Science.gov

Sample records for cells plasma protein

  1. Protein diffusion in plant cell plasma membranes: the cell-wall corral

    PubMed Central

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment. PMID:24381579

  2. Direct protein introduction into plant cells using a multi-gas plasma jet.

    PubMed

    Yanagawa, Yuki; Kawano, Hiroaki; Kobayashi, Tomohiro; Miyahara, Hidekazu; Okino, Akitoshi; Mitsuhara, Ichiro

    2017-01-01

    Protein introduction into cells is more difficult in plants than in mammalian cells, although it was reported that protein introduction was successful in shoot apical meristem and leaves only together with a cell-penetrating peptide. In this study, we tried to introduce superfolder green fluorescent protein (sGFP)-fused to adenylate cyclase as a reporter protein without a cell-penetrating peptide into the cells of tobacco leaves by treatment with atmospheric non-thermal plasmas. For this purpose, CO2 or N2 plasma was generated using a multi-gas plasma jet. Confocal microscopy indicated that sGFP signals were observed inside of leaf cells after treatment with CO2 or N2 plasma without substantial damage. In addition, the amount of cyclic adenosine monophosphate (cAMP) formed by the catalytic enzyme adenylate cyclase, which requires cellular calmodulin for its activity, was significantly increased in leaves treated with CO2 or N2 plasma, also indicating the introduction of sGFP-fused adenylate cyclase into the cells. These results suggested that treatment with CO2 or N2 plasma could be a useful technique for protein introduction into plant tissues.

  3. Direct protein introduction into plant cells using a multi-gas plasma jet

    PubMed Central

    Yanagawa, Yuki; Kawano, Hiroaki; Kobayashi, Tomohiro; Miyahara, Hidekazu; Okino, Akitoshi; Mitsuhara, Ichiro

    2017-01-01

    Protein introduction into cells is more difficult in plants than in mammalian cells, although it was reported that protein introduction was successful in shoot apical meristem and leaves only together with a cell-penetrating peptide. In this study, we tried to introduce superfolder green fluorescent protein (sGFP)-fused to adenylate cyclase as a reporter protein without a cell-penetrating peptide into the cells of tobacco leaves by treatment with atmospheric non-thermal plasmas. For this purpose, CO2 or N2 plasma was generated using a multi-gas plasma jet. Confocal microscopy indicated that sGFP signals were observed inside of leaf cells after treatment with CO2 or N2 plasma without substantial damage. In addition, the amount of cyclic adenosine monophosphate (cAMP) formed by the catalytic enzyme adenylate cyclase, which requires cellular calmodulin for its activity, was significantly increased in leaves treated with CO2 or N2 plasma, also indicating the introduction of sGFP-fused adenylate cyclase into the cells. These results suggested that treatment with CO2 or N2 plasma could be a useful technique for protein introduction into plant tissues. PMID:28182666

  4. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    PubMed Central

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  5. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis.

    PubMed

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.

  6. Characterization of plasma membrane proteins from ovarian cancer cells using mass spectrometry.

    PubMed

    Springer, David L; Auberry, Deanna L; Ahram, Mamoun; Adkins, Joshua N; Feldhaus, Jane M; Wahl, Jon H; Wunschel, David S; Rodland, Karin D

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  7. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    SciTech Connect

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunsch, David M.; Rodland, Karin D.

    2003-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  8. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    DOE PAGES

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; ...

    2004-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsinmore » digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.« less

  9. Coating cells with cationic silica-magnetite nanocomposites for rapid purification of integral plasma membrane proteins.

    PubMed

    Zhang, Wei; Zhao, Chao; Wang, Sheng; Fang, Caiyun; Xu, Yawei; Lu, Haojie; Yang, Pengyuan

    2011-09-01

    This study developed a simple and rapid purification method for plasma membrane with high yields from adherent cells. The plasma membrane (PM) sheets could be absorbed specifically by the cationic silica-magnetite nanocomposites (CSMN) under acidic conditions, and recovered directly in cell-lysis-buffer with no need for precipitation. The binding between CSMN and PM sheets was confirmed by electron microscopy. Western blot analysis demonstrated a >10-fold relative enrichment factor. Up to 422 integral membrane proteins were identified from 10(7) Huh7 cells. Notably, we found 29 Ras family proteins by classification according to their biological functions. The whole enrichment procedure took <30 min. The CSMN-based procedure demonstrates a simple, economical and efficient enrichment of integral PM proteins in proteomic study.

  10. Binding of the cell adhesive protein tropoelastin to PTFE through plasma immersion ion implantation treatment.

    PubMed

    Bax, Daniel V; Wang, Yiwei; Li, Zhe; Maitz, Peter K M; McKenzie, David R; Bilek, Marcela M M; Weiss, Anthony S

    2011-08-01

    The interaction of proteins and cells with polymers is critical to their use in scientific and medical applications. In this study, plasma immersion ion implantation (PIII) was used to modify the surface of polytetrafluorethylene (PTFE), enabling the covalent binding of a cell adhesive protein, tropoelastin, without employing chemical linking molecules. Tropoelastin coating of untreated or PIII treated PFTE simultaneously promoted and blocked cell interactions respectively, i.e. PIII treatment of the PTFE surface completely inverses the cell interactive properties of bound tropoelastin. This activity persisted over long term storage of the PIII treated surfaces. The integrin binding C-terminus of tropoelastin was markedly less solvent exposed when bound to PIII treated PTFE than untreated PTFE, accounting for the modulation of cell adhesive activity. This presents a new methodology to specifically modulate cell behavior on a polymer surface using a simple one step treatment process, by adjusting the adhesive activity of a single extracellular matrix protein.

  11. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions.

    PubMed

    Lee, Kisung; Kinnunen, Matti; Khokhlova, Maria D; Lyubin, Evgeny V; Priezzhev, Alexander V; Meglinski, Igor; Fedyanin, Andrey A

    2016-03-01

    Kinetics of optical tweezers (OT)-induced spontaneous aggregation and disaggregation of red blood cells (RBCs) were studied at the level of cell doublets to assess RBC interaction mechanics. Measurements were performed under in vitro conditions in plasma and fibrinogen and fibrinogen + albumin solutions. The RBC spontaneous aggregation kinetics was found to exhibit different behavior depending on the cell environment. In contrast, the RBC disaggregation kinetics was similar in all solutions qualitatively and quantitatively, demonstrating a significant contribution of the studied proteins to the process. The impact of the study on assessing RBC interaction mechanics and the protein contribution to the reversible RBC aggregation process is discussed.

  12. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinnunen, Matti; Khokhlova, Maria D.; Lyubin, Evgeny V.; Priezzhev, Alexander V.; Meglinski, Igor; Fedyanin, Andrey A.

    2016-03-01

    Kinetics of optical tweezers (OT)-induced spontaneous aggregation and disaggregation of red blood cells (RBCs) were studied at the level of cell doublets to assess RBC interaction mechanics. Measurements were performed under in vitro conditions in plasma and fibrinogen and fibrinogen + albumin solutions. The RBC spontaneous aggregation kinetics was found to exhibit different behavior depending on the cell environment. In contrast, the RBC disaggregation kinetics was similar in all solutions qualitatively and quantitatively, demonstrating a significant contribution of the studied proteins to the process. The impact of the study on assessing RBC interaction mechanics and the protein contribution to the reversible RBC aggregation process is discussed.

  13. Glycosylation does not determine segregation of viral envelope proteins in the plasma membrane of epithelial cells

    PubMed Central

    1981-01-01

    Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells. PMID:6265461

  14. A cell-free assay to determine the stoichiometry of plasma membrane proteins.

    PubMed

    Trigo, Cesar; Vivar, Juan P; Gonzalez, Carlos B; Brauchi, Sebastian

    2013-04-01

    Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.

  15. Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1996-01-01

    Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content. PMID:12226444

  16. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-04-01

    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.

  17. Glucosamine binding to proteins in plasma and synovial fluid and blood cell/plasma partitioning in mouse and man in vitro.

    PubMed

    Persiani, Stefano; Matthews, Anne; Larger, Patrice; Hall, Michael; Rotini, Roberto; Trisolino, Giovanni; Antonioli, Diego; Zaccarelli, Lorenzo; Rovati, Lucio C

    2009-01-01

    Protein binding of [14C]glucosamine (400, 1000 and 4000 ng/ml) was evaluated in human and mouse plasma and in human synovial fluid. Blood cell/plasma partitioning in human and mouse was also determined. There was no measurable protein binding of [14C]glucosamine. Its association with human and mouse blood cells ranged from 43-47% and from 27-29%, respectively. Therefore, the unbound (pharmacologically active) fraction of glucosamine in plasma and at the site of action (the joint) is the same. Protein binding displacement drug-drug interactions are unlikely during the clinical use of crystalline glucosamine sulfate. No corrections are needed, either for unbound fraction when comparing human and mouse pharmacokinetic data or for blood cell/plasma partitioning to assess glucosamine total blood clearance from plasma data in these two species.

  18. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    PubMed

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming

    2012-12-18

    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma.

  19. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions.

    PubMed

    Weber, Daniela; Davies, Michael J; Grune, Tilman

    2015-08-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples.

  20. Rapid changes in plasma membrane protein phosphorylation during initiation of cell wall digestion

    SciTech Connect

    Blowers, D.P.; Boss, W.F.; Trewavas, A.J. )

    1988-02-01

    Plasma membrane vesicles from wild carrot cells grown in suspension culture were isolated by aqueous two-phase partitioning, and ATP-dependent phosphorylation was measured with ({gamma}-{sup 32}P)ATP in the presence and absence of calcium. Treatment of the carrot cells with the cell wall digestion enzymes, driselase, in a sorbitol osmoticum for 1.5 min altered the protein phosphorylation pattern compared to that of cells treated with sorbitol alone. Driselase treatment resulted in decreased phosphorylation of a band of M{sub r} 80,000 which showed almost complete calcium dependence in the osmoticum treated cells; decreased phosphorylation of a band of M{sub r} 15,000 which showed little calcium activation, and appearance of a new band of calcium-dependent phosphorylation at M{sub r} 22,000. However, protein phosphorylation was decreased. Adding driselase to the in vitro reaction mixture caused a general decrease in the membrane protein phosphorylation either in the presence or absence of calcium which did not mimic the in vivo response. Cells labeled in vivo with inorganic {sup 32}P also showed a response to the Driselase treatment. An enzymically active driselas preparation was required for the observed responses.

  1. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  2. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  3. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    PubMed

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  4. PAI1: a novel PP1-interacting protein that mediates human plasma's anti-apoptotic effect in endothelial cells.

    PubMed

    Yao, Hui; He, Guangchun; Chen, Chao; Yan, Shichao; Lu, Lu; Song, Liujiang; Vijayan, K Vinod; Li, Qinglong; Xiong, Li; Miao, Xiongying; Deng, Xiyun

    2017-03-11

    Activation of apoptotic signalling in endothelial cells contributes to the detrimental effects of a variety of pathological stimuli. In investigating the molecular events underlying the anti-apoptotic effect of human plasma in cultured human endothelial cells, we unexpectedly uncovered a novel mechanism of apoptosis suppression by human plasma through an interaction between two previously unrelated proteins. Human plasma inhibited hypoxia-serum deprivation-induced apoptosis and stimulated BAD(S136) and Akt(S473) phosphorylation. Akt1 silencing reversed part (~52%) of the anti-apoptotic effect of human plasma, suggesting the existence of additional mechanisms mediating the anti-apoptotic effect other than Akt signalling. Human plasma disrupted the interaction of BAD with protein phosphatase 1 (PP1). Mass spectrometry identified fourteen PP1-interacting proteins induced by human plasma. Notably, a group of serine protease inhibitors including plasminogen activator inhibitor 1 (PAI1), a major inhibitor of fibrinolysis, were involved. Silencing of PAI1 attenuated the anti-apoptotic effect of human plasma. Furthermore, combined Akt1 and PAI1 silencing attenuated the majority of the anti-apoptotic effect of human plasma. We conclude that human plasma protects against endothelial cell apoptosis through sustained BAD phosphorylation, which is achieved by, at least in part, a novel interaction between PP1 with PAI1.

  5. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    PubMed

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  6. Lipid-Protein Interactions in Plasma Membranes of Fiber Cells Isolated from the Human Eye Lens

    PubMed Central

    Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.

    2014-01-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali,L., Raguz, M., O’Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. PMID:24486794

  7. Proteomic analysis of integral plasma membrane proteins.

    PubMed

    Zhao, Yingxin; Zhang, Wei; Kho, Yoonjung; Zhao, Yingming

    2004-04-01

    Efficient methods for profiling proteins integral to the plasma membrane are highly desirable for the identification of overexpressed proteins in disease cells. Such methods will aid in both understanding basic biological processes and discovering protein targets for the design of therapeutic monoclonal antibodies. Avoiding contamination by subcellular organelles and cytosolic proteins is crucial to the successful proteomic analysis of integral plasma membrane proteins. Here we report a biotin-directed affinity purification (BDAP) method for the preparation of integral plasma membrane proteins, which involves (1) biotinylation of cell surface membrane proteins in viable cells, (2) affinity enrichment using streptavidin beads, and (3) depletion of plasma membrane-associated cytosolic proteins by harsh washes with high-salt and high-pH buffers. The integral plasma membrane proteins are then extracted and subjected to SDS-PAGE separation and HPLC/MS/MS for protein identification. We used the BDAP method to prepare integral plasma membrane proteins from a human lung cancer cell line. Western blotting analysis showed that the preparation was almost completely devoid of actin, a major cytosolic protein. Nano-HPLC/MS/MS analysis of only 30 microg of protein extracted from the affinity-enriched integral plasma membrane preparation led to the identification of 898 unique proteins, of which 781 were annotated with regard to their plasma membrane localization. Among the annotated proteins, at least 526 (67.3%) were integral plasma membrane proteins. Notable among them were 62 prenylated proteins and 45 Ras family proteins. To our knowledge, this is the most comprehensive proteomic analysis of integral plasma membrane proteins in mammalian cells to date. Given the importance of integral membrane proteins for drug design, the described approach will expedite the characterization of plasma membrane subproteomes and the discovery of plasma membrane protein drug targets.

  8. Human Plasma Protein C

    PubMed Central

    Kisiel, Walter

    1979-01-01

    Protein C is a vitamin K-dependent protein, which exists in bovine plasma as a precursor of a serine protease. In this study, protein C was isolated to homogeneity from human plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, DEAE-Sephadex chromatography, dextran sulfate agarose chromatography, and preparative polyacrylamide gel electrophoresis. Human protein C (Mr = 62,000) contains 23% carbohydrate and is composed of a light chain (Mr = 21,000) and a heavy chain (Mr = 41,000) held together by a disulfide bond(s). The light chain has an amino-terminal sequence of Ala-Asn-Ser-Phe-Leu- and the heavy chain has an aminoterminal sequence of Asp-Pro-Glu-Asp-Gln. The residues that are identical to bovine protein C are underlined. Incubation of human protein C with human α-thrombin at an enzyme to substrate weight ratio of 1:50 resulted in the formation of activated protein C, an enzyme with serine amidase activity. In the activation reaction, the apparent molecular weight of the heavy chain decreased from 41,000 to 40,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. No apparent change in the molecular weight of the light chain was observed in the activation process. The heavy chain of human activated protein C also contains the active-site serine residue as evidenced by its ability to react with radiolabeled diisopropyl fluorophosphate. Human activated protein C markedly prolongs the kaolin-cephalin clotting time of human plasma, but not that of bovine plasma. The amidolytic and anticoagulant activities of human activated protein C were completely obviated by prior incubation of the enzyme with diisopropyl fluorophosphate. These results indicate that human protein C, like its bovine counterpart, exists in plasma as a zymogen and is converted to a serine protease by limited proteolysis with attendant anticoagulant activity. Images PMID:468991

  9. The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in Candida albicans

    PubMed Central

    Alvarez, Francisco J.; Douglas, Lois M.; Rosebrock, Adam

    2008-01-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains. PMID:18799621

  10. Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development

    PubMed Central

    Gloury, Renee; Zotos, Dimitra; Zuidscherwoude, Malou; Masson, Frederick; Liao, Yang; Hasbold, Jhaguaral; Corcoran, Lynn M.; Hodgkin, Phil D.; Belz, Gabrielle T.; Shi, Wei; Nutt, Stephen L.; Tarlinton, David M.

    2016-01-01

    The generation of high-affinity antibodies requires germinal center (GC) development and differentiation of long-lived plasma cells in a multilayered process that is tightly controlled by the activity of multiple transcription factors. Here, we reveal a new layer of complexity by demonstrating that dynamic changes in Id3 and E-protein activity govern both GC and plasma cell differentiation. We show that down-regulation of Id3 in B cells is essential for releasing E2A and E2-2, which in a redundant manner are required for antigen-induced B cell differentiation. We demonstrate that this pathway controls the expression of multiple key factors, including Blimp1, Xbp1, and CXCR4, and is therefore critical for establishing the transcriptional network that controls GC B cell and plasma cell differentiation. PMID:27217539

  11. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

    PubMed Central

    Brust, M.; Aouane, O.; Thiébaud, M.; Flormann, D.; Verdier, C.; Kaestner, L.; Laschke, M. W.; Selmi, H.; Benyoussef, A.; Podgorski, T.; Coupier, G.; Misbah, C.; Wagner, C.

    2014-01-01

    The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These persistent aggregates should strongly affect cell distribution and blood perfusion in the microvasculature, with putative implications for blood disorders even within apparently asymptomatic subjects. PMID:24614613

  12. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

    NASA Astrophysics Data System (ADS)

    Brust, M.; Aouane, O.; Thiébaud, M.; Flormann, D.; Verdier, C.; Kaestner, L.; Laschke, M. W.; Selmi, H.; Benyoussef, A.; Podgorski, T.; Coupier, G.; Misbah, C.; Wagner, C.

    2014-03-01

    The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These persistent aggregates should strongly affect cell distribution and blood perfusion in the microvasculature, with putative implications for blood disorders even within apparently asymptomatic subjects.

  13. Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization

    PubMed Central

    Desrumaux, Catherine; Lemaire-Ewing, Stéphanie; Ogier, Nicolas; Yessoufou, Akadiri; Hammann, Arlette; Sequeira-Le Grand, Anabelle; Deckert, Valérie; Pais de Barros, Jean-Paul; Le Guern, Naïg; Guy, Julien; Khan, Naim A; Lagrost, Laurent

    2016-01-01

    Objective: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD4+ Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood. Moreover, PLTP deficiency did not modify the amounts of CD4+ and CD8+ T lymphocyte subsets. However, PLTP-deficiency, associated with upregulation of the Th2 phenotype, was accompanied by a significant decrease in the production of the pro-Th1 cytokine interleukin 18 by accessory cells. Conclusions: For the first time, this work reports a physiological role for PLTP in the polarization of CD4+ T cells toward the pro-inflammatory Th1 phenotype. PMID:26320740

  14. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane.

    PubMed

    Nothwehr, S F; Conibear, E; Stevens, T H

    1995-04-01

    The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4-ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.

  15. Effect of Peumus boldus on the labeling of red blood cells and plasma proteins with technetium-99m.

    PubMed

    Reiniger, I W; de Oliveira, J F; Caldeira-de-Araújo, A; Bernardo-Filho, M

    1999-08-01

    Peumus boldus is used in popular medicine in Brazil. The influence of Peumus boldus on the labeling of red blood cells and plasma proteins with 99mTc was studied. Stannous chloride and 99mTc pertechnetate were incubated with blood and a tincture of Peumus boldus. Aliquots of plasma and blood cells were isolated from the mixture and treated with trichloroacetic acid (TCA). After separation, analysis of the soluble and insoluble fractions showed a rapid uptake of the radioactivity by blood cells in the presence of the drug, whereas there was a slight decrease in the amount of 99mTc radioactivity in the TCA-insoluble fraction of plasma.

  16. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation.

    PubMed

    Chang, Xing; Li, Bin; Rao, Anjana

    2015-04-14

    Posttranscriptional regulation is a major mechanism to rewire transcriptomes during differentiation. Heterogeneous nuclear RNA-binding protein LL (hnRNPLL) is specifically induced in terminally differentiated lymphocytes, including effector T cells and plasma cells. To study the molecular functions of hnRNPLL at a genome-wide level, we identified hnRNPLL RNA targets and binding sites in plasma cells through integrated Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and RNA sequencing. hnRNPLL preferentially recognizes CA dinucleotide-containing sequences in introns and 3' untranslated regions (UTRs), promotes exon inclusion or exclusion in a context-dependent manner, and stabilizes mRNA when associated with 3' UTRs. During differentiation of primary B cells to plasma cells, hnRNPLL mediates a genome-wide switch of RNA processing, resulting in loss of B-cell lymphoma 6 (Bcl6) expression and increased Ig production--both hallmarks of plasma-cell maturation. Our data identify previously unknown functions of hnRNPLL in B-cell to plasma-cell differentiation and demonstrate that the RNA-binding protein hnRNPLL has a critical role in tuning transcriptomes of terminally differentiating B lymphocytes.

  17. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.

    PubMed

    Offringa, Remko; Huang, Fang

    2013-09-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.

  18. Synthesis and turnover of plasma-membrane proteins and glycoproteins in a neuroblastoma cell line.

    PubMed Central

    Mathews, R A; Johnson, T C; Hudson, J E

    1976-01-01

    A kinetic analysis of the appearance of 14C-labelled proteins in the surface membranes isolated from exponentially growing neuroblastoma cells (N2a) showed that the total membrane proteins reached a steady-state specific radioactivity in 18-20 h. However, examination of individual protein bands resolved by sodium dodecyl sulphate-urea-polyacrylamide-gel electrophoresis illustrated that differences in the kinetics of specific surface-membrane proteins could be detected. Although most of the protein bands reached a steady-state specific radioactivity at a time similar to that for total membrane proteins, at least two bands (mol. wt. 180000 and 130000) attained the steady-state within 8-10 h. It was shown by the use of dual-labelling techniques that these two protein bands turned over in the surface membranes of neuroblastoma N2a cells at least 180 and 150% faster than the total membrane protein. These two proteins were glycosylated and located on the outer surface of the cells, since they were labelled with radioactive carbohydrates and readily removed by treatment of the intact neuroblastoma cell with proteinases. PMID:1275913

  19. Selected complete blood cell count and plasma protein electrophoresis parameters in pet psittacine birds evaluated for illness.

    PubMed

    Briscoe, Jeleen A; Rosenthal, Karen L; Shofer, Frances S

    2010-06-01

    Veterinarians rely on results of both the complete blood cell count (CBC) and plasma protein electrophoresis (EPH) in conjunction with the results of the plasma biochemical analysis to evaluate the health status of avian patients. Because the CBC and protein EPH measure different aspects of the immune response to disease, both tests are recommended in avian patients to rule out infectious or inflammatory disease. To evaluate results of the CBC and protein EPH in pet psittacine birds, the records of 144 pet psittacine birds, comprising 11 genera, that were presented for suspected illness were reviewed. Results of the CBC (total white blood cell count and packed cell volume) and protein EPH (alpha, beta, and gamma globulin concentrations) from submitted blood samples from each bird were evaluated. Of the 144 birds, 63 (43.8%) had abnormal CBC results, and 25 (17.4%) had abnormal EPH measurements. Results of the CBC and protein EPH were within reference ranges in 73 birds (50.7%). Abnormal results of the CBC in conjunction with normal EPH results were present in 46 birds (31.9%), compared with 8 birds (5.6%) with normal results of the CBC and abnormal EPH results. The findings of this study could aid practitioners in evaluating psittacine patients and prioritizing the value of individual diagnostic tests.

  20. A role for plasma cell targeting agents in immune tolerance induction in autoimmune disease and antibody responses to therapeutic proteins.

    PubMed

    Rosenberg, A S; Pariser, A R; Diamond, B; Yao, L; Turka, L A; Lacana, E; Kishnani, P S

    2016-04-01

    Antibody responses to life saving therapeutic protein products, such as enzyme replacement therapies (ERT) in the setting of lysosomal storage diseases, have nullified product efficacy and caused clinical deterioration and death despite treatment with immune-suppressive therapies. Moreover, in some autoimmune diseases, pathology is mediated by a robust antibody response to endogenous proteins such as is the case in pulmonary alveolar proteinosis, mediated by antibodies to Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF). In this work, we make the case that in such settings, when the antibody response is high titered, sustained, and refractory to immune suppressive treatments, the antibody response is mediated by long-lived plasma cells which are relatively unperturbed by immune suppressants including rituximab. However, long-lived plasma cells can be targeted by proteasome inhibitors such as bortezomib. Recent reports of successful reversal of antibody responses with bortezomib in the settings of ERT and Thrombotic Thrombocytopenic Purpura (TTP) argue that the safety and efficacy of such plasma cell targeting agents should be evaluated in larger scale clinical trials to delineate the risks and benefits of such therapies in the settings of antibody-mediated adverse effects to therapeutic proteins and autoantibody mediated pathology.

  1. High-protein-PUFA supplementation, red blood cell membranes, and plasma antioxidant activity in volleyball athletes.

    PubMed

    Malaguti, Marco; Baldini, Marta; Angeloni, Cristina; Biagi, Pierluigi; Hrelia, Silvana

    2008-06-01

    The authors evaluated the role of a high-protein, low-calorie, polyunsaturated fatty-acid (PUFA) -supplemented diet on anthropometric parameters, erythrocyte-membrane fatty-acid composition, and plasma antioxidant defenses of nonprofessional volleyball athletes. The athletes were divided in two groups: One (n = 5) followed the Mediterranean diet, and the other (n = 6) followed a high-protein, low-calorie diet with a 3-g/day fish-oil supplementation. All the athletes had anthropometric measurements taken, both at the beginning and at the end of the study, which lasted for 2 months. Body-mass index and total body fat were significantly diminished in the second group, while they remained unchanged in the first. Plasma total antioxidant activity (TAA) was significantly increased in the plasma of both groups, with no differences between the groups, suggesting that physical activity, not the different diets, is the main contributor to the increase of plasma TAA. The second group showed a significant increase in erythrocyte-membrane PUFA content and in the unsaturation index value (UI) because of the fish-oil supplementation.A high-protein, low-carbohydrate, fish-oil-supplemented diet seems to be useful only when the aim of the diet is to obtain weight loss in a short-term period. The significant increase in the UI of erythrocyte membranes indicates the potential for harm, because a high intake of PUFA might increase susceptibility to lipid peroxidation not counterbalanced by a higher increase in TAA. Adherence to the Mediterranean diet seems to be the better choice.

  2. KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis.

    PubMed

    Pagant, Silvère; Bichet, Adeline; Sugimoto, Keiko; Lerouxel, Olivier; Desprez, Thierry; McCann, Maureen; Lerouge, Patrice; Vernhettes, Samantha; Höfte, Herman

    2002-09-01

    The cell wall is the major limiting factor for plant growth. Wall extension is thought to result from the loosening of its structure. However, it is not known how this is coordinated with wall synthesis. We have identified two novel allelic cellulose-deficient dwarf mutants, kobito1-1 and kobito1-2 (kob1-1 and kob1-2). The cellulose deficiency was confirmed by the direct observation of microfibrils in most recent wall layers of elongating root cells. In contrast to the wild type, which showed transversely oriented parallel microfibrils, kob1 microfibrils were randomized and occluded by a layer of pectic material. No such changes were observed in another dwarf mutant, pom1, suggesting that the cellulose defect in kob1 is not an indirect result of the reduced cell elongation. Interestingly, in the meristematic zone of kob1 roots, microfibrils appeared unaltered compared with the wild type, suggesting a role for KOB1 preferentially in rapidly elongating cells. KOB1 was cloned and encodes a novel, highly conserved, plant-specific protein that is plasma membrane bound, as shown with a green fluorescent protein-KOB1 fusion protein. KOB1 mRNA was present in all organs investigated, and its overexpression did not cause visible phenotypic changes. KOB1 may be part of the cellulose synthesis machinery in elongating cells, or it may play a role in the coordination between cell elongation and cellulose synthesis.

  3. Plasma Cell Disorders

    MedlinePlus

    ... resulting group of genetically identical cells (called a clone) produces a large quantity of a single type ... Every plasma cell divides repeatedly to form a clone. The cells of a clone produce only one ...

  4. Plasma-assisted quadruple-channel optosensing of proteins and cells with Mn-doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Li, Chenghui; Wu, Peng; Hou, Xiandeng

    2016-02-01

    Information extraction from nano-bio-systems is crucial for understanding their inner molecular level interactions and can help in the development of multidimensional/multimodal sensing devices to realize novel or expanded functionalities. The intrinsic fluorescence (IF) of proteins has long been considered as an effective tool for studying protein structures and dynamics, but not for protein recognition analysis partially because it generally contributes to the fluorescence background in bioanalysis. Here we explored the use of IF as the fourth channel optical input for a multidimensional optosensing device, together with the triple-channel optical output of Mn-doped ZnS QDs (fluorescence from ZnS host, phosphorescence from Mn2+ dopant, and Rayleigh light scattering from the QDs), to dramatically improve the protein recognition and discrimination resolution. To further increase the cross-reactivity of the multidimensional optosensing device, plasma modification of proteins was explored to enhance the IF difference as well as their interactions with Mn-doped ZnS QDs. Such a sensor device was demonstrated for highly discriminative and precise identification of proteins in human serum and urine samples, and for cancer and normal cells as well.Information extraction from nano-bio-systems is crucial for understanding their inner molecular level interactions and can help in the development of multidimensional/multimodal sensing devices to realize novel or expanded functionalities. The intrinsic fluorescence (IF) of proteins has long been considered as an effective tool for studying protein structures and dynamics, but not for protein recognition analysis partially because it generally contributes to the fluorescence background in bioanalysis. Here we explored the use of IF as the fourth channel optical input for a multidimensional optosensing device, together with the triple-channel optical output of Mn-doped ZnS QDs (fluorescence from ZnS host, phosphorescence from Mn2

  5. MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).

    PubMed

    Xiao, Ruobing; Cerny, Jan; Devitt, Katherine; Dresser, Karen; Nath, Rajneesh; Ramanathan, Muthalagu; Rodig, Scott J; Chen, Benjamin J; Woda, Bruce A; Yu, Hongbo

    2014-06-01

    It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

  6. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells*

    PubMed Central

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-01-01

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  7. Plasma cell leukemia.

    PubMed

    Albarracin, Flavio; Fonseca, Rafael

    2011-05-01

    Plasma cell leukemia (PCL) is a rare, yet aggressive plasma cell (PC) neoplasm, variant of multiple myeloma (MM), characterized by high levels of PCs circulating in the peripheral blood. PCL can either originate de novo (primary PCL) or as a secondary leukemic transformation of MM (secondary PCL). Presenting signs and symptoms are similar to those seen in MM such as renal insufficiency, hypercalcemia, lytic bone lesions, anemia, and thrombocytopenia, but can also include hepatomegaly and splenomegaly. The diagnostic evaluation of a patient with suspected PCL should include a review of the peripheral blood smear, bone marrow aspiration and biopsy, serum protein electrophoresis (SPEP) with immunofixation, and protein electrophoresis of an aliquot from a 24h urine collection (UPEP). The diagnosis is made when a monoclonal population of PCs is present in the peripheral blood with an absolute PC count exceeding 2000/μL and PC comprising 20% or more of the peripheral blood white cells. The prognosis of PCL is poor with a median survival of 7 to 11 months. Survival is even shorter (2 to 7 months) when PCL occurs in the context of refractory or relapsing MM. There have been no prospective randomized trials investigating the treatment of PCL. Recommendations are primarily based upon data from small retrospective series, case reports, and extrapolation of data from patients with MM. In general, patients are treated with induction therapy followed by hematopoietic cell transplantation (HCT) in those who are appropriate candidates for this approach. The best induction regimen for PCL is not known and there is great variability in clinical practice. Newer agents that are being incorporated into frontline and salvage therapy for MM have also demonstrated activity in PCL such as Immunomodulatory agents and the use of bortezomib with different combinations.

  8. Plasma cell leukemia

    PubMed Central

    Albarracin, Flavio; Fonseca, Rafael

    2014-01-01

    Plasma cell leukemia (PCL) is a rare, yet aggressive plasma cell (PC) neoplasm, variant of multiple myeloma (MM), characterized by high levels of PCs circulating in the peripheral blood. PCL can either originate de novo (primary PCL) or as a secondary leukemic transformation of MM (secondary PCL). Presenting signs and symptoms are similar to those seen in MM such as renal insufficiency, hypercalcemia, lytic bone lesions, anemia, and thrombocytopenia, but can also include hepatomegaly and splenomegaly. The diagnostic evaluation of a patient with suspected PCL should include a review of the peripheral blood smear, bone marrow aspiration and biopsy, serum protein electrophoresis (SPEP) with immunofixation, and protein electrophoresis of an aliquot from a 24h urine collection (UPEP). The diagnosis is made when a monoclonal population of PCs is present in the peripheral blood with an absolute PC count exceeding 2000/μL and PC comprising 20% or more of the peripheral blood white cells. The prognosis of PCL is poor with a median survival of 7 to 11 months. Survival is even shorter (2 to 7 months) when PCL occurs in the context of refractory or relapsing MM. There have been no prospective randomized trials investigating the treatment of PCL. Recommendations are primarily based upon data from small retrospective series, case reports, and extrapolation of data from patients with MM. In general, patients are treated with induction therapy followed by hematopoietic cell transplantation (HCT) in those who are appropriate candidates for this approach. The best induction regimen for PCL is not known and there is great variability in clinical practice. Newer agents that are being incorporated into frontline and salvage therapy for MM have also demonstrated activity in PCL such as Immunomodulatory agents and the use of bortezomib with different combinations. PMID:21295388

  9. [Acute plasma cell leukemia].

    PubMed

    Monsalbe, V; Domíngues, C; Roa, I; Busel, D; González, S

    1989-01-01

    Plasma Cell Leukemia is a very rare form of plasmocytic dyscrasia, whose clinical and pathological characteristics warrant its recognition as a distinct subentity. We report the case of a 60 years old man who presented a rapidly fatal acute plasma cell leukemia, with multiple osteolytic lesions, hipercalcemia, renal and cardiac failure.

  10. "Angular" plasma cell cheilitis.

    PubMed

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus

    2014-03-17

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  11. Protein adsorption and cell adhesion on three-dimensional polycaprolactone scaffolds with respect to plasma modification by etching and deposition techniques

    NASA Astrophysics Data System (ADS)

    Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon

    2014-11-01

    In this work, protein adsorption and cell adhesion on three-dimensional (3D) polycaprolactone (PCL) scaffolds treated by plasma etching and deposition were performed. The 3D PCL scaffold used as a substrate of a bone tissue was fabricated by recent rapid prototype techniques. To increase surface properties, such as hydrophilicity, roughness, and surface chemistry, through good protein adhesion on scaffolds, oxygen (O2) plasma etching and acrylic acid or allyamine plasma deposition were performed on the 3D PCL scaffolds. The O2 plasma etching induced the formation of random nanoporous structures on the roughened surfaces of the 3D PCL scaffolds. The plasma deposition with acrylic acid and allyamine induced the chemical modification for introducing a functional group. The protein adsorption increased on the O2 plasma-etched surface compared with an untreated 3D PCL scaffold. MC3T3-E1 cells adhered bioactively on the etched and deposited surface compared with the untreated surface. The present plasma modification might be sought as an effective technique for enhancing protein adsorption and cell adhesion.

  12. Two bean cell wall proteins more abundant during water deficit are high in proline and interact with a plasma membrane protein.

    PubMed

    García-Gómez, B I; Campos, F; Hernández, M; Covarrubias, A A

    2000-05-01

    Two antigenically related glycoproteins, called p33 and p36, accumulate in the soluble fraction of the cell wall in response to water deficit in Phaseolus vulgaris. In this report, we show that p33 and p36 are able to adhere to leaf protoplasts, and that they bind to plasma membrane (PM) vesicles in a divalent cation-dependent manner. Data from the partial amino acid sequence of the p33 and p36 proteins indicate that they contain repeats of the decapeptide POVYKPOVEK; therefore, they are related to proline-rich proteins. Binding assays demonstrate that both proteins specifically bind to an 80 kDa PM protein. This binding is competed with a peptide that contains the RGD motif, as well as with fibronectin, which also includes this sequence, suggesting that the 80 kDa PM protein has an integrin-like function whose natural ligands are p33 and p36. This is the first case where a PM ligand for a higher plant cell wall protein has been identified.

  13. Plasma protein induced clustering of red blood cells in micro capillaries

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Brust, Mathias; Aouane, Othmane; Flormann, Daniel; Thiebaud, Marine; Verdier, Claude; Coupier, Gwennou; Podgorski, Thomas; Misbah, Chaouqi; Selmi, Hassib

    2013-11-01

    The plasma molecule fibrinogen induces aggregation of RBCs to clusters, the so called rouleaux. Higher shear rates in bulk flow can break them up which results in the pronounced shear thinning of blood. This led to the assumption that rouleaux formation does not take place in the microcapillaries of the vascular network where high shear rates are present. However, the question is of high medical relevance. Cardio vascular disorders are still the main cause of death in the western world and cardiac patients have often higher fibrinogen level. We performed AFM based single cell force spectroscopy to determine the work of separation. Measurements at low hematocrit in a microfluidic channel show that the number of size of clusters is determined by the adhesion strength and we found that cluster formation is strongly enhanced by fibrinogen at physiological concentrations, even at shear rate as high as 1000 1/s. Numerical simulations based on a boundary integral method confirm our findings and the clustering transition takes place both in the experiments and in the simulations at the same interaction energies. In vivo measurements with intravital fluorescence microscopy in a dorsal skin fold chamber in a mouse reveal that RBCs indeed form clusters in the micrcapillary flow. This work was supported by the German Science Foundation research imitative SFB1027.

  14. Inflammation in Sickle Cell Disease: Differential and Down-Expressed Plasma Levels of Annexin A1 Protein

    PubMed Central

    Torres, Lidiane S.; Okumura, Jéssika V.; Silva, Danilo G. H.; Mimura, Kallyne K. O.; Belini-Júnior, Édis; Oliveira, Renan G.; Lobo, Clarisse L. C.; Oliani, Sonia M.; Bonini-Domingos, Claudia R.

    2016-01-01

    Sickle cell disease (SCD) is an inherited hemolytic anemia whose pathophysiology is driven by polymerization of the hemoglobin S (Hb S), leading to hemolysis and vaso-occlusive events. Inflammation is a fundamental component in these processes and a continuous inflammatory stimulus can lead to tissue damages. Thus, pro-resolving pathways emerge in order to restore the homeostasis. For example there is the annexin A1 (ANXA1), an endogenous anti-inflammatory protein involved in reducing neutrophil-endothelial interactions, accelerating neutrophil apoptosis and stimulating macrophage efferocytosis. We investigated the expression of ANXA1 in plasma of SCD patients and its relation with anemic, hemolytic and inflammatory parameters of the disease. Three SCD genotypes were considered: the homozygous inheritance for Hb S (Hb SS) and the association between Hb S and the hemoglobin variants D-Punjab (Hb SD) and C (Hb SC). ANXA1 and proinflammatory cytokines were quantified by ELISA in plasma of SCD patients and control individuals without hemoglobinopathies. Hematological and biochemical parameters were analyzed by flow cytometry and spectrophotometer. The plasma levels of ANXA1 were about three-fold lesser in SCD patients compared to the control group, and within the SCD genotypes the most elevated levels were found in Hb SS individuals (approximately three-fold higher). Proinflammatory cytokines were higher in SCD groups than in the control individuals. Anemic and hemolytic markers were higher in Hb SS and Hb SD genotypes compared to Hb SC patients. White blood cells and platelets count were higher in Hb SS genotype and were positively correlated to ANXA1 levels. We found that ANXA1 is down-regulated and differentially expressed within the SCD genotypes. Its expression seems to depend on the inflammatory, hemolytic and vaso-occlusive characteristics of the diseased. These data may lead to new biological targets for therapeutic intervention in SCD. PMID:27802331

  15. The Function of FK506-Binding Protein 13 in Protein Quality Control Protects Plasma Cells from Endoplasmic Reticulum Stress-Associated Apoptosis

    PubMed Central

    Jeong, Mini; Jang, Eunkyeong; Choi, Suk San; Ji, Changhoon; Lee, Kyungho; Youn, Jeehee

    2017-01-01

    Plasma cells (PCs) are exposed to intense endoplasmic reticulum (ER) stress imposed by enormous rates of immunoglobulin (Ig) synthesis and secretion. Therefore, protein homeostasis is crucial for the survival of PCs, but its molecular mechanism remains largely unknown. Here, we found marked overexpression of FK506-binding protein 13 (FKBP13) in long-lived PCs from autoimmune mice and investigated its function using a plasmacytoma cell line secreting IgA. FKBP13 expression was induced largely in the lumen of ER in response to treatment with an ER stressor tunicamycin or overexpression of an adaptive unfolded protein response (UPR) protein X-box binding protein 1 (XBP1). Silencing of FKBP13 expression led to induction of molecules involved in the terminal UPR and ER stress-associated apoptosis. FKBP13 interacted with Ig, facilitated its ubiquitination, and lowered the extent of ER stress. FKBP13 overexpression caused a significant reduction in secreted IgA in plasmacytoma cells, and FKBP13 knockdown exerted an opposite effect. Rapamycin interfered with the interaction between FKBP13 and IgA and enhanced the amount of secreted IgA. Importantly, the level of FKBP13 was inversely correlated with the amount of secreted antibody in long-lived PCs from autoimmune mice. These results suggest that FKBP13 is a marker of long-lived PCs and a component of XBP1-dependent ER protein homeostasis. FKBP13 is likely to act as a molecular chaperone that delivers misfolded ER clients, including Ig, to ER-associated degradation, so reducing proteotoxic stress on the PC. Our data reveal a novel cytoprotective role for FKBP13 in long-lived PCs occurring at the expense of antibody production. PMID:28303141

  16. Removal of cholesteryl ester from hepatic reticuloendothelial cells in vivo is not enhanced by plasma cholesteryl ester transfer protein.

    PubMed

    Stein, O; Dabach, Y; Hollander, G; Stein, Y

    1991-01-28

    The putative role of cholesteryl ester transfer protein (CETP) in the removal of cholesteryl ester from hepatic reticuloendothelial cells in vivo was studied in hamsters. The parameter tested was retention of [3H]cholesteryl linoleyl ether ([3H]CLE), a nonhydrolysable analog of cholesteryl ester, in the liver after injection of [3H]CLE labeled acetylated LDL, which is targetted to nonparenchymatous littoral cells. In hamsters fed laboratory chow, plasma cholesteryl ester transfer activity (CETA) was 10.6 +/- 0.9 units and the retention of [3H]CLE in the liver 28 days after injection was 86% of the 4 h value. It was about 55% in rats fed the same diet, in which CETA was not detectable. When the diet was supplemented with 2% cholesterol and 15% margarine, CETA activity in hamsters increased 2-fold, yet no change in retention of [3H]CLE in liver was seen after 28 days. In rats, the retention of [3H]CLE in the liver was also not changed by the dietary fat supplementation. These results do not support the role of CETP in vivo in removal of cholesteryl ester from intact reticuloendothelial cells.

  17. Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion.

    PubMed

    Knepper, Caleb; Savory, Elizabeth A; Day, Brad

    2011-05-01

    Arabidopsis (Arabidopsis thaliana) NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a plasma membrane-localized protein, plays an essential role in resistance mediated by the coiled-coil-nucleotide-binding site-leucine-rich repeat class of resistance (R) proteins, which includes RESISTANCE TO PSEUDOMONAS SYRINGAE2 (RPS2), RESISTANCE TO PSEUDOMONAS SYRINGAE PV MACULICOLA1, and RPS5. Infection with Pseudomonas syringae pv tomato DC3000 expressing the bacterial effector proteins AvrRpt2, AvrB, and AvrPphB activates resistance by the aforementioned R proteins. Whereas the genetic requirement for NDR1 in plant disease resistance signaling has been detailed, our study focuses on determining a global, physiological role for NDR1. Through the use of homology modeling and structure threading, NDR1 was predicted to have a high degree of structural similarity to Arabidopsis LATE EMBRYOGENESIS ABUNDANT14, a protein implicated in abiotic stress responses. Specific protein motifs also point to a degree of homology with mammalian integrins, well-characterized proteins involved in adhesion and signaling. This structural homology led us to examine a physiological role for NDR1 in preventing fluid loss and maintaining cell integrity through plasma membrane-cell wall adhesions. Our results show a substantial alteration in induced (i.e. pathogen-inoculated) electrolyte leakage and a compromised pathogen-associated molecular pattern-triggered immune response in ndr1-1 mutant plants. As an extension of these analyses, using a combination of genetic and cell biology-based approaches, we have identified a role for NDR1 in mediating plasma membrane-cell wall adhesions. Taken together, our data point to a broad role for NDR1 both in mediating primary cellular functions in Arabidopsis through maintaining the integrity of the cell wall-plasma membrane connection and as a key signaling component of these responses during pathogen infection.

  18. Association of a major transcriptional regulatory protein, ICP4, of herpes simplex virus type 1 with the plasma membrane of virus-infected cells.

    PubMed Central

    Yao, F; Courtney, R J

    1991-01-01

    A major transcriptional regulatory protein, ICP4, of herpes simplex virus type 1 (HSV-1) is localized primarily within the nucleus soon after its synthesis. Recent studies have shown that approximately 100 to 200 molecules of ICP4 are located in the tegument region of purified virions (F. Yao and R. J. Courtney, J. Virol. 63:3338-3344, 1989). As an extension to these studies, we present data suggesting that ICP4 may also associate with the plasma membrane of HSV-1-infected cells. The experimental approaches used included the isolation and purification of plasma membranes from HSV-1-infected cells, the isolation of purified vesicular stomatitis virus containing ICP4, and immunofluorescence of HSV-1-infected cells following selective permeabilization with detergent. The results from the above studies support the suggestion that detectable amounts of ICP4 are associated with the inner surface of the plasma membrane of HSV-1-infected cells. Images PMID:1847468

  19. Plasma Cell Disorders.

    PubMed

    Castillo, Jorge J

    2016-12-01

    Plasma cell disorders are benign, premalignant, and malignant conditions characterized by the presence of a monoclonal paraprotein detected in serum or urine. These conditions are biologically, pathologically, and clinically heterogeneous. There have been major advances in the understanding of the biology of these diseases, which are promoting the development of therapies with novel mechanisms of action. Novel agents such as proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies have gained approval in the United States and Europe for the treatment of plasma cell disorders. Such therapies are translating into higher rates of response and survival and better toxicity profiles.

  20. A ToF-SIMS and XPS study of protein adsorption and cell attachment across PEG-like plasma polymer films with lateral compositional gradients

    NASA Astrophysics Data System (ADS)

    Menzies, Donna J.; Jasieniak, Marek; Griesser, Hans J.; Forsythe, John S.; Johnson, Graham; McFarland, Gail A.; Muir, Benjamin W.

    2012-12-01

    In this work we report a detailed X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) study of poly(ethylene glycol) PEG-like chemical gradients deposited via plasma enhanced chemical vapour deposition (PECVD) at two different load powers using diethylene glycol dimethyl ether (DG) as a monomer. Principal component analysis (PCA) was applied to the ToF-SIMS data both before and after protein adsorption on the plasma polymer thin films. Results of the PCA loadings indicated a higher content of hydrocarbon fragments across the higher load power gradient, which adsorbed higher amounts of proteins. Gradients deposited at a lower load power retained a higher degree of monomer like functionality as did the central region directly underneath the knife edge electrode. Analysis of the adsorption of serum proteins (human serum albumin and fetal bovine serum) was monitored across the gradient films and increased with decreasing ether (PEG-like) film chemistries. The effect of protein incubation time on the levels adsorbed fetal bovine serum on the plasma polymer films was critical, with significantly more protein adsorbing after 24 hour incubation times on both gradient films. The attachment of HeLa cells on the gradients appeared to be dictated not only by the surface chemistry, but also by the adsorption of serum proteins. XPS analysis revealed that at surface ether concentrations of less than 70% in the gradient films, significant increases in protein and cell attachment were observed.

  1. Ovine plasma prion protein levels show genotypic variation detected by C-terminal epitopes not exposed in cell-surface PrPC.

    PubMed

    Thackray, Alana M; Fitzmaurice, Tim J; Hopkins, Lee; Bujdoso, Raymond

    2006-12-01

    Ovine PBMCs (peripheral blood mononuclear cells) express PrP(C) [cellular PrP (prion-related protein)] and have the potential to harbour and release disease-associated forms of PrP during scrapie in sheep. Cell-surface PrP(C) expression by PBMCs, together with plasma PrP(C) levels, may contribute to the regulatory mechanisms that determine susceptibility and resistance to natural scrapie in sheep. Here, we have correlated cell-surface PrP(C) expression on normal ovine PBMCs by FACS with the presence of PrP(C) in plasma measured by capture-detector immunoassay. FACS showed similar levels of cell-surface PrP(C) on homozygous ARR (Ala136-Arg154-Arg171), ARQ (Ala136-Arg154-Gln171) and VRQ (Val136-Arg154-Gln171) PBMCs. Cell-surface ovine PrP(C) showed modulation of N-terminal epitopes, which was more evident on homozygous ARR cells. Ovine plasma PrP(C) levels showed genotypic variation and the protein displayed C-terminal epitopes not available in cell-surface PrP(C). Homozygous VRQ sheep showed the highest plasma PrP(C) level and homozygous ARR animals the lowest. For comparison, similar analyses were performed on normal bovine PBMCs and plasma. PrP(C) levels in bovine plasma were approx. 4-fold higher than ovine homozygous ARQ plasma despite similar levels of PBMC cell-surface PrP(C) expression. Immunoassays using C-terminal-specific anti-PrP monoclonal antibodies as capture and detector reagents revealed the highest level of PrP(C) in both ovine and bovine plasma, whilst lower levels were detected using N-terminal-specific monoclonal antibody FH11 as the capture reagent. This suggested that a proportion of plasma PrP(C) was N-terminally truncated. Our results indicate that the increased susceptibility to natural scrapie displayed by homozygous VRQ sheep correlates with a higher level of plasma PrP(C).

