Science.gov

Sample records for cells restore cardiac

  1. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability.

    PubMed

    Ambrosi, Christina M; Boyle, Patrick M; Chen, Kay; Trayanova, Natalia A; Entcheva, Emilia

    2015-12-01

    Multiple cardiac pathologies are accompanied by loss of tissue excitability, which leads to a range of heart rhythm disorders (arrhythmias). In addition to electronic device therapy (i.e. implantable pacemakers and cardioverter/defibrillators), biological approaches have recently been explored to restore pacemaking ability and to correct conduction slowing in the heart by delivering excitatory ion channels or ion channel agonists. Using optogenetics as a tool to selectively interrogate only cells transduced to produce an exogenous excitatory ion current, we experimentally and computationally quantify the efficiency of such biological approaches in rescuing cardiac excitability as a function of the mode of application (viral gene delivery or cell delivery) and the geometry of the transduced region (focal or spatially-distributed). We demonstrate that for each configuration (delivery mode and spatial pattern), the optical energy needed to excite can be used to predict therapeutic efficiency of excitability restoration. Taken directly, these results can help guide optogenetic interventions for light-based control of cardiac excitation. More generally, our findings can help optimize gene therapy for restoration of cardiac excitability.

  2. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability

    PubMed Central

    Ambrosi, Christina M.; Boyle, Patrick M.; Chen, Kay; Trayanova, Natalia A.; Entcheva, Emilia

    2015-01-01

    Multiple cardiac pathologies are accompanied by loss of tissue excitability, which leads to a range of heart rhythm disorders (arrhythmias). In addition to electronic device therapy (i.e. implantable pacemakers and cardioverter/defibrillators), biological approaches have recently been explored to restore pacemaking ability and to correct conduction slowing in the heart by delivering excitatory ion channels or ion channel agonists. Using optogenetics as a tool to selectively interrogate only cells transduced to produce an exogenous excitatory ion current, we experimentally and computationally quantify the efficiency of such biological approaches in rescuing cardiac excitability as a function of the mode of application (viral gene delivery or cell delivery) and the geometry of the transduced region (focal or spatially-distributed). We demonstrate that for each configuration (delivery mode and spatial pattern), the optical energy needed to excite can be used to predict therapeutic efficiency of excitability restoration. Taken directly, these results can help guide optogenetic interventions for light-based control of cardiac excitation. More generally, our findings can help optimize gene therapy for restoration of cardiac excitability. PMID:26621212

  3. A multiresolution restoration method for cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Franquiz, Juan Manuel

    Single-photon emission computed tomography (SPECT) is affected by photon attenuation and image blurring due to Compton scatter and geometric detector response. Attenuation correction is important to increase diagnostic accuracy of cardiac SPECT. However, in attenuation-corrected scans, scattered photons from radioactivity in the liver could produce a spillover of counts into the inferior myocardial wall. In the clinical setting, blurring effects could be compensated by restoration with Wiener and Metz filters. Inconveniences of these procedures are that the Wiener filter depends upon the power spectra of the object image and noise, which are unknown, while Metz parameters have to be optimized by trial and error. This research develops an alternative restoration procedure based on a multiresolution denoising and regularization algorithm. It was hypothesized that this representation leads to a more straightforward and automatic restoration than conventional filters. The main objective of the research was the development and assessment of the multiresolution algorithm for compensating the liver spillover artifact. The multiresolution algorithm decomposes original SPECT projections into a set of sub-band frequency images. This allows a simple denoising and regularization procedure by discarding high frequency channels and performing inversion only in low and intermediate frequencies. The method was assessed in bull's eye polar maps and short- axis attenuation-corrected reconstructions of a realistic cardiac-chest phantom with a custom-made liver insert and different 99mTc liver-to-heart activity ratios. Inferior myocardial defects were simulated in some experiments. The cardiac phantom in free air was considered as the gold standard reference. Quantitative analysis was performed by calculating contrast of short- axis slices and the normalized chi-square measure, defect size and mean and standard deviation of polar map counts. The performance of the multiresolution

  4. Stem cell sources for cardiac regeneration.

    PubMed

    Roccio, M; Goumans, M J; Sluijter, J P G; Doevendans, P A

    2008-03-01

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyocytes to ameliorate the injured myocardium, compensate for the loss of ventricular mass and contractility and eventually restore cardiac function. An array of cell types has been explored in this respect, including skeletal muscle, bone marrow derived stem cells, embryonic stem cells (ESC) and more recently cardiac progenitor cells. The best-studied cell types are mouse and human ESC cells, which have undisputedly been demonstrated to differentiate into cardiomyocyte and vascular lineages and have been of great help to understand the differentiation process of pluripotent cells. However, due to their immunogenicity, risk of tumor development and the ethical challenge arising from their embryonic origin, they do not provide a suitable cell source for a regenerative therapy approach. A better option, overcoming ethical and allogenicity problems, seems to be provided by bone marrow derived cells and by the recently identified cardiac precursors. This report will overview current knowledge on these different cell types and their application in cardiac regeneration and address issues like implementation of delivery methods, including tissue engineering approaches that need to be developed alongside.

  5. Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering.

    PubMed

    Tian, Shuo; Liu, Qihai; Gnatovskiy, Leonid; Ma, Peter X; Wang, Zhong

    Myocardial infarction (MI) is the leading cause of death worldwide. Recent advances in stem cell research hold great potential for heart tissue regeneration through stem cell-based therapy. While multiple cell types have been transplanted into MI heart in preclinical studies or clinical trials, reduction of scar tissue and restoration of cardiac function have been modest. Several challenges hamper the development and application of stem cell-based therapy for heart regeneration. Application of cardiac progenitor cells (CPCs) and cardiac tissue engineering for cell therapy has shown great promise to repair damaged heart tissue. This review presents an overview of the current applications of embryonic CPCs and the development of cardiac tissue engineering in regeneration of functional cardiac tissue and reduction of side effects for heart regeneration. We aim to highlight the benefits of the cell therapy by application of CPCs and cardiac tissue engineering during heart regeneration.

  6. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux.

    PubMed

    Wu, Xiaoqian; Zheng, Dechong; Qin, Yuyan; Liu, Zumei; Zhang, Guiping; Zhu, Xiaoyan; Zeng, Lihuan; Liang, Zhenye

    2017-10-14

    Our previous study showed that autophagy flux was impaired with sustained heart ischemia, which exacerbated adverse cardiac remodeling after acute myocardial infarction (AMI). Here we investigated whether Nobiletin, a citrus polymethoxylated flavonoids, could restore the autophagy flux and improve cardiac prognosis after AMI. AMI was induced by ligating left anterior descending (LAD) coronary artery in rats. Nobiletin improved the post-infarct cardiac dysfunction significantly and attenuated adverse cardiac remodeling. Meanwhile, Nobiletin protected H9C2 cells against oxygen glucose deprivation (OGD) in vitro. The impaired autophagy flux due to ischemia was ameliorated after Nobiletin treatment by testing the autophagy substrate, LC3BⅡ and P62 protein level both in vivo and in vitro. GFP-mRFP-LC3 adenovirus transfection also supported that Nobiletin restored the impaired autophagy flux. Specifically, the autophagy flux inhibitor, chloroquine, but not 3 MA, alleviated Nobiletin-mediated protection against OGD. Notably, Nobiletin does not affect the activation of classical upstream autophagy signaling pathways. However, Nobiletin increased the lysosome acidation which also supported that Nobiletin accelerated autophagy flux. Taken together, our findings suggested that Nobiletin restored impaired autophagy flux and protected against acute myocardial infarction, suggesting a potential role of autophagy flux in Nobiletin-mediated myocardial protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cardiac regeneration: stem cells and beyond.

    PubMed

    Moerkamp, A T; Goumans, Marie-Jose

    2012-01-01

    After myocardial infarction, the lost healthy myocardium is replaced by non-contractile scar tissue which may lead to the development of heart failure and death. There is no curative therapy for the irreversible myocardial cell loss. This review will give an overview of the current options to restore the contractile force of the heart: the different stem cell sources as therapeutic agents in cardiac repair as well as more novel approaches like the activation of endogenous cell populations, the use of paracrine factors and engineered heart tissue.

  8. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    PubMed

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  9. Cell-based chondral restoration.

    PubMed

    Giuliani, Jeffrey R; Pickett, Adam

    2015-12-01

    As our patients become more physically active at all ages, the incidence of injuries to articular cartilage is increasing and is causing patients significant pain and disability at a younger age. The intrinsic healing response of articular cartilage is poor, because of its limited vascular supply and capacity for chondrocyte division. Nonsurgical management for the focal cartilage lesion is successful in the majority of patients. Those patients that fail conservative management may be candidates for a cartilage reparative or reconstructive procedure. The type of treatment available depends on a multitude of lesion-specific and patient-specific variables. First-line therapies for isolated cartilage lesions have demonstrated good clinical results in the correct patient but typically repair cartilage with fibrocartilage, which has inferior stiffness, inferior resilience, and poorer wear characteristics. Advances in cell-based cartilage restoration have provided the surgeon a means to address focal cartilage lesions utilizing mesenchymal stem cells, chondrocytes, and biomimetic scaffolds to restore hyaline cartilage.

  10. The Role of Cardiac Side Population Cells in Cardiac Regeneration

    PubMed Central

    Yellamilli, Amritha; van Berlo, Jop H.

    2016-01-01

    The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies. PMID:27679798

  11. No evidence of myocardial restoration following transplantation of mononuclear bone marrow cells in coronary bypass grafting surgery patients based upon cardiac SPECT and 18F-PET

    PubMed Central

    Tossios, Paschalis; Müller-Ehmsen, Jochen; Schmidt, Matthias; Scheid, Christof; Ünal, Nermin; Moka, Detlef; Schwinger, Robert HG; Mehlhorn, Uwe

    2006-01-01

    Background We tested the hypothesis, that intramyocardial injection of mononuclear bone marrow cells combined with coronary artery bypass grafting (CABG) surgery improves tissue viability or function in infarct regions with non-viable myocardium as assessed by nuclear imaging techniques. Methods Thus far, 7 patients (60 ± 10 [SD] years) undergoing elective CABG surgery after a myocardial infarction were included in this study. Prior to sternotomy, bone marrow was harvested by sternal puncture. Mononuclear bone marrow cells were isolated by gradient centrifugation and resuspended in 2 ml volume of Hank's buffered salt solution. At the end of CABG surgery 10 injections of 0.2 ml each were applied to the core area and borderzones of the infarct. Global and regional perfusion and viability were evaluated by ECG-gated 99mTc-tetrofosmin myocardial single-photon emission computed tomograph (SPECT) imaging and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in all study patients < 6 days before and 3 months after the intervention. Results Non-viable segments indicating transmural defects were identified in 5 patients. Two patients were found to have non-transmural defects before surgery. Concomitant surgical revascularisation and bone marrow cell injection was performed in all patients without major complications. The median total injected mononuclear cell number was 7.0 × 107 (range: 0.8–20.4). At 3 months 99mTc-tetrofosmin SPECT and 18F-FDG-PET scanning showed in 5 patients (transmural defect n = 4; non-transmural defect n = 1) no change in myocardial viability and in two patients (transmural defect n = 1, non-transmural defect n = 1) enhanced myocardial viability by 75%. Overall, global and regional LV ejection fraction was not significantly increased after surgery compared with the preoperative value. Conclusion In CABG surgery patients with non-viable segments the concurrent use of intramyocardial cell transfer did not show any clear improvement in

  12. Cardiac regeneration: still a 21st century challenge in search for cardiac progenitors from stem cells and embryos.

    PubMed

    Neri, Tui; Stefanovic, Sonia; Pucéat, Michel

    2010-07-01

    Regeneration of the heart after a stroke would be the best biologic response to restore its function. However, although this phenomenon occurs in primitive organisms, the regenerative potential is lost in mammals. Thus, the search for an appropriate cardiac progenitor with the potential to differentiate into a functional cardiomyocyte in vitro and in vivo has been the subject of intensive investigation. We summarize the cardiogenic transcriptional pathway that constitutes the molecular scaffold to drive pluripotent stem cells toward a cardiac progenitor fate. Then we overview the literature on derivation of cardiac progenitors from both embryos and stem cells.

  13. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts

    PubMed Central

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S.; Fa’ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M. David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K.; Schwartz, Robert J.

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it’s transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1’s transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1Cre/+; Rosa26EYFP/+ ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  14. Pluripotent Stem Cell Derived Cardiomyocytes for Cardiac Repair

    PubMed Central

    Lundy, Scott D.; Gantz, Jay A.; Pagan, Chelsea M.; Filice, Dominic; Laflamme, Michael A.

    2014-01-01

    Opinion Statement The adult mammalian heart has limited capacity for generation, so a major injury such as a myocardial infarction results in the permanent loss of up to one billion cardiomyocytes. The field of cardiac cell therapy aims to replace these lost contractile units with de novo cardiomyocytes to restore lost systolic function and prevent progression to heart failure. Arguably the ideal cell for this application is the human cardiomyocyte itself, which can electromechanically couple with host myocardium and contribute active systolic force. Pluripotent stem cells from both human embryonic or induced pluripotent lineages are attractive sources for cardiomyocytes, and preclinical investigation of these cells is in progress. Recent work has focused on efficient generation and purification of cardiomyocytes, tissue engineering efforts, and examining the consequences of cell transplantation from mechanical, vascular, and electrical standpoints. Here we discuss historical and contemporary aspects of pluripotent stem cell-based cardiac cell therapy, with an emphasis on recent preclinical studies with translational goals. PMID:24838687

  15. Role of Cardiac Stem Cells in Cardiac Pathophysiology: A Paradigm Shift in Human Myocardial Biology

    PubMed Central

    Leri, Annarosa; Kajstura, Jan; Anversa, Piero

    2012-01-01

    For nearly a century, the human heart has been viewed as a terminally differentiated post-mitotic organ in which the number of cardiomyocytes is established at birth and these cells persist throughout the lifespan of the organ and organism. However, the discovery that cardiac stem cells (CSCs) live in the heart and differentiate into the various cardiac cell lineages has changed profoundly our understanding of myocardial biology. CSCs regulate myocyte turnover and condition myocardial recovery following injury. This novel information imposes a reconsideration of the mechanisms involved in myocardial aging and the progression of cardiac hypertrophy to heart failure. Similarly, the processes implicated in the adaptation of the infarcted heart have to be dissected in terms of the critical role that CSCs and myocyte regeneration play in the restoration of myocardial mass and ventricular function. Several categories of cardiac progenitors have been described but, thus far, the c-kit-positive cell is the only class of resident cells with the biological and functional properties of tissue specific adult stem cells. PMID:21960726

  16. Cell-cell connection to cardiac disease.

    PubMed

    Sheikh, Farah; Ross, Robert S; Chen, Ju

    2009-08-01

    Intercalated disks (ICDs) are highly organized cell-cell adhesion structures, which connect cardiomyocytes to one another. They are composed of three major complexes: desmosomes, fascia adherens, and gap junctions. Desmosomes and fascia adherens junction are necessary for mechanically coupling and reinforcing cardiomyocytes, whereas gap junctions are essential for rapid electrical transmission between cells. Because human genetics and mouse models have revealed that mutations and/or deficiencies in various ICD components can lead to cardiomyopathies and arrhythmias, considerable attention has focused on the biologic function of the ICD. This review will discuss recent scientific developments related to the ICD and focus on its role in regulating cardiac muscle structure, signaling, and disease.

  17. Resident cardiac progenitor cells: at the heart of regeneration.

    PubMed

    Bollini, Sveva; Smart, Nicola; Riley, Paul R

    2011-02-01

    Stem cell therapy has recently emerged as an innovative strategy over conventional cardiovascular treatments to restore cardiac function in patients affected by ischemic heart disease. Various stem cell populations have been tested and their potential for cardiac repair has been analyzed. Embryonic stem cells retain the greatest differentiation potential, but concerns persist with regard to their immunogenic and teratogenic effects. Although adult somatic stem cells are not tumourigenic and easier to use in an autologous setting, they exist in small numbers and possess reduced differentiation potential. Traditionally the heart was considered to be a post-mitotic organ; however, this dogma has recently been challenged with the identification of a reservoir of resident stem cells, defined as cardiac progenitor cells (CPCs). These endogenous progenitors may represent the best candidates for cardiovascular cell therapy, as they are tissue-specific, often pre-committed to a cardiac fate, and display a greater propensity to differentiate towards cardiovascular lineages. This review will focus on current research into the biology of CPCs and their regenerative potential. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  18. Method of restoring degraded solar cells

    DOEpatents

    Staebler, David L.

    1983-01-01

    Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200.degree. C. for at least 30 minutes restores their efficiency.

  19. Method of restoring degraded solar cells

    DOEpatents

    Staebler, D.L.

    1983-02-01

    Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200 C for at least 30 minutes restores their efficiency. 2 figs.

  20. Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and N-acetyl cysteine

    PubMed Central

    Wongjaikam, Suwakon; Kumfu, Sirinart; Khamseekaew, Juthamas; Chattipakorn, Siriporn C.; Chattipakorn, Nipon

    2017-01-01

    Intracellular calcium [Ca2+]i dysregulation plays an important role in the pathophysiology of iron overload cardiomyopathy. Although either iron chelators or antioxidants provide cardioprotection, a comparison of the efficacy of deferoxamine (DFO), deferiprone (DFP), deferasirox (DFX), N-acetyl cysteine (NAC) or a combination of DFP plus NAC on cardiac [Ca2+]i homeostasis in chronic iron overload has never been investigated. Male Wistar rats were fed with either a normal diet or a high iron (HFe) diet for 4 months. At 2 months, HFe rats were divided into 6 groups and treated with either a vehicle, DFO (25 mg/kg/day), DFP (75 mg/kg/day), DFX (20 mg/kg/day), NAC (100 mg/kg/day), or combined DFP plus NAC. At 4 months, the number of cardiac T-type calcium channels was increased, whereas cardiac sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) was decreased, leading to cardiac iron overload and impaired cardiac [Ca2+]i homeostasis. All pharmacological interventions restored SERCA levels. Although DFO, DFP, DFX or NAC alone shared similar efficacy in improving cardiac [Ca2+]i homeostasis, only DFP + NAC restored cardiac [Ca2+]i homeostasis, leading to restoring left ventricular function in the HFe-fed rats. Thus, the combined DFP + NAC was more effective than any monotherapy in restoring cardiac [Ca2+]i homeostasis, leading to restored myocardial contractility in iron-overloaded rats. PMID:28287621

  1. Cell sheet-based cardiac tissue engineering.

    PubMed

    Matsuura, Katsuhisa; Masuda, Shinako; Shimizu, Tatsuya

    2014-01-01

    Tissue engineering is indispensable for the advancement of regenerative medicine and the development of tissue models. Cell sheet-based method is one the promising strategies for cardiac tissue engineering. To date, cell sheet transplantation using wide variety of cells has been performed for the treatment of various heart diseases. These cell sheet transplantations have shown to ameliorate cardiac dysfunction and improve symptoms of heart failure. Recent progress of the technologies on the layering of cardiac cell sheets accompanied with vascularization and the large scale cultivation system of embryonic stem cell and induced pluripotent stem cell is about to turn the fabrication of thickened human cardiac tissue for transplant and tissue models into reality. Copyright © 2013 Wiley Periodicals, Inc.

  2. Human embryonic stem cells and cardiac repair.

    PubMed

    Zhu, Wei-Zhong; Hauch, Kip D; Xu, Chunhui; Laflamme, Michael A

    2009-01-01

    The muscle lost after a myocardial infarction is replaced with noncontractile scar tissue, often initiating heart failure. Whole-organ cardiac transplantation is the only currently available clinical means of replacing the lost muscle, but this option is limited by the inadequate supply of donor hearts. Thus, cell-based cardiac repair has attracted considerable interest as an alternative means of ameliorating cardiac injury. Because of their tremendous capacity for expansion and unquestioned cardiac potential, pluripotent human embryonic stem cells (hESCs) represent an attractive candidate cell source for obtaining cardiomyocytes and other useful mesenchymal cell types for such therapies. Human embryonic stem cell-derived cardiomyocytes exhibit a committed cardiac phenotype and robust proliferative capacity, and recent testing in rodent infarct models indicates that they can partially remuscularize injured hearts and improve contractile function. Although the latter successes give good reason for optimism, considerable challenges remain in the successful application of hESCs to cardiac repair, including the need for preparations of high cardiac purity, improved methods of delivery, and approaches to overcome immune rejection and other causes of graft cell death. This review will describe the phenotype of hESC-derived cardiomyocytes and preclinical experience with these cells and will consider strategies to overcoming the aforementioned challenges.

  3. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging.

    PubMed

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J; Tsai, Emily J; Sussman, Mark A

    2015-01-20

    Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition

  4. Creation of human cardiac cell sheets using pluripotent stem cells.

    PubMed

    Matsuura, Katsuhisa; Wada, Masanori; Shimizu, Tatsuya; Haraguchi, Yuji; Sato, Fumiko; Sugiyama, Kasumi; Konishi, Kanako; Shiba, Yuji; Ichikawa, Hinako; Tachibana, Aki; Ikeda, Uichi; Yamato, Masayuki; Hagiwara, Nobuhisa; Okano, Teruo

    2012-08-24

    Although we previously reported the development of cell-dense thickened cardiac tissue by repeated transplantation-based vascularization of neonatal rat cardiac cell sheets, the cell sources for human cardiac cells sheets and their functions have not been fully elucidated. In this study, we developed a bioreactor to expand and induce cardiac differentiation of human induced pluripotent stem cells (hiPSCs). Bioreactor culture for 14 days produced around 8×10(7) cells/100 ml vessel and about 80% of cells were positive for cardiac troponin T. After cardiac differentiation, cardiomyocytes were cultured on temperature-responsive culture dishes and showed spontaneous and synchronous beating, even after cell sheets were detached from culture dishes. Furthermore, extracellular action potential propagation was observed between cell sheets when two cardiac cell sheets were partially overlaid. These findings suggest that cardiac cell sheets formed by hiPSC-derived cardiomyocytes might have sufficient properties for the creation of thickened cardiac tissue. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Cardiac metastasis of oral squamous cell carcinoma.

    PubMed

    Pattni, Neeraj; Rennie, Andrew; Hall, Timothy; Norman, Aidan

    2015-09-09

    We present a case of isolated cardiac metastasis of oral squamous cell carcinoma. An 89-year-old woman was due to undergo curative resection of a histologically proven squamous cell carcinoma of the retromolar region. On admission, it was noted that there were ECG changes, and following further investigations, the patient was diagnosed with a cardiac metastasis of her oral malignancy. The presentation, including the diagnostic difficulties, as well as the clinical features of this rare case, are discussed.

  6. Cardiac Repair by Embryonic Stem-Derived cells

    PubMed Central

    Rubart, M.

    2008-01-01

    Cell transplantation approaches offer the potential to promote regenerative growth of diseased hearts. It is well established that donor cardiomyocytes stably engraft into recipient hearts when injected directly into the myocardial wall. Moreover, the transplanted donor cardiomyocytes participate in a functional syncytium with the host myocardium. Thus, transplantation of donor cardiomyocytes resulted in at least partial restoration of lost muscle mass. It is also well established that embryonic stem (ES) cells differentiate into cells of ecto-, endo-, and mesodermal lineages when cultured under appropriate conditions in vitro. Robust cardiomyogenic differentiation was frequently observed in spontaneously differentiating ES cultures. Cellular, molecular and physiologic analyses indicated that ES-derived cells were bona fide cardiomyocytes, with in vitro characteristics typical for cells obtained from early stages of cardiac development. Thus, ES-derived cardiomyocytes constitute a viable source of donor cells for cell transplantation therapies. PMID:16370325

  7. Translational aspects of cardiac cell therapy

    PubMed Central

    Chen, Cheng-Han; Sereti, Konstantina-Ioanna; Wu, Benjamin M; Ardehali, Reza

    2015-01-01

    Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found to be short-lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac ‘progenitor’ cells as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resident cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demonstrated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size. Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the optimal cell types and delivery conditions for therapeutic effect. PMID:26119413

  8. Cardiac Regeneration and Stem Cells

    PubMed Central

    Zhang, Yiqiang; Mignone, John; MacLellan, W. Robb

    2015-01-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. PMID:26269526

  9. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity

    PubMed Central

    Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D.; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y.; Haouzi, Philippe

    2016-01-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca2+ channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg−1·min−1), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca2+]i) transient amplitudes, and L-type Ca2+ currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca2+]i) transient, and ICa. The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca2+ channels. PMID:26962024

  10. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity.

    PubMed

    Judenherc-Haouzi, Annick; Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y; Haouzi, Philippe

    2016-06-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels. Copyright © 2016 the American Physiological Society.

  11. CHIP enhances angiogenesis and restores cardiac function after infarction in transgenic mice.

    PubMed

    Xu, Cheng-Wei; Zhang, Tian-Peng; Wang, Hong-Xia; Yang, Hui; Li, Hui-Hua

    2013-01-01

    Carboxyl terminus of Hsp70-interacting protein (CHIP) is a chaperone/ubiquitin ligase that plays an important role in stress-induced apoptosis. However, the effect of CHIP on angiogenesis, cardiac function and survival 4 weeks after myocardial infarction (MI) remain to be explored. Wild-type (WT) and transgenic mice (TG) with cardiac-specific overexpression of CHIP were used for coronary artery ligation. The cardiac function, cardiomyocyte apoptosis, inflammation and angiogenesis were examined by echocardiography, histological analysis, real-time PCR and Western blot analysis. At 4 weeks of after coronary artery ligation, echocardiography demonstrated that cardiac remodeling and dysfunction were prevented in TG mice compared with WT mice. The infarct size, cardiomyocyte apoptosis and inflammation were significantly reduced in TG mice than in WT mice. The survival rate after MI in TG mice was higher than that of WT mice. Furthermore, the levels of p53 protein was markedly decreased, but the expression of HIF-1α and VEGF, and the formation of capillary and arteriole after MI were significantly enhanced in TG mice compared with WT mice. We report the first in vivo evidence that CHIP enhances angiogenesis, inhibits inflammation, restores cardiac function, and improves survival at 4 weeks after MI. The present study expands on previous results and defines a novel mechanism. Thus, increased CHIP level may provide a novel therapeutic approach for left ventricular dysfunction after MI. Copyright © 2013 S. Karger AG, Basel.

  12. Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle

    PubMed Central

    Ma, Junfeng; Slawson, Chad; Zeidan, Quira; Lugo-Fagundo, Nahyr S.; Xu, Mingguo; Shen, Xiaoxu; Gao, Wei Dong; Caceres, Viviane; Chakir, Khalid; DeVine, Lauren; Cole, Robert N.; Marchionni, Luigi; Paolocci, Nazareno; Hart, Gerald W.; Murphy, Anne M.

    2015-01-01

    Contractile dysfunction and increased deposition of O-linked β-N-acetyl-d-glucosamine (O-GlcNAc) in cardiac proteins are a hallmark of the diabetic heart. However, whether and how this posttranslational alteration contributes to lower cardiac function remains unclear. Using a refined β-elimination/Michael addition with tandem mass tags (TMT)–labeling proteomic technique, we show that CpOGA, a bacterial analog of O-GlcNAcase (OGA) that cleaves O-GlcNAc in vivo, removes site-specific O-GlcNAcylation from myofilaments, restoring Ca2+ sensitivity in streptozotocin (STZ) diabetic cardiac muscles. We report that in control rat hearts, O-GlcNAc and O-GlcNAc transferase (OGT) are mainly localized at the Z-line, whereas OGA is at the A-band. Conversely, in diabetic hearts O-GlcNAc levels are increased and OGT and OGA delocalized. Consistent changes were found in human diabetic hearts. STZ diabetic hearts display increased physical interactions of OGA with α-actin, tropomyosin, and myosin light chain 1, along with reduced OGT and increased OGA activities. Our study is the first to reveal that specific removal of O-GlcNAcylation restores myofilament response to Ca2+ in diabetic hearts and that altered O-GlcNAcylation is due to the subcellular redistribution of OGT and OGA rather than to changes in their overall activities. Thus, preventing sarcomeric OGT and OGA displacement represents a new possible strategy for treating diabetic cardiomyopathy. PMID:26109417

  13. Nucleostemin Rejuvenates Cardiac Progenitor Cells and Antagonizes Myocardial Aging

    PubMed Central

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J.; Tsai, Emily J; Sussman, Mark A.

    2015-01-01

    BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy with elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES The goal is to demonstrate that NS preserves characteristics associated with “stemness” in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (FhCPC) and adult failing (AhCPC) hearts, as well as young (YCPC) and old mice (OCPC), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with one functional allele of NS (NS+/−) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPC, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S phase progression, diminished expression of stemness markers and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of “stemness.” Early cardiac aging with decline in cardiac function, increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/− mice. CONCLUSIONS Youthful properties and antagonism of

  14. Multipotent Stem Cells in Cardiac Regeneration

    PubMed Central

    Karra, Ravi; Wu, Sean M.

    2008-01-01

    Summary The potential for stem cells to ameliorate or cure heart diseases has galvanized a cadre of cardiovascular translational and clinical scientists to take a “first-in-man” approach using autologous stem cells from a variety of tissues. However, recent clinical trial data show that when these cells are given by intracoronary infusion or direct myocardial injection, limited improvement in heart function occurs with no evidence of cardiomyogenesis. These studies illustrate the great need to understand the logic of cell-lineage commitment and the principles of cardiac differentiation. Recent identification of stem/progenitor cells of embryological origin with intrinsic competence to differentiate into multiple lineages within the heart offers new possibilities for cardiac regeneration. When combined with developments in nuclear reprogramming and provided that tumor risks and other challenges of embryonic cell transplantation can be overcome, the prospect of achieving autologous, cardiomyogenic, stem cell-based therapy may be within reach. PMID:18307403

  15. Cardiac stem cell aging and heart failure.

    PubMed

    Cesselli, Daniela; Aleksova, Aneta; Mazzega, Elisa; Caragnano, Angela; Beltrami, Antonio Paolo

    2017-01-19

    A side effect of the medical improvements of the last centuries is the progressive aging of the world population, which is estimated to reach the impressive number of 2 billion people with more than 65 years by 2050. As a consequence, age-related diseases, such as heart failure, will affect more and more patients in the next years. To understand the biological bases of these diseases will be a crucial task in order to find better treatments, and possibly slow age-related morbidity and mortality. Cardiac stem cells have been at the center of a heated debate and their potential involvement in cardiac homeostasis has been questioned. In this review, we summarize evidence obtained by independent groups, on different animal models and humans, that strongly support the important role played by immature, cardiac resident cells in the cardioprotection against heart failure.

  16. Stem cells and exosomes in cardiac repair.

    PubMed

    Singla, Dinender K

    2016-04-01

    Cardiac diseases currently lead in the number of deaths per year, giving rise an interest in transplanting embryonic and adult stem cells as a means to improve damaged tissue from conditions such as myocardial infarction and coronary artery disease. After testing these cells as a treatment option in both animal and human models, it is believed that these cells improve the damaged tissue primarily through the release of autocrine and paracrine factors. Major concerns such as teratoma formation, immune response, difficulty harvesting cells, and limited cell proliferation and differentiation, hinder the routine use of these cells as a treatment option in the clinic. The advent of stem cell-derived exosomes circumvent those concerns, while still providing the growth factors, miRNA, and additional cell protective factors that aid in repairing and regenerating the damaged tissue. These exosomes have been found to be anti-apoptotic, anti-fibrotic, pro-angiogenic, as well as enhance cardiac differentiation, all of which are key to repairing damaged tissue. As such, stem cell derived exosomes are considered to be a potential new and novel approach in the treatment of various cardiac diseases.

  17. Caffeine restores myocardial cytochrome oxidase activity and improves cardiac function during sepsis.

    PubMed

    Verma, Richa; Huang, Zhishan; Deutschman, Clifford S; Levy, Richard J

    2009-04-01

    Impaired mitochondrial function is a potential cause of sepsis-associated myocardial depression. Cytochrome oxidase (CcOX), the terminal oxidase of the electron transport chain, is inhibited in the septic heart. Caffeine increases CcOX activity by increasing cyclic adenosine monophosphate and protein kinase A activity. We hypothesized that caffeine will restore myocardial CcOX activity, increase cardiac function, and improve survival during sepsis. Prospective randomized controlled study. University hospital-based laboratory. One hundred twenty Sprague-Dawley male rats. Sprague-Dawley male rats underwent cecal ligation and puncture (CLP) or sham operation. At 24 and 48 hours, rats underwent intraperitoneal injection of either caffeine (7.5 mg/kg, the equivalent of 1-1.5 cups of coffee) or equal volume of saline. One hour following the 48-hour injection, steady-state CcOX kinetic activity was measured in isolated mitochondria and normalized to citrate synthase activity. Cardiac function was assessed using an isolated rat heart preparation and survival was tracked to 96 hours. CLP significantly decreased myocardial CcOX activity, oxygen consumption, left ventricular pressure, and pressure developed during isovolumic contraction (+dP/dt) and relaxation (-dP/dt). Caffeine restored CcOX activity and increased left ventricular pressure and +/-dP/dt toward sham values following CLP. Survival significantly improved following CLP in caffeine-injected animals compared with saline injection. Caffeine may be a novel therapy to treat sepsis-associated myocardial depression.

  18. Preface: Sight Restoration Through Stem Cell Therapy.

    PubMed

    Chader, Gerald J; Young, Michael

    2016-04-01

    This publication presents chapters based on a meeting entitled "Sight Restoration Through Stem Cell Therapy" held on June 13, 2015, in Santa Monica, CA, sponsored by the Ocular Research Symposia Foundation (ORSF). It was chaired by Michael Young, PhD, Harvard Medical School, and Gerald Chader, PhD, University of Southern California. The mission of this publication and of the ORSF in general is to focus attention on unmet medical needs and current research opportunities in eye research with the objective of accelerating translation of research findings to effective clinical care. In the meeting, new research advances on stem cells and opportunities for their clinical application were highlighted and are recounted in the following chapters of this publication. By identifying "low-hanging fruit" (i.e., the best opportunities for successful transition of laboratory research to prevention and new treatments and cures for ocular diseases), we seek to spur funding at both the basic research and clinical levels, resulting in sight-saving and sight-restoration measures in the near future.

  19. Mechanical communication in cardiac cell synchronized beating

    NASA Astrophysics Data System (ADS)

    Nitsan, Ido; Drori, Stavit; Lewis, Yair E.; Cohen, Shlomi; Tzlil, Shelly

    2016-05-01

    Cell-cell communication, which enables cells to coordinate their activity and is essential for growth, development and function, is usually ascribed a chemical or electrical origin. However, cells can exert forces and respond to environment elasticity and to mechanical deformations created by their neighbours. The extent to which this mechanosensing ability facilitates intercellular communication remains unclear. Here we demonstrate mechanical communication between cells directly for the first time, providing evidence for a long-range interaction that induces long-lasting alterations in interacting cells. We show that an isolated cardiac cell can be trained to beat at a given frequency by mechanically stimulating the underlying substrate. Deformations are induced using an oscillatory mechanical probe that mimics the deformations generated by a beating neighbouring cardiac cell. Unlike electrical field stimulation, the probe-induced beating rate is maintained by the cell for an hour after the stimulation stops, implying that long-term modifications occur within the cell. These long-term alterations provide a mechanism for cells that communicate mechanically to be less variable in their electromechanical delay. Mechanical coupling between cells therefore ensures that the final outcome of action potential pacing is synchronized beating. We further show that the contractile machinery is essential for mechanical communication.

  20. Cardiac cell proliferation assessed by EdU, a novel analysis of cardiac regeneration.

    PubMed

    Zeng, Bin; Tong, Suiyang; Ren, Xiaofeng; Xia, Hao

    2016-08-01

    Emerging evidence suggests that mammalian hearts maintain the capacity for cardiac regeneration. Rapid and sensitive identification of cardiac cellular proliferation is prerequisite for understanding the underlying mechanisms and strategies of cardiac regeneration. The following immunologically related markers of cardiac cells were analyzed: cardiac transcription factors Nkx2.5 and Gata 4; specific marker of cardiomyocytes TnT; endothelial cell marker CD31; vascular smooth muscle marker smooth muscle myosin IgG; cardiac resident stem cells markers IsL1, Tbx18, and Wt1. Markers were co-localized in cardiac tissues of embryonic, neonatal, adult, and pathological samples by 5-ethynyl-2'-deoxyuridine (EdU) staining. EdU was also used to label isolated neonatal cardiomyocytes in vitro. EdU robustly labeled proliferating cells in vitro and in vivo, co-immunostaining with different cardiac cells markers. EdU can rapidly and sensitively label proliferating cardiac cells in developmental and pathological states. Cardiac cell proliferation assessed by EdU is a novel analytical tool for investigating the mechanism and strategies of cardiac regeneration in response to injury.

  1. Therapeutic application of cardiac stem cells and other cell types.

    PubMed

    Hayashi, Emiko; Hosoda, Toru

    2013-01-01

    Various researches on regenerative medicine were carried out experimentally, and selected modalities have been introduced to the clinical arena. Meanwhile, the presence of resident stem cells in the heart and their role in physiological cell turnover were demonstrated. So far skeletal myoblasts, bone marrow-derived cells, mesenchymal stromal cells, and resident cardiac cells have been applied for therapeutic myocardial regeneration. Among them, autologous transplantation of c-kit-positive cardiac stem cells in congestive heart failure patients resulted in an outstanding outcome, with long-lasting beneficial effects without major adverse events. By reviewing these clinical trials, an endeavor was made to seek for an ideal cellular therapy for cardiovascular diseases.

  2. Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice.

    PubMed

    Li, Yunpeng; Tian, Shuo; Lei, Ienglam; Liu, Liu; Ma, Peter; Wang, Zhong

    2017-01-01

    Cell-based cardiac therapy is a promising therapeutic strategy to restore heart function after myocardial infarction (MI). However, the cell type selection and ensuing effects remain controversial. Here, we intramyocardially injected Isl1+ cardiac progenitor cells (CPCs) derived from EGFP/luciferase double-tagged mouse embryonic stem (dt-mES) cells with vehicle (fibrin gel) or phosphate-buffered saline (PBS) into the infarcted area in nude mice to assess the contribution of CPCs to the recovery of cardiac function post-MI. Our results showed that Isl1+ CPCs differentiated normally into three cardiac lineages (cardiomyocytes (CMs), endothelial cells and smooth muscle cells) both on cell culture plates and in fibrin gel. Cell retention was significantly increased when the transplanted cells were injected with vehicle. Importantly, 28 days after injection, CPCs were observed to differentiate into CMs within the infarcted area. Moreover, numerous CD31+ endothelial cells derived from endogenous revascularization and differentiation of the injected CPCs were detected. SMMHC-, Ki67- and CX-43-positive cells were identified in the injected CPC population, further demonstrating the proliferation, differentiation and integration of the transplanted CPCs in host cells. Furthermore, animal hearts injected with CPCs showed increased angiogenesis, decreased infarct size, and improved heart function. In conclusion, our studies showed that Isl1+ CPCs, when combined with a suitable vehicle, can produce notable therapeutic effects in the infarcted heart, suggesting that CPCs might be an ideal cell source for cardiac therapy.

  3. Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice

    PubMed Central

    Li, Yunpeng; Tian, Shuo; Lei, Ienglam; Liu, Liu; Ma, Peter; Wang, Zhong

    2017-01-01

    Cell-based cardiac therapy is a promising therapeutic strategy to restore heart function after myocardial infarction (MI). However, the cell type selection and ensuing effects remain controversial. Here, we intramyocardially injected Isl1+ cardiac progenitor cells (CPCs) derived from EGFP/luciferase double-tagged mouse embryonic stem (dt-mES) cells with vehicle (fibrin gel) or phosphate-buffered saline (PBS) into the infarcted area in nude mice to assess the contribution of CPCs to the recovery of cardiac function post-MI. Our results showed that Isl1+ CPCs differentiated normally into three cardiac lineages (cardiomyocytes (CMs), endothelial cells and smooth muscle cells) both on cell culture plates and in fibrin gel. Cell retention was significantly increased when the transplanted cells were injected with vehicle. Importantly, 28 days after injection, CPCs were observed to differentiate into CMs within the infarcted area. Moreover, numerous CD31+ endothelial cells derived from endogenous revascularization and differentiation of the injected CPCs were detected. SMMHC-, Ki67- and CX-43-positive cells were identified in the injected CPC population, further demonstrating the proliferation, differentiation and integration of the transplanted CPCs in host cells. Furthermore, animal hearts injected with CPCs showed increased angiogenesis, decreased infarct size, and improved heart function. In conclusion, our studies showed that Isl1+ CPCs, when combined with a suitable vehicle, can produce notable therapeutic effects in the infarcted heart, suggesting that CPCs might be an ideal cell source for cardiac therapy. PMID:28386378

  4. Improving Cell Engraftment in Cardiac Stem Cell Therapy

    PubMed Central

    Xie, Xiaoyun

    2016-01-01

    Myocardial infarction (MI) affects millions of people worldwide. MI causes massive cardiac cell death and heart function decrease. However, heart tissue cannot effectively regenerate by itself. While stem cell therapy has been considered an effective approach for regeneration, the efficacy of cardiac stem cell therapy remains low due to inferior cell engraftment in the infarcted region. This is mainly a result of low cell retention in the tissue and poor cell survival under ischemic, immune rejection and inflammatory conditions. Various approaches have been explored to improve cell engraftment: increase of cell retention using biomaterials as cell carriers; augmentation of cell survival under ischemic conditions by preconditioning cells, genetic modification of cells, and controlled release of growth factors and oxygen; and enhancement of cell survival by protecting cells from excessive inflammation and immune surveillance. In this paper, we review current progress, advantages, disadvantages, and potential solutions of these approaches. PMID:26783405

  5. Cardiac regeneration using human embryonic stem cells: producing cells for future therapy.

    PubMed

    Wong, Sharon S Y; Bernstein, Harold S

    2010-09-01

    Directed differentiation of human embryonic stem cells (hESCs) has generated much interest in the field of regenerative medicine. Because of their ability to differentiate into any cell type in the body, hESCs offer a novel therapeutic paradigm for myocardial repair by furnishing a supply of cardiomyocytes (CMs) that would ultimately restore normal myocardial function when delivered to the damaged heart. Spontaneous CM differentiation of hESCs is an inefficient process that yields very low numbers of CMs. In addition, it is not clear that fully differentiated CMs provide the benefits sought from cell transplantation. The need for new methods of directed differentiation of hESCs into functional CMs and cardiac progenitors has led to an explosion of research utilizing chemical, genetic, epigenetic and lineage selection strategies to direct cardiac differentiation and enrich populations of cardiac cells for therapeutic use. Here, we review these approaches and highlight their increasingly important roles in stem cell biology and cardiac regenerative medicine.

  6. Cardiac regeneration using human embryonic stem cells: producing cells for future therapy

    PubMed Central

    Wong, Sharon SY; Bernstein, Harold S

    2010-01-01

    Directed differentiation of human embryonic stem cells (hESCs) has generated much interest in the field of regenerative medicine. Because of their ability to differentiate into any cell type in the body, hESCs offer a novel therapeutic paradigm for myocardial repair by furnishing a supply of cardiomyocytes (CMs) that would ultimately restore normal myocardial function when delivered to the damaged heart. Spontaneous CM differentiation of hESCs is an inefficient process that yields very low numbers of CMs. In addition, it is not clear that fully differentiated CMs provide the benefits sought from cell transplantation. The need for new methods of directed differentiation of hESCs into functional CMs and cardiac progenitors has led to an explosion of research utilizing chemical, genetic, epigenetic and lineage selection strategies to direct cardiac differentiation and enrich populations of cardiac cells for therapeutic use. Here, we review these approaches and highlight their increasingly important roles in stem cell biology and cardiac regenerative medicine. PMID:20868331

  7. In Vivo Tracking of Cell Therapies for Cardiac Diseases with Nuclear Medicine

    PubMed Central

    Moreira, Mayra Lorena; da Costa Medeiros, Priscylla; de Souza, Sergio Augusto Lopes; Rosado-de-Castro, Paulo Henrique

    2016-01-01

    Even though heart diseases are amongst the main causes of mortality and morbidity in the world, existing treatments are limited in restoring cardiac lesions. Cell transplantations, originally developed for the treatment of hematologic ailments, are presently being explored in preclinical and clinical trials for cardiac diseases. Nonetheless, little is known about the possible efficacy and mechanisms for these therapies and they are the center of continuous investigation. In this scenario, noninvasive imaging techniques lead to greater comprehension of cell therapies. Radiopharmaceutical cell labeling, firstly developed to track leukocytes, has been used successfully to evaluate the migration of cell therapies for myocardial diseases. A substantial rise in the amount of reports employing this methodology has taken place in the previous years. We will review the diverse radiopharmaceuticals, imaging modalities, and results of experimental and clinical studies published until now. Also, we report on current limitations and potential advances of radiopharmaceutical labeling for cell therapies in cardiac diseases. PMID:26880951

  8. CARDIAC-LIKE OSCILLATION IN LIVER STEM CELLS INDUCE THEIR ACQUISITION OF CARDIAC PHENOTYPE

    EPA Science Inventory

    We examined in a cardiac microenvironment the plasticity of a liver stem cell line (WB F344) generated from a cloned, single, non-parenchymal epithelial cell from a normal adult male rat. Our previous studies suggested that WB F344 cells acquire a cardiac phenotype in the absenc...

  9. Developmental origin and lineage plasticity of endogenous cardiac stem cells

    PubMed Central

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P.; Kovacic, Jason C.

    2016-01-01

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT+, PDGFRα+, ISL1+ and SCA1+ cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair. PMID:27095490

  10. Developmental origin and lineage plasticity of endogenous cardiac stem cells.

    PubMed

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P; Kovacic, Jason C

    2016-04-15

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.

  11. Cardiac cell therapy: boosting mesenchymal stem cells effects.

    PubMed

    Samper, E; Diez-Juan, A; Montero, J A; Sepúlveda, P

    2013-06-01

    Acute myocardial infarction is a major problem of world public health and available treatments have limited efficacy. Cardiac cell therapy is a new therapeutic strategy focused on regeneration and repair of the injured cardiac muscle. Among different cell types used, mesenchymal stem cells (MSC) have been widely tested in preclinical studies and several clinical trials have evaluated their clinical efficacy in myocardial infarction. However, the beneficial effects of MSC in humans are limited due to poor engraftment and survival of these cells, therefore ways to overcome these obstacles should improve efficacy. Different strategies have been used, such as genetically modifying MSC, or preconditioning the cells with factors that potentiate their survival and therapeutic mechanisms. In this review we compile the most relevant approaches used to improve MSC therapeutic capacity and to understand the molecular mechanisms involved in MSC mediated cardiac repair.

  12. Cyclosporin in cell therapy for cardiac regeneration.

    PubMed

    Jansen Of Lorkeers, S J; Hart, E; Tang, X L; Chamuleau, M E D; Doevendans, P A; Bolli, R; Chamuleau, S A J

    2014-07-01

    Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model.

  13. Cyclosporin in Cell Therapy for Cardiac Regeneration

    PubMed Central

    Jansen of Lorkeers, S. J.; Hart, E.; Tang, X. L.; Chamuleau, M. E. D.; Doevendans, P. A.; Bolli, R.

    2015-01-01

    Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model. PMID:24831573

  14. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction

    PubMed Central

    Watari, Kenji; Tajima, Mitsuru; Nakaya, Takeo; Matsuda, Shoichi; Ohara, Hiroki; Nishihara, Hiroaki; Yamaguchi, Hiroshi; Hashimoto, Akiko; Nishida, Mitsuho; Nagasaka, Akiomi; Horii, Yuma; Ono, Hiroki; Iribe, Gentaro; Inoue, Kazuhide; Tanaka, Akira; Kuroda, Masahiko; Nagata, Shigekazu

    2016-01-01

    Myocardial infarction (MI) results in the generation of dead cells in the infarcted area. These cells are swiftly removed by phagocytes to minimize inflammation and limit expansion of the damaged area. However, the types of cells and molecules responsible for the engulfment of dead cells in the infarcted area remain largely unknown. In this study, we demonstrated that cardiac myofibroblasts, which execute tissue fibrosis by producing extracellular matrix proteins, efficiently engulf dead cells. Furthermore, we identified a population of cardiac myofibroblasts that appears in the heart after MI in humans and mice. We found that these cardiac myofibroblasts secrete milk fat globule-epidermal growth factor 8 (MFG-E8), which promotes apoptotic engulfment, and determined that serum response factor is important for MFG-E8 production in myofibroblasts. Following MFG-E8–mediated engulfment of apoptotic cells, myofibroblasts acquired antiinflammatory properties. MFG-E8 deficiency in mice led to the accumulation of unengulfed dead cells after MI, resulting in exacerbated inflammatory responses and a substantial decrease in survival. Moreover, MFG-E8 administration into infarcted hearts restored cardiac function and morphology. MFG-E8–producing myofibroblasts mainly originated from resident cardiac fibroblasts and cells that underwent endothelial-mesenchymal transition in the heart. Together, our results reveal previously unrecognized roles of myofibroblasts in regulating apoptotic engulfment and a fundamental importance of these cells in recovery from MI. PMID:27918308

  15. Restoration of β -Adrenergic Signaling in Failing Cardiac Ventricular Myocytes via Adenoviral-Mediated Gene Transfer

    NASA Astrophysics Data System (ADS)

    Akhter, Shahab A.; Skaer, Christine A.; Kypson, Alan P.; McDonald, Patricia H.; Peppel, Karsten C.; Glower, Donald D.; Lefkowitz, Robert J.; Koch, Walter J.

    1997-10-01

    Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β -adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β -adrenergic signaling defects including down-regulation of myocardial β -adrenergic receptors (β -ARs), functional β -AR uncoupling, and an upregulation of the β -AR kinase (β ARK1). Adenoviral-mediated gene transfer of the human β 2-AR or an inhibitor of β ARK1 to these failing myocytes led to the restoration of β -AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of β ARK1 activity in the heart.

  16. Cardiac Cells Beating in Culture: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  17. Cardiac Cells Beating in Culture: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  18. Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium.

    PubMed

    Tachibana, Atsushi; Santoso, Michelle R; Mahmoudi, Morteza; Shukla, Praveen; Wang, Lei; Bennett, Mihoko; Goldstone, Andrew B; Wang, Mouer; Fukushi, Masahiro; Ebert, Antje D; Woo, Y Joseph; Rulifson, Eric; Yang, Phillip C

    2017-09-01

    Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through

  19. Cell-Specific Cardiac Electrophysiology Models

    PubMed Central

    Groenendaal, Willemijn; Ortega, Francis A.; Kherlopian, Armen R.; Zygmunt, Andrew C.; Krogh-Madsen, Trine; Christini, David J.

    2015-01-01

    The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment. PMID:25928268

  20. Targeting chronic cardiac remodeling with cardiac progenitor cells in a murine model of ischemia/reperfusion injury

    PubMed Central

    Deddens, Janine C.; Feyen, Dries A.; Zwetsloot, Peter-Paul; Brans, Maike A.; Siddiqi, Sailay; van Laake, Linda W.; Doevendans, Pieter A.; Sluijter, Joost P.

    2017-01-01

    Background Translational failure for cardiovascular disease is a substantial problem involving both high research costs and an ongoing lack of novel treatment modalities. Despite the progress already made, cell therapy for chronic heart failure in the clinical setting is still hampered by poor translation. We used a murine model of chronic ischemia/reperfusion injury to examine the effect of minimally invasive application of cardiac progenitor cells (CPC) in cardiac remodeling and to improve clinical translation. Methods 28 days after the induction of I/R injury, mice were randomized to receive either CPC (0.5 million) or vehicle by echo-guided intra-myocardial injection. To determine retention, CPC were localized in vivo by bioluminescence imaging (BLI) two days after injection. Cardiac function was assessed by 3D echocardiography and speckle tracking analysis to quantify left ventricular geometry and regional myocardial deformation. Results BLI demonstrated successful injection of CPC (18/23), which were mainly located along the needle track in the anterior/septal wall. Although CPC treatment did not result in overall restoration of cardiac function, a relative preservation of the left ventricular end-diastolic volume was observed at 4 weeks follow-up compared to vehicle control (+5.3 ± 2.1 μl vs. +10.8 ± 1.5 μl). This difference was reflected in an increased strain rate (+16%) in CPC treated mice. Conclusions CPC transplantation can be adequately studied in chronic cardiac remodeling using this study set-up and by that provide a translatable murine model facilitating advances in research for new therapeutic approaches to ultimately improve therapy for chronic heart failure. PMID:28319168

  1. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    PubMed Central

    Vukusic, Kristina; Jonsson, Marianne; Brantsing, Camilla; Dellgren, Göran; Jeppsson, Anders; Lindahl, Anders; Asp, Julia

    2013-01-01

    3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS) cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM) were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3) inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology. PMID:23484142

  2. ANGPTL8 reverses established adriamycin cardiomyopathy by stimulating adult cardiac progenitor cells

    PubMed Central

    Chen, Shuyuan; Chen, Jiaxi; Meng, Xing-Li; Shen, Jin-Song; Huang, Jing; Huang, Pintong; Pu, Zhaoxia; McNeill, Nathan H.; Grayburn, Paul A.

    2016-01-01

    Established adriamycin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50% in a year. It has been known that ANGPTLs has various functions in lipid metabolism, inflammation, cancer cell invasion, hematopoietic stem activity and diabetes. We hypothesized that ANGPTL8 is capable of maintaining heart function by stimulating adult cardiac progenitor cells to initiate myocardial regeneration. We employed UTMD to deliver piggybac transposon plasmids with the human ANGPTL8 gene to the liver of rats with adriamycin cardiomyopathy. After ANGPTL8 gene liver delivery, overexpression of transgenic human ANGPTL8 was found in rat liver cells and blood. UTMD- ANGPTL8 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Our results also showed that ANGPTL8 reversed established ADM cardiomyopathy. This was associated with activation of ISL-1 positive cardiac progenitor cells in the epicardium. A time-course experiment shown that ISL-1 cardiac progenitor cells proliferated and formed a niche in the epicardial layer and then migrated into sub-epicardium. The observed myocardial regeneration accompanying reversal of adriamycin cardiomyopathy was associated with upregulation of PirB expression on the cell membrane of cardiac muscle cells or progenitor cells stimulated by ANGPTL8. PMID:27823982

  3. Generation of cardiac pacemaker cells by programming and differentiation.

    PubMed

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  4. Management of sickle cell disease in patients undergoing cardiac surgery.

    PubMed

    Crawford, Todd C; Carter, Michael V; Patel, Rina K; Suarez-Pierre, Alejandro; Lin, Sophie Z; Magruder, Jonathan Trent; Grimm, Joshua C; Cameron, Duke E; Baumgartner, William A; Mandal, Kaushik

    2017-02-01

    Sickle cell disease is a life-limiting inherited hemoglobinopathy that poses inherent risk for surgical complications following cardiac operations. In this review, we discuss preoperative considerations, intraoperative decision-making, and postoperative strategies to optimize the care of a patient with sickle cell disease undergoing cardiac surgery. © 2017 Wiley Periodicals, Inc.

  5. Isolation of resident cardiac progenitor cells by Hoechst 33342 staining.

    PubMed

    Pfister, Otmar; Oikonomopoulos, Angelos; Sereti, Konstantina-Ioanna; Liao, Ronglih

    2010-01-01

    Cardiac resident stem/progenitor cells are critical to the cellular and functional integrity of the heart by maintaining myocardial cell homeostasis. Given their central role in myocardial biology, resident cardiac progenitor cells have become a major focus in cardiovascular research. Identification of putative cardiac progenitor cells within the myocardium is largely based on the presence or absence of specific cell surface markers. Additional purification strategies take advantage of the ability of stem cells to efficiently efflux vital dyes such as Hoechst 33342. During fluoresence activated cell sorting (FACS) such Hoechst-extruding cells appear to the side of Hoechst-dye retaining cells and have thus been termed side population (SP) cells. We have shown that cardiac SP cells that express stem cell antigen 1 (Sca-1) but not CD31 are cardiomyogenic, and thus represent a putative cardiac progenitor cell population. This chapter describes the methodology for the isolation of resident cardiac progenitor cells utilizing the SP phenotype combined with stem cell surface markers.

  6. Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating ES cells

    PubMed Central

    Magli, Alessandro; Schnettler, Erin; Swanson, Scott A; Borges, Luciene; Hoffman, Kirsta; Stewart, Ron; Thomson, James A; Keirstead, Susan A.; Perlingeiro, Rita C. R.

    2014-01-01

    Embryonic stem (ES) cells represent an ideal model to study how lineage decisions are established during embryonic development. Using a doxycycline-inducible mouse ES cell line, we have previously shown that expression of the transcriptional activator Pax3 in early mesodermal cells leads to the robust generation of paraxial mesoderm progenitors that ultimately differentiate into skeletal muscle precursors. Here we show that the ability of this transcription factor to induce the skeletal myogenic cell fate occurs at the expenses of the cardiac lineage. Our results show that the PDGFRα+FLK1− sub-fraction represents the main population affected by Pax3, through down-regulation of several transcripts encoding for proteins involved in cardiac development. We demonstrate that although Nkx2-5, Tbx5 and Gata4 negatively affect Pax3 skeletal myogenic activity, the cardiac potential of embryoid body (EB)-derived cultures is restored solely by forced expression of Tbx5. Taking advantage of this model, we employed an unbiased genome wide approach to identify genes whose expression is rescued by Tbx5, and which could represent important regulators of cardiac development. These findings elucidate mechanisms regulating the commitment of mesodermal cells in the early embryo and identify the Tbx5 cardiac transcriptome. PMID:24677751

  7. Idiopathic giant cell myocarditis and cardiac sarcoidosis.

    PubMed

    Blauwet, Lori A; Cooper, Leslie T

    2013-11-01

    Idiopathic giant cell myocarditis (GCM) and cardiac sarcoidosis (CS) are rare disorders that cause cardiomyopathy, often with ventricular arrhythmias or heart block. Infection, autoimmune processes, and genetics have all been implicated in the pathogenesis of these diseases, but the etiology for both diseases is likely a complex multifactorial process. Both GCM and CS are generally progressive despite treatment with standard heart failure and arrhythmia therapies. Making the diagnosis of GCM or CS on initial clinical presentation is possible in only a small percentage of patients, so myocardial tissue diagnosis is required. The use of multiple noninvasive imaging modalities may aid in diagnosis and assessment of response to treatment. Establishing the diagnosis of GCM or CS early is crucial, as tailored immunosuppressive treatment may significantly alter the clinical course of these patients. The prognosis of patients with GCM is poor, while the prognosis for patients with CS varies according to degree of left ventricular dysfunction.

  8. 3D culture for cardiac cells.

    PubMed

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  9. Cardiac cell culture model as a left ventricle mimic for cardiac tissue generation.

    PubMed

    Nguyen, Mai-Dung; Tinney, Joseph P; Yuan, Fangping; Roussel, Thomas J; El-Baz, Ayman; Giridharan, Guruprasad; Keller, Bradley B; Sethu, Palaniappan

    2013-09-17

    A major challenge in cardiac tissue engineering is the delivery of hemodynamic mechanical cues that play a critical role in the early development and maturation of cardiomyocytes. Generation of functional cardiac tissue capable of replacing or augmenting cardiac function therefore requires physiologically relevant environments that can deliver complex mechanical cues for cardiomyocyte functional maturation. The goal of this work is the development and validation of a cardiac cell culture model (CCCM) microenvironment that accurately mimics pressure-volume changes seen in the left ventricle and to use this system to achieve cardiac cell maturation under conditions where mechanical loads such as pressure and stretch are gradually increased from the unloaded state to conditions seen in vivo. The CCCM platform, consisting of a cell culture chamber integrated within a flow loop was created to accomplish culture of 10 day chick embryonic ventricular cardiomyocytes subject to 4 days of stimulation (10 mmHg, ∼13% stretch at a frequency of 2 Hz). Results clearly show that CCCM conditioned cardiomyocytes accelerate cardiomyocyte structural and functional maturation in comparison to static unloaded controls as evidenced by increased proliferation, alignment of actin cytoskeleton, bundle-like sarcomeric α-actinin expression, higher pacing beat rate at lower threshold voltages, and increased shortening. These results confirm the CCCM microenvironment can accelerate immature cardiac cell structural and functional maturation for potential cardiac regenerative applications.

  10. Restoring forces in cardiac myocytes. Insight from relaxations induced by photolysis of caged ATP.

    PubMed Central

    Niggli, E; Lederer, W J

    1991-01-01

    Concentration jumps of intracellular ATP were produced by photolysis of P3-1-(2-nitrophenyl)ethyl (NPE)-caged ATP and were used to investigate the passive relengthening properties in unloaded cardiac myocytes. Patch-clamp pipettes in the whole-cell mode were used to voltage-clamp the myocytes and to load the cells with caged ATP while optical methods were applied to record sarcomere length or cell length simultaneously. Cell length was varied using energy deprivation contractures while intracellular Ca2+ was controlled with EGTA. At sarcomere lengths between 1.8 and 1.4 microns cellular relengthening after photolysis of caged ATP was rapid (t1/2 approximately 100 ms) and could be well described by a simple mechanical model. However, ATP jumps made at sarcomere lengths approximately 1.1 microns led to slow relengthening (t1/2 approximately seconds), comparable to the slow reextensions observed in skinned myocytes after bulk solution changes. We attribute the slow and incomplete relengthening of intact and skinned myocytes after severe rigor shortening to deformation and alteration of structural elements inside the cell. Relengthening from intermediate sarcomere lengths in intact cells is elastic and provides information about the underlying relengthening forces inside the cell. The data do not support the presence of a significant discontinuity in elastic modulus at a sarcomere length of approximately 1.6 microns expected from ultrastructural features of the sarcomeres and from observations in skinned myocytes. Our results suggest that the cell length measurements usually performed in this preparation provide an adequate description of the force produced by the unloaded cell in the steady state. The results also provide a way to estimate the error arising from viscous forces during rapid shortening. PMID:1868157

  11. Copper inhibition of hydrogen peroxide-induced hypertrophy in embryonic rat cardiac H9c2 cells.

    PubMed

    Zhou, Yang; Jiang, Youchun; Kang, Y James

    2007-03-01

    Previous studies have shown that dietary copper deficiency causes cardiac hypertrophy and depression of vascular epithelial growth factor (VEGF) expression in mouse model. Copper replenishment in the diet reverses cardiac hypertrophy and restores VEGF expression. The present study was undertaken to specifically determine the role of VEGF in copper effect on cell hypertrophy. Embryonic rat cardiac H9c2 cells were exposed to hydrogen peroxide to develop hypertrophy, determined by increases in cell size and total protein content. Copper addition at 5 microM in cultures suppressed cell hypertrophy. In the presence of anti-VEGF antibody, copper inhibitory effect on cell hypertrophy was blunted, and VEGF alone mimicked the inhibitory effect of copper. The results thus demonstrated that VEGF is critically involved in copper inhibition of cell hypertrophy induced by hydrogen peroxide in the H9c2 cells.

  12. Cardiac Resynchronization Therapy Restores Sympathovagal Balance in the Failing Heart by Differential Remodeling of Cholinergic Signaling

    PubMed Central

    DeMazumder, Deeptankar; Kass, David A.; O’Rourke, Brian; Tomaselli, Gordon F.

    2015-01-01

    Rationale Cardiac resynchronization therapy (CRT) is the only heart failure (HF) therapy documented to improve left ventricular (LV) function and reduce mortality. The underlying mechanisms are incompletely understood. While β-adrenergic signaling has been studied extensively, the effect of CRT on cholinergic signaling is unexplored. Objective We hypothesized that remodeling of cholinergic signaling plays an important role in the aberrant calcium signaling and depressed contractile and β-adrenergic responsiveness in dyssynchronous HF (DHF) that are restored by CRT. Methods and Results Canine tachypaced DHF and CRT models were generated to interrogate responses specific to dyssynchronous vs. resynchronized ventricular contraction during hemodynamic decompensation. Echocardiographic, electrocardiographic and invasive hemodynamic data were collected from normal controls, DHF and CRT models. LV tissue was used for biochemical analyses and functional measurements (calcium transient, sarcomere shortening) from isolated myocytes (N=42–104 myocytes/model; 6–9 hearts/model). Human LV myocardium was obtained for biochemical analyses from explanted failing (N=18) and non-failing (N=7) hearts. The M2 subtype of muscarinic acetylcholine receptors (M2-mAChR) was upregulated in human and canine HF compared to non-failing controls. CRT attenuated the increased M2-mAChR expression and Gαi-coupling, and enhanced M3-mAChR expression in association with enhanced calcium cycling, sarcomere shortening and β-adrenergic responsiveness. Despite model-dependent remodeling, cholinergic stimulation completely abolished isoproterenol-induced triggered activity in both DHF and CRT myocytes. Conclusions Remodeling of cholinergic signaling is a critical pathological component of human and canine HF. Differential remodeling of cholinergic signaling represents a novel mechanism for enhancing sympathovagal balance with CRT and may identify new targets for treatment of systolic HF. PMID

  13. Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating embryonic stem cells.

    PubMed

    Magli, Alessandro; Schnettler, Erin; Swanson, Scott A; Borges, Luciene; Hoffman, Kirsta; Stewart, Ron; Thomson, James A; Keirstead, Susan A; Perlingeiro, Rita C R

    2014-08-01

    Embryonic stem cells (ESCs) represent an ideal model to study how lineage decisions are established during embryonic development. Using a doxycycline-inducible mouse ESC line, we have previously shown that expression of the transcriptional activator Pax3 in early mesodermal cells leads to the robust generation of paraxial mesoderm progenitors that ultimately differentiate into skeletal muscle precursors. Here, we show that the ability of this transcription factor to induce the skeletal myogenic cell fate occurs at the expenses of the cardiac lineage. Our results show that the PDGFRα+FLK1--subfraction represents the main population affected by Pax3, through downregulation of several transcripts encoding for proteins involved in cardiac development. We demonstrate that although Nkx2-5, Tbx5, and Gata4 negatively affect Pax3 skeletal myogenic activity, the cardiac potential of embryoid body-derived cultures is restored solely by forced expression of Tbx5. Taking advantage of this model, we used an unbiased genome-wide approach to identify genes whose expression is rescued by Tbx5, and which could represent important regulators of cardiac development. These findings elucidate mechanisms regulating the commitment of mesodermal cells in the early embryo and identify the Tbx5 cardiac transcriptome. © 2014 AlphaMed Press.

  14. Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart

    PubMed Central

    Shi, Jianru; Dai, Wangde; Hale, Sharon L.; Brown, David A.; Wang, Miao; Han, Xianlin; Kloner, Robert A.

    2016-01-01

    Aims We have observed that Bendavia, a mitochondrial-targeting peptide that binds the phospholipid cardiolipin and stabilizes the components of electron transport and ATP generation, improves cardiac function and prevents left ventricular remodeling in a 6 week rat myocardial infarction (MI) model. We hypothesized that Bendavia restores mitochondrial biogenesis and gene expression, suppresses cardiac fibrosis, and preserves sarco/endoplasmic reticulum (SERCA2a) level in the noninfarcted border zone of infarcted hearts. Main methods Starting 2 hours after left coronary artery ligation, rats were randomized to receive Bendavia (3 mg/kg/day), water or sham operation. At 6 weeks, PCR array and qRT-PCR was performed to detect gene expression. Picrosirius red staining was used to analyze collagen deposition. Key findings There was decreased expression of 70 out of 84 genes related to mitochondrial energy metabolism in the border zone of untreated hearts. This down-regulation was largely reversed by Bendavia treatment. Downregulated mitochondrial biogenesis and glucose & fatty acid (FA) oxidation related genes were restored by administration of Bendavia. Matrix metalloproteinase (MMP9) and tissue inhibitor of metalloproteinase (TIMP1) gene expression were significantly increased in the border zone of untreated hearts. Bendavia completely prevented up-regulation of MMP9, but maintained TIMP1 gene expression. Picrosirius red staining demonstrated that Bendavia suppressed collagen deposition within border zone. In addition, Bendavia showed a trend toward restoring SERCA2a expression. Significance Bendavia restored expression of mitochondrial energy metabolism related genes, prevented myocardial matrix remodeling and preserved SERCA2a expression in the noninfarcted border, which may have contributed to the preservation of cardiac structure and function. PMID:26431885

  15. Predictors for severe cardiac complications after hematopoietic stem cell transplantation.

    PubMed

    Sakata-Yanagimoto, M; Kanda, Y; Nakagawa, M; Asano-Mori, Y; Kandabashi, K; Izutsu, K; Imai, Y; Hangaishi, A; Kurokawa, M; Tsujino, S; Ogawa, S; Chiba, S; Motokura, T; Hirai, H

    2004-05-01

    The value of pre-transplant factors for predicting the development of cardiac complications after transplantation has been inconsistent among studies. We analyzed the impact of pre-transplant factors on the incidence of severe cardiac complications in 164 hematopoietic stem cell transplant recipients. We identified eight patients (4.8%) who experienced grade III or IV cardiac complications according to the Bearman criteria. Seven died of cardiac causes a median of 3 days after the onset of cardiac complications. On univariate analysis, both the cumulative dose of anthracyclines and the use of anthracyclines within 60 days before transplantation affected the incidence of severe cardiac complications (P=0.0091 and 0.011). The dissociation of heart rate and body temperature, which reflects "relative tachycardia", was also associated with a higher incidence of cardiac complications (P=0.024). None of the variables obtained by electrocardiography or echocardiography were useful for predicting cardiac complications after transplantation, although the statistical power might not be sufficient to detect the usefulness of ejection fraction. On a multivariate analysis, the cumulative dose of anthracyclines was the only independent significant risk factor for severe cardiac complications. We conclude that the cumulative dose of anthracyclines is the most potent predictor of cardiac complications and the administration of anthracyclines should be avoided within two months before transplantation.

  16. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.

    PubMed

    Jackson, K A; Majka, S M; Wang, H; Pocius, J; Hartley, C J; Majesky, M W; Entman, M L; Michael, L H; Hirschi, K K; Goodell, M A

    2001-06-01

    Myocyte loss in the ischemically injured mammalian heart often leads to irreversible deficits in cardiac function. To identify a source of stem cells capable of restoring damaged cardiac tissue, we transplanted highly enriched hematopoietic stem cells, the so-called side population (SP) cells, into lethally irradiated mice subsequently rendered ischemic by coronary artery occlusion for 60 minutes followed by reperfusion. The engrafted SP cells (CD34(-)/low, c-Kit(+), Sca-1(+)) or their progeny migrated into ischemic cardiac muscle and blood vessels, differentiated to cardiomyocytes and endothelial cells, and contributed to the formation of functional tissue. SP cells were purified from Rosa26 transgenic mice, which express lacZ widely. Donor-derived cardiomyocytes were found primarily in the peri-infarct region at a prevalence of around 0.02% and were identified by expression of lacZ and alpha-actinin, and lack of expression of CD45. Donor-derived endothelial cells were identified by expression of lacZ and Flt-1, an endothelial marker shown to be absent on SP cells. Endothelial engraftment was found at a prevalence of around 3.3%, primarily in small vessels adjacent to the infarct. Our results demonstrate the cardiomyogenic potential of hematopoietic stem cells and suggest a therapeutic strategy that eventually could benefit patients with myocardial infarction.

  17. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells

    PubMed Central

    Jackson, Kathyjo A.; Majka, Susan M.; Wang, Hongyu; Pocius, Jennifer; Hartley, Craig J.; Majesky, Mark W.; Entman, Mark L.; Michael, Lloyd H.; Hirschi, Karen K.; Goodell, Margaret A.

    2001-01-01

    Myocyte loss in the ischemically injured mammalian heart often leads to irreversible deficits in cardiac function. To identify a source of stem cells capable of restoring damaged cardiac tissue, we transplanted highly enriched hematopoietic stem cells, the so-called side population (SP) cells, into lethally irradiated mice subsequently rendered ischemic by coronary artery occlusion for 60 minutes followed by reperfusion. The engrafted SP cells (CD34–/low, c-Kit+, Sca-1+) or their progeny migrated into ischemic cardiac muscle and blood vessels, differentiated to cardiomyocytes and endothelial cells, and contributed to the formation of functional tissue. SP cells were purified from Rosa26 transgenic mice, which express lacZ widely. Donor-derived cardiomyocytes were found primarily in the peri-infarct region at a prevalence of around 0.02% and were identified by expression of lacZ and α-actinin, and lack of expression of CD45. Donor-derived endothelial cells were identified by expression of lacZ and Flt-1, an endothelial marker shown to be absent on SP cells. Endothelial engraftment was found at a prevalence of around 3.3%, primarily in small vessels adjacent to the infarct. Our results demonstrate the cardiomyogenic potential of hematopoietic stem cells and suggest a therapeutic strategy that eventually could benefit patients with myocardial infarction. PMID:11390421

  18. TNFα protects cardiac mitochondria independently of its cell surface receptors.

    PubMed

    Lacerda, Lydia; McCarthy, Joy; Mungly, Shazia F K; Lynn, Edward G; Sack, Michael N; Opie, Lionel H; Lecour, Sandrine

    2010-11-01

    Our novel proposal is that TNFα exerts a direct effect on mitochondrial respiratory function in the heart, independently of its cell surface receptors. TNFα-induced cardioprotection is known to involve reactive oxygen species (ROS) and sphingolipids. We therefore further propose that this direct mitochondrial effect is mediated via ROS and sphingolipids. The protective concentration of TNFα (0.5 ng/ml) was added to isolated heart mitochondria from black 6 × 129 mice (WT) and double TNF receptor knockout mice (TNFR1&2(-/-)). Respiratory parameters and inner mitochondrial membrane potential were analyzed in the presence/absence of two antioxidants, N-acetyl-L: -cysteine or N-tert-butyl-α-(2-sulfophenyl)nitrone or two antagonists of the sphingolipid pathway, N-oleoylethanolamine (NOE) or imipramine. In WT, TNFα reduced State 3 respiration from 279.3 ± 3 to 119.3 ± 2 (nmol O₂/mg protein/min), increased proton leak from 15.7 ± 0.6% (control) to 36.6 ± 4.4%, and decreased membrane potential by 20.5 ± 3.1% compared to control groups. In TNFR1&2(-/-) mice, TNFα reduced State 3 respiration from 205.2 ± 4 to 75.7 ± 1 (p < 0.05 vs. respective control). In WT mice, both antioxidants added with TNFα restored State 3 respiration to 269.2 ± 2 and 257.6 ± 2, respectively. Imipramine and NOE also restored State 3 respiration to 248.4 ± 2 and 249.0 ± 2, respectively (p < 0.01 vs. TNFα alone). Similarly, both antioxidant and inhibitors of the sphingolipid pathway restored the proton leak to pre-TNF values. TNFα-treated mitochondria or isolated cardiac muscle fibers showed an increase in respiration after anoxia-reoxygenation, but this effect was lost in the presence of an antioxidant or NOE. Similar data were obtained in TNFR1&2(-/-) mice. TNFα exerts a protective effect on respiratory function in isolated mitochondria subjected to an anoxia-reoxygenation insult. This effect appears to be independent of its cell surface receptors, but is likely to be mediated

  19. A multistaged automatic restoration of noisy microscopy cell images.

    PubMed

    Xu, Jinwei; Hu, Jiankun; Jia, Xiuping

    2015-01-01

    Automated cell segmentation for microscopy cell images has recently become an initial step for further image analysis in cell biology. However, microscopy cell images are easily degraded by noise during the readout procedure via optical-electronic imaging systems. Such noise degradations result in low signal-to-noise ratio (SNR) and poor image quality for cell identification. In order to improve SNR for subsequent segmentation and image-based quantitative analysis, the commonly used state-of-art restoration techniques are applied but few of them are suitable for corrupted microscopy cell images. In this paper, we propose a multistaged method based on a novel integration of trend surface analysis, quantile-quantile plot, bootstrapping, and the Gaussian spatial kernel for the restoration of noisy microscopy cell images. We show this multistaged approach achieves higher performance compared with other state-of-art restoration techniques in terms of peak signal-to-noise ratio and structure similarity in synthetic noise experiments. This paper also reports an experiment on real noisy microscopy data which demonstrated the advantages of the proposed restoration method for improving segmentation performance.

  20. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, M.J.; Weaver, V.M.

    1998-12-08

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying {beta}{sub 1} integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive. 14 figs.

  1. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    1998-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  2. Cardiac tissue development for delivery of embryonic stem cell-derived endothelial and cardiac cells in natural matrices.

    PubMed

    Turner, William S; Wang, Xiaoling; Johnson, Scott; Medberry, Christopher; Mendez, Jose; Badylak, Stephen F; McCord, Marian G; McCloskey, Kara E

    2012-11-01

    The packaging and delivery of cells for cardiac regeneration has been explored using a variety biomaterials and delivery methods, but these studies often ignore one or more important design factors critical for rebuilding cardiac tissue. These include the biomaterial architecture, strength and stiffness, cell alignment, and/or incorporation of multiple cell types. In this article, we explore the combinatorial use of decellularized tissues, moldable hydrogels, patterned cell-seeding, and cell-sheet engineering and find that a combination of these methods is optimal in the recreation of transplantable cardiac-like tissue in vivo. We show that decellularized urinary bladder matrix (UBM), that is compliant and suturable, supports the survival of cell cultures but does not allow maintenance of cell-to-cell contacts of transferred cell-sheets (presumably, due to its rough surface). Moreover, the UBM material must be filled with hyaluronan (HA) hydrogels for smoothing rough surfaces and allowing the delivery of greater cell numbers. We additionally incorporated our previously developed "wrinkled" microchip for inducing alignment of cardiac cells with a laser-etched mask for co-seeding patterned "channels" of cells. This article also introduces a novel method of plasma coating for cell-sheet engineering that compares well with electron bean irradiation methods and may be combined with our "wrinkled" surfaces to facilitate the alignment of cardiac cells into sheets. Our data shows that an optimal design for generating cardiac tissue would include (1) decellularized matrix seeded with endothelial cells in a HA layered with (2) prealigned cardiac cell-sheets fabricated using our "wrinkled" microchips and thermo-responsive polymer [poly(N-isopropylacrylamide)] cell sheet transfer system.

  3. Embryonic stem cells in cardiac repair and regeneration.

    PubMed

    Singla, Dinender K

    2009-08-01

    Cell transplantation is a subject of fast-growing research with a potential of a therapeutic approach for the treatment of heart diseases. Clinical applications require preparation of large number of donor cells. Stem cell studies published to date demonstrate that scientists have not reached the general consensus to use an optimal cell type for better cardiac repair and regeneration. We used embryonic stem (ES) cells and their released factors for cardiac repair and regeneration. The major concern of cardiac regeneration with stem cells includes engraftment, differentiation, and teratoma formation after ES cell transplantation. Our current knowledge of ES cell transplantation in the heart is very limited. This review discusses the use of various growth factors to enhance ES cells engraftment and differentiation, as well as the issue of teratoma formation.

  4. SWI/SNF in cardiac progenitor cell differentiation

    PubMed Central

    Lei, Ienglam; Liu, Liu; Sham, Mai Har; Wang, Zhong

    2014-01-01

    Cardiogenesis requires proper specification, proliferation, and differentiation of cardiac progenitor cells (CPCs). The differentiation of CPCs to specific cardiac cell types is likely guided by a comprehensive network comprised of cardiac transcription factors and epigenetic complexes. In this review, we describe how the ATP-dependent chromatin remodeling SWI/SNF complexes work synergistically with transcription and epigenetic factors to direct specific cardiac gene expression during CPC differentiation. Furthermore, we discuss how SWI/SNF may prime chromatin for cardiac gene expression at a genome-wide level. A detailed understanding of SWI/SNF-mediated CPC differentiation will provide important insight into the etiology of cardica defects and help design novel therapies for heart disease. PMID:23606236

  5. From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Giacomello, Alessandro; Messina, Elisa

    2012-01-01

    Since the first observations over two centuries ago by Lazzaro Spallanzani on the extraordinary regenerative capacity of urodeles, many attempts have been made to understand the reasons why such ability has been largely lost in metazoa and whether or how it can be restored, even partially. In this context, important clues can be derived from the systematic analysis of the relevant distinctions among species and of the pathways involved in embryonic development, which might be induced and/or recapitulated in adult tissues. This chapter provides an overview on regeneration and its mechanisms, starting with the lesson learned from lower vertebrates, and will then focus on recent advancements and novel insights concerning regeneration in the adult mammalian heart, including the discovery of resident cardiac progenitor cells (CPCs). Subsequently, it explores all the important pathways involved in regulating differentiation during development and embryogenesis, and that might potentially provide important clues on how to activate and/or modulate regenerative processes in the adult myocardium, including the potential activation of endogenous CPCs. Furthermore the importance of the stem cell niche is discussed, and how it is possible to create in vitro a microenvironment and culture system to provide adult CPCs with the ideal conditions promoting their regenerative ability. Finally, the state of clinical translation of cardiac cell therapy is presented. Overall, this chapter provides a new perspective on how to approach cardiac regeneration, taking advantage of important lessons from development and optimizing biotechnological tools to obtain the ideal conditions for cell-based cardiac regenerative therapy.

  6. Cardiac Electromechanical Models: From Cell to Organ

    PubMed Central

    Trayanova, Natalia A.; Rice, John Jeremy

    2011-01-01

    The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computational physiology and medicine. This review focuses on electromechanical (EM) models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single-cell models and the second half addresses organ models. At the subcellular level, myofilament models represent actin–myosin interaction and Ca-based activation. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered to be the cellular basis of the Frank–Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of the field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction–diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and defibrillation. PMID:21886622

  7. Cardiac electromechanical models: from cell to organ.

    PubMed

    Trayanova, Natalia A; Rice, John Jeremy

    2011-01-01

    The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computational physiology and medicine. This review focuses on electromechanical (EM) models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single-cell models and the second half addresses organ models. At the subcellular level, myofilament models represent actin-myosin interaction and Ca-based activation. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered to be the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of the field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and defibrillation.

  8. Metformin and sulodexide restore cardiac microvascular perfusion capacity in diet-induced obese rats.

    PubMed

    van Haare, Judith; Kooi, M Eline; van Teeffelen, Jurgen W G E; Vink, Hans; Slenter, Jos; Cobelens, Hanneke; Strijkers, Gustav J; Koehn, Dennis; Post, Mark J; van Bilsen, Marc

    2017-04-11

    Disturbances in coronary microcirculatory function, such as the endothelial glycocalyx, are early hallmarks in the development of obesity and insulin resistance. Accordingly, in the present study myocardial microcirculatory perfusion during rest and stress was assessed following metformin or sulodexide therapy in a rat model of diet-induced obesity. Additionally, the effect of degradation of the glycocalyx on myocardial perfusion was assessed in chow-fed rats. Rats were fed a high fat diet (HFD) for 8 weeks and were divided into a group without therapy, and groups that received the anti-diabetic drug metformin or the glycocalyx-stabilizing drug sulodexide in their drinking water during the last 4 weeks of the feeding period. Myocardial microvascular perfusion was determined using first-pass perfusion MRI before and after adenosine infusion. The effect of HFD on microcirculatory properties was also assessed by sidestream darkfield (SDF) imaging of the gastrocnemius muscle. In an acute experimental setting, hyaluronidase was administered to chow-fed control rats to determine the effect of enzymatical degradation of the glycocalyx on myocardial perfusion. HFD-rats developed central obesity and insulin sensitivity was reduced as evidenced by the marked reduction in insulin-induced phosphorylation of Akt in both cardiac and gastrocnemius muscle. We confirmed our earlier findings that the robust increase in myocardial perfusion in chow-fed rats after an adenosine challenge (+56%, p = 0.002) is blunted in HFD rats (+8%, p = 0.68). In contrast, 4-weeks treatment with metformin or sulodexide partly restored the increase in myocardial perfusion during adenosine infusion in HFD rats (+81%, p = 0.002 and +37%, p = 0.02, respectively). Treating chow-fed rats acutely with hyaluronidase, to enzymatically degrade the glyocalyx, completely blunted the increase in myocardial perfusion during stress. In early stages of HFD-induced insulin resistance myocardial perfusion

  9. 2-Deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy.

    PubMed

    Cheng, Yuanhua; Hogarth, Kaley A; O'Sullivan, M Lynne; Regnier, Michael; Pyle, W Glen

    2016-01-01

    Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca(2+) sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM. Copyright © 2016 the American Physiological Society.

  10. Pluripotent Stem Cell Derived Cardiac Cells for Myocardial Repair.

    PubMed

    Zhu, Wuqiang; Gao, Ling; Zhang, Jianyi

    2017-02-03

    Human induced pluripotent stem cells (hiPSCs) must be fully differentiated into specific cell types before administration, but conventional protocols for differentiating hiPSCs into cardiomyocytes (hiPSC-CMs), endothelial cells (hiPSC-ECs), and smooth muscle cells (SMCs) are often limited by low yield, purity, and/or poor phenotypic stability. Here, we present novel protocols for generating hiPSC-CMs, -ECs, and -SMCs that are substantially more efficient than conventional methods, as well as a method for combining cell injection with a cytokine-containing patch created over the site of administration. The patch improves both the retention of the injected cells, by sealing the needle track to prevent the cells from being squeezed out of the myocardium, and cell survival, by releasing insulin-like growth factor (IGF) over an extended period. In a swine model of myocardial ischemia-reperfusion injury, the rate of engraftment was more than two-fold greater when the cells were administered with the cytokine-containing patch comparing to the cells without patch, and treatment with both the cells and the patch, but not with the cells alone, was associated with significant improvements in cardiac function and infarct size.

  11. Dental stem cells as an alternative source for cardiac regeneration.

    PubMed

    Xin, Loo Zhang; Govindasamy, Vijayendran; Musa, Sabri; Abu Kasim, Noor Hayaty

    2013-10-01

    Dental tissues contains stem cells or progenitors that have high proliferative capacity, are clonogenic in vitro and demonstrate the ability to differentiate to multiple type cells involving neurons, bone, cartilage, fat and smooth muscle. Numerous experiments have demonstrated that the multipotent stem cells are not rejected by immune system and therefore it may be possible to use these cells in allogeneic settings. In addition, these remarkable cells are easily abundantly available couple with less invasive procedure in isolating comparing to bone marrow aspiration. Here we proposed dental stem cells as candidate for cardiac regeneration based on its immature characteristic and propensity towards cardiac lineage via PI3-Kinase/Aktsignalling pathway.

  12. Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells.

    PubMed

    Campbell, C R; Berman, A E; Weintraub, N L; Tang, Y L

    2016-03-01

    Injured or ischemic cardiac tissue has limited intrinsic capacity for regeneration. While stem cell transplantation is a promising approach to stimulating cardiac repair, its success in humans has thus far been limited. Harnessing the therapeutic benefits of stem cells requires a better understanding of their mechanisms of action and methods to optimize their function. Cardiac stem cells (CSC) represent a particularly effective cellular source for cardiac repair, and pre-conditioning CSC with electrical stimulation (EleS) was demonstrated to further enhance their function, although the mechanisms are unknown. Recent studies suggest that transplanted stem cells primarily exert their effects through communicating with endogenous tissues via the release of exosomes containing cardioprotective molecules such as miRNAs, which upon uptake by recipient cells may stimulate survival, proliferation, and angiogenesis. Exosomes are also effective therapeutic agents in isolation and may provide a feasible alternative to stem cell transplantation. We hypothesize that EleS enhances CSC-mediated cardiac repair through its beneficial effects on production of cardioprotective exosomes. Moreover, we hypothesize that the beneficial effects of biventricular pacing in patients with heart failure may in part result from EleS-induced preconditioning of endogenous CSC to promote cardiac repair. With future research, our hypothesis may provide applications to optimize stem cell therapy and augment current pacing protocols, which may significantly advance the treatment of patients with heart disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of carbon monoxide on cardiac muscle cells in culture

    SciTech Connect

    Nag, A.C.; Chen, K.C.; Cheng, Mei General Motors Research Laboratories, Warren, MI )

    1988-09-01

    Embryonic rat cardiac muscle cells grown in the presence of various tensions of CO (5-95%) without the presence of O{sub 2} survived and exhibited reduced cell growth, which was concentration dependent. When cardiac muscle cells were grown in the presence of a mixture of CO (10-20%) and O{sub 2} (10-20%), the growth rate of these cells was comparable to that of the control cells. Cardiac myocytes continued to beat when exposed to varying tensions of CO, except in the case of 95% CO. The cells exposed to different concentrations of CO contained fewer myofibrils of different stages of differentiation compared with the control and the culture exposed to a mixture of 20% O{sub 2} and 20% CO, with cells that contained abundant, highly differentiated myofibrils. There was no significant difference in the structural organization of mitochondria between the control and the surviving experimental cells. It is evident from the present studies that O{sub 2} is required for the optimum in vitro cellular growth of cardiac muscle. Furthermore, CO in combination with O{sub 2} at a concentration of 10 or 20% can produce optimal growth of cardiac muscle cells in culture. To determine maximum labeling index during the labeling period, cells were continuously labeled with ({sup 3}H)thymidine for 24 h before the termination of cultures.

  14. Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells.

    PubMed

    Sreejit, P; Verma, R S

    2013-04-01

    Cellular therapy using stem cells for cardiac diseases has recently gained much interest in the scientific community due to its potential in regenerating damaged and even dead tissue and thereby restoring the organ function. Stem cells from various sources and origin are being currently used for regeneration studies directly or along with differentiation inducing agents. Long term survival and minimal side effects can be attained by using autologous cells and reduced use of inducing agents. Cardiomyogenic differentiation of adult derived stem cells has been previously reported using various inducing agents but the use of a potentially harmful DNA demethylating agent 5-azacytidine (5-azaC) has been found to be critical in almost all studies. Alternate inducing factors and conditions/stimulant like physical condition including electrical stimulation, chemical inducers and biological agents have been attempted by numerous groups to induce cardiac differentiation. Biomaterials were initially used as artificial scaffold in in vitro studies and later as a delivery vehicle. Natural ECM is the ideal biological scaffold since it contains all the components of the tissue from which it was derived except for the living cells. Constructive remodeling can be performed using such natural ECM scaffolds and stem cells since, the cells can be delivered to the site of infraction and once delivered the cells adhere and are not "lost". Due to the niche like conditions of ECM, stem cells tend to differentiate into tissue specific cells and attain several characteristics similar to that of functional cells even in absence of any directed differentiation using external inducers. The development of niche mimicking biomaterials and hybrid biomaterial can further advance directed differentiation without specific induction. The mechanical and electrical integration of these materials to the functional tissue is a problem to be addressed. The search for the perfect extracellular matrix for

  15. Cell replacement and visual restoration by retinal sheet transplants

    PubMed Central

    Seiler, Magdalene J.; Aramant, Robert B.

    2012-01-01

    Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a ‘nursing’ role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance – they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy. PMID:22771454

  16. Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses.

    PubMed

    Ma, Zhen; Liu, Qiuying; Liu, Honghai; Yang, Huaxiao; Yun, Julie X; Eisenberg, Carol; Borg, Thomas K; Xu, Meifeng; Gao, Bruce Z

    2012-02-07

    Following myocardial infarction there is an irreversible loss of cardiomyocytes that results in the alteration of electrical propagation in the heart. Restoration of functional electrical properties of the damaged heart muscle is essential to recover from the infarction. While there are a few reports that demonstrate that fibroblasts can form junctions that transmit electrical signals, a potential alternative using the injection of stem cells has emerged as a promising cellular therapy; however, stem-cell electrical conductivity within the cardiac muscle fiber is unknown. In this study, an in vitro cardiac muscle model was established on an MEA-based biochip with multiple cardiomyocytes that mimic cardiac tissue structure. Using a laser beam, stem cells were inserted adjacent to each muscle fiber (cell bridge model) and allowed to form cell-cell contact as determined by the formation of gap junctions. The electrical conductivity of stem cells was assessed and compared with the electrical conductivities of cardiomyocytes and fibroblasts. Results showed that stem cell-myocyte contacts exhibited higher and more stable conduction velocities than myocyte-fibroblast contacts, which indicated that stem cells have higher electrical compatibility with native cardiac muscle fibers than cardiac fibroblasts.

  17. Superaligned Carbon Nanotubes Guide Oriented Cell Growth and Promote Electrophysiological Homogeneity for Synthetic Cardiac Tissues.

    PubMed

    Ren, Jing; Xu, Quanfu; Chen, Xiaomeng; Li, Wei; Guo, Kai; Zhao, Yang; Wang, Qian; Zhang, Zhitao; Peng, Huisheng; Li, Yi-Gang

    2017-10-11

    Cardiac engineering of patches and tissues is a promising option to restore infarcted hearts, by seeding cardiac cells onto scaffolds and nurturing their growth in vitro. However, current patches fail to fully imitate the hierarchically aligned structure in the natural myocardium, the fast electrotonic propagation, and the subsequent synchronized contractions. Here, superaligned carbon-nanotube sheets (SA-CNTs) are explored to culture cardiomyocytes, mimicking the aligned structure and electrical-impulse transmission behavior of the natural myocardium. The SA-CNTs not only induce an elongated and aligned cell morphology of cultured cardiomyocytes, but also provide efficient extracellular signal-transmission pathways required for regular and synchronous cell contractions. Furthermore, the SA-CNTs can reduce the beat-to-beat and cell-to-cell dispersion in repolarization of cultured cells, which is essential for a normal beating rhythm, and potentially reduce the occurrence of arrhythmias. Finally, SA-CNT-based flexible one-piece electrodes demonstrate a multipoint pacing function. These combined high properties make SA-CNTs promising in applications in cardiac resynchronization therapy in patients with heart failure and following myocardial infarctions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Restoration of angiogenic capacity of diabetes-insulted mesenchymal stem cells by oxytocin

    PubMed Central

    2013-01-01

    Background Angiogenesis is the main therapeutic mechanism of cell therapy for cardiovascular diseases, but diabetes is reported to reduce the function and number of progenitor cells. Therefore, we studied the effect of streptozotocin-induced diabetes on the bone marrow-mesenchymal stem cell (MSC) function, and examined whether diabetes-impaired MSC could be rescued by pretreatment with oxytocin. Results MSCs were isolated and cultured from diabetic (DM) or non-diabetic (non-DM) rat, and proliferation rate was compared. DM-MSC was pretreated with oxytocin and compared with non-DM-MSC. Angiogenic capacity was estimated by tube formation and Matrigel plug assay, and therapeutic efficacy was studied in rat myocardial infarction (MI) model. The proliferation and angiogenic activity of DM-MSC were severely impaired but significantly improved by pretreatment with oxytocin. Krüppel-like factor 2 (KLF2), a critical angiogenic factor, was dramatically reduced in DM-MSC and significantly restored by oxytocin. In the Matrigel plug assay, vessel formation of DM-BMSCs was attenuated but was recovered by oxytocin. In rat MI model, DM-MSC injection did not ameliorate cardiac injury, whereas oxytocin-pretreated DM-MSC improved cardiac function and reduced fibrosis. Conclusions Our results show that diabetes influenced MSC by reducing angiogenic capacity and therapeutic potential. We demonstrate the striking effect of oxytocin on stem cell dysfunction and suggest the use of oxytocin as a priming reagent in autologous stem cell therapy. PMID:24024790

  19. Microwave radiation effects on cardiac muscle cells in vitro

    SciTech Connect

    Galvin, M.J.; Hall, C.A.; McRee, D.I.

    1981-05-01

    Isolated cardiac muscle cells were exposed to microwave radiation in a temperature-controlled waveguide apparatus. Microwave radiation for 90 min at specific absorption rates (SAR) as low as 10 mW/g increases the permeability of cardiac cells to trypan blue. At 100 mW/g the inability of the cells to exclude trypan blue is concurrent with the release of lactic dehydrogenase into the suspending medium. However, when the SAR is decreased to 50 mW/g, trypan blue uptake is still elevated without the concomitant release of lactic dehydrogenase. Transmission electron micrographs of the exposed cells showed cellular damage only at the 100 mW/g exposure level. The microwave-reduced change in membrane permeability was unrelated to a macroscopic heating effect of microwave radiation on the cells, but appeared to be due to some other specific action of microwave radiation on isolated cardiac cells.

  20. Restoration of Corneal Transparency by Mesenchymal Stem Cells.

    PubMed

    Mittal, Sharad K; Omoto, Masahiro; Amouzegar, Afsaneh; Sahu, Anuradha; Rezazadeh, Alexandra; Katikireddy, Kishore R; Shah, Dhvanit I; Sahu, Srikant K; Chauhan, Sunil K

    2016-10-11

    Transparency of the cornea is indispensable for optimal vision. Ocular trauma is a leading cause of corneal opacity, leading to 25 million cases of blindness annually. Recently, mesenchymal stem cells (MSCs) have gained prominence due to their inflammation-suppressing and tissue repair functions. Here, we investigate the potential of MSCs to restore corneal transparency following ocular injury. Using an in vivo mouse model of ocular injury, we report that MSCs have the capacity to restore corneal transparency by secreting high levels of hepatocyte growth factor (HGF). Interestingly, our data also show that HGF alone can restore corneal transparency, an observation that has translational implications for the development of HGF-based therapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Chemical genetics and its potential in cardiac stem cell therapy.

    PubMed

    Vieira, Joaquim M; Riley, Paul R

    2013-05-01

    Over the last decade or so, intensive research in cardiac stem cell biology has led to significant discoveries towards a potential therapy for cardiovascular disease; the main cause of morbidity and mortality in humans. The major goal within the field of cardiovascular regenerative medicine is to replace lost or damaged cardiac muscle and coronaries following ischaemic disease. At present, de novo cardiomyocytes can be generated either in vitro, for cell transplantation or disease modelling using directed differentiation of embryonic stem cells or induced pluripotent stem cells, or in vivo via direct reprogramming of resident adult cardiac fibroblast or ectopic stimulation of resident cardiac stem or progenitor cells. A major bottleneck with all of these approaches is the low efficiency of cardiomyocyte differentiation alongside their relative functional immaturity. Chemical genetics, and the application of phenotypic screening with small molecule libraries, represent a means to enhance understanding of the molecular pathways controlling cardiovascular cell differentiation and, moreover, offer the potential for discovery of new drugs to invoke heart repair and regeneration. Here, we review the potential of chemical genetics in cardiac stem cell therapy, highlighting not only the major contributions to the field so far, but also the future challenges.

  2. Chemical genetics and its potential in cardiac stem cell therapy

    PubMed Central

    Vieira, Joaquim M; Riley, Paul R

    2013-01-01

    Over the last decade or so, intensive research in cardiac stem cell biology has led to significant discoveries towards a potential therapy for cardiovascular disease; the main cause of morbidity and mortality in humans. The major goal within the field of cardiovascular regenerative medicine is to replace lost or damaged cardiac muscle and coronaries following ischaemic disease. At present, de novo cardiomyocytes can be generated either in vitro, for cell transplantation or disease modelling using directed differentiation of embryonic stem cells or induced pluripotent stem cells, or in vivo via direct reprogramming of resident adult cardiac fibroblast or ectopic stimulation of resident cardiac stem or progenitor cells. A major bottleneck with all of these approaches is the low efficiency of cardiomyocyte differentiation alongside their relative functional immaturity. Chemical genetics, and the application of phenotypic screening with small molecule libraries, represent a means to enhance understanding of the molecular pathways controlling cardiovascular cell differentiation and, moreover, offer the potential for discovery of new drugs to invoke heart repair and regeneration. Here, we review the potential of chemical genetics in cardiac stem cell therapy, highlighting not only the major contributions to the field so far, but also the future challenges. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22385148

  3. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?

    PubMed

    Willems, Christophe; Vankelecom, Hugo

    2014-01-01

    The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.

  4. Stem cells and molecular strategies to restore hearing

    PubMed Central

    PAULEY, S.; KOPECKY, B.; BEISEL, K.; SOUKUP, G.; FRITZSCH, B.

    2008-01-01

    Hearing loss is a costly and growing problem for the elderly population worldwide with millions of people being affected. There are currently two prosthetic devices available to minimize problems associated with the two forms of hearing loss: hearing aids that amplify sound to overcome middle ear based conductive hearing loss and cochlear implants that restore some hearing after neurosensory hearing loss. The current presentation provides information on the treatment of neurosensory hearing loss. Although the cochlear implant solution for neurosensory hearing loss is technologically advanced; it still provides only moderate hearing capacity in neurosensory deaf individuals. Inducible stem cells and molecular therapies are appealing alternatives to the cochlear implant and may provide more than a new form of treatment as they hold the promise for a cure. To this end, current insights into inducible stem cells that may provide cells for seeding the cochlea with the hope of new hair cell formation are being reviewed. Alternatively, similar to induction of stem cells, cells of the flat epithelium that remains after hair cell loss could be induced to proliferate and differentiate into hair cells. In either of these strategies, hair cell specific genes known to be essential for hair cell differentiation or maintenance such as ATOH1, POU4F3, GFI1, and miRNA-183 will be utilized with the hope of completely restoring hearing to all patients with hearing loss. PMID:18427387

  5. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    PubMed

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling. © AlphaMed Press.

  6. Small molecule cardiogenol C upregulates cardiac markers and induces cardiac functional properties in lineage-committed progenitor cells.

    PubMed

    Mike, Agnes K; Koenig, Xaver; Koley, Moumita; Heher, Philipp; Wahl, Gerald; Rubi, Lena; Schnürch, Michael; Mihovilovic, Marko D; Weitzer, Georg; Hilber, Karlheinz

    2014-01-01

    Cell transplantation into the heart is a new therapy after myocardial infarction. Its success, however, is impeded by poor donor cell survival and by limited transdifferentiation of the transplanted cells into functional cardiomyocytes. A promising strategy to overcome these problems is the induction of cardiomyogenic properties in donor cells by small molecules. Here we studied cardiomyogenic effects of the small molecule compound cardiogenol C (CgC), and structural derivatives thereof, on lineage-committed progenitor cells by various molecular biological, biochemical, and functional assays. Treatment with CgC up-regulated cardiac marker expression in skeletal myoblasts. Importantly, the compound also induced cardiac functional properties: first, cardiac-like sodium currents in skeletal myoblasts, and secondly, spontaneous contractions in cardiovascular progenitor cell-derived cardiac bodies. CgC induces cardiomyogenic function in lineage-committed progenitor cells, and can thus be considered a promising tool to improve cardiac repair by cell therapy.

  7. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy.

    PubMed Central

    Maron, B. J.; Ferrans, V. J.; Roberts, W. C.

    1975-01-01

    Degenerated cardiac muscle cells were present in hypertrophied ventricular muscle obtained at operation from 12 (38%) of 32 patients with asymmetric septal hypertrophy (hypertrophic cardiomyopathy) or aortic valvular disease. Degenerated cells demonstrated a wide variety of ultrastructural alterations. Mildly altered cells were normal-sized or hypertrophied and showed focal changes, including preferential loss of thick (myosin) filaments, streaming and clumping of Z band material, and proliferation of the tubules of sarcoplasmic reticulum. Moderately and severely degenerated cells were normal-sized or atrophic and showed additional changes, including extensive myofibrillar lysis and loss of T tubules. The appearance of the most severely degenerated cells usually reflected the cytoplasmic organelle (sarcoplasmic reticulum, glycogen, or mitochondria) which underwent proliferation and filled the myofibril-free areas of these cells. Moderately and severely degenerated cells were present in areas of fibrosis, had thickened basement membranes, and had lost their intercellular connections. These observations suggest that degenerated cardiac muscle cells have poor contractile function and may be responsible for impaired cardiac performance in some patients with chronic ventricular hypertrophy. Images Fig 1 Fig 2 Fig 3 Figs 4-6 Figs 7-8 Fig 9 Fig 10 Fig 11 Figs 12-15 Fig 16 Fig 17 Figs 18-21 Figs 22-23 Fig 24 Fig 25 Fig 26 Fig 27 Figs 28-29 Fig 30 Figs 31-32 Fig 33 PMID:124533

  8. Stem cell therapy for cardiac repair: benefits and barriers.

    PubMed

    Joggerst, Steven J; Hatzopoulos, Antonis K

    2009-07-08

    Cardiovascular disease remains the leading cause of death worldwide. Acute ischaemic injury and chronic cardiomyopathies lead to permanent loss of cardiac tissue and ultimately heart failure. Current therapies aim largely to attenuate the pathological remodelling that occurs after injury and to reduce risk factors for cardiovascular disease. Studies in animal models indicate that transplantation of mesenchymal stem cells, bone-marrow-derived haematopoietic stem cells, skeletal myoblasts, or embryonic stem cells has the potential to improve the function of ventricular muscle after ischaemic injury. Clinical trials using primarily bone-marrow-derived cells and skeletal myoblasts have also produced some encouraging results. However, the current experimental evidence suggests that the benefits of cell therapy are modest, the generation of new cardiac tissue is low, and the predominant mechanisms of action of transplanted stem cells involve favourable paracrine effects on injured myocardium. Recent studies show that the adult heart possesses various pools of putative resident stem cells, raising the hope that these cells can be isolated for therapy or manipulated in vivo to improve the healing of cardiac muscle after injury. This article reviews the properties and potential of the various stem cell populations for cardiac repair and regeneration as well as the barriers that might lie ahead.

  9. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology.

    PubMed

    Der Sarkissian, Shant; Lévesque, Thierry; Noiseux, Nicolas

    2017-01-26

    Cell therapy has the potential to improve healing of ischemic heart, repopulate injured myocardium and restore cardiac function. The tremendous hope and potential of stem cell therapy is well understood, yet recent trials involving cell therapy for cardiovascular diseases have yielded mixed results with inconsistent data thereby readdressing controversies and unresolved questions regarding stem cell efficacy for ischemic cardiac disease treatment. These controversies are believed to arise by the lack of uniformity of the clinical trial methodologies, uncertainty regarding the underlying reparative mechanisms of stem cells, questions concerning the most appropriate cell population to use, the proper delivery method and timing in relation to the moment of infarction, as well as the poor stem cell survival and engraftment especially in a diseased microenvironment which is collectively acknowledged as a major hindrance to any form of cell therapy. Indeed, the microenvironment of the failing heart exhibits pathological hypoxic, oxidative and inflammatory stressors impairing the survival of transplanted cells. Therefore, in order to observe any significant therapeutic benefit there is a need to increase resilience of stem cells to death in the transplant microenvironment while preserving or better yet improving their reparative functionality. Although stem cell differentiation into cardiomyocytes has been observed in some instance, the prevailing reparative benefits are afforded through paracrine mechanisms that promote angiogenesis, cell survival, transdifferentiate host cells and modulate immune responses. Therefore, to maximize their reparative functionality, ex vivo manipulation of stem cells through physical, genetic and pharmacological means have shown promise to enable cells to thrive in the post-ischemic transplant microenvironment. In the present work, we will overview the current status of stem cell therapy for ischemic heart disease, discuss the most recurring

  10. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology

    PubMed Central

    Der Sarkissian, Shant; Lévesque, Thierry; Noiseux, Nicolas

    2017-01-01

    Cell therapy has the potential to improve healing of ischemic heart, repopulate injured myocardium and restore cardiac function. The tremendous hope and potential of stem cell therapy is well understood, yet recent trials involving cell therapy for cardiovascular diseases have yielded mixed results with inconsistent data thereby readdressing controversies and unresolved questions regarding stem cell efficacy for ischemic cardiac disease treatment. These controversies are believed to arise by the lack of uniformity of the clinical trial methodologies, uncertainty regarding the underlying reparative mechanisms of stem cells, questions concerning the most appropriate cell population to use, the proper delivery method and timing in relation to the moment of infarction, as well as the poor stem cell survival and engraftment especially in a diseased microenvironment which is collectively acknowledged as a major hindrance to any form of cell therapy. Indeed, the microenvironment of the failing heart exhibits pathological hypoxic, oxidative and inflammatory stressors impairing the survival of transplanted cells. Therefore, in order to observe any significant therapeutic benefit there is a need to increase resilience of stem cells to death in the transplant microenvironment while preserving or better yet improving their reparative functionality. Although stem cell differentiation into cardiomyocytes has been observed in some instance, the prevailing reparative benefits are afforded through paracrine mechanisms that promote angiogenesis, cell survival, transdifferentiate host cells and modulate immune responses. Therefore, to maximize their reparative functionality, ex vivo manipulation of stem cells through physical, genetic and pharmacological means have shown promise to enable cells to thrive in the post-ischemic transplant microenvironment. In the present work, we will overview the current status of stem cell therapy for ischemic heart disease, discuss the most recurring

  11. Spatiotemporal Tracking of Cells in Tissue Engineered Cardiac Organoids

    PubMed Central

    Iyer, Rohin K.; Chui, Jane; Radisic, Milica

    2009-01-01

    Cardiac tissue engineering aims to create myocardial patches for repair of defective or damaged native heart muscle. The inclusion of non-myocytes in engineered cardiac tissues has been shown to improve the properties of cardiac tissue compared to tissues engineered from enriched populations of myocytes alone. While attempts to mix non-myocytes (fibroblasts, endothelial cells) with cardiomyocytes have been made, very little is understood about how the tissue properties are affected by varying the respective ratios of the three cell types and how these cells assemble into functional tissues with time. The goal of this study was to investigate the effects of modulating the ratios of the three cell types as well as to spatially and temporally track cardiac tri-cultures of cells. Primary neonatal cardiac fibroblasts and D4T endothelial cells were incubated in 5µM of CellTracker™ Green dye and CellTracker™ Red dye respectively while neonatal cardiomyocytes were labeled with 20µg/mL of DAPI. The non-myocytes were seeded either sequentially (Pre-culture) or simultaneously (Tri-culture) in Matrigel-coated microchannels and allowed to form organoids, as in our previous studies. We also varied the seeding percentage of cardiomyocytes while keeping the total cell number constant in an attempt to improve the functional properties of the organoids. Organoids were imaged on days 1 and 4. Endothelial cells were seen to aggregate into clusters when Simultaneously Tri-cultured with myocytes and fibroblasts, while Pre-cultures contained elongated cells. Functional properties of organoids were improved by increasing the seeding percentage of enriched cardiomyocytes from 40% to 80%. PMID:19235264

  12. Cardiac tissue engineering and regeneration using cell-based therapy

    PubMed Central

    Alrefai, Mohammad T; Murali, Divya; Paul, Arghya; Ridwan, Khalid M; Connell, John M; Shum-Tim, Dominique

    2015-01-01

    Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. PMID:25999743

  13. Electrically Induced Calcium Handling in Cardiac Progenitor Cells

    PubMed Central

    Wagner, Mary B.

    2016-01-01

    For nearly a century, the heart was viewed as a terminally differentiated organ until the discovery of a resident population of cardiac stem cells known as cardiac progenitor cells (CPCs). It has been shown that the regenerative capacity of CPCs can be enhanced by ex vivo modification. Preconditioning CPCs could provide drastic improvements in cardiac structure and function; however, a systematic approach to determining a mechanistic basis for these modifications founded on the physiology of CPCs is lacking. We have identified a novel property of CPCs to respond to electrical stimulation by initiating intracellular Ca2+ oscillations. We used confocal microscopy and intracellular calcium imaging to determine the spatiotemporal properties of the Ca2+ signal and the key proteins involved in this process using pharmacological inhibition and confocal Ca2+ imaging. Our results provide valuable insights into mechanisms to enhance the therapeutic potential in stem cells and further our understanding of human CPC physiology. PMID:27818693

  14. Hyaluronic Acid-Serum Hydrogels Rapidly Restore Metabolism of Encapsulated Stem Cells and Promote Engraftment

    PubMed Central

    Chan, Angel T.; Karakas, Mehmet F.; Vakrou, Styliani; Afzal, Junaid; Rittenbach, Andrew; Lin, Xiaoping; Wahl, Richard L.; Pomper, Martin G.; Steenbergen, Charles J.; Tsui, Benjamin M.W.; Elisseeff, Jennifer H.; Abraham, M. Roselle

    2015-01-01

    Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of 18FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels +/− CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (~6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels

  15. Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment.

    PubMed

    Chan, Angel T; Karakas, Mehmet F; Vakrou, Styliani; Afzal, Junaid; Rittenbach, Andrew; Lin, Xiaoping; Wahl, Richard L; Pomper, Martin G; Steenbergen, Charles J; Tsui, Benjamin M W; Elisseeff, Jennifer H; Abraham, M Roselle

    2015-12-01

    Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of (18)FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels ± CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (∼6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. HA:Ser hydrogels serve as 'synthetic stem cell niches' that rapidly

  16. Mesenchymal stem cells and the treatment of cardiac disease.

    PubMed

    Minguell, José J; Erices, Alejandro

    2006-01-01

    The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the "repair stem cell(s)," assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow-derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.

  17. Mechanisms of stem cell based cardiac repair-gap junctional signaling promotes the cardiac lineage specification of mesenchymal stem cells.

    PubMed

    Lemcke, Heiko; Gaebel, Ralf; Skorska, Anna; Voronina, Natalia; Lux, Cornelia Aquilina; Petters, Janine; Sasse, Sarah; Zarniko, Nicole; Steinhoff, Gustav; David, Robert

    2017-08-29

    Different subtypes of bone marrow-derived stem cells are characterized by varying functionality and activity after transplantation into the infarcted heart. Improvement of stem cell therapeutics requires deep knowledge about the mechanisms that mediate the benefits of stem cell treatment. Here, we demonstrated that co-transplantation of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) led to enhanced synergistic effects on cardiac remodeling. While HSCs were associated with blood vessel formation, MSCs were found to possess transdifferentiation capacity. This cardiomyogenic plasticity of MSCs was strongly promoted by a gap junction-dependent crosstalk between myocytes and stem cells. The inhibition of cell-cell coupling significantly reduced the expression of the cardiac specific transcription factors NKX2.5 and GATA4. Interestingly, we observed that small non-coding RNAs are exchanged between MSCs and cardiomyocytes in a GJ-dependent manner that might contribute to the transdifferentiation process of MSCs within a cardiac environment. Our results suggest that the predominant mechanism of HSCs contribution to cardiac regeneration is based on their ability to regulate angiogenesis. In contrast, transplanted MSCs have the capability for intercellular communication with surrounding cardiomyocytes, which triggers the intrinsic program of cardiogenic lineage specification of MSCs by providing cardiomyocyte-derived cues.

  18. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors

    PubMed Central

    Nam, Young-Jae; Lubczyk, Christina; Bhakta, Minoti; Zang, Tong; Fernandez-Perez, Antonio; McAnally, John; Bassel-Duby, Rhonda; Olson, Eric N.; Munshi, Nikhil V.

    2014-01-01

    Various combinations of cardiogenic transcription factors, including Gata4 (G), Hand2 (H), Mef2c (M) and Tbx5 (T), can reprogram fibroblasts into induced cardiac-like myocytes (iCLMs) in vitro and in vivo. Given that optimal cardiac function relies on distinct yet functionally interconnected atrial, ventricular and pacemaker (PM) cardiomyocytes (CMs), it remains to be seen which subtypes are generated by direct reprogramming and whether this process can be harnessed to produce a specific CM of interest. Here, we employ a PM-specific Hcn4-GFP reporter mouse and a spectrum of CM subtype-specific markers to investigate the range of cellular phenotypes generated by reprogramming of primary fibroblasts. Unexpectedly, we find that a combination of four transcription factors (4F) optimized for Hcn4-GFP expression does not generate beating PM cells due to inadequate sarcomeric protein expression and organization. However, applying strict single-cell criteria to GHMT-reprogrammed cells, we observe induction of diverse cellular phenotypes, including those resembling immature forms of all three major cardiac subtypes (i.e. atrial, ventricular and pacemaker). In addition, we demonstrate that cells induced by GHMT are directly reprogrammed and do not arise from an Nxk2.5+ progenitor cell intermediate. Taken together, our results suggest a remarkable degree of plasticity inherent to GHMT reprogramming and provide a starting point for optimization of CM subtype-specific reprogramming protocols. PMID:25344074

  19. Electrical and mechanical stimulation of cardiac cells and tissue constructs.

    PubMed

    Stoppel, Whitney L; Kaplan, David L; Black, Lauren D

    2016-01-15

    The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Granule cargo release from bone marrow-derived cells sustains cardiac hypertrophy.

    PubMed

    Yang, Fanmuyi; Dong, Anping; Ahamed, Jasimuddin; Sunkara, Manjula; Smyth, Susan S

    2014-11-15

    Bone marrow-derived inflammatory cells, including platelets, may contribute to the progression of pressure overload-induced left ventricular hypertrophy (LVH). However, the underlying mechanisms for this are still unclear. One potential mechanism is through release of granule cargo. Unc13-d(Jinx) (Jinx) mice, which lack Munc13-4, a limiting factor in vesicular priming and fusion, have granule secretion defects in a variety of hematopoietic cells, including platelets. In the current study, we investigated the role of granule secretion in the development of LVH and cardiac remodeling using chimeric mice specifically lacking Munc13-4 in marrow-derived cells. Pressure overload was elicited by transverse aortic constriction (TAC). Chimeric mice were created by bone marrow transplantation. Echocardiography, histology staining, immunohistochemistry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and mass spectrometry were used to study LVH progression and inflammatory responses. Wild-type (WT) mice that were transplanted with WT bone marrow (WT→WT) and WT mice that received Jinx bone marrow (Jinx→WT) developed LVH and a classic fetal reprogramming response early (7 days) after TAC. However, at late times (5 wk), mice lacking Munc13-4 in bone marrow-derived cells (Jinx→WT) failed to sustain the cardiac hypertrophy observed in WT chimeric mice. No difference in cardiac fibrosis was observed at early or late time points. Reinjection of WT platelets or platelet releasate partially restored cardiac hypertrophy in Jinx chimeric mice. These results suggest that sustained LVH in the setting of pressure overload depends on one or more factors secreted from bone marrow-derived cells, possibly from platelets. Inhibiting granule cargo release may represent a novel target for preventing sustained LVH.

  1. A rare case of primary cardiac B cell lymphoma

    PubMed Central

    2014-01-01

    Primary cardiac lymphomas represent an extremely rare entity of extranodal lymphomas and should be distinguished from secondary cardiac involvement of disseminated lymphomas belonging to the non-Hodgkin’s classification of blood cancers. Only 90 cases have been reported in literature. Presentation of cardiac lymphomas on imaging studies may not be unambiguous since they potentially mimic other cardiac neoplasms including myxomas, angiosarcoma or rhadomyomas and therefore require multimodality cardiac imaging, endomyocardial biopsy, excisional intraoperative biopsy and pericardial fluid cytological evaluation to establish final diagnosis. Herein we report the case of a 70 y/o immunocompetent Caucasian female with a rapidly progressing superior vena cava syndrome secondary to a large primary cardiac diffuse large B cell lymphoma (NHL lymphoma) almost completely obstructing the right atrium, right ventricle and affecting both mitral and tricuspid valve. The patient had no clinical evidence of disseminated disease and was successfully treated with extensive debulking during open-heart surgery on cardiopulmonary bypass and 6 cycles of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone chemotherapy (R-CHOP). PMID:24422789

  2. Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction.

    PubMed

    Tang, Xian-Liang; Rokosh, D Gregg; Guo, Yiru; Bolli, Roberto

    2010-03-01

    Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration.

  3. Dendroaspis natriuretic peptide induces the apoptosis of cardiac muscle cells.

    PubMed

    Ha, Ki-Chan; Chae, Han-Jung; Piao, Cheng-Shi; Kim, Suhn-Hee; Kim, Hyung-Ryong; Chae, Soo-Wan

    2005-01-01

    Early heart failure is characterized by elevated plasma Dendroaspis natriuretic peptide-like immunoreactivity (DNP-LI). However, the direct effects of DNP on heart or the heart-associated cell system are not well known. Therefore, we investigated whether DNP induces the apoptosis of H9c2 cardiac muscle cells. H9c2 cardiac muscle cells and rat neonatal cardiomyocytes were treated with various concentrations of DNP. Cell viability and nuclear morphology change were determined by trypan blue staining and Hoechst 33258 staining, respectively. Caspase-3-like activity was measured using specific fluorogenic substrates. Pro-and antiapoptotic proteins were assayed by Western blotting. DNP induced the apoptosis of H9c2 cardiac muscle cells in a dose-dependent manner. Maximum effects occurred at 100 nM concentration of DNP, with a 7-8-fold increase in apoptotic cells, to reach a maximum apoptotic index of 17%. We also identified that H9c2 cardiac muscle cells expressed Natriuretic peptide reactor -A and -B, which respond to DNP to generate cGMP. The treatment with DNP also markedly reduced levels of Bcl-2, inhibitor of apoptosis protein-1, and inhibitor of apoptosis protein-2 and increased the level of Bax and cytochrome c release into cytoplasm and subsequent caspase-3 activation, which co-occurred with increased apoptosis. DNP-induced apoptosis was mediated by cyclic GMP, and this effect was mimicked by dibutylyl-cGMP (30 microM), a membrane permeable analog of cGMP. Furthermore, DNP-induced apoptosis was observed in rat neonatal cardiomyocytes. These results suggest that DNP induces the apoptosis of H9c2 cardiac muscle cells and of cardiomyocytes via cGMP and demonstrate that the operative mechanism includes the regulation of Bcl-2 family proteins.

  4. Mesenchymal Stem Cells and Inflammatory Cardiomyopathy: Cardiac Homing and Beyond

    PubMed Central

    Van Linthout, S.; Stamm, Ch.; Schultheiss, H.-P.; Tschöpe, C.

    2011-01-01

    Under conventional heart failure therapy, inflammatory cardiomyopathy usually has a progressive course, merging for alternative interventional strategies. There is accumulating support for the application of cellular transplantation as a strategy to improve myocardial function. Mesenchymal stem cells (MSCs) have the advantage over other stem cells that they possess immunomodulatory features, making them attractive candidates for the treatment of inflammatory cardiomyopathy. Studies in experimental models of inflammatory cardiomyopathy have consistently demonstrated the potential of MSCs to reduce cardiac injury and to improve cardiac function. This paper gives an overview about how inflammation triggers the functionality of MSCs and how it induces cardiac homing. Finally, the potential of intravenous application of MSCs by inflammatory cardiomyopathy is discussed. PMID:21403844

  5. Cardiac stem cell research: an elephant in the room?

    PubMed

    Di Felice, Valentina; De Luca, Angela; Colorito, Maria Luisa; Montalbano, Antonella; Ardizzone, Nella Maria; Macaluso, Filippo; Gammazza, Antonella Marino; Cappello, Francesco; Zummo, Giovanni

    2009-03-01

    Heart disease is the leading cause of death in the industrialized world, and stem cell therapy seems to be a promising treatment for injured cardiac tissue. To reach this goal, the scientific community needs to find a good source of stem cells that can be used to obtain new myocardium in a very period range of time. Since there are many ethical and technical problems with using embryonic stem cells as a source of cells with cardiogenic potential, many laboratories have attempted to isolate potential cardiac stem cells from several tissues. The best candidates seem to be cardiac "progenitor" and/or "stem" cells, which can be isolated from subendocardial biopsies from the same patient or from embryonic and/or fetal myocardium. Regardless of the technique used to isolate and characterize these cells, it appears that the different cells isolated from adult myocardium to date are all phenotypic variations of a unique cell type that expresses several markers, such as c-Kit, CD34, MDR-1, Sca-1, CD45, nestin, or Isl-1, in various combinations.

  6. Cardiac stem cell therapy: Have we put too much hype in which cell type to use?

    PubMed

    Ye, Jianqin; Yeghiazarians, Yerem

    2015-09-01

    Injection of various stem cells has been tested with the hopes of improving cardiac function after a myocardial infarction (MI). However, there is continued controversy as to which cell type is best for repair. Due to technical differences in cell isolation, processing, delivery, and cardiac functional assessment by various investigators, it has been difficult to directly compare the results of different cells. Using same techniques to evaluate the efficacy of different cell types, we have separately delivered bone marrow cells (BMCs), cardiospheres (CSs), CS-derived Sca-1(+)/CD45(-) cells, human embryonic stem cell-derived cardiomyocytes, and BMC extract into infarcted murine myocardium and found that all of these treatments reduce infarct size and improve cardiac function post-MI similarly without one regimen being superior to another. The beneficial effects appear to be via paracrine influences. Different progenitors lead to improved cardiac function post-MI, but it is premature to hype any specific cell type at this time.

  7. Pyridostigmine restores cardiac autonomic balance after small myocardial infarction in mice.

    PubMed

    Durand, Marina T; Becari, Christiane; de Oliveira, Mauro; do Carmo, Jussara M; Silva, Carlos Alberto Aguiar; Prado, Cibele M; Fazan, Rubens; Salgado, Helio C

    2014-01-01

    The effect of pyridostigmine (PYR)--an acetylcholinesterase inhibitor--on hemodynamics and cardiac autonomic control, was never studied in conscious myocardial infarcted mice. Telemetry transmitters were implanted into the carotid artery under isoflurane anesthesia. Seven to ten days after recovery from the surgery, basal arterial pressure and heart rate were recorded, while parasympathetic and sympathetic tone (ΔHR) was evaluated by means of methyl atropine and propranolol. After the basal hemodynamic recording the mice were subjected to left coronary artery ligation for producing myocardial infarction (MI), or sham operation, and implantation of minipumps filled with PYR or saline. Separate groups of anesthetized (isoflurane) mice previously (4 weeks) subjected to MI, or sham coronary artery ligation, were submitted to cardiac function examination. The mice exhibited an infarct length of approximately 12%, no change in arterial pressure and increased heart rate only in the 1st week after MI. Vagal tone decreased in the 1st week, while the sympathetic tone was increased in the 1st and 4th week after MI. PYR prevented the increase in heart rate but did not affect the arterial pressure. Moreover, PYR prevented the increase in sympathetic tone throughout the 4 weeks. Concerning the parasympathetic tone, PYR not only impaired its attenuation in the 1st week, but enhanced it in the 4th week. MI decreased ejection fraction and increased diastolic and systolic volume. Therefore, the pharmacological increase of peripheral acetylcholine availability by means of PYR prevented tachycardia, increased parasympathetic and decreased sympathetic tone after MI in mice.

  8. Pyridostigmine Restores Cardiac Autonomic Balance after Small Myocardial Infarction in Mice

    PubMed Central

    Durand, Marina T.; Becari, Christiane; de Oliveira, Mauro; do Carmo, Jussara M.; Aguiar Silva, Carlos Alberto; Prado, Cibele M.; Fazan, Rubens; Salgado, Helio C.

    2014-01-01

    The effect of pyridostigmine (PYR) - an acetylcholinesterase inhibitor - on hemodynamics and cardiac autonomic control, was never studied in conscious myocardial infarcted mice. Telemetry transmitters were implanted into the carotid artery under isoflurane anesthesia. Seven to ten days after recovery from the surgery, basal arterial pressure and heart rate were recorded, while parasympathetic and sympathetic tone (ΔHR) was evaluated by means of methyl atropine and propranolol. After the basal hemodynamic recording the mice were subjected to left coronary artery ligation for producing myocardial infarction (MI), or sham operation, and implantation of minipumps filled with PYR or saline. Separate groups of anesthetized (isoflurane) mice previously (4 weeks) subjected to MI, or sham coronary artery ligation, were submitted to cardiac function examination. The mice exhibited an infarct length of approximately 12%, no change in arterial pressure and increased heart rate only in the 1st week after MI. Vagal tone decreased in the 1st week, while the sympathetic tone was increased in the 1st and 4th week after MI. PYR prevented the increase in heart rate but did not affect the arterial pressure. Moreover, PYR prevented the increase in sympathetic tone throughout the 4 weeks. Concerning the parasympathetic tone, PYR not only impaired its attenuation in the 1st week, but enhanced it in the 4th week. MI decreased ejection fraction and increased diastolic and systolic volume. Therefore, the pharmacological increase of peripheral acetylcholine availability by means of PYR prevented tachycardia, increased parasympathetic and decreased sympathetic tone after MI in mice. PMID:25133392

  9. Moxonidine modulates cytokine signalling and effects on cardiac cell viability.

    PubMed

    Aceros, Henry; Farah, Georges; Noiseux, Nicolas; Mukaddam-Daher, Suhayla

    2014-10-05

    Regression of left ventricular hypertrophy and improved cardiac function in SHR by the centrally acting imidazoline I1-receptor agonist, moxonidine, are associated with differential actions on circulating and cardiac cytokines. Herein, we investigated cell-type specific I1-receptor (also known as nischarin) signalling and the mechanisms through which moxonidine may interfere with cytokines to affect cardiac cell viability. Studies were performed on neonatal rat cardiomyocytes and fibroblasts incubated with interleukin (IL)-1β (5 ng/ml), tumor necrosis factor (TNF)-α (10 ng/ml), and moxonidine (10(-7) and 10(-5) M), separately and in combination, for 15 min, and 24 and 48 h for the measurement of MAPKs (ERK1/2, JNK, and p38) and Akt activation and inducible NOS (iNOS) expression, by Western blotting, and cardiac cell viability/proliferation and apoptosis by flow cytometry, MTT assay, and Live/Dead assay. Participation of imidazoline I1-receptors and the signalling proteins in the detected effects was identified using imidazoline I1-receptor antagonist and signalling protein inhibitors. The results show that IL-1β, and to a lower extent, TNF-α, causes cell death and that moxonidine protects against starvation- as well as IL-1β -induced mortality, mainly by maintaining membrane integrity, and in part, by improving mitochondrial activity. The protection involves activation of Akt, ERK1/2, p38, JNK, and iNOS. In contrast, moxonidine stimulates basal and IL-1β-induced fibroblast mortality by mechanisms that include inhibition of JNK and iNOS. Thus, apart from their actions on the central nervous system, imidazoline I1-receptors are directly involved in cardiac cell growth and death, and may play an important role in cardiovascular diseases associated with inflammation.

  10. iPS cells: a source of cardiac regeneration.

    PubMed

    Yoshida, Yoshinori; Yamanaka, Shinya

    2011-02-01

    For the treatment of heart failure, a new strategy to improve cardiac function and inhibit cardiac remodeling needs to be established. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are pluripotent cells that can differentiate into cell types from all three germ layers both in vitro and in vivo. The therapeutic effect of ES/iPS cell-derived progeny was reported in animal model. Mouse and human somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by the transduction of four transcription factors, Oct 3/4, Sox2, Klf4, and c-Myc. However, the low induction efficiency hinders the clinical application of iPS technology, and efforts have been made to improve the reprogramming efficiency. There are variations in the characteristics in ES/iPS cell lines, and the further understanding is necessary for the applications of ES/iPS cell technology. Some improvements were also made in the methods to induce cardiomyocytes from ES/iPS cells efficiently. This review article is focused on generation of iPS cells, cardiomyocyte differentiation from ES/iPS cells, and transplantation of derived cardiomyocytes.This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  11. Early cardiac development: a view from stem cells to embryos

    PubMed Central

    Van Vliet, Patrick; Wu, Sean M.; Zaffran, Stéphane; Pucéat, Michel

    2012-01-01

    From the 1920s, early cardiac development has been studied in chick and, later, in mouse embryos in order to understand the first cell fate decisions that drive specification and determination of the endocardium, myocardium, and epicardium. More recently, mouse and human embryonic stem cells (ESCs) have demonstrated faithful recapitulation of early cardiogenesis and have contributed significantly to this research over the past few decades. Derived almost 15 years ago, human ESCs have provided a unique developmental model for understanding the genetic and epigenetic regulation of early human cardiogenesis. Here, we review the biological concepts underlying cell fate decisions during early cardiogenesis in model organisms and ESCs. We draw upon both pioneering and recent studies and highlight the continued role for in vitro stem cells in cardiac developmental biology. PMID:22893679

  12. Imaging approaches for the study of cell based cardiac therapies

    PubMed Central

    Lau, Joe F.; Anderson, Stasia A.; Adler, Eric; Frank, Joseph A.

    2009-01-01

    Despite promising preclinical data, the treatment of cardiovascular diseases using embryonic, bone-marrow-derived, and skeletal myoblast stem cells has not yet come to fruition within mainstream clinical practice. Major obstacles in cardiac stem cell investigations include the ability to monitor cell engraftment and survival following implantation within the myocardium. Several cellular imaging modalities, including reporter gene and MRI-based tracking approaches, have emerged that provide the means to identify, localize and monitor stem cells longitudinally in vivo following implantation. This Review will examine the various cardiac cellular tracking modalities, including the combinatorial use of several probes in multimodality imaging, with a focus on data from the last five years. PMID:20027188

  13. Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering.

    PubMed

    Yanamandala, Mounica; Zhu, Wuqiang; Garry, Daniel J; Kamp, Timothy J; Hare, Joshua M; Jun, Ho-Wook; Yoon, Young-Sup; Bursac, Nenad; Prabhu, Sumanth D; Dorn, Gerald W; Bolli, Roberto; Kitsis, Richard N; Zhang, Jianyi

    2017-08-08

    Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury; however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart's contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue.

  15. Nonlinear onset of calcium wave propagation in cardiac cells

    NASA Astrophysics Data System (ADS)

    Shiferaw, Yohannes

    2016-09-01

    Spontaneous calcium (Ca) waves in cardiac myocytes are known to underlie a wide range of cardiac arrhythmias. However, it is not understood which physiological parameters determine the onset of waves. In this study, we explore the relationship between Ca signaling between ion channels and the nucleation of Ca waves. In particular, we apply a master equation approach to analyze the stochastic interaction between neighboring clusters of ryanodine receptor (RyR) channels. Using this analysis, we show that signaling between clusters can be described as a barrier hopping process with exponential sensitivity to system parameters. A consequence of this feature is that the probability that Ca release at a cluster induces release at a neighboring cluster exhibits a sigmoid dependence on the Ca content in the cell. This nonlinearity originates from the regulation of RyR opening due to more than one Ca ion binding site, in conjunction with Ca mediated cooperativity between RyR channels in clusters. We apply a spatially distributed stochastic model of Ca cycling to analyze the physiological consequences of this nonlinearity, and show that it explains the sharp onset of Ca wave nucleation in cardiac cells. Furthermore, we show that this sharp onset can serve as a mechanism for Ca alternans under physiologically relevant conditions. Thus our findings identify the nonlinear features of Ca signaling which potentially underlie the onset of Ca waves and Ca alternans in cardiac cells.

  16. Diacylglycerol kinase zeta inhibits myocardial atrophy and restores cardiac dysfunction in streptozotocin-induced diabetes mellitus.

    PubMed

    Bilim, Olga; Takeishi, Yasuchika; Kitahara, Tatsuro; Arimoto, Takanori; Niizeki, Takeshi; Sasaki, Toshiki; Goto, Kaoru; Kubota, Isao

    2008-02-04

    Activation of the diacylglycerol (DAG)-protein kinase C (PKC) pathway has been implicated in the pathogenesis of a number of diabetic complications. Diacylglycerol kinase (DGK) converts DAG to phosphatidic acid and acts as an endogenous regulator of PKC activity. Akt/PKB is associated with a downstream insulin signaling, and PKCbeta attenuates insulin-stimulated Akt phosphorylation. We examined transgenic mice with cardiac-specific overexpression of DGKzeta (DGKzeta-TG) compared to wild type (WT) mice in streptozotocin-induced (STZ, 150 mg/kg) diabetic and nondiabetic conditions. After 8 weeks, decreases in heart weight and heart weight/body weight ratio in diabetic WT mice were inhibited in DGKzeta-TG mice. Echocardiography at 8 weeks after STZ-injection demonstrated that decreases in left ventricular end-diastolic diameter and fractional shortening observed in WT mice were attenuated in DGKzeta-TG mice. Thinning of the interventricular septum and the posterior wall in diabetic WT hearts were blocked in DGKzeta-TG mice. Reduction of transverse diameter of cardiomyocytes isolated from the left ventricle in diabetic WT mice was attenuated in DGKzeta-TG mice. Cardiac fibrosis was much less in diabetic DGKzeta-TG than in diabetic WT mice. Western blots showed translocation of PKCbeta and delta isoforms to membrane fraction and decreased Akt/PKB phosphorylation in diabetic WT mouse hearts. However in diabetic DGKzeta-TG mice, neither translocation of PKC nor changes Akt/PKB phosphorylation was observed. DGKzeta modulates intracellular signaling and improves the course of diabetic cardiomyopathy. These data may suggest that DGKzeta is a new therapeutic target to prevent or reverse diabetic cardiomyopathy.

  17. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces.

    PubMed

    Harris, Brett S; Zhang, Yuhua; Card, Lauren; Rivera, Lee B; Brekken, Rolf A; Bradshaw, Amy D

    2011-09-01

    Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production.

  18. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function

    PubMed Central

    Linke, Axel; Müller, Patrick; Nurzynska, Daria; Casarsa, Claudia; Torella, Daniele; Nascimbene, Angelo; Castaldo, Clotilde; Cascapera, Stefano; Böhm, Michael; Quaini, Federico; Urbanek, Konrad; Leri, Annarosa; Hintze, Thomas H.; Kajstura, Jan; Anversa, Piero

    2005-01-01

    The purpose of this study was to determine whether the heart in large mammals contains cardiac progenitor cells that regulate organ homeostasis and regenerate dead myocardium after infarction. We report that the dog heart possesses a cardiac stem cell pool characterized by undifferentiated cells that are self-renewing, clonogenic, and multipotent. These clonogenic cells and early committed progeny possess a hepatocyte growth factor (HGF)–c-Met and an insulin-like growth factor 1 (IGF-1)-IGF-1 receptor system that can be activated to induce their migration, proliferation, and survival. Therefore, myocardial infarction was induced in chronically instrumented dogs implanted with sonomicrometric crystals in the region of the left ventricular wall supplied by the occluded left anterior descending coronary artery. After infarction, HGF and IGF-1 were injected intramyocardially to stimulate resident cardiac progenitor cells. This intervention led to the formation of myocytes and coronary vessels within the infarct. Newly generated myocytes expressed nuclear and cytoplasmic proteins specific of cardiomyocytes: MEF2C was detected in the nucleus, whereas α-sarcomeric actin, cardiac myosin heavy chain, troponin I, and α-actinin were identified in the cytoplasm. Connexin 43 and N-cadherin were also present. Myocardial reconstitution resulted in a marked recovery of contractile performance of the infarcted heart. In conclusion, the activation of resident primitive cells in the damaged dog heart can promote a significant restoration of dead tissue, which is paralleled by a progressive improvement in cardiac function. These results suggest that strategies capable of activating the growth reserve of the myocardium may be important in cardiac repair after ischemic injury. PMID:15951423

  19. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    PubMed Central

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  20. Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues

    PubMed Central

    Herron, Todd J.; Lee, Peter; Jalife, José

    2012-01-01

    Cardiac optical mapping has proven to be a powerful technology for studying cardiovascular function and disease. The development and scientific impact of this methodology are well documented. Because of its relevance in cardiac research, this imaging technology advances at a rapid pace. Here we review technological and scientific developments during the past several years and look also towards the future. First we explore key components of a modern optical mapping setup, focusing on 1) new camera technologies, 2) powerful light-emitting-diodes (from ultraviolet to red) for illumination, 3) improved optical filter technology, 4) new synthetic and optogenetic fluorescent probes, 5) optical mapping with motion and contraction, 6) new multi-parametric optical mapping techniques and 7) photon scattering effects in thick tissue preparations. We then look at recent optical mapping studies in single cells, cardiomyocyte monolayers, atria and whole hearts. Finally, we briefly look into the possible future roles of optical mapping in the development of regenerative cardiac research, cardiac cell therapies, and molecular genetic advances. PMID:22343556

  1. Concise Review: Skeletal Muscle Stem Cells and Cardiac Lineage: Potential for Heart Repair

    PubMed Central

    Hassan, Narmeen; Tchao, Jason

    2014-01-01

    Valuable and ample resources have been spent over the last two decades in pursuit of interventional strategies to treat the unmet demand of heart failure patients to restore myocardial structure and function. At present, it is clear that full restoration of myocardial structure and function is outside our reach from both clinical and basic research studies, but it may be achievable with a combination of ongoing research, creativity, and perseverance. Since the 1990s, skeletal myoblasts have been extensively investigated for cardiac cell therapy of congestive heart failure. Whereas the Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial revealed that transplanted skeletal myoblasts did not integrate into the host myocardium and also did not transdifferentiate into cardiomyocytes despite some beneficial effects on recipient myocardial function, recent studies suggest that skeletal muscle-derived stem cells have the ability to adopt a cardiomyocyte phenotype in vitro and in vivo. This brief review endeavors to summarize the importance of skeletal muscle stem cells and how they can play a key role to surpass current results in the future and enhance the efficacious implementation of regenerative cell therapy for heart failure. PMID:24371329

  2. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  3. Stem cells for cardiac regeneration by cell therapy and myocardial tissue engineering.

    PubMed

    Wu, Jun; Zeng, Faquan; Weisel, Richard D; Li, Ren-Ke

    2009-01-01

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  4. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  5. Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery.

    PubMed

    Ellison-Hughes, Georgina M; Madeddu, Paolo

    2017-03-01

    Ischaemic diseases remain a major cause of morbidity and mortality despite continuous advancements in medical and interventional treatments. Moreover, available drugs reduce symptoms associated with tissue ischaemia, without providing a definitive repair. Cardiovascular regenerative medicine is an expanding field of research that aims to improve the treatment of ischaemic disorders through restorative methods, such as gene therapy, stem cell therapy, and tissue engineering. Stem cell transplantation has salutary effects through direct and indirect actions, the latter being attributable to growth factors and cytokines released by stem cells and influencing the endogenous mechanisms of repair. Autologous stem cell therapies offer less scope for intellectual property coverage and have limited scalability. On the other hand, off-the-shelf cell products and derivatives from the stem cell secretome have a greater potential for large-scale distribution, thus enticing commercial investors and reciprocally producing more significant medical and social benefits. This review focuses on the paracrine properties of cardiac stem cells and pericytes, two stem cell populations that are increasingly attracting the attention of regenerative medicine operators. It is likely that new cardiovascular drugs are introduced in the next future by applying different approaches based on the refinement of the stem cell secretome. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. More than Tiny Sacks: Stem Cell Exosomes as Cell-free Modality for Cardiac Repair

    PubMed Central

    Kishore, Raj; Khan, Mohsin

    2015-01-01

    Stem cell therapy provides immense hope for regenerating the pathological heart yet has been marred by issues surrounding the effectiveness, unclear mechanisms and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been employed with varied success. Cell free components such as exosomes enriched in proteins, mRNAs and miRs characteristic of parental stem cells represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively employed to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes including their potential benefits and limitations in order to develop a potentially viable therapy for cardiovascular problems. PMID:26838317

  7. Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease.

    PubMed

    Khanabdali, Ramin; Rosdah, Ayeshah A; Dusting, Gregory J; Lim, Shiang Y

    2016-08-01

    Adult stem cells continue to promise opportunities to repair damaged cardiac tissue. However, precisely how adult stem cells accomplish cardiac repair, especially after ischemic damage, remains controversial. It has been postulated that the clinical benefit of adult stem cells for cardiovascular disease results from the release of cytokines and growth factors by the transplanted cells. Studies in animal models of myocardial infarction have reported that such paracrine factors released from transplanted adult stem cells contribute to improved cardiac function by several processes. These include promoting neovascularization of damaged tissue, reducing inflammation, reducing fibrosis and scar formation, as well as protecting cardiomyocytes from apoptosis. In addition, these factors might also stimulate endogenous repair by activating cardiac stem cells. Interestingly, stem cells discovered to be resident in the heart appear to be functionally superior to extra-cardiac adult stem cells when transplanted for cardiac repair and regeneration. In this review, we discuss the therapeutic potential of cardiac stem cells and how the proteins secreted from these cells might be harnessed to promote repair and regeneration of damaged cardiac tissue. We also highlight how recent controversies about the efficacy of adult stem cells in clinical trials of ischemic heart disease have not dampened enthusiasm for the application of cardiac stem cells and their paracrine factors for cardiac repair: the latter have proved superior to the mesenchymal stem cells used in most clinical trials in the past, some of which appear to have been conducted with sub-optimal rigor.

  8. [Preoperative and follow-up cardiac magnetic resonance imaging of candidates for surgical ventricular restoration].

    PubMed

    Rodríguez Masi, M; Martín Lores, I; Bustos García de Castro, A; Cabeza Martínez, B; Maroto Castellanos, L; Gómez de Diego, J; Ferreirós Domínguez, J

    2016-01-01

    To assess pre and post-operative cardiac MRI (CMR) findings in patients with left endoventriculoplasty repair for ventricular aneurysm due to ischemic heart disease. Data were retrospectively gathered on 21 patients with diagnosis of ventricular aneurysm secondary to ischemic heart disease undergoing left endoventriculoplasty repair between January 2007 and March 2013. Pre and post-operative CMR was performed in 12 patients. The following data were evaluated in pre-operative and post-operative CMR studies: quantitative analysis of left ventricular ejection fraction (LVEF), left ventricular end-diastolic (LVEDV) and end-systolic (LVESV) volume index, presence of valvular disease and intracardiac thrombi. The time between surgery and post-operative CRM studies was 3-24 months. Significant differences were found in the pre and post-operative LVEF, LVEDV and LVESV data. EF showed a median increase of 10% (IQR 2-15) (p=0.003). The LVEDV showed a median decrease of 38 ml/m(2) (IQR 18-52) (p=0.006) and the LVESV showed a median decrease of 45 ml/m(2) (IQR:12-60) (p=0.008). Post-operative ventricular volume reduction was significantly higher in those patients with preoperative LVESV >110 ml/m(2) (59 ml/m(2) and 12 ml/m(2), p=0.006). In patients with ischemic heart disease that are candidates for left endoventriculoplasty, CMR is a reliable non-invasive and reproducible technique for the evaluation of the scar before the surgery and the ventricular volumes and its evolution after endoventricular surgical repair. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  9. [Embryonic stem cells in the treatment of severe cardiac insufficiency].

    PubMed

    Menasché, Philippe

    2012-01-01

    The experience accumulated in cardiac cell therapy suggests that regeneration of extensively necrotic myocardial areas is unlikely to be achieved by the sole paracrine effects of the grafted cells but rather requires the conversion of these cells into cardiomyocytes featuring the capacity to substitute for those which have been irreversibly lost. In this setting, the use of human pluripotent embryonic stem cells has a strong rationale. The experimental results obtained in animal models of myocardial infarction are encouraging. However, the switch to clinical applications still requires to address some critical issues, among which optimizing cardiac specification of the embryonic stem cells, purifying the resulting progenitor cells so as to graft a purified population devoid from any contamination by residual pluripotent cells which carry the risk of tumorigenesis and controlling the expected allogeneic rejection by clinically acceptable methods. If the solution to these problems is a pre-requisite, the therapeutic success of this approach will also depend on the capacity to efficiently transfer the cells to the target tissue, to keep them alive once engrafted and to allow them to spatially organize in such a way that they can contribute to the contractile function of the heart.

  10. Quality Metrics for Stem Cell-Derived Cardiac Myocytes

    PubMed Central

    Sheehy, Sean P.; Pasqualini, Francesco; Grosberg, Anna; Park, Sung Jin; Aratyn-Schaus, Yvonne; Parker, Kevin Kit

    2014-01-01

    Summary Advances in stem cell manufacturing methods have made it possible to produce stem cell-derived cardiac myocytes at industrial scales for in vitro muscle physiology research purposes. Although FDA-mandated quality assurance metrics address safety issues in the manufacture of stem cell-based products, no standardized guidelines currently exist for the evaluation of stem cell-derived myocyte functionality. As a result, it is unclear whether the various stem cell-derived myocyte cell lines on the market perform similarly, or whether any of them accurately recapitulate the characteristics of native cardiac myocytes. We propose a multiparametric quality assessment rubric in which genetic, structural, electrophysiological, and contractile measurements are coupled with comparison against values for these measurements that are representative of the ventricular myocyte phenotype. We demonstrated this procedure using commercially available, mass-produced murine embryonic stem cell- and induced pluripotent stem cell-derived myocytes compared with a neonatal mouse ventricular myocyte target phenotype in coupled in vitro assays. PMID:24672752

  11. SUCCESSFUL FERTILITY RESTORATION AFTER ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION

    PubMed Central

    Gharwan, Helen; Neary, Nicola M.; Link, Mary; Hsieh, Matthew M.; Fitzhugh, Courtney D.; Sherins, Richard J.; Tisdale, John F.

    2015-01-01

    Objective Myeloablative conditioning regimens given prior to hematopoietic stem cell transplantation (HSCT) frequently cause permanent sterility in men. In patients with sickle cell disease (SCD) we use a nonmyeloablative regimen with sirolimus, alemtuzumab, and low-dose total-body irradiation (300 centigrays) with gonadal shielding preceding allogeneic HSCT. We report here the restoration of azoospermia in a patient with SCD after allogeneic HSCT. We discuss the impact of our patient’s underlying chronic medical conditions and the therapies he had received (frequent blood transfusions, iron chelating drugs, ribavirin, hydroxyurea, opioids), as well as the impact of the nonmyeloablative conditioning regimen on male gonadal function, and we review the literature on this topic. Methods We determined the patient’s reproductive hormonal values and his semen parameters before, during, and after HSCT and infertility treatment. In addition, we routinely measured his serum laboratory parameters pertinent to SCD and infertility, such as iron and ferritin levels. A karyotype analysis was performed to assess the potential presence of Klinefelter syndrome. Finally, imaging studies of the patient’s brain and testes were done to rule out further underlying pathology. Results A 42-year-old man with SCD, transfusional iron overload, and hepatitis C underwent a nonmyeloablative allogeneic HSCT. One year later he desired to father a child but was found to be azoospermic in the context of hypogonadotropic hypogonadism. Restoration of fertility was attempted with human chorionic gonadotropin (2,000 IU) plus human menopausal gonadotropin (75 IU follicle-stimulating hormone) injected subcutaneously 3 times weekly. Within 6 months of treatment, the patient’s serum calculated free testosterone value normalized, and his sperm count and sperm motility improved. After 10 months, he successfully initiated a pregnancy through intercourse. The pregnancy was uncomplicated, and a healthy

  12. Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells

    NASA Astrophysics Data System (ADS)

    Grigoriev, M.; Babich, L.

    2016-06-01

    This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.

  13. Pim1 Kinase Overexpression Enhances ckit(+) Cardiac Stem Cell Cardiac Repair Following Myocardial Infarction in Swine.

    PubMed

    Kulandavelu, Shathiyah; Karantalis, Vasileios; Fritsch, Julia; Hatzistergos, Konstantinos E; Loescher, Viky Y; McCall, Frederic; Wang, Bo; Bagno, Luiza; Golpanian, Samuel; Wolf, Ariel; Grenet, Justin; Williams, Adam; Kupin, Aaron; Rosenfeld, Aaron; Mohsin, Sadia; Sussman, Mark A; Morales, Azorides; Balkan, Wayne; Hare, Joshua M

    2016-12-06

    Pim1 kinase plays an important role in cell division, survival, and commitment of precursor cells towards a myocardial lineage, and overexpression of Pim1 in ckit(+) cardiac stem cells (CSCs) enhances their cardioreparative properties. The authors sought to validate the effect of Pim1-modified CSCs in a translationally relevant large animal preclinical model of myocardial infarction (MI). Human cardiac stem cells (hCSCs, n = 10), hckit(+) CSCs overexpressing Pim1 (Pim1(+); n = 9), or placebo (n = 10) were delivered by intramyocardial injection to immunosuppressed Yorkshire swine (n = 29) 2 weeks after MI. Cardiac magnetic resonance and pressure volume loops were obtained before and after cell administration. Whereas both hCSCs reduced MI size compared to placebo, Pim1(+) cells produced a ∼3-fold greater decrease in scar mass at 8 weeks post-injection compared to hCSCs (-29.2 ± 2.7% vs. -8.4 ± 0.7%; p < 0.003). Pim1(+) hCSCs also produced a 2-fold increase of viable mass compared to hCSCs at 8 weeks (113.7 ± 7.2% vs. 65.6 ± 6.8%; p <0.003), and a greater increase in regional contractility in both infarct and border zones (both p < 0.05). Both CSC types significantly increased ejection fraction at 4 weeks but this was only sustained in the Pim1(+) group at 8 weeks compared to placebo. Both hCSC and Pim1(+) hCSC treatment reduced afterload (p = 0.02 and p = 0.004, respectively). Mechanoenergetic recoupling was significantly greater in the Pim1(+) hCSC group (p = 0.005). Pim1 overexpression enhanced the effect of intramyocardial delivery of CSCs to infarcted porcine hearts. These findings provide a rationale for genetic modification of stem cells and consequent translation to clinical trials. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance

    PubMed Central

    Mackern-Oberti, Juan P.; Vega, Fabián; Llanos, Carolina; Bueno, Susan M.; Kalergis, Alexis M.

    2014-01-01

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders. PMID:25229821

  15. Cardiac Repair and Regeneration: The Value of Cell Therapies.

    PubMed

    Lerman, Daniel Alejandro; Alotti, Nasri; Ume, Kiddy Levente; Péault, Bruno

    2016-01-01

    Ischaemic heart disease is the predominant contributor to cardiovascular morbidity and mortality; one million myocardial Infarctions occur per year in the USA, while more than five million patients suffer from chronic heart failure. Recently, heart failure has been singled out as an epidemic and is a staggering clinical and public health problem associated with significant mortality, morbidity and healthcare expenditures, particularly among those aged ≥65 years. Death rates have improved dramatically over the last four decades, but new approaches are nevertheless urgently needed for those patients who go on to develop ventricular dysfunction and chronic heart failure. Over the past decade, stem cell transplantation has emerged as a promising therapeutic strategy for acute or chronic ischaemic cardiomyopathy. Multiple candidate cell types have been used in preclinical animal models and in humans to repair or regenerate the injured heart, either directly or indirectly (through paracrine effects), including: embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), neonatal cardiomyocytes, skeletal myoblasts (SKMs), endothelial progenitor cells, bone marrow mononuclear cells (BMMNCs), mesenchymal stem cells (MSCs) and, most recently, cardiac stem cells (CSCs). Although no consensus has emerged yet, the ideal cell type for the treatment of heart disease should: (a) improve heart function; (b) create healthy and functional cardiac muscle and vasculature, integrated into the host tissue; (c) be amenable to delivery by minimally invasive clinical methods; (d) be available 'off the shelf' as a standardised reagent; (e) be tolerated by the immune system; (f) be safe oncologically, i.e. not create tumours; and (g) circumvent societal ethical concerns. At present, it is not clear whether such a 'perfect' stem cell exists; what is apparent, however, is that some cell types are more promising than others. In this brief review, we provide ongoing data on agreement

  16. Small Molecule Cardiogenol C Upregulates Cardiac Markers and Induces Cardiac Functional Properties in Lineage-Committed Progenitor Cells

    PubMed Central

    Mike, Agnes K.; Koenig, Xaver; Koley, Moumita; Heher, Philipp; Wahl, Gerald; Rubi, Lena; Schnürch, Michael; Mihovilovic, Marko D.; Weitzer, Georg; Hilber, Karlheinz

    2015-01-01

    Background/Aims Cell transplantation into the heart is a new therapy after myocardial infarction. Its success, however, is impeded by poor donor cell survival and by limited trans-differentiation of the transplanted cells into functional cardiomyocytes. A promising strategy to overcome these problems is the induction of cardiomyogenic properties in donor cells by small molecules. Methods Here we studied cardiomyogenic effects of the small molecule compound cardiogenol C (CgC), and structural derivatives thereof, on lineage-committed progenitor cells by various molecular biological, biochemical, and functional assays. Results Treatment with CgC up-regulated cardiac marker expression in skeletal myoblasts. Importantly, the compound also induced cardiac functional properties: first, cardiac-like sodium currents in skeletal myoblasts, and secondly, spontaneous contractions in cardiovascular progenitor cell-derived cardiac bodies. Conclusion CgC induces cardiomyogenic function in lineage-committed progenitor cells, and can thus be considered a promising tool to improve cardiac repair by cell therapy. PMID:24481283

  17. Calcium Imaging in Pluripotent Stem Cell-Derived Cardiac Myocytes.

    PubMed

    Walter, Anna; Šarić, Tomo; Hescheler, Jürgen; Papadopoulos, Symeon

    2016-01-01

    The possibility to generate cardiomyocytes (CMs) from disease-specific induced pluripotent stem cells (iPSCs) is a powerful tool for the investigation of various cardiac diseases in vitro. The pathological course of various cardiac conditions, causatively heterogeneous, often converges into disturbed cellular Ca(2+) cycling. The gigantic Ca(2+) channel of the intracellular Ca(2+) store of CMs, the ryanodine receptor type 2 (RyR2), controls Ca(2+) release and therefore plays a crucial role in Ca(2+) cycling of CMs. In the present protocol we describe ways to measure and analyze global as well as local cellular Ca(2+) release events in CMs derived from a patient carrying a CPVT-causing RyR2 mutation.

  18. The developing role of Neuregulin1 in cardiac regenerative stem cell therapy.

    PubMed

    P Blomberg, Christopher; Lee, Juyong; P Morgan, James

    2014-01-01

    Myocardial infarction, heart failure, and chronic ischemic heart disease account for the majority of the cardiovascular burden. The current treatment strategies focus on limiting the progression of disease and preserving cardiac myocardium. The goal of stem cell therapy, on the other hand, is to reverse or replace damaged cardiac tissue. Over the past two decades many studies have been conducted to understand stem cell performance, survival, and the potential for cardiac repair. Neuregulin1, an epidermal growth factor family member, promotes embryonic stem cell differentiation into the cardiac lineage and improves survival in bone marrow-derived mesenchymal stem cell and embryonic endothelial progenitor cells. Current clinical trials are actively pursuing Neuregulin1's therapeutic potential in the areas of heart failure and cardiac ischemia. It is the intent of this paper to review the current knowledge of Neuregulin1 in stem cell biology and discuss the potential of using Neuregulin1 to improve stem cell therapy for cardiac repair.

  19. Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis.

    PubMed

    Lyon, Alexander R; Harding, Sian E; Peters, Nicholas S

    2008-09-01

    Cardiac cell therapy is an expanding scientific field which is yielding new insights into the pathogenesis of cardiac disease and offers new therapeutic strategies. Inherent to both these areas of research are the electrical properties of individual cells, the electrical interplay between cardiomyocytes, and their roles in arrhythmogenesis. This review discusses the potential mechanisms by which various candidate cells for cardiac therapy may modulate the ventricular arrhythmic substrate and highlights the data and lessons learnt from the clinical cardiac cell therapy trials published to date. Pro- and antiarrhythmic mechanistic factors are discussed, and the importance of their consideration in the design of any future clinical cell therapy trials.

  20. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells

    PubMed Central

    Zanella, Fabian; Sheikh, Farah

    2017-01-01

    The generation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes has been of utmost interest for the study of cardiac development, cardiac disease modeling, and evaluation of cardiotoxic effects of novel candidate drugs. Several protocols have been developed to guide human stem cells toward the cardiogenic path. Pioneering work used serum to promote cardiogenesis; however, low cardiogenic throughputs, lack of chemical definition, and batch-to-batch variability of serum lots constituted a considerable impediment to the implementation of those protocols to large-scale cell biology. Further work focused on the manipulation of pathways that mouse genetics indicated to be fundamental in cardiac development to promote cardiac differentiation in stem cells. Although extremely elegant, those serum-free protocols involved the use of human recombinant cytokines that tend to be quite costly and which can also be variable between lots. The latest generation of cardiogenic protocols aimed for a more cost-effective and reproducible definition of the conditions driving cardiac differentiation, using small molecules to manipulate cardiogenic pathways overriding the need for cytokines. This chapter details methods based on currently available cardiac differentiation protocols for the generation and characterization of robust numbers of hiPSC-derived cardiomyocytes under chemically defined conditions. PMID:25520292

  1. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells.

    PubMed

    Zanella, Fabian; Sheikh, Farah

    2016-01-01

    The generation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes has been of utmost interest for the study of cardiac development, cardiac disease modeling, and evaluation of cardiotoxic effects of novel candidate drugs. Several protocols have been developed to guide human stem cells toward the cardiogenic path. Pioneering work used serum to promote cardiogenesis; however, low cardiogenic throughputs, lack of chemical definition, and batch-to-batch variability of serum lots constituted a considerable impediment to the implementation of those protocols to large-scale cell biology. Further work focused on the manipulation of pathways that mouse genetics indicated to be fundamental in cardiac development to promote cardiac differentiation in stem cells. Although extremely elegant, those serum-free protocols involved the use of human recombinant cytokines that tend to be quite costly and which can also be variable between lots. The latest generation of cardiogenic protocols aimed for a more cost-effective and reproducible definition of the conditions driving cardiac differentiation, using small molecules to manipulate cardiogenic pathways overriding the need for cytokines. This chapter details methods based on currently available cardiac differentiation protocols for the generation and characterization of robust numbers of hiPSC-derived cardiomyocytes under chemically defined conditions.

  2. Uniform sarcomere shortening behavior in isolated cardiac muscle cells

    PubMed Central

    1980-01-01

    We have observed the dynamics of sarcomere shortening and the diffracting action of single, functionally intact, unattached cardiac muscle cells enzymatically isolated from the ventricular tissue of adult rats. Sarcomere length was measured either (a) continuously by a light diffraction method or (b) by direct inspection of the cell's striated image as recorded on videotape or by cinemicroscopy (120--400 frames/s). At physiological levels of added CaCl2 (0.5--2.0 mM), many cells were quiescent (i.e., they did not beat spontaneously) and contracted in response to electrical stimulation (less than or equal to 1.0-ms pulse width). Sarcomere length in the quiescent, unstimulated cells (1.93 +/- 0.10 [SD] micrometers), at peak shortening (1.57 +/- 0.13 micrometers, n = 49), and the maximum velocity of sarcomere shortening and relengthening were comparable to previous observations in intact heart muscle preparations. The dispersion of light diffracted by the cell remained narrow, and individual striations remained distinct and laterally well registered throughout the shortening- relengthening cycle. In contrast, appreciable nonuniformity and internal buckling were seen at sarcomere lengths < 1.8 micrometers when the resting cell, embedded in gelatin, was longitudinally compressed These results indicate (a) that shortening and relengthening is characterized by uniform activation between myofibrils within the cardiac cell and (b) that physiologically significant relengthening forces in living heart muscle originate at the level of the cell rather than in extracellular connections. First-order diffracted light intensity, extremely variable during sarcomere shortening, was always greatest during midrelaxation preceding the onset of a very slow and uniform phase of sarcomere relengthening. PMID:7441197

  3. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    PubMed

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  4. Cell-cell junction remodeling in the heart: possible role in cardiac conduction system function and arrhythmias?

    PubMed

    Mezzano, Valeria; Sheikh, Farah

    2012-02-27

    Anchoring cell-cell junctions (desmosomes, fascia adherens) play crucial roles in maintaining mechanical integrity of cardiac muscle cells and tissue. Genetic mutations and/or loss of critical components in these macromolecular structures are increasingly being associated with arrhythmogenic cardiomyopathies; however, their specific roles have been primarily attributed to effects within the working (ventricular) cardiac muscle. Growing evidence also points to a key role for anchoring cell-cell junction components in cardiac muscle cells of the cardiac conduction system. This is not only evidenced by the molecular and ultra-structural presence of anchoring cell junctions in specific compartments/structures of the cardiac conduction system (sinoatrial node, atrioventricular node, His-Purkinje system), but also because conduction system-related arrhythmias can be found in humans and mouse models of cardiomyopathies harboring defects and/or mutations in key anchoring cell-cell junction proteins. These studies emphasize the clinical need to understand the molecular and cellular role(s) for anchoring cell-cell junctions in cardiac conduction system function and arrhythmias. This review will focus on (i) experimental findings that underline an important role for anchoring cell-cell junctions in the cardiac conduction system, (ii) insights regarding involvement of these structures in age-related cardiac remodeling of the conduction system, (iii) summarizing available genetic mouse models that can target cardiac conduction system structures and (iv) implications of these findings on future therapies for arrhythmogenic heart diseases.

  5. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes.

    PubMed

    Takahashi, Tomosaburo; Lord, Bernadette; Schulze, P Christian; Fryer, Ryan M; Sarang, Satinder S; Gullans, Steven R; Lee, Richard T

    2003-04-15

    Embryonic stem (ES) cells are capable of self-renewal and differentiation into cellular derivatives of all 3 germ layers. In appropriate culture conditions, ES cells can differentiate into specialized cells, including cardiac myocytes, but the efficiency is typically low and the process is incompletely understood. We evaluated a chemical library for its potential to induce cardiac differentiation of ES cells in the absence of embryoid body formation. Using ES cells stably transfected with cardiac-specific alpha-cardiac myosin heavy chain (MHC) promoter-driven enhanced green fluorescent protein (EGFP), 880 compounds approved for human use were screened for their ability to induce cardiac differentiation. Treatment with ascorbic acid, also known as vitamin C, markedly increased the number of EGFP-positive cells, which displayed spontaneous and rhythmic contractile activity and stained positively for sarcomeric myosin and alpha-actinin. Furthermore, ascorbic acid induced the expression of cardiac genes, including GATA4, alpha-MHC, and beta-MHC in untransfected ES cells in a developmentally controlled manner. This effect of ascorbic acid on cardiac differentiation was not mimicked by the other antioxidants such as N-acetylcysteine, Tiron, or vitamin E. Ascorbic acid induces cardiac differentiation in ES cells. This study demonstrates the potential for chemically modifying the cardiac differentiation program of ES cells.

  6. The Role of MicroRNAs in Cardiac Stem Cells

    PubMed Central

    Purvis, Nima; Bahn, Andrew; Katare, Rajesh

    2015-01-01

    Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases. PMID:25802528

  7. Human C-kit+CD45- cardiac stem cells are heterogeneous and display both cardiac and endothelial commitment by single-cell qPCR analysis.

    PubMed

    Sandstedt, Joakim; Jonsson, Marianne; Dellgren, Göran; Lindahl, Anders; Jeppsson, Anders; Asp, Julia

    2014-01-03

    C-kit expressing cardiac stem cells have been described as multipotent. We have previously identified human cardiac C-kit+CD45- cells, but only found evidence of endothelial commitment. A small cardiac committed subpopulation within the C-kit+CD45- population might however be present. To investigate this at single-cell level, right and left atrial biopsies were dissociated and analyzed by FACS. Only right atrial biopsies contained a clearly distinguishable C-kit+CD45- population, which was single-cell sorted for qPCR. A minor portion of the sorted cells (1.1%) expressed early cardiac gene NKX2.5 while most of the cells (81%) expressed late endothelial gene VWF. VWF- cells were analyzed for a wider panel of genes. One group of these cells expressed endothelial genes (FLK-1, CD31) while another group expressed late cardiac genes (TNNT2, ACTC1). In conclusion, human C-kit+CD45- cells were predominantly localized to the right atrium. While most of these cells expressed endothelial genes, a minor portion expressed cardiac genes.

  8. Stem cell therapy for cardiac regeneration: hits and misses.

    PubMed

    Padda, Jagjit; Sequiera, Glen Lester; Sareen, Niketa; Dhingra, Sanjiv

    2015-10-01

    Cardiac injury and loss of cardiomyocytes is a causative as well as a resultant condition of cardiovascular disorders, which are the leading cause of death throughout the world. This loss of cardiomyocytes cannot be completely addressed through the currently available drugs being administered, which mainly function only in relieving the symptoms. There is a huge potential being investigated for regenerative and cell replacement therapies through recruiting stem cells of various origins namely embryonic, reprogramming/induction, and adult tissue. These sources are being actively studied for translation to clinical scenarios. In this review, we attempt to discuss some of these promising scenarios, including the clinical trials and the obstacles that need to be overcome, and hope to address the direction in which stem cell therapy is heading.

  9. Imaging: Guiding the Clinical Translation of Cardiac Stem Cell Therapy

    PubMed Central

    Nguyen, Patricia K.; Lan, Feng; Wang, Yongming; Wu, Joseph C.

    2011-01-01

    Stem cells have been touted as the holy grail of medical therapy with promises to regenerate cardiac tissue, but it appears the jury is still out on this novel therapy. Using advanced imaging technology, scientists have discovered that these cells do not survive nor engraft long-term. In addition, only marginal benefit has been observed in large animal studies and human trials. However, all is not lost. Further application of advanced imaging technology will help scientists unravel the mysteries of stem cell therapy and address the clinical hurdles facing its routine implementation. In this review, we will discuss how advanced imaging technology will help investigators better define the optimal delivery method, improve survival and engraftment, and evaluate efficacy and safety. Insights gained from this review may direct the development of future preclinical investigations and clinical trials. PMID:21960727

  10. Epac-Rap1-activated mesenchymal stem cells improve cardiac function in rat model of myocardial infarction.

    PubMed

    Khan, Irfan; Ali, Anwar; Akhter, Muhammad Aleem; Naeem, Nadia; Chotani, Maqsood Ahmed; Iqbal, Hana'a; Kabir, Nurul; Atiq, Mehnaz; Salim, Asmat

    2017-04-01

    Rap1, a member of Ras superfamily of small GTP-binding proteins, is involved in cardiovascular biology in numerous ways. It is an evolutionary conserved regulator of adhesion, polarity, differentiation and growth. Our aim was to analyze Rap1-activated rat bone marrow mesenchymal stem cells (MSCs) for their potential role in adhesion and cardiac differentiation. Myocardial infarction (MI) was produced in Sprague Dawley (SD) rats through occlusion of the left anterior descending coronary artery. MSCs were treated with 8-pCPT-2'-O-Me-cAMP (CPT) to activate Rap1. Normal (untreated) and CPT-treated MSCs were transplanted through intramyocardial injection in respective groups. Cardiac function was assessed by echocardiography at 2 and 4 weeks after cell transplantation. Histological analysis was performed to observe changes at tissue level. Homing of CPT-treated MSCs was significantly (***P<.001) higher as compared to normal MSCs in the infarcted hearts. This may be due to increase in the gene expression of some of the cell adhesion molecules as evident by qRT-PCR analysis. Significant (***P<.001) improvement in the restoration of heart function in terms of left ventricular diastolic and systolic internal diameters (LVIDd, LVIDs), % ejection fraction, % fraction shortening and end-systolic and end-diastolic volumes were observed in CPT-treated MSCs as compared to the MI model. Histological analyses showed significant (***P<.001) reduction in scar formation in the CPT-treated group. Differentiation of treated MSCs into functional cardiