Lerouge, Patrice; Faye, Loïc; Hawes, Chris

    1999-01-01

    We recently demonstrated the presence of a new asparagine-linked complex glycan on plant glycoproteins that harbors the Lewis a (Lea), or Galβ(1-3)[Fucα(1-4)]GlcNAc, epitope, which in mammalian cells plays an important role in cell-to-cell recognition. Here we show that the monoclonal antibody JIM 84, which is widely used as a Golgi marker in light and electron microscopy of plant cells, is specific for the Lea antigen. This antigen is present on glycoproteins of a number of flowering and non-flowering plants, but is less apparent in the Cruciferae, the family that includes Arabidopsis. Lea-containing oligosaccharides are found in the Golgi apparatus, and our immunocytochemical experiments suggest that it is synthesized in the trans-most part of the Golgi apparatus. Lea epitopes are abundantly present on extracellular glycoproteins, either soluble or membrane bound, but are never observed on vacuolar glycoproteins. Double-labeling experiments suggest that vacuolar glycoproteins do not bypass the late Golgi compartments where Lea is built, and that the absence of the Lea epitope from vacuolar glycoproteins is probably the result of its degradation by glycosidases en route to or after arrival in the vacuole. PMID:10517824

  5. Intermediate-sized natural gas fueled carbonate fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Sudhoff, Frederick A.; Fleming, Donald K.

    1994-04-01

    This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.

  6. Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae.

    PubMed

    Sharpee, William; Oh, Yeonyee; Yi, Mihwa; Franck, William; Eyre, Alex; Okagaki, Laura H; Valent, Barbara; Dean, Ralph A

    2017-08-01

    Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX-mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re-sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  7. Fuel cell system modeling for solid oxide fuel cell/gas turbine hybrid power plants, Part I: Modeling and simulation framework

    NASA Astrophysics Data System (ADS)

    Leucht, Florian; Bessler, Wolfgang G.; Kallo, Josef; Friedrich, K. Andreas; Müller-Steinhagen, H.

    A sustainable future power supply requires high fuel-to-electricity conversion efficiencies even in small-scale power plants. A promising technology to reach this goal is a hybrid power plant in which a gas turbine (GT) is coupled with a solid oxide fuel cell (SOFC). This paper presents a dynamic model of a pressurized SOFC system consisting of the fuel cell stack with combustion zone and balance-of-plant components such as desulphurization, humidification, reformer, ejector and heat exchangers. The model includes thermal coupling between the different components. A number of control loops for fuel and air flows as well as power management are integrated in order to keep the system within the desired operation window. Models and controls are implemented in a MATLAB/SIMULINK environment. Different hybrid cycles proposed earlier are discussed and a preferred cycle is developed. Simulation results show the prospects of the developed modeling and control system.

  8. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Alex; Banta, Larry; Tucker, David

    2010-08-01

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant componentsmore » is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.« less

  9. Cell physiology of plants growing in cold environments.

    PubMed

    Lütz, Cornelius

    2010-08-01

    The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0 degrees C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of

  10. Regulation of plant cell wall degradation by light in Trichoderma.

    PubMed

    Schmoll, Monika

    2018-01-01

    Trichoderma reesei (syn. Hypocrea jecorina ) is the model organism for industrial production of plant cell wall degradating enzymes. The integration of light and nutrient signals for adaptation of enzyme production in T. reesei emerged as an important regulatory mechanism to be tackled for strain improvement. Gene regulation specific for cellulase inducing conditions is different in light and darkness with substantial regulation by photoreceptors. Genes regulated by light are clustered in the genome, with several of the clusters overlapping with CAZyme clusters. Major cellulase transcription factor genes and at least 75% of glycoside hydrolase encoding genes show the potential of light dependent regulation. Accordingly, light dependent protein complex formation occurs within the promoters of cellulases and their regulators. Additionally growth on diverse carbon sources is different between light and darkness and dependent on the presence of photoreceptors in several cases. Thereby, also light intensity plays a regulatory role, with cellulase levels dropping at higher light intensities dependent in the strain background. The heterotrimeric G-protein pathway is the most important nutrient signaling pathway in the connection with light response and triggers posttranscriptional regulation of cellulase expression. All G-protein alpha subunits impact cellulase regulation in a light dependent manner. The downstream cAMP pathway is involved in light dependent regulation as well. Connections between the regulatory pathways are mainly established via the photoreceptor ENV1. The effect of photoreceptors on plant cell wall degradation also occurs in the model filamentous fungus Neurospora crassa . In the currently proposed model, T. reesei senses the presence of plant biomass in its environment by detection of building blocks of cellulose and hemicellulose. Interpretation of the respective signals is subsequently adjusted to the requirements in light and darkness (or on the

  11. Annulate lamellae in phloem cells of virus-infected Sonchus plants.

    PubMed

    Steinkamp, M P; Hoefert, L L

    1977-07-01

    The occurrence of annulate lamellae (AL) in differentiating phloem of Sonchus oleraceus (Compositae) singly infected with sowthistle yellow vein virus (SYVV) and doubly infected with a combination of SYVV and beet yellow stunt virus is documented by electron microscopy. Cell types in which AL were found were immature sieve elements and phloem parenchyma cells. AL were found only in cells that also contained SYVV particles although a direct association between the virus and AL was not apparent. The substructure of the AL and the relationships between the AL and the nuclear envelope and endoplasmic reticulum are similar to those reported in other descriptions of this organelle in the literature. This report appears to be the first one concerning the association of AL with a plant virus disease.

  12. Thermal, High Pressure, and Electric Field Processing Effects on Plant Cell Membrane Integrity and Relevance to Fruit and Vegetable Quality

    PubMed Central

    Gonzalez, Maria E; Barrett, Diane M

    2010-01-01

    Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan. Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEF. Our research group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP, or PEF, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton nuclear magnetic resonance (1H-NMR). PMID:20492210

  13. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality.

    PubMed

    Gonzalez, Maria E; Barrett, Diane M

    2010-09-01

    Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan. Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEF. Our research group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP, or PEF, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton nuclear magnetic resonance (¹H-NMR).

  14. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    PubMed

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-03-10

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  15. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor.

    PubMed

    Hegenauer, Volker; Fürst, Ursula; Kaiser, Bettina; Smoker, Matthew; Zipfel, Cyril; Felix, Georg; Stahl, Mark; Albert, Markus

    2016-07-29

    Parasitic plants are a constraint on agriculture worldwide. Cuscuta reflexa is a stem holoparasite that infests most dicotyledonous plants. One exception is tomato, which is resistant to C. reflexa We discovered that tomato responds to a small peptide factor occurring in Cuscuta spp. with immune responses typically activated after perception of microbe-associated molecular patterns. We identified the cell surface receptor-like protein CUSCUTA RECEPTOR 1 (CuRe1) as essential for the perception of this parasite-associated molecular pattern. CuRe1 is sufficient to confer responsiveness to the Cuscuta factor and increased resistance to parasitic C. reflexa when heterologously expressed in otherwise susceptible host plants. Our findings reveal that plants recognize parasitic plants in a manner similar to perception of microbial pathogens. Copyright © 2016, American Association for the Advancement of Science.

  16. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    PubMed

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  17. A Versatile Click-Compatible Monolignol Probe to Study Lignin Deposition in Plant Cell Walls

    PubMed Central

    Pandey, Jyotsna L.; Wang, Bo; Diehl, Brett G.; Richard, Tom L.; Chen, Gong; Anderson, Charles T.

    2015-01-01

    Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP) lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly. PMID:25884205

  18. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    PubMed

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  19. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases.