  2. In vitro generation of anti-hepatitis B monoclonal antibodies from a single plasma cell using single-cell RT-PCR and cell-free protein synthesis.

    PubMed

    Sabrina, Yunita; Ali, Muhamad; Nakano, Hideo

    2010-01-01

    Monoclonal antibodies (mAbs) are an effective tool in therapeutics and diagnostics. A novel approach called the single-cell RT-PCR-linked in vitro expression system (SICREX) enables the high-throughput generation and screening of mAbs from single B cells. In this paper, instead of using B cells, cDNAs were synthesized from single plasma cells of an immunized mouse spleen. The light chain (Lc) and the Fd portion of the heavy chain (Hc) genes of each cell were amplified separately and followed by overlapping PCR to add a T7 promoter, a ribosome-binding site, and a T7 terminator. The paired Lc and Hc genes were simultaneously expressed by an Escherichia coli in vitro transcription and translation system followed by ELISA to measure their affinity for the antigen. A Fab fragment with affinity against the antigen was obtained from plasma cells of an immunized mouse with hepatitis B surface antigen (HBsAg).

  3. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    PubMed

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  4. PLASMA CELL LEUKEMIA

    PubMed Central

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  5. Efficient isolation and proteomic analysis of cell plasma membrane proteins in gastric cancer reveal a novel differentiation and progression related cell surface marker, R-cadherin.

    PubMed

    Chen, Bo; Luo, Qi-Cong; Chen, Jian-Bo; Lin, Li-E; Luo, Ming-Xu; Ren, Hong-Yue; Chen, Pei-Qiong; Shi, Lian-Guo

    2016-09-01

    Cell plasma membrane proteins, playing a crucial role in cell malignant transformation and development, were the main targets of tumor detection and therapy. In this study, CyDye/biotin double-labeling proteomic approach was adopted to profile the membrane proteome of gastric cancer cell line BGC-823 and paired immortalized gastric epithelial cell GES-1. Real-time PCR, Western blotting, and immunohistochemical staining were used to validate the differential expression of a novel identified cell surface marker R-cadherin in gastric cancer cells and tissues. Clinicopathological study and survival analysis were performed to estimate its roles in tumor progression and outcome prediction. Real-time PCR and Western blotting showed that the expression level of R-cadherin in gastric cancer were significantly lower than non-cancerous epithelial cell and tissues. Clinicopathological study indicated that R-cadherin was dominantly expressed on cell surface of normal gastric epithelium, and its expression deletion in gastric cancer tissues was associated with tumor site, differentiation, lymph node metastasis, and pTNM (chi-square test, P < 0.05). Those patients with R-cadherin positive expression displayed better overall survivals than negative expression group (log-rank test, P = 0.000). Cox multivariate survival analysis revealed lacking the expression of R-cadherin was a main independent predictor for poor clinical outcome in gastric cancer (RR = 5.680, 95 % CI 2.250-14.341, P < 0.01). We have established a fundamental membrane proteome database for gastric cancer and identified R-cadherin as a tumor differentiation and progression-related cell surface marker of gastric cancer. Lacking the expression of R-cadherin indicates poor prognosis in patients with gastric cancer.

  6. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling.

    PubMed

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis-related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT-triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease-inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2 O2 and significant induction of some defense-response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT-triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2 O2 accumulation, cell-death induction, and defense-response gene expression were distinctly reduced in CaPR4c-silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling.

  7. Vitamin A transport and the transmembrane pore in the cell-surface receptor for plasma retinol binding protein.

    PubMed

    Zhong, Ming; Kawaguchi, Riki; Ter-Stepanian, Mariam; Kassai, Miki; Sun, Hui

    2013-01-01

    Vitamin A and its derivatives (retinoids) play diverse and crucial functions from embryogenesis to adulthood and are used as therapeutic agents in human medicine for eye and skin diseases, infections and cancer. Plasma retinol binding protein (RBP) is the principal and specific vitamin A carrier in the blood and binds vitamin A at 1:1 ratio. STRA6 is the high-affinity membrane receptor for RBP and mediates cellular vitamin A uptake. STRA6 null mice have severely depleted vitamin A reserves for vision and consequently have vision loss, even under vitamin A sufficient conditions. STRA6 null humans have a wide range of severe pathological phenotypes in many organs including the eye, brain, heart and lung. Known membrane transport mechanisms involve transmembrane pores that regulate the transport of the substrate (e.g., the gating of ion channels). STRA6 represents a new type of membrane receptor. How this receptor interacts with its transport substrate vitamin A and the functions of its nine transmembrane domains are still completely unknown. These questions are critical to understanding the molecular basis of STRA6's activities and its regulation. We employ acute chemical modification to introduce chemical side chains to STRA6 in a site-specific manner. We found that modifications with specific chemicals at specific positions in or near the transmembrane domains of this receptor can almost completely suppress its vitamin A transport activity. These experiments provide the first evidence for the existence of a transmembrane pore, analogous to the pore of ion channels, for this new type of cell-surface receptor.

  8. Comparative changes in plasma protein concentration, hematocrit and plasma volume during exercise, bedrest and + Gz acceleration.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.; Greenleaf, J. E.

    1972-01-01

    Discussion of experiments which indicate that under conditions of a constant red cell volume the proportional changes in hematocrit and plasma volume during exercise are never equal. On the basis of direct measurements and calculated changes of plasma volume it is concluded that during maximal exercise there is a small loss of protein from the plasma. It is clear that changes in content of blood constituents can only be evaluated correctly after determination of changes in plasma volume.

  9. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans.

    PubMed

    Seweryn, Karolina; Karkowska-Kuleta, Justyna; Wolak, Natalia; Bochenska, Oliwia; Kedracka-Krok, Sylwia; Kozik, Andrzej; Rapala-Kozik, Maria

    2015-01-01

    Cell wall proteins of Candida albicans, besides their best known role in the adhesion of this fungal pathogen to host's tissues, also bind some soluble proteins, present in body fluids and involved in maintaining the biochemical homeostasis of the human organism. In particular, three plasma factors - high-molecular-mass kininogen (HK), factor XII (FXII) and prekallikrein (PPK) - have been shown to adhere to candidal cells. These proteins are involved in the surface-contact-catalyzed production of bradykinin-related peptides (kinins) that contribute to inflammatory states associated with microbial infections. We recently identified several proteins, associated with the candidal cell walls, and probably involved in the binding of HK. In our present study, a list of potential FXII- and PPK-binding proteins was proposed, using an affinity selection (on agarose-coupled FXII or PPK) from a whole mixture of β-1,3-glucanase-extrated cell wall-associated proteins and the mass-spectrometry protein identification. Five of these fungal proteins, including agglutinin-like sequence protein 3 (Als3), triosephosphate isomerase 1 (Tpi1), enolase 1 (Eno1), phosphoglycerate mutase 1 (Gpm1) and glucose-6-phosphate isomerase 1 (Gpi1), were purified and characterized in terms of affinities to the human contact factors, using the surface plasmon resonance measurements. Except Gpm1 that bound only PPK, and Als3 that exhibited an affinity to HK and FXII, the other isolated proteins interacted with all three contact factors. The determined dissociation constants for the identified protein complexes were of 10(-7) M order, and the association rate constants were in a range of 10(4)-10(5) M(-1)s(-1). The identified fungal pathogen-host protein interactions are potential targets for novel anticandidal therapeutic approaches.

  10. Plasma and Plasma Protein Product Transfusion: A Canadian Blood Services Centre for Innovation Symposium.

    PubMed

    Zeller, Michelle P; Al-Habsi, Khalid S; Golder, Mia; Walsh, Geraldine M; Sheffield, William P

    2015-07-01

    Plasma obtained via whole blood donation processing or via apheresis technology can either be transfused directly to patients or pooled and fractionated into plasma protein products that are concentrates of 1 or more purified plasma protein. The evidence base supporting clinical efficacy in most of the indications for which plasma is transfused is weak, whereas high-quality evidence supports the efficacy of plasma protein products in at least some of the clinical settings in which they are used. Transfusable plasma utilization remains composed in part of applications that fall outside of clinical practice guidelines. Plasma contains all of the soluble coagulation factors and is frequently transfused in efforts to restore or reinforce patient hemostasis. The biochemical complexities of coagulation have in recent years been rationalized in newer cell-based models that supplement the cascade hypothesis. Efforts to normalize widely used clinical hemostasis screening test values by plasma transfusion are thought to be misplaced, but superior rapid tests have been slow to emerge. The advent of non-vitamin K-dependent oral anticoagulants has brought new challenges to clinical laboratories in plasma testing and to clinicians needing to reverse non-vitamin K-dependent oral anticoagulants urgently. Current plasma-related controversies include prophylactic plasma transfusion before invasive procedures, plasma vs prothrombin complex concentrates for urgent warfarin reversal, and the utility of increased ratios of plasma to red blood cell units transfused in massive transfusion protocols. The first recombinant plasma protein products to reach the clinic were recombinant hemophilia treatment products, and these donor-free equivalents to factors VIII and IX are now being supplemented with novel products whose circulatory half-lives have been increased by chemical modification or genetic fusion. Achieving optimal plasma utilization is an ongoing challenge in the interconnected

  11. Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.

    PubMed

    Sarkar, Mitul; Koland, John G

    2016-01-01

    The fluorescence recovery after photobleaching (FRAP) method is a straightforward means of assessing the diffusional mobility of membrane-associated proteins that is readily performed with current confocal microscopy instrumentation. We describe here the specific application of the FRAP method in characterizing the lateral diffusion of genetically encoded green fluorescence protein (GFP)-tagged plasma membrane receptor proteins. The method is exemplified in an examination of whether the previously observed segregation of the mammalian HER3 receptor protein in discrete plasma membrane microdomains results from its physical interaction with cellular entities that restrict its mobility. Our FRAP measurements of the diffusional mobility of GFP-tagged HER3 reporters expressed in MCF7 cultured breast cancer cells showed that despite the observed segregation of HER3 receptors within plasma membrane microdomains their diffusion on the macroscopic scale is not spatially restricted. Thus, in FRAP analyses of various HER3 reporters a near-complete recovery of fluorescence after photobleaching was observed, indicating that HER3 receptors are not immobilized by long-lived physical interactions with intracellular species. An examination of HER3 proteins with varying intracellular domain sequence truncations also indicated that a proposed formation of oligomeric HER3 networks, mediated by physical interactions involving specific HER3 intracellular domain sequences, either does not occur or does not significantly reduce HER3 mobility on the macroscopic scale.

  12. Clara Cell Protein (CC16), a Marker of Lung Epithelial Injury, Is Decreased in Plasma and Pulmonary Edema Fluid From Patients With Acute Lung Injury

    PubMed Central

    Kropski, Jonathan A.; Fremont, Richard D.; Calfee, Carolyn S.; Ware, Lorraine B.

    2009-01-01

    Background: Acute lung injury (ALI) and ARDS are common clinical syndromes that are underdiagnosed. Clara cell secretory protein (CC16) is an antiinflammatory protein secreted by the Clara cells of the distal respiratory epithelium that has been proposed as a biomarker of lung epithelial injury. We tested the diagnostic and prognostic utility of CC16 in patients with non–trauma-related ALI/ARDS compared to a control group of patients with acute cardiogenic pulmonary edema (CPE). Methods: Plasma and pulmonary edema fluid samples were obtained from medical and surgical patients with ALI/ARDS or CPE requiring intubation for mechanical ventilation. The etiology of pulmonary edema was determined using consensus clinical criteria for ALI/ARDS and CPE and the edema fluid-to-plasma protein ratio. Plasma and edema fluid CC16 levels were measured by sandwich enzyme-linked immunosorbent assay. CC16 levels were log transformed for analysis, and comparisons were made by the Student t test or χ2 as appropriate. Results: Compared to patients with CPE (n = 9), patients with ALI/ARDS (n = 23) had lower median CC16 levels in plasma (22 ng/mL [interquartile range (IQR), 9 to 44 ng/mL] vs 55 ng/mL [IQR, 18 to 123 ng/mL], respectively; p = 0.053) and pulmonary edema fluid (1,950 ng/mL [IQR, 1,780 to 4,024 ng/mL] vs 4,835 ng/mL [IQR, 2,006 to 6,350 ng/mL], respectively; p = 0.044). Relative to total pulmonary edema fluid protein concentration, the median CC16 level was significantly lower in patients with ALI/ARDS (45 ng CC16/mg total protein [IQR, 4 to 64 ng CC16/mg total protein] vs 120 ng CC16/mg total protein [IQR, 87 to 257 ng CC16/mg total protein], respectively; p = 0.005). Neither plasma nor edema fluid CC16 levels predicted mortality, the number of days of unassisted ventilation, or ICU length of stay. Conclusion: CC16 is a promising diagnostic biomarker for helping to discriminate ALI from CPE. Larger scale validation is warranted to better characterize the utility of CC16

  13. Oxidative stress causes plasma protein modification.

    PubMed

    Tetik, Sermin; Kiliç, Arzu; Aksoy, Halil; Rizaner, Nahit; Ahmad, Sarfraz; Yardimci, Turay

    2015-01-01

    We investigated the effect of oxidative systems on plasma proteins using Chloramine-T, a source of free radicals. Plasma specimens from 10 healthy volunteers were treated with 40 mmol/L Chloramine-T (1:1 v/v). Total protein and plasma carbonyl levels were evaluated spectrophotometrically. Identification of plasma proteins modifications was performed by SDS-PAGE, protein and lipid electrophoresis. Protein fragmentation was evaluated by HPLC. Total protein levels of oxidised plasmas were significantly lower (4.08 ± 0.12 g/dL) than control (7.86 ± 0.03 g/dL) (P < 0.01). Plasma carbonyl levels were higher (1.94 ± 0.38 nmol/mg protein) in oxidised plasma than that of control (0.03 ± 0.01 nmol/mg protein) (P < 0.01). Plasma oxidation had no significant effect on the levels of proteins and lipids. Protein fragmentations were detected in oxidised groups compared to those of the control. We conclude that protein modifications have direct effect on the protein functions, which are related to stress agent, its treatment period(s), and the methodology used for evaluating such experimental results.

  14. Modulation of the expression of an apical plasma membrane protein of Madin-Darby canine kidney epithelial cells: cell-cell interactions control the appearance of a novel intracellular storage compartment

    PubMed Central

    1987-01-01

    Experimental conditions that abolish or reduce to a minimum intercellular contacts between Madin-Darby canine kidney epithelial cells result in the appearance of an intracellular storage compartment for apical membrane proteins. Subconfluent culture, incubation in 1-5 microM Ca++, or inclusion of dissociated cells within agarose or collagen gels all caused the intracellular accumulation of a 184-kD apical membrane protein within large (0.5-5 micron) vacuoles, rich in microvilli. Influenza virus hemagglutinin, an apically targeted viral glycoprotein, is concentrated within these structures but the basolateral glycoprotein G of vesicular stomatitis virus and a cellular basolateral 63-kD membrane protein of Madin-Darby canine kidney cells were excluded. This novel epithelial organelle (VAC), which we designate the vacuolar apical compartment, may play an as yet unrecognized role in the biogenesis of the apical plasma membrane during the differentiation of normal epithelia. PMID:3553208

  15. Nonthermal-plasma-mediated animal cell death

    NASA Astrophysics Data System (ADS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  16. Wettability Effect of PECVD-SiOx Films on Poly(lactic acid) Induced by Oxygen Plasma on Protein Adsorption and Cell Attachment

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Lee, J. S.; Jin, S. B.; Song, D. H.; Yu, L. D.; Han, J. G.; Chaiwong, C.

    2013-04-01

    Surface wettability is an important property of biomaterials. Silicon oxide films have a wide range of applications due to a range of the properties such as the mechanical strength and surface wettability. This paper reports effect of the surface wettability of silicon oxide (SiOx) films on protein adsorption and cell attachment and proliferation. SiOx films were deposited onto poly(lactic acid) (PLA) substrate using plasma enhanced chemical vapor deposition (PECVD). Octamethylcyclotetrasiloxane (OMCTS:Si4O4C8H24) was used as a precursor with O2 as a carrier gas. After deposition, the films were treated with O2-plasma to adapt wettability. It was found that O2-plasma enhanced the wettability of the films without changing the film thickness, while made the surface morphology slightly smoother. The polar component increased after O2-plasma treatment as observed in the contact angle measurements. The surface energy of the films was calculated by means of the Owens-Wendt method to resolve the contributions of polar and dispersive components. The chemical structure was characterized using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The films were dense with a high Si-network structure. The reduced carbon content (-CHn, Si-CH3) and increased hydrogen content (-OH) of the O2-plasma treated SiOx films led to the polar components enhancing the SiOx wettability. Adsorption of bovine serum albumin (BSA) on the films was investigated by using x-ray photoelectron spectroscopy (XPS). More BSA was adsorbed onto the O2-plasma treated SiOx films. Attachment and proliferation of MC3T3-E1 mouse pre-osteoblasts and L929 mouse fibroblasts cells on the SiOx films were evaluated via MTT assay. The cells were attached more to the untreated SiOx films but proliferated more on the surface of the O2-plasma treated SiOx films depending on the cell types.

  17. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  18. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  19. Protein Homeostasis at the Plasma Membrane

    PubMed Central

    2014-01-01

    The plasma membrane (PM) and endocytic protein quality control (QC) in conjunction with the endosomal sorting machinery either repairs or targets conformationally damaged membrane proteins for lysosomal/vacuolar degradation. Here, we provide an overview of emerging aspects of the underlying mechanisms of PM QC that fulfill a critical role in preserving cellular protein homeostasis in health and diseases. PMID:24985330

  20. LC-MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line.

    PubMed

    Pelkonen, Laura; Sato, Kazuki; Reinisalo, Mika; Kidron, Heidi; Tachikawa, Masanori; Watanabe, Michitoshi; Uchida, Yasuo; Urtti, Arto; Terasaki, Tetsuya

    2017-02-14

    The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier between neural retina and choroid. The RPE has several important vision supporting functions, such as transport mechanisms that may also modify pharmacokinetics in the posterior eye segment. Expression of plasma membrane transporters in the RPE cells has not been quantitated. The aim of this study was to characterize and compare transporter protein expression in the ARPE19 cell line and hfRPE (human fetal RPE) cells by using quantitative targeted absolute proteomics (QTAP). Among 41 studied transporters, 16 proteins were expressed in hfRPE and 13 in ARPE19 cells. MRP1, MRP5, GLUT1, 4F2hc, TAUT, CAT1, LAT1, and MATE1 proteins were detected in both cell lines within 4-fold differences. MPR7, OAT2 and RFC1 were detected in the hfRPE cells, but their expression levels were below the limit of quantification in ARPE19 cells. PCFT was detected in both studied cell lines, but the expression was over 4-fold higher in hfRPE cells. MCT1, MCT4, MRP4, and Na(+)/K(+) ATPase were upregulated in the ARPE19 cell line showing over 4-fold differences in the quantitative expression values. Expression levels of 25 transporters were below the limit of quantification in both cell models. In conclusion, we present the first systematic and quantitative study on transporter protein expression in the plasma membranes of ARPE19 and hfRPE cells. Overall, transporter expression in the ARPE19 and hfRPE cells correlated well and the absolute expression levels were similar, but not identical. The presented quantitative expression levels could be a useful basis for further studies on drug permeation in the outer blood-retinal barrier.

  1. Identification of soluble N-ethylmaleimide-sensitive factor attachment protein receptor exocytotic machinery in human plasma cells: SNAP-23 is essential for antibody secretion.

    PubMed

    Reales, Elena; Mora-López, Francisco; Rivas, Verónica; García-Poley, Antonio; Brieva, José A; Campos-Caro, Antonio

    2005-11-15

    Plasma cells (PC) are B-lymphocytes terminally differentiated in a postmitotic state, with the unique purpose of manufacturing and exporting Igs. Despite the importance of this process in the survival of vertebrates, no studies have been made to understand the molecular events that regulate Ig exocytosis by PC. The present study explores the possible presence of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) system in human PC, and examines its functional role in Ig secretion. Syntaxin-2, Syntaxin-3, Syntaxin-4, vesicle-associated membrane protein (VAMP)-2, VAMP-3, and synaptosome-associated protein (SNAP)-23 could be readily detected in normal human PC obtained from intestinal lamina propria and blood, as well as in human PC lines. Because SNAP-23 plays a central role in SNAREs complex formation, it was chosen to examine possible functional implications of the SNARE system in PC Ig secretion. When recombinant SNAP-23 fusion protein was introduced into the cells, a complete abolishment of Ig production was observed in the culture supernatants of PC lines, as well as in those of normal PC. These results provide insights, for the first time, into the molecular machinery of constitutive vesicular trafficking in human PC Ig secretion and present evidence indicating that at least SNAP-23 is essential for Ab production.

  2. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    PubMed Central

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  3. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells.

    PubMed

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2013-08-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity.

  4. Plasma protein denaturation with graded heat exposure.

    PubMed

    Vazquez, R; Larson, D F

    2013-11-01

    During cardiopulmonary bypass (CPB), perfusion at tepid temperatures (33-35 °C) is recommended to avoid high temperature cerebral hyperthermia during and after the operation. However, the ideal temperature for uncomplicated adult cardiac surgery is an unsettled question. Typically, the heat exchanger maximum temperature is monitored between 40-42 °C to prevent denaturation of plasma proteins, but studies have not been performed to make these conclusions. Therefore, our hypothesis was to determine the temperature in which blood plasma protein degradation occurs after 2 hours of heat exposure. As a result, blood plasma proteins were exposed to heat in the 37-50 °C range for 2 hours. Plasma protein samples were loaded onto an 8-12% gradient gel for SDS-PAGE and low molecular weight plasma protein degradation was detected with graded heat exposure. Protein degradation was first detected between 43-45 °C of heat exposure. This study supports the practice of monitoring the heat exchanger between 40-42 °C to prevent denaturation of plasma proteins.

  5. Rho2 Palmitoylation Is Required for Plasma Membrane Localization and Proper Signaling to the Fission Yeast Cell Integrity Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Sánchez-Mir, Laura; Franco, Alejandro; Martín-García, Rebeca; Madrid, Marisa; Vicente-Soler, Jero; Soto, Teresa; Gacto, Mariano; Pérez, Pilar

    2014-01-01

    The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade. PMID:24820419

  6. A computational analysis of non-genomic plasma membrane progestin binding proteins: signaling through ion channel-linked cell surface receptors.

    PubMed

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K

    2013-12-11

    A number of plasma membrane progestin receptors linked to non-genomic events have been identified. These include: (1) α1-subunit of the Na(+)/K(+)-ATPase (ATP1A1), (2) progestin binding PAQR proteins, (3) membrane progestin receptor alpha (mPRα), (4) progesterone receptor MAPR proteins and (5) the association of nuclear receptor (PRB) with the plasma membrane. This study compares: the pore-lining regions (ion channels), transmembrane (TM) helices, caveolin binding (CB) motifs and leucine-rich repeats (LRRs) of putative progesterone receptors. ATP1A1 contains 10 TM helices (TM-2, 4, 5, 6 and 8 are pores) and 4 CB motifs; whereas PAQR5, PAQR6, PAQR7, PAQRB8 and fish mPRα each contain 8 TM helices (TM-3 is a pore) and 2-4 CB motifs. MAPR proteins contain a single TM helix but lack pore-lining regions and CB motifs. PRB contains one or more TM helices in the steroid binding region, one of which is a pore. ATP1A1, PAQR5/7/8, mPRα, and MAPR-1 contain highly conserved leucine-rich repeats (LRR, common to plant membrane proteins) that are ligand binding sites for ouabain-like steroids associated with LRR kinases. LRR domains are within or overlap TM helices predicted to be ion channels (pore-lining regions), with the variable LRR sequence either at the C-terminus (PAQR and MAPR-1) or within an external loop (ATP1A1). Since ouabain-like steroids are produced by animal cells, our findings suggest that ATP1A1, PAQR5/7/8 and mPRα represent ion channel-linked receptors that respond physiologically to ouabain-like steroids (not progestin) similar to those known to regulate developmental and defense-related processes in plants.

  7. Liver takes up retinol-binding protein from plasma

    SciTech Connect

    Gjoen, T.; Bjerkelund, T.; Blomhoff, H.K.; Norum, K.R.; Berg, T.; Blomhoff, R.

    1987-08-15

    Retinol is transported in plasma bound to a specific transport protein, retinol-binding protein. We prepared /sup 125/I-tyramine cellobiose-labeled rat retinol-binding protein and studied its tissue uptake 1, 5, and 24 h after intravenous injection into rats. The liver was the organ containing most radioactivity at all time points studied. After 5 and 24 h, 30 and 22% of the injected dose were recovered in liver, respectively. After separating the liver into parenchymal and nonparenchymal cells in the 5-h group, we found that both cell fractions contained approximately the same amount of radioactivity (per gram of liver). Most of the retinol-binding protein radioactivity in the nonparenchymal cell fraction was in the stellate cells. The implication of these results for a possible transfer mechanism for retinol between parenchymal and stellate cells is discussed.

  8. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    PubMed

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity.

  9. Ambient temperature and relative humidity influenced packed cell volume, total plasma protein and other variables in horses during an incremental submaximal field exercise test.

    PubMed

    Hargreaves, B J; Kronfeld, D S; Naylor, J R

    1999-07-01

    Thermoregulation may limit exercise performance under hot and humid conditions. This study compared heart rate (HR), respiratory rate (RR), rectal temperature (Tr), packed cell volume (PCV) and total plasma protein concentration (TPP) during a submaximal incremental field exercise test under high vs. low ambient temperature and relative humidity. Ten horses were tested 3 times in summer (July) and 3 times in autumn (September). Heart rate was measured continuously, the other variables at rest and immediately after 4 min at 3.5, 4.5 and 7.0 m/s, separated by 3 min rest intervals, and after 5 and 10 min recovery. Data for all variables were significantly greater during exercise and recovery in the hot vs. cool conditions, respectively: after 4 min at 7.0 m/s, HR was 135+/-1 and 123+/-1/min (P<0.0001), Tr was 39.0+/-0.06 and 38.0+/-0.05 degrees C (P<0.0001), RR was 99+/-3 and 50+/-3/min (P<0.0001), PCV was 48.8+/-0.06 and 42.1+/-0.3% (P<0.0001) and TPP was 7.7+/-0.14 and 7.6+/-0.12 g/l (P = 0.026). These data reflect the thermal burden during submaximal exercise under hot conditions in the field. The greater relative PCV increase in the heat probably conferred a thermoregulatory advantage and reflected a greater circulating red cell volume increase rather than a decrease of plasma volume. This study illustrates how differences in environmental conditions can affect assessment of exercise responses and how these factors must be considered in monitoring progress during fitness and acclimatisation regimes in the field.

  10. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    PubMed

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms.

  11. Progressively impaired proteasomal capacity during terminal plasma cell differentiation

    PubMed Central

    Cenci, Simone; Mezghrani, Alexandre; Cascio, Paolo; Bianchi, Giada; Cerruti, Fulvia; Fra, Anna; Lelouard, Hugues; Masciarelli, Silvia; Mattioli, Laura; Oliva, Laura; Orsi, Andrea; Pasqualetto, Elena; Pierre, Philippe; Ruffato, Elena; Tagliavacca, Luigina; Sitia, Roberto

    2006-01-01

    After few days of intense immunoglobulin (Ig) secretion, most plasma cells undergo apoptosis, thus ending the humoral immune response. We asked whether intrinsic factors link plasma cell lifespan to Ig secretion. Here we show that in the late phases of plasmacytic differentiation, when antibody production becomes maximal, proteasomal activity decreases. The excessive load for the reduced proteolytic capacity correlates with accumulation of polyubiquitinated proteins, stabilization of endogenous proteasomal substrates (including Xbp1s, IκBα, and Bax), onset of apoptosis, and sensitization to proteasome inhibitors (PI). These events can be reproduced by expressing Ig-μ chain in nonlymphoid cells. Our results suggest that a developmental program links plasma cell death to protein production, and help explaining the peculiar sensitivity of normal and malignant plasma cells to PI. PMID:16498407

  12. Combination of Controllably Released Platelet Rich Plasma Alginate Beads and Bone Morphogenic Protein-2 Gene-Modified Mesenchymal Stem Cells for Bone Regeneration

    PubMed Central

    Fernandes, Gabriela; Wang, Changdong; Yuan, Xue; Liu, Zunpeng; Dziak, Rosemary; Yang, Shuying

    2016-01-01

    Background Platelet rich plasma (PRP) consists of platelet derived growth factor (PDGF) and Transforming growth factor-beta (TGF-β) that increase cell proliferation of mesenchymal stem cells (MSCs), whereas, bone morphogenic Protein-2 (BMP2) promotes osteogenic differentiation of MSCs. However, the high degradation rate of fibrin leads to the dissociation of cytokines even before the process of bone regeneration has begun. Hence, for the first time, we studied the combined effect of sustained released PRP from alginate beads on BMP2 modified MSCs osteogenic differentiation in vitro and of sustained PRP alone on a fracture defect model ex vivo as well as its effect on the calvarial suture closure. Methods After optimizing the concentration of alginate for the microspheres, the osteogenic and mineralization effect of PRP and BMP2 in combinations on MSCs was studied. A self-setting alginate hydrogel carrying PRP was tested on a femur defect model ex-vivo. The effect of PRP was studied on the closure of the embryonic (E15) mouse calvaria sutures ex vivo. Results Increase of PRP concentration promoted cellular proliferation of MSCs. 2.5%–10% of PRP displayed gradually increased ALP activity on the cells in a dose dependent manner. Sustained release PRP and BMP2 demonstrated a significantly higher ALP and mineralization activity (p<0.05). The radiographs of alginate hydrogel with PRP treated bone demonstrated a nearly complete healing of the fracture and the histological sections of the embryonic calvaria revealed that PRP leads to suture fusion. Conclusions Sustained release of PRP along with BMP2 gene modified MSCs can significantly promote bone regeneration. PMID:26745613

  13. Supramolecular Structures with Blood Plasma Proteins, Sugars and Nanosilica

    NASA Astrophysics Data System (ADS)

    Turov, V. V.; Gun'ko, V. M.; Galagan, N. P.; Rugal, A. A.; Barvinchenko, V. M.; Gorbyk, P. P.

    Supramolecular structures with blood plasma proteins (albumin, immunoglobulin and fibrinogen (HPF)), protein/water/silica and protein/water/ silica/sugar (glucose, fructose and saccharose) were studied by NMR, adsorption, IR and UV spectroscopy methods. Hydration parameters, amounts of weakly and strongly bound waters and interfacial energy (γ S) were determined over a wide range of component concentrations. The γ S(C protein,C silica) graphs were used to estimate the energy of protein-protein, protein-surface and particle-particle interactions. It was shown that interfacial energy of self-association (γ as) of protein molecules depends on a type of proteins. A large fraction of water bound to proteins can be displaced by sugars, and the effect of disaccharide (saccharose) was greater than that of monosugars. Changes in the structural parameters of cavities in HPF molecules and complexes with HPF/silica nanoparticles filled by bound water were analysed using NMR-cryoporometry showing that interaction of proteins with silica leads to a significant decrease in the amounts of water bound to both protein and silica surfaces. Bionanocomposites with BSA/nanosilica/sugar can be used to influence states of living cells and tissues after cryopreservation or other treatments. It was shown that interaction of proteins with silica leads to strong decrease in the volume of all types of internal cavities filled by water.

  14. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  15. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Plasma Protein Fraction (Human). 640.90 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  16. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  17. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  18. 21 CFR 640.90 - Plasma Protein Fraction (Human).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Plasma Protein Fraction (Human). 640.90 Section...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma Protein Fraction (Human) § 640.90 Plasma Protein Fraction (Human). (a) Proper name and definition. The proper name of the product shall...

  19. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins.

    PubMed

    Vosolsobě, Stanislav; Petrášek, Jan; Schwarzerová, Kateřina

    2017-05-01

    The plant-specific DREPP protein family comprises proteins that were shown to regulate the actin and microtubular cytoskeleton in a calcium-dependent manner. Our phylogenetic analysis showed that DREPPs first appeared in ferns and that DREPPs have a rapid and plastic evolutionary history in plants. Arabidopsis DREPP paralogues called AtMDP25/PCaP1 and AtMAP18/PCaP2 are N-myristoylated, which has been reported as a key factor in plasma membrane localization. Here we show that N-myristoylation is neither conserved nor ancestral for the DREPP family. Instead, by using confocal microscopy and a new method for quantitative evaluation of protein membrane localization, we show that DREPPs rely on two mechanisms ensuring their plasma membrane localization. These include N-myristoylation and electrostatic interaction of a polybasic amino acid cluster. We propose that various plasma membrane association mechanisms resulting from the evolutionary plasticity of DREPPs are important for refining plasma membrane interaction of these signalling proteins under various conditions and in various cells.

  20. GH3 tumor pituitary cell cytoskeleton and plasma membrane arrangement are determined by extracellular matrix proteins: implications on motility, proliferation and hormone secretion

    PubMed Central

    Azorín, Erika; Romero-Pérez, Beatriz; Solano-Agama, Carmen; de la Vega, María T; Toriz, César G; Reyes-Márquez, Blanca; González-Pozos, Sirenia; Rosales-García, Víctor H; del Pliego, Margarita González; Sabanero, Myrna; Mendoza-Garrido, María E

    2014-01-01

    The extracellular matrix (ECM) influences different physiological and pathophysiological aspects of the cell. The ECM consists in a complex network of macromolecules with characteristic biochemical properties that allow cells to sense their environments inducing different signals and changing cell behavior. The purpose of the present study was to evaluate the participation of different ECM proteins in cell morphology and its implication on motility, proliferation and hormone secretion in GH3 cells, a tumor pituitary cell. GH3 cells were cultured with a defined medium on collagens I/III and IV, fibronectin and laminin. GH3 cells express α2 integrin subunit de novo. The cells responded to the ECM proteins with differentiated cell surface morphologies and membrane protrusions. A rounded shape with small membrane blebs, weak substrate adhesion and high motility was observed in cells on C I/III and fibronectin, while on C IV and laminin cells were viewed elongated and adhered. Differences on actin cytoskeleton, cytoskeletal-associated vinculin and phospho-MLC showed that ECM proteins determine the cytoskeleton organization. Cell proliferation showed dependency on the ECM protein, observing a higher rate in cells on collagen I/III. Prolactin secretion was higher in cells with small blebs, but an unchangeable response to EGF was obtained with the ECM proteins, suggesting is a consequence of cortical actin arrangement. We ascribe the functional differences of the GH3 cells to the cytoskeletal organization. Overall, the data showed that ECM plays a critical role in GH3 cells modulating different cellular comportment and evidenced the importance of the ECM composition of pituitary adenomas. PMID:25057334

  1. GH3 tumor pituitary cell cytoskeleton and plasma membrane arrangement are determined by extracellular matrix proteins: implications on motility, proliferation and hormone secretion.

    PubMed

    Azorín, Erika; Romero-Pérez, Beatriz; Solano-Agama, Carmen; de la Vega, María T; Toriz, César G; Reyes-Márquez, Blanca; González-Pozos, Sirenia; Rosales-García, Víctor H; Del Pliego, Margarita González; Sabanero, Myrna; Mendoza-Garrido, María E

    2014-01-01

    The extracellular matrix (ECM) influences different physiological and pathophysiological aspects of the cell. The ECM consists in a complex network of macromolecules with characteristic biochemical properties that allow cells to sense their environments inducing different signals and changing cell behavior. The purpose of the present study was to evaluate the participation of different ECM proteins in cell morphology and its implication on motility, proliferation and hormone secretion in GH3 cells, a tumor pituitary cell. GH3 cells were cultured with a defined medium on collagens I/III and IV, fibronectin and laminin. GH3 cells express α2 integrin subunit de novo. The cells responded to the ECM proteins with differentiated cell surface morphologies and membrane protrusions. A rounded shape with small membrane blebs, weak substrate adhesion and high motility was observed in cells on C I/III and fibronectin, while on C IV and laminin cells were viewed elongated and adhered. Differences on actin cytoskeleton, cytoskeletal-associated vinculin and phospho-MLC showed that ECM proteins determine the cytoskeleton organization. Cell proliferation showed dependency on the ECM protein, observing a higher rate in cells on collagen I/III. Prolactin secretion was higher in cells with small blebs, but an unchangeable response to EGF was obtained with the ECM proteins, suggesting is a consequence of cortical actin arrangement. We ascribe the functional differences of the GH3 cells to the cytoskeletal organization. Overall, the data showed that ECM plays a critical role in GH3 cells modulating different cellular comportment and evidenced the importance of the ECM composition of pituitary adenomas.

  2. An auxin-binding protein is localized to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23-kDa polypeptide

    SciTech Connect

    Feldwisch, J.; Zettl, R.; Hesse, F.; Schell, J.; Palme, K. )

    1992-01-15

    Plasma membrane vesicles were isolated from maize (Zea mays L.) coleoptile tissue by aqueous two-phase partitioning and assayed for homogeneity by the use of membrane-specific enzymatic assays. Using 5-azido-(7-{sup 3}H)indole-3-acetic acid (({sup 3}H)N{sub 3}IAA), the authors identified several IAA-binding proteins with the molecular masses of 60 kDa (pm60), 58 kDa (pm58), and 23 kDa (pm23). Using Triton X-114, they were able to selectively extract pm23 from the plasma membrane. They show that auxins and functional analogues compete with ({sup 3}H)N{sub 3}IAA for binding to pm23. They found that PAB130, a polyclonal antibody raised against auxin-binding protein 1 (ABP-1), recognized ABP-1 as well as pm23. This suggests that pm23 shares common epitopes with ABP-1. In addition, they identified an auxin-binding protein with a molecular mass of 24 kDa (pm24), which was detected in microsomal but not in plasma membrane vesicle preparations. Like pm23 this protein was extracted from membrane vesicles with Triton X-114. They designed a purification scheme allowing simultaneous purification of pm23 and pm24. Homogeneous pm23 and pm24 were obtained from coleoptile extracts after 7,000-fold purification.

  3. Cumulative score based on preoperative plasma fibrinogen and serum C-reactive protein could predict long-term survival for esophageal squamous cell carcinoma

    PubMed Central

    Zhang, Fei; Sun, Peng; Wu, Ai-Ran; Zhang, Min; Jiang, Yu-Lu; Wu, Jing; Lu, Yan-Hong; Xu, Qiu-Yan; Zhan, Xiao-Hong; Zhang, Rong-Xin; Qian, Li-Ting; He, Jie

    2016-01-01

    The present study was to establish a prognostic indicator based on preoperative fibrinogen and C-reactive protein (CRP) (FC score) in esophageal squamous cell carcinoma (ESCC). Clinicopathologic characteristics, preoperative plasma fibrinogen and serum CRP levels were reviewed in patients who underwent transthoracic esophagectomy. The optimal cut-off value for fibrinogen and CRP was defined as 4.0 g/dL and 10.0 mg/L according to previous reports. Patients with elevated fibrinogen and CRP levels were assigned a score of 2, those with only one of these two abnormalities were allocated a score of 1, and those with neither of the two abnormalities were assigned a score of 0. Preoperative FC score was significantly correlated with degree of differentiation, depth of invasion, tumor-node-metastasis (TNM) stage and modified Glasgow Prognostic Score (mGPS). No significant differences in age, gender, tumor length, tumor location, lymph node status or smoking were identified between groups. Univariate survival analysis demonstrated that high preoperative FC score (1/2) was significantly associated with impaired disease free survival (DFS) [hazard ratio (HR), 1.650; 95% confidence interval (CI), 1.181-2.303; P = 0.003] and overall survival (OS) (HR, 1.879; 95% CI, 1.333-2.648; P<0.001), and it remained an independent predictor for both DFS (HR, 1.468; 95% CI, 1.043-2.067; P=0.028) and OS (HR, 2.070; 95% CI, 1.266-3.385; P=0.004) in multivariate Cox regression analysis. Preoperative FC score might represent a new potential marker of worst prognosis that warrants further evaluation in prospective and large cohort studies among ESCC patients who underwent transthoracic esophagectomy. PMID:27517497

  4. Palmitoylation of POTE family proteins for plasma membrane targeting

    SciTech Connect

    Das, Sudipto; Ise, Tomoko; Nagata, Satoshi; Maeda, Hiroshi; Bera, Tapan K.; Pastan, Ira

    2007-11-23

    The POTE gene family is composed of 13 paralogs and likely evolved by duplications and remodeling of the human genome. One common property of POTE proteins is their localization on the inner aspect of the plasma membrane. To determine the structural elements required for membrane localization, we expressed mutants of different POTEs in 293T cells as EGFP fusion proteins. We also tested their palmitoylation by a biotin-switch assay. Our data indicate that the membrane localizations of different POTEs are mediated by similar 3-4 short cysteine rich repeats (CRRs) near the amino-terminuses and that palmitoylation on paired cysteine residues in each CRR motif is responsible for the localization. Multiple palmitoylation in the small CRRs can result in the strong association of whole POTEs with plasma membrane.

  5. Vacuolar degradation of two integral plasma membrane proteins, AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment-mediated in plant cells.

    PubMed

    Cai, Yi; Zhuang, Xiaohong; Wang, Junqi; Wang, Hao; Lam, Sheung Kwan; Gao, Caiji; Wang, Xiangfeng; Jiang, Liwen

    2012-07-01

    In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.

  6. Evaluation of toxicological biomarkers in secreted proteins of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and their expressions in the plasma of rats and incineration workers.

    PubMed

    Phark, Sohee; Park, So-Young; Chang, Yoon-Seok; Choi, Seonyoung; Lim, Ji-youn; Kim, Yoonjin; Seo, Jong Bok; Jung, Woon-Won; Sul, Donggeun

    2016-05-01

    Toxicological biomarkers of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) were investigated in proteins secreted by HepG2 cells and their expression levels were determined in the plasma of rats exposed to 2,3,7,8-TCDD and in the plasma of incineration workers exposed to dioxins. HepG2 cells were treated with various concentrations of 2,3,7,8-TCDD (0, 0.25, 0.5, 1, 2.5, 5, 10, 25 nM) for 24 or 48 h. MTT and Comet assays were performed to determine cytotoxicities and genotoxicities to select exposure concentrations for the proteomic analysis of proteins secreted by 2,3,7,8-TCDD-treated cells. In the proteomic analysis, dose- and time-dependent toxicological biomarkers were evaluated using two pI ranges (4-7 and 6-9) using a large gel 2-DE system. Fifteen secreted proteins were identified by a nano-LC-ESI-MS/MS and nano-ESI on a Q-TOF2 MS and the identities of eight secreted proteins including glyoxalase 1 (GLO 1), homogentisate dioxygenase (HGD), peroxiredoxin 1 (PRX 1), proteasome subunit beta type (PSMB) 5 and 6, UDP-glucose 6-dehydrogenase (UDP-GlcDH), hydroxyacyl-coenzyme A dehydrogenase (HADH) and serotransferrin (STF) were confirmed by western blotting. Of these, PSMB 5 and PRX 1 were also found in the plasma of rats exposed to 2,3,7,8-TCDD, whereas GLO 1, HGD, PSMB 6 and PRX 1 were found in the plasma of incineration workers exposed to dioxins.

  7. Rotation of plasma membrane proteins measured by polarized fluorescence depletion

    NASA Astrophysics Data System (ADS)

    Barisas, B. George; Rahman, Noorul A.; Yoshida, Thomas M.; Roess, Deborah A.

    1990-05-01

    We have implemented a new laser microscopic method, polarized fluorescence depletion (PFD), for measuring the rotational dynamics of functional membrane proteins on individual, microscopically selected cells under physiological conditions. This method combines the long lifetimes of triplet-state probes with the sensitivity of fluorescence detection to measure macromolecular rotational correlation times from 10 microsec to > 1 ms. As examples, the rotational correlation time of Fc receptors (FcR) on the surface of 2H3 rat basophilic leukemia cells is 79.9 4.4 microsec at 4°C when labeled with eosin conjugates of IgE. This value is consistent with the known 100 kDa receptor size. When labeled with intact F4 anti-FcR monoclonal antibody, the rotational correlation time for FcER is increased about 2-fold to 170.8 +/- 6.5 microsec, consistent with receptor dimer formation on the plasma membrane and with the ability of this antibody to form FcER dimers on 2H3 cell surfaces. We have also examined the rotational diffusion of the luteinizing hormone receptor on plasma membranes of small ovine luteal cells. Luteinizing hormone receptors (LHR), when occupied by ovine luteinizing hormone (oLH), have a rotational correlation time of 20.5 +/- 0.1 microsec at 4°C. When occupied by human chorionic gonadotropin (hCG), LHR have a rotational correlation time of 46.2 +/- 0.4 microsec suggesting that binding of hCG triggers additional LHR interactions with plasma membrane proteins. Together these studies suggest the utility of PFD measurements in assessing molecular size and molecular association of membrane proteins on individual cells. Relative advantages of time- and frequency-domain implementations of PFD are also discussed.

  8. THE LOCALIZATION OF HOMOLGOUS PLASMA PROTEINS IN THE TISSUES OF YOUNG HUMAN BEINGS AS DEMONSTRATED WITH FLUORESCENT ANTIBODIES

    PubMed Central

    Gitlin, David; Landing, Benjamin H.; Whipple, Ann

    1953-01-01

    Employing fluorescent antibodies for the detection of homologous plasma proteins in tissue sections, the distribution of plasma albumin, γ-globulin, β-lipoprotein, β1-metal-combining globulin, and fibrinogen has been studied in the tissues of infants and children. Plasma albumin, γ-globulin, and β1-metal-combining globulin were found in many cells and particularly cell nuclei, connective tissues and interstitial spaces, lymphatics, and blood vessels. β-Lipoprotein was found mostly in the nuclei of all cell types while fibrinogen was restricted largely to the lymphatic and vascular channels, connective tissues and the interstitial spaces. The widespread distribution of these plasma proteins in cells and connective tissues indicates the magnitude of the extravascular plasma protein pool which is in equilibrium with circulating plasma. Unfortunately, these results do not permit accurate localization of the sites of production of these plasma proteins, but do give some idea of their intimate relationship to the tissues. PMID:13022871

  9. Cucumber metal tolerance protein CsMTP9 is a plasma membrane H⁺-coupled antiporter involved in the Mn²⁺ and Cd²⁺ efflux from root cells.

    PubMed

    Migocka, Magdalena; Papierniak, Anna; Kosieradzka, Anna; Posyniak, Ewelina; Maciaszczyk-Dziubinska, Ewa; Biskup, Robert; Garbiec, Arnold; Marchewka, Tadeusz

    2015-12-01

    Members of the plant metal tolerance protein (MTP) family have been classified into three major groups - Zn-CDF, Mn-CDF and Zn/Fe-CDF - however, the selectivity of most of the MTPs has not been confirmed yet. Cucumber gene CsMTP9 encoding a putative CDF transporter homologous to members of the Mn-CDF cluster is expressed exclusively in roots. The relative abundance of CsMTP9 transcript and protein in roots is significantly increased under Mn excess and Cd. Immunolocalization with specific antibodies revealed that CsMTP9 is a plasma membrane transporter that localizes to the inner PM domain of root endodermal cells. The plasma membrane localization of CsMTP9 was confirmed by the expression of the fusion proteins of GFP (green fluorescent protein) and CsMTP9 in yeast and protoplasts prepared from Arabidopsis cells. In yeast, CsMTP9 transports Mn(2+) and Cd(2+) via a proton-antiport mechanism with an apparent Km values of approximately 10 μm and 2.5 μm for Mn(2+) and Cd(2+) , respectively. In addition, CsMTP9 expression in yeast rescues the Mn- and Cd-hypersensitive phenotypes through the enhanced efflux of Mn(2+) and Cd(2+) from yeast cells. Similarly, the overexpression of CsMTP9 in A. thaliana confers increased resistance of plants to Mn excess and Cd but not to other heavy metals and leads to the enhanced translocation of manganese and cadmium from roots to shoots. These findings indicate that CsMTP9 is a plasma membrane H(+) -coupled Mn(2+) and Cd(2+) antiporter involved in the efflux of manganese and cadmium from cucumber root cells by the transport of both metals from endodermis into vascular cylinder.

  10. Short communication: Effect of commercial or depurinized milk diet on plasma advanced oxidation protein products, cardiovascular markers, and bone marrow CD34+ stem cell potential in rat experimental hyperuricemia.

    PubMed

    Kocic, Gordana; Sokolovic, Dusan; Jevtovic, Tatjana; Cvetkovic, Tatjana; Veljkovic, Andrej; Kocic, Hristina; Stojanovic, Svetlana; Jovanovic, Aneta; Jovanovic, Jelena; Zivkovic, Petar

    2014-11-01

    Cardiovascular repair and myocardial contractility may be improved by migration of bone marrow stem cells (BMSC) and their delivery to the site of injury, a process known as BMSC homing. The aim of our study was to examine the dietary effect of a newly patented depurinized milk (DP) that is almost free of uric acid and purine and pyrimidine compounds compared with a standard commercial 1.5% fat UHT milk diet or allopurinol therapy in rat experimental hyperuricemia. Bone marrow stem cell potential (BMCD34(+), CD34-postive bone marrow cells), plasma oxidative stress parameters [advanced oxidation protein products, AOPP) and thiobarbituric acid reactive substances (TBARS)], myocardial damage markers [creatine phosphokinase (CPK), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH)], plasma cholesterol, and high-density lipoprotein cholesterol were investigated. The DP milk diet significantly increased the number of BMCD34(+) stem cells compared with commercial UHT milk. Allopurinol given alone also increased the number of BMCD34(+). Hyperuricemia caused a significant increase in all plasma enzyme markers for myocardial damage (CPK, LDH, and AST). A cardioprotective effect was achieved with allopurinol but almost equally with DP milk and more than with commercial milk. Regarding plasma AOPP, TBARS, and cholesterol levels, the most effective treatment was DP milk. In conclusion, the protective role of a milk diet on cardiovascular function may be enhanced through the new depurinized milk diet, which may improve cardiovascular system function via increased bone marrow stem cell regenerative potential, decreased plasma oxidative stress parameters, and decreased levels of myocardial damage markers and cholesterol. New dairy technology strategies focused on eliminating harmful milk compounds should be completely nontoxic. Novel milk products should be tested for their ability to improve tissue repair and function.

  11. Upregulation of plasma C9 protein in gastric cancer patients

    PubMed Central

    Chong, Poh-Kuan; Lee, Huiyin; Loh, Marie Chiew Shia; Choong, Lee-Yee; Lin, Qingsong; So, Jimmy Bok Yan; Lim, Khong Hee; Soo, Ross Andrew; Yong, Wei Peng; Chan, Siew Pang; Smoot, Duane T.; Ashktorab, Hassan; Yeoh, Khay Guan; Lim, Yoon Pin

    2013-01-01

    Gastric cancer is one of the leading causes of cancer-related deaths worldwide. Current biomarkers used in the clinic do not have sufficient sensitivity for gastric cancer detection. To discover new and better biomarkers, protein profiling on plasma samples from 25 normal, 15 early-stage and 21 late-stage cancer was performed using an iTRAQ-LC-MS/MS approach. The level of C9 protein was found to be significantly higher in gastric cancer compared with normal subjects. Immunoblotting data revealed a congruent trend with iTRAQ results. The discriminatory power of C9 between normal and cancer states was not due to inter-patient variations and was independent from gastritis and Helicobacter pylori status of the patients. C9 overexpression could also be detected in a panel of gastric cancer cell lines and their conditioned media compared with normal cells, implying that higher C9 levels in plasma of cancer patients could be attributed to the presence of gastric tumor. A subsequent blind test study on a total of 119 plasma samples showed that the sensitivity of C9 could be as high as 90% at a specificity of 74%. Hence, C9 is a potentially useful biomarker for gastric cancer detection. PMID:20707004

  12. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein.

    PubMed

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W; Shen, Rong-Fong; Daniels, Mathew P; Levine, Stewart J

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARgamma as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  13. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  14. Clinically granulomatous cheilitis with plasma cells

    PubMed Central

    Sarkar, Somenath; Ghosh, Sarmistha; Sengupta, Dipayan

    2016-01-01

    Plasma cell cheilitis, also known as plasma cell orificial mucositis is a benign inflammatory condition clinically characterized by erythematous plaque on lips that may be ulcerated. Histopathologically it is characterized by dense plasma cell infiltrates in a band-like pattern in dermis, which corresponds to Zoon's plasma cell balanitis. On the other hand, granulomatous cheilitis, as a part of orofacial granulomatosis, manifests as sudden diffuse or nodular swelling involving lip and cheek. Initial swelling is soft to firm, but with recurrent episodes swelling gradually become firm rubbery in consistency. We hereby report a case of cheilitis in a 52-year-old man with diffuse swelling involving lower lip, which clinically resembles granulomatous cheilitis, but histopathological examination showed diffuse infiltrate of plasma cells predominantly in upper and mid-dermis. PMID:27057489

  15. Isolation of plant cell wall proteins.

    PubMed

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael

    2008-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  16. Informing the Human Plasma Protein Binding of ...

    EPA Pesticide Factsheets

    The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict Fub for environmentally relevant chemicals via machine learning techniques. Quantitative structure-activity relationship (QSAR) models were constructed with k nearest neighbors (kNN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18 Fub. The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0

  17. Plasma protein binding: from discovery to development.

    PubMed

    Bohnert, Tonika; Gan, Liang-Shang

    2013-09-01

    The importance of plasma protein binding (PPB) in modulating the effective drug concentration at pharmacological target sites has been the topic of significant discussion and debate amongst drug development groups over the past few decades. Free drug theory, which states that in absence of energy-dependent processes, after steady state equilibrium has been attained, free drug concentration in plasma is equal to free drug concentration at the pharmacologic target receptor(s) in tissues, has been used to explain pharmacokinetics/pharmacodynamics relationships in a large number of cases. Any sudden increase in free concentration of a drug could potentially cause toxicity and may need dose adjustment. Free drug concentration is also helpful to estimate the effective concentration of drugs that potentially can precipitate metabolism (or transporter)-related drug-drug interactions. Disease models are extensively validated in animals to progress a compound into development. Unbound drug concentration, and therefore PPB information across species is very informative in establishing safety margins and guiding selection of First in Human (FIH) dose and human efficacious dose. The scope of this review is to give an overview of reported role of PPB in several therapeutic areas, highlight cases where PPB changes are clinically relevant, and provide drug metabolism and pharmacokinetics recommendations in discovery and development settings.

  18. Plasma Cell Pododermatitis in a Cat

    PubMed Central

    Drolet, R.; Bernard, J.

    1984-01-01

    Plasma cell pododermatitis, an uncommon disease of unknown etiology, is described in a six year old male domestic short-haired cat. The cat was referred with a history of lameness associated with swelling, softness and ulceration of the foot pads. The history suggested a seasonal occurrence of the condition. The dermis and subcutis of the foot pads were infiltrated by inflammatory cells which were mainly plasma cells. The large number of plasma cells present in the lesions suggests an immunological basis for the condition. ImagesFigure 1. PMID:17422486

  19. Enrichment of plasma membrane proteins using nanoparticle pellicles: comparison between silica and higher density nanoparticles

    PubMed Central

    Choksawangkarn, Waeowalee; Kim, Sung-Kyoung; Cannon, Joe R.; Edwards, Nathan J.; Lee, Sang Bok; Fenselau, Catherine

    2013-01-01

    Proteomic and other characterization of plasma membrane proteins is made difficult by their low abundance, hydrophobicity, frequent carboxylation and dynamic population. We and others have proposed that underrepresentation in LC-MS/MS analysis can be partially compensated by enriching the plasma membrane and its proteins using cationic nanoparticle pellicles. The nanoparticles increase the density of plasma membrane sheets and thus enhance separation by centrifugation from other lysed cellular components. Herein we test the hypothesis that the use of nanoparticles with increased densities can provide enhanced enrichment of plasma membrane proteins for proteomic analysis. Multiple myeloma cells were grown and coated in suspension with three different pellicles of three different densities and both pellicle coated and uncoated suspensions analyzed by high-throughput LC-MS/MS. Enrichment was evaluated by the total number and the spectral counts of identified plasma membrane proteins. PMID:23289353

  20. Stages of Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Health Professional Plasma Cell Neoplasms Treatment Research Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional Version Key Points ...

  1. Treatment Options for Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Health Professional Plasma Cell Neoplasms Treatment Research Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional Version Key Points ...

  2. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics

    PubMed Central

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  3. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics.

    PubMed

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-06

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics.

  4. Predicting human plasma protein binding of drugs using plasma protein interaction QSAR analysis (PPI-QSAR).

    PubMed

    Li, Haiyan; Chen, Zhuxi; Xu, Xuejun; Sui, Xiaofan; Guo, Tao; Liu, Wei; Zhang, Jiwen

    2011-09-01

    A novel method, named as the plasma protein-interaction QSAR analysis (PPI-QSAR) was used to construct the QSAR models for human plasma protein binding. The intra-molecular descriptors of drugs and inter-molecular interaction descriptors resulted from the docking simulation between drug molecules and human serum albumin were included as independent variables in this method. A structure-based in silico model for a data set of 65 antibiotic drugs was constructed by the multiple linear regression method and validated by the residual analysis, the normal Probability-Probability plot and Williams plot. The R(2) and Q(2) values of the entire data set were 0.87 and 0.77, respectively, for the training set were 0.86 and 0.72, respectively. The results indicated that the fitted model is robust, stable and satisfies all the prerequisites of the regression models. Combining intra-molecular descriptors with inter-molecular interaction descriptors between drug molecules and human serum albumin, the drug plasma protein binding could be modeled and predicted by the PPI-QSAR method successfully.

  5. Plasma cell gingivitis: treatment with chlorpheniramine maleate.

    PubMed

    Ranganathan, Aravindhan Thiruputkuzhi; Chandran, Chitraa R; Prabhakar, Priya; Lakshmiganthan, Mahalingam; Parthasaradhi, Thakkalapati

    2015-01-01

    Plasma cell gingivitis is a benign lesion of unknown etiology characterized by massive and diffuse infiltration of plasma cells into the gingival connective tissue. Clinically, it can be seen as a diffuse, erythematous, and edematous swelling involving the marginal gingiva and extending into the attached gingiva. Although usually painless, the lesion can be esthetically unappealing, especially when anterior gingiva is involved. Although the usual line of management is removal of the offending agent, this report describes the treatment of plasma cell gingivitis with the topical application of chlorpheniramine maleate (25 mg) for a period of 10 days.

  6. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  7. Cell wall proteins: a new insight through proteomics.

    PubMed

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translational modifications have been characterized in cell wall proteins to date? The purpose of this review is to discuss the experimental results obtained to date using proteomics, as well as some of the new questions challenging future research.

  8. Direct plasma irradiation affects expression of RNAs in cultured mammalian cells

    NASA Astrophysics Data System (ADS)

    Kobayashi, Mime; Tokaji, Hideto; Kumagai, Shinya

    2016-12-01

    The expression of RNAs in mouse NIH3T3 cells was altered by low-temperature atmospheric-pressure plasma irradiation. Cell culture liquid media were removed before plasma irradiation so that direct plasma effects can be assessed. After 5 s irradiation, the cells were cultured in media for 1 or 3 h and RNA expression was analyzed using a microarray. When analyzed 1 and 3 h after plasma irradiation, the upregulation of hypothetical transmembrane proteins and U3 small nucleolar RNAs was detected at both time points. Our results provide a basic principle for understanding the molecular mechanisms of plasma effects on mammalian cells.

  9. Bovine plasma proteins increase virulence of Haemophilus somnus in mice.

    PubMed

    Geertsema, Roger S; Kimball, Richard A; Corbeil, Lynette B

    2007-01-01

    The role of bovine serum or plasma proteins in Haemophilus somnus virulence was investigated in a mouse model of septicemia. An increase in virulence was detected when the organism was pre-incubated for 5 min and inoculated with fetal calf serum. When purified bovine serum or plasma proteins were pre-incubated with H. somnus before inoculating into mice, transferrin was found to increase virulence. Bovine lactoferrin was also noted to increase virulence, but to a lesser extent and had a delayed time course when compared with transferrin. Using an ELISA assay, an increased amount of H. somnus whole cells and culture supernatant bound to bovine transferrin when the organism was grown in iron-restricted media. Lactoferrin also bound to H. somnus, but binding was not affected by growth in iron-restricted media and it was eliminated with 2M NaCl, which reversed charge mediated binding. Transferrin, but not lactoferrin, supported growth of H. somnus on iron-depleted agar based media using a disk assay. Therefore, lactoferrin increased virulence by an undetermined mechanism whereas transferrin increased virulence of H. somnus by binding to iron-regulated outer-membrane proteins (IROMPs) and providing iron to the pathogen.

  10. Nonthermal Plasma-Mediated Cancer Cell Death; Targeted Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Choi, Byul-Bora; Choi, Yeon-Sik; Lee, Hae-Jun; Lee, Jae-Koo; Kim, Uk-Kyu; Kim, Gyoo-Cheon

    Non-thermal air plasma can kill cancer cells. However, there is no selectivity between normal and cancer cells. Therefore, cancer specific antibody conjugated gold nanoparticle (GNP) was pretreated before plasma irradiation. Stimulation of antibody conjugated GNP by plasma treatment resulted in a significant decrease in viability of cancer cells. This technology shows the feasibility of using plasma therapy for killing cancer cells selectively.

  11. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same

  12. Plasma protein regulation of platelet function and metabolism.

    PubMed

    Hansen, M S; Bang, N U

    1979-04-02

    This reviews summarizes our evidence suggesting that the plasma protein enviroment influences platelet aggregation potential and metabolic activity. Cationic proteins are capable of restoring the aggreation potential of washed human platelets. The aggregation restoring effect of gamma globulin is inhibited by more anionic proteins in subfractions of Cohn fraction IV and fractions V and VI. Artificial enhancement of the net negative charge of plasma proteins through acylation produces derivatives capable of inhibiting platelet rich plasma. The oxygen consumption of washed human platelets is lower than in platelet rich plasma while the lactate production is identical. Autologus plasma, albumin or IgG immunoglobulin restores the oxygen consumption of washed platelets to values comparable to those obtained for platelet rich plasma, while the lactate production is unaffected. Fibrinogen on IgA myeloma protein increases the lactate production, but not the oxygen consumption. Cyclic AMP levels are considerably lower in washed platelets than in platelet rich plasma. Gamma globulin and albumin causes a futher decrease, which is progressive with time. Fibrinogen causes no change in platelet cyclic AMP content. It is suggested that these observations may in part be explained by the equilibriun between anionic and cationic proteins in the platelet microenvironment. This hypothesis appears applicable in certain situations.

  13. Molecular interactions of graphene oxide with human blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  14. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins.

    PubMed

    Wang, Linda; Chang, Esther W Y; Wong, Siew Cheng; Ong, Siew-Min; Chong, Debra Q Y; Ling, Khoon Lin

    2013-01-15

    Immune dysfunction may contribute to tumor progression in gastric cancer (GC) patients. One mechanism of immune dysfunction is the suppression of T cell activation and impairment of the efficacy of cancer immunotherapy by myeloid-derived suppressor cells (MDSCs). We assessed the phenotype and immunosuppressive function of MDSCs in GC patients. We further investigated the role of S100A8/A9 in GC and the relationship between S100A8/A9 and MDSC function. Lastly, the effect of MDSCs on survival rates and its potential as a prognostic factor in GC patients were investigated. MDSCs from PBMCs of GC patients were identified by comparing the expression of specific surface markers with PBMCs from healthy individuals. The ability of MDSCs to suppress T lymphocyte response and the effect of S100A8/A9 and RAGE blocking were tested in vitro by (autologous) MLR. GC patients had significantly more MDSCs than healthy individuals. These MDSCs suppressed both T lymphocyte proliferation and IFN-γ production and had high arginase-I expression. Levels of S100A8/A9 in plasma were higher in GC patients compared with healthy individuals, and they correlated with MDSC levels in the blood. Blocking of S100A8/A9 itself and the S100A8/A9 receptor RAGE on MDSCs from GC patients abrogated T cell effector function. We found that high levels of MDSCs correlated with more advanced cancer stage and with reduced survival (p = 0.006). S100A8/A9 has been identified as a potential target to modulate antitumor immunity by reversing MDSC-mediated immunosuppression.

  15. Seasonal variations in seminal plasma proteins of buffalo.

    PubMed

    Sharma, L; Pandey, V; Nigam, R; Singh, P; Saxena, A; Swain, D K

    2014-06-01

    The study was designed to evaluate the influence of season on semen characteristics and seminal plasma protein profile of buffalo bull semen. Thirty-six ejaculates were collected in three seasons (winter, summer and rainy) from six adult Bhadawari bulls, and semen characteristics were evaluated immediately after collection. The seminal plasma was harvested by centrifugation and protein profiling, and percentage protein fractions were analysed by SDS-PAGE. The significant effect of season was observed on ejaculate volume, sperm concentration, progressive motility, percentage live spermatozoa, hypo-osmotic swelling test (HOST) and acrosomal integrity. The electrophoretogram of seminal plasma proteins revealed 20 protein bands in winter, 23 bands in rainy and 25 bands in summer seasons, illustrating the significant effect of seasons on seminal plasma proteins. Among these protein bands, 18 bands were observed common in semen samples of all three seasons while protein bands of 46, 55, 58, 144 and 160 kDa were found in rainy and summer seasons. The protein bands of 48 and 60 kDa were observed only in winter season, whereas 184 and 200 kDa were reported in summer season only. The protein fractions (protein%) of common protein bands observed in three seasons revealed a significant effect of season on protein bands of 24.5, 66, 70, 72, 84 and 86 kDa. From the study, it was pertinent that bull seminal plasma contains specific proteins in particular season, which may be associated with some of the semen characteristics, and these proteins could be used as markers of the semen quality of buffalo bulls.

  16. Garbage on, garbage off: new insights into plasma membrane protein quality control.

    PubMed

    MacGurn, Jason A

    2014-08-01

    Maintenance of cellular protein quality - by restoring misfolded proteins to their native state and by targeting terminally misfolded or damaged proteins for degradation - is a critical function of all cells. To ensure protein quality, cells have evolved various organelle-specific quality control mechanisms responsible for recognizing and responding to misfolded proteins at different subcellular locations of the cell. Recently, several publications have begun to elucidate mechanisms of quality control that operate at the plasma membrane (PM), recognizing misfolded PM proteins and targeting their endocytic trafficking and lysosomal degradation. Here, I discuss these recent developments in our understanding of PM quality control mechanisms and how they relate to global protein quality control strategies in the cell.

  17. Protein diffusion in mammalian cell cytoplasm.

    PubMed

    Kühn, Thomas; Ihalainen, Teemu O; Hyväluoma, Jari; Dross, Nicolas; Willman, Sami F; Langowski, Jörg; Vihinen-Ranta, Maija; Timonen, Jussi

    2011-01-01

    We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.

  18. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus.

    PubMed

    Bollineni, Ravi Chand; Fedorova, Maria; Blüher, Matthias; Hoffmann, Ralf

    2014-11-07

    Protein carbonylation is a common nonenzymatic oxidative post-translational modification, which is often considered as biomarker of oxidative stress. Recent evidence links protein carbonylation also to obesity and type 2 diabetes mellitus (T2DM), though the protein targets of carbonylation in human plasma have not been identified. In this study, we profiled carbonylated proteins in plasma samples obtained from lean individuals and obese patients with or without T2DM. The plasma samples were digested with trypsin, carbonyl groups were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine, enriched by avidin affinity chromatography, and analyzed by RPC-MS/MS. Signals of potentially modified peptides were targeted in a second LC-MS/MS analysis to retrieve the peptide sequence and the modified residues. A total of 158 unique carbonylated proteins were identified, of which 52 were detected in plasma samples of all three groups. Interestingly, 36 carbonylated proteins were detected only in obese patients with T2DM, whereas 18 were detected in both nondiabetic groups. The carbonylated proteins originated mostly from liver, plasma, platelet, and endothelium. Functionally, they were mainly involved in cell adhesion, signaling, angiogenesis, and cytoskeletal remodeling. Among the identified carbonylated proteins were several candidates, such as VEGFR-2, MMP-1, argin, MKK4, and compliment C5, already connected before to diabetes, obesity and metabolic diseases.

  19. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  20. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    PubMed Central

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8–12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  1. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    PubMed

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-11-30

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  2. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  3. Interaction of plasma proteins with commercial protein repellent polyvinyl chloride (PVC): a word of caution.

    PubMed

    De Somer, F; Van Landschoot, A; Van Nooten, G; Delanghe, J

    2008-07-01

    Protein adsorption onto polymers remains a problem. In recent years, several protein-repellent PVC tubings have been developed. Although several studies report the interaction between plasma coagulation proteins and PVC, few address the interaction with other plasma proteins. Two commercial brands of untreated medical grade PVC tubing, phosphorylcholine-coated PVC tubing, triblock-copolymer (polycaprolactone-polydimethylsiloxane-polycaprolactone)-treated PVC tubing and poly-2-methoxyethylacrylate (PMEA)-coated tubing were exposed for 60 minutes to human plasma. A broad spectrum of plasma proteins was found on all tubing. The adsorbed albumin to total protein ratio is lower than the similar ratio in plasma while alpha1 and alpha2 globulins are over-represented in the protein spectrum. On PMEA tubing, not only alpha globulins, but also beta and gamma globulins, are found in high concentrations in the adsorbed protein. PMEA tubing and uncoated PVC tubing of brand B had a higher amount of protein adsorbed compared against all other tubing (p < 0.05). There were no statistical differences in protein adsorption between the triblock-copolymer-treated tubing, the phosphorylcholine-coated tubing and the uncoated PVC tubing of brand A. The average thickness of the protein layer was 23 nm. Plasma protein adsorption still exists on uncoated and protein-repellent tubing and can initiate a systemic inflammatory reaction.

  4. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    SciTech Connect

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  5. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-01

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  6. Cellular and Chromatin Dynamics of Antibody-Secreting Plasma Cells

    PubMed Central

    Bortnick, Alexandra; Murre, Cornelis

    2015-01-01

    Plasma cells are terminally differentiated B cells responsible for maintaining protective serum antibody titers. Despite their clinical importance, our understanding of the linear genomic features and chromatin structure of plasma cells is incomplete. The plasma cell differentiation program can be triggered by different signals and in multiple, diverse peripheral B cell subsets. This heterogeneity raises questions about the gene regulatory circuits required for plasma cell specification. Recently, new regulators of plasma cell differentiation have been identified and the enhancer landscapes of naïve B cells have been described. Other studies have revealed that the bone marrow niche harbors heterogeneous plasma cell subsets. Still undefined are the minimal requirements to become a plasma cell and what molecular features make peripheral B cell subsets competent to become antibody-secreting plasma cells. New technologies promise to reveal underlying chromatin configurations that promote efficient antibody secretion. PMID:26488117

  7. Studies on the interaction of lidocaine with plasma proteins

    SciTech Connect

    Adotey, J.

    1985-01-01

    This study sought to quantitate lidocaine's interaction with alpha-1-acid glycoprotein (AAG), human serum albumin (HSA), and AAG in the presence of HSA, and to determine the extent of displacement of lidocaine from its binding site(s) by selected cardiovascular drugs (dipyridamole, disopyramide and quinidine). Since the limited experimental work reported in this area has involved the use of a single lidocaine concentration, this study involved the evaluation of a range of lidocaine concentrations. Lidocaine interaction with plasma proteins (AAG and HSA) was studied at 37/sup 0/C using an isothermal equilibrium dialysis system and /sup 14/C-lidocaine HCl. A dialysis membrane (M.W. cutoff 12,000 to 14,000) separated the two chambers of each dialysis cell. The extent of /sup 14/C-lidocaine dialysis was studied with respect to both drug and protein concentrations. Aliquots of each chamber of each of the cells were subjected to liquid scintillation counting (LSC) analyses for /sup 14/C-lidocaine. The ratio of bound to free (R/F) lidocaine was evaluated as a function of AAG concentration from the LSC data. Scatchard and/or Rosenthal analyses were employed to evaluate n and k values where appropriate. Linear and multiple linear regression analyses of the data were appropriately performed.

  8. Solar cell modules for plasma interaction evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A plasma interaction analysis in support of the solar electric propulsion subsystem examined the effects of a large high voltage solar array interacting with an ion thruster produced plasma. Two solar array test modules consisting of 36 large area wraparound contact solar cells welded to a flexible Kapton integrated circuit substrate were abricated. The modules contained certain features of the effects of insulation, din-holes, and bonding of the cell to the substrate and a ground plane. The possibility of a significant power loss occurring due to the collection of charged particles on the solar array interconnects was the focus of the research.

  9. Protein folding in the cell

    NASA Astrophysics Data System (ADS)

    Gething, Mary-Jane; Sambrook, Joseph

    1992-01-01

    In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.

  10. Defining the blood plasma protein repertoire of seven day old dairy calves - a preliminary study.

    PubMed

    Skrzypczak, W F; Ozgo, M; Lepczynski, A; Herosimczyk, A

    2011-06-01

    During the early postnatal period in calves various adaptational changes occur. These functional, morphological and also metabolic alteration are reflected by blood plasma protein changes as they are secreted and shed from many cells and tissues. Blood plasma protein pattern of an adult cattle differs in some respect when compared with neonatal calves. There exist a very few data concerning 2-D maps of neonatal calves blood plasma. The above prompted us to establish protein pattern of this biological fluid characteristic of healthy, 7 day old, Polish Black-and-White (Polish Friesian) breed calves. Blood plasma proteins of the isoelectric point ranging from 4.0 to 7.0 were analyzed by the aid of high resolution two-dimensional electrophoresis (2-DE). Subsequently, 79 excised protein spots corresponding to 23 different gene products were identified using matrix-assisted laser desorption/ionisation mass spectrometer (MALDI-TOF MS). Protein map obtained in the present study may be useful in assessing the changes in the calves blood plasma protein profiles occurring in response to different physiological and/or pathophysiological factors.

  11. Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles.

    PubMed

    Hu, Zhengyan; Zhang, Hongyan; Zhang, Yi; Wu, Ren'an; Zou, Hanfa

    2014-09-01

    When nanoparticles (NPs) enter into biological systems, proteins would interact with NPs to form the protein corona that can critically impact the biological identity of the nanomaterial. Owing to their fundamental scientific interest and potential applications, Fe3O4 NPs of different sizes have been developed for applications in cell separation and protein separation and as contrast agents in magnetic resonance imaging (MRI), etc. Here, we investigated whether nanoparticle size affects the formation of protein coronas around Fe3O4 NPs. Both the identification and quantification results demonstrated that particle size does play an important role in the formation of plasma protein coronas on Fe3O4 NPs; it not only influenced the protein composition of the formed plasma protein corona but also affected the abundances of the plasma proteins within the coronas. Understanding the different binding profiles of human plasma proteins on Fe3O4 NPs of different sizes would facilitate the exploration of the bio-distributions and biological fates of Fe3O4 NPs in biological systems.

  12. Plasma protein loss during surgery: beneficial effects of albumin substitution.

    PubMed

    Horstick, G; Lauterbach, M; Kempf, T; Ossendorf, M; Kopacz, L; Heimann, A; Lehr, H A; Bhakdi, S; Horstick, M; Meyer, J; Kempski, O

    2001-07-01

    Plasma protein loss during abdominal surgery is a known phenomenon, but its possible pathophysiological relevance has remained unknown. The present study evaluates the effects of albumin substitution on systemic and local hemodynamics and cellular interactions in the mesenteric microcirculation. Rats underwent median laparotomy and exteriorization of an ileal loop for intravital microscopy of the mesenteric microcirculation. Plasma protein concentrations, systemic and local hemodynamics were recorded during the follow up period, with or without albumin substitution. Depending on the time course of plasma protein loss in control experiments, 80% of the calculated protein loss was infused during the first 2 h of surgery, and the other 20% over the following 5 h of intravital microscopy. The control group received a continuous infusion of normal saline. Plasma protein loss was mainly due to loss of albumin. A significant increase in adherent and rolling leukocytes was observed during the course of mesenteric exteriorization, which was almost entirely reversed by albumin replacement. Albumin substitution led to stabilisation of mean arterial pressure and abdominal blood flow and also attenuated reductions in arterial base excess. Albumin infusions to replace plasma protein loss may be a simple and effective measure to attenuate microcirculatory disturbances and may be of benefit in patients undergoing abdominal surgery.

  13. [Experimental estimation of proteome size for cells and human plasma].

    PubMed

    Naryzhny, S N; Zgoda, V G; Maynskova, M A; Ronzhina, N L; Belyakova, N V; Legina, O K; Archakov, A I

    2015-01-01

    Huge range of concentrations of different protein and insufficient sensitivity of methods for detection of proteins at a single molecule level does not yet allow obtaining the whole image of human proteome. In our investigations, we tried to evaluate the size of different proteomes (cells and plasma). The approach used is based on detection of protein spots in 2-DE after staining by protein dyes with different sensitivities. The function representing the dependence of the number of protein spots on sensitivity of protein dyes was generated. Next, by extrapolation of this function curve to theoretical point of the maximum sensitivity (detection of a single smallest polypeptide) it was calculated that a single human cell (HepG2) may contain minimum 70,000 proteoforms, and plasma--1.5 mln. Utilization of this approach to other, smaller proteomes showed the competency of this extrapolation. For instance, the size of mycoplas ma (Acholeplasma laidlawii) was estimated in 1100 proteoforms, yeast (Saccharomyces cerevisiae)--40,000, E. coli--6200, P. furiosus--3400. In hepatocytes, the amount of proteoforms was the same as in HepG2--70,000. Significance of obtained data is in possibilities to estimating the proteome organization and planning next steps in its study.

  14. Rarity gives a charm: evaluation of trace proteins in plasma and serum.

    PubMed

    Lathrop, Julia Tait; Hayes, Timothy K; Carrick, Kevin; Hammond, David J

    2005-06-01

    Since plasma potentially contacts every cell as it circulates through the body, it may carry clues both to diagnosis and treatment of disease. It is commonly expected that the growing ability to detect and characterize trace proteins will result in discovery of novel therapeutics and biomarkers; however, the familiar, super-abundant plasma proteins remain a fundamental stumbling block. Furthermore, robust validation of proteomic data is a sometimes overlooked but always necessary component for the eventual development of clinical reagents. This review surveys some of the uses of typical and atypical low-abundance proteins, current analytical methods, existing impediments to discovery, and some innovations that are overcoming the challenges to evaluation of trace proteins in plasma and serum.

  15. A micromechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium.

    PubMed Central

    Merkel, R; Simson, R; Simson, D A; Hohenadl, M; Boulbitch, A; Wallraff, E; Sackmann, E

    2000-01-01

    We used micropipettes to aspirate leading and trailing edges of wild-type and mutant cells of Dictyostelium discoideum. Mutants were lacking either myosin II or talin, or both proteins simultaneously. Talin is a plasma membrane-associated protein important for the coupling between membrane and actin cortex, whereas myosin II is a cytoplasmic motor protein essential for the locomotion of Dictyostelium cells. Aspiration into the pipette occurred above a threshold pressure only. For all cells containing talin this threshold was significantly lower at the leading edge of an advancing cell as compared to its rear end, whereas we found no such difference in cells lacking talin. Wild-type and talin-deficient cells were able to retract from the pipette against an applied suction pressure. In these cells, retraction was preceded by an accumulation of myosin II in the tip of the aspirated cell lobe. Mutants lacking myosin II could not retract, even if the suction pressures were removed after aspiration. We interpreted the initial instability and the subsequent plastic deformation of the cell surface during aspiration in terms of a fracture between the cell plasma membrane and the cell body, which may involve destruction of part of the cortex. Models are presented that characterize the coupling strength between membrane and cell body by a surface energy sigma. We find sigma approximately 0.6(1.6) mJ/m(2) at the leading (trailing) edge of wild-type cells. PMID:10920005

  16. Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells

    PubMed Central

    1996-01-01

    The A2 chain of cholera toxin (CTX) contains a COOH-terminal Lys-Asp- Glu-Leu (KDEL) sequence. We have, therefore, analyzed by immunofluorescence and by subcellular fractionation in Vero cells whether CTX can used to demonstrate a retrograde transport of KDEL proteins from the Golgi to the ER. Immunofluorescence studies reveal that after a pulse treatment with CTX, the CTX-A and B subunits (CTX-A and CTX-B) reach Golgi-like structures after 15-20 min (maximum after 30 min). Between 30 and 90 min, CTX-A (but not CTX-B) appear in the intermediate compartment and in the ER, whereas the CTX-B are translocated to the lysosomes. Subcellular fractionation studies confirm these results: after CTX uptake for 15 min, CTX-A is associated only with endosomal and Golgi compartments. After 30 min, a small amount of CTX-A appears in the ER in a trypsin-resistant form, and after 60 min, a significant amount appears. CTX-A seems to be transported mainly in its oxidized form (CTX-A1-S-S-CTX-A2) from the Golgi to the ER, where it becomes slowly reduced to form free CTX A1 and CTX-A2, as indicated by experiments in which cells were homogenized 30 and 90 min after the onset of CTX uptake in the presence of N- ethylmaleimide. Nocodazol applied after accumulation of CTX in Golgi inhibits the appearance of CTX-A in the ER and delays the increase of 3',5'cAMP, indicating the participation of microtubules in the retrograde Golgi-ER transport. PMID:8666663

  17. Effects of Nonequilibrium Plasmas on Eukaryotic Cells

    DTIC Science & Technology

    2009-05-01

    atmospheric pre Effects on the viabil Second, we report on ( planaria ), to see if preliminary conclusio regeneration process, plume generated by...has any effect on cells regeneration following a wound (cut). The model organism in our studies is a multi-cellular worm, " planaria ", which is capable...concluded that exposure to this type of plasma neither helps nor hinders growth/cell regeneration in planaria . These results could have the following

  18. Plasma proteins in children with trichuris dysentery syndrome.

    PubMed Central

    Cooper, E S; Ramdath, D D; Whyte-Alleng, C; Howell, S; Serjeant, B E

    1997-01-01

    AIMS: To determine whether in Trichuris trichiura dysentery there is (1) evidence of a systemic inflammatory response, (2) evidence that the plasma protein disturbance has special characteristics compared with uninfected children in the endemic environment. METHODS: Three groups of children (age 1.6 to 11.4 years) were studied: 53 cases of trichuris dysentery syndrome (TDS), 16 cases of chronic non-secretory diarrhoea not infected with the parasite ("disease controls", DC), and 20 asymptomatic, parasite-free primary schoolchildren (normal controls, NC). C reactive protein, alpha 1 antitrypsin, caeruloplasmin, albumin, total globulin, fibrinogen, fibronectin, ferritin, and transferrin were measured on a single occasion for each. The study was thus a cross sectional descriptive survey for group comparison. Plasma viscosity was measured on admission for TDS and DC and repeated after six weeks and six months for TDS. RESULTS: Plasma C reactive protein, alpha 1 antitrypsin, total globulin, fibronectin, and viscosity were significantly higher in TDS than in NC. DC children also had acute phase protein elevations (C reactive protein, caeruloplasmin, viscosity). However, the increase in caeruloplasmin was specific to the DC group while an increase in fibronectin was specific to the TDS group. Serial measurement of viscosity in TDS showed a modest but significant fall during the six months following treatment. CONCLUSIONS: There is an acute phase response in intense trichuriasis and a specific elevation of plasma fibronectin. Plasma viscosity remains abnormally high six months after treatment, although lower than at diagnosis. Images PMID:9155675

  19. Plasma amino acid response to graded levels of escape protein.

    PubMed

    Gibb, D J; Klopfenstein, T J; Britton, R A; Lewis, A J

    1992-09-01

    A trial was conducted to examine the potential of using plasma amino acid responses to graded levels of escape protein to determine limiting amino acids in cattle. Growing calves (n = 120; mean BW = 220 +/- 21 kg) were fed a basal diet of corncob:sorghum silage (61:39) and were individually supplemented with distillers' dried grains (DDG), heat-damaged DDG (H-DDG), feather meal (FTH), or urea. The urea supplement was mixed with DDG and H-DDG to allow 0, 20, 35, 50, 65, or 80% of the supplemental CP to come from distillers' protein and maintain an 11.5% CP diet. Urea supplement was mixed with FTH to allow 0, 22, 39, 56, 73, or 90% of the supplemental CP to come from FTH. Dietary CP ranged from 11.5% at the 0% level to 17.3% at the 90% level. Plasma concentration of most essential plasma amino acids responded (P less than .10) linearly and(or) quadratically to increased escape protein. The broken-line response of plasma methionine at low DDG intake suggested that methionine was limiting at low levels of escape protein. An initial decrease followed by a plateau fit by a broken line indicated that histidine became limiting in FTH diets, and lysine eventually became limiting for DDG, H-DDG, and FTH diets before maximum BW gain was reached. Results indicate that plasma amino acid responses may identify amino acids that become limiting with increasing escape protein.

  20. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells.

    PubMed

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-02-08

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10-100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations.

  1. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-02-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations.

  2. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    PubMed Central

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-01-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800

  3. Translocation of signalling proteins to the plasma membrane revealed by a new bioluminescent procedure

    PubMed Central

    2011-01-01

    Background Activation by extracellular ligands of G protein-coupled (GPCRs) and tyrosine kinase receptors (RTKs), results in the generation of second messengers that in turn control specific cell functions. Further, modulation/amplification or inhibition of the initial signalling events, depend on the recruitment onto the plasma membrane of soluble protein effectors. High throughput methodologies to monitor quantitatively second messenger production, have been developed over the last years and are largely used to screen chemical libraries for drug development. On the contrary, no such high throughput methods are yet available for the other aspect of GPCRs regulation, i.e. protein translocation to the plasma membrane, despite the enormous interest of this phenomenon for the modulation of receptor downstream functions. Indeed, to date, the experimental procedures available are either inadequate or complex and expensive. Results Here we describe the development of a novel conceptual approach to the study of cytosolic proteins translocation to the inner surface of the plasma membrane. The basis of the technique consists in: i) generating chimeras between the protein of interests and the calcium (Ca2+)-sensitive, luminescent photo-protein, aequorin and ii) taking advantage of the large Ca2+ concentration [Ca2+] difference between bulk cytosolic and the sub-plasma membrane rim. Conclusion This approach, that keeps unaffected the translocation properties of the signalling protein, can in principle be applied to any protein that, upon activation, moves from the cytosol to the plasma membrane. Thus, not only the modulation of GPCRs and RTKs can be investigated in this way, but that of all other proteins that can be recruited to the plasma membrane also independently of receptor activation. Moreover, its automated version, which can provide information about the kinetics and concentration-dependence of the process, is also applicable to high throughput screening of drugs

  4. The nano-plasma interface: Implications of the protein corona.

    PubMed

    Wolfram, Joy; Yang, Yong; Shen, Jianliang; Moten, Asad; Chen, Chunying; Shen, Haifa; Ferrari, Mauro; Zhao, Yuliang

    2014-12-01

    The interactions between nanoparticles and macromolecules in the blood plasma dictate the biocompatibility and efficacy of nanotherapeutics. Accordingly, the properties of nanoparticles and endogenous biomolecules change at the nano-plasma interface. Here, we review the implications of such changes including toxicity, immunological recognition, molecular targeting, biodistribution, intracellular uptake, and drug release. Although this interface poses several challenges for nanomedicine, it also presents opportunities for exploiting nanoparticle-protein interactions.

  5. Identification of detergent-resistant plasma membrane microdomains in dictyostelium: enrichment of signal transduction proteins.

    PubMed Central

    Xiao, Z; Devreotes, P N

    1997-01-01

    Unlike most other cellular proteins, the chemoattractant receptor, cAR1, of Dictyostelium is resistant to extraction by the zwitterionic detergent, CHAPS. We exploited this property to isolate a subcellular fraction highly enriched in cAR1 by flotation of CHAPS lysates of cells in sucrose density gradients. Immunogold electron microscopy studies revealed a homogeneous preparation of membrane bilayer sheets. This preparation, designated CHAPS-insoluble floating fraction (CHIEF), also contained a defined set of 20 other proteins and a single uncharged lipid. Cell surface biotinylation and preembedding immunoelectron microscopy both confirmed the plasma membrane origin of this preparation. The cell surface phosphodiesterase (PDE) and a downstream effector of cAR1, adenylate cyclase (ACA), were specifically localized in these structures, whereas the cell adhesion molecule gp80, most of the major cell surface membrane proteins, cytoskeletal components, the actin-binding integral membrane protein ponticulin, and G-protein alpha- and beta-subunits were absent. Overall, CHIFF represents about 3-5% of cell externally exposed membrane proteins. All of these results indicate that CHIFF is derived from specialized microdomains of the plasma membrane. The method of isolation is analogous to that of caveolae. However, we were unable to detect distinct caveolae-like structures on the cell surface associated with cAR1, which showed a diffuse staining profile. The discovery of CHIFF facilitates the purification of cAR1 and related signaling proteins and the biochemical characterization of receptor-mediated processes such as G-protein activation and desensitization. It also has important implications for the "fluid mosaic" model of the plasma membrane structures. Images PMID:9168471

  6. Factors influencing post-exercise plasma protein carbonyl concentration.

    PubMed

    Wadley, Alex J; Turner, James E; Aldred, Sarah

    2016-01-01

    Exercise of sufficient intensity and duration can cause acute oxidative stress. Plasma protein carbonyl (PC) moieties are abundant, chemically stable, and easily detectable markers of oxidative stress that are widely used for the interpretation of exercise-induced changes in redox balance. Despite many studies reporting acute increases in plasma PC concentration in response to exercise, some studies, including those from our own laboratory have shown decreases. This review will discuss the differences between studies reporting increases, decreases, and no change in plasma PC concentration following exercise in humans; highlighting participant physiology (i.e. training status) and study design (i.e. intensity, duration, and novelty of the exercise bout) as the main factors driving the direction of the PC response to exercise. The role of the 20S proteasome system is proposed as a possible mechanism mediating the clearance of plasma PC following exercise. Resting and exercise-induced differences in plasma protein composition and balance between tissues are also discussed. We suggest that exercise may stimulate the clearance of plasma PC present at baseline, whereas simultaneously increasing reactive oxygen species production that facilitates the formation of new PC groups. The balance between these two processes likely explains why some studies have reported no change or even decreases in plasma PC level post-exercise when other biomarkers of oxidative stress (e.g. markers of lipid peroxidation) were elevated. Future studies should determine factors that influence the balance between PC clearance and formation following acute exercise.

  7. Interaction of BODIPY Dyes with the Blood Plasma Proteins.

    PubMed

    Marfin, Yu S; Aleksakhina, E L; Merkushev, D A; Rumyantsev, E V; Tomilova, I K

    2016-01-01

    Photophysical properties of several BODIPY-based fluorescent dyes were investigated in systems containing blood plasma biomolecules and in model system containing bovine serum albumin in terms of electronic absorption and fluorescence spectroscopy. The interaction between the investigated dyes and protein plasma components changes spectral characteristics of the dyes and leads to bathochromic and hypochromic absorption spectra shifts accompanied by changing of fluorescence intensity. The mechanism of fluorescence changing was defined in the terms of Stern-Volmer theory. It was shown that the static factor of molecular dye-biopolymers complex formation prevails at plasma protein concentration up to 1 g/l, while the higher viscosity range is characterized mainly by nonspecific fluorophore interactions. The increase of fluorescent characteristics of phenyl-substituted BODIPY in the presence of proteins caused by resonance energy transfer and change of physicochemical properties of the molecular environment of the fluorophore was shown for the first time.

  8. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    PubMed

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux.

  9. The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum.

    PubMed

    Mirshafiee, Vahid; Kim, Raehyun; Mahmoudi, Morteza; Kraft, Mary L

    2016-06-01

    Nanoparticle (NP) exposure to biological fluids in the body results in protein binding to the NP surface, which forms a protein coating that is called the "protein corona". To simplify studies of protein-NP interactions and protein corona formation, NPs are incubated with biological solutions, such as human serum or human plasma, and the effects of this exposure are characterized in vitro. Yet, how NP exposure to these two different biological milieus affects protein corona composition and cell response has not been investigated. Here, we explore the differences between the protein coronas that form when NPs are incubated in human serum versus human plasma. NP characterization indicated that NPs that were exposed to human plasma had higher amounts of proteins bound to their surfaces, and were slightly larger in size than those exposed to human serum. In addition, significant differences in corona composition were also detected with gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry, where a higher fraction of coagulation proteins and complement factors were found on the plasma-exposed NPs. Flow cytometry and confocal microscopy showed that the uptake of plasma-exposed NPs was higher than that of serum-exposed NPs by RAW 264.7 macrophage immune cells, but not by NIH 3T3 fibroblast cells. This difference is likely due to the elevated amounts of opsonins, such as fibrinogen, on the surfaces of the NPs exposed to plasma, but not serum, because these components trigger NP internalization by immune cells. As the human plasma better mimics the composition of the in vivo environment, namely blood, in vitro protein corona studies should employ human plasma, and not human serum, so the biological phenomena that is observed is more similar to that occurring in vivo.

  10. Cell polarity proteins and spermatogenesis.

    PubMed

    Gao, Ying; Xiao, Xiang; Lui, Wing-Yee; Lee, Will M; Mruk, Dolores; Cheng, C Yan

    2016-11-01

    When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in

  11. Molecular characterization of a cold-induced plasma membrane protein gene from wheat.

    PubMed

    Koike, Michiya; Sutoh, Keita; Kawakami, Akira; Torada, Atsushi; Oono, Kiyoharu; Imai, Ryozo

    2005-12-01

    As a means to study the function of plasma membrane proteins during cold acclimation, we have isolated a cDNA clone for wpi6 which encodes a putative plasma membrane protein from cold-acclimated winter wheat. The wpi6 gene encodes a putative 5.9 kDa polypeptide with two predicted membrane-spanning domains, the sequence of which shows high sequence similarity with BLT101-family proteins from plants and yeast. Strong induction of wpi6 mRNA was observed during an early stage of cold acclimation in root and shoot tissues of both winter and spring wheat cultivars. In contrast to blt101 in barley, wpi6 mRNA was also induced by drought and salinity stresses, and exogenous application of ABA. Expression of wpi6 in a Deltapmp3 mutant of Saccharomyces cerevisiae, which is disturbed in plasma membrane potential due to the lack of a BLT101-family protein, partially complemented NaCl sensitivity of the mutant. Transient expression analysis of a WPI6::GFP fusion protein in onion epidermal cells revealed that WPI6 is localized in the plasma membrane. Taken together, these data suggested that WPI6 may have a protective role in maintaining plasma membrane function during cold acclimation in wheat.

  12. Determinants of the plasma protein binding of theophylline in health.

    PubMed Central

    Buss, D; Leopold, D; Smith, A P; Routledge, P A

    1983-01-01

    1 The plasma protein binding of theophylline was determined after addition of [14C]-theophylline (15 micrograms/ml) to plasma from 24 healthy drug-free volunteers and equilibrium dialysis for 2 h at 37 degrees C. 2 The percentage of drug unbound was 60.0% +/- 2.2% (s.d.) with very little variation between individuals. The binding ratio of theophylline was not significantly related to the plasma albumin or alpha 1-acid glycoprotein (AAG) concentrations but was significantly, although weakly, negatively related to the logarithm of the non-esterified fatty acid concentration (NEFA) (r = 0.443, P less than 0.05). 3 Intravenous administration of heparin (1000 units) caused a significant rise in plasma NEFA concentration and in the percentage of drug unbound in plasma after equilibrium dialysis. 4 In human serum albumin solutions, the binding ratio of theophylline was significantly related to the albumin concentration and at the albumin concentration seen in the 24 normal subjects, the percentage of drug unbound was almost identical. Addition of AAG in physiological concentrations did not enhance theophylline binding but oleic acid, and to a lesser extent palmitic acid, reduced binding significantly. 5 The percentage of theophylline unbound in plasma varied markedly with pH so that at pH7 the percentage unbound was 52% greater than at pH 8. There was no evidence of concentration dependence of binding up to 140 micrograms/ml theophylline. 6 Theophylline appears to bind almost exclusively to albumin and its plasma protein binding varies little in healthy subjects, showing no concentration-dependence over the therapeutic range of concentrations. The binding is affected by pH and by NEFA concentration, however, and these factors may be of greater importance in disease states. Caution should be employed in the use of heparin in studies of plasma protein binding of theophylline. PMID:6849774

  13. Drug-drug plasma protein binding interactions of ivacaftor.

    PubMed

    Schneider, Elena K; Huang, Johnny X; Carbone, Vincenzo; Baker, Mark; Azad, Mohammad A K; Cooper, Matthew A; Li, Jian; Velkov, Tony

    2015-06-01

    Ivacaftor is a novel cystic fibrosis (CF) transmembrane conductance regulator (CFTR) potentiator that improves the pulmonary function for patients with CF bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs may compete for the same plasma protein binding sites and impact the free drug concentration. This, in turn, could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This biochemical study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1 -acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site-selective probes. Because of their ability to strongly compete for the ivacaftor binding sites on HSA and AGP, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole, and loratadine. The significance of these plasma protein drug-drug interactions is also interpreted in terms of molecular docking simulations. This in vitro study provides valuable insights into the plasma protein drug-drug interactions of ivacaftor with co-administered CF drugs. The data may prove useful in future clinical trials for a staggered treatment that aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor.

  14. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    SciTech Connect

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  15. Mechanisms Regulating Plasma Cell Persistence in Health and Autoimmunity

    DTIC Science & Technology

    2011-04-01

    of lupus . Task 1: Determine whether RANKL expression accompanies the emergence of autoantibody-producing plasma cells. Approach: Infuse mice...Cell Memory." American Society of Gene and Cell Therapy Annual Meeting; Washington, DC May, 2010 "Commensal Cross-talk between Plasma Cells and...plasma cell survival. To explore this suggestion, we used a Transwell system that physically separates the two cell types, but presents no barrier

  16. Enhanced recognition of plasma proteins in a non-native state by complement C3b. A possible clearance mechanism for damaged proteins in blood.

    PubMed

    Ramadass, Mahalakshmi; Ghebrehiwet, Berhane; Kew, Richard R

    2015-03-01

    Complement C3 is a key fluid-phase protein of the immune system that covalently tags pathogenic cells and molecules for subsequent clearance. Previously, we reported that complement activation results in the formation of multiple C3b:plasma protein complexes in serum. However, it is not known if C3b attaches to any plasma protein in close proximity or preferentially binds damaged proteins. The objective of this study was to determine if C3b couples to plasma proteins in a non-native state and if this could be a potential mechanism to detect and clear damaged proteins from the blood. Using a purified in vitro system with alternative pathway proteins C3, factors B and D it was observed that guanidinium-HCl denaturation of three purified plasma proteins (albumin, alpha-1 proteinase inhibitor, vitamin D binding protein) greatly increased their capacity to form covalent complexes with C3b. However, native vitamin D binding protein, covalently attached to C3b, still retained the ability to bind its natural ligand G-actin, indicating that C3b links to plasma proteins in their native configuration but denaturation substantially increases this interaction. Serum complement activation generated a large number of C3b:plasma protein complexes that bound red blood cell membranes, suggesting a CR1-mediated clearance mechanism. Thermally denatured (60°C) serum activated the alternative pathway when added to fresh serum as evidenced by factor B cleavage and iC3b generation, but this heat-treated serum could not generate the pro-inflammatory peptide C5a. These results show that C3 recognizes and tags damaged plasma proteins for subsequent removal from the blood without triggering proinflammatory functions.

  17. Plasma cells in immunopathology: concepts and therapeutic strategies.

    PubMed

    Tiburzy, Benjamin; Kulkarni, Upasana; Hauser, Anja Erika; Abram, Melanie; Manz, Rudolf Armin

    2014-05-01

    Plasma cells are terminally differentiated B cells that secrete antibodies, important for immune protection, but also contribute to any allergic and autoimmune disease. There is increasing evidence that plasma cell populations exhibit a considerable degree of heterogeneity with respect to their immunophenotype, migration behavior, lifetime, and susceptibility to immunosuppressive drugs. Pathogenic long-lived plasma cells are refractory to existing therapies. In contrast, short-lived plasma cells can be depleted by steroids and cytostatic drugs. Therefore, long-lived plasma cells are responsible for therapy-resistant autoantibodies and resemble a challenge for the therapy of antibody-mediated autoimmune diseases. Both lifetime and therapy resistance of plasma cells are supported by factors produced within their microenviromental niches. Current results suggest that plasma cell differentiation and survival factors such as IL-6 also signal via mammalian miRNAs within the plasma cell to modulate downstream transcription factors. Recent evidence also suggests that plasma cells and/or their immediate precursors (plasmablasts) can produce important cytokines and act as antigen-presenting cells, exhibiting so far underestimated roles in immune regulation and bone homeostasis. Here, we provide an overview on plasma cell biology and discuss exciting, experimental, and potential therapeutic approaches to eliminate pathogenic plasma cells.

  18. Plasma proteins predict conversion to dementia from prodromal disease

    PubMed Central

    Hye, Abdul; Riddoch-Contreras, Joanna; Baird, Alison L.; Ashton, Nicholas J.; Bazenet, Chantal; Leung, Rufina; Westman, Eric; Simmons, Andrew; Dobson, Richard; Sattlecker, Martina; Lupton, Michelle; Lunnon, Katie; Keohane, Aoife; Ward, Malcolm; Pike, Ian; Zucht, Hans Dieter; Pepin, Danielle; Zheng, Wei; Tunnicliffe, Alan; Richardson, Jill; Gauthier, Serge; Soininen, Hilkka; Kłoszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon

    2014-01-01

    Background The study aimed to validate previously discovered plasma biomarkers associated with AD, using a design based on imaging measures as surrogate for disease severity and assess their prognostic value in predicting conversion to dementia. Methods Three multicenter cohorts of cognitively healthy elderly, mild cognitive impairment (MCI), and AD participants with standardized clinical assessments and structural neuroimaging measures were used. Twenty-six candidate proteins were quantified in 1148 subjects using multiplex (xMAP) assays. Results Sixteen proteins correlated with disease severity and cognitive decline. Strongest associations were in the MCI group with a panel of 10 proteins predicting progression to AD (accuracy 87%, sensitivity 85%, and specificity 88%). Conclusions We have identified 10 plasma proteins strongly associated with disease severity and disease progression. Such markers may be useful for patient selection for clinical trials and assessment of patients with predisease subjective memory complaints. PMID:25012867

  19. Stereoselective binding of chiral drugs to plasma proteins.

    PubMed

    Shen, Qi; Wang, Lu; Zhou, Hui; Jiang, Hui-di; Yu, Lu-shan; Zeng, Su

    2013-08-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body. The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity, which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles. In this review, the stereoselective binding of chiral drugs to human serum albumin (HSA), α1-acid glycoprotein (AGP) and lipoprotein, three most important proteins in human plasma, are detailed. Furthermore, the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed. Apart from the stereoselectivity of enantiomer-protein binding, enantiomer-enantiomer interactions that may induce allosteric effects are also described. Additionally, the techniques and methods used to determine drug-protein binding parameters are briefly reviewed.

  20. Stereoselective binding of chiral drugs to plasma proteins

    PubMed Central

    Shen, Qi; Wang, Lu; Zhou, Hui; Jiang, Hui-di; Yu, Lu-shan; Zeng, Su

    2013-01-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body. The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity, which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles. In this review, the stereoselective binding of chiral drugs to human serum albumin (HSA), α1-acid glycoprotein (AGP) and lipoprotein, three most important proteins in human plasma, are detailed. Furthermore, the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed. Apart from the stereoselectivity of enantiomer-protein binding, enantiomer-enantiomer interactions that may induce allosteric effects are also described. Additionally, the techniques and methods used to determine drug-protein binding parameters are briefly reviewed. PMID:23852086

  1. Phospholipid transfer protein in human plasma associates with proteins linked to immunity and inflammation.

    PubMed

    Cheung, Marian C; Vaisar, Tomás; Han, Xianlin; Heinecke, Jay W; Albers, John J

    2010-08-31

    Phospholipid transfer protein (PLTP), which associates with apolipoprotein A-I (the major HDL protein), plays a key role in lipoprotein remodeling. Because its level in plasma increases during acute inflammation, it may also play previously unsuspected roles in the innate immune system. To gain further insight into its potential physiological functions, we isolated complexes containing PLTP from plasma by immunoaffinity chromatography and determined their composition. Shotgun proteomics revealed that only 6 of the 24 proteins detected in the complexes were apolipoproteins. The most abundant proteins were clusterin (apoJ), PLTP itself, coagulation factors, complement factors, and apoA-I. Remarkably, 20 of the 24 proteins had known protein-protein interactions. Biochemical studies confirmed two previously established interactions and identified five new ones between PLTP and proteins. Moreover, clusterin, apoA-I, and apoE preserved the lipid-transfer activity of recombinant PLTP in the absence of lipid, indicating that these interactions may have functional significance. Unexpectedly, lipids accounted for only 3% of the mass of the PLTP complexes. Collectively, our observations indicate that PLTP in human plasma resides on lipid-poor complexes dominated by clusterin and proteins implicated in host defense and inflammation. They further suggest that protein-protein interactions drive the formation of PLTP complexes in plasma.

  2. The lateral organization of influenza virus proteins in the budozone region of the plasma membrane.

    PubMed

    Leser, George P; Lamb, Robert A

    2017-02-15

    Influenza virus assembles and buds at the plasma membrane of virus-infected cells. The viral proteins assemble at the same site on the plasma membrane for budding to occur. This involves a complex web of interactions among viral proteins. Some, like HA, NA, and M2 are integral membrane proteins. M1 is peripherally membrane associated, whereas NP associates with the viral RNA to form an RNP complex that associates with the cytoplasmic face of the plasma membrane. Furthermore, HA and NP have been shown to be concentrated in cholesterol-rich membrane raft domains whereas M2, although containing a cholesterol binding motif, is not raft associated. Here we identify viral proteins in planar sheets of plasma membrane using immuno-gold staining. The distribution of these proteins was examined individually and pair-wise using the Ripley K function, a type of nearest neighbor analysis. Individually HA, NA, M1, M2, and NP were shown to self-associate in or on the plasma membrane. HA and M2 are strongly co-clustered in the plasma membrane; however, in the case of NA and M2 clustering depends upon the expression system used. Despite both being raft-resident, HA and NA occupy distinct but adjacent membrane domains. M2 and M1 strongly co-cluster but the association of M1 with HA or NA is dependent upon the means of expression. The presence of HA and NP at the site of budding depends upon the co-expression of other viral proteins. Similarly, M2 and NP occupy separate compartments but an association can be bridged by co-expression of M1.Importance The complement of influenza proteins necessary for the budding of progeny virions needs to accumulate at budozones. This is complicated by HA and NA residing in lipid raft like domains whereas M2, although an integral membrane protein, is not raft associated. Other necessary protein components such as M1 and NP are peripherally associated with the membrane. Our data define spatial relationships between viral proteins in the plasma

  3. Plasma Cell Gingivitis: An Occasional Case Report.

    PubMed

    Mishra, M B; Sharma, Swati; Sharma, Alok

    2015-01-01

    Plasma cell gingivitis, an infrequently observed oral condition, has been clinically characterized by diffuse gingival enlargement, erythema and sometimes desquamation. These lesions are usually asymptomatic, but invariably the patient will complain of a burning sensation in the gingiva and bleeding from the mouth. The diagnosis requires hematological screening in addition to clinical and histopathological examinations. This case report outlines one such case of plasma cell gingivitis in a 15-year-old female caused by use of an herbal, homemade toothpowder. The case presented here highlights the adverse effects and irrational use of herbal agents in dentifrices. At the same time, it emphasizes the need for comprehensive history taking, careful clinical examination and appropriate diagnostic tests in order to arrive at a definitive diagnosis and treatment plan for gingival conditions that are refractory to conventional therapy and to exclude certain malignancies and oral manifestations of systemic diseases.

  4. Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane.

    PubMed

    Zhao, Yingxin; Zhang, Wei; White, Michael A; Zhao, Yingming

    2003-08-01

    Proteomics analysis of plasma membranes is a potentially powerful strategy for the discovery of proteins involved in membrane remodeling under diverse cellular environments and identification of disease-specific membrane markers. A key factor for successful analysis is the preparation of plasma membrane fractions with low contamination from subcellular organelles. Here we report the characterization of plasma membrane prepared by an affinity-purification method, which involves biotinylation of cell-surface proteins and subsequent affinity enrichment with strepavidin beads. Western blotting analysis showed this method was able to achieve a 1600-fold relative enrichment of plasma membrane versus mitochondria and a 400-fold relative enrichment versus endoplasmic reticulum, two major contaminants in plasma membrane fractions prepared by conventional ultracentrifugation methods. Capillary-HPLC/MS analysis of 30 microg of affinity-purified plasma membrane proteins led to the identification of 918 unique proteins, which include 16.4% integral plasma membrane proteins and 45.5% cytosol proteins (including 8.6% membrane-associated proteins). Notable among the identified membrane proteins include 30 members of ras superfamily, receptors (e.g., EGF receptor, integrins), and signaling molecules. The low number of endoplasmic reticulum and mitochondria proteins (approximately 3.3% of the total) suggests the plasma membrane preparation has minimum contamination from these organelles. Given the importance of integral membrane proteins for drug design and membrane-associated proteins in the regulation cellular behaviors, the described approach will help expedite the characterization of plasma membrane subproteomes, identify signaling molecules, and discover therapeutic membrane-protein targets in diseases.

  5. Interaction between clonal plasma cells and the immune system in plasma cell dyscrasias.

    PubMed

    Perez-Andres, M; Almeida, J; Martin-Ayuso, M; Moro, M J; Garcia-Marcos, M A; Moreno, I; Dominguez, M; Galende, J; Heras, N; Gonzalez, M I; San Miguel, J F; Orfao, A

    2004-01-01

    The term "monoclonal gammopathy" (MG) includes a group of clonal plasma cell disorders, which show heterogeneous clinical behavior. While multiple myeloma (MM) and plasma cell leukemia (PCL) are incurable malignant diseases, most patients with MG of undetermined significance (MGUS) show an indolent/benign clinical course. Evidence has accumulated which supports the role of the bone marrow microenvironment in MG. Accordingly, the survival, drug-resistance and proliferation of MM cells have been shown to be largely dependent on a supportive microenvironment. Among the different environment-associated parameters, those related to the status/activity of the immune system are particularly relevant. This review focuses on the different ways clonal plasma cells (PC) interact with the immune system in different models of MG, to characterize crucial events in the development and progression of MG. These advances may support the design of novel therapeutic approaches in patients with MG.

  6. [Blood plasma proteins following long-duration space flight].

    PubMed

    Larina, O N

    2006-01-01

    Protein composition of blood plasma was an object of investigation in 29 Russian cosmonauts flown on the MIR station from 125 to 366 days. Protein fractions were analyzed using acetate cellulose electrophoresis. Concentration of total protein was determined with the help of the biuret reaction on an automated analyzer. On the second day post flight, mean concentration of total protein and percentage of the protein fractions were equal to baseline values. In the interval between days 7 and 14 post flight, total protein was statistically reduced, alphal- N alpha2-globulins increased and y-globulin reduced, whereas albumin and beta-globulins were unchanged in the average. These results may point to development of an acute reaction in the early period of readaptation to the return from long-duration space flight.

  7. Evolution of the protein corona of lipid gene vectors as a function of plasma concentration.

    PubMed

    Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; Amenitsch, Heinz; Laganà, Aldo

    2011-12-20

    The concept that the effective unit of interest in the cell-nanomaterial interaction is the particle and its corona of associated proteins is emerging. Here we investigate the compositional evolution of the protein corona of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) cationic liposomes (CLs) and DOTAP/DNA lipoplexes over a wide range of plasma concentrations (2.5-80%). The composition of the hard corona of lipoplexes is quite stable, but that of CLs does evolve considerably. We show that the protein corona of CLs is made of both low-affinity and competitive-binding proteins whose relative abundance changes with the plasma concentration. This result may have deep biological implications for the application of lipid-based gene vectors both in vitro and in vivo.

  8. Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions.

    PubMed

    Zilly, Felipe E; Halemani, Nagaraj D; Walrafen, David; Spitta, Luis; Schreiber, Arne; Jahn, Reinhard; Lang, Thorsten

    2011-04-06

    Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid-lipid interactions, lipid-protein interactions and protein-protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca(2+) in membrane protein organization. We find that Ca(2+) at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca(2+) influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca(2+) strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes.

  9. Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage.

    PubMed

    Kvam, Erik; Davis, Brian; Mondello, Frank; Garner, Allen L

    2012-04-01

    Plasma, a unique state of matter with properties similar to those of ionized gas, is an effective biological disinfectant. However, the mechanism through which nonthermal or "cold" plasma inactivates microbes on surfaces is poorly understood, due in part to challenges associated with processing and analyzing live cells on surfaces rather than in aqueous solution. Here, we employ membrane adsorption techniques to visualize the cellular effects of plasma on representative clinical isolates of drug-resistant microbes. Through direct fluorescent imaging, we demonstrate that plasma rapidly inactivates planktonic cultures, with >5 log(10) kill in 30 s by damaging the cell surface in a time-dependent manner, resulting in a loss of membrane integrity, leakage of intracellular components (nucleic acid, protein, ATP), and ultimately focal dissolution of the cell surface with longer exposure time. This occurred with similar kinetic rates among methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. We observed no correlative evidence that plasma induced widespread genomic damage or oxidative protein modification prior to the onset of membrane damage. Consistent with the notion that plasma is superficial, plasma-mediated sterilization was dramatically reduced when microbial cells were enveloped in aqueous buffer prior to treatment. These results support the use of nonthermal plasmas for disinfecting multidrug-resistant microbes in environmental settings and substantiate ongoing clinical applications for plasma devices.

  10. Absorption of plasma proteins from peritoneal cavity of normal rats

    SciTech Connect

    Regoeczi, E.; Zaimi, O.; Chindemi, P.A.; Charlwood, P.A.

    1989-04-01

    The present study was undertaken to examine whether the uptake of plasma proteins from the peritoneal cavity is quantitative so that tracers could be introduced that way for measuring their turnover. To this end, the metabolic behavior of seven homologous plasma proteins, labeled with 125I, was compared in rats after intravenous or intraperitoneal administration. The animals were maintained under physiological conditions. Total body radiation measurements showed that the degradation rates of albumin, immunoglobulins A and G, alpha 1-macroglobulin, and transferrin were the same regardless of the route of injection. This implies that these proteins are quantitatively absorbed from the peritoneum without undergoing modifications. The half-life of intraperitoneally injected alpha 1-acid glycoprotein was consistently shorter by an average 9%, thus suggesting that this protein becomes slightly altered if introduced that way. Only one-half of intraperitoneally injected fibrinogen survived normally, whereas the other underwent rapid degradation. The surviving molecules had the same half-life as fibrinogen injected intravenously. The fraction of surviving fibrinogen could be augmented by mixing the dose with serum. Within a wide range of concentrations and quantities injected, the degradation rate of transferrin remained the same. Analysis by deconvolution of the plasma curves of albumin and alpha 1-macroglobulin absorbed from the peritoneum showed that the transport process was independent of protein size and, at least up to 35 mg, of the amount injected. According to the same technique, intraperitoneally administered diferric transferrin retained its iron during passage into the circulation.

  11. Characteristics of selected seminal plasma proteins and their application in the improvement of the reproductive processes in mammals.

    PubMed

    Mogielnicka-Brzozowska, M; Kordan, W

    2011-01-01

    Understanding the biochemical processes associated with ovum fertilization and knowledge about the structure and function of individual substances participating in these processes is crucial for the development of biotechnological methods to improve reproduction of animals and humans. Among many components of seminal plasma, proteins and peptides play a specific role in regulation of the fertilization process, particularly through their ability to bind various types of ligands such as polysaccharides, lipids and ions. Heparin-binding proteins regulate capacitation and acrosome reaction processes. Affinity of plasma proteins to mannans of the fallopian tube epithelium facilitates formation of spermatozoa reservoirs in the female reproductive tract. Ability to bind phosphorylcholine is one of the conditions for the coating of the seminal plasma proteins on the sperm membrane and also determines the formation of oligomeric forms of certain proteins. Zinc binding by seminal plasma proteins regulates sperm chromatin condensation state. It also affects motility of these cells and acrosome reaction. The interspecies analysis indicates significant structural and functional similarities, especially for the proteins with low molecular weight. Fertility associated proteins (FAPs) have been determined in the bull, stallion, boar, ram and dog. The contents of these proteins correlate with the indicators of the fertilizing abilities of sperm. In humans, several seminal plasma proteins were found which serve as diagnostic markers of spermatogenesis, seminiferous epithelium state, and azoospermia. To determine the semen ability for preservation, measurement of some seminal plasma protein content may also be used. Addition of specific plasma proteins to a spermatozoa solution undergoing the process of preservation may be used to retain the features of the cells responsible for efficient fertilization.

  12. Disproportional changes in hematocrit, plasma volume, and proteins during exercise and bed rest.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.; Greenleaf, J. E.; Juhos, L.

    1972-01-01

    The interrelationships between the changes in plasma volume, hematocrit, and plasma proteins during muscular exercise and bed rest were investigated. Proportionally, the changes in hematocrit are always smaller than the changes in plasma volume. For this reason changes in the concentration of blood constituents can only be quantitated on the basis of plasma volume changes. During short periods of intensive exercise, there was a small loss of plasma proteins. With prolonged submaximal exercise there was a net gain in plasma protein, which contributes to stabilization of the vascular volume. Prolonged bed rest induced hypoproteinemia; this loss of plasma protein probably plays an important role in recumbency hypovolemia.

  13. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukaemia definition.

    PubMed

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara M; Teixidó, Montserrat; Gimenez, Maria Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Blade, Joan; Fernández de Larrea, Carlos

    2017-03-02

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the present study, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analysed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukaemia were reviewed and patients were classified in four categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20% and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%) respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95%CI 2.6-9.3) independently of age, creatinine, Durie-Salmon and international stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86x109/L vs. 214x109/L, p<0.0001) and higher bone marrow plasma cells (median 53% vs. 36%, p=0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has similar adverse prognostic impact as plasma cell leukemia.

  14. Adsorption of proteins from plasma at polyester non-wovens.

    PubMed

    Klomp, A J; Engbers, G H; Mol, J; Terlingen, J G; Feijen, J

    1999-07-01

    Polyester non-wovens in filters for the removal of leukocytes from platelet concentrates (PCs) must be platelet compatible. In PC filtration, the adsorption of proteins at the plasma-non-woven interface can be of great importance with respect to the yield of platelets. Unmodified and radio frequency glow discharge (RFGD) treated poly(ethylene terephthalate) non-woven (NW-PET) and two commercial surface-modified non-wovens were contacted with human plasma. Protein desorption by sodium dodecyl sulphate (SDS) was evaluated by X-ray photoelectron spectroscopy (XPS). The desorbed proteins were characterized by gel electrophoresis and immunoblotting. Compared to the commercial surface-modified non-wovens, unmodified and RFGD-treated NW-PETs adsorbed a relatively high amount of protein. Significantly more protein was removed from the hydrophobic NW-PET by SDS than from the hydrophilic RFGD-treated non-wovens. RFGD treatment of NW-PET reduces the reversibility of protein adsorption. Less albumin and fibrinogen were removed from the RFGD-treated non-wovens than from NW-PET. In addition, a large amount of histidine-rich glycoprotein was removed from RFGD-treated non-wovens, but not from NW-PET. The different behaviour of RFGFD-treated non-wovens towards protein adsorption is probably caused by differences in the chemical reactivity of the non-woven surfaces.

  15. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    SciTech Connect

    Hasan, Nazarul; Hu, Chuan

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  16. Biclonal IgD and IgM Plasma Cell Myeloma: A Report of Two Cases and a Literature Review.

    PubMed

    Chen, Zhongchuan W; Kotsikogianni, Ioanna; Raval, Jay S; Roth, Christine G; Rollins-Raval, Marian A

    2013-01-01

    Biclonal plasma cell myelomas producing two different isotypes of immunoglobulins are extremely rare entities; to date, the combination of IgD and IgM secretion by a biclonal plasma cell myeloma has not been reported. Bone marrow biopsy immunohistochemical studies in two cases revealed neoplastic plasma cells coexpressing IgD and IgM, but serum protein electrophoresis identified only the IgM monoclonal paraprotein in both cases. Biclonal plasma cell myelomas, while currently not well characterized in terms of their clinical behavior, should be distinguished from B-cell lymphoma with plasmacytic differentiation, given the different therapeutic implications. Both cases reported herein demonstrated chemotherapy-resistant clinical courses.

  17. Adsorption ability comparison of plasma proteins on amorphous carbon surface

    NASA Astrophysics Data System (ADS)

    Takeda, Aoi; Akasaka, Hiroki; Ohshio, Shigeo; Toda, Ikumi; Nakano, Masayuki; Saitoh, Hidetoshi

    2012-11-01

    To understand why amorphous carbon (a-C:H) film shows antithrombogenicity, an adsorption ability of plasma proteins on a-C:H surface was investigated. Protein adsorption is the initial process of clot formation. The protein adsorption ability on a-C:H film surface was compared by the detection using the surface plasmon resonance (SPR) phenomenon to estimate the protein adsorption. The protein adsorption abilities of a fibrinogen (Fib) and a human γ-globulin (HGG) were estimated by the SPR method using a multilayer structure of a-C:H/Au/Cr/glass. Although the adsorption of HGG for a-C:H was saturated at 32 μM in HGG concentration, the adsorption of Fib was not saturated under the detection limit of this method. These results indicated that the adsorption ability to the a-C:H film surface of Fib was higher than HGG.

  18. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli

    2015-12-01

    The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  19. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes.

    PubMed Central

    Pestonjamasp, K; Amieva, M R; Strassel, C P; Nauseef, W M; Furthmayr, H; Luna, E J

    1995-01-01

    Actin-binding proteins in bovine neutrophil plasma membranes were identified using blot overlays with 125I-labeled F-actin. Along with surface-biotinylated proteins, membranes were enriched in major actin-binding polypeptides of 78, 81, and 205 kDa. Binding was specific for F-actin because G-actin did not bind. Further, unlabeled F-actin blocked the binding of 125I-labeled F-actin whereas other acidic biopolymers were relatively ineffective. Binding also was specifically inhibited by myosin subfragment 1, but not by CapZ or plasma gelsolin, suggesting that the membrane proteins, like myosin, bind along the sides of the actin filaments. The 78- and 81-kDa polypeptides were identified as moesin and ezrin, respectively, by co-migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with antibodies specific for moesin and ezrin. Although not present in detectable amounts in bovine neutrophils, radixin (a third and closely related member of this gene family) also bound 125I-labeled F-actin on blot overlays. Experiments with full-length and truncated bacterial fusion proteins localized the actin-binding site in moesin to the extreme carboxy terminus, a highly conserved sequence. Immunofluorescence micrographs of permeabilized cells and cell "footprints" showed moesin co-localization with actin at the cytoplasmic surface of the plasma membrane, consistent with a role as a membrane-actin-linking protein. Images PMID:7612961

  20. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes.

    PubMed

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-05-13

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking.

  1. Do plasma proteins distinguish between liposomes of varying charge density?

    PubMed

    Capriotti, Anna Laura; Caracciolo, Giulio; Cavaliere, Chiara; Foglia, Patrizia; Pozzi, Daniela; Samperi, Roberto; Laganà, Aldo

    2012-03-16

    Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a "protein corona" onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density.

  2. Cell adhesion to plasma-coated PVC.

    PubMed

    Rangel, Elidiane C; de Souza, Eduardo S; de Moraes, Francine S; Duek, Eliana A R; Lucchesi, Carolina; Schreiner, Wido H; Durrant, Steven F; Cruz, Nilson C

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, P(Ar), was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with P(Ar) between 28.9 and 55.3%. Surface free energy increased with increasing P(Ar), except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  3. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  4. Profiling of low molecular weight proteins in plasma from locally irradiated individuals

    PubMed Central

    Nylund, Reetta; Lemola, Elina; Hartwig, Sonja; Lehr, Stefan; Acheva, Anna; Jahns, Jutta; Hildebrandt, Guido; Lindholm, Carita

    2014-01-01

    In studies reported in the 1960s and since, blood plasma from radiation-exposed individuals has been shown to induce chromosome damage when transferred into lymphocyte cultures of non-irradiated persons. This effect has been described to occur via clastogenic factors, whose nature is still mostly unknown. We have previously examined clastogenic factors from irradiated individuals by looking at plasma-induced DNA damage in reporter cells. Plasma was tested from ca. 30 locally exposed clinical patients receiving fractionated radiation treatment, as well as from three radiological accident victims exposed in 1994, albeit sampled 14 years post-accident. In the current work, proteome changes in the plasma from all subjects were examined with 2D gel electrophoresis-based proteomics techniques, in order to evaluate the level of protein expression with respect to the findings of a clastogenic factor effect. No differences were observed in protein expression due to local radiation exposure (pre- vs post-exposure). In contrast, plasma from the radiation accident victims showed alterations in the expression of 18 protein spots (in comparison with plasma from the control group). Among these, proteins such as haptoglobin, serotransferrin/transferrin, fibrinogen and ubiquitin-60S ribosomal protein L40 were observed, none of them likely to be clastogenic factors. In conclusion, the proteomics techniques applied were unable to identify changes in the proteome of the locally irradiated patients, whereas such differences were observed for the accident victims. However, association with the clastogenic effect or any specific clastogenic factor remains unresolved and thus further studies with more sensitive techniques are warranted. PMID:24570173

  5. Profiling of low molecular weight proteins in plasma from locally irradiated individuals.

    PubMed

    Nylund, Reetta; Lemola, Elina; Hartwig, Sonja; Lehr, Stefan; Acheva, Anna; Jahns, Jutta; Hildebrandt, Guido; Lindholm, Carita

    2014-07-01

    In studies reported in the 1960s and since, blood plasma from radiation-exposed individuals has been shown to induce chromosome damage when transferred into lymphocyte cultures of non-irradiated persons. This effect has been described to occur via clastogenic factors, whose nature is still mostly unknown. We have previously examined clastogenic factors from irradiated individuals by looking at plasma-induced DNA damage in reporter cells. Plasma was tested from ca. 30 locally exposed clinical patients receiving fractionated radiation treatment, as well as from three radiological accident victims exposed in 1994, albeit sampled 14 years post-accident. In the current work, proteome changes in the plasma from all subjects were examined with 2D gel electrophoresis-based proteomics techniques, in order to evaluate the level of protein expression with respect to the findings of a clastogenic factor effect. No differences were observed in protein expression due to local radiation exposure (pre- vs post-exposure). In contrast, plasma from the radiation accident victims showed alterations in the expression of 18 protein spots (in comparison with plasma from the control group). Among these, proteins such as haptoglobin, serotransferrin/transferrin, fibrinogen and ubiquitin-60S ribosomal protein L40 were observed, none of them likely to be clastogenic factors. In conclusion, the proteomics techniques applied were unable to identify changes in the proteome of the locally irradiated patients, whereas such differences were observed for the accident victims. However, association with the clastogenic effect or any specific clastogenic factor remains unresolved and thus further studies with more sensitive techniques are warranted.

  6. Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions

    PubMed Central

    Zilly, Felipe E; Halemani, Nagaraj D; Walrafen, David; Spitta, Luis; Schreiber, Arne; Jahn, Reinhard; Lang, Thorsten

    2011-01-01

    Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid–lipid interactions, lipid–protein interactions and protein–protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca2+ in membrane protein organization. We find that Ca2+ at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca2+ influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca2+ strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes. PMID:21364530

  7. Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Annaert, Wim; Munck, Sebastian

    2016-01-01

    The spatial distribution of proteins within the cell affects their capability to interact with other molecules and directly influences cellular processes and signaling. At the plasma membrane, multiple factors drive protein compartmentalization into specialized functional domains, leading to the formation of clusters in which intermolecule interactions are facilitated. Therefore, quantifying protein distributions is a necessity for understanding their regulation and function. The recent advent of super-resolution microscopy has opened up the possibility of imaging protein distributions at the nanometer scale. In parallel, new spatial analysis methods have been developed to quantify distribution patterns in super-resolution images. In this chapter, we provide an overview of super-resolution microscopy and summarize the factors influencing protein arrangements on the plasma membrane. Finally, we highlight methods for analyzing clusterization of plasma membrane proteins, including examples of their applications.

  8. General Protein Diffusion Barriers create Compartments within Bacterial Cells

    PubMed Central

    Schlimpert, Susan; Klein, Eric A.; Briegel, Ariane; Hughes, Velocity; Kahnt, Jörg; Bolte, Kathrin; Maier, Uwe G.; Brun, Yves V.; Jensen, Grant J.; Gitai, Zemer; Thanbichler, Martin

    2013-01-01

    SUMMARY In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell cycle-dependent manner. Their presence is critical for cellular fitness, as they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins. PMID:23201141

  9. Molecular properties of a novel, hydrophilic cation-binding protein associated with the plasma membrane.

    PubMed

    Ide, Yuki; Nagasaki, Nahoko; Tomioka, Rie; Suito, Momoe; Kamiya, Takehiro; Maeshima, Masayoshi

    2007-01-01

    A new type of protein was found in Arabidopsis thaliana, PCaP1, which is rich in glutamate and lysine residues. The protein bound (45)Ca(2+) even in the presence of a high concentration of Mg(2+). Real-time polymerase chain reaction and histochemical analysis of promoter-beta-glucuronidase fusions revealed that PCaP1 was expressed in most organs. The PCaP1 protein was detected immunochemically in these organs. Treatment of Arabidopsis seedlings with Cu(2+), sorbitol, or flagellin oligopeptide enhanced the transcription. On the other hand, other sugars, abscisic acid, gibberellic acid, dehydration, and low temperature had little or no effect on PCaP1 transcript abundance. The transient expression of PCaP1 fused to green fluorescent protein in Arabidopsis cells and the subcellular fractionation of tissue homogenate showed that PCaP1 protein is localized to the plasma membrane, although PCaP1 has no predicted transmembrane domain. PCaP1 was associated with the plasma membrane under natural conditions and was released from the membrane at high concentrations of Ca(2+) or Mg(2+) in vitro. These results suggest that the hydrophilic protein PCaP1 binds Ca(2+) and other cations and is stably associated with the plasma membrane.

  10. Super-Resolution Imaging of Plasma Membrane Proteins with Click Chemistry

    PubMed Central

    Mateos-Gil, Pablo; Letschert, Sebastian; Doose, Sören; Sauer, Markus

    2016-01-01

    Besides its function as a passive cell wall, the plasma membrane (PM) serves as a platform for different physiological processes such as signal transduction and cell adhesion, determining the ability of cells to communicate with the exterior, and form tissues. Therefore, the spatial distribution of PM components, and the molecular mechanisms underlying it, have important implications in various biological fields including cell development, neurobiology, and immunology. The existence of confined compartments in the plasma membrane that vary on many length scales from protein multimers to micrometer-size domains with different protein and lipid composition is today beyond all questions. As much as the physiology of cells is controlled by the spatial organization of PM components, the study of distribution, size, and composition remains challenging. Visualization of the molecular distribution of PM components has been impeded mainly due to two problems: the specific labeling of lipids and proteins without perturbing their native distribution and the diffraction-limit of fluorescence microscopy restricting the resolution to about half the wavelength of light. Here, we present a bioorthogonal chemical reporter strategy based on click chemistry and metabolic labeling for efficient and specific visualization of PM proteins and glycans with organic fluorophores in combination with super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM) with single-molecule sensitivity. PMID:27668214

  11. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats.

    PubMed

    Lysne, Vegard; Bjørndal, Bodil; Vik, Rita; Nordrehaug, Jan Erik; Skorve, Jon; Nygård, Ottar; Berge, Rolf K

    2015-06-04

    The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP), with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP.

  12. Microsomal Triglyceride Transfer Protein Transfers and Determines Plasma Concentrations of Ceramide and Sphingomyelin but Not Glycosylceramide*

    PubMed Central

    Iqbal, Jahangir; Walsh, Meghan T.; Hammad, Samar M.; Cuchel, Marina; Tarugi, Patrizia; Hegele, Robert A.; Davidson, Nicholas O.; Rader, Daniel J.; Klein, Richard L.; Hussain, M. Mahmood

    2015-01-01

    Sphingolipids, a large family of bioactive lipids, are implicated in stress responses, differentiation, proliferation, apoptosis, and other physiological processes. Aberrant plasma levels of sphingolipids contribute to metabolic disease, atherosclerosis, and insulin resistance. They are fairly evenly distributed in high density and apoB-containing lipoproteins (B-lps). Mechanisms involved in the transport of sphingolipids to the plasma are unknown. Here, we investigated the role of microsomal triglyceride transfer protein (MTP), required for B-lp assembly and secretion, in sphingolipid transport to the plasma. Abetalipoproteinemia patients with deleterious mutations in MTP and absence of B-lps had significantly lower plasma ceramide and sphingomyelin but normal hexosylceramide, lactosylceramide, and different sphingosines compared with unaffected controls. Furthermore, similar differential effects on plasma sphingolipids were seen in liver- and intestine-specific MTP knock-out (L,I-Mttp−/−) mice, suggesting that MTP specifically plays a role in the regulation of plasma ceramide and sphingomyelin. We hypothesized that MTP deficiency may affect either their synthesis or secretion. MTP deficiency had no effect on ceramide and sphingomyelin synthesis but reduced secretion from primary hepatocytes and hepatoma cells. Therefore, MTP is involved in ceramide and sphingomyelin secretion but not in their synthesis. We also found that MTP transferred these lipids between vesicles in vitro. Therefore, we propose that MTP might regulate plasma ceramide and sphingomyelin levels by transferring these lipids to B-lps in the liver and intestine and facilitating their secretion. PMID:26350457

  13. Real-time RT-PCR quantification of pregnancy-associated plasma protein-A mRNA abundance in bovine granulosa and theca cells: effects of hormones in vitro.

    PubMed

    Aad, Pauline Y; Voge, Justin L; Santiago, Consuelo A; Malayer, Jerry R; Spicer, Leon J

    2006-11-01

    Ovarian follicular growth and dominance are controlled by a series of hormonal and intraovarian events including a decrease in intrafollicular IGF-binding proteins -2, -4 and -5 levels. Proteolytic enzymes such as pregnancy-associated plasma protein-A (PAPP-A) degrade IGFBPs and increase bioavailability of IGF-I and -II during follicular development. The objective of this study was to determine the effect of IGF-I, IGF-II, insulin (INS), LH, FSH, estradiol (E2), leptin or cortisol on ovarian PAPP-A mRNA levels. Granulosa (GC) from small (SM) (1-5 mm) and large (LG) (8-22 mm) follicles as well as theca cells (TC) from LG follicles were collected from bovine ovaries and cultured for 48 h in medium containing 10% FCS and then treated with various hormones in serum-free medium for an additional 24 h. Cells were treated with various concentrations (3-500 ng/ml) and combinations of IGF-I, IGF-II, FSH, LH, E2, INS, leptin and (or) cortisol for 24 h (Experiments 1-10). PAPP-A mRNA levels were measured using quantitative real-time RT-PCR. In SM-GC and LG-GC, none of the treatments significantly affected (P>0.10) PAPP-A mRNA abundance. In LG-TC, IGF-I, LH or cortisol did not affect (P>0.10) PAPP-A mRNA levels, whereas INS with or without LH decreased (P<0.05) PAPP-A mRNA. E2 alone decreased PAPP-A mRNA levels in LG-TC, and E2 amplified the insulin-induced inhibition of PAPP-A mRNA abundance in LG-TC. We conclude that control of PAPP-A mRNA abundance in granulosa and theca cells differs, and that E2 may be part of an intraovarian negative feedback system which may reduce the bioavailable IGFs in the theca layer during growth and selection of follicles.

  14. Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation.

    PubMed

    Hawkins, C L; Davies, M J

    1999-06-01

    Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 microM) with diluted fresh human plasma has been shown to generate material that oxidizes 5-thio-2-nitrobenzoic acid; these oxidants are believed to be chloramines formed from the reaction of HOCl with protein amine groups. Chloramines have also been detected with isolated plasma proteins treated with HOCl. In both cases chloramine formation accounts for approx. 20-30% of the added HOCl. These chloramines decompose in a time-dependent manner when incubated at 20 or 37 degrees C but not at 4 degrees C. Ascorbate and urate remove these chloramines in a time- and concentration-dependent manner, with the former being more efficient. The reaction of fresh diluted plasma with HOCl also gives rise to protein-derived nitrogen-centred radicals in a time- and HOCl-concentration-dependent manner; these have been detected by EPR spin trapping. Identical radicals have been detected with isolated HOCl-treated plasma proteins. Radical formation was inhibited by excess methionine, implicating protein-derived chloramines (probably from lysine side chains) as the radical source. Plasma protein fragmentation occurs in a time- and HOCl-concentration-dependent manner, as evidenced by the increased mobility of the EPR spin adducts, the detection of further radical species believed to be intermediates in protein degradation and the loss of the parent protein bands on SDS/PAGE. Fragmentation can be inhibited by methionine and other agents (ascorbate, urate, Trolox C or GSH) capable of removing chloramines and reactive radicals. These results are consistent with protein-derived chloramines, and the radicals derived from them, as contributing agents in HOCl-induced plasma protein oxidation.

  15. Embryonal cell surface recognition. Extraction of an active plasma membrane component.

    PubMed

    Merrell, R; Gottlieb, D I; Glaser, L

    1975-07-25

    Plasma membranes obtained from different neural regions of the chicken embryo have previously been shown to specifically bind to homotypic cells and prevent cell aggregation (Merrell, R., and Glaser, L. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 2794-2798). Proteins responsible for the specific inhibition of cell aggregation have been solubilized from the plasma membrane of neural retina and optic tectum by delipidation with acetone followed by extraction with lithium diiodosalicylate. The extracts show the same regional and temporal specificity as previously shown for plasma membrane recognition by the same cells (Gottlieb, D. I., Merrell, R., and Glaser, L. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 1800-1802). Two micrograms of the most purified protein fraction inhibits the aggregation of 2.5 times 10(-4) cells under standard assay conditions. This represents a 20-fold increase in specific activity compared to whole membranes.

  16. Smoking, COPD and 3-Nitrotyrosine Levels of Plasma Proteins

    SciTech Connect

    Jin, Hongjun; Webb-Robertson, Bobbie-Jo M.; Peterson, Elena S.; Tan, Ruimin; Bigelow, Diana J.; Scholand, Mary Beth; Hoidal, John R.; Pounds, Joel G.; Zangar, Richard C.

    2011-09-01

    BACKGROUND: Nitric oxide is a physiologically regulator of endothelial function and hemodynamics. Oxidized products of nitric oxide can form nitrotyrosine, which is a marker of nitrative stress. Cigarette smoking decreases exhaled nitric oxide, and the underlying mechanism may be important in the cardiovascular toxicity of cigarette smoke, although it is not clear if this effect results from decreased nitric oxide production or oxidation of nitric oxide to reactive, nitrating, species. These processes would be expected to have opposite effects on nitrotyrosine levels, a marker of nitrative stress. OBJECTIVE: In this study, we determine the effects of smoking and chronic obstructive pulmonary disease (COPD) on circulating levels of nitrotyrosine, and thereby gain insight into the processes regulating nitrotyrosine formation. METHODS: A custom antibody microarray platform was used to analyze the levels of 3-nitrotyrosine modifications on 24 proteins in plasma. Plasma samples from 458 individuals were analyzed. RESULTS: Nitrotyrosine levels in circulating proteins were uniformly reduced in smokers but increased in COPD patients. We also observed a persistent suppression of nitrotyrosine in former smokers. CONCLUSIONS: Smoking broadly suppresses the levels of 3-nitrotyrosine in plasma proteins, suggesting that cigarette smoke suppresses endothelial nitric oxide production. In contrast, the increase in nitrotyrosine levels in COPD patients most likely results from inflammatory processes. This study provides the first evidence that smoking has irreversible effects on endothelial production of nitric oxide, and provides insight into how smoking could induce a loss of elasticity in the vasculature and a long-term increase in the risk of cardiovascular disease.

  17. Plasma Membrane Expression of Heat Shock Protein 60 In Vivo in Response to Infection

    PubMed Central

    Belles, Cindy; Kuhl, Alicia; Nosheny, Rachel; Carding, Simon R.

    1999-01-01

    Heat shock protein 60 (hsp60) is constitutively expressed in the mitochondria of eukaryotic cells. However, it has been identified in other subcellular compartments in several disease states and in transformed cells, and it is an immunogenic molecule in various infectious and autoimmune diseases. To better understand the factors that influence expression of hsp60 in normal cells in vivo, we analyzed its cellular and subcellular distribution in mice infected with the intracellular bacterium Listeria monocytogenes. Western blotting of subcellular fractionated spleen cells showed that although endogenous hsp60 was restricted to the mitochondria in noninfected animals, it was associated with the plasma membrane as a result of infection. The low levels of plasma membrane-associated hsp60 seen in the livers in noninfected animals subsequently increased during infection. Plasma membrane hsp60 expression did not correlate with bacterial growth, being most evident during or after bacterial clearance and persisting at 3 weeks postinfection. Using flow cytometry, we determined that Mac-1+, T-cell receptor γδ+, and B220+ cells represented the major Hsp60+ populations in spleens of infected mice. By contrast, B220+ cells were the predominant hsp60+ population in livers of infected mice. Of the immune cells analyzed, the kinetic profile of the γδ T-cell response most closely matched that of hsp60 expression in both the spleen and liver. Collectively, these findings show that during infection hsp60 can be localized to the plasma membrane of viable cells, particularly antigen-presenting cells, providing a means by which hsp60-reactive lymphocytes seen in various infectious disease and autoimmune disorders may be generated and maintained. PMID:10417191

  18. Cancer associated proteins in blood plasma: Determining normal variation.

    PubMed

    Stenemo, Markus; Teleman, Johan; Sjöström, Martin; Grubb, Gabriel; Malmström, Erik; Malmström, Johan; Niméus, Emma

    2016-07-01

    Protein biomarkers have the potential to improve diagnosis, stratification of patients into treatment cohorts, follow disease progression and treatment response. One distinct group of potential biomarkers comprises proteins which have been linked to cancer, known as cancer associated proteins (CAPs). We determined the normal variation of 86 CAPs in 72 individual plasma samples collected from ten individuals using SRM mass spectrometry. Samples were collected weekly during 5 weeks from ten volunteers and over one day at nine fixed time points from three volunteers. We determined the degree of the normal variation depending on interpersonal variation, variation due to time of day, and variation over weeks and observed that the variation dependent on the time of day appeared to be the most important. Subdivision of the proteins resulted in two predominant protein groups containing 21 proteins with relatively high variation in all three factors (day, week and individual), and 22 proteins with relatively low variation in all factors. We present a strategy for prioritizing biomarker candidates for future studies based on stratification over their normal variation and have made all data publicly available. Our findings can be used to improve selection of biomarker candidates in future studies and to determine which proteins are most suitable depending on study design.

  19. Cell Stress Proteins in Atherothrombosis

    PubMed Central

    Madrigal-Matute, Julio; Martinez-Pinna, Roxana; Fernandez-Garcia, Carlos Ernesto; Ramos-Mozo, Priscila; Burillo, Elena; Egido, Jesus; Blanco-Colio, Luis Miguel; Martin-Ventura, Jose Luis

    2012-01-01

    Cell stress proteins (CSPs) are a large and heterogenous family of proteins, sharing two main characteristics: their levels and/or location are modified under stress and most of them can exert a chaperon function inside the cells. Nonetheless, they are also involved in the modulation of several mechanisms, both at the intracellular and the extracellular compartments. There are more than 100 proteins belonging to the CSPs family, among them the thioredoxin (TRX) system, which is the focus of the present paper. TRX system is composed of several proteins such as TRX and peroxiredoxin (PRDX), two thiol-containing enzymes that are key players in redox homeostasis due to their ability to scavenge potential harmful reactive oxygen species. In addition to their main role as antioxidants, recent data highlights their function in several processes such as cell signalling, immune inflammatory responses, or apoptosis, all of them key mechanisms involved in atherothrombosis. Moreover, since TRX and PRDX are present in the pathological vascular wall and can be secreted under prooxidative conditions to the circulation, several studies have addressed their role as diagnostic, prognostic, and therapeutic biomarkers of cardiovascular diseases (CVDs). PMID:22792412

  20. Effect of BCD Plasma on a Bacteria Cell Membrane

    NASA Astrophysics Data System (ADS)

    Nasrin, Navabsafa; Hamid, Ghomi; Maryam, Nikkhah; Soheila, Mohades; Hossein, Dabiri; Saeed, Ghasemi

    2013-07-01

    Abstract Cell membrane rupture is considered to be one of the probable mechanisms for bacterial inactivation using barrier corona discharge (BCD) plasma. In this paper, the effect of the BCD plasma on the Escherichia coli (E. coli) bacteria cell wall was investigated through two analytical methods; Adenosine-5'-triphosphate (ATP) assay and Atomic Force Microscopy (AFM). The ATP assay results indicate an increase in the ATP content of samples which were exposed to the BCD plasma. This implies the bacteria cell rupture. Moreover, AFM images confirm a serious damage of the bacteria cell wall under the influence of the bactericidal agents of the plasma.

  1. Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation.

    PubMed Central

    Reznick, A Z; Cross, C E; Hu, M L; Suzuki, Y J; Khwaja, S; Safadi, A; Motchnik, P A; Packer, L; Halliwell, B

    1992-01-01

    Exposure of human plasma to gas-phase (but not to whole) cigarette smoke (CS) produces oxidative damage to lipids [Frei, Forte, Ames & Cross (1991) Biochem. J. 277, 133-138], which is prevented by ascorbic acid. The ability of CS to induce protein damage was measured by the carbonyl assay and by loss of enzyme activity and protein -SH groups. Both whole and gas-phase CS caused formation of carbonyls in human plasma, which was partially inhibited by GSH but not by ascorbic acid or metal-ion-chelating agents. Isolated albumin exposed to CS showed much faster carbonyl formation (per unit protein) than did whole plasma; damage to isolated albumin was partially prevented by chelating agents. Isolated creatine kinase (CK) lost activity upon exposure to CS much faster than did CK in plasma. Direct addition to plasma of mixtures of some or all of the aldehydes reported to be present in CS caused protein carbonyl formation and inactivation of CK, but neither occurred to the extent produced by CS exposure. PMID:1530591

  2. Plasma membrane calcium ATPase (PMCA4): A housekeeper for RT-PCR relative quantification of polytopic membrane proteins

    PubMed Central

    Calcagno, Anna Maria; Chewning, Katherine J; Wu, Chung-Pu; Ambudkar, Suresh V

    2006-01-01

    Background Although relative quantification of real-time RT-PCR data can provide valuable information, one limitation remains the selection of an appropriate reference gene. No one gene has emerged as a universal reference gene and much debate surrounds some of the more commonly used reference genes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). At this time, no gene encoding for a plasma membrane protein serves as a reference gene, and relative quantification of plasma membrane proteins is performed with genes encoding soluble proteins, which differ greatly in quantity and in targeting and trafficking from plasma membrane proteins. In this work, our aim was to identify a housekeeping gene, ideally one that codes for a plasma membrane protein, whose expression remains the same regardless of drug treatment and across a wide range of tissues to be used for relative quantification of real-time RT-PCR data for ATP binding cassette (ABC) plasma membrane transporters. Results In studies evaluating the expression levels of two commonly used reference genes coding for soluble proteins and two genes coding for membrane proteins, one plasma membrane protein, plasma membrane calcium-ATPase 4 (PMCA4), was comparable to the two reference genes already in use. In addition, PMCA4 expression shows little variation across eight drug-treated cell lines and was found to be superior to GAPDH and HPRT1, commonly used reference genes. Finally, we show PMCA4 used as a reference gene for normalizing ABC transporter expression in a drug-resistant lung carcinoma cell line. Conclusion We have found that PMCA4 is a good housekeeping gene for normalization of gene expression for polytopic membrane proteins including transporters and receptors. PMID:16978418

  3. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    PubMed

    Dormeyer, Wilma; van Hoof, Dennis; Braam, Stefan R; Heck, Albert J R; Mummery, Christine L; Krijgsveld, Jeroen

    2008-07-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosomal abnormalities in culture are essentially indistinguishable from hECC. Direct comparison of karyotypically normal hESCs with hECCs could lead to understanding differences between their mechanisms of growth control and contribute to implementing safe therapeutic use of stem cells without the development of germ cell cancer. While several comparisons of hECCs and hESCs have been reported, their cell surface proteomes are largely unknown, partly because plasma membrane proteomics is still a major challenge. Here, we present a strategy for the identification of plasma membrane proteins that has been optimized for application to the relatively small numbers of stem cells normally available, and that does not require tedious cell fractionation. The method led to the identification of 237 and 219 specific plasma membrane proteins in the hESC line HUES-7 and the hECC line NT2/D1, respectively. In addition to known stemness-associated cell surface markers like ALP, CD9, and CTNNB, a large number of receptors, transporters, signal transducers, and cell-cell adhesion proteins were identified. Our study revealed that several Hedgehog and Wnt pathway members are differentially expressed in hESCs and hECCs including NPC1, FZD2, FZD6, FZD7, LRP6, and SEMA4D, which play a pivotal role in stem cell self-renewal and cancer growth. Various proteins encoded on chromosome 12p, duplicated in testicular cancer, were uniquely identified in hECCs. These included GAPDH, LDHB, YARS2, CLSTN3, CSDA, LRP6, NDUFA9, and NOL1, which are known to be upregulated in testicular cancer. Distinct HLA molecules were revealed on the surface of hESCs and hECCs, despite their low abundance. Results were

  4. Development of plasma-on-chip: Plasma treatment for individual cells cultured in media

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Chang, Chun-Yao; Jeong, Jonghyeon; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru

    2016-01-01

    A device consisting of Si microwells and microplasma sources has been fabricated for plasma treatment of individual cells cultured in media. We named the device plasma-on-chip. The microwells have through-holes at the bottom where gas-liquid interfaces form when they are filled with media containing biological samples. The microplasma sources, which supply reactive species, are located on the back of each microwell. Through the gas-liquid interface, the reactive species are supplied to the cells. Chlorella cells were used to demonstrate the feasibility of the device and after three minutes of plasma treatment, the fluorescence intensity of Chlorella cells appeared to be decreased. Optical emission spectroscopy identified O and OH radicals in the plasma, which can affect the cells. In the analysis of biological samples such as human cells or tissues, this device raises the possibility of revealing the mechanisms of plasma medicine in more detail.

  5. Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies

    PubMed Central

    1984-01-01

    As the spike proteins of Semliki Forest virus (SFV) pass from their site of synthesis in the endoplasmic reticulum (ER) to the cell surface, they must be concentrated and freed from endogenous proteins. To determine the magnitude of this sorting process we have measured the density of spike proteins in membranes of the intracellular transport pathway. In this first paper, using stereological procedures, we have estimated the surface areas of the ER, Golgi complex, and plasma membrane of infected and mock-infected baby hamster kidney cells. First, we estimated the mean cell volume in absolute units. This was done using a novel in situ method which is described in detail. Infection by SFV was found to have no effect on any of the parameters measured. In the accompanying paper ( Quinn , P., G. Griffiths, and G. Warren, 1984, J. Cell Biol., 2142-2147) these stereological estimates were combined with biochemical estimates of the amount of spike proteins in ER, Golgi complex, and plasma membrane to determine the density in the membranes of these compartments. PMID:6563037

  6. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering

    NASA Astrophysics Data System (ADS)

    Kasálková, Nikola Slepičková; Slepička, Petr; Kolská, Zdeňka; Hodačová, Petra; Kučková, Štěpánka; Švorčík, Václav

    2014-04-01

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly- l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly- l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation.

  7. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering.

    PubMed

    Kasálková, Nikola Slepičková; Slepička, Petr; Kolská, Zdeňka; Hodačová, Petra; Kučková, Stěpánka; Svorčík, Václav

    2014-04-04

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly-l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly-l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation.

  8. Voltage- and Tension-Dependent Lipid Mobility in the Outer Hair Cell Plasma Membrane

    NASA Astrophysics Data System (ADS)

    Oghalai, John S.; Zhao, Hong-Bo; Kutz, J. Walter; Brownell, William E.

    2000-01-01

    The mechanism responsible for electromotility of outer hair cells in the ear is unknown but is thought to reside within the plasma membrane. Lipid lateral diffusion in the outer hair cell plasma membrane is a sigmoidal function of transmembrane potential and bathing media osmolality. Cell depolarization or hyposmotic challenge shorten the cell and reduce membrane fluidity by half. Changing the membrane tension with amphipathic drugs results in similar reductions. These dynamic changes in membrane fluidity represent the modulation of membrane tension by lipid-protein interactions. The voltage dependence may be associated with the force-generating motors that contribute to the exquisite sensitivity of mammalian hearing.

  9. Development of motorized plasma lithography for cell patterning.

    PubMed

    Deguchi, Shinji; Nagasawa, Yohei; Saito, Akira C; Matsui, Tsubasa S; Yokoyama, Sho; Sato, Masaaki

    2014-03-01

    The micropatterning of cells, which restricts the adhesive regions on the substrate and thus controls cell geometry, is used to study mechanobiology-related cell functions. Plasma lithography is a means of providing such patterns and uses a spatially-selective plasma treatment. Conventional plasma lithography employs a positionally-fixed mask with which the geometry of the patterns is determined and thus is not suited for producing on-demand geometries of patterns. To overcome this, we have manufactured a new device with a motorized mask mounted in a vacuum chamber of a plasma generator, which we designate motorized plasma lithography. Our pilot tests indicate that various pattern geometries can be obtained with the control of a shielding mask during plasma treatment. Our approach can thus omit the laborious process of preparing photolithographically microfabricated masks required for the conventional plasma lithography.

  10. Towards Stratified Medicine in Plasma Cell Myeloma

    PubMed Central

    Egan, Philip; Drain, Stephen; Conway, Caroline; Bjourson, Anthony J.; Alexander, H. Denis

    2016-01-01

    Plasma cell myeloma is a clinically heterogeneous malignancy accounting for approximately one to 2% of newly diagnosed cases of cancer worldwide. Treatment options, in addition to long-established cytotoxic drugs, include autologous stem cell transplant, immune modulators, proteasome inhibitors and monoclonal antibodies, plus further targeted therapies currently in clinical trials. Whilst treatment decisions are mostly based on a patient’s age, fitness, including the presence of co-morbidities, and tumour burden, significant scope exists for better risk stratification, sub-classification of disease, and predictors of response to specific therapies. Clinical staging, recurring acquired cytogenetic aberrations, and serum biomarkers such as β-2 microglobulin, and free light chains are in widespread use but often fail to predict the disease progression or inform treatment decision making. Recent scientific advances have provided considerable insight into the biology of myeloma. For example, gene expression profiling is already making a contribution to enhanced understanding of the biology of the disease whilst Next Generation Sequencing has revealed great genomic complexity and heterogeneity. Pathways involved in the oncogenesis, proliferation of the tumour and its resistance to apoptosis are being unravelled. Furthermore, knowledge of the tumour cell surface and its interactions with bystander cells and the bone marrow stroma enhance this understanding and provide novel targets for cell and antibody-based therapies. This review will discuss the development in understanding of the biology of the tumour cell and its environment in the bone marrow, the implementation of new therapeutic options contributing to significantly improved outcomes, and the progression towards more personalised medicine in this disorder. PMID:27775669

  11. Interactions between plasma proteins and naturally occurring polyphenols.

    PubMed

    Li, Min; Hagerman, Ann E

    2013-05-01

    The plant natural products known as polyphenols are found at micronutrient levels in fruits, vegetables, and plant-based beverages such as wine, tea, coffee and cocoa. Consumption of a fruit- and vegetable-rich diet, the "Mediterranean diet", has been epidemiologically related to health benefits especially for chronic diseases including diabetes, cardiovascular disease, and Alzheimer's disease. The abundance of polyphenols in plant-rich diets, and the potent bioactivities of polyphenols, provide indirect evidence for a role for polyphenols in maintaining good health. However, molecular mechanisms for therapeutic or preventative activity have not been demonstrated in vivo. We summarize the chemical classes of natural polyphenols, their bioactivities and bioavailability and metabolism. Because many polyphenols bind protein, we focus on the potential of protein binding to mediate the health-related effects of polyphenols. We discuss interactions with plasma proteins as the first target organ past the digestive tract for these orally-ingested compounds.

  12. Exploring the stochastic dynamics of correlated movement of receptor proteins in plasma membranes in vivo

    SciTech Connect

    Huang, Jung Y.; Lin, Chien Y.

    2015-12-14

    Ligand-induced receptor dimerization plays a crucial role in the signaling process of living cells. In this study, we developed a theoretical model and performed single-molecule tracking to explore the correlated diffusion processes of liganded epidermal growth factor receptors prior to dimer formation. We disclosed that both an attractive potential between liganded receptor proteins in proximity and correlated fluctuations in the local environments of the proteins play an important role to produce the observed correlated movement of the receptors. This result can serve as the foundation to shed light on the way in which receptor functions are regulated in plasma membranes in vivo.

  13. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  14. [Immunodiffusion analysis of plasma proteins in the canine family].

    PubMed

    Baranov, O K; Iurishina, N A; Savina, M A

    1976-01-01

    Immunodiffusion studies have been made on the plasma of 9 species (Vulpes vulpes, V. corsak, Alopex lagopus, Canis aureus, C. lupus, C. familiaris, C. dingo, Nyctereutes procynoides, Fennecus zerde) from the family of Canidae using milk antisera. Unlike rabbit antisera used earlier, milk antisera make it possible to detect more significant antigenic divergency with respect to 5 alpha- and beta-globulins. These globulins seem to have a higher evolution rate of antigenic mosaics as compared to other plasma proteins in the family investigated. The family Canidae serologically may be divided into two main groups: 1) the genus Canis which includes the wolf, domestic dog, dingo, jackal and 2) species which significantly differ from the former (the fox, polar fox, dog fox, fennec). In relation to these two groups, the raccoon dog occupies special position.

  15. Responses of cells in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kano, Hiroyuki; Okazaki, Yasumasa; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-09-01

    Plasma consists of electrons, ions, radicals, and lights, and produces various reactive species in gas and liquid phase. Cells receive various inputs from their circumstances, and induce several physiological outputs. Our goal is to clarify the relationships between plasma inputs and physiological outputs. Plasma-activated medium (PAM) is a circumstance that plasma provides cells and our previous studies suggest that PAM is a promising tool for cancer therapy. However, the mode of actions remains to be elucidated. We propose survival and proliferation signaling networks as well as redox signaling networks are key factors to understand cellular responses of PAM-treated glioblastoma cells.

  16. Changes in total plasma content of electrolytes and proteins with maximal exercise.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.; Strand, J. C.; Petrofsky, J. S.; Hipskind, S. G.; Greenleaf, J. E.

    1973-01-01

    To determine to what extent the increases in concentration of plasma proteins and electrolytes with short maximal work were a result of hemoconcentration, the changes in plasma volume and total content of the plasma constituents were simultaneously evaluated. The results obtained from six human subjects indicated that in comparison to preexercise values there was a net decrease in total content of plasma protein, sodium, and chloride in the first 2 min of the postexercise period, due primarily to a significant loss (13-15%) of plasma fluid. The total plasma potassium content was increased immediately after exercise but was significantly below the preexercise plasma content after 2 min of recovery.

  17. Syntaxin-4 is essential for IgE secretion by plasma cells

    SciTech Connect

    Rahman, Arman; DeCourcey, Joseph; Larbi, Nadia Ben; Loughran, Sinéad T.; Walls, Dermot; Loscher, Christine E.

    2013-10-11

    Highlights: •Knock-down of syntaxin-4 in U266 plasma cells resulted in reduction of IgE secretion. •Knock-down of syntaxin-4 also leads to the accumulation of IgE in the cell. •Immuno-fluorescence staining shows co-localisation of IgE and syntaxin-4 in U266 cells. •Findings suggest a critical requirement for syntaxin-4 in IgE secretion from plasma cells. -- Abstract: The humoral immune system provides a crucial first defense against the invasion of microbial pathogens via the secretion of antigen specific immunoglobulins (Ig). The secretion of Ig is carried out by terminally differentiated B-lymphocytes called plasma cells. Despite the key role of plasma cells in the immune response, the mechanisms by which they constitutively traffic large volumes of Ig out of the cell is poorly understood. The involvement of Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in the regulation of protein trafficking from cells has been well documented. Syntaxin-4, a member of the Qa SNARE syntaxin family has been implicated in fusion events at the plasma membrane in a number of cells in the immune system. In this work we show that knock-down of syntaxin-4 in the multiple myeloma U266 human plasma cell line results in a loss of IgE secretion and accumulation of IgE within the cells. Furthermore, we show that IgE co-localises with syntaxin-4 in U266 plasma cells suggesting direct involvement in secretion at the plasma membrane. This study demonstrates that syntaxin-4 plays a critical role in the secretion of IgE from plasma cells and sheds some light on the mechanisms by which these cells constitutively traffic vesicles to the surface for secretion. An understanding of this machinery may be beneficial in identifying potential therapeutic targets in multiple myeloma and autoimmune disease where over-production of Ig leads to severe pathology in patients.

  18. Effects of microwave resonance therapy on erythrocyte and plasma proteins and lipids in alcoholics.

    PubMed

    Patisheva, E V; Prokopyeva, V D; Bokhan, N A

    2009-07-01

    The content of lipid peroxides and protein carbonyls in erythrocytes and plasma were elevated in patients with alcoholism during abstinence. A course of microwave resonance therapy reduced the level of lipid peroxide in erythrocytes, but not in the plasma, and significantly decreased the content of protein carbonyls in the plasma and erythrocytes.

  19. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  20. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  1. Magnetic bead isolation of neutrophil plasma membranes and quantification of membrane-associated guanine nucleotide binding proteins.

    PubMed

    Chang, Peter S; Absood, Afaf; Linderman, Jennifer J; Omann, Geneva M

    2004-02-15

    A protocol for isolation of neutrophil plasma membranes utilizing a plasma membrane marker antibody, anti-CD15, attached to superparamagnetic beads was developed. Cells were initially disrupted by nitrogen cavitation and then incubated with anti-CD15 antibody-conjugated superparamagnetic beads. The beads were then washed to remove unbound cellular debris and cytosol. Recovered plasma membranes were quantified by immunodetection of G(beta2) in Western blots. This membrane marker-based separation yielded highly pure plasma membranes. This protocol has advantages over standard density sedimentation protocols for isolating plasma membrane in that it is faster and easily accommodates cell numbers as low as 10(6). These methods were coupled with immunodetection methods and an adenosine 5(')-diphosphate-ribosylation assay to measure the amount of membrane-associated G(ialpha) proteins available for receptor coupling in neutrophils either stimulated with N-formyl peptides or treated to differing degrees with pertussis toxin. As expected, pertussis toxin treatment decreased the amount of membrane G protein available for signaling although total membrane G protein was not affected. In addition, activation of neutrophils with N-formyl peptides resulted in an approximately 50% decrease in G protein associated with the plasma membrane.

  2. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease.

    PubMed

    Goetzl, Edward J; Mustapic, Maja; Kapogiannis, Dimitrios; Eitan, Erez; Lobach, Irina V; Goetzl, Laura; Schwartz, Janice B; Miller, Bruce L

    2016-11-01

    Efficient intercellular transfer of RNAs, proteins, and lipids as protected exosomal cargo has been demonstrated in the CNS, but distinct physiologic and pathologic roles have not been well defined for this pathway. The capacity to isolate immunochemically human plasma neuron-derived exosomes (NDEs), containing neuron-specific cargo, has permitted characterization of CNS-derived exosomes in living humans. Constituents of the amyloid β-peptide (Aβ)42-generating system now are examined in 2 distinct sets of human neural cells by quantification in astrocyte-derived exosomes (ADEs) and NDEs, enriched separately from plasmas of patients with Alzheimer's disease (AD) or frontotemporal dementia (FTD) and matched cognitively normal controls. ADE levels of β-site amyloid precursor protein-cleaving enzyme 1 (BACE-1), γ-secretase, soluble Aβ42, soluble amyloid precursor protein (sAPP)β, sAPPα, glial-derived neurotrophic factor (GDNF), P-T181-tau, and P-S396-tau were significantly (3- to 20-fold) higher than levels in NDEs for patients and controls. BACE-1 levels also were a mean of 7-fold higher in ADEs than in NDEs from cultured rat type-specific neural cells. Levels of BACE-1 and sAPPβ were significantly higher and of GDNF significantly lower in ADEs of patients with AD than in those of controls, but not significantly different in patients with FTD than in controls. Abundant proteins of the Aβ42 peptide-generating system in ADEs may sustain levels in neurons. ADE cargo proteins may be useful for studies of mechanisms of cellular interactions and effects of BACE-1 inhibitors in AD.-Goetzl, E. J., Mustapic, M., Kapogiannis, D., Eitan, E., Lobach, I. V., Goetzl, L., Schwartz, J. B., Miller, B. L. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease.

  3. Plasma IgG autoantibody against actin-related protein 3 in liver fluke Opisthorchis viverrini infection.

    PubMed

    Rucksaken, R; Haonon, O; Pinlaor, P; Pairojkul, C; Roytrakul, S; Yongvanit, P; Selmi, C; Pinlaor, S

    2015-07-01

    Opisthorchiasis secondary to Opisthorchis viverrini infection leads to cholangiocellular carcinoma through chronic inflammation of the bile ducts and possibly inducing autoimmunity. It was hypothesized that plasma autoantibodies directed against self-proteins are biomarkers for opisthorchiasis. Plasma from patients with opisthorchiasis was tested using proteins derived from immortalized cholangiocyte cell lines, and spots reacting with plasma were excised and subjected to LC-MS/MS. Seven protein spots were recognized by IgG autoantibodies, and the highest matching scored protein was actin-related protein 3 (ARP3). The antibody against ARP3 was tested in plasma from 55 O. viverrini-infected patients, 24 patients with others endemic parasitic infections and 17 healthy controls using Western blot and ELISA. Immunoreactivity against recombinant ARP3 was significantly more prevalent in opisthorchiasis compared to healthy controls at Western blotting and ELISA (P < 0.05). Plasma ARP3 autoantibody titres were also higher in opisthorchiasis compared to healthy individuals (P < 0.01) and other parasitic infections including Strongyloides stercoralis (P < 0.001), echinostome (P < 0.05), hookworms (P < 0.001) and Taenia spp. (P < 0.05). It was further characterized in that the ARP3 autoantibody titre had a sensitivity of 78.18% and specificity of 100% for opisthorchiasis. In conclusion, it may be suggested that plasma anti-ARP3 might represent a new diagnostic antibody for opisthorchiasis.

  4. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    PubMed

    Sobczynski, Daniel J; Charoenphol, Phapanin; Heslinga, Michael J; Onyskiw, Peter J; Namdee, Katawut; Thompson, Alex J; Eniola-Adefeso, Omolola

    2014-01-01

    The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid) (PLGA) spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer) is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  5. Characterization of antibody binding to cell surface antigens using a plasma membrane-bound plate assay.

    PubMed

    Vater, C A; Reid, K; Bartle, L M; Goldmacher, V S

    1995-01-01

    A procedure has been developed for measuring antibody binding to cell surface antigens using an immobilized plasma membrane fraction. In this method, isolated plasma membranes are dried onto wells of a 96-well microtiter plate and incubated with antibodies that recognize a cell surface protein. Bound antibody is detected indirectly using an enzyme-linked or fluorescently tagged second antibody. Alternatively, the primary antibody itself can be labeled and its binding can be detected directly. The assay is simple and fast and provides several advantages over whole cell binding assays currently in widespread use.

  6. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  7. Plasma proteins interaction with curcumin nanoparticles: implications in cancer therapeutics.

    PubMed

    Yallapu, Murali M; Ebeling, Mara C; Jaggi, Meena; Chauhan, Subhash C

    2013-05-01

    Curcumin, a natural bioactive polyphenol, has been widely investigated as a conventional medicine for centuries. Over the past two decades, major pre-clinical and clinical trials have demonstrated its safe therapeutic profile but clinical translation has been hampered due to rapid degradation, poor water solubility, bioavailability and pharmaco-kinetics. To overcome such translational issues, many laboratories have focused on developing curcumin nanoformulations for cancer therapeutics. In this review, we discuss the evolution of curcumin nanomedicine in cancer therapeutics, the possible interactions between the surface of curcumin nanoparticles and plasma proteins, the role of nanoparticle-protein complex architecture parameters, and the rational design of clinically useful curcumin nanoformulations. Considering all the biologically relevant phenomena, curcumin nanoformulations can be developed as a new neutraceutical or pharmaceutical agent.

  8. Plasma protein insudation as an index of early coronary atherogenesis.

    PubMed Central

    Zhang, Y.; Cliff, W. J.; Schoefl, G. I.; Higgins, G.

    1993-01-01

    Two hundred ninety-nine paraffin-embedded coronary artery blocks from 68 autopsy cases were serially sectioned. The blocks were selected to provide a range from normal through various stages of atherosclerosis, and sections were examined with the indirect immunofluorescence technique for intramural distribution of plasma albumin, fibrinogen, and immunoglobulin gamma (IgG). Cryostat-sections of 44 blocks from 22 of the same cases were examined with the same technique for distribution of apolipoprotein B. Alteration of protein insudation in the artery wall was a sensitive index of coronary atherogenesis. The sequence in which these proteins were involved in the initiation and development of early atherosclerotic lesions was analyzed by determining the average relative intimal thickness and relative lumen size that was associated with the first occurrence of altered insudation of each of these proteins. Results indicate that changed plasma albumin insudation is the earliest sign of a focal intimal lesion, and increasing albumin insudation shows the strongest association with intimal plaque growth. The other proteins tested showed altered insudation, in the order IgG, fibrinogen, apolipoprotein B. The results indicate that a progressive increase in permeability of the coronary artery endothelium occurs in the early stages of atherogenesis. Patterns of IgG localization provide evidence of both early systemic and subsequent local immune reactions being involved in atherogenesis. Altered albumin and apolipoprotein B insudation levels have stronger correlation coefficients with relative intimal thickness and relative lumen size than do those IgG and fibrinogen. The extremely high correlation coefficients shown by albumin emphasizes the importance of edema in determining plaque size and lumen stenosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8342598

  9. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  10. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action

    PubMed Central

    2016-01-01

    Biologically active steroids are transported in the blood by albumin, sex hormone-binding globulin (SHBG), and corticosteroid-binding globulin (CBG). These plasma proteins also regulate the non-protein-bound or ‘free’ fractions of circulating steroid hormones that are considered to be biologically active; as such, they can be viewed as the ‘primary gatekeepers of steroid action’. Albumin binds steroids with limited specificity and low affinity, but its high concentration in blood buffers major fluctuations in steroid concentrations and their free fractions. By contrast, SHBG and CBG play much more dynamic roles in controlling steroid access to target tissues and cells. They bind steroids with high (~nM) affinity and specificity, with SHBG binding androgens and estrogens and CBG binding glucocorticoids and progesterone. Both are glycoproteins that are structurally unrelated, and they function in different ways that extend beyond their transportation or buffering functions in the blood. Plasma SHBG and CBG production by the liver varies during development and different physiological or pathophysiological conditions, and abnormalities in the plasma levels of SHBG and CBG or their abilities to bind steroids are associated with a variety of pathologies. Understanding how the unique structures of SHBG and CBG determine their specialized functions, how changes in their plasma levels are controlled, and how they function outside the blood circulation provides insight into how they control the freedom of steroids to act in health and disease. PMID:27113851

  11. Differential effects of lenalidomide during plasma cell differentiation

    PubMed Central

    Jourdan, Michel; Cren, Maïlys; Schafer, Peter; Robert, Nicolas; Duperray, Christophe; Vincent, Laure; Ceballos, Patrice; Cartron, Guillaume; Rossi, Jean-François; Moreaux, Jérôme; Chopra, Rajesh; Klein, Bernard

    2016-01-01

    Thalidomide, lenalidomide and pomalidomide have greatly improved the outcome of patients with multiple myeloma. However, their effects on plasma cells, the healthy counterpart of myeloma cells, are unknown. Here, we investigated lenalidomide effects on normal human plasma cell generation using an in vitro model. Lenalidomide inhibited the generation of pre-plasmablasts and early plasma cells, while it moderately affected plasmablast production. It also reduced the expression level of Ikaros, Aiolos, and IRF4 transcription factors, in plasmablasts and early plasma cells. This suggests that their differential sensitivity to lenalidomide is not due to a difference in Ikaros or Aiolos degradation. Lenalidomide also inhibited long-lived plasma cell generation, but did not impair their long-term survival once generated. This last observation is in agreement with the finding that lenalidomide treatment for 3-18 months did not affect the bone marrow healthy plasma cell count in allografted patients with multiple myeloma. Our findings should prompt to investigate whether lenalidomide resistance in patients with multiple myeloma could be associated with the emergence of malignant plasmablasts or long-lived plasma cells that are less sensitive to lenalidomide. PMID:27057635

  12. Differential effects of lenalidomide during plasma cell differentiation.

    PubMed

    Jourdan, Michel; Cren, Maïlys; Schafer, Peter; Robert, Nicolas; Duperray, Christophe; Vincent, Laure; Ceballos, Patrice; Cartron, Guillaume; Rossi, Jean-François; Moreaux, Jérôme; Chopra, Rajesh; Klein, Bernard

    2016-05-10

    Thalidomide, lenalidomide and pomalidomide have greatly improved the outcome of patients with multiple myeloma. However, their effects on plasma cells, the healthy counterpart of myeloma cells, are unknown. Here, we investigated lenalidomide effects on normal human plasma cell generation using an in vitro model. Lenalidomide inhibited the generation of pre-plasmablasts and early plasma cells, while it moderately affected plasmablast production. It also reduced the expression level of Ikaros, Aiolos, and IRF4 transcription factors, in plasmablasts and early plasma cells. This suggests that their differential sensitivity to lenalidomide is not due to a difference in Ikaros or Aiolos degradation. Lenalidomide also inhibited long-lived plasma cell generation, but did not impair their long-term survival once generated. This last observation is in agreement with the finding that lenalidomide treatment for 3-18 months did not affect the bone marrow healthy plasma cell count in allografted patients with multiple myeloma. Our findings should prompt to investigate whether lenalidomide resistance in patients with multiple myeloma could be associated with the emergence of malignant plasmablasts or long-lived plasma cells that are less sensitive to lenalidomide.

  13. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane.

    PubMed

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.

  14. Development of plasma apparatus for plasma irradiation to living cell model

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Kato, Ryo; Tanoue, Hideto; Takikawa, Hirofumi; Tero, Ryugo

    2012-10-01

    Atmospheric pressure plasma has been studied for the industrial applications of biotechnology and medical care. For the development of these fields, understanding the influence of atmospheric pressure plasma on living cell and the mechanism of cell death is necessary. We focus on a basic structure of cell membrane, called lipid bilayer. Lipid bilayer is composed of lipid molecules with an amphipathic property and can be formed on hydrophilic substrates. In this paper, we report the development of the plasma apparatus for the treatment of lipid bilayer. The plasma apparatus uses a typical dielectric barrier discharge (DBD) system and employs parallel plate electrodes with a gap distance of 1 mm [1]. Each electrode is covered with a quartz plate and the substrate temperature is kept constant by cooling medium. The lower quartz electrode has a dimple, in which the substrate coated with a lipid bilayer and buffer fluid are mounted. [4pt] [1] Y. Sugioka, et al, IEEE Trans. Plasma Sci., in press

  15. Heterogeneous interactome between Litopenaeus vannamei plasma proteins and Vibrio parahaemolyticus outer membrane proteins.

    PubMed

    Liu, Xiang; She, Xin-Tao; Zhu, Qing-Feng; Li, Hui; Peng, Xuan-Xian

    2013-01-01

    A great loss has been suffered by microbial infectious diseases under intensive shrimp farming in recent years. In this background, the understanding of shrimp innate immunity becomes an importantly scientific issue, but little is known about the heterogeneous protein-protein interaction between pathogenic cells and hosts, which is a key step for the invading microbes to infect internet organs through bloodstream. In the present study, bacterial outer membrane (OM) protein array and pull-down approaches are used to isolate both Vibrio parahaemolyticus OM proteins that bind to shrimp serum proteins and the shrimp serum proteins that interact with bacterial cells, respectively. Three interacting shrimp serum proteins, hemocyanin, β-1,3-glucan binding protein and LV_HP_RA36F08r and thirty interacting OM proteins were determined. They form 63 heterogeneous protein-protein interactions. Nine out of the 30 OM proteins were randomly demonstrated to be up-regulated or down-regulated when bacterial cells were cultured with shrimp sera, indicating the biological significance of the network. The interesting findings uncover the complexity of struggle between host immunity and bacterial infection. Compared with our previous report on heterogeneous interactome between fish grill and bacterial OM proteins, the present study further extends the investigation from lower vertebrates to invertebrates and develops a bacterial OM protein array to identify the OM proteins bound with shrimp serum proteins, which elevates the frequencies of the bound OM proteins. Our results highlight the way to determine and understand the heterogeneous interaction between hosts and microbes.

  16. Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering.

    PubMed

    Shimizu, Kazunori; Fujita, Hideaki; Nagamori, Eiji

    2010-06-01

    Although cell sheet tissue engineering is a potent and promising method for tissue engineering, an increase of mechanical strength of a cell sheet is needed for easy manipulation of it during transplantation or 3D tissue fabrication. Previously, we developed a cell sheet-polymer film complex that had enough mechanical strength that can be manipulated even by tweezers (Fujita et al., 2009. Biotechnol Bioeng 103(2): 370-377). We confirmed the polymer film involving a temperature sensitive polymer and extracellular matrix (ECM) proteins could be removed by lowering temperature after transplantation, and its potential use in regenerative medicine was demonstrated. However, the use of ECM proteins conflicted with high stability in long-term storage and low cost. In the present study, to overcome these drawbacks, we employed the oxygen plasma treatment instead of using the ECM proteins. A cast and dried film of thermoresponsive poly-N-isopropylacrylamide (PNIPAAm) was fabricated and treated with high-intensity oxygen plasma. The cells became possible to adhere to the oxygen plasma-treated PNIPAAm surface, whereas could not to the inherent surface of bulk PNIPAAm without treatment. Characterizations of the treated surface revealed the surface had high stability. The surface roughness, wettability, and composition were changed, depending on the plasma intensity. Interestingly, although bulk PNIPAAm layer had thermoresponsiveness and dissolved below lower critical solution temperature (LCST), it was found that the oxygen plasma-treated PNIPAAm surface lost its thermoresponsiveness and remained insoluble in water below LCST as a thin layer. Skeletal muscle C2C12 cells could be cultured on the oxygen plasma-treated PNIPAAm surface, a skeletal muscle cell sheet with the insoluble thin layer could be released in the medium, and thus the possibility of use of the cell sheet for transplantation was demonstrated.

  17. Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds

    NASA Astrophysics Data System (ADS)

    Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu

    2013-11-01

    The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.

  18. The effect of polycarboxylate shell of magnetite nanoparticles on protein corona formation in blood plasma

    NASA Astrophysics Data System (ADS)

    Szekeres, Márta; Tóth, Ildikó Y.; Turcu, R.; Tombácz, Etelka

    2017-04-01

    The development of protein corona around nanoparticles upon administration to the human body is responsible in a large part for their biodistribution, cell-internalization and toxicity or biocompatibility. We studied the influence of the chemical composition of polyelectrolyte shells (citric acid (CA) and poly(acrylic-co-maleic acid) (PAM)) of core-shell magnetite nanoparticles (MNPs) on the evolution of protein corona in human plasma (HP). The aggregation state and zeta potential of the particles were measured in the range of HP concentration between 1 and 80 (v/v)% 3 min and 20 h after dispersing the particles in HP diluted with Tris buffered saline. Naked MNPs aggregated in HP solution, but the carboxylated MNPs became stabilized colloidally at higher plasma concentrations. Significant differences were observed at low plasma concentration. CA@MNPs aggregated instantly while the hydrodynamic diameter of PAM@MNP increased only slightly at 1-3 v/v % HP concentrations. The observed differences in protein corona formation can be explained by the differences in the steric effects of the polycarboxylate shells. It is interesting that relatively small but systematic changes in zeta potential alter the aggregation state significantly.

  19. RPE cell surface proteins in normal and dystrophic rats

    SciTech Connect

    Clark, V.M.; Hall, M.O.

    1986-02-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE.

  20. A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate.

    PubMed

    Bollineni, Ravi Chand; Guldvik, Ingrid J; Grönberg, Henrik; Wiklund, Fredrik; Mills, Ian G; Thiede, Bernd

    2015-12-21

    Depletion of highly abundant proteins is an approved step in blood plasma analysis by mass spectrometry (MS). In this study, we explored a precipitation and differential protein solubility approach as a fractionation strategy for abundant protein removal from plasma. Total proteins from plasma were precipitated with 90% saturated ammonium sulfate, followed by differential solubilization in 55% and 35% saturated ammonium sulfate solutions. Using a four hour liquid chromatography (LC) gradient and an LTQ-Orbitrap XL mass spectrometer, a total of 167 and 224 proteins were identified from the 55% and 35% ammonium sulfate fractions, whereas 235 proteins were found in the remaining protein fractions with at least two unique peptides. SDS-PAGE and exclusive total spectrum counts from LC-MS/MS analyses clearly showed that majority of the abundant plasma proteins were solubilized in 55% and 35% ammonium sulfate solutions, indicating that the remaining protein fraction is of potential interest for identification of less abundant plasma proteins. Serum albumin, serotransferrin, alpha-1-antitrypsin and transthyretin were the abundant proteins that were highly enriched in 55% ammonium sulfate fractions. Immunoglobulins, complement system proteins, and apolipoproteins were among other abundant plasma proteins that were enriched in 35% ammonium sulfate fractions. In the remaining protein fractions a total of 40 unique proteins were identified of which, 32 proteins were identified with at least 10 exclusive spectrum counts. According to PeptideAtlas, 9 of these 32 proteins were estimated to be present at low μg ml(-1) (0.12-1.9 μg ml(-1)) concentrations in the plasma, and 17 at low ng ml(-1) (0.1-55 ng ml(-1)) range.

  1. Exogenous nitric oxide (NO) generated by NO-plasma treatment modulates osteoprogenitor cells early differentiation

    NASA Astrophysics Data System (ADS)

    Elsaadany, Mostafa; Subramanian, Gayathri; Ayan, Halim; Yildirim-Ayan, Eda

    2015-09-01

    In this study, we investigated whether nitric oxide (NO) generated using a non-thermal plasma system can mediate osteoblastic differentiation of osteoprogenitor cells without creating toxicity. Our objective was to create an NO delivery mechanism using NO-dielectric barrier discharge (DBD) plasma that can generate and transport NO with controlled concentration to the area of interest to regulate osteoprogenitor cell activity. We built a non-thermal atmospheric pressure DBD plasma nozzle system based on our previously published design and similar designs in the literature. The electrical and spectral analyses demonstrated that N2 dissociated into NO under typical DBD voltage-current characteristics. We treated osteoprogenitor cells (MC3T3-E1) using NO-plasma treatment system. Our results demonstrated that we could control NO concentration within cell culture media and could introduce NO into the intracellular space using NO-plasma treatment with various treatment times. We confirmed that NO-plasma treatment maintained cell viability and did not create any toxicity even with prolonged treatment durations. Finally, we demonstrated that NO-plasma treatment induced early osteogenic differentiation in the absence of pro-osteogenic growth factors/proteins. These findings suggest that through the NO-plasma treatment system we are able to generate and transport tissue-specific amounts of NO to an area of interest to mediate osteoprogenitor cell activity without subsequent toxicity. This opens up the possibility to develop DBD plasma-assisted tissue-specific NO delivery strategies for therapeutic intervention in the prevention and treatment of bone diseases.

  2. Activation of cellular chemotactic responses to chemokines coupled with oxidation of plasma membrane proteins by lysyl oxidase.

    PubMed

    Lucero, Héctor A; Mäki, Joni M; Kagan, Herbert M

    2011-07-01

    Lysyl oxidase (LOX) is a potent chemokine inducing the migration of varied cell types. Here we demonstrate that inhibition of cellular LOX activity by preincubation of vascular smooth muscle cells (VSMC) with β-aminopropionitrile (BAPN), the irreversible inhibitor of LOX activity, resulted in the marked suppression of the chemotactic response and sensitivity of these cells toward LOX and toward PDGF-BB. Plasma membranes purified from VSMC not previously exposed to BAPN contained a group of oxidized plasma membrane proteins, including the PDGF receptor, PDGFR-β. The oxidation of this receptor and other membrane proteins was largely prevented in cells preincubated with BAPN. Addition of purified LOX to BAPN-free cells, which had been previously exposed to BAPN, restored the profile of oxidized proteins towards that of control cells. The high affinity and capacity for the binding of PDGF-BB by cells was significantly diminished when compared with cells in which oxidation by LOX was prevented by BAPN. The chemotactic responses of LOX knock-out mouse embryonic fibroblasts mirrored those obtained with VSMC treated with BAPN. These novel findings suggest that LOX activity is essential to generate optimal chemotactic sensitivity of cells to chemoattractants by oxidizing specific cell surface proteins, such as PDGFR-β.

  3. Nanoparticles-cell association predicted by protein corona fingerprints

    NASA Astrophysics Data System (ADS)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  4. Properties of proteins binding plasma progesterone in pregnant Cape porcupines (Hystrix africaeaustralis).

    PubMed

    Louw, A I; van Wyk, V; van Aarde, R J

    1992-09-01

    The properties of progesterone-binding proteins in plasma of pregnant Cape porcupines were investigated using radiolabelled progesterone and either progesterone or cortisol as competing ligands as well as native plasma and heated (60 degrees C for 30 min) plasma. The results demonstrated that plasma from pregnant porcupines contains corticosteroid-binding globulin, but that it constitutes a significant portion of plasma progesterone-binding proteins only during the early stages of pregnancy. Corticosteroid-binding globulin of porcupines appears to be as heat labile as that of guinea-pigs. Concentrations of progesterone-binding proteins in plasma increased during pregnancy to reach concentrations at the eleventh week that were 25 times higher than those of progesterone; concentrations increased significantly (r2 = 0.88) with the increase in progesterone concentration. The results indicate that plasma progesterone-binding proteins in Cape porcupines (Old World hystricomorph) are similar in composition to those in guinea-pigs (New World hystricomorph).

  5. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    PubMed

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  6. Yeast mutants affecting possible quality control of plasma membrane proteins.

    PubMed

    Li, Y; Kane, T; Tipper, C; Spatrick, P; Jenness, D D

    1999-05-01

    Mutations gef1, stp22, STP26, and STP27 in Saccharomyces cerevisiae were identified as suppressors of the temperature-sensitive alpha-factor receptor (mutation ste2-3) and arginine permease (mutation can1(ts)). These suppressors inhibited the elimination of misfolded receptors (synthesized at 34 degrees C) as well as damaged surface receptors (shifted from 22 to 34 degrees C). The stp22 mutation (allelic to vps23 [M. Babst and S. Emr, personal communication] and the STP26 mutation also caused missorting of carboxypeptidase Y, and ste2-3 was suppressed by mutations vps1, vps8, vps10, and vps28 but not by mutation vps3. In the stp22 mutant, both the mutant and the wild-type receptors (tagged with green fluorescent protein [GFP]) accumulated within an endosome-like compartment and were excluded from the vacuole. GFP-tagged Stp22p also accumulated in this compartment. Upon reaching the vacuole, cytoplasmic domains of both mutant and wild-type receptors appeared within the vacuolar lumen. Stp22p and Gef1p are similar to tumor susceptibility protein TSG101 and voltage-gated chloride channel, respectively. These results identify potential elements of plasma membrane quality control and indicate that cytoplasmic domains of membrane proteins are translocated into the vacuolar lumen.

  7. Interaction of mammalian seminal plasma protein PDC-109 with cholesterol: implications for a putative CRAC domain.

    PubMed

    Scolari, Silvia; Müller, Karin; Bittman, Robert; Herrmann, Andreas; Müller, Peter

    2010-10-26

    Seminal plasma proteins of the fibronectin type II (Fn2) family modulate mammalian spermatogenesis by triggering the release of the lipids phosphatidylcholine and cholesterol from sperm cells. Whereas the specific interaction of these proteins with phosphatidylcholine is well-understood, their selectivity for cholesterol is unknown. To characterize the interaction between the bovine Fn2 protein PDC-109 and cholesterol, we have investigated the effect of PDC-109 on the dynamics of fluorescent cholesterol analogues in lipid vesicles by time-resolved fluorescence anisotropy. The data show that PDC-109 decreases the rotational mobility of cholesterol within the membrane and that the extent of this impact depends on the cholesterol structure, indicating a specific influence of PDC-109 on cholesterol. We propose that the cholesterol recognition/interaction amino acid consensus (CRAC) regions of PDC-109 are involved in the interaction with cholesterol.

  8. Protein transduction: cell penetrating peptides and their therapeutic applications.

    PubMed

    Wagstaff, Kylie M; Jans, David A

    2006-01-01

    Cell penetrating proteins or peptides (CPPs) have the ability to cross the plasma membranes of mammalian cells in an apparently energy- and receptor-independent fashion. Although there is much debate over the mechanism by which this "protein transduction" occurs, the ability of CPPs to translocate rapidly into cells is being exploited to deliver a broad range of therapeutics including proteins, DNA, antibodies, oligonucleotides, imaging agents and liposomes in a variety of situations and biological systems. The current review looks at the delivery of many such molecules by various CPPs, and their potential therapeutic application in a wide range of areas. CPP ability to deliver different cargoes in a relatively efficient and non-invasive manner has implications as far reaching as drug delivery, gene transfer, DNA vaccination and beyond. Although many questions remain to be answered and limitations on the use of CPPs exist, it is clear that this emerging technology has much to offer in a clinical setting.

  9. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: Dose–response, mechanisms, and clinical implications

    SciTech Connect

    McGill, Mitchell R.; Lebofsky, Margitta; Norris, Hye-Ryun K.; Slawson, Matthew H.; Bajt, Mary Lynn; Xie, Yuchao; Williams, C. David; Wilkins, Diana G.; Rollins, Douglas E.; Jaeschke, Hartmut

    2013-06-15

    At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used as diagnostic marker of APAP overdose. However, comprehensive dose–response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia–reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter. - Highlights: • Extensive GSH depletion is not required for APAP-protein binding in the liver. • APAP-protein adducts appear in plasma at subtoxic doses. • Proteins are adducted in the cell and secreted out. • Coincidental liver injury increases plasma APAP-protein adducts at subtoxic doses

  10. Seminal plasma proteins of adult boars and correlations with sperm parameters.

    PubMed

    González-Cadavid, Verónica; Martins, Jorge A M; Moreno, Frederico B; Andrade, Tiago S; Santos, Antonio C L; Monteiro-Moreira, Ana Cristina O; Moreira, Renato A; Moura, Arlindo A

    2014-09-15

    The present study was conducted to identify the major seminal plasma protein profile of boars and its associations with semen criteria. Semen samples were collected from 12 adult boars and subjected to evaluation of sperm parameters (motility, morphology, vitality, and percent of cells with intact acrosome). Seminal plasma was obtained by centrifugation, analyzed by two-dimensional SDS-PAGE, and proteins identified by mass spectrometry (electrospray ionization quadrupole time-of-flight). We tested regression models using spot intensities related to the same proteins as independent variables and semen parameters as dependent variables (P ≤ 0.05). One hundred twelve spots were identified in the boar seminal plasma gels, equivalent to 39 different proteins. Spermadhesin porcine seminal protein (PSP)-I and PSP-II, as well as spermadhesins AQN-1, AQN-3 and AWN-1 represented 45.2 ± 8% of the total intensity of all spots. Other proteins expressed in the boar seminal plasma included albumin, complement proteins (complement factor H precursor, complement C3 precursor and adipsin/complement factor D), immunoglobulins (IgG heavy chain precursor, IgG delta heavy chain membrane bound form, IgG gamma-chain, Ig lambda chain V-C region PLC3, and CH4 and secreted domains of swine IgM), IgG-binding proteins, epididymal-specific lipocalin 5, epididymal secretory protein E1 precursor, epididymal secretory glutathione peroxidase precursor, transferrin, lactotransferrin and fibronectin type 1 (FN1). On the basis of the regression analysis, the percentage of sperm with midpiece defects was related to the amount of CH4 and secreted domains of swine IgM and FN1 (r² = 0.58, P = 0.006), IgG-binding protein (r² = 0.41, P = 0.024), complement factor H precursor (r² = 0.61, P = 0.014) and lactadherin (r² = 0.45, P = 0.033). The percentage of sperm with tail defects was also related to CH4 and secreted domains of swine IgM and FN1 (r² = 0.40, P = 0.034), IgG-binding protein (r² = 0

  11. Quantitative analysis of plasma proteins in whole blood-derived fresh frozen plasma prepared with three pathogen reduction technologies.

    PubMed

    Larrea, Luis; Ortiz-de-Salazar, María-Isabel; Martínez, Patricia; Roig, Roberto

    2015-06-01

    Several plasma pathogen reduction technologies (PRT) are currently available. We evaluated three plasma PRT processes: Cerus Amotosalen (AM), Terumo BCT riboflavin (RB) and Macopharma methylene blue (MB). RB treatment resulted in the shortest overall processing time and in the smallest volume loss (1%) and MB treatment in the largest volume loss (8%). MB treatment retained the highest concentrations of factors II, VII, X, IX, Protein C, and Antithrombin and the AM products of factor V and XI. Each PRT process evaluated offered distinct advantages such as procedural simplicity and volume retention (RB) and overall plasma protein retention (MB).

  12. Deglycosylation of serum vitamin D3-binding protein by alpha-N-acetylgalactosaminidase detected in the plasma of patients with systemic lupus erythematosus.

    PubMed

    Yamamoto, N; Naraparaju, V R; Moore, M; Brent, L H

    1997-03-01

    A serum glycoprotein, Gc protein (vitamin D3-binding protein), can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor for MAF. Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates a remarkably high titered macrophage-activating factor (GcMAF). When peripheral blood monocytes/ macrophages (designated macrophages) of 33 systemic lupus erythematosus patients were incubated with GcMAF (100 pg/ml), the macrophages of all patients were activated as determined by superoxide generation. However, the precursor activity of patient plasma Gc protein was lost or reduced in these patients. Loss of the precursor activity was the result of deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase activity found in the patient plasma. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Deglycosylated Gc protein cannot be converted to macro-phage-activating factor. The resulting defect in macro-phage activation may lead to an inability to clear pathogenic immune complexes. Thus, elevated plasma alpha-N-acetylgalactosaminidase activity resulting in the loss of MAF precursor activity and reduced macro-phage activity may play a role in the pathogenesis of systemic lupus erythematosus.

  13. Hemoglobin Depletion from plasma: Considerations for Proteomic Discovery in Sickle Cell Disease and other Hemolytic Processes

    PubMed Central

    Williams, Lisa M.; Fu, Zongming; Dulloor, Pratima; Yen, Timothy; Barron-Casella, Emily; Savage, William; Van Eyk, Jennifer E.; Casella, James F.; Everett, Allen

    2015-01-01

    Purpose Hemoglobin (Hb) depletion with nickel affinity chromatography has been shown to increase the number of proteins identified in proteomic studies of erythrocytes, but limited data exist on the application of this technique in depletion of Hb from plasma or serum required for clinical biomarker studies. The aim of this study was to explore the potential of using nickel-beads for Hb depletion of plasma. Experimental design Nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography was used to deplete Hb from hemolyzed plasma samples obtained from children with sickle cell disease (SCD, n=7) and normal human plasma (n=4). Ni-NTA bound proteins were analyzed by one-dimensional gel electrophoresis, followed by in-gel digestion for characterization using a LTQ-Orbitrap hybrid mass spectrometer. In addition, the loss of two non-hemoglobin related plasma proteins, thrombospondin1 (TSP1) and L-selectin, by Ni-NTA was determined by ELISA (SCD n=6, non-SCD controls n=2). Results Ni-NTA resulted in an average 60% decrease in plasma protein concentration, which was not hemolysis dependent. Specifically, Hb (7 peptides) and the top three proteins, alpha-2-macroglobulin (75 peptides), apolipoprotein B-100 (73 peptides), and albumin (42 peptides) were Ni-NTA bound. In addition, using an ELISA assay two non-hemoglobin associated plasma proteins TSP1 and L-selectin were decreased by Ni-NTA. Conclusions and clinical relevance Hb depletion with Ni-NTA is effective for Hb removal but is not specific. There is potential for deleterious depletion of potential biomarkers that may limit the applicability of this method. Consideration of alternate methods of Hb depletion for clinical proteomics may be warranted. PMID:21179892

  14. Protein composition of seminal plasma in fractionated stallion ejaculates.

    PubMed

    Kareskoski, A M; del Alamo, M M Rivera; Güvenc, K; Reilas, T; Calvete, J J; Rodriguez-Martinez, H; Andersson, M; Katila, T

    2011-02-01

    Seminal plasma (SP) contains several types of compounds derived from the epididymides and accessory glands. The aim of this study was to examine the protein composition of different ejaculate fractions. Trial I: fractionated ejaculates were collected from two normal and two subfertile stallions. Samples containing pre-sperm fluid and the first sperm-rich jets (HIGH-1), the main sperm-rich portion (HIGH-2), the jets with low sperm concentrations (LOW), and a combined whole-ejaculate (WE) sample was centrifuged, and the SP was filtered and frozen. A part of each SP sample was stored (5°C, 24 h) with spermatozoa from HIGH-2 and skim milk extender. Sperm motility was evaluated after storage in extender mixed with the stallion's own SP or SP from one of the other stallions (sperm from a normal stallion stored in SP from a subfertile stallion and vice versa). Protein composition was analysed using reverse-phase liquid chromatography (RP-HPLC), N-terminal sequencing and mass spectrometry. The area-under-the-curve (AUC) was used for quantitative comparison of proteins within fractions. Trial II: semen samples were collected from seven stallions. Fractions with the highest (HIGH) and lowest (LOW) sperm concentrations and WE samples were examined using SDS-PAGE and densitometry. No significant differences emerged between fractions in the AUC-values of the Horse Seminal Protein-1 (HSP-1) and HSP-2 peaks, or the peak containing HSP-3 and HSP-4 (HSP-3/4). Levels of HSP-1, HSP-2 and HSP-3/4 were not significantly correlated with total sperm motility, progressive sperm motility or average path velocity after storage. Significant differences between ejaculate fractions in the amount of different protein groups present in SP were not found in Trial I; but in Trial II, the proteins in the 60-70 kDa range were more abundant in LOW than in HIGH and WE, indicating that this band contained proteins derived mainly from the seminal vesicles, which produce most of the SP in LOW.

  15. Antiviral Resistance Protein Tm-22 Functions on the Plasma Membrane1[OPEN

    PubMed Central

    Chen, Tianyuan; Liu, Dan; Niu, Xiaolin; Qian, Lichao; Han, Lu; Liu, Na; Zhao, Jinping

    2017-01-01

    The tomato Tobacco mosaic virus resistance-22 (Tm-22) gene encodes a coiled-coil-nucleotide binding site-Leu-rich repeat protein lacking a conventional plasma membrane (PM) localization motif. Tm-22 confers plant extreme resistance against tobamoviruses including Tobacco mosaic virus (TMV) by recognizing the avirulence (Avr) viral movement protein (MP). However, the subcellular compartment where Tm-22 functions is unclear. Here, we demonstrate that Tm-22 interacts with TMV MP to form a protein complex at the PM. We show that both inactive and active Tm-22 proteins are localized to the PM. When restricted to PM by fusing Tm-22 to the S-acylated PM association motif, the Tm-22 fusion protein can still induce a hypersensitive response cell death, consistent with its activation at the PM. Through analyses of viral MP mutants, we find that the plasmodesmata (PD) localization of the Avr protein MP is not required for Tm-22 function. These results suggest that Tm-22-mediated resistance takes place on PM without requirement of its Avr protein to be located to PD. PMID:28258211

  16. Total, free, and protein-bound thiols in plasma of peritoneal dialysis and predialysis patients.

    PubMed

    Przemysław, Włodek; Piotr, Książek; Grażyna, Chwatko; Danuta, Kowalczyk-Pachel; Małgorzata, Iciek; Bernadeta, Marcykiewicz; Małgorzata, Suliga; Witold, Smoleński

    2011-12-01

    Thiol compounds such as glutathione, homocysteine, and cysteinyl-glycine are the natural reservoir of reductive capacity of the cells. Chronic renal failure is accompanied by disturbances in redox status of plasma thiols. The aim of the present study was to compare the changes in concentrations of different forms of thiols in plasma of terminal renal failure patients, nondialyzed and on peritoneal dialysis. Total concentrations of different redox forms of thiols were determined by high performance liquid chromatography. We observed that total concentration of glutathione in terminal renal failure patients decreased and total concentration of the remaining thiols in these patients significantly increased. Continuous ambulatory peritoneal dialysis had the following features in comparison with nondialyzed patients: (1) glutathione and cysteine concentration was restored and (2) free fraction of thiols rose, while protein-bound fraction dropped (except for homocysteine). Continuous ambulatory peritoneal dialysis corrects total concentration of glutathione and cysteine, in comparison with nondialyzed patients.

  17. Upregulation of glycolytic enzymes, mitochondrial dysfunction and increased cytotoxicity in glial cells treated with Alzheimer's disease plasma.

    PubMed

    Jayasena, Tharusha; Poljak, Anne; Braidy, Nady; Smythe, George; Raftery, Mark; Hill, Mark; Brodaty, Henry; Trollor, Julian; Kochan, Nicole; Sachdev, Perminder

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each) from healthy controls, individuals with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ) found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia.

  18. Upregulation of Glycolytic Enzymes, Mitochondrial Dysfunction and Increased Cytotoxicity in Glial Cells Treated with Alzheimer’s Disease Plasma

    PubMed Central

    Jayasena, Tharusha; Poljak, Anne; Braidy, Nady; Smythe, George; Raftery, Mark; Hill, Mark; Brodaty, Henry; Trollor, Julian; Kochan, Nicole; Sachdev, Perminder

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each) from healthy controls, individuals with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ) found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia. PMID:25785936

  19. Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response

    PubMed Central

    Dekker, Nick; van Dussen, Laura; Hollak, Carla E. M.; Overkleeft, Herman; Scheij, Saskia; Ghauharali, Karen; van Breemen, Mariëlle J.; Ferraz, Maria J.; Groener, Johanna E. M.; Maas, Mario; Wijburg, Frits A.; Speijer, Dave; Tylki-Szymanska, Anna; Mistry, Pramod K.; Boot, Rolf G.

    2011-01-01

    Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, leads to prominent glucosylceramide accumulation in lysosomes of tissue macrophages (Gaucher cells). Here we show glucosylsphingosine, the deacylated form of glucosylceramide, to be markedly increased in plasma of symptomatic nonneuronopathic (type 1) Gaucher patients (n = 64, median = 230.7nM, range 15.6-1035.2nM; normal (n = 28): median 1.3nM, range 0.8-2.7nM). The method developed for mass spectrometric quantification of plasma glucosylsphingosine is sensitive and robust. Plasma glucosylsphingosine levels correlate with established plasma markers of Gaucher cells, chitotriosidase (ρ = 0.66) and CCL18 (ρ = 0.40). Treatment of Gaucher disease patients by supplementing macrophages with mannose-receptor targeted recombinant glucocerebrosidase results in glucosylsphingosine reduction, similar to protein markers of Gaucher cells. Since macrophages prominently accumulate the lysoglycosphingolipid on glucocerebrosidase inactivation, Gaucher cells seem a major source of the elevated plasma glucosylsphingosine. Our findings show that plasma glucosylsphingosine can qualify as a biomarker for type 1 Gaucher disease, but that further investigations are warranted regarding its relationship with clinical manifestations of Gaucher disease. PMID:21868580

  20. Electrical Diagnostics of a Macroscopic rf Plasma Display Panel Cell

    DTIC Science & Technology

    2003-07-20

    display panel cell B. Caillier, Ph. Guillot, J. Galy, L.C. Pitchford , J.P. Boeuf. Centre de Physique des Plasmas et Applications de Toulouse...Universitd Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France 1. Introduction Although Plasma Display Panels (PDPs) are now produced...these experiments. [4] L.C. Pitchford , J. Kang, C. Punset, and J.P. Boeuf, J. Appl. Phys. 92, 6990 (2002) [5] B. Caillier, et al, "Plasma Display Cell Operating in a RF Regime" ,ESCAMPIG 2002, 1-355. 130

  1. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  2. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins.

    PubMed

    Mellgren, Ronald L

    2008-04-24

    HEK293 cell detergent-resistant membranes (DRMs) isolated by the standard homogenization protocol employing a Teflon pestle homogenizer yielded a prominent opaque band at approximately 16% sucrose upon density gradient ultracentrifugation. In contrast, cell disruption using a ground glass tissue homogenizer generated three distinct DRM populations migrating at approximately 10%, 14%, and 20% sucrose, named DRM subfractions A, B, and C, respectively. Separation of the DRM subfractions by mechanical disruption suggested that they are physically associated within the cellular environment, but can be dissociated by shear forces generated during vigorous homogenization. All three DRM subfractions possessed cholesterol and ganglioside GM1, but differed in protein composition. Subfraction A was enriched in flotillin-1 and contained little caveolin-1. In contrast, subfractions B and C were enriched in caveolin-1. Subfraction C contained several mitochondrial membrane proteins, including mitofilin and porins. Only subfraction B appeared to contain significant amounts of plasma membrane-associated proteins, as revealed by cell surface labeling studies. A similar distribution of DRM subfractions, as assessed by separation of flotillin-1 and caveolin-1 immunoreactivities, was observed in CHO cells, in 3T3-L1 adipocytes, and in HEK293 cells lysed in detergent-free carbonate. Teflon pestle homogenization of HEK293 cells in the presence of the actin-disrupting agent latrunculin B generated DRM subfractions A-C. The microtubule-disrupting agent vinblastine did not facilitate DRM subfraction separation, and DRMs prepared from fibroblasts of vimentin-null mice were present as a single major band on sucrose gradients, unless pre-treated with latrunculin B. These results suggest that the DRM subfractions are interconnected by the actin cytoskeleton, and not by microtubes or vimentin intermediate filaments. The subfractions described may prove useful in studying discrete protein

  3. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR).

    PubMed

    Gallart-Palau, Xavier; Serra, Aida; Wong, Andrew See Weng; Sandin, Sara; Lai, Mitchell K P; Chen, Christopher P; Kon, Oi Lian; Sze, Siu Kwan

    2015-09-30

    Extracellular vesicles (EVs) such as exosomes and microvesicles mediate intercellular communication and regulate a diverse range of crucial biological processes. Host cells that are damaged, infected or transformed release biomarker-containing EVs into the peripheral circulation, where they can be readily accessed for use in diagnostic or prognostic testing. However, current methods of EV isolation from blood plasma are complex and often require relatively large sample volumes, hence are inefficient for widespread use in clinical settings. Here, we report a novel and inexpensive method of rapidly isolating EVs from small volumes of human blood plasma by PRotein Organic Solvent PRecipitation (PROSPR). PROSPR encompasses a rapid three-step protocol to remove soluble proteins from plasma via precipitation in cold acetone, leaving the lipid-encapsulated EVs behind in suspension. This generates higher purity EVs that can then be obtained from filtration or classical ultracentrifugation methods. We foresee that PROSPR-based purification of EVs will significantly accelerate the discovery of new disease biomarkers and the characterization of EVs with potential for clinical applications.

  4. Inhibition of platelet (/sup 3/H)- imipramine binding by human plasma protein fractions

    SciTech Connect

    Strijewski, A.; Chudzik, J.; Tang, S.W.

    1988-01-01

    Inhibition of high-affinity (/sup 3/H)-imipramine binding to platelet membranes by human plasma fractions and isolated plasma proteins was investigated. Several plasma proteins were found to contribute to the observed apparent inhibition and this contribution was assessed in terms of inhibitor units. Alpha/sub 1/ acid glycoprotein, high density and low density lipoprotein, IgG and ..cap alpha../sub 1/-antitrypsin were identified as effective non-specific inhibitors. Alpha-1-acid glycoprotein was confirmed to be the most potent plasma protein inhibitor. Cohn fractions were evaluated for the presence of the postulated endocoid of (/sup 3/H)-imipramine binding site.

  5. Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers.

    PubMed Central

    Pennell, RI; Janniche, L; Kjellbom, P; Scofield, GN; Peart, JM; Roberts, K

    1991-01-01

    We have identified and characterized the temporal and spatial regulation of a plasma membrane arabinogalactan protein epitope during development of the aerial parts of oilseed rape using the monoclonal antibody JIM8. The JIM8 epitope is expressed by the first cells of the embryo and by certain cells in the sexual organs of flowers. During embryogenesis, the JIM8 epitope ceases to be expressed by the embryo proper but is still found in the suspensor. During differentiation of the stamens and carpels, expression of the JIM8 epitope progresses from one cell type to another, ultimately specifying the endothecium and sperm cells, the nucellar epidermis, synergid cells, and the egg cell. This complex temporal sequence demonstrates rapid turnover of the JIM8 epitope. There is no direct evidence for any cell-inductive process in plant development. However, if cell-cell interactions exist in plants and participate in flower development, the JIM8 epitope may be a marker for one set of them. PMID:12324592

  6. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration.

    PubMed

    Karki, Surya B; Yildirim-Ayan, Eda; Eisenmann, Kathryn M; Ayan, Halim

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  7. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration

    PubMed Central

    Eisenmann, Kathryn M.

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy. PMID:28243603

  8. Stage-specific synthesis and fucosylation of plasma membrane proteins by mouse pachytene spermatocytes and round spermatids in culture

    SciTech Connect

    Gerton, G.L.; Millette, C.F.

    1986-11-01

    Little is known about the ability of mammalian spermatogenic cells to synthesize plasma membrane components in the presence or absence of Sertoli cells. In this study, purified populations (greater than 90%) of pachytene spermatocytes or round spermatids were isolated by unit gravity sedimentation and cultured for 20-24 h in the presence of (/sup 35/S)methionine or (/sup 3/H) fucose. Cell viabilities remained over 90% during the course of these experiments. Plasma membranes were purified from these cells and analyzed by two-dimensional gel electrophoresis. Qualitatively, the same plasma membrane proteins were synthesized by both cell types with the exception of the major Concanavalin A-binding glycoprotein, p151; the synthesis of p151 is greatly diminished or inhibited after meiosis. (3H)Fucose was incorporated into at least 6 common glycoproteins of both cells. Eight components fucosylated with molecular weights from 35,000 to 120,000 were specific to pachytene spermatocyte membranes. One fast-migrating fucosylated component may represent an uncharacterized lipid whose synthesis is terminated after meiosis. Round spermatids specifically fucosylated two components with molecular weights of 45,000 and 80,000. These results demonstrate the viability of germ cells of the male mouse in short-term culture and show that they are capable of synthesizing and fucosylating plasma membrane components in the absence of Sertoli cells.

  9. Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions.

    PubMed

    Savelyeva, Anna V; Kuligina, Elena V; Bariakin, Dmitry N; Kozlov, Vadim V; Ryabchikova, Elena I; Richter, Vladimir A; Semenov, Dmitry V

    2017-01-01

    Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches.

  10. Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions

    PubMed Central

    Kuligina, Elena V.; Bariakin, Dmitry N.; Kozlov, Vadim V.; Richter, Vladimir A.; Semenov, Dmitry V.

    2017-01-01

    Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches. PMID:28127559

  11. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis.

    PubMed

    Khan, Junaid A; Wang, Qi; Sjölund, Richard D; Schulz, Alexander; Thompson, Gary A

    2007-04-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential.

  12. Aberrant expression of the neuronal transcription factor FOXP2 in neoplastic plasma cells.

    PubMed

    Campbell, Andrew J; Lyne, Linden; Brown, Philip J; Launchbury, Rosalind J; Bignone, Paola; Chi, Jianxiang; Roncador, Giovanna; Lawrie, Charles H; Gatter, Kevin C; Kusec, Rajko; Banham, Alison H

    2010-04-01

    FOXP2 mutation causes a severe inherited speech and language defect, while the related transcription factors FOXP1, FOXP3 and FOXP4 are implicated in cancer. FOXP2 mRNA and protein expression were characterised in normal human tissues, haematological cell lines and multiple myeloma (MM) patients' samples. FOXP2 mRNA and protein were absent in mononuclear cells from different anatomical sites, lineages and stages of differentiation. However, FOXP2 mRNA and protein was detected in several lymphoma (8/20) and all MM-derived cell lines (n = 4). FOXP2 mRNA was expressed in bone marrow samples from 96% of MM patients (24/25), 66.7% of patients with the pre-neoplastic plasma cell proliferation monoclonal gammopathy of undetermined significance (MGUS) (6/9), but not in reactive plasma cells. The frequency of FOXP2 protein expression in CD138(+) plasma cells was significantly higher in MGUS (P = 0.0005; mean 46.4%) and MM patients (P < or = 0.0001; mean 57.3%) than in reactive marrows (mean 2.5%). FOXP2 (>10% nuclear positivity) was detectable in 90.2% of MM (55/61) and 90.9% of MGUS (10/11) patients, showing more frequent expression than CD56 and labelling 75% of CD56-negative MM (9/12). FOXP2 represents the first transcription factor whose expression consistently differentiates normal and abnormal plasma cells and FOXP2 target genes are implicated in MM pathogenesis.

  13. Elevated intracellular calcium triggers recruitment of the receptor cross-talk accessory protein calcyon to the plasma membrane.

    PubMed

    Ali, Mohammad Kutub; Bergson, Clare

    2003-12-19

    Calcyon is called a "cross-talk accessory protein" because the mechanism by which it enables the typically Gs-linked D1 dopamine receptor to stimulate intracellular calcium release depends on a priming step involving heterologous Gq-linked G-protein-coupled receptor activation. The details of how priming facilitates the D1R calcium response have yet to be precisely elucidated. The present work shows that calcyon is constitutively localized both in vesicular and plasma membrane compartments within HEK293 cells. In addition, surface biotinylation and luminescence assays revealed that priming stimulates a 2-fold increase in the levels of calcyon expressed on the cell surface and that subsequent D1R activation produces further accumulation of the protein in the plasma membrane. The effects of priming and D1R agonists were blocked by nocodazole implicating microtubules in the delivery of calcyon-containing vesicles to the cell surface. Accumulation of calcyon in the plasma membrane correlated well with increased intracellular calcium levels as thapsigargin mimicked, and 2-aminoethoxydiphenylborane abrogated, the effects of priming. KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII) also blocked the effects of priming and D1R agonists. Furthermore, expression of constitutively active forms of the kinase bypassed the requirement for priming indicating that CaMKII is a key effector in the Ca2+ and microtubule-dependent delivery of calcyon to the cell surface.

  14. D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane.

    PubMed

    Barbosa, Inês C R; Zourelidou, Melina; Willige, Björn C; Weller, Benjamin; Schwechheimer, Claus

    2014-06-23

    The directed cell-to-cell transport of the phytohormone auxin by efflux and influx transporters is essential for proper plant growth and development. Like auxin efflux facilitators of the PIN-FORMED (PIN) family, D6 PROTEIN KINASE (D6PK) from Arabidopsis thaliana localizes to the basal plasma membrane of many cells, and evidence exists that D6PK may directly phosphorylate PINs. We find that D6PK is a membrane-bound protein that is associated with either the basal domain of the plasma membrane or endomembranes. Inhibition of the trafficking regulator GNOM leads to a rapid internalization of D6PK to endomembranes. Interestingly, the dissociation of D6PK from the plasma membrane is also promoted by auxin. Surprisingly, we find that auxin transport-dependent tropic responses are critically and reversibly controlled by D6PK and D6PK-dependent PIN phosphorylation at the plasma membrane. We conclude that D6PK abundance at the plasma membrane and likely D6PK-dependent PIN phosphorylation are prerequisites for PIN-mediated auxin transport.

  15. Myristoylated and non-myristoylated forms of the pH sensor protein hisactophilin II: intracellular shuttling to plasma membrane and nucleus monitored in real time by a fusion with green fluorescent protein.

    PubMed Central

    Hanakam, F; Albrecht, R; Eckerskorn, C; Matzner, M; Gerisch, G

    1996-01-01

    Hisactophilins are myristoylated proteins that are rich in histidine residues and known to exist in Dictyostelium cells in a plasma membrane-bound and a soluble cytoplasmic state. Intracellular translocation of these proteins in response to pH changes was monitored using hisactophilin fusions with green fluorescent protein (GFP) and confocal laser scanning microscopy. Both the normal and a mutated non-myristoylated fusion protein shuffled within the cells in a pH-dependent manner. After lowering the pH, these proteins translocated within minutes between the cytoplasm, the plasma membrane and the nucleus. The role of histidine clusters on the surface of hisactophilin molecules in binding of the proteins to the plasma membrane and in their transfer to the nucleus is discussed on the basis of a pH switch mechanism. Images PMID:8670794

  16. Comparison of nanowire pellicles for plasma membrane enrichment: coating nanowires on cell

    PubMed Central

    Kim, Sung-Kyoung; Rose, Rebecca; Choksawangkarn, Waeowalee; Graham, Lauren; Hu, Junkai; Fenselau, Catherine; Lee, Sang Bok

    2014-01-01

    A study is reported on the effect of nanowire density on the ease of pellicle formation and the enrichment of plasma membrane proteins for analysis by mass spectrometry. An optimized synthesis is reported for iron silicate nanowires with a narrow size range of 900 ±400 nm in length and 200 nm diameter. The nanowires were coated with Al2O3 and used to form pellicles around suspended multiple myeloma cells, which acted as a model for cells recovered from tissue samples. Lighter alumina-coated silica nanowires were also synthesized (Kim et al. 2013), which allowed a comparison of the construction of the two pellicles and of the effect of nanowire density on plasma membrane enrichment. Evidence is offered that the dense nanowire pellicle does not crush or distort these mammalian cells. Finally, the pellicles were incorporated into a mass-spectrometry-based proteomic workflow to analyze transmembrane proteins in the plasma membrane. In contrast to a prior comparison of the effect of density with nanoparticles pellicles (Choksawangkarn et al. 2013), nanowire density was not found to significantly affect the enrichment of the plasma membrane. However, nanowires with a favorable aspect for pellicle formation are more easily and reliably produced with iron silicate than with silica. Additionally, the method for pellicle formation was optimized through the use of iron silicate nanowires (ISNW), which is crucial to the improvement of PM protein enrichment and analysis. PMID:24465155

  17. Arf proteins in cancer cell migration

    PubMed Central

    Casalou, Cristina; Faustino, Alexandra; Barral, Duarte C.

    2016-01-01

    ABSTRACT Members of the ADP-ribosylation factor (Arf) family of small GTP-binding (G) proteins regulate several aspects of membrane trafficking, such as vesicle budding, tethering and cytoskeleton organization. Arf family members, including Arf-like (Arl) proteins have been implicated in several essential cellular functions, like cell spreading and migration. These functions are used by cancer cells to disseminate and invade the tissues surrounding the primary tumor, leading to the formation of metastases. Indeed, Arf and Arl proteins, as well as their guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) have been found to be abnormally expressed in different cancer cell types and human cancers. Here, we review the current evidence supporting the involvement of Arf family proteins and their GEFs and GAPs in cancer progression, focusing on 3 different mechanisms: cell-cell adhesion, integrin internalization and recycling, and actin cytoskeleton remodeling. PMID:27589148

  18. [Binding of epirubicin to human plasma protein and erythrocytes: interaction with the cytoprotective amifostine].

    PubMed

    Pernkopf, I; Tesch, G; Dempe, K; Kletzl, H; Schüller, J; Czejka, M

    1996-11-01

    The in vitro binding rate of epirubicin (EPR) to different plasma proteins, control serum, red blood cells and whole blood was investigated without and with the cytoprotective agent amifostine. The binding rate of EPR to plasma proteins fractions and red blood cells dependend on the concentration of the matrix components. EPR was bound more than 90% to human serum alpha-globulin (alpha-HSG), to human serum albumine (HSA) and human serum beta-globuline (beta-HSG) at 80 to 90%, in the case of human serum gamma-globulin (gamma-HSG) the binding rate amounted 75%. The binding rate of EPR to RBCs in whole blood samples reached 38%. Within the observed concentration range of proteins (1-40 micrograms/ml, depending on the protein concentration) AMI caused a reduction of the protein-bound amount of EPR in the range from 2 to 19% of HSA, 4 to 20 in the case of beta-HSG, 2 to 32% in the case of alpha-HSG and 17 to 21% for gamma-HSG. In the whole blood samples the binding of EPR to proteins dropped from 45 to 32% and RBC-partitioning from 38 to 32%. Two compounds with free thiol groups, cystein and glutathione, were compared with AMI in regard to lowering the binding rate of EPR to HSA: the effect was exactly in the same order of magnitude: -17% for AMI, -21.0% for cystein and -20.8% for glutahion (p < 0.002). For a negative control, cystin and phenylalanin were tested, too: both compounds showed no influence on the protein binding of EPR: 63.8% binding rate in the control group, 65.2% in the presence of cystin and 64.6% in the presence of phenylalanin (statistically not significant). The present results indicate, that binding of EPR to serum proteins is reduced in the presence of AMI by interaction of the thiol-group with the protein and that the thiophosphoric ester bond in the test solution must cleave rapidly.

  19. Low Temperature Plasma Kills SCaBER Cancer Cells

    NASA Astrophysics Data System (ADS)

    Barekzi, Nazir; van Way, Lucas; Laroussi, Mounir

    2013-09-01

    Squamous cell carcinoma of the bladder is a rare type of bladder cancer that forms as a result of chronic irritation of the epithelial lining of the bladder. The cell line used in this study is SCaBER (ATCC® HTB-3™) derived from squamous cell carcinoma of the human urinary bladder. Current treatments of bladder cancer include surgery, radiation and chemotherapy. However, the cost of these treatments, the potential toxicity of the chemotherapeutic agents and the systemic side-effects warrant an alternative to current cancer treatment. This paper represents preliminary studies to determine the effects of biologically tolerant plasma (BTP) on a cell line of human bladder cancer cells. Previous work by our group using the plasma pencil revealed the efficacy of BTP on leukemia cells suspended in solution. Based on these earlier findings we hypothesized that the plasma exposure would elicit a similar programmed cell death in the SCaBER cells. Trypan blue exclusion and MTT assays revealed the cell killing after exposure to BTP. Our study indicates that low temperature plasma generated by ionizing helium gas and the reactive species may be a suitable and safe alternative for cancer therapy.

  20. A wide range of protein isoforms in serum and plasma uncovered by a quantitative intact protein analysis system.

    PubMed

    Misek, David E; Kuick, Rork; Wang, Hong; Galchev, Vladimir; Deng, Bin; Zhao, Rong; Tra, John; Pisano, Michael R; Amunugama, Ravi; Allen, David; Walker, Angela K; Strahler, John R; Andrews, Philip; Omenn, Gilbert S; Hanash, Samir M

    2005-08-01

    We have implemented an orthogonal 3-D intact protein analysis system (IPAS) to quantitatively profile protein differences between human serum and plasma. Reference specimens consisting of pooled Caucasian-American serum, citrate-anticoagulated plasma, and EDTA-anticoagulated plasma were each depleted of six highly abundant proteins, concentrated, and labeled with a different Cy dye (Cy5, Cy3, or Cy2). A mixture consisting of each of the labeled samples was subjected to three dimensions of separation based on charge, hydrophobicity, and molecular mass. Differences in the abundance of proteins between each of the three samples were determined. More than 5000 bands were found to have greater than two-fold difference in intensity between any pair of labeled specimens by quantitative imaging. As expected, some of the differences in band intensities between serum and plasma were attributable to proteins related to coagulation. Interestingly, many proteins were identified in multiple fractions, each exhibiting different pI, hydrophobicity, or molecular mass. This is likely reflective of the expression of different protein isoforms or specific protein cleavage products, as illustrated by complement component 3 precursor and clusterin. IPAS provides a high resolution, high sensitivity, and quantitative approach for the analysis of serum and plasma proteins, and allows assessment of PTMs as a potential source of biomarkers.

  1. Treatment Characteristics of Second Order Structure of Proteins Using Low-Pressure Oxygen RF Plasma

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuya; Nakahigashi, Akari; Kawaguchi, Ryutaro; Goto, Masaaki

    2010-10-01

    Removal of proteins from the surface of medical equipments is attempted using oxygen plasma produced by RF discharge. FTIR spectra indicate that the bonding of C-H and N-H in the casein protein is reduced after irradiation of oxygen plasma. Also, the second order structure of a protein such as α-helix and β-sheet are modified by the oxygen plasma. Complete removal of casein protein with the concentration of 0.016 mg/cm2 that is equivalent to remnants on the medical equipment requires two hours avoiding the damage to medical equipments.

  2. Room-temperature, atmospheric plasma needle reduces adenovirus gene expression in HEK 293A host cells

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Lu, X.; Cao, Y.; Ning, Q.; Ostrikov, K.; Lu, Y.; Zhou, X.; Liu, J.

    2011-12-01

    Room-temperature, atmospheric-pressure plasma needle treatment is used to effectively minimize the adenovirus (AdV) infectivity as quantified by the dramatic reduction of its gene expression in HEK 293A primary human embryonic kidney cells studied by green fluorescent protein imaging. The AdV titer is reduced by two orders of magnitude within only 8 min of the plasma exposure. This effect is due to longer lifetimes and higher interaction efficacy of the plasma-generated reactive species in confined space exposed to the plasma rather than thermal effects commonly utilized in pathogen inactivation. This generic approach is promising for the next-generation anti-viral treatments and imunotherapies.

  3. Senescent cells communicate via intercellular protein transfer

    PubMed Central

    Biran, Anat; Perelmutter, Meirav; Gal, Hilah; Burton, Dominick G.A.; Ovadya, Yossi; Vadai, Ezra; Geiger, Tamar

    2015-01-01

    Mammalian cells mostly rely on extracellular molecules to transfer signals to other cells. However, in stress conditions, more robust mechanisms might be necessary to facilitate cell–cell communications. Cellular senescence, a stress response associated with permanent exit from the cell cycle and the development of an immunogenic phenotype, limits both tumorigenesis and tissue damage. Paradoxically, the long-term presence of senescent cells can promote tissue damage and aging within their microenvironment. Soluble factors secreted from senescent cells mediate some of these cell-nonautonomous effects. However, it is unknown whether senescent cells impact neighboring cells by other mechanisms. Here we show that senescent cells directly transfer proteins to neighboring cells and that this process facilitates immune surveillance of senescent cells by natural killer (NK) cells. We found that transfer of proteins to NK and T cells is increased in the murine preneoplastic pancreas, a site where senescent cells are present in vivo. Proteomic analysis and functional studies of the transferred proteins revealed that the transfer is strictly dependent on cell–cell contact and CDC42-regulated actin polymerization and is mediated at least partially by cytoplasmic bridges. These findings reveal a novel mode of intercellular communication by which senescent cells regulate their immune surveillance and might impact tumorigenesis and tissue aging. PMID:25854920

  4. Evaluation of the electroinjection method for introducing proteins into living cells.

    PubMed

    Wilson, A K; Horwitz, J; De Lanerolle, P

    1991-02-01

    The introduction of impermeant probes such as antibodies and other proteins into living cells without compromising physiological function is an important approach for studying cellular regulatory mechanisms. Many techniques including direct microinjection, liposome-mediated delivery, fusion of red cell ghosts, and osmotic lysis of pinocytic vesicles have been used to introduce proteins into intact cells. We have used a modification of the voltage-discharge technique to introduce antibodies and other proteins into living physiologically responsive pheochromocytoma and other cultured cells. In this technique, called electroinjection, a single discharge of relatively low field strength is used to transiently permeabilize the plasma membrane. Our experiments demonstrate that electroinjection permits the introduction of large amounts (microM) of probe into 2-5 x 10(6) cells simultaneously without compromising cell viability or physiological responsiveness when performed under carefully defined conditions. They also demonstrate that electroinjection results in a single population of loaded cells and that protein incorporation is a function of field strength, capacitance, molecular weight of the protein, and the concentration of the protein in the electroinjection buffer. Interestingly, a significant fraction of the protein electroinjected into cells is trapped in the plasma membrane when cells are shocked at high capacitance. These results demonstrate that electroinjection appears to be an efficient method for loading exogenous proteins into cells while maintaining the integrity of the physiological properties of the cell.

  5. ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS

    PubMed Central

    Boone, Charles W.; Ford, Lincoln E.; Bond, Howard E.; Stuart, Donald C.; Lorenz, Dianne

    1969-01-01

    A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells. PMID:4239370

  6. Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery

    PubMed Central

    Aran, Kiana; Fok, Alex; Sasso, Lawrence A.; Kamdar, Neal; Guan, Yulong; Sun, Qi; Ündar, Akif

    2015-01-01

    This report describes the design, fabrication, and testing of a cross-flow filtration microdevice, for the continuous extraction of blood plasma from a circulating whole blood sample in a clinically relevant environment to assist in continuous monitoring of a patient’s inflammatory response during cardiac surgeries involving cardiopulmonary bypass (CPB) procedures (about 400 000 adult and 20 000 pediatric patients in the United States per year). The microfiltration system consists of a two-compartment mass exchanger with two aligned sets of PDMS microchannels, separated by a porous polycarbonate (PCTE) membrane. Using this microdevice, blood plasma has been continuously separated from blood cells in a real-time manner with no evidence of bio-fouling or cell lysis. The technology is designed to continuously extract plasma containing diagnostic plasma proteins such as complements and cytokines using a significantly smaller blood volume as compared to traditional blood collection techniques. The microfiltration device has been tested using a simulated CPB circulation loop primed with donor human blood, in a manner identical to a clinical surgical setup, to collect plasma fractions in order to study the effects of CPB system components and circulation on immune activation during extracorporeal circulatory support. The microdevice, with 200 nm membrane pore size, was connected to a simulated CPB circuit, and was able to continuously extract ~15% pure plasma volume (100% cell-free) with high sampling frequencies which could be analyzed directly following collection with no need to further centrifuge or modify the fraction. Less than 2.5 ml total plasma volume was collected over a 4 h sampling period (less than one Vacutainer blood collection tube volume). The results tracked cytokine concentrations collected from both the reservoir and filtrate samples which were comparable to those from direct blood draws, indicating very high protein recovery of the microdevice

  7. Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery.

    PubMed

    Aran, Kiana; Fok, Alex; Sasso, Lawrence A; Kamdar, Neal; Guan, Yulong; Sun, Qi; Ündar, Akif; Zahn, Jeffrey D

    2011-09-07

    This report describes the design, fabrication, and testing of a cross-flow filtration microdevice, for the continuous extraction of blood plasma from a circulating whole blood sample in a clinically relevant environment to assist in continuous monitoring of a patient's inflammatory response during cardiac surgeries involving cardiopulmonary bypass (CPB) procedures (about 400,000 adult and 20,000 pediatric patients in the United States per year). The microfiltration system consists of a two-compartment mass exchanger with two aligned sets of PDMS microchannels, separated by a porous polycarbonate (PCTE) membrane. Using this microdevice, blood plasma has been continuously separated from blood cells in a real-time manner with no evidence of bio-fouling or cell lysis. The technology is designed to continuously extract plasma containing diagnostic plasma proteins such as complements and cytokines using a significantly smaller blood volume as compared to traditional blood collection techniques. The microfiltration device has been tested using a simulated CPB circulation loop primed with donor human blood, in a manner identical to a clinical surgical setup, to collect plasma fractions in order to study the effects of CPB system components and circulation on immune activation during extracorporeal circulatory support. The microdevice, with 200 nm membrane pore size, was connected to a simulated CPB circuit, and was able to continuously extract ~15% pure plasma volume (100% cell-free) with high sampling frequencies which could be analyzed directly following collection with no need to further centrifuge or modify the fraction. Less than 2.5 ml total plasma volume was collected over a 4 h sampling period (less than one Vacutainer blood collection tube volume). The results tracked cytokine concentrations collected from both the reservoir and filtrate samples which were comparable to those from direct blood draws, indicating very high protein recovery of the microdevice

  8. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  9. Determination of Cremophor EL in plasma after sample preparation with solid phase extraction and plasma protein precipitation.

    PubMed

    Meyer, T H; Böhler, J; Frahm, A W

    2001-01-01

    The non-ionic emulsifier Cremophor EL can be quantified using a special potentiometric titration technique with barium chloride activation and precipitation with sodium tetraphenylborate. The end point of the titration is indicated by an ionsensitive coated wire electrode which responds to an excess of tetraphenylborate ions. Sample preparation is necessary to quantify the excipient in plasma of patients receiving ciclosporin formulations with Cremophor EL (Sandimmun), since plasma proteins cause disturbances of the titration. Solid phase extraction was tested with various sorbent materials. Although some of the sorbents yielded good extraction rates of Cremophor EL from aqueous solutions, the extraction rates from plasma were significantly lower. Therefore, plasma protein precipitation with acetonitrile has been examined as an alternative to SPE and has been proved the superior method. Using the precipitation technique, a recovery rate of above 90% was achieved. Furthermore, the limit of detection from plasma was found to be 30 microg, in analogy to the determination from aqueous solutions. The combination of the plasma protein precipitation with the potentiometric titration allows quantitation and thus pharmakokinetic investigations of Cremophor EL in patients treated with Sandimmun after kidney-transplantation.

  10. Surface-labelling studies on skeletal-muscle cells in vitro. Heterogeneity of iodinated cell-surface proteins.

    PubMed Central

    Cates, G A; Holland, P C

    1980-01-01

    1. Two distinct classes of protein were detected at the surface of chick-embryo skeletal-muscle cells after iodination of the cells in monolayer culture. 2. The two classes of iodinated proteins differed in their ability to co-purify with a vesicular plasma-membrane fraction prepared from surface-labelled cells. 3. One class consisted of predominantly high-molecular-weight glycoproteins that co-purified with the plasma-membrane fraction, but showed no significant qualitative or quantitative alterations in labelling with 125I and lactoperoxidase during myogenesis. 4. A second class of predominantly lower-molecular-weight proteins showed reproducible quantitative alterations in 125I-labelling during myogenesis but failed to co-purify with the plasma-membrane fraction. 5. This second class of proteins may represent matrix proteins involved in intercellular adhesion or adhesion of cells to the substratum. They are unlikely to be directly required for the process of plasma-membrane fusion during myogenesis, since they do not copurify with a vesicular plasma-membrane fraction known to be capable of Ca2+-dependent fusion in vitro. PMID:7370009

  11. Pregnancy-associated plasma protein A: spotlight on kidney diseases.

    PubMed

    Kalousová, Marta; Tesař, Vladimír; Muravská, Alexandra; Zima, Tomáš

    2012-03-24

    Pregnancy-associated plasma protein A (PAPP-A) is a biomarker routinely used in screening for Down syndrome in the first trimester of pregnancy. It is also present in very small amounts in men and non-pregnant women. PAPP-A is a key regulator of local insulin-like growth factor (IGF) bioavailability - IGFs are essential for normal body size during fetal development, but they are associated with aging and age-related diseases. Measurement of circulating PAPP-A can provide valuable information not only in pregnant women (chromosomal anomalies and adverse pregnancy outcomes) but also in patients with coronary artery disease (contribution to diagnosis, prognostic value) and in patients with kidney diseases. PAPP-A is associated with renal function and proteinuria, is increased mainly in dialysis patients and decreases after kidney transplantation. It is an independent mortality predictor of hemodialysis patients and indicator of adverse outcome of transplanted patients. PAPP-A levels can be influenced by various chemicals and drugs, among them mainly heparin. Various assays for PAPP-A exist and the type of assay used in a study should be considered. This article reviews the data summarizing basic information about PAPP-A with a particular focus on the significance of PAPP-A in renal diseases.

  12. A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants

    PubMed Central

    1989-01-01

    We have identified a family of abundant peripheral plasma membrane glycoproteins that is unique to flowering plants. They are identified by a monoclonal antibody, MAC 207, that recognizes an epitope containing L-arabinose and D-glucuronic acid. Immunofluorescence and immunogold labeling studies locate the MAC 207 epitope to the outer surface of the plasma membrane both in protoplasts and in intact tissues. In some cells MAC 207 also binds to the vacuolar membrane, probably reflecting the movement of the plasma membrane glycoproteins in the endocytic pathway. The epitope recognized by MAC 207 is also present on a distinct soluble proteoglycan secreted into the growth medium by carrot (Daucus carota) suspension culture cells. Biochemical evidence identifies this neutral proteoglycan as a member of the large class of arabinogalactan proteins (AGPs), and suggests a structural relationship between it and the plasma membrane glycoproteins. AGPs have the property of binding to beta-glycans, and we therefore propose that one function of the AGP-related, plasma membrane-associated glycoproteins may be to act as cell surface attachment sites for cell wall matrix polysaccharides. PMID:2469683

  13. Tandem application of cationic colloidal silica and Triton X-114 for plasma membrane protein isolation and purification: towards developing an MDCK protein database.

    PubMed

    Mathias, Rommel A; Chen, Yuan-Shou; Goode, Robert J A; Kapp, Eugene A; Mathivanan, Suresh; Moritz, Robert L; Zhu, Hong-Jian; Simpson, Richard J

    2011-04-01

    Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20-30% of eukaryotic genomes, a detailed characterisation of their encoded proteins is underrepresented, due, to their low copy number and the inherent difficulties in their isolation and purification as a consequence of their high hydrophobicity. We describe here a strategy that combines two orthogonal methods to isolate and purify PM proteins from Madin Darby canine kidney (MDCK) cells. In this two-step method, we first used cationic colloidal silica (CCS) to isolate adherent (Ad) and non-adherent (nAd) PM fractions, and then subjected each fraction to Triton X-114 (TX-114) phase partitioning to further enrich for hydrophobic proteins. While CCS alone identified 255/757 (34%) membrane proteins, CCS/TX-114 in combination yielded 453/745 (61%). Strikingly, of those proteins unique to CCS/TX-114, 277/393 (70%) had membrane annotation. Further characterisation of the CCS/TX-114 data set using Uniprot and transmembrane hidden Markov model revealed that 306/745 (41%) contained one or more transmembrane domains (TMDs), including proteins with 25 and 17 TMDs. Of the remaining proteins in the data set, 69/439 (16%) are known to contain lipid modifications. Of all membrane proteins identified, 93 had PM origin, including proteins that mediate cell adhesion, modulate transmembrane ion transport, and cell-cell communication. These studies reveal that the application of CCS to first isolate Ad and nAd PM fractions, followed by their detergent-phase TX-114 partitioning, to be a powerful method to isolate low-abundance PM proteins, and a useful adjunct for in-depth cell surface proteome analyses.

  14. Thermodynamics of protein destabilization in live cells.

    PubMed

    Danielsson, Jens; Mu, Xin; Lang, Lisa; Wang, Huabing; Binolfi, Andres; Theillet, François-Xavier; Bekei, Beata; Logan, Derek T; Selenko, Philipp; Wennerström, Håkan; Oliveberg, Mikael

    2015-10-06

    Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.

  15. Biofield-effect protein-sensor: Plasma functionalization of polyaniline, protein immobilization, and sensing mechanism

    NASA Astrophysics Data System (ADS)

    Cho, Chae-Ryong; Lee, Hyun-Uk; Ahn, Kyun; Jeong, Se-Young; Choi, Jun-Hee; Kim, Jinwoo; Cho, Jiung

    2014-06-01

    We report the fabrication of a biofield-effect protein-sensor (BioFEP) based on atmospheric-pressure plasma (AP) treatment of a conducting polyaniline (PANI) film. Successive H2 and O2 AP (OHAP) treatment generated dominant hydrophilic -OH and O=CO- functional groups on the PANI film surface, which served as strong binding sites to immobilize bovine serum albumin (BSA) protein molecules. The output current changes of the BioFEP as a function of BSA concentration were obtained. The resistance of the OHAP surface could be sensitively increased from 2.5 × 108 Ω to 2.0 × 1012 Ω with increasing BSA concentrations in the range of 0.025-4 μg/ml. The results suggest that the method is a simple and cost-effective tool to determine the concentration of BSA by measuring electrical resistance.

  16. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells.

    PubMed

    Gassama-Diagne, Ama; Yu, Wei; ter Beest, Martin; Martin-Belmonte, Fernando; Kierbel, Arlinet; Engel, Joanne; Mostov, Keith

    2006-09-01

    Polarity is a central feature of eukaryotic cells and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) has a central role in the polarization of neurons and chemotaxing cells. In polarized epithelial cells, PtdIns(3,4,5)P3 is stably localized at the basolateral plasma membrane, but excluded from the apical plasma membrane, as shown by localization of GFP fused to the PtdIns(3,4,5)P3-binding pleckstrin-homology domain of Akt (GFP-PH-Akt), a fusion protein that indicates the location of PtdIns(3,4,5)P3. Here, we ectopically inserted exogenous PtdIns(3,4,5)P3 into the apical plasma membrane of polarized Madin-Darby canine kidney (MDCK) cells. Within 5 min many cells formed protrusions that extended above the apical surface. These protrusions contained basolateral plasma membrane proteins and excluded apical proteins, indicating that their plasma membrane was transformed from apical to basolateral. Addition of PtdIns(3,4,5)P3 to the basolateral surface of MDCK cells grown as cysts caused basolateral protrusions. MDCK cells grown in the presence of a phosphatidylinositol 3-kinase inhibitor had abnormally short lateral surfaces, indicating that PtdIns(3,4,5)P3 regulates the formation of the basolateral surface.

  17. Protein receptor-independent plasma membrane remodeling by HAMLET: A tumoricidal protein-lipid complex

    DOE PAGES

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.; ...

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ‘’protein-centric” view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. Wemore » identify a ‘’receptor independent” transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. In conclusion, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.« less

  18. Protein receptor-independent plasma membrane remodeling by HAMLET: A tumoricidal protein-lipid complex

    SciTech Connect

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.; James, Ho C. S.; Rydström, Anna; Ngassam, Viviane N.; Klausen, Thomas Kjaer; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N.; Svanborg, Catharina

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ‘’protein-centric” view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ‘’receptor independent” transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. In conclusion, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.

  19. Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex.

    PubMed

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.

  20. [Study of the adsorption behaviors of plasma proteins on the single-walled carbon nanotubes nonwoven].

    PubMed

    Meng, Jie; Song, Li; Meng, Jie; Kong, Hua; Wang, Chaoying; Guo, Xiaotian; Xu, Haiyan; Xie, Sishen

    2007-02-01

    Single walled carbon nanotubes (SWNT) have attracted increasing research interests for the purpose of biomedical application because they provide not only nanostructured topography, but also chemical composition of pure carbon atoms, as well as ultra high strength and excellent flexibility. Regarding the interactions of nanomaterials to biological systems, non-specific adsorption of plasma proteins is one of the most important issues to be concerned, which plays a crucial role that would determine how biological systems response to the biomaterials. Motivated by application of SWNT materials in biomedical fields, in this study, the adsorption behaviors of plasma proteins on the surface of SWNT nonwoven, prepared directly by floating chemical vapor observation and energy deposition method were investigated by means of scanning electron microscope (SEM), dispersive X-ray (EDX) analysis and ELISA. Results indicated the SWNT non-woven showed a clear adsorption preference of fibrinogen over albumin. There was no human serum albumin detected using above analysis methods on the SWNT nonwoven even incubated in the albumin solution of 4 mg/ml. While more than 0.15 microg of human fibrinogen was detected by ELISA on the SWNT nonwoven with area of 40 mm x 40 mm incubated in the fibrinogen solution of 5 microg/ml. In addition, IgG of sheep-anti-human serum fibrinogen exhibited strong nonspecific adsorption on the surface of SWNT nonwoven. The adsorption behaviors are different significantly from those of other carbon materials and conventional biomaterials. The unique interaction of SWNT nonwoven to plasma proteins is of significance to further studies of blood cells responses.

  1. Cell surface engineering with edible protein nanoshells.

    PubMed

    Drachuk, Irina; Shchepelina, Olga; Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Stone, Morley; Tsukruk, Vladimir V

    2013-09-23

    Natural protein (silk fibroin) nanoshells are assembled on the surface of Saccharomyces cerevisiae yeast cells without compromising their viability. The nanoshells facilitate initial protection of the cells and allow them to function in encapsulated state for some time period, afterwards being completely biodegraded and consumed by the cells. In contrast to a traditional methanol treatment, the gentle ionic treatment suggested here stabilizes the shell silk fibroin structure but does not compromise the viability of the cells, as indicated by the fast response of the encapsulated cells, with an immediate activation by the inducer molecules. Extremely high viability rates (up to 97%) and preserved activity of encapsulated cells are facilitated by cytocompatibility of the natural proteins and the formation of highly porous shells in contrast to traditional polyelectrolyte-based materials. Moreover, in a high contrast to traditional synthetic shells, the silk proteins are biodegradable and can be consumed by cells at a later stage of growth, thus releasing the cells from their temporary protective capsules. These on-demand encapsulated cells can be considered a valuable platform for biocompatible and biodegradable cell encapsulation, controlled cell protection in a synthetic environment, transfer to a device environment, and cell implantation followed by biodegradation and consumption of protective protein shells.

  2. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    PubMed Central

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity. PMID:27364630

  3. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-07-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity.

  4. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma.

    PubMed

    Matsumoto, Yasunori; Kano, Masayuki; Akutsu, Yasunori; Hanari, Naoyuki; Hoshino, Isamu; Murakami, Kentaro; Usui, Akihiro; Suito, Hiroshi; Takahashi, Masahiko; Otsuka, Ryota; Xin, Hu; Komatsu, Aki; Iida, Keiko; Matsubara, Hisahiro

    2016-11-01

    Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients.

  5. Plasma-Treated Microplates with Enhanced Protein Recoveries and Minimized Extractables

    PubMed Central

    Weikart, Christopher M.; Klibanov, Alexander M.; Breeland, Adam P.; Taha, Ahmad H.; Maurer, Brian R.; Martin, Steven P.

    2016-01-01

    SiO2 Medical Products, Inc. (SiO) has developed a proprietary technology that greatly enhances protein recoveries and reduces extractables from commercial microplates used for bioanalytical assays and storage of biologics. SiO technology is based on plasma treatment that chemically modifies the surface of polypropylene with predominantly hydrogen-bond-acceptor uncharged polar groups. The resultant surface resists nonspecific protein adsorption over a wide range of protein concentrations, thereby eliminating the need to passivate (and hence potentially contaminate) the microplates with blocking proteins. High shelf-life stability and cleanliness of the plasma-treated microplates have been demonstrated using five different proteins for two common microplate formats. The protein recovery performance of plasma-treated microplates is found to be higher compared with commercial low-protein-binding microplates. PMID:27651466

  6. Microseparation techniques for the study of the enantioselectivity of drug-plasma protein binding.

    PubMed

    Escuder-Gilabert, Laura; Martínez-Gómez, María Amparo; Villanueva-Camañas, Rosa María; Sagrado, Salvador; Medina-Hernández, María José

    2009-03-01

    Stereoselectivity in protein binding can have a significant effect on the pharmacokinetic and pharmacodynamic properties of chiral drugs. The investigation of enantioselectivity of drugs in their binding with human plasma proteins and the identification of the molecular mechanisms involved in the stereodiscrimination by the proteins represent a great challenge for clinical pharmacology. In this review, the separation techniques used for enantioselective protein binding experiments are described and compared. An overview of studies on enantiomer-protein interactions, enantiomer-enantiomer interactions as well as chiral drug-drug interactions, including allosteric effects, is presented. The contribution of individual plasma proteins to the overall enantioselective binding and the animal species variability in drug-plasma protein binding stereoselectivity are reviewed.

  7. Soluble Proteins Form Film by the Treatment of Low Temperature Plasma

    NASA Astrophysics Data System (ADS)

    Ikehara, Sanae; Sakakita, Hajime; Ishikawa, Kenji; Akimoto, Yoshihiro; Nakanishi, Hayao; Shimizu, Nobuyuki; Hori, Masaru; Ikehara, Yuzuru

    2015-09-01

    It has been pointed out that low temperature plasma in atmosphere was feasible to use for hemostasis without heat injury. Indeed, earlier studies demonstrated that low temperature plasma played an important role to stimulate platelets to aggregate and turned on the proteolytic activities of coagulation factors, resulting in the acceleration of the natural blood coagulation process. On the other hands, our developed equips could immediately form clots upon the contact with plasma flair, while the histological appearance was different from natural coagulation. Based on these findings in formed clots, we sought to determine if plasma flair supplied by our devices was capable of forming film using a series of soluble proteins Following plasma treatment, films were formed from bovine serum albumin, and the other plasma proteins at physiological concentration. Analysis of trans-electron microscope demonstrated that plasma treatment generated small protein particles and made them fuse to be larger aggregations The combined results demonstrated that plasma are capable of aggregating soluble proteins and that platelets and coagulation factors are not necessary for plasma induced blood coagulation. Supported in part by Grants-in-Aid for Scientific Research on Priority Area (21590454, 24590498, and 24108006 to Y. I.).

  8. Analysis of non-thermal plasma-induced cell injury in human lung cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Sano, Kaori; Wada, Motoi; Mizuno, Kazue; Ono, Ryo; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-09-01

    Recent progress of biomedical application of atmospheric pressure plasma shows that the biological effects are mainly due to reactive oxygen and nitrogen species (RONS) in liquid produced by the plasma exposure. To elucidate the cellular responses induced by exposure to the plasma, we focused on identification and quantification of reactive chemical species in plasma-exposed cell culture medium, and cell injury in mammalian cells after treatment of the plasma-exposed medium. In this study, we examined human lung cancer cell lines. The contribution of H2O2 to the cellular responses was considered. Here, an atmospheric pressure plasma jet (APPJ) sustained by a pulsed power supply in argon was used. After APPJ exposure to cell culture medium, RONS detection in liquid was conducted. It showed that OH radical, ONOO-, NO2-, NO3-, and H2O2 were produced in the plasma-exposed medium. Cellular responses of human lung cancer cell lines to the plasma-exposed medium in a concentration-dependence manner were also studied. It showed that the plasma-exposed medium and the H2O2 treatment gave similar reduction in viability and induction of apoptosis. This work was partly supported by MEXT KAKENHI Grant Number 24108005 and JSPS KAKENHI Grant Number 26390096.

  9. Bacterial cell division proteins as antibiotic targets.

    PubMed

    den Blaauwen, Tanneke; Andreu, José M; Monasterio, Octavio

    2014-08-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of proteins and the availability of crystal structures has increased our knowledge on bacterial cell division considerably in this century. Consequently, bacterial cell division proteins are more and more recognized as potential new antibiotic targets. An international effort to find small molecules that inhibit the cell division initiating protein FtsZ has yielded many compounds of which some are promising as leads for preclinical use. The essential transglycosylase activity of peptidoglycan synthases has recently become accessible to inhibitor screening. Enzymatic assays for and structural information on essential integral membrane proteins such as MraY and FtsW involved in lipid II (the peptidoglycan building block precursor) biosynthesis have put these proteins on the list of potential new targets. This review summarises and discusses the results and approaches to the development of lead compounds that inhibit bacterial cell division.

  10. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae.

    PubMed Central

    Gaber, R F; Styles, C A; Fink, G R

    1988-01-01

    We identified a 180-kilodalton plasma membrane protein in Saccharomyces cerevisiae required for high-affinity transport (uptake) of potassium. The gene that encodes this putative potassium transporter (TRK1) was cloned by its ability to relieve the potassium transport defect in trk1 cells. TRK1 encodes a protein 1,235 amino acids long that contains 12 potential membrane-spanning domains. Our results demonstrate the physical and functional independence of the yeast potassium and proton transport systems. TRK1 is nonessential in S. cerevisiae and maps to a locus unlinked to PMA1, the gene that encodes the plasma membrane ATPase. Haploid cells that contain a null allele of TRK1 (trk1 delta) rely on a low-affinity transporter for potassium uptake and, under certain conditions, exhibit energy-dependent loss of potassium, directly exposing the activity of a transporter responsible for the efflux of this ion. Images PMID:3043197

  11. Identification of Central Nervous System Proteins in Human Blood Serum and Plasma.

    PubMed

    Miroshnichenko, Yu V; Petushkova, N A; Teryaeva, N B; Lisitsa, A V; Zgoda, V G; Belyaev, A Yu; Potapov, A A

    2015-11-01

    Mass-spectrometric identification of proteins in human blood plasma and serum was performed by comparing mass-spectra of fragmented peptides using Swiss-Prot and UniProtKB databases of amino acid sequences. After choosing the appropriate identification conditions we found that combination of spectrum search parameters are optimal for identification of CNS proteins. In the studied plasma and serum samples, 9 proteins involved into pathological processes in the nervous tissue were identified; 7 of them were identified in both plasma and serum.

  12. Meal composition and plasma amino acid ratios: Effect of various proteins or carbohydrates, and of various protein concentrations

    NASA Technical Reports Server (NTRS)

    Yokogoshi, Hidehiko; Wurtman, Richard J.

    1986-01-01

    The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein

  13. Isotope labeling of proteins in insect cells.

    PubMed

    Skora, Lukasz; Shrestha, Binesh; Gossert, Alvar D

    2015-01-01

    Protein targets of contemporary research are often membrane proteins, multiprotein complexes, secreted proteins, or other proteins of human origin. These are difficult to express in the standard expression host used for most nuclear magnetic resonance (NMR) studies, Escherichia coli. Insect cells represent an attractive alternative, since they have become a well-established expression system and simple solutions have been developed for generation of viruses to efficiently introduce the target protein DNA into cells. Insect cells enable production of a larger fraction of the human proteome in a properly folded way than bacteria, as insect cells have a very similar set of cytosolic chaperones and a closely related secretory pathway. Here, the limited and defined glycosylation pattern that insect cells produce is an advantage for structural biology studies. For these reasons, insect cells have been established as the most widely used eukaryotic expression host for crystallographic studies. In the past decade, significant advancements have enabled amino acid type-specific as well as uniform isotope labeling of proteins in insect cells, turning them into an attractive expression host for NMR studies.

  14. Activated protein C upregulates ovarian cancer cell migration and promotes unclottability of the cancer cell microenvironment

    PubMed Central

    ALTHAWADI, HAMDA; ALFARSI, HALEMA; BESBES, SAMAHER; MIRSHAHI, SHAHSOLTAN; DUCROS, ELODIE; RAFII, ARASH; POCARD, MARC; THERWATH, AMU; SORIA, JEANNETTE; MIRSHAHI, MASSOUD

    2015-01-01

    The objective of this study was to evaluate the role of activated protein C (aPC), known to be a physiological anticoagulant, in ovarian cancer cell activation as well as in loss of clotting of cancer ascitic fluid. The effect of aPC on an ovarian cancer cell line (OVCAR-3) was tested in regards to i) cell migration and adhesion with the use of adhesion and wound healing assays as well as a droplet test; ii) protein phosphorylation, evaluated by cyto-ELISA; iii) cell cycle modification assessed by flow cytometric DNA quantification; and iv) anticoagulant activity evaluated by the prolongation of partial thromboplastin time (aPTT) of normal plasma in the presence or absence of aPC-treated ovarian cancer cells. In addition, the soluble endothelial protein C receptor (sEPCR) was quantified by ELISA in ascitic fluid of patients with ovarian cancer. Our results showed that in the OVCAR-3 aPC-induced cells i) an increase in cell migration was noted, which was inhibited when anti-endothelial protein C receptor (EPCR) was added to the culture medium and which may act via MEK-ERK and Rho-GTPase pathways; ii) an increase in threonine, and to a lesser extent tyrosine phosphorylation; iii) cell cycle activation (G1 to S/G2); and iv) a 2-3-fold prolongation of aPTT of normal plasma. In the peritoneal fluid, the sEPCR concentration was 71±23 ng/ml. In conclusion, free aPC binds to membrane EPCR in ovarian cancer cells and induces cell migration via MEK-ERK and Rho-GTPase pathways. This binding could also explain the loss of clotting of peritoneal fluids. PMID:26082331

  15. Amino acid supplementation of calf milk replacers containing plasma protein.

    PubMed

    Morrison, S Y; Campbell, J M; Drackley, J K

    2017-03-22

    We determined the effects of calf milk replacers containing 0, 5, or 10% bovine plasma protein (PP), either without or with the supplemental amino acids (AA) Ile and Thr, on growth and health of male Holstein calves (n = 104) for 56 d. Milk replacers were formulated to contain 22% crude protein (CP), 20% fat, and 2.0% Lys. Milk replacers (12.5% solids) were fed at a rate of 1.5% of body weight (BW) on a dry matter basis during wk 1 and 1.75% of BW beginning on d 8. Starter was introduced on d 36 so that effects of PP and AA balance in milk replacers could be isolated. Intake, respiratory scores, and fecal scores were measured daily. Body weight and stature were measured weekly and blood serum samples were obtained during wk 4. Treatments had no effects on intakes of dry matter, CP, or metabolizable energy. During wk 6 and 8, BW was less as PP inclusion increased without AA supplementation compared with the other treatments. In wk 7, calves fed the higher level of PP without AA had lower BW than calves fed either the lower level of PP without supplemented AA or the higher inclusion of PP with supplemented AA. Average daily gain and gain:feed were lowest for calves fed the higher inclusion of PP without supplemented AA; heart girth in wk 7 was smallest for those calves. During the first 21 d, occurrence of scours was greater in calves fed the control milk replacer than in calves fed milk replacers containing the higher inclusion of PP either without or with supplemental AA. Occurrence of scours was also greater for the lower inclusion of PP compared with the higher inclusion of PP when AA were supplemented. Throughout the 56-d experiment, the chance of antibiotic treatment was greater for calves fed the control milk replacer than for all other treatments except the higher inclusion of PP without supplemental AA. Additionally, chance of antibiotic treatment was greater for the higher inclusion of PP without supplemental AA than for other milk replacers with PP. Calves

  16. Targeting Cell Survival Proteins for Cancer Cell Death

    PubMed Central

    Pandey, Manoj K.; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N.; Amin, Shantu G.; Aggarwal, Bharat B.

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  17. Adult Cells Combined With Platelet-Rich Plasma for Tendon Healing

    PubMed Central

    Rubio-Azpeitia, Eva; Sánchez, Pello; Delgado, Diego; Andia, Isabel

    2017-01-01

    Background: The combination of cells with platelet-rich plasma (PRP) may fulfill tendon deficits and help overcome the limited ability of tendons to heal. Purpose: To examine the suitability of 3 human cell types in combination with PRP and the potential impact of the tenocyte-conditioned media (CM) to enhance tendon healing. Study Design: Controlled laboratory study. Methods: Tenocytes, bone marrow–derived mesenchymal stem cells, and skin fibroblasts were cultured in 3-dimensional PRP hydrogels supplemented or not with CM, and cell proliferation and migration were examined. The effect of tendon-derived CM on matrix-forming phenotype and secretion of inflammatory proteins was determined through their administration to mesenchymal stem cells, tendon, and skin fibroblasts by reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results: Differences were found in the matrix-forming phenotype between each of the cell types. The ratio of collagen I:collagen III was greater in bone marrow–derived mesenchymal stem cells than in skin fibroblasts and tenocytes. The bone marrow–derived mesenchymal stem cells expressed increased levels of cartilage-related genes than tenocytes or skin fibroblasts. The presence of the tenocyte-CM stimulated basic healing mechanisms including proliferation and chemotaxis in all cell types. In addition, the tenocyte-CM modified the matrix-forming phenotype of every cell type when cultured in PRP hydrogels. Each cell type secreted interleukin-6, interleukin-8, and monocyte chemotactic protein-1 in PRP hydrogels, but mesenchymal stem cells secreted less interleukin-8 and monocyte chemotactic protein-1 than tenocytes or skin fibroblasts. Conclusion: The tenocyte-CM combined with PRP stimulated tenogenesis in mesenchymal stem cells and in skin fibroblasts and reduced the secretion of inflammatory proteins. Clinical Relevance: Modifying the target tissue with PRP prior to cell

  18. A Plasma Membrane-Anchored Fluorescent Protein Fusion Illuminates Sieve Element Plasma Membranes in Arabidopsis and Tobacco1[W][OA

    PubMed Central

    Thompson, Matthew V.; Wolniak, Stephen M.

    2008-01-01

    Rapid acquisition of quantitative anatomical data from the sieve tubes of angiosperm phloem has been confounded by their small size, their distance from organ surfaces, and the time-consuming nature of traditional methods, such as transmission electron microscopy. To improve access to these cells, for which good anatomical data are critical, a monomeric yellow fluorescent protein (mCitrine) was N-terminally fused to a small (approximately 6 kD) membrane protein (AtRCI2A) and stably expressed in Arabidopsis thaliana (Columbia-0 ecotype) and Nicotiana tabacum (‘Samsun’) under the control of a companion cell-specific promoter (AtSUC2p). The construct, called by its abbreviation SUmCR, yielded stable sieve element (SE) plasma membrane fluorescence labeling, even after plastic (methacrylate) embedding. In conjunction with wide-field fluorescence measurements of sieve pore number and position using aniline blue-stained callose, mCitrine-labeled material was used to calculate rough estimates of sieve tube-specific conductivity for both species. The SUmCR construct also revealed a hitherto unknown expression domain of the AtSUC2 Suc-H+ symporter in the epidermis of the cell division zone of developing root tips. The success of this construct in targeting plasma membrane-anchored fluorescent proteins to SEs could be attributable to the small size of AtRCI2A or to the presence of other signals innate to AtRCI2A that permit the protein to be trafficked to SEs. The construct provides a hitherto unique entrée into companion cell-to-SE protein targeting, as well as a new tool for studying whole-plant phloem anatomy and architecture. PMID:18223149

  19. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.

    PubMed

    Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V

    2017-02-01

    Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3adesarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization.

  20. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    PubMed

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP(+) memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP(+) memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation.

  1. A Comparative Spin-Label Study of Isolated Plasma Membranes and Plasma Membranes of Whole Cells and Protoplasts from Cold-Hardened and Nonhardened Winter Rye

    PubMed Central

    Windle, John J.

    1988-01-01

    Lipid-lipid and lipid-protein interactions in the plasma membranes of whole cells and protoplasts and an isolated plasma membrane fraction from winter rye (Secale cereale L. cv Puma) have been studied by spin labeling. Spectra were recorded between −40°C and 40°C using the freely diffusing spin-label, 16-doxyl stearic acid, as a midbilayer membrane probe. The probe was reduced by the whole cells and protoplasts and reoxidized by external potassium ferricyanide. The reoxidized probe was assumed to be localized in the plasma membrane. The spectra consisted of the superposition of a narrow and a broad component indicating that both fluid and immobilized lipids were present in the plasma membrane. The two components were separated by digital subtraction of the immobilized component. Temperature profiles of the membranes were developed using the percentage of immobilized lipid present at each temperature and the separation between the outermost hyperfine lines for the fluid lipid component. Lipid immobilization was attributed to lipid-protein interactions, lipid-cell wall interactions, and temperature-induced lipid phase transitions to the gel-state. Temperature profiles were compared for both cold-hardened and nonhardened protoplasts, plasma membranes, and plasma membrane lipids, respectively. Although cold-hardening extended the range of lipid fluidity by 5°C, it had no effect on lipid-protein interactions or activation energies of lipid mobility. Differences were found, however, between the temperature profiles for the different samples, suggesting that alterations in the plasma membrane occurred as a consequence of the isolation methods used. PMID:16666471

  2. Lichen Planus With Predominate Plasma Cell Infiltrate: Two Case Reports.

    PubMed

    Dinh, Huyenlan; Seyffert, Jennifer; Lountzis, Nektarios I; Altman, Howard B; Oram, Christian; Purcell, Stephen M

    2017-02-01

    Lichen planus (LP) is a mucocutaneous inflammatory dermatitis of idiopathic origin that can involve the skin, mucous membranes, hair, and nails. LP has an associated set of characteristic histopathologic findings which include hyperkeratosis, vacuolization of the basal layer, Civatte bodies, wedge-shaped hypergranulosis, band-like lymphocytic infiltrate at the dermal epidermal junction, eosinophilic colloid bodies in the papillary dermis, and pigment incontinence. The infiltrate is usually composed of lymphocytes with few histiocytes, mast cells, and macrophages. The presence of plasma cell predominant infiltrate in LP has only been reported in four previous cases and 2 other cases of lichen nitidus. The authors report another 2 cases of LP with predominate plasma cell infiltrate in 2 female patients on the legs. The differential includes a drug-induced lichenoid reaction with predominate plasma cell infiltrate. However, there have been no case reports of that type of reaction. Because plasma cells are seen commonly in certain infectious diseases, malignancy, and macroglobulinemia, it is prudent to rule out those entities. Our patients responded well with a class 1 topical steroid, with improvement of their lower leg lesions within 1 month of treatment.

  3. Plasma protein binding of tetrodotoxin in the marine puffer fish Takifugu rubripes.

    PubMed

    Matsumoto, Takuya; Tanuma, Daisuke; Tsutsumi, Kazuma; Jeon, Joong-Kyun; Ishizaki, Shoichiro; Nagashima, Yuji

    2010-01-01

    To elucidate the involvement of plasma protein binding in the disposition of tetrodotoxin (TTX) in puffer fish, we used equilibrium dialysis to measure protein binding of TTX in the plasma of the marine puffer fish Takifugu rubripes and the non-toxic greenling Hexagrammos otakii, and in solutions of bovine serum albumin (BSA) and bovine alpha-1-acid glycoprotein (AGP). TTX (100-1000 microg/mL) bound to protein in T. rubripes plasma with low affinity in a non-saturable manner. The amount of bound TTX increased linearly with the TTX concentration, reaching 3.92+/-0.42 microg TTX/mg protein at 1000 microg TTX/mL. Approximately 80% of the TTX in the plasma of T. rubripes was unbound in the concentration range of TTX examined, indicating that TTX exists predominantly in the unbound form in the circulating blood of T. rubripes at a wide range of TTX concentrations. TTX also bound non-specifically to H. otakii plasma proteins, BSA, and bovine AGP. The amount of the bound TTX in the plasma of H. otakii and BSA, respectively, was 1.86+/-0.36 and 4.65+/-0.70 microg TTX/mg protein at 1000 microg TTX/mL, and that in the bovine AGP was 8.78+/-0.25 microg TTX/mg protein at 200 microg TTX/mL.

  4. TIRET microscopy: monitoring protein (amyloid precursor protein and beta-secretase) interaction on the surface of living cells

    NASA Astrophysics Data System (ADS)

    von Arnim, Christine; Wagner, Michael; Weber, Petra; Schneckenburger, Herbert

    2007-02-01

    Total internal reflection fluorescence microscopy (TIRFM) and non-radiative energy transfer (FRET) measurements have been combined in order to examine co-localization of the amyloid precursor protein (APP) and the β-site APPcleaving enzyme (BACE) in human glioblastoma cells. So far, these proteins have been co-localized within whole cells (depending on the intracellular amount of cholesterol) and in some cases also within their plasma membranes. This supports the present hypothesis of localization within lipid domains on the cell surface and co-internalization via endocytosis.

  5. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  6. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells.

    PubMed

    Schmidt-Hieber, Martin; Gutiérrez, María Laura; Pérez-Andrés, Martin; Paiva, Bruno; Rasillo, Ana; Tabernero, Maria Dolores; Sayagués, José Maria; Lopez, Antonio; Bárcena, Paloma; Sanchez, María Luz; Gutiérrez, Norma C; San Miguel, Jesus F; Orfao, Alberto

    2013-02-01

    Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138(+) microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) -are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified aberrant plasma cells (median purity ≥ 98%) in different clonal plasma cell disorders. We analyzed aberrant plasma cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined significance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence in situ hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77% of monoclonal gammopathy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cytogenetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62% of monoclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aberrant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that

  7. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells

    PubMed Central

    Schmidt-Hieber, Martin; Gutiérrez, María Laura; Pérez-Andrés, Martin; Paiva, Bruno; Rasillo, Ana; Tabernero, Maria Dolores; Sayagués, José Maria; Lopez, Antonio; Bárcena, Paloma; Sanchez, María Luz; Gutiérrez, Norma C.; San Miguel, Jesus F.; Orfao, Alberto

    2013-01-01

    Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138+ microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) -are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified aberrant plasma cells (median purity ≥98%) in different clonal plasma cell disorders. We analyzed aberrant plasma cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined significance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence in situ hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77% of monoclonal gammopathy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cytogenetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62% of monoclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aberrant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that

  8. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  9. Prednisolone-induced predisposition to femoral head separation and the accompanying plasma protein changes in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Femoral head separation (FHS) is an idiopathic bone problem that causes lameness and production losses in commercial poultry. In a model of prednisolone induced susceptibility to FHS, the changes in plasma proteins and peptides were analyzed to find possible biomarkers. Plasma from control and FHS-s...

  10. Stimulation of muscle protein synthesis by leucine is dependent on plasma amino acid availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported that a physiological increase in plasma leucine increased translation initiation factor activity during 60- and 120-min leucine infusion. Muscle protein synthesis was stimulated at 60 min but not at 120 min, perhaps due to the decrease (-50%) in plasma essential amino acids (AA). ...

  11. Detection of boar sperm plasma membrane protein using Rhodamine 640; implications for cryobiology and physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhodamine 640 (R640) was used to detect changes in boar sperm plasma membrane protein (PMP) during cryopreservation; a poorly understood phenomenon. The protocol was adapted for boar sperm so that semen samples (n = 17) could be analyzed for PMP (R640 positive) and plasma membrane integrity (PMI; Y...

  12. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels

    PubMed Central

    Jiang, Xian-cheng; Bruce, Can; Mar, Jefferson; Lin, Min; Ji, Yong; Francone, Omar L.; Tall, Alan R.

    1999-01-01

    It has been proposed that the plasma phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids and cholesterol from triglyceride-rich lipoproteins (TRL) into high-density lipoproteins (HDL). To evaluate the in vivo role of PLTP in lipoprotein metabolism, we used homologous recombination in embryonic stem cells and produced mice with no PLTP gene expression. Analysis of plasma of F2 homozygous PLTP–/– mice showed complete loss of phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sphingomyelin, and partial loss of free cholesterol transfer activities. Moreover, the in vivo transfer of [3H]phosphatidylcholine ether from very-low-density proteins (VLDL) to HDL was abolished in PLTP–/– mice. On a chow diet, PLTP–/– mice showed marked decreases in HDL phospholipid (60%), cholesterol (65%), and apo AI (85%), but no significant change in non-HDL lipid or apo B levels, compared with wild-type littermates. On a high-fat diet, HDL levels were similarly decreased, but there was also an increase in VLDL and LDL phospholipids (210%), free cholesterol (60%), and cholesteryl ester (40%) without change in apo B levels, suggesting accumulation of surface components of TRL. Vesicular lipoproteins were shown by negative-stain electron microscopy of the free cholesterol– and phospholipid-enriched IDL/LDL fraction. Thus, PLTP is the major factor facilitating transfer of VLDL phospholipid into HDL. Reduced plasma PLTP activity causes markedly decreased HDL lipid and apoprotein, demonstrating the importance of transfer of surface components of TRL in the maintenance of HDL levels. Vesicular lipoproteins accumulating in PLTP–/– mice on a high-fat diet could influence the development of atherosclerosis. PMID:10079112

  13. Automation of plasma protein binding assay using rapid equilibrium dialysis device and Tecan workstation.

    PubMed

    Ye, Zhengqi; Zetterberg, Craig; Gao, Hong

    2017-03-14

    Binding of drug molecules to plasma proteins is an important parameter in assessing drug ADME properties. Plasma protein binding (PPB) assays are routinely performed during drug discovery and development. A fully automated PPB assay was developed using rapid equilibrium dialysis (RED) device and Tecan workstation coupled to an automated incubator. The PPB assay was carried out in unsealed RED plates which allowed the assay to be fully automated. The plasma pH was maintained at 7.4 during the 6-h dialysis under 2% CO2 condition. The samples were extracted with acetonitrile and analyzed by liquid chromatography tandem mass spectrometry. The percent bound results of 10 commercial drugs in plasma protein binding were very similar between the automated and manual assays, and were comparable to literature values. The automated assay increases laboratory productivity and is applicable to high-throughput screening of drug protein binding in drug discovery.

  14. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    SciTech Connect

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  15. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    NASA Astrophysics Data System (ADS)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok; Park, Jong-Chul

    2013-08-01

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH2 (399.70 eV) was increased significantly and -N=CH (400.80 eV) and -NH3+ (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  16. Persistent autoantibody-production by intermediates between short-and long-lived plasma cells in inflamed lymph nodes of experimental epidermolysis bullosa acquisita.

    PubMed

    Tiburzy, Benjamin; Szyska, Martin; Iwata, Hiroaki; Chrobok, Navina; Kulkarni, Upasana; Hirose, Misa; Ludwig, Ralf J; Kalies, Kathrin; Westermann, Jürgen; Wong, David; Manz, Rudolf Armin

    2013-01-01

    Autoantibodies are believed to be maintained by either the continuous generation of short-lived plasma cells in secondary lymphoid tissues or by long-lived plasma cells localized in bone marrow and spleen. Here, we show in a mouse model for the autoimmune blistering skin disease epidermolysis bullosa acquisita (EBA) that chronic autoantibody production can also be maintained in inflamed lymph nodes, by plasma cells exhibiting intermediate lifetimes. After EBA induction by immunization with a mCOL7c-GST-fusion protein, antigen-specific plasma cells and CD4 T cells were analyzed. Plasma cells were maintained for months in stable numbers in the draining lymph nodes, but not in spleen and bone marrow. In contrast, localization of mCOL7c-GST -specific CD4 T cells was not restricted to lymph nodes, indicating that availability of T cell help does not limit plasma cell localization to this site. BrdU-incorporation studies indicated that pathogenic mCOL7c- and non-pathogenic GST-specific plasma cells resemble intermediates between short-and long-lived plasma cells with half-lives of about 7 weeks. Immunization with mCOL7c-GST also yielded considerable numbers of plasma cells neither specific for mCOL7c- nor GST. These bystander-activated plasma cells exhibited much shorter half-lives and higher population turnover, suggesting that plasma cell lifetimes were only partly determined by the lymph node environment but also by the mode of activation. These results indicate that inflamed lymph nodes can harbor pathogenic plasma cells exhibiting distinct properties and hence may resemble a so far neglected site for chronic autoantibody production.

  17. Persistent Autoantibody-Production by Intermediates between Short-and Long-Lived Plasma Cells in Inflamed Lymph Nodes of Experimental Epidermolysis Bullosa Acquisita

    PubMed Central

    Tiburzy, Benjamin; Szyska, Martin; Iwata, Hiroaki; Chrobok, Navina; Kulkarni, Upasana; Hirose, Misa; Ludwig, Ralf J.; Kalies, Kathrin; Westermann, Jürgen; Wong, David; Manz, Rudolf Armin

    2013-01-01

    Autoantibodies are believed to be maintained by either the continuous generation of short-lived plasma cells in secondary lymphoid tissues or by long-lived plasma cells localized in bone marrow and spleen. Here, we show in a mouse model for the autoimmune blistering skin disease epidermolysis bullosa acquisita (EBA) that chronic autoantibody production can also be maintained in inflamed lymph nodes, by plasma cells exhibiting intermediate lifetimes. After EBA induction by immunization with a mCOL7c-GST-fusion protein, antigen-specific plasma cells and CD4 T cells were analyzed. Plasma cells were maintained for months in stable numbers in the draining lymph nodes, but not in spleen and bone marrow. In contrast, localization of mCOL7c-GST -specific CD4 T cells was not restricted to lymph nodes, indicating that availability of T cell help does not limit plasma cell localization to this site. BrdU-incorporation studies indicated that pathogenic mCOL7c- and non-pathogenic GST-specific plasma cells resemble intermediates between short-and long-lived plasma cells with half-lives of about 7 weeks. Immunization with mCOL7c-GST also yielded considerable numbers of plasma cells neither specific for mCOL7c- nor GST. These bystander-activated plasma cells exhibited much shorter half-lives and higher population turnover, suggesting that plasma cell lifetimes were only partly determined by the lymph node environment but also by the mode of activation. These results indicate that inflamed lymph nodes can harbor pathogenic plasma cells exhibiting distinct properties and hence may resemble a so far neglected site for chronic autoantibody production. PMID:24386241

  18. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  19. Inhibition of cell adhesion by xARVCF indicates a regulatory function at the plasma membrane.

    PubMed

    Reintsch, Wolfgang E; Mandato, Craig A; McCrea, Pierre D; Fagotto, François

    2008-09-01

    The cytoplasmic tail of cadherins is thought to regulate the strength and dynamics of cell-cell adhesion. Part of its regulatory activity has been attributed to a membrane-proximal region, the juxtamembrane domain (JMD), and its interaction with members of the p120 catenin subfamily. We show that titration of xARVCF, a member of this family, to the plasma membrane disrupts adhesion in the early embryo. Adhesion can be restored by coexpression of constitutively active Rac, suggesting that intracellular signaling is the primary cause in the loss of adhesion phenotype. Our observations suggest that the recruitment of p120 type catenins to the plasma membrane by the cadherin cytoplasmic tail may create protein complexes, which actively modulate the adhesion "status" of embryonic cells.

  20. Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance

    PubMed Central

    Hsu, Alan Yi-Hui; Wu, Shang-Rung; Tsai, Jih-Jin; Chen, Po-Lin; Chen, Ya-Ping; Chen, Tsai-Yun; Lo, Yu-Chih; Ho, Tzu-Chuan; Lee, Meed; Chen, Min-Ting; Chiu, Yen-Chi; Perng, Guey Chuen

    2015-01-01

    The levels of neutralizing antibody to a pathogen are an effective indicator to predict efficacy of a vaccine in trial. And yet not all the trial vaccines are in line with the theory. Using dengue virus (DENV) to investigate the viral morphology affecting the predictive value, we evaluated the viral morphology in acute dengue plasma compared to that of Vero cells derived DENV. The virions in plasma were infectious and heterogeneous in shape with a “sunny-side up egg” appearance, viral RNA was enclosed with CD61+ cell-derived membrane interspersed by the viral envelope protein, defined as dengue vesicles. The unique viral features were also observed from ex vivo infected human bone marrow. Dengue vesicles were less efficiently neutralized by convalescent patient serum, compared to virions produced from Vero cells. Our results exhibit a reason why potencies of protective immunity fail in vivo and significantly impact dengue vaccine and drug development. PMID:26657027

  1. The Relationship of Novel Plasma Proteins in the Early Neonatal Period With Retinopathy of Prematurity

    PubMed Central

    Lynch, Anne M.; Wagner, Brandie D.; Mandava, Naresh; Palestine, Alan G.; Mourani, Peter M.; McCourt, Emily A.; Oliver, Scott C. N.; Abman, Steven H.

    2016-01-01

    Purpose Retinopathy of prematurity (ROP) is a vision-threatening disease associated with abnormal retinal vascular development. Proteins from the insulin-like growth factor pathway are related to ROP. However, there is a paucity of research on the role of other proteins in ROP. The aim of this study was to identify plasma proteins related to clinically significant ROP. Methods We measured 1121 plasma proteins in the early neonatal period in infants at risk for ROP using an aptamer-based proteomic technology. The primary aim of the study was to compare plasma protein concentrations in infants who did (n = 12) and did not (n = 23) subsequently develop clinically significant ROP using logistic regression. As a secondary aim, we examined patterns in the proteins across categories of clinically significant, low-grade, and no ROP groups. Results Lower levels of 16 proteins were associated with an increased risk of clinically significant ROP. In this group, superoxide dismutase (Mn), mitochondrial (MnSOD), and chordin-like protein 1 (CRDL1) were highly ranked. Other proteins in this group included: C-C motif chemokine 14 (HCC-1), prolactin, insulin-like growth factor-binding protein 7 (IGFBP-7), and eotaxin. Higher levels of 12 proteins were associated with a higher risk for ROP. Fibroblast growth factor 19 (FGF-19) was the top-ranked protein target followed by hepatocyte growth factor-like protein (MSP), luteinizing hormone (LH), cystatin M, plasminogen, and proprotein convertase subtilisin/kexin type 9 (PCSK9). We also noted different patterns in the trend of concentrations of proteins across the clinically significant, low-grade, and no ROP groups. Conclusions We discovered plasma proteins with novel associations with clinically significant ROP (MnSOD, CRDL1, PCSK9), proteins with links to established ROP signaling pathways (IGFBP-7), and proteins such as MnSOD that may be a target for future therapeutic interventions. PMID:27679852

  2. The plasma membrane shuttling of CAPRI is related to regulation of mast cell activation

    SciTech Connect

    Nakamura, Rika; Furuno, Tadahide; Nakanishi, Mamoru . E-mail: mamoru@dpc.agu.ac.jp

    2006-08-18

    The Ca{sup 2+}-promoted Ras inactivator (CAPRI), a Ras GTPase-activating protein, is involved in the inactivation of mitogen-activated protein kinase pathway. However, a precise role of CAPRI in immune responses is still unknown. Here we showed that overexpression of CAPRI suppresses antigen-induced degranulation and cytokine production in mast cells (RBL cells). Antigen elicited the translocation of CAPRI to the plasma membrane from the cytoplasm, which was concomitant with the increase in the intracellular Ca{sup 2+} concentration. The nuclear import of extracellular signal-regulated kinase 2 (ERK2) occurred after the re-localization of CAPRI to the cytoplasm in the mast cells, suggesting that the early phase of ERK2 activation is eliminated. A mutant of GAP-related domain, CAPRI(R472S), showed a feeble translocation to the plasma membrane but did not affect the degranulation, ERK2 activation, and cytokine production. The results suggested that the translocation of CAPRI to the plasma membranes regulates crucially cellular responses in mast cells.

  3. Identification of Trypanosome proteins in plasma from African sleeping sickness patients infected with T. b. rhodesiense.

    PubMed

    Eyford, Brett A; Ahmad, Rushdy; Enyaru, John C; Carr, Steven A; Pearson, Terry W

    2013-01-01

    Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a 'deep-mining" proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification.

  4. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes.

    PubMed

    Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San

    2017-02-06

    An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo.

  5. Evaluation of Eight Plasma Proteins as Candidate Blood-Based Biomarkers for Malignant Gliomas

    PubMed Central

    Lange, Ryan P.; Everett, Allen; Dulloor, Pratima; Korley, Frederick K.; Bettegowda, Chetan; Blair, Cherie; Grossman, Stuart A.; Holdhoff, Matthias

    2015-01-01

    Eight brain-derived proteins were evaluated regarding their potential for further development as a blood-based biomarker for malignant gliomas. Plasma levels for glial fibrillary acidic protein, neurogranin, brain-derived neurotrophic factor, intracellular adhesion molecule 5, metallothionein-3, beta-synuclein, S100 and neuron specific enolase were tested in plasma of 23 patients with high-grade gliomas (WHO grade IV), 11 low-grade gliomas (WHO grade II), and 15 healthy subjects. Compared to the healthy controls, none of the proteins appeared to be specific for glioblastomas. However, the data are suggestive of higher protein levels in gliosarcomas (n = 2), which may deserve further exploration. PMID:25019213

  6. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases.

  7. Plasma from human volunteers subjected to remote ischemic preconditioning protects human endothelial cells from hypoxia-induced cell damage.

    PubMed

    Weber, Nina C; Riedemann, Isabelle; Smit, Kirsten F; Zitta, Karina; van de Vondervoort, Djai; Zuurbier, Coert J; Hollmann, Markus W; Preckel, Benedikt; Albrecht, Martin

    2015-03-01

    Short repeated cycles of peripheral ischemia/reperfusion (I/R) can protect distant organs from subsequent prolonged I/R injury; a phenomenon known as remote ischemic preconditioning (RIPC). A RIPC-mediated release of humoral factors might play a key role in this protection and vascular endothelial cells are potential targets for these secreted factors. In the present study, RIPC-plasma obtained from healthy male volunteers was tested for its ability to protect human umbilical endothelial cells (HUVEC) from hypoxia-induced cell damage. 10 healthy male volunteers were subjected to a RIPC-protocol consisting of 4 × 5 min inflation/deflation of a blood pressure cuff located at the upper arm. Plasma was collected before (T0; control), directly after (T1) and 1 h after (T2) the RIPC procedure. HUVEC were subjected to 24 h hypoxia damage and simultaneously incubated with 5% of the respective RIPC-plasma. Cell damage was evaluated by lactate dehydrogenase (LDH)-measurements. Western blot experiments of hypoxia inducible factor 1 alpha (HIF1alpha), phosphorylated signal transducer and activator of transcription 5 (STAT5), protein kinase B (AKT) and extracellular signal-related kinase 1/2 (ERK-1/2) were performed. Furthermore, the concentrations of hVEGF were evaluated in the RIPC-plasma by sandwich ELISA. Hypoxia-induced cell damage was significantly reduced by plasma T1 (p = 0.02 vs T0). The protective effect of plasma T1 was accompanied by an augmentation of the intracellular HIF1alpha (p = 0.01 vs T0) and increased phosphorylation of ERK-1/2 (p = 0.03 vs T0). Phosphorylation of AKT and STAT5 remained unchanged. Analysis of the protective RIPC-plasma T1 showed significantly reduced levels of hVEGF (p = 0.01 vs T0). RIPC plasma protects endothelial cells from hypoxia-induced cell damage and humoral mediators as well as intracellular HIF1alpha may be involved.

  8. Affinity labeling of the plasma membrane 3,3',5-triiodo-L-thyronine receptor in GH3 cells.

    PubMed Central

    Horiuchi, R; Johnson, M L; Willingham, M C; Pastan, I; Cheng, S

    1982-01-01

    The binding of 3,3',5-triiodo-L-thyronine (T3) to GH3 rat pituitary tumor cells was studied at 15 degrees C and was shown to be saturable, reversible, and stereospecific. Least-squares analysis of the binding data showed two classes of binding sites with dissociation constants of 1.8 +/- 0.2 nM and 260 +/- 30 nM and binding capacities of (5.2 +/- 0.2) X 10(4) and (1.6 +/- 0.2) X 10(6) sites per cell, respectively. Affinity labeling of intact cells was carried out by incubation of cells with 0.3 nM N-bromoacetyl-[125I]T3 at 15 degrees C for 1 hr. Analysis of the cellular extracts by sodium dodecyl sulfate gel electrophoresis showed three labeled protein bands with apparent molecular masses of 55, 47, and 33 kilodaltons (kDal) in a ratio of 86:7:7. The labeling of only the 55-kDal protein band was selectively reduced to 50% by 20 microM unlabeled T3. Highly purified plasma membranes of GH3 cells were prepared and shown to be free of nuclei. Affinity labeling of the purified plasma membranes gave the same labeling pattern as with intact cells. Peptide mapping by Staphylococcus aureus V8 digestion of the 55-kDal protein from cells or plasma membranes gave the identical peptide fragments. Thus the 55-kDal protein labeled from intact cells is the same protein as that from purified plasma membranes. These results together with our earlier findings [Horiuchi, R., Cheng, S.-y., Willingham, M. & Pastan, I. (1982) J. Biol. Chem. 257, 3139-3144] suggest that the 55-kDal protein may be involved in mediating the uptake of T3 in GH3 cells. Images PMID:6291049

  9. Imaging proteins inside cells with fluorescent tags

    PubMed Central

    Crivat, Georgeta; Taraska, Justin W.

    2011-01-01

    Watching biological molecules provides clues to their function and regulation. Some of the most powerful methods of labeling proteins for imaging use genetically encoded fluorescent fusion tags. There are four standard genetic methods of covalently tagging a protein with a fluorescent probe for cellular imaging. These use I) auto-fluorescent proteins, II) self-labeling enzymes, III) enzymes that catalyze the attachment of a probe to a target sequence, and IV) biarsenical dyes that target tetracysteine motifs. Each of these techniques has advantages and disadvantages. In this review, we cover new developments in these methods and discuss practical considerations for their use in imaging proteins inside living cells. PMID:21924508

  10. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  11. Pachytene spermatocytes regulate the secretion of Sertoli cell protein(s) which stimulate Leydig cell steroidogenesis.

    PubMed

    Onoda, M; Djakiew, D; Papadopoulos, V

    1991-05-01

    The influence of germ cells (pachytene spermatocytes and round spermatids) on the secretion by Sertoli cells of the proteinaceous factor(s) which stimulates Leydig cell steroid biosynthesis was investigated. Sertoli cells from immature rats were cultured on plastic dishes or on Millipore filters impregnated with reconstituted basement membrane in bicameral chambers. Immature rat Sertoli cell secreted proteins (rSCSP; MW greater than 10,000), from conventional cultures, stimulated 4- to 5-fold steroid biosynthesis in normal rat and MA-10 mouse tumor Leydig cells, respectively. MA-10 cells were then used as a bioassay system for most studies, although purified rat Leydig cells were used in some cases to further confirm results obtained with MA-10 cells. rSCSP collected from both the apical and basal compartment of the chambers were examined for their ability to stimulate Leydig cell steroidogenesis. The Leydig cell stimulatory activity from Sertoli cells was found to be secreted in a polarized manner, with 80% of the total bioactivity found in the basal rSCSP. Addition of pachytene spermatocyte proteins (PSP) in the apical compartment of the chambers inhibited, in a time- and concentration-dependent manner, the basally directed Sertoli cell secretion of the Leydig cell stimulatory protein(s) by 85%. Similar results were obtained when freshly isolated pachytene spermatocytes were directly added on top of Sertoli cell epithelial sheets in the apical compartment of the chambers. In contrast, round spermatid proteins (RSP) did not exhibit a comparable effect to that of PSP in regulating the Sertoli cell secretion of the Leydig cell stimulatory activity. These results demonstrate that the Sertoli cell secreted protein(s) which stimulates Leydig cell steroid biosynthesis is secreted in a basally polarized direction, and its secretion is specifically modulated by pachytene spermatocytes.

  12. Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.

    PubMed

    Francois, Jean Marie

    2016-01-01

    The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.

  13. Bone Marrow Mesenchymal Stem Cells Enhance the Differentiation of Human Switched Memory B Lymphocytes into Plasma Cells in Serum-Free Medium

    PubMed Central

    Gervais-St-Amour, Catherine

    2016-01-01

    The differentiation of human B lymphocytes into plasma cells is one of the most stirring questions with regard to adaptive immunity. However, the terminal differentiation and survival of plasma cells are still topics with much to be discovered, especially when targeting switched memory B lymphocytes. Plasma cells can migrate to the bone marrow in response to a CXCL12 gradient and survive for several years while secreting antibodies. In this study, we aimed to get closer to niches favoring plasma cell survival. We tested low oxygen concentrations and coculture with mesenchymal stem cells (MSC) from human bone marrow. Besides, all cultures were performed using an animal protein-free medium. Overall, our model enables the generation of high proportions of CD38+CD138+CD31+ plasma cells (≥50%) when CD40-activated switched memory B lymphocytes were cultured in direct contact with mesenchymal stem cells. In these cultures, the secretion of CXCL12 and TGF-β, usually found in the bone marrow, was linked to the presence of MSC. The level of oxygen appeared less impactful than the contact with MSC. This study shows for the first time that expanded switched memory B lymphocytes can be differentiated into plasma cells using exclusively a serum-free medium. PMID:27872867

  14. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  15. Origins of Protein Functions in Cells

    NASA Technical Reports Server (NTRS)

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  16. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.

    PubMed

    Ridpath, John R; Nakamura, Ayumi; Tano, Keizo; Luke, April M; Sonoda, Eiichiro; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Gillespie, David A F; Sale, Julian E; Yamazoe, Mitsuyoshi; Bishop, Douglas K; Takata, Minoru; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2007-12-01

    Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.

  17. Functions of red cell surface proteins.

    PubMed

    Daniels, G

    2007-11-01

    The external membrane of the red cell contains numerous proteins that either cross the lipid bilayer one or more times or are anchored to it through a lipid tail. Many of these proteins express blood group activity. The functions of some of these proteins are known; in others their function can only be surmised from the protein structure or from limited experimental evidence. They are loosely divided into four categories based on their functions: membrane transporters; adhesion molecules and receptors; enzymes; and structural proteins that link the membrane with the membrane skeleton. Some of the proteins carry out more than one of these functions. Some proteins may complete their major functions during erythropoiesis or may only be important under adverse physiological conditions. Furthermore, some might be evolutionary relics and may no longer have significant functions. Polymorphisms or rare changes in red cell surface proteins are often responsible for blood groups. The biological significance of these polymorphisms or the selective pressures responsible for their stability within populations are mostly not known, although exploitation of the proteins by pathogenic micro-organisms has probably played a major role.

  18. The Natural Pesticide Dihydrorotenone Induces Human Plasma Cell Apoptosis by Triggering Endoplasmic Reticulum Stress and Activating p38 Signaling Pathway

    PubMed Central

    Cao, Biyin; Zhang, Zubin; Li, Jie; Schimmer, Aaron D.; He, Sudan; Mao, Xinliang

    2013-01-01

    Dihydrorotenone (DHR) is a natural pesticide widely used in farming industry, such as organic produces. DHR is a potent mitochondrial inhibitor and probably induces Parkinsonian syndrome, however, it is not known whether DHR is toxic to other systems. In the present study, we evaluated the cytotoxicity of DHR on human plasma cells. As predicted, DHR impaired mitochondrial function by decreasing mitochondrial membrane potential in plasma cells. Because mito-dysfunction leads to unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, we examined the signature proteins in ER stress, including GRP78, ATF4, and CHOP. After DHR treatment, these proteins were significantly upregulated. It is reported that activation of the mitogen-activated protein kinases p38 and JNK are involved in endoplasmic reticulum stress. However, in the subsequent study, DHR was found to activate p38 but not the JNK signaling. When pre-treated with p38 inhibitor SB203580, activation of p38 and cell apoptosis induced by DHR was partially blocked. Thus, we found that DHR induced human plasma cell death by activating the p38 but not the JNK signaling pathway. Because plasma cells are very important in the immune system, this study provided a new insight in the safety evaluation of DHR application. PMID:23922854

  19. Effect of bovine oviduct epithelial cell apical plasma membranes on sperm function assessed by a novel flow cytometric approach.

    PubMed

    Boilard, Mathieu; Bailey, Janice; Collin, Simon; Dufour, Maurice; Sirard, Marc-André

    2002-10-01

    In the bovine, as in many mammalian species, sperm are temporarily stored in the oviduct before fertilization by binding to the oviduct epithelial cell apical plasma membranes. As the oviduct is able to maintain motility and viability of sperm and modulate capacitation, we propose that proteins present on the apical plasma membrane of oviduct epithelial cells contribute to these effects. To verify this hypothesis, the motility of frozen-thawed sperm was determined after incubation for 6 h with purified apical plasma membranes from fresh or cultured oviduct epithelial cells or from bovine mammary gland cells as a control. Analysis of intracellular calcium levels was performed by flow cytometry on sperm incubated with fresh membranes using Indo-1 to assess the membrane effect on intracellular calcium concentration. The coculture of sperm with fresh and cultured apical membranes maintained initial motility for 6 h (65% and 84%, respectively). This effect was significantly different from control sperm incubated without oviduct epithelial cell apical membranes (23%), with mammary gland cell apical membranes (23%), or with boiled epithelial cell apical membranes (21%). Apical membranes from oviduct epithelial cells diminished the percentage of sperm that reached a lethal calcium concentration over a 4-h period (18.7%) compared with the control (53.8%) and maintained lower intracellular calcium levels in viable sperm. These results show that the apical plasma membrane of bovine oviduct epithelial cells contains anchored proteinic factors that contribute to maintaining motility and viability and possibly to modulating capacitation of bovine sperm.

  20. Measurement of plasma-generated RONS in the cancer cells exposed by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Baek, Eun Jeong; Kim, Sun Ja; Chung, Tae Hun

    2015-09-01

    The plasma-induced reactive oxygen and nitrogen species (RONS) could result in cellular responses including DNA damages and apoptotic cell death. These chemical species, O, O2-,OH, NO, and NO2-,exhibit strong oxidative stress and/or trigger signaling pathways in biological cells. Each plasma-generated chemical species having biological implication should be identified and quantitatively measured. For quantitative measurement of RONS, this study is divided into three stages; plasma diagnostics, plasma-liquid interactions, plasma-liquid-cell interactions. First, the optical characteristics of the discharges were obtained by optical emission spectroscopy to identify various excited plasma species. And the characteristics of voltage-current waveforms, gas temperature, and plume length with varying control parameters were measured. Next, atmospheric pressure plasma jet was applied on the liquid. The estimated OH radical densities were obtained by ultraviolet absorption spectroscopy at the liquid surface. And NO2-is detected by Griess test and compared between the pure liquid and the cell-containing liquid. Finally, bio-assays were performed on plasma treated human lung cancer cells (A549). Intracellular ROS production was measured using DCF-DA. Among these RONS, productions of NO and OH within cells were measured by DAF-2DA and APF, respectively. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas, liquids, and cells.

  1. LOX-1 unlocks human plasma cell potential.

    PubMed

    Brink, Robert

    2014-10-16

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is best known for promoting atherosclerosis. In this issue of Immunity, Joo et al. (2014) find that dendritic cells triggered through LOX-1 can directly support plasmablast production via the production of the cytokines APRIL and BAFF.

  2. Gradients of phosphatidylserine contribute to plasma membrane charge localization and cell polarity in fission yeast

    PubMed Central

    Haupt, Armin; Minc, Nicolas

    2017-01-01

    Surface charges at the inner leaflet of the plasma membrane may contribute to regulate the surface recruitment of key signaling factors. Phosphatidylserine (PS) is an abundant charged lipid that may regulate charge distribution in different cell types. Here we characterize the subcellular distribution and function of PS in the rod-shaped, polarized fission yeast. We find that PS preferably accumulates at cell tips and defines a gradient of negative charges along the cell surface. This polarization depends on actin-mediated endocytosis and contributes to the subcellular partitioning of charged polarity-regulating Rho GTPases like Rho1 or Cdc42 in a protein charge–dependent manner. Cells depleted of PS have altered cell dimensions and fail to properly regulate growth from the second end, suggesting a role for PS and membrane charge in polarized cell growth. PMID:27852900

  3. Plasma levels of heat shock protein 72 (HSP72) and beta-endorphin as indicators of stress, pain and prognosis in horses with colic.

    PubMed

    Niinistö, Kati E; Korolainen, Raija V; Raekallio, Marja R; Mykkänen, Anna K; Koho, Ninna M; Ruohoniemi, Mirja O; Leppäluoto, Juhani; Pösö, A Reeta

    2010-04-01

    A prospective observational study was performed to evaluate whether the plasma concentration of heat shock protein 72 (HSP72) or beta-endorphin is related to clinical signs, blood chemistry, or severity of pain of colic. Seventy-seven horses with colic and 15 clinically healthy controls were studied. The horses were divided into four groups which reflected increasing severity of colic, from normal control horses to horses with mild, moderate and severe colic. Blood samples were collected before any treatment. Packed cell volume (PCV) and plasma HSP72, beta-endorphin, cortisol, adrenocorticotropic hormone (ACTH) and lactate concentrations were measured. Plasma beta-endorphin was related with severity of colic and survival, as well as with plasma cortisol, ACTH and lactate concentrations, heart rate, PCV and pain score. High plasma HSP72 concentration may indicate circulatory deficits, but was not associated with clinical signs of colic. Plasma lactate still seemed to be the most useful single prognostic parameter in horses with colic.

  4. Protein folding in the cell envelope of Escherichia coli.

    PubMed

    De Geyter, Jozefien; Tsirigotaki, Alexandra; Orfanoudaki, Georgia; Zorzini, Valentina; Economou, Anastassios; Karamanou, Spyridoula

    2016-07-26

    While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.

  5. MAMP (microbe-associated molecular pattern)-induced changes in plasma membrane-associated proteins.

    PubMed

    Uhlíková, Hana; Solanský, Martin; Hrdinová, Vendula; Šedo, Ondrej; Kašparovský, Tomáš; Hejátko, Jan; Lochman, Jan

    2017-03-01

    Plant plasma membrane associated proteins play significant roles in Microbe-Associated Molecular Pattern (MAMP) mediated defence responses including signal transduction, membrane transport or energetic metabolism. To elucidate the dynamics of proteins associated with plasma membrane in response to cryptogein, a well-known MAMP of defence reaction secreted by the oomycete Phytophthora cryptogea, 2D-Blue Native/SDS gel electrophoresis of plasma membrane fractions was employed. This approach revealed 21 up- or down-regulated protein spots of which 15 were successfully identified as proteins related to transport through plasma membrane, vesicle trafficking, and metabolic enzymes including cytosolic NADP-malic enzyme and glutamine synthetase. Observed changes in proteins were also confirmed on transcriptional level by qRT-PCR analysis. In addition, a significantly decreased accumulation of transcripts observed after employment of a mutant variant of cryptogein Leu41Phe, exhibiting a conspicuous defect in induction of resistance, sustains the contribution of identified proteins in cryptogein-triggered cellular responses. Our data provide further evidence for dynamic MAMP-induced changes in plasma membrane associated proteins.

  6. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel

    PubMed Central

    Qiu, Zhaozhu; Dubin, Adrienne E.; Mathur, Jayanti; Tu, Buu; Reddy, Kritika; Miraglia, Loren J.; Reinhardt, Jürgen; Orth, Anthony P.; Patapoutian, Ardem

    2014-01-01

    Summary Maintenance of a constant cell volume in response to extracellular or intracellular osmotic changes is critical for cellular homeostasis. Activation of a ubiquitous volume-regulated anion channel (VRAC) plays a key role in this process; however, its molecular identity in vertebrates remains unknown. Here, we used a cell-based fluorescence assay and performed a genome-wide RNAi screen to find components of VRAC. We identified SWELL1 (LRRC8A), a member of a four-transmembrane protein family with unknown function, as essential for hypotonicity-induced iodide influx. SWELL1 is localized to the plasma membrane, and its knockdown dramatically reduces endogenous VRAC currents and regulatory cell volume decrease in various cell types. Furthermore, point mutations in SWELL1 cause a significant change in VRAC anion selectivity, demonstrating that SWELL1 is an essential VRAC component. These findings enable further molecular characterization of the VRAC channel complex and genetic studies for understanding the function of VRAC in normal physiology and disease. PMID:24725410

  7. Versatile protein tagging in cells with split fluorescent protein.

    PubMed

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A; Ishikawa, Hiroaki; Leonetti, Manuel D; Marshall, Wallace F; Weissman, Jonathan S; Huang, Bo

    2016-03-18

    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respectively. The small size of FP11-tags enables a cost-effective and scalable way to insert them into endogenous genomic loci via CRISPR-mediated homology-directed repair. Tandem arrangement FP11-tags allows proportional enhancement of fluorescence signal in tracking intraflagellar transport particles, or reduction of photobleaching for live microtubule imaging. Finally, we show the utility of tandem GFP11-tag in scaffolding protein oligomerization. These experiments illustrate the versatility of FP11-tag as a labelling tool as well as a multimerization-control tool for both imaging and non-imaging applications.

  8. Versatile protein tagging in cells with split fluorescent protein

    PubMed Central

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A.; Ishikawa, Hiroaki; Leonetti, Manuel D.; Marshall, Wallace F.; Weissman, Jonathan S.; Huang, Bo

    2016-01-01

    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respectively. The small size of FP11-tags enables a cost-effective and scalable way to insert them into endogenous genomic loci via CRISPR-mediated homology-directed repair. Tandem arrangement FP11-tags allows proportional enhancement of fluorescence signal in tracking intraflagellar transport particles, or reduction of photobleaching for live microtubule imaging. Finally, we show the utility of tandem GFP11-tag in scaffolding protein oligomerization. These experiments illustrate the versatility of FP11-tag as a labelling tool as well as a multimerization-control tool for both imaging and non-imaging applications. PMID:26988139

  9. The irre cell recognition module (IRM) proteins.

    PubMed

    Fischbach, Karl-Friedrich; Linneweber, Gerit Arne; Andlauer, Till Felix Malte; Hertenstein, Alexander; Bonengel, Bernhard; Chaudhary, Kokil

    2009-01-01

    One of the most challenging problems in developmental neurosciences is to understand the establishment and maintenance of specific membrane contacts between axonal, dendritic, and glial processes in the neuropils, which eventually secure neuronal connectivity. However, underlying cell recognition events are pivotal in other tissues as well. This brief review focuses on the pleiotropic functions of a small, evolutionarily conserved group of proteins of the immunoglobulin superfamily involved in cell recognition. In Drosophila, this protein family comprises Irregular chiasm C/Roughest (IrreC/Rst), Kin of irre (Kirre), and their interacting protein partners, Sticks and stones (SNS) and Hibris (Hbs). For simplicity, we propose to name this ensemble of proteins the irre cell recognition module (IRM) after the first identified member of this family. Here, we summarize evidence that the IRM proteins function together in various cellular interactions, including myoblast fusion, cell sorting, axonal pathfinding, and target recognition in the optic neuropils of Drosophila. Understanding IRM protein function will help to unravel the epigenetic rules by which the intricate neurite networks in sensory neuropils are formed.

  10. Investigating citrullinated proteins in tumour cell lines

    PubMed Central

    2013-01-01

    Background The conversion of arginine into citrulline, termed citrullination, has important consequences for the structure and function of proteins. Studies have found PADI4, an enzyme performing citrullination, to be highly expressed in a variety of malignant tumours and have shown that PADI4 participates in the process of tumorigenesis. However, as citrullinated proteins have not been systematically investigated in tumours, the present study aimed to identify novel citrullinated proteins in tumours by 2-D western blotting (2-D WB). Methods Two identical two-dimensional electrophoresis (2-DE) gels were prepared using extracts from ECA, H292, HeLa, HEPG2, Lovo, MCF-7, PANC-1, SGC, and SKOV3 tumour cell lines. The expression profiles on a 2-DE gel were trans-blotted to PVDF membranes, and the blots were then probed with an anti-citrulline antibody. By comparing the 2-DE profile with the parallel 2-D WB profile at a global level, protein spots with immuno-signals were collected from the second 2-DE gel and identified using mass spectrometry. Immunoprecipitation was used to verify the expression and citrullination of the targeted proteins in tumour cell lines. Results 2-D WB and mass spectrometry identified citrullinated α-enolase (ENO1), heat shock protein 60 (HSP60), keratin 8 (KRT8), tubulin beta (TUBB), T cell receptor chain and vimentin in these cell lines. Immunoprecipitation analyses verified the expression and citrullination of ENO1, HSP60, KRT8, and TUBB in the total protein lysates of the tumour cell lines. Conclusions The citrullination of these proteins suggests a new mechanism in the tumorigenic process. PMID:24099319

  11. A Pea Plasma Membrane Protein Exhibiting Blue Light-Induced Phosphorylation Retains Photosensitivity following Triton Solubilization.

    PubMed Central

    Short, T. W.; Reymond, P.; Briggs, W. R.

    1993-01-01

    Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase. PMID:12231721

  12. Successful treatment of plasma cell cheilitis with topical tacrolimus: report of two cases.

    PubMed

    Hanami, Yuka; Motoki, Yoshikazu; Yamamoto, Toshiyuki

    2011-02-15

    Plasma cell cheilitis is an uncommon chronic inflammatory dermatitis that presents with flat to slightly elevated erosive erythematous plaques. It is histologically characterized by plasma cell infiltrates into the mucosa. Other than the lip, genital areas are often involved, which is called plasma cell balanitis or vulvitis. Plasma cell cheilitis is sometimes resistant to conventional topical corticosteroid therapy. Other choices include oral griseofulvin, topical cyclosporine, and intralesional corticosteroid injection, all of which occasionally fail to produce satisfactory results. Recent reports show that topical calcineurin inhibitors are effective for plasma cell cheilitis, balanitis, and vulvitis. However, there are so far only 2 reports of plasma cell cheilitis successfully treated with topical pimecrolimus and tacrolimus. We present herein two cases of plasma cell cheilitis, in which topical tacrolimus showed beneficial effects, suggesting that this immunomodulatory agent is a promising option for plasma cell cheilitis.

  13. Proteomics-based identification of plasma biomarkers in oral squamous cell carcinoma.

    PubMed

    Tung, Chun-Liang; Lin, Szu-Ting; Chou, Hsiu-Chuan; Chen, Yi-Wen; Lin, Hwan-Chung; Tung, Chung-Liang; Huang, Kao-Jean; Chen, Yi-Ju; Lee, Ying-Ray; Chan, Hong-Lin

    2013-03-05

    Oral squamous cell carcinoma (OSCC) is an aggressive cancer and its occurrence is closely related to betel nut chewing in Taiwan. However, there are few prognostic and diagnostic biomarkers for this disease especially for its association with betel nut chewing. Recent progresses in quantitative proteomics have offered opportunities to discover plasma proteins as biomarkers for tracking the progression and for understanding the molecular mechanisms of OSCC. In present study, plasma samples from OSCC patients with at least 5-year history of betel nut chewing and healthy donors were analyzed by fluorescence 2D-DIGE-based proteomic analysis. Totally, 38 proteins have been firmly identified representing 13 unique gene products. These proteins mainly function in inflammatory responses (such as fibrinogen gamma chain) and transport (Apolipoprotein A-I). Additionally, the current quantitative proteomic approach has identified numerous OSCC biomarkers including fibrinogen (alpha/beta/gamma) chain, haptoglobin, leucine-rich alpha-2-glycoprotein and ribosomal protein S6 kinase alpha-3 (RSK2) which have not been reported and may be associated with the progression and development of the disease. In summary, this study reports a comprehensive patient-based proteomic approach for the identification of potential plasma biomarkers in OSCC. The potential of utilizing these markers for screening and treating OSCC warrants further investigations.

  14. Correlation of Plasma Protein Carbonyls and C-Reactive Protein with GOLD Stage Progression in COPD Patients.

    PubMed

    Torres-Ramos, Yessica D; García-Guillen, María L; Olivares-Corichi, Ivonne M; Hicks, J J

    2009-04-14

    Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). To investigate the correlation between the progression of COPD and plasma biomarkers of chronic inflammation and oxidative injury, blood samples were obtained from healthy volunteers (HV, n = 14) and stabilized COPD patients. The patients were divided into three groups according to their GOLD stage (II, n = 34; III, n = 18; IV, n = 20). C-reactive protein (CRP), protein carbonyls (PC), malondialdehyde (MDA), susceptible lipoperoxidation of plasma substrates (SLPS), and myeloperoxidase activity (MPO) were measured. The plasma concentration of SLPS was measured as the amount of MDA generated by a metal ion-catalyzed reaction in vitro. PC, SLPS, and CPR were increased significantly (p < 0.001) in COPD patients when compared to HV. MDA concentrations and MPO activities were not significantly different from those of the HV group. In conclusion, increased oxidation of lipids and proteins resulting in a progressive increase in the amount of total plasma carbonyls and oxidative stress the presence of oxidative stress during COPD progression, concomitant with an increased oxidation of lipids and proteins resulting in a progressive and significant increase in the amount of total carbonyls formed from lipid-derived aldehydes and direct amino acid side chain oxidation in plasma, may serve as a biomarker and independent monitor of COPD progression and oxidative stress injury.

  15. Correlation of Plasma Protein Carbonyls and C-Reactive Protein with GOLD Stage Progression in COPD Patients

    PubMed Central

    Torres-Ramos, Yessica D; García-Guillen, María L; Olivares-Corichi, Ivonne M; Hicks, J. J

    2009-01-01

    Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). To investigate the correlation between the progression of COPD and plasma biomarkers of chronic inflammation and oxidative injury, blood samples were obtained from healthy volunteers (HV, n = 14) and stabilized COPD patients. The patients were divided into three groups according to their GOLD stage (II, n = 34; III, n = 18; IV, n = 20). C-reactive protein (CRP), protein carbonyls (PC), malondialdehyde (MDA), susceptible lipoperoxidation of plasma substrates (SLPS), and myeloperoxidase activity (MPO) were measured. The plasma concentration of SLPS was measured as the amount of MDA generated by a metal ion-catalyzed reaction in vitro. PC, SLPS, and CPR were increased significantly (p < 0.001) in COPD patients when compared to HV. MDA concentrations and MPO activities were not significantly different from those of the HV group. In conclusion, increased oxidation of lipids and proteins resulting in a progressive increase in the amount of total plasma carbonyls and oxidative stress the presence of oxidative stress during COPD progression, concomitant with an increased oxidation of lipids and proteins resulting in a progressive and significant increase in the amount of total carbonyls formed from lipid-derived aldehydes and direct amino acid side chain oxidation in plasma, may serve as a biomarker and independent monitor of COPD progression and oxidative stress injury. PMID:19461898

  16. Protein Kinases in Zucchini (Characterization of Calcium-Requiring Plasma Membrane Kinases).

    PubMed Central

    Verhey, S. D.; Gaiser, J. C.; Lomax, T. L.

    1993-01-01

    Using an in situ phosphorylation assay with zucchini (Cucurbita pepo L. cv Dark Green) seedling tissue, we have identified numerous polypeptides that are capable of acting as protein kinases. Total protein preparations from different organs contain different kinase profiles, but all are within the range of 55 to 70 kD. At least four kinases are associated with highly purified plasma membranes from etiolated zucchini hypocotyls. The major phosphorylated polypeptides from plasma membranes range in apparent molecular mass from 58 to 68 kD. The plasma membrane kinases are activated by micromolar concentrations of calcium and phosphorylate serine, and, to a lesser extent, threonine residues. These characteristics are similar to those of a soluble calcium-dependent protein kinase that has been purified to homogeneity from soybean suspension cultures. Three of the zucchini plasma membrane kinases share antigenic epitopes with the soluble soybean kinase. The presence of kinase activity at different apparent molecular masses may be indicative of separate kinases with similar characteristics. The zucchini hypocotyl protein kinases are not removed from plasma membrane vesicles by 0.5 M NaCl/5 mM ethylenediaminetetraacetate or by detergent concentrations below the critical micelle concentration of two types of detergent. This indicates that the plasma membrane protein kinases are tightly associated with the membrane in zucchini seedlings. PMID:12231949

  17. Pathogenic long-lived plasma cells and their survival niches in autoimmunity, malignancy, and allergy.

    PubMed

    Winter, Oliver; Dame, Christof; Jundt, Franziska; Hiepe, Falk

    2012-12-01

    Long-lived plasma cells survive in a protected microenvironment for years or even a lifetime and provide humoral memory by establishing persistent Ab titers. Long-lived autoreactive, malignant, and allergen-specific plasma cells are likewise protected in their survival niche and are refractory to immunosuppression, B cell depletion, and irradiation. Their elimination remains an essential therapeutic challenge. Recent data indicate that long-lived plasma cells reside in a multicomponent plasma cell niche with a stable mesenchymal and a dynamic hematopoietic component, both providing essential soluble and membrane-bound survival factors. Alternative niches with different hematopoietic cell components compensate fluctuations of single cell types but may also harbor distinct plasma cell subsets. In this Brief Review, we discuss conventional therapies in autoimmunity and multiple myeloma in comparison with novel drugs that target plasma cells and their niches. In the future, such strategies may enable the specific depletion of pathogenic plasma cells while leaving the protective humoral memory intact.

  18. A double-blind study on the effect of inhaled corticosteroids on plasma protein exudation in asthma.

    PubMed

    Nocker, R E; Weller, F R; Out, T A; de Riemer, M J; Jansen, H M; van der Zee, J S

    1999-05-01

    Plasma protein exudation into the airways is an important pathophysiological event in asthma. The effect of 12 wk of treatment with inhaled fluticasone propionate (FP; 250 microgram twice a day) or salbutamol (Sb; 400 microgram twice a day) on plasma protein leakage was compared in a double-blind, randomized parallel-group study of 30 patients with asthma. Primary outcomes were plasma protein leakage and size selectivity of the blood-airway lumen barrier, cell differentials in BAL fluid, and bronchial responsiveness to histamine (PC20histamine). Two independent procedures to account for the effect of variable dilution of BAL on the levels of albumin (Alb) and alpha2-macroglobulin (A2M) in BAL fluid consisted of correction based on urea levels and on the application of the relative coefficient of excretion [RCE = ([A2M] in BAL fluid/[A2M] in serum)/([Alb] in BAL fluid/[Alb] in serum)]. In the FP group a significant decrease was found in the A2M level and the RCE, and in the percentage of eosinophils in BAL fluid. The PC20histamine increased significantly (mean increase, 2.4 doubling doses), whereas PC20histamine decreased in the Sb group. Differences between groups were significant except for the decrease in eosinophils. We conclude that 12 wk of FP (250 microgram twice a day) decreased the permeability of the blood-airway lumen barrier, in particular for high molecular weight proteins.

  19. Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells

    PubMed Central

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atomospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy. PMID:24040051

  20. Treatment of prostate cancer cell lines and primary cells using low temperature plasma

    NASA Astrophysics Data System (ADS)

    O'Connell, Deborah; Hirst, Adam; Frame, Fiona F.; Maitland, Norman J.

    2014-10-01

    The mechanisms of cell death after plasma treatment of both benign and cancerous prostate epithelial cells are investigated. Prostate cancer tissue was obtained with patient consent from targeted needle core biopsies following radical prostatectomy. Primary cells were cultured from cancer tissue and plated onto a chamber slide at a density of 10,000 cells per well in 200 microliter of stem cell media (SCM). The treated sample was previously identified as Gleason grade 7 cancer through tissue histo-pathology. A dielectric barrier discharge (DBD) jet configuration, with helium as a carrier gas, and 0.3% O2 admixture was used for treating the cells. Reactive oxygen and nitrogen species (RONS) produced by the plasma are believed to be the main mediators of the plasma-cell interaction and response. We found the concentration of reactive oxygen species (ROS) induced inside the cells increased with plasma exposure. Exposure to the plasma for >3 minutes showed high levels of DNA damage compared to untreated and hydrogen peroxide controls. Cell viability and cellular recovery are also investigated and will be presented. All findings were common to both cell lines, suggesting the potential of LTP therapy for both benign and malignant disease.

  1. Biosynthesis and secretion of functional protein S by a human megakaryoblastic cell line (MEG-01)

    SciTech Connect

    Ogura, M.; Tanabe, N.; Nishioka, J.; Suzuki, K.; Saito, H.

    1987-07-01

    A human megakaryoblastic cell line (MEG-01) was investigated for the presence of protein S in culture medium and cell lysates using a specific enzyme-linked immunoassay (ELISA) and a functional assay. When 5 X 10(5) MEG-01 cells/mL was subcultured in RPMI 1640 medium with 10% fetal calf serum (FCS), the concentration of protein S antigen in the culture medium increased progressively with time from less than 8 ng/mL on day 0 to 105.6 +/- 6.0 ng/mL on day 13. Vitamin K2(1 microgram/mL) increased the production of functional protein S, whereas warfarin (1 microgram/mL) profoundly decreased the quantity and the specific activity of secreted protein S. By an indirect immunofluorescent technique, protein S antigen was detected in both MEG-01 cells and human bone marrow megakaryocytes. Immunoblot analysis of culture medium revealed two distinct bands (mol wt 84,000 and 78,000) that are identical to the doublets of purified plasma protein S. De novo synthesis of protein S was demonstrated by the presence of specific immunoprecipitable radioactivity in the medium after 5 hours of labeling of the cells with (/sup 35/S)-methionine as a 84,000 mol wt protein. Plasma protein S levels of nine patients with severe aplastic anemia were not significantly different from those of normal controls. These results suggest that megakaryocytes produce functional protein S and contain the enzymes required for the carboxylation of selected glutamic acid residues, and that protein S synthesized by megakaryocytes does not represent a main source of plasma protein S.

  2. N protein is the predominant antigen recognized by vesicular stomatitis virus-specific cytotoxic T cells.

    PubMed Central

    Puddington, L; Bevan, M J; Rose, J K; Lefrançois, L

    1986-01-01

    The specificity of anti-vesicular stomatitis virus (VSV)-specific cytotoxic T cells was explored with cell lines expressing VSV genes introduced by electroporation. Low levels of nucleocapsid (N) protein were detected on the surface of VSV-infected cells, but N protein could not be detected on the plasma membrane of transfected EL4 cells. Intracellular N protein was detectable by enzyme-linked immunosorbent assay or immunoprecipitation in some of the transfected cell lines but not in others, unless the transfected genes were induced by sodium butyrate. However, all of the stably transfected EL4 cell lines expressing the VSV-Indiana N protein were efficiently lysed by serotype-specific and cross-reactive anti-VSV cytotoxic T cells (CTLs). Primary cross-reactive anti-VSV CTLs appeared to be specific solely for N protein, based on cold-target competition assays using infected and transfected target cells. Cell lines expressing 100- to 1,000-fold less N protein than did VSV-infected cells were efficiently lysed by both primary and secondary anti-VSV CTLs. Cell lines expressing 100-fold less G protein than did VSV-infected cells were not lysed by either population of effectors. Significantly, cold-target competition studies with secondary CTLs demonstrated that N protein-expressing cell lines were more efficient competitors than were VSV-infected cells even though the latter expressed 100- to 1,000-fold more N protein. This was not an artifact of viral infection since infection of the transfected cell lines did not affect their ability to compete. The possibility that cell lines constitutively expressing internal virus proteins present antigen more effectively than infected cells do is discussed. Images PMID:3022003

  3. Intercourse between cell wall and cytoplasm exemplified by arabinogalactan proteins and cortical microtubules.

    PubMed

    Driouich, Azeddine; Baskin, Tobias I

    2008-12-01

    How does a plant cell sense and respond to the status of its cell wall? Intercourse between cell wall and cytoplasm has long been supposed to involve arabinogalactan proteins, in part because many of them are anchored to the plasma membrane. Disrupting arabinogalactan proteins has recently been shown to disrupt the array of cortical microtubules present just inside the plasma membrane, implying that microtubules and arabinogalactan proteins interact. In this article, we assess possibilities for how this interaction might be mediated. First, we consider microdomains in the plasma membrane (lipid rafts), which have been alleged to link internal and external regions of the plasma membrane; however, the characteristics and even the existence of these domains remains controversial. Next, we point out that disrupting the synthesis of cellulose also can disrupt microtubules and consider whether arabinogalactan proteins are part of a network linking microtubules and nascent microfibrils. Finally, we outline several signaling cascades that could transmit information from arabinogalactan proteins to microtubules through channels of cellular communication. These diverse possibilities highlight the work that remains to be done before we can understand how plant cells communicate across their membranes.

  4. Identification of a Zn(2+)-sensitive component of Ehrlich cell plasma membrane redox system by CHAPS-agarose-polyacrylamide electrophoresis and in situ staining of activity.

    PubMed

    Rodríguez-Caso, L; Rodríguez-Agudo, D; del Castillo-Olivares, A; Márquez, J; Núñez de Castro, I; Medina, M A

    1997-01-01

    A procedure based on CHAPS-agarose-polyacrylamide electrophoresis and in situ staining of activity was used to detect a Zn(2+)-sensitive component of Ehrlich cell plasma membrane redox system. The procedure is so powerful that it allows to use crude plasma membrane fractions and can be easily adapted for use in an electrophoretic approach to the purification of this protein.

  5. A 39-kD plasma membrane protein (IP39) is an anchor for the unusual membrane skeleton of Euglena gracilis

    SciTech Connect

    Rosiere, T.K.; Marrs, J.A.; Bouck, G.B. )

    1990-04-01

    The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39.

  6. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    SciTech Connect

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions

  7. Comparative Studies of the Proteome, Glycoproteome, and N-Glycome of Clear Cell Renal Cell Carcinoma Plasma before and after Curative Nephrectomy

    PubMed Central

    2015-01-01

    Clear cell renal cell carcinoma is the most prevalent of all reported kidney cancer cases, and currently there are no markers for early diagnosis. This has stimulated great research interest recently because early detection of the disease can significantly improve the low survival rate. Combining the proteome, glycoproteome, and N-glycome data from clear cell renal cell carcinoma plasma has the potential of identifying candidate markers for early diagnosis and prognosis and/or to monitor disease recurrence. Here, we report on the utilization of a multi-dimensional fractionation approach (12P-M-LAC) and LC–MS/MS to comprehensively investigate clear cell renal cell carcinoma plasma collected before (disease) and after (non-disease) curative nephrectomy (n = 40). Proteins detected in the subproteomes were investigated via label-free quantification. Protein abundance analysis revealed a number of low-level proteins with significant differential expression levels in disease samples, including HSPG2, CD146, ECM1, SELL, SYNE1, and VCAM1. Importantly, we observed a strong correlation between differentially expressed proteins and clinical status of the patient. Investigation of the glycoproteome returned 13 candidate glycoproteins with significant differential M-LAC column binding. Qualitative analysis indicated that 62% of selected candidate glycoproteins showed higher levels (upregulation) in M-LAC bound fraction of disease samples. This observation was further confirmed by released N-glycans data in which 53% of identified N-glycans were present at different levels in plasma in the disease vs non-disease samples. This striking result demonstrates the potential for significant protein glycosylation alterations in clear cell renal cell carcinoma cancer plasma. With future validation in a larger cohort, information derived from this study may lead to the development of clear cell renal cell carcinoma candidate biomarkers. PMID:25184692

  8. Liquid-vapor interfacial tension of blood plasma, serum and purified protein constituents thereof.

    PubMed

    Krishnan, Anandi; Wilson, Arwen; Sturgeon, Jacqueline; Siedlecki, Christopher A; Vogler, Erwin A

    2005-06-01

    A systematic study of water-air (liquid-vapor, LV) interfacial tension gamma(lv) of blood plasma and serum derived from four different mammalian species (human, bovine, ovine and equine) reveals nearly identical concentration-dependence (dgamma(lv)/dlnC(B); where C(B) is plasma/serum dilution expressed in v/v concentration units). Comparison of results to a previously-published survey of purified human-blood proteins further reveals that dgamma(lv)/dlnC(B) of plasma and serum is surprisingly similar to that of purified protein constituents. It is thus concluded that any combination of blood-protein constituents will be substantially similar because dgamma(lv)/dlnC(B) of individual proteins are very similar. Experimental results are further interpreted in terms of a recently-developed theory emphasizing the controlling role of water in protein adsorption. Accordingly, the LV interphase saturates with protein adsorbed from bulk solution at a fixed weight-volume concentration ( approximately 436 mg/mL) independent of protein identity or mixture. As a direct consequence, dgamma(lv)/dlnC(B) of purified proteins closely resembles that of mixed solutions and does not depend on the relative proportions of individual proteins comprising a mixture. Thus variations in the plasma proteome between species are not reflected in dgamma(lv)/dlnC(B) nor is serum different from plasma in this regard, despite being depleted of coagulation proteins (e.g. fibrinogen). A comparison of pendant-drop and Wilhelmy-balance tensiometry as tools for assessing protein gamma(lv) shows that measurement conditions employed in the typical Wilhelmy plate approach fails to achieve the steady-state adsorption state that is accessible to pendant-drop tensiometry.

  9. Maintaining protein homeostasis: early and late endosomal dual recycling for the maintenance of intracellular pools of the plasma membrane protein Chs3

    PubMed Central

    Arcones, Irene; Sacristán, Carlos; Roncero, Cesar

    2016-01-01

    The major chitin synthase activity in yeast cells, Chs3, has become a paradigm in the study of the intracellular traffic of transmembrane proteins due to its tightly regulated trafficking. This includes an efficient mechanism for the maintenance of an extensive reservoir of Chs3 at the trans-Golgi network/EE, which allows for the timely delivery of the protein to the plasma membrane. Here we show that this intracellular reservoir of Chs3 is maintained not only by its efficient AP-1–mediated recycling, but also by recycling through the retromer complex, which interacts with Chs3 at a defined region in its N-terminal cytosolic domain. Moreover, the N-terminal ubiquitination of Chs3 at the plasma membrane by Rsp5/Art4 distinctly labels the protein and regulates its retromer-mediated recycling by enabling Chs3 to be recognized by the ESCRT machinery and degraded in the vacuole. Therefore the combined action of two independent but redundant endocytic recycling mechanisms, together with distinct labels for vacuolar degradation, determines the final fate of the intracellular traffic of the Chs3 protein, allowing yeast cells to regulate morphogenesis, depending on environmental constraints. PMID:27798229

  10. Directed cell attachment by tropoelastin on masked plasma immersion ion implantation treated PTFE.

    PubMed

    Bax, Daniel V; McKenzie, David R; Bilek, Marcela M M; Weiss, Anthony S

    2011-10-01

    The ability to generate cell patterns on polymer surfaces is critical for the detailed study of cellular biology, the fabrication of cell-based biosensors, cell separation techniques and for tissue engineering. In this study contact tape masking and steel shadow masks were used to exclude plasma immersion ion implantation (PIII) treatment from defined areas of polytetrafluoroethylene (PTFE) surfaces. This process enabled patterned covalent binding of the cell adhesive protein, tropoelastin, without employing chemical linking molecules. Tropoelastin coating rendered the untreated regions cell adhesive and the PIII-treated area non-adhesive, allowing very fine patterning of cell adhesion to PTFE surfaces. A blocking step, such as with BSA or PEG, was not required to prevent cell binding to the underlying PIII-treated regions as tropoelastin coating alone performed this blocking function. Although tropoelastin coated the entire PTFE surface, the cell binding C-terminus of tropoelastin was markedly less solvent exposed on the PIII-treated, hydrophilic regions. The differential exposure of the C-terminus correlated with the patterned distribution of tropoelastin-mediated cell adhesion. This new methodology specifically enables directed cell behavior on a polymer surface using a simple one-step treatment process, by modulating the adhesive activity of a single extracellular matrix protein.

  11. Improvement of gluten-free bread properties by the incorporation of bovine plasma proteins and different saccharides into the matrix.

    PubMed

    Rodriguez Furlán, Laura T; Pérez Padilla, Antonio; Campderrós, Mercedes E

    2015-03-01

    The aim of this work was to improve the quality of gluten-free bread, incorporating plasma bovine proteins concentrated by ultrafiltration and freeze-dried with saccharides (inulin and sucrose). The influence of these compounds on textural properties and final bread quality was assessed. The textural studies revealed that with the addition of proteins and inulin, homogeneous and smaller air cells were achieved improving the textural properties while the bread hardness was comparable with breads with gluten. The volume of gluten-free breads increased with increasing proteins and inulin concentrations, reaching a maximum at a protein concentration of 3.5% (w/w). The addition of the enhancers improved moisture retention of the loaves after cooking and an increase of lightness of crumb with respect to the control was observed. The sensory analysis found no statistically significant difference in sensory attributes evaluated with respect to the control, so these ingredients do not negatively affect the organoleptic properties of bread.

  12. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    SciTech Connect

    Sakamoto, Hikaru; Sakata, Keiko; Kusumi, Kensuke; Kojima, Mikiko; Sakakibara, Hitoshi; Iba, Koh

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  13. Comparative protein profiling of serum and plasma using an antibody suspension bead array approach.

    PubMed

    Schwenk, Jochen M; Igel, Ulrika; Kato, Bernet S; Nicholson, George; Karpe, Fredrik; Uhlén, Mathias; Nilsson, Peter

    2010-02-01

    In the pursuit towards a systematic analysis of human diseases, array-based approaches within antibody proteomics offer high-throughput strategies to discover protein biomarkers in serum and plasma. To investigate the influence of sample preparation on such discovery attempts, we report on a systematic effort to compare serum and plasma protein profiles determined with an antibody suspension bead array. The intensity levels were used to define protein profiles and no significant differences between serum and plasma were observed for 79% of the 174 antibodies (targeting 156 proteins). By excluding 36 antibodies giving rise to differential intensity levels, cluster analysis revealed donor-specific rather than preparation-dependent grouping. With a cohort from a clinically relevant medical condition, the metabolic syndrome, the influence of the sample type on a multiplexed biomarker discovery approach was further investigated. Independent comparisons of protein profiles in serum and plasma revealed an antibody targeting ADAMTSL-4, a protein that would qualify to be studied further in association with the condition. In general, the preparation type had an impact on the results of the applied antibody suspension bead array, and while the technical variability was equal, plasma offered a greater biological variability and allowed to give rise to more discoveries than serum.

  14. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells

    PubMed Central

    GUERRERO-PRESTON, RAFAEL; OGAWA, TAKENORI; UEMURA, MAMORU; SHUMULINSKY, GARY; VALLE, BLANCA L.; PIRINI, FRANCESCA; RAVI, RAJANI; SIDRANSKY, DAVID; KEIDAR, MICHAEL; TRINK, BARRY

    2014-01-01

    The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min−1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines. PMID:25050490

  15. An update on cell surface proteins containing extensin-motifs.

    PubMed

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.

  16. Host cell protein adsorption characteristics during protein A chromatography.

    PubMed

    Tarrant, Richard D R; Velez-Suberbie, M Lourdes; Tait, Andrew S; Smales, C Mark; Bracewell, Daniel G

    2012-07-01

    Protein A chromatography is a critical and 'gold-standard' step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI-TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back-bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D-PAGE was then used to determine individual components associated with resin back-bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs.

  17. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki; Hori, Masaru; Nakamura, Kae; Hayashi, Moemi; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Kano, Hiroyuki

    2012-03-12

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  18. On the zopiclone enantioselective binding to human albumin and plasma proteins. An electrokinetic chromatography approach.

    PubMed

    Asensi-Bernardi, L; Martín-Biosca, Y; Medina-Hernández, M J; Sagrado, S

    2011-05-20

    In this work, a methodology for the chiral separation of zopiclone (ZPC) by electrokinetic chromatography (EKC) using carboxymethylated-β-cyclodextrin as chiral selector has been developed and applied to the evaluation of the enantioselective binding of ZPC enantiomers to HSA and total plasma proteins. Two mathematical approaches were used to estimate protein binding (PB), affinity constants (K(1)) and enantioselectivity (ES) for both enantiomers of ZPC. Contradictory results in the literature, mainly related to plasma protein binding reported data, suggest that this is an unresolved matter and that more information is needed. Discrepancies and coincidences with previous data are highlighted.

  19. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  20. Human apolipoprotein E expression in Escherichia coli: structural and functional identity of the bacterially produced protein with plasma apolipoprotein E.

    PubMed Central

    Vogel, T; Weisgraber, K H; Zeevi, M I; Ben-Artzi, H; Levanon, A Z; Rall, S C; Innerarity, T L; Hui, D Y; Taylor, J M; Kanner, D

    1985-01-01

    Human apolipoprotein E (apoE) was produced in Escherichia coli by transforming cells with an expression vector containing a reconstructed apoE cDNA, a lambda PL promoter regulated by the thermolabile cI repressor, and a ribosomal binding site derived from the lambda cII or the E. coli beta-lactamase gene. Transformed cells induced at 42 degrees C for short periods of time (less than 20 min) produced apoE, which accumulated in the cells at levels of approximately equal to 1% of the total soluble cellular protein. Longer induction periods resulted in cell lysis and the proteolytic destruction of apoE. The bacterially produced apoE was purified by heparin-Sepharose affinity chromatography, Sephacryl S-300 gel filtration, and preparative Immobiline isoelectric focusing. The final yield was approximately equal to 20% of the initial apoE present in the cells. Except for an additional methionine at the amino terminus, the bacterially produced apoE was indistinguishable from authentic human plasma apoE as determined by NaDodSO4 and isoelectric focusing gel electrophoresis, amino acid composition of the total protein as well as its cyanogen bromide fragments, and partial amino acid sequence analysis (residues 1-17 and 109-164). Both the bacterially produced and authentic plasma apoE bound similarly to apolipoprotein B,E(low density lipoprotein) receptors of human fibroblasts and to hepatic apoE receptors. Intravenous injection resulted in similar rates of clearance for both the bacterially produced and authentic apoE from rabbit and rat plasma (approximately equal to 50% removed in 20 min). The ability to synthesize a bacterially produced human apolipoprotein with biological properties indistinguishable from those of the native protein will allow the production of large quantities of apoE for use in further investigations of the biological and physiological properties of this apolipoprotein. Images PMID:3909150

  1. Utilization of ascites plasma very low density lipoprotein triglycerides by Ehrlich cells.

    PubMed

    Brenneman, D E; Spector, A A

    1974-07-01

    Much of the lipid present in the ascites plasma in which Ehrlich cells grow is contained in very low density lipoproteins (VLDL). Chemical measurements indicated that triglycerides were taken up by the cells during in vitro incubation with ascites VLDL. When tracer amounts of radioactive triolein were incorporated into the ascites VLDL, the percentage uptakes of glyceryl tri[1-(14)C]oleate and triglycerides measured chemically were similar. The cells also took up [2-(3)H]glyceryl trioleate that was added to VLDL, but the percentage of available (3)H recovered in the cell lipids was 30-40% less than that of (1 4)C from glyceryl tri[1-(1 4)C]oleate. This difference was accounted for by water-soluble (3)H that accumulated in the incubation medium, suggesting that extensive hydrolysis accompanied the uptake of VLDL triglycerides. Radioactive fatty acids derived from the VLDL triglycerides were incorporated into cell phospholipids, glycerides, and free fatty acids, and they also were oxidized to CO(2). Triglyceride utilization increased as the VLDL concentration was raised. These results suggest that one function of the ascites plasma VLDL may be to supply fatty acid to the Ehrlich cells and that the availability of fatty acid to this tumor is determined in part by the ascites plasma VLDL concentration. Although Ehrlich cells incorporate almost no free glycerol into triglycerides, considerable amounts of [2-(3)H]glyceryl trioleate radioactivity were recovered in cell triglycerides. This indicates that at least some VLDL triglycerides were taken up intact. The net uptake of VLDL protein and cholesterol was very small relative to the triglyceride uptake, suggesting that intact triglycerides are transferred from the ascites VLDL to the Ehrlich cells and that hydrolysis occurs after the triglyceride is associated with the cells.

  2. Plasma prion protein concentration and progression of Alzheimer disease

    PubMed Central

    Schmidt, Christian; Becker, Harry; Peter, Christoph; Lange, Katharina; Friede, Tim; Zerr, Inga

    2014-01-01

    Background/Objective: Recently, PrPc has been linked to AD pathogenesis. Second, a relation of PrPc plasma levels with cognitive status and decline of healthy elderly subjects has been reported. Therefore, we hypothesized baseline plasma levels of PrPc to be associated with AD progression in cognitive and functional domains. Materials and Methods: AD patients (n = 84) were included into an observational study at time of diagnosis. Baseline plasma PrPc levels were determined. Decline was assessed annually (mean follow-up time 3 years) with the aid of different standardized tests (MMSE, iADL, bADL, GDS, UPDRSIII). Multiple regression analyses were used to uncover potential associations between decline and PrPc levels. Results: No association of PrPc and decline could be established. Presence of diabetes mellitus was linked to slower deterioration. Intake of neuroleptic drugs or memantine was associated with faster progression. Conclusion: Plasma PrPc at baseline could not be shown to be related to AD progression in this study. An interesting association of diabetes mellitus and decline warrants further investigation. PMID:24549099

  3. Infusion of plasma expanders may lead to unexpected results in urinary protein assays.

    PubMed

    de Keijzer, M H; Klasen, I S; Branten, A J; Hordijk, W; Wetzels, J F

    1999-04-01

    Overt proteinuria was detected in the urine of a potential kidney donor, ultimately leading to the refusal of the kidneys for transplantation purposes. Histological examination of the kidneys did not reveal any abnormalities. Searching for substances that could have interfered with the urinary total protein assay, the role of infused, modified gelatin plasma expanders was investigated. We therefore measured the concentration of protein before and after the addition of various artificial plasma expanders to urine. Only when Biuret reagent or Pyrogallol Red dye were used did we find elevated concentrations of protein. Other methods, including the turbidimetric assays, did not detect additional amounts of protein in the spiked urine. We conclude that the infusion of modified gelatin solutions may cause apparent proteinuria. This effect is not observed with starch-based plasma expanders. Clinical chemists and clinicians should be aware of this phenomenon and possibly repeat the analysis with a different technique.

  4. Plasma Biomarker Discovery Using 3D Protein Profiling Coupled with Label-Free Quantitation

    PubMed Central

    Beer, Lynn A.; Tang, Hsin-Yao; Barnhart, Kurt T.; Speicher, David W.

    2011-01-01

    In-depth quantitative profiling of human plasma samples for biomarker discovery remains quite challenging. One promising alternative to chemical derivatization with stable isotope labels for quantitative comparisons is direct, label-free, quantitative comparison of raw LC–MS data. But, in order to achieve high-sensitivity detection of low-abundance proteins, plasma proteins must be extensively pre-fractionated, and results from LC–MS runs of all fractions must be integrated efficiently in order to avoid misidentification of variations in fractionation from sample to sample as “apparent” biomarkers. This protocol describes a powerful 3D protein profiling method for comprehensive analysis of human serum or plasma proteomes, which combines abundant protein depletion and high-sensitivity GeLC–MS/MS with label-free quantitation of candidate biomarkers. PMID:21468938

  5. Differential protein expression in seminal plasma from fertile and infertile males

    PubMed Central

    Cadavid J, Angela P.; Alvarez, Angela; Markert, Udo R.; Maya, Walter Cardona

    2014-01-01

    AIM: The aim of this study was to analyze human seminal plasma proteins in association with male fertility status using the proteomic mass spectrometry technology Surface-Enhanced Laser Desorption Ionization Time-of-Flight (SELDI-TOF-MS). MATERIALS AND METHODS: Semen analysis was performed using conventional methods. Protein profiles of the seminal plasma were obtained by SELDI-TOF mass spectrometry over a strong anion exchanger, ProteinChip® Q10 array. RESULTS AND CONCLUSION: We found statistically significant differences in motility and sperm count between fertile and infertile men. In addition, we observed ten seminal proteins that are significantly up-regulated in the infertile group. In conclusion, comparison of seminal plasma proteome in fertile and infertile men provides new aspects in the physiology of male fertility and might help in identifying novel markers of male infertility. PMID:25395747

  6. Protein immobilization capacity and covalent binding coverage of pulsed plasma polymer surfaces

    NASA Astrophysics Data System (ADS)

    Yin, Yongbai; Bax, Daniel; McKenzie, David R.; Bilek, Marcela M. M.

    2010-06-01

    Three carbon surfaces were deposited using pulsed plasma enhanced chemical vapour deposition method: a low and a high nitrogen-containing plasma polymer surfaces and a diamond-like carbon surface. The surfaces were analysed using both X-ray photoelectron spectroscopy (XPS) technique and the enzyme-linked immunosorbent assay (ELISA) method combining with sodium dodecyl sulphate (SDS) cleaning to investigate the capacity and covalent binding of the immobilized proteins. A good correlation was found on quantification of remaining protein after SDS cleaning using the ELISA method and the XPS technique. All surfaces had similar initial capacity of protein attachment but with large different resistance to SDS cleaning. The analysis showed that the high nitrogen-containing plasma polymer was the best biocompatible material due to its highest resistance to SDS cleaning, i.e. with the highest quantity (˜80%) of proteins bound covalently.

  7. Sterilization mechanism of nitrogen gas plasma: induction of secondary structural change in protein.

    PubMed

    Sakudo, Akikazu; Higa, Masato; Maeda, Kojiro; Shimizu, Naohiro; Imanishi, Yuichiro; Shintani, Hideharu

    2013-07-01

    The mechanism of action on biomolecules of N₂ gas plasma, a novel sterilization technique, remains unclear. Here, the effect of N₂ gas plasma on protein structure was investigated. BSA, which was used as the model protein, was exposed to N₂ gas plasma generated by short-time high voltage pulses from a static induction thyristor power supply. N₂ gas plasma-treated BSA at 1.5 kilo pulses per second showed evidence of degradation and modification when assessed by Coomassie brilliant blue staining and ultraviolet spectroscopy at 280 nm. Fourier transform infrared spectroscopy analysis was used to determine the protein's secondary structure. When the amide I region was analyzed in the infrared spectra according to curve fitting and Fourier self-deconvolution, N₂ gas plasma-treated BSA showed increased α-helix and decreased β-turn content. Because heating decreased α-helix and increased β-sheet content, the structural changes induced by N₂ gas plasma-treatment of BSA were not caused by high temperatures. Thus, the present results suggest that conformational changes induced by N₂ gas plasma are mediated by mechanisms distinct from heat denaturation.

  8. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    PubMed Central

    Kikuchi, Kentaro; Lian, Zhe-Xiong; He, Xiao-Song; Ansari, Aftab A.; Ishibashi, Miyuki; Miyakawa, Hiroshi; Shultz, Leonard D.; Ikehara, Susumu; Gershwin, M. Eric

    2003-01-01

    Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC) directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plasma cells in spleen increased by 100 fold after transplantation. Plasma cell numbers correlated with the detection of human IgM and IgG in serum, indicating that human B cells had differentiated into mature plasma cells in the murine spleen. In addition to CD19+ plasma cells, a distinct CD19- plasma cell population was detected, suggesting that downregulation of CD19 associated with maturation of plasma cells occurred. When purified human B cells were transplanted, those findings were not observed. Our results indicate that differentiation and maturation of human B cells and plasma cells can be investigated by transplantation of human PBMC into the spleen of NOD/SCID mice. The model will be useful for studying the differentiation of human B cells and generation of plasma cells. PMID:14768952

  9. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  10. [Multiple myeloma and other plasma cell dyscrasias].

    PubMed

    Nagy, Zsolt

    2016-06-06

    Multiple myeloma is the most common primary malignant disease of bone marrow. It mainly occurs among elderly people and, according to international databases, it is twice as frequent in men, however in our country this fact cannot be observed because of the high male mortality rate. The presence of this disease increased by more than one and the half times during the last 60 years. The five year survival for multiple myeloma has increased from 25% to 40% since the seventies due to high-dose chemotherapy followed by autologous stem cell transplantation and the new anti-myeloma drugs which were introduced in the last decade, such as immunomodulators (IMiD) like thalidomide, lenalidomide, pomalidomide and proteasome inhibitors (PI) like bortezomib, carfilzomib, ixazomib. The number of treatment options are growing fast, and not only because of using new combinations of medications, but also due to the development of investigational products which are available for the patients by participating in a clinical trial.

  11. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion.

    PubMed

    Chang, Yung; Liao, Shih-Chieh; Higuchi, Akon; Ruaan, Ruoh-Chyu; Chu, Chih-Wei; Chen, Wen-Yih

    2008-05-20

    An ideal nonbiofouling surface for biomedical applications requires both high-efficient antifouling characteristics in relation to biological components and long-term material stability from biological systems. In this study we demonstrate the performance and stability of an antifouling surface with grafted zwitterionic sulfobetaine methacrylate (SBMA). The SBMA was grafted from a bromide-covered gold surface via surface-initiated atom transfer radical polymerization to form well-packed polymer brushes. Plasma protein adsorption on poly(sulfobetaine methacrylate) (polySBMA) grafted surfaces was measured with a surface plasmon resonance sensor. It is revealed that an excellent stable nonbiofouling surface with grafted polySBMA can be performed with a cycling test of the adsorption of three model proteins in a wide range of various salt types, buffer compositions, solution pH levels, and temperatures. This work also demonstrates the adsorption of plasma proteins and the adhesion of platelets from human blood plasma on the polySBMA grafted surface. It was found that the polySBMA grafted surface effectively reduces the plasma protein adsorption from platelet-poor plasma solution to a level superior to that of adsorption on a surface terminated with tetra(ethylene glycol). The adhesion and activation of platelets from platelet-rich plasma