    PubMed

    Zhang, Meixiang; Li, Qi; Liu, Tingli; Liu, Li; Shen, Danyu; Zhu, Ye; Liu, Peihan; Zhou, Jian-Min; Dou, Daolong

    2015-01-01

    Plant pathogenic oomycetes, such as Phytophthora sojae, secrete an arsenal of host cytoplasmic effectors to promote infection. We have shown previously that P. sojae PsCRN63 (for crinkling- and necrosis-inducing proteins) induces programmed cell death (PCD) while PsCRN115 blocks PCD in planta; however, they are jointly required for full pathogenesis. Here, we find that PsCRN63 alone or PsCRN63 and PsCRN115 together might suppress the immune responses of Nicotiana benthamiana and demonstrate that these two cytoplasmic effectors interact with catalases from N. benthamiana and soybean (Glycine max). Transient expression of PsCRN63 increases hydrogen peroxide (H(2)O(2)) accumulation, whereas PsCRN115 suppresses this process. Transient overexpression of NbCAT1 (for N. benthamiana CATALASE1) or GmCAT1 specifically alleviates PsCRN63-induced PCD. Suppression of the PsCRN63-induced PCD by PsCRN115 is compromised when catalases are silenced in N. benthamiana. Interestingly, the NbCAT1 is recruited into the plant nucleus in the presence of PsCRN63 or PsCRN115; NbCAT1 and GmCAT1 are destabilized when PsCRN63 is coexpressed, and PsCRN115 inhibits the processes. Thus, PsCRN63/115 manipulates plant PCD through interfering with catalases and perturbing H(2)O(2) homeostasis. Furthermore, silencing of catalase genes enhances susceptibility to Phytophthora capsici, indicating that catalases are essential for plant resistance. Taken together, we suggest that P. sojae secretes these two effectors to regulate plant PCD and H(2)O(2) homeostasis through direct interaction with catalases and, therefore, overcome host immune responses. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. The quest for four-dimensional imaging in plant cell biology: it's just a matter of time

    PubMed Central

    Domozych, David S.

    2012-01-01

    Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during developmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our understanding of gene expression, post-expression modulations of macromolecules and sub-cellular system interactions. Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution, contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of specimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscopist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell structures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available. PMID:22628381

  1. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE.

    PubMed

    Pidatala, Venkataramana R; Mahboubi, Amir; Mortimer, Jenny C

    2017-10-16

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharide fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.

  2. Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls

    NASA Astrophysics Data System (ADS)

    Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.

    2011-12-01

    Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.

  3. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEX TM -pre-treated biomass

    DOE PAGES

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; ...

    2015-04-23

    We report that cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is amore » trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. Lastly, we found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.« less

  4. Integrating cell biology and proteomic approaches in plants.

    PubMed

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  5. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment

    Treesearch

    Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale

    2011-01-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...

  6. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity.

    PubMed

    Martínez-Ballesta, M Carmen; Zapata, Lavinia; Chalbi, Najla; Carvajal, Micaela

    2016-06-08

    Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWCNTs on growth in NaCl-treated plants was consequence of increased water uptake, promoted by more-favourable energetic forces driving this process, and enhanced net assimilation of CO2. MWCNTs induced changes in the lipid composition, rigidity and permeability of the root plasma membranes relative to salt-stressed plants. Also, enhanced aquaporin transduction occurred, which improved water uptake and transport, alleviating the negative effects of salt stress. Our work provides new evidences about the effect of MWCNTs on plasma membrane properties of the plant cell. The positive response to MWCNTs in broccoli plants opens novel perspectives for their technological uses in new agricultural practices, especially when 1plants are exposed to saline environments.

  7. Mechanical signals in plant development: a new method for single cell studies

    NASA Technical Reports Server (NTRS)

    Lynch, T. M.; Lintilhac, P. M.

    1997-01-01

    Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.

  8. Culturing immobilized plant cells for the TUBUL space experiments on the DELTA and 12S Missions

    NASA Astrophysics Data System (ADS)

    Sieberer, Björn J.; Emons, Anne Mie C.; Vos, Jan W.

    2007-09-01

    For the TUBUL experiments during the DELTA mission in April 2004 and 12S mission in March/April 2006 on board the Soyuz capsule and the International Space Station we developed a method to culture and chemically fix plant suspension culture cells. The aim of the ten day experiment was to investigate the effect of microgravity on single plant cells. Fully automated experiment cassettes (Plunger Box Units) were developed by Centre for Concepts in Mechatronics (Nuenen, the Netherlands). Tobacco BY- 2 cells were immobilized in a semi- solid agarose matrix that was reinforced by a nylon mesh. This assembly allowed liquid medium refreshment, oxygen supply and chemical fixation, including a post- fixative wash. The method was optimized for post- flight analysis of cell structure, shape and size, cell division, and the microtubule cytoskeleton. The viability of cells in the agarose matrix was similar to cells grown in liquid medium under laboratory conditions, only the stationary growth phase was reached six days later.

  9. Cysteamine-based cell-permeable Zn(2+)-specific molecular bioimaging materials: from animal to plant cells.

    PubMed

    Sinha, Sougata; Dey, Gourab; Kumar, Sunil; Mathew, Jomon; Mukherjee, Trinetra; Mukherjee, Subhrakanti; Ghosh, Subrata

    2013-11-27

    Structure-interaction/fluorescence relationship studies led to the development of a small chemical library of Zn(2+)-specific cysteamine-based molecular probes. The probe L5 with higher excitation/emission wavelengths, which absorbs in the visible region and emits in the green, was chosen as a model imaging material for biological studies. After successful imaging of intracellular zinc in four different kinds of cells including living organisms, plant, and animal cells, in vivo imaging potential of L5 was evaluated using plant systems. In vivo imaging of translocation of zinc through the stem of a small herb with a transparent stem, Peperomia pellucida, confirmed the stability of L5 inside biological systems and the suitability of L5 for real-time analysis. Similarly, fluorescence imaging of zinc in gram sprouts revealed the efficacy of the probe in the detection and localization of zinc in cereal crops. This imaging technique will help in knowing the efficiency of various techniques used for zinc enrichment of cereal crops. Computational analyses were carried out to better understand the structure, the formation of probe-Zn(2+) complexes, and the emission properties of these complexes.

  10. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells.

    PubMed

    Wang, Z-Y; Bell, J; Lehmann, D

    2004-07-01

    Russian wildrye (Psathyrostachys juncea (Fisch.) Nevski) is a cool-season forage species well adapted to semi-arid climates. We are interested in developing biotechnological methods to improve this monocot forage species. Single genotype-derived embryogenic suspension cultures were established from the Russian wildrye cultivar Bozoisky-Select, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric beta-glucuronidase (gusA) gene was co-transformed with hph. Resistant calli were obtained from 29% of the bombarded dishes after selection with 200 mg/l hygromycin. Plants were regenerated from 45% of the hygromycin resistant calli. Thirty-six transgenic Russian wildrye plants were recovered after microprojectile bombardment of suspension cells and subsequent hygromycin selection. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis using undigested and digested genomic DNA samples. When a second gene (gusA) was co-transformed with hph, a reasonably high co-transformation frequency of 78% was observed. Transgenic expression of gusA was confirmed by GUS staining of shoot and leaf tissues. Fertile transgenic plants were obtained after two winters of vernalization under field conditions. This is the first report on the generation of transgenic plants in Russian wildrye.

  11. Reassessing apoptosis in plants.

    PubMed

    Dickman, Martin; Williams, Brett; Li, Yurong; de Figueiredo, Paul; Wolpert, Thomas

    2017-10-01

    Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.

  12. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls.

    PubMed

    MacMillan, Colleen P; Birke, Hannah; Chuah, Aaron; Brill, Elizabeth; Tsuji, Yukiko; Ralph, John; Dennis, Elizabeth S; Llewellyn, Danny; Pettolino, Filomena A

    2017-07-18

    Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue's lacking many of the gene transcripts normally associated with lignin biosynthesis. Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for 'typical' plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in

  13. Calreticulin localizes to plant intra/extracellular peripheries of highly specialized cells involved in pollen-pistil interactions.

    PubMed

    Wasąg, Piotr; Suwińska, Anna; Zakrzewski, Przemysław; Walczewski, Jakub; Lenartowski, Robert; Lenartowska, Marta

    2018-01-01

    Calcium (Ca 2+ ) plays essential roles in generative reproduction of angiosperms, but the sites and mechanisms of Ca 2+ storage and mobilization during pollen-pistil interactions have not been fully defined. Both external and internal Ca 2+ stores are likely important during male gametophyte communication with the sporophytic and gametophytic cells within the pistil. Given that calreticulin (CRT), a Ca 2+ -buffering protein, is able to bind Ca 2+ reversibly, it can serve as a mobile store of easily releasable Ca 2+ (so called an exchangeable Ca 2+ ) in eukaryotic cells. CRT has typical endoplasmic reticulum (ER) targeting and retention signals and resides primarily in the ER. However, localization of this protein outside the ER has also been revealed in both animal and plant cells, including Golgi/dictyosomes, nucleus, plasma membrane/cell surface, plasmodesmata, and even extracellular matrix. These findings indicate that CRT may function in a variety of different cell compartments and specialized structures. We have recently shown that CRT is highly expressed and accumulated in the ER of plant cells involved in pollen-pistil interactions in Petunia, and we proposed an essential role for CRT in intracellular Ca 2+ storage and mobilization during the key reproductive events. Here, we demonstrate that both CRT and exchangeable Ca 2+ are localized in the intra/extracellular peripheries of highly specialized plant cells, such as the pistil transmitting tract cells, pollen tubes, nucellus cells surrounding the embryo sac, and synergids. Based on our present results, we propose that extracellularly located CRT is also involved in Ca 2+ storage and mobilization during sexual reproduction of angiosperms.

  14. Annulate lamellae in phloem cells of virus-infected Sonchus plants

    PubMed Central

    1977-01-01

    The occurrence of annulate lamellae (AL) in differentiating phloem of Sonchus oleraceus (Compositae) singly infected with sowthistle yellow vein virus (SYVV) and doubly infected with a combination of SYVV and beet yellow stunt virus is documented by electron microscopy. Cell types in which AL were found were immature sieve elements and phloem parenchyma cells. AL were found only in cells that also contained SYVV particles although a direct association between the virus and AL was not apparent. The substructure of the AL and the relationships between the AL and the nuclear envelope and endoplasmic reticulum are similar to those reported in other descriptions of this organelle in the literature. This report appears to be the first one concerning the association of AL with a plant virus disease. PMID:873998

  15. Dissecting the functional significance of non-catalytic carbohydrate binding modules in the deconstruction of plant cell walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Michael G.

    The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plantmore » cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.« less

  16. Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride.

    PubMed

    Navazio, Lorella; Baldan, Barbara; Moscatiello, Roberto; Zuppini, Anna; Woo, Sheridan L; Mariani, Paola; Lorito, Matteo

    2007-07-30

    Calcium is commonly involved as intracellular messenger in the transduction by plants of a wide range of biotic stimuli, including signals from pathogenic and symbiotic fungi. Trichoderma spp. are largely used in the biological control of plant diseases caused by fungal phytopathogens and are able to colonize plant roots. Early molecular events underlying their association with plants are relatively unknown. Here, we investigated the effects on plant cells of metabolite complexes secreted by Trichoderma atroviride wild type P1 and a deletion mutant of this strain on the level of cytosolic free Ca2+ and activation of defense responses. Trichoderma culture filtrates were obtained by growing the fungus alone or in direct antagonism with its fungal host, the necrotrophic pathogen Botrytis cinerea, and then separated in two fractions (>3 and <3 kDa). When applied to aequorin-expressing soybean (Glycine max L.) cell suspension cultures, Trichoderma and Botrytis metabolite mixtures were distinctively perceived and activated transient intracellular Ca2+ elevations with different kinetics, specific patterns of intracellular accumulation of reactive oxygen species and induction of cell death. Both Ca2+ signature and cellular effects were modified by the culture medium from the knock-out mutant of Trichoderma, defective for the production of the secreted 42 kDa endochitinase. New insights are provided into the mechanism of interaction between Trichoderma and plants, indicating that secreted fungal molecules are sensed by plant cells through intracellular Ca2+ changes. Plant cells are able to discriminate signals originating in the single or two-fungal partner interaction and modulate defense responses.

  17. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development.

    PubMed

    Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S

    2011-02-01

    Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.

  18. Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division Patterns.

    PubMed

    von Wangenheim, Daniel; Fangerau, Jens; Schmitz, Alexander; Smith, Richard S; Leitte, Heike; Stelzer, Ernst H K; Maizel, Alexis

    2016-02-22

    Plants form new organs with patterned tissue organization throughout their lifespan. It is unknown whether this robust post-embryonic organ formation results from stereotypic dynamic processes, in which the arrangement of cells follows rigid rules. Here, we combine modeling with empirical observations of whole-organ development to identify the principles governing lateral root formation in Arabidopsis. Lateral roots derive from a small pool of founder cells in which some take a dominant role as seen by lineage tracing. The first division of the founders is asymmetric, tightly regulated, and determines the formation of a layered structure. Whereas the pattern of subsequent cell divisions is not stereotypic between different samples, it is characterized by a regular switch in division plane orientation. This switch is also necessary for the appearance of patterned layers as a result of the apical growth of the primordium. Our data suggest that lateral root morphogenesis is based on a limited set of rules. They determine cell growth and division orientation. The organ-level coupling of the cell behavior ensures the emergence of the lateral root's characteristic features. We propose that self-organizing, non-deterministic modes of development account for the robustness of plant organ morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls.

    PubMed

    Wang, Maojun; Yuan, Daojun; Gao, Wenhui; Li, Yang; Tan, Jiafu; Zhang, Xianlong

    2013-01-01

    Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development.

  20. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms

    PubMed Central

    Parrotta, Luigi; Guerriero, Gea; Sergeant, Kjell; Cai, Giampiero; Hausman, Jean-Francois

    2015-01-01

    Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e., barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators’ cell walls as a particular case, the review concludes by considering important aspects for plant engineering. PMID:25814996

  1. The Plant Protoplast: A Useful Tool for Plant Research and Student Instruction

    ERIC Educational Resources Information Center

    Wagner, George J.; And Others

    1978-01-01

    A plant protoplast is basically a plant cell that lacks a cell wall. This article outlines some of the ways in which protoplasts may be used to advance understanding of plant cell biology in research and student instruction. Topics include high efficiency experimental virus infection, organelle isolation, and osmotic effects. (Author/MA)

  2. Structure, function, and biosynthesis of plant cell walls: proceedings of the seventh annual symposium in botany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugger, W.M.; Bartnicki-Garcia, S.

    Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)

  3. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.

    PubMed

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2015-07-10

    Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. The participation of singlet oxygen in a photocitotoxicity of extract from amazon plant to cancer cells

    NASA Astrophysics Data System (ADS)

    Tcibulnikova, Anna V.; Degterev, Igor A.; Bryukhanov, Valery V.; Roberto, Mantuanelly M.; Campos Pereira, F. D.; Marin-Morales, M. A.; Slezhkin, Vasily A.; Samusev, Ilya G.

    2018-01-01

    We have been searching for new photosensitizers (PS) for photodynamic therapy (PDT) of cancer based on extracts from Amazonian plants since 2009. In this paper, we demonstrate that, under certain conditions, the extract from fruits of the Amazonian palm Euterpe oleraceae (popular name Açaí) can serve as a PS for PDT treatment of murine breast cancer cells (4T1 cell line). We have been first to show directly that the photodynamic effect of plant PS is due to singlet oxygen.

  5. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    1997-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  6. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1998-10-20

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 67 figs.

  7. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliot M.; Chang, Caren; Bleecker, Anthony B.

    1998-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  8. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  9. Resonant Soft X-ray Scattering of Cellulose Microstructure in Plant Primary Cell Walls

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Kiemle, Sarah N.; Wang, Cheng; Cosgrove, Daniel J.; Gomez, Esther W.; Gomez, Enrique D.

    Cellulosic biomass is the most abundant raw material available for the production of renewable and sustainable biofuels. Breaking down cellulose is the rate-limiting step in economical biofuel production; therefore, a detailed understanding of the microscopic structure of plant cell walls is required to develop efficient biofuel conversion methods. Primary cell walls are key determinants of plant growth and mechanics. Their structure is complex and heterogeneous, making it difficult to elucidate how various components such as pectin, hemicellulose, and cellulose contribute to the overall structure. The electron density of these wall components is similar; such that conventional hard X-ray scattering does not generate enough contrast to resolve the different elements of the polysaccharide network. The chemical specificity of resonant soft X-ray scattering allows contrast to be generated based on differences in chemistry of the different polysaccharides. By varying incident X-ray energies, we have achieved increased scattering contrast between cellulose and other polysaccharides from primary cell walls of onions. By performing scattering at certain energies, features of the network structure of the cell wall are resolved. From the soft X-ray scattering results, we obtained the packing distance of cellulose microfibrils embedded in the polysaccharide network.

  10. A novel histone variant localized in nucleoli of higher plant cells.

    PubMed

    Tanaka, I; Akahori, Y; Gomi, K; Suzuki, T; Ueda, K

    1999-07-01

    Immunofluorescence staining with antisera raised against p35, a basic nuclear protein that accumulates in the pollen nuclei of Lilium longiflorum, specifically stained the nucleoli in interphase nuclei of somatic tissues, including root and leaf, and in pachytene nuclei during meiotic division, whereas antisera raised against histone H1 uniformly stained the entire chromatin domain with the exception of the nucleoli in these nuclei. Further, p35-specific antisera stained the nucleoli in root and leaf nuclei of the monocotyledonous plants Tulipa gesneriana, Allium cepa and Triticum aestivum and of the dicotyledonous plants Vicia faba and Nicotiana tabacum. Thus, these novel antisera stained the nucleoli in cells of all higher plants examined, although the staining patterns within nucleoli were somewhat different among plant species and tissues. The full-length cDNA of p35 was cloned on the basis of the partial amino acid sequence. The deduced amino acid composition and amino acid sequence of p35 indicate that this nucleolar protein is a novel variant of histone Hl. Further, p35 was strongly bound to ribosomal DNA in vitro. The results of immunoblotting of histones extracted from each tissue of the various plant species with the nucleolus-specific antibodies also suggested the conservation of similar epitope(s) in both mono- and dicotyledonous plants. From these results, it is suggested that similar variants of histone Hl are specifically distributed in the nucleoli of all plant species and help to organize the nucleolar chromatin.

  11. Displacement of organelles in plant gravireceptor cells by vibrational forces and ultrasound.

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.; Nechitailo, G.; Kuznetsov, A.

    Plant gravity perception can be studied by displacing statoliths inside receptor cells by forces other than gravity. Due to mechanical heterogeneity of statocytes various ponderomotive forces can be used for this purpose. In a plant subjected to non- symmetric vibrations statoliths experience inertial force proportional to the difference between their density and that of cytoplasm and to the instantaneous acceleration of the cell. This force causes cyclic motion of statoliths relative to cytoplasm and, depending on the profile of oscillations, can result in a net displacement of them (due to complex rheology of the cell interior), similar to sedimentation. This can be described as "vibrational" ponderomotive force acting on the statoliths. Vertically growing Arabidopsis seedlings, subjected to horizontal, sawtooth shaped oscillations (250 Hz, 1.5 mm amplitude), showed 17+/-2o root curvature toward and shoot curvature of 11+/-3o against the stronger acceleration. When the polarity of the oscillations was reversed, the direction of curvature of shoots and roots was also reversed. Control experiments with starchless mutants (TC7) produced no net curvature, which indicates that dense starch-filled amyloplasts are needed for the effect. These control experiments also eliminate touch-induced reactions or other side-effects as the cause of the curvature. Linum roots curved 25+/-7o . Ceratodon protonemata subjected to the same oscillations have shown displacement of plastids and curvature consistent with the pattern observed during graviresponse: positively gravitropic wwr mutant curved in the direction of the plastid displacement, WT curved in the opposite direction. Acoustic ponderomotive forces, originating from transfer of a sonic beam momentum to the medium due to sound scattering and attenuation in a mechanically heterogeneous system, also can displace statoliths. Vertical flax seedlings curved away from the ultrasonic source (800 kHz, 0.1 W/cm2 ) presumably as a

  12. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants

    PubMed Central

    Loix, Christophe; Huybrechts, Michiel; Vangronsveld, Jaco; Gielen, Marijke; Keunen, Els; Cuypers, Ann

    2017-01-01

    Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule. PMID:29163592

  13. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    PubMed

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril

  14. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants

    PubMed Central

    Sotiriou, P.; Giannoutsou, E.; Panteris, E.; Apostolakos, P.; Galatis, B.

    2016-01-01

    Background and aims This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Methods Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. Results In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. Conclusions The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: 1067–1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination

  15. Accumulation of acidic SK₃ dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae.

    PubMed

    Szabala, Bartosz Mieczyslaw; Fudali, Sylwia; Rorat, Tadeusz

    2014-04-01

    The role of acidic SK(n) dehydrins in stress tolerance of important crop and model species of the Solanaceae remains unknown. We have previously shown that the acidic SK₃ dehydrin DHN24 from Solanum sogarandinum is constitutively expressed and its expression is associated with cold acclimation. Here we found that DHN24 is specifically localized to phloem cells of vegetative organs of non-acclimated plants. More precise localization of DHN24 revealed that it is primarily found in sieve elements (SEs) and companion cells (CCs) of roots and stems. In cold-acclimated plants, DHN24 is mainly present in all cell types of the phloem. Dhn24 transcripts are also predominantly localized to phloem cells of cold-acclimated stems. Immunoelectron microscopy localized DHN24 to the cytosol and close to organelle membranes of phloem cells, the lumen with phloem protein filaments, parietal cytoplasm of SEs and the nucleoplasm of some nuclei. Cell fractionation experiments revealed that DHN24 was detected in the cytosolic, nuclear and microsomal fractions. We also determined whether homologous members of the acidic subclass dehydrins from Capsicum annuum and Lycopersicon chilense share the characteristics of DHN24. We showed that they are also constitutively expressed, but their protein level is upregulated preferentially by drought stress. Immunofluorescent localization revealed that they are detected in SEs and CCs of unstressed plants and throughout the phloem in drought-stressed plants. These results suggest that one of the primary roles of DHN24 and its homologs may be the protection of the phloem region from adverse effects of abiotic stresses.

  16. A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield

    DOE PAGES

    Lim, Sung Don; Yim, Won Choel; Liu, Degao; ...

    2018-04-16

    Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix–loop–helix transcription factor (VvCEB1 opt) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1 opt-overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased Kmore » content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1 opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen–defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1 opt-overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1 opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.« less

  17. A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Sung Don; Yim, Won Choel; Liu, Degao

    Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix–loop–helix transcription factor (VvCEB1 opt) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1 opt-overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased Kmore » content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1 opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen–defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1 opt-overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1 opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.« less

  18. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils.more » In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).« less

  19. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest1[OPEN

    PubMed Central

    2017-01-01

    Multicellular glandular trichomes are epidermal outgrowths characterized by the presence of a head made of cells that have the ability to secrete or store large quantities of specialized metabolites. Our understanding of the transcriptional control of glandular trichome initiation and development is still in its infancy. This review points to some central questions that need to be addressed to better understand how such specialized cell structures arise from the plant protodermis. A key and unique feature of glandular trichomes is their ability to synthesize and secrete large amounts, relative to their size, of a limited number of metabolites. As such, they qualify as true cell factories, making them interesting targets for metabolic engineering. In this review, recent advances regarding terpene metabolic engineering are highlighted, with a special focus on tobacco (Nicotiana tabacum). In particular, the choice of transcriptional promoters to drive transgene expression and the best ways to sink existing pools of terpene precursors are discussed. The bioavailability of existing pools of natural precursor molecules is a key parameter and is controlled by so-called cross talk between different biosynthetic pathways. As highlighted in this review, the exact nature and extent of such cross talk are only partially understood at present. In the future, awareness of, and detailed knowledge on, the biology of plant glandular trichome development and metabolism will generate new leads to tap the largely unexploited potential of glandular trichomes in plant resistance to pests and lead to the improved production of specialized metabolites with high industrial or pharmacological value. PMID:28724619

  20. 13C cell wall enrichment and ionic liquid NMR analysis: progress towards a high-throughput detailed chemical analysis of the whole plant cell wall.

    PubMed

    Foston, Marcus; Samuel, Reichel; Ragauskas, Arthur J

    2012-09-07

    The ability to accurately and rapidly measure plant cell wall composition, relative monolignol content and lignin-hemicellulose inter-unit linkage distributions has become essential to efforts centered on reducing the recalcitrance of biomass by genetic engineering. Growing (13)C enriched transgenic plants is a viable route to achieve the high-throughput, detailed chemical analysis of whole plant cell wall before and after pretreatment and microbial or enzymatic utilization by (13)C nuclear magnetic resonance (NMR) in a perdeuterated ionic liquid solvent system not requiring component isolation. 1D (13)C whole cell wall ionic liquid NMR of natural abundant and (13)C enriched corn stover stem samples suggest that a high level of uniform labeling (>97%) can significantly reduce the total NMR experiment times up to ~220 times. Similarly, significant reduction in total NMR experiment time (~39 times) of the (13)C enriched corn stover stem samples for 2D (13)C-(1)H heteronuclear single quantum coherence NMR was found.

  1. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2006-01-01

    NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.

  2. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pidatala, Venkataramana R.; Mahboubi, Amir; Mortimer, Jenny C.

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharidemore » fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.« less

  3. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE

    DOE PAGES

    Pidatala, Venkataramana R.; Mahboubi, Amir; Mortimer, Jenny C.

    2017-10-16

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharidemore » fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.« less

  4. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology.

  5. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants.

    PubMed

    Zhuo, Kan; Chen, Jiansong; Lin, Borong; Wang, Jing; Sun, Fengxia; Hu, Lili; Liao, Jinling

    2017-01-01

    Meloidogyne enterolobii is one of the most important plant-parasitic nematodes that can overcome the Mi-1 resistance gene and damage many economically important crops. Translationally controlled tumour protein (TCTP) is a multifunctional protein that exists in various eukaryotes and plays an important role in parasitism. In this study, a novel M. enterolobii TCTP effector, named MeTCTP, was identified and functionally characterized. MeTCTP was specifically expressed within the dorsal gland and was up-regulated during M. enterolobii parasitism. Transient expression of MeTCTP in protoplasts from tomato roots showed that MeTCTP was localized in the cytoplasm of the host cells. Transgenic Arabidopsis thaliana plants overexpressing MeTCTP were more susceptible to M. enterolobii infection than wild-type plants in a dose-dependent manner. By contrast, in planta RNA interference (RNAi) targeting MeTCTP suppressed the expression of MeTCTP in infecting nematodes and attenuated their parasitism. Furthermore, MeTCTP could suppress programmed cell death triggered by the pro-apoptotic protein BAX. These results demonstrate that MeTCTP is a novel plant-parasitic nematode effector that promotes parasitism, probably by suppressing programmed cell death in host plants. © 2016 BSPP and John Wiley & Sons Ltd.

  6. Analysis of Complex Carbohydrate Composition in Plant Cell Wall Using Fourier Transformed Mid-Infrared Spectroscopy (FT-IR).

    PubMed

    Badhan, Ajay; Wang, Yuxi; McAllister, Tim A

    2017-01-01

    Fourier transformed mid-infrared spectroscopy (FTIR) is a powerful tool for compositional analysis of plant cell walls (Acebes et al., Front Plant Sci 5:303, 2014; Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Badhan et al., BioMed Res Int 2015: 562952, 2015; Roach et al., Plant Physiol 156:1351-1363, 2011). The infrared spectrum generates a fingerprint of a sample with absorption peaks corresponding to the frequency of vibrations between the bonds of the atoms making up the material. Here, we describe a method focused on the use of FTIR in combination with principal component analysis (PCA) to characterize the composition of the plant cell wall. This method has been successfully used to study complex enzyme saccharification processes like rumen digestion to identify recalcitrant moieties in low-quality forage which resist rumen digestion (Badhan et al., BioMed Res Int 2015: 562952, 2015), as well as to characterize cell wall mutant lines or transgenic lines expressing exogenous hydrolases (Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Roach et al., Plant Physiol 156:1351-1363, 2011). The FTIR method described here facilitates high-throughput identification of the major compositional differences across a large set of samples in a low cost and nondestructive manner.

  7. Differential Top10 promoter regulation by six tetracycline analogues in plant cells

    NASA Technical Reports Server (NTRS)

    Love, John; Allen, George C.; Gatz, Christiane; Thompson, William F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.

  8. Differential Top10 promoter regulation by six tetracycline analogues in plant cells.

    PubMed

    Love, John; Allen, George C; Gatz, Christiane; Thompson, William F

    2002-09-01

    The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.

  9. Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Antonyuk, L. P.; Matora, L. Yu.; Serebrennikova, O. B.; Sumaroka, M. V.; Colina, M.; Renou-Gonnord, M.-F.; Ignatov, V. V.

    1999-05-01

    Structural and compositional features of bacterial membranes and some of their isolated constituents (cell surface lipopolysaccharide, phospholipids) of the plant-growth-promoting diazotrophic rhizobacterium Azospirillum brasilense (wild-type strain Sp245) were characterized using Fourier transform infrared (FTIR) spectroscopy and some other techniques. FTIR spectra of the cell membranes were shown to comprise the main vibration modes of the relevant lipopolysaccharide and protein components which are believed to be involved in associative plant-bacterium interactions, as well as of phospholipid constituents. The role and functions of metal cations in the structural organization and physicochemical properties of bacterial cell membranes are also discussed considering their accumulation in the membranes from the culture medium.

  10. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells.

    PubMed

    Eggenberger, Kai; Mink, Christian; Wadhwani, Parvesh; Ulrich, Anne S; Nick, Peter

    2011-01-03

    The delivery of externally applied macromolecules or nanoparticles into living cells still represents a critically limiting step before the full capabilities of chemical engineering can be explored. Molecular transporters such as cell-penetrating peptides, peptoids, and other mimetics can be used to carry cargo across the cellular membrane, but it is still difficult to find suitable sequences that operate efficiently for any particular type of cell. Here we report that BP100 (KKLFKKILKYL-amide), originally designed as an antimicrobial peptide against plant pathogens, can be employed as a fast and efficient cell-penetrating agent to transport fluorescent test cargoes into the cytosol of walled plant cells. The uptake of BP100 proceeds slightly more slowly than the endocytosis of fluorescent dextranes, but BP100 accumulates more efficiently and to much higher levels (by an order of magnitude). The entry of BP100 can be efficiently blocked by latrunculin B; this suggests that actin filaments are essential to the uptake mechanism. To test whether this novel transporter can also be used to deliver functional cargoes, we designed a fusion construct of BP100 with the actin-binding Lifeact peptide (MGVADLIKKFESISKEE). We demonstrated that the short BP100 could transport the attached 17-residue sequence quickly and efficiently into tobacco cells. The Lifeact construct retained its functionality as it successfully labeled the actin bundles that tether the nucleus in the cell center.

  11. Extraction of nucleic acids from yeast cells and plant tissues using ethanol as medium for sample preservation and cell disruption.

    PubMed

    Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf

    2010-09-01

    Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.

  12. Process analysis of a molten carbonate fuel cell power plant fed with a biomass syngas

    NASA Astrophysics Data System (ADS)

    Tomasi, C.; Baratieri, M.; Bosio, B.; Arato, E.; Baggio, P.

    The coupling of renewable energy sources and innovative power generation technologies is of topical interest to meet demands for increased power generation and cleaner environmental performance. Accordingly, biomass is receiving considerable attention as a partial substitute for fossil fuels, as it is more environmentally friendly and provides a profitable way of disposing of waste. In addition, fuel cells are perceived as most promising electrical power generation systems. Today, many plants combining these two concepts are under study; they differ in terms of biomass type and/or power plant configuration. Even if the general feasibility of such applications has been demonstrated, there are still many associated problems to be resolved. This study examines a plant configuration based on a molten carbonate fuel cell (MCFC) and a recirculated fluidized-bed reactor which has been applied to the thermal conversion of many types of biomass. Process analysis is conducted by simulating the entire plant using a commercial code. In particular, an energy assessment is studied by taking account of the energy requirements of auxiliary equipment and the possibility of utilizing the exhaust gases for cogeneration.

  13. The plant host pathogen interface: cell wall and membrane dynamics of pathogen-induced responses.

    PubMed

    Day, Brad; Graham, Terry

    2007-10-01

    Perception of pathogens by their hosts is the outcome of a highly coordinated and sophisticated surveillance network, tightly regulated by both host and pathogen elicitors, effectors, and signaling processes. In this article, we focus on two relatively well-studied host-pathogens systems, one involving a bacterial-plant interaction (Pseudomonas syringae-Arabidopsis) and the other involving an oomycete-plant interaction (Phytophthora sojae-soybean). We discuss the status of current research related to events occurring at the host-pathogen interface in these two systems, and how these events influence the organization and activation of resistance responses in the respective hosts. This recent research has revealed that in addition to the previously identified resistance machinery (R-proteins, molecular chaperones, etc.), the dynamics of the cell wall, membrane trafficking, and the actin cytoskeleton are intimately associated with the activation of resistance in plants. Specifically, in Arabidopsis, a possible connection between the actin machinery and R-protein- mediated induction of disease resistance is described. In the case of the P. sojae-soybean interaction, we describe the fact that a classical basal resistance elicitor, the cell wall glucan elicitor from the pathogen, can directly activate host hypersensitive cell death, which is apparently modulated in a race-specific manner by the presence of R genes in the host.

  14. Syncytia in plants: cell fusion in endosperm-placental syncytium formation in Utricularia (Lentibulariaceae).

    PubMed

    Płachno, Bartosz J; Swiątek, Piotr

    2011-04-01

    The syncytium formed by Utricularia is extremely unusual and perhaps unique among angiosperm syncytia. All typical plant syncytia (articulated laticifers, amoeboid tapetum, the nucellar plasmodium of river weeds) are formed only by fusion of sporophytic cells which possess the same genetic material, unlike Utricularia in which the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue and endosperm haustorium (both maternal and paternal genetic material). How is this kind of syncytium formed and organized and is it similar to other plant syncytial structures? We used light and electron microscopy to reconstruct the step-by-step development of the Utricularia syncytia. The syncytia of Utricularia developed through heterotypic cell fusion involving the digestion of the cell wall, and finally, heterokaryotic multinucleate structures were formed, which possessed different-sized nuclei that were not regularly arranged in the cytoplasm. We showed that these syncytia were characterized by hypertrophy of nuclei, abundant endoplasmic reticulum and organelles, and the occurrence of wall ingrowths. All these characters testify to high activity and may confirm the nutritive and transport functions of the syncytium for the developing embryo. In Utricularia, the formation of the syncytium provides an economical way to redistribute cell components and release nutrients from the digested cell walls, which can now be used for the embryo, and finally to create a large surface for the exchange of nutrients between the placenta and endosperm.

  15. Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase.

    PubMed

    van der Rest, Benoît; Boisson, Anne-Marie; Gout, Elisabeth; Bligny, Richard; Douce, Roland

    2002-09-01

    Glycerophosphocholine (GroPCho) is a diester that accumulates in different physiological processes leading to phospholipid remodeling. However, very little is known about its metabolism in higher plant cells. (31)P-Nuclear magnetic resonance spectroscopy and biochemical analyses performed on carrot (Daucus carota) cells fed with GroPCho revealed the existence of an extracellular GroPCho phosphodiesterase. This enzymatic activity splits GroPCho into sn-glycerol-3-phosphate and free choline. In vivo, sn-glycerol-3-phosphate is further hydrolyzed into glycerol and inorganic phosphate by acid phosphatase. We visualized the incorporation and the compartmentation of choline and observed that the major choline pool was phosphorylated and accumulated in the cytosol, whereas a minor fraction was incorporated in the vacuole as free choline. Isolation of plasma membranes, culture medium, and cell wall proteins enabled us to localize this phosphodiesterase activity on the cell wall. We also report the existence of an intracellular glycerophosphodiesterase. This second activity is localized in the vacuole and hydrolyzes GroPCho in a similar fashion to the cell wall phosphodiesterase. Both extra- and intracellular phosphodiesterases are widespread among different plant species and are often enhanced during phosphate deprivation. Finally, competition experiments on the extracellular phosphodiesterase suggested a specificity for glycerophosphodiesters (apparent K(m) of 50 microM), which distinguishes it from other phosphodiesterases previously described in the literature.

  16. Plant virus cell-to-cell movement is not dependent on the transmembrane disposition of its movement protein.

    PubMed

    Martínez-Gil, Luis; Sánchez-Navarro, Jesús A; Cruz, Antonio; Pallás, Vicente; Pérez-Gil, Jesús; Mingarro, Ismael

    2009-06-01

    The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.

  17. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.

    PubMed

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie H D

    2015-02-03

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production.

  18. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels

    PubMed Central

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie HD

    2015-01-01

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. DOI: http://dx.doi.org/10.7554/eLife.05896.001 PMID:25647728

  19. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.

    PubMed

    Timmers, Ruud A; Rothballer, Michael; Strik, David P B T B; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-04-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.

  20. Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts

    PubMed Central

    Chiang, Herbert; Pudlo, Nicholas A.; Wu, Meng; McNulty, Nathan P.; Abbott, D. Wade; Henrissat, Bernard; Gilbert, Harry J.; Bolam, David N.; Gordon, Jeffrey I.

    2011-01-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of

  1. The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells

    PubMed Central

    2005-01-01

    Background The plant peroxisomal multifunctional protein (MFP) possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid β-oxidation in the peroxisome matrix. In addition to these peroxisomal activities, in vitro assays revealed that rice MFP possesses microtubule- and RNA-binding activities suggesting that this protein also has important functions in the cytosol. Results We demonstrate that MFP is an authentic microtubule-binding protein, as it localized to the cortical microtubule array in vivo, in addition to its expected targeting to the peroxisome matrix. MFP does not, however, interact with the three mitotic microtubule arrays. Microtubule co-sedimentation assays of truncated versions of MFP revealed that multiple microtubule-binding domains are present on the MFP polypeptide. This indicates that these regions function together to achieve high-affinity binding of the full-length protein. Real-time imaging of a transiently expressed green fluorescent protein-MFP chimera in living plant cells illustrated that a dynamic, spatial interaction exits between peroxisomes and cortical microtubules as peroxisomes move along actin filaments or oscillate at fixed locations. Conclusion Plant MFP is associated with the cortical microtubule array, in addition to its expected localization in the peroxisome. This observation, coupled with apparent interactions that frequently occur between microtubules and peroxisomes in the cell cortex, supports the hypothesis that MFP is concentrated on microtubules in order to facilitate the regulated import of MFP into peroxisomes. PMID:16313672

  2. Comparative analysis of cells and proteins of pumpkin plants for the control of fruit size.

    PubMed

    Nakata, Yumiko; Taniguchi, Go; Takazaki, Shinya; Oda-Ueda, Naoko; Miyahara, Kohji; Ohshima, Yasumi

    2012-09-01

    Common pumpkin plants (Cucurbita maxima) produce fruits of 1-2 kg size on the average, while special varieties of the same species called Atlantic Giant are known to produce a huge fruit up to several hundred kilograms. As an approach to determine the factors controlling the fruit size in C. maxima, we cultivated both AG and control common plants, and found that both the cell number and cell sizes were increased in a large fruit while DNA content of the cell did not change significantly. We also compared protein patterns in the leaves, stems, ripe and young fruits by two-dimensional (2D) gel electrophoresis, and identified those differentially expressed between them with mass spectroscopy. Based on these results, we suggest that factors in photosynthesis such as ribulose-bisphosphate carboxylase, glycolysis pathway enzymes, heat-shock proteins and ATP synthase play positive or negative roles in the growth of a pumpkin fruit. These results provide a step toward the development of plant biotechnology to control fruit size in the future. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation, Pollen Germination, and Plant Reproduction[C][W

    PubMed Central

    Gou, Jin-Ying; Miller, Lisa M.; Hou, Guichuan; Yu, Xiao-Hong; Chen, Xiao-Ya; Liu, Chang-Jun

    2012-01-01

    Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cottonwood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility. PMID:22247250

  4. Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants.

    PubMed

    Turkan, Ismail; Uzilday, Baris; Dietz, Karl-Josef; Bräutigam, Andrea; Ozgur, Rengin

    2018-02-26

    Redox regulation, antioxidant defence and ROS signalling are critical in realizing and tuning metabolic activities. However, our concepts were mostly developed for C3 plants since Arabidopsis thaliana is major model. Efforts to convert C3 plants to C4 plants to increase yield (see C4 rice; c4rice.irri.org/) entails better understanding of these processes in C4 plants. Various photosynthetic enzymes that take part in light reactions and carbon reactions are regulated via redox components such as thioredoxins as redox transmitters and peroxiredoxins. Due to this, understanding redox regulation in mesophyll and bundle sheath chloroplasts of C4 plants is of paramount importance. It appears impossible to utilize efficient C4 photosynthesis without understanding its exact redox needs and regulation mechanisms used during light reactions. In this review we will discuss available knowledge on redox regulation in C3 and C4 plants with special emphasis on mesophyll and bundle sheath differences in C4. In these two cell types of C4 plants, linear and cyclic electron transport in chloroplasts operate differentially when compared to C3 chloroplasts, changing the redox needs of the cell. Therefore, the focus is given to photosynthetic light reactions, ROS production dynamics, antioxidant defence and thiol based redox regulation with the aim to draw a picture of current knowledge.

  5. Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import.

    PubMed

    Gürlebeck, Doreen; Szurek, Boris; Bonas, Ulla

    2005-04-01

    The effector protein AvrBs3 from the bacterial phytopathogen Xanthomonas campestris pv. vesicatoria is translocated into the plant cell where it specifically induces hypertrophy symptoms or the hypersensitive reaction. Activity of AvrBs3 depends on nuclear localization signals (NLSs) and an acidic activation domain, suggesting a role in regulation of plant transcription. Here, we show that AvrBs3 dimerizes in the plant cell prior to its nuclear import. AvrBs3 deletion derivatives were tested in the yeast two-hybrid system revealing that the repeat region, which confers specific recognition in resistant plants and is crucial for virulence function, is also essential for the self-interaction. GST pull-down assays showed that the AvrBs3-AvrBs3 interaction occurs independent of plant proteins. Coexpression of two different inactive mutant AvrBs3 derivatives in Bs3-resistant pepper plants resulted in 'trans-complementation', i.e., the induction of a hypersensitive reaction. This clearly indicates that AvrBs3-dimerization occurs in planta. Interestingly, 'trans-complementation' was not observed in susceptible plants suggesting that wild-type homodimers are needed for the AvrBs3 virulence function in plants. Furthermore, a green fluorescent protein (GFP) fusion of AvrBs3 deleted in the NLSs (AvrBs3DeltaNLS-GFP), normally localized in the cytoplasm, was imported into the nucleus upon coexpression with wild-type AvrBs3 in Nicotiana benthamiana. Thus, AvrBs3 dimerization takes place in the cytoplasm of the plant cell prior to nuclear import. Given the fact that dimerization is a common feature of transcriptional regulators, our data are consistent with the idea that AvrBs3 manipulates expression of plant genes involved in the establishment of compatible and incompatible interactions.

  6. Automated synthesis of arabinoxylan-oligosaccharides enables characterization of antibodies that recognize plant cell wall glycans.

    PubMed

    Schmidt, Deborah; Schuhmacher, Frank; Geissner, Andreas; Seeberger, Peter H; Pfrengle, Fabian

    2015-04-07

    Monoclonal antibodies that recognize plant cell wall glycans are used for high-resolution imaging, providing important information about the structure and function of cell wall polysaccharides. To characterize the binding epitopes of these powerful molecular probes a library of eleven plant arabinoxylan oligosaccharides was produced by automated solid-phase synthesis. Modular assembly of oligoarabinoxylans from few building blocks was enabled by adding (2-naphthyl)methyl (Nap) to the toolbox of orthogonal protecting groups for solid-phase synthesis. Conjugation-ready oligosaccharides were obtained and the binding specificities of xylan-directed antibodies were determined on microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    PubMed

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Two Cytoplasmic Effectors of Phytophthora sojae Regulate Plant Cell Death via Interactions with Plant Catalases1

    PubMed Central

    Zhang, Meixiang; Li, Qi; Liu, Tingli; Liu, Li; Shen, Danyu; Zhu, Ye; Liu, Peihan; Zhou, Jian-Min; Dou, Daolong

    2015-01-01

    Plant pathogenic oomycetes, such as Phytophthora sojae, secrete an arsenal of host cytoplasmic effectors to promote infection. We have shown previously that P. sojae PsCRN63 (for crinkling- and necrosis-inducing proteins) induces programmed cell death (PCD) while PsCRN115 blocks PCD in planta; however, they are jointly required for full pathogenesis. Here, we find that PsCRN63 alone or PsCRN63 and PsCRN115 together might suppress the immune responses of Nicotiana benthamiana and demonstrate that these two cytoplasmic effectors interact with catalases from N. benthamiana and soybean (Glycine max). Transient expression of PsCRN63 increases hydrogen peroxide (H2O2) accumulation, whereas PsCRN115 suppresses this process. Transient overexpression of NbCAT1 (for N. benthamiana CATALASE1) or GmCAT1 specifically alleviates PsCRN63-induced PCD. Suppression of the PsCRN63-induced PCD by PsCRN115 is compromised when catalases are silenced in N. benthamiana. Interestingly, the NbCAT1 is recruited into the plant nucleus in the presence of PsCRN63 or PsCRN115; NbCAT1 and GmCAT1 are destabilized when PsCRN63 is coexpressed, and PsCRN115 inhibits the processes. Thus, PsCRN63/115 manipulates plant PCD through interfering with catalases and perturbing H2O2 homeostasis. Furthermore, silencing of catalase genes enhances susceptibility to Phytophthora capsici, indicating that catalases are essential for plant resistance. Taken together, we suggest that P. sojae secretes these two effectors to regulate plant PCD and H2O2 homeostasis through direct interaction with catalases and, therefore, overcome host immune responses. PMID:25424308

  9. Substrate Specificity and Possible Heterologous Targets of Phytaspase, a Plant Cell Death Protease*

    PubMed Central

    Galiullina, Raisa A.; Kasperkiewicz, Paulina; Chichkova, Nina V.; Szalek, Aleksandra; Serebryakova, Marina V.; Poreba, Marcin; Drag, Marcin; Vartapetian, Andrey B.

    2015-01-01

    Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones. PMID:26283788

  10. The making of the architecture of the plant cell wall: how cells exploit geometry.

    PubMed

    Emons, A M; Mulder, B M

    1998-06-09

    Cell wall deposition is a key process in the formation, growth, and differentiation of plant cells. The most important structural components of the wall are long cellulose microfibrils, which are synthesized by synthases embedded in the plasma membrane. A fundamental question is how the microfibrils become oriented during deposition at the plasma membrane. The current textbook explanation for the orientation mechanism is a guidance system mediated by cortical microtubules. However, too many contraindications are known in secondary cell walls for this to be a universal mechanism, particularly in the case of helicoidal arrangements, which occur in many situations. An additional construction mechanism involves liquid crystalline self-assembly [A. C. Neville (1993) Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge Univ. Press, Cambridge, U.K.)], but the required amount of bulk material that is able to equilibrate thermally is not normally present at any stage of the wall deposition process. Therefore, we have asked whether the complex ordered texture of helicoidal cell walls can be formed in the absence of direct cellular guidance mechanisms. We propose that they can be formed by a mechanism that is based on geometrical considerations. It explains the genesis of the complicated helicoidal texture and shows that the cell has intrinsic, versatile tools for creating a variety of textures. A compelling feature of the model is that local rules generate global order, a typical phenomenon of life.

  11. In vitro anti-proliferative activity on colon cancer cell line (HT-29) of Thai medicinal plants selected from Thai/Lanna medicinal plant recipe database "MANOSROI III".

    PubMed

    Manosroi, Aranya; Akazawa, Hiroyuki; Akihisa, Toshihiro; Jantrawut, Pensak; Kitdamrongtham, Worapong; Manosroi, Worapaka; Manosroi, Jiradej

    2015-02-23

    Thai/Lanna region has its own folklore wisdoms including the traditional medicinal plant recipes. Thai/Lanna medicinal plant recipe database "MANOSROI III" has been developed by Prof. Dr. Jiradej Manosroi. It consists of over 200,000 recipes for all diseases including cancer. To investigate the anti-proliferative and apoptotic activities on human colon cancer cell line (HT-29) as well as the cancer cell selectivity of the methanolic extracts (MEs) and fractions of the 23 selected plants from the "MANOSROI III" database. The 23 selected plants were extracted with methanol under reflux and evaluated for their anti-proliferative activity by sulforhodamine B assay. The 5 plants (Gloriosa superba, Caesalpinia sappan, Fibraurea tinctoria, Ventilago denticulata and Psophocarpus tetragonolobus) with potent anti-proliferative activity were fractionated by liquid-liquid partition to give 4 fractions including each hexane (HF), methanol-water (MF), n-butanol (BF) and water (WF) fractions. They were tested for anti-proliferative activity and cancer cell selectivity. The ME and fractions of G. superba which showed potent anti-proliferative activity were further examined for morphological changes and apoptotic activities by acridine orange (AO)/ethidium bromide (EB) staining. The ME of G. superba root showed active with the highest anti-proliferative activity at 9.17 and 1.58 folds of cisplatin and doxorubicin, respectively. After liquid-liquid partition, HF of V. denticulata, MFs of F. tinctoria, V. denticulata and BF of P. tetragonolobus showed higher anti-proliferative activities than their MEs. The MF of G. superba indicated the highest anti-proliferative activity at 7.73 and 1.34 folds of cisplatin and doxorubicin, respectively, but only 0.86 fold of its ME. The ME and HF, MF and BF of G. superba and MF of F. tinctoria demonstrated high cancer cell selectivity. At 50 µg/ml, ME, HF, MF and BF of G. superba demonstrated higher apoptotic activities than the two standard drugs

  12. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega-Sánchez, Miguel E.; Loqué, Dominique; Lao, Jeemeng

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing themore » rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.« less

  13. Early effects of altered gravity environments on plant cell growth and cell proliferation: Characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NASA Astrophysics Data System (ADS)

    Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier

    2016-02-01

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  14. An Investigation of the Growth Inhibitory Capacity of Several Medicinal Plants From Iran on Tumor Cell Lines

    PubMed Central

    Esmaeilbeig, Maryam; Kouhpayeh, Seyed Amin; Amirghofran, Zahra

    2015-01-01

    Background: Traditional herbal medicine is a valuable resource that provides new drugs for cancer treatment. Objectives: In this study we aim to screen and investigate the in vitro anti-tumor activities of ten species of plants commonly grown in Southern Iran. Materials and Methods: We used the MTT colorimetric assay to evaluate the cytotoxic activities of the methanol extracts of these plants on various tumor cell lines. The IC50 was calculated as a scale for this evaluation. Results: Satureja bachtiarica, Satureja hortensis, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed the inhibitoriest effects on Jurkat cells with > 80% inhibition at 200 µg/mL. Satureja hortensis (IC50: 66.7 µg/mL) was the most effective. These plants also strongly inhibited K562 cell growth; Satureja bachtiarica (IC50: 28.3 µg/mL), Satureja hortensis (IC50: 52 µg/mL) and Thymus vulgaris (IC50: 87 µg/mL) were the most effective extracts. Cichorium intybus, Rheum ribes, Alhagi pseudalhagi and Glycyrrihza glabra also showed notable effects on the leukemia cell lines. The Raji cell line was mostly inhibited by Satureja bachtiarica and Thymus vulgaris with approximately 40% inhibition at 200µg/ml. The influence of these extracts on solid tumor cell lines was not strong. Fen cells were mostly affected by Glycyrrihza glabra (IC50: 182 µg/mL) and HeLa cells by Satureja hortensis (31.6% growth inhibitory effect at 200 µg/mL). Conclusions: Leukemic cell lines were more sensitive to the extracts than the solid tumor cell lines; Satureja hortensis, Satureja bachtiarica, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed remarkable inhibitory potential. PMID:26634114

  15. Effects of real or simulated microgravity on plant cell growth and proliferation

    NASA Astrophysics Data System (ADS)

    Medina, Francisco Javier; Manzano, Ana Isabel; Herranz, Raul; Dijkstra, Camelia; Larkin, Oliver; Hill, Richard; Carnero-Díaz, Eugénie; van Loon, Jack J. W. A.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence

    Experiments on seed germination and seedling growth performed in real microgravity on the International Space Station and in different facilities for simulating microgravity in Earth-based laboratories (Random Positioning Machine and Magnetic Levitation), have provided evidence that the absence of gravity (or the artificial compensation of the gravity vector) results in the uncoupling of cell growth and proliferation in root meristematic cells. These are two essential cellular functions that support plant growth and development, which are strictly coordinated under normal ground gravity conditions. Under conditions of altered gravity, we observe that cell proliferation is enhanced, whereas cell growth is reduced, according to different morphometric, cytological and immunocytochemical parameters. Since coordination of cell growth and proliferation are major features of meristematic cells, this observed uncoupling represents a major stress condition for these cells, inducing major alterations in the pattern of plant development. Moreover, the expression of the cyclin B1 gene, a regulator of the entry into mitosis and normally used as an indicator of cell proliferation, appears reduced in the smaller and more actively proliferating cells of samples grown under the conditions of our experiments. These results are compatible with an alteration of the regulation of the cell cycle, producing a shorter G2 period. Interestingly, while cyclin B1 expression is depleted in these conditions in root meristematic cells, it is enhanced in cotyledons of the same seedlings, as shown by qPCR and by the expression of the gus reporter gene. It is known that regulation of root growth (including regulation of root meristematic activity) is driven mainly by auxin, whereas cytokinin is the key hormone regulating cotyledon growth. Therefore, our results indicate a major role of auxin in the sensitivity to altered gravity of root meristematic cells. Auxin is crucial in maintaining the

  16. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death.

    PubMed

    Yu, Xiaoli; Tang, Junli; Wang, Qunqing; Ye, Wenwu; Tao, Kai; Duan, Shuyi; Lu, Chenchen; Yang, Xinyu; Dong, Suomeng; Zheng, Xiaobo; Wang, Yuanchao

    2012-10-01

    • The Phytophthora sojae genome encodes hundreds of RxLR effectors predicted to manipulate various plant defense responses, but the molecular mechanisms involved are largely unknown. Here we have characterized in detail the P. sojae RxLR effector Avh241. • To determine the function and localization of Avh241, we transiently expressed it on different plants. Silencing of Avh241 in P. sojae, we determined its virulence during infection. Through the assay of promoting infection by Phytophthora capsici to Nicotiana benthamiana, we further confirmed this virulence role. • Avh241 induced cell death in several different plants and localized to the plant plasma membrane. An N-terminal motif within Avh241 was important for membrane localization and cell death-inducing activity. Two mitogen-activated protein kinases, NbMEK2 and NbWIPK, were required for the cell death triggered by Avh241 in N. benthamiana. Avh241 was important for the pathogen's full virulence on soybean. Avh241 could also promote infection by P. capsici and the membrane localization motif was not required to promote infection. • This work suggests that Avh241 interacts with the plant immune system via at least two different mechanisms, one recognized by plants dependent on subcellular localization and one promoting infection independent on membrane localization. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells

    PubMed Central

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease. PMID:27429636

  18. Plant Cell Wall Dynamics in Compatible and Incompatible Potato Response to Infection Caused by Potato Virus Y (PVYNTN)

    PubMed Central

    Lockhart, Benham E. L.

    2018-01-01

    The cell wall provides the structure of the plant, and also acts as a barier against biotic stress. The vein necrosis strain of Potato virus Y (PVYNTN) induces necrotic disease symptoms that affect both plant growth and yield. Virus infection triggers a number of inducible basal defense responses, including defense proteins, especially those involved in cell wall metabolism. This study investigates the comparison of cell wall host dynamics induced in a compatible (potato cv. Irys) and incompatible (potato cv. Sárpo Mira with hypersensitive reaction gene Ny-Smira) PVYNTN–host–plant interaction. Ultrastructural analyses revealed numerous cell wall changes induced by virus infection. Furthermore, the localization of essential defensive wall-associated proteins in susceptible and resistant potato host to PVYNTN infection were investigated. The data revealed a higher level of detection of pathogenesis-related protein 2 (PR-2) in a compatible compared to an incompatible (HR) interaction. Immunofluorescence analyses indicated that hydroxyproline-rich glycoproteins (HRGP) (extensin) synthesis was induced, whereas that of cellulose synthase catalytic subunits (CesA4) decreased as a result of PVYNTN infection. The highest level of extensin localization was found in HR potato plants. Proteins involved in cell wall metabolism play a crucial role in the interaction because they affect the spread of the virus. Analysis of CesA4, PR-2 and HRGP deposition within the apoplast and symplast confirmed the active trafficking of these proteins as a step-in potato cell wall remodeling in response to PVYNTN infection. Therefore, cell wall reorganization may be regarded as an element of “signWALLing”—involving apoplast and symplast activation as a specific response to viruses. PMID:29543714

  19. Characterization and elimination of undesirable protein residues in plant cell walls for enhancing lignin analysis by solution-state 2D gel-NMR methods

    USDA-ARS?s Scientific Manuscript database

    Proteins exist in every plant cell wall. Certain protein residues interfere with lignin characterization and quantification. The current solution-state 2D-NMR technique (gel-NMR) for whole plant cell wall structural profiling provides detailed information regarding cell walls and proteins. However, ...

  20. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    PubMed

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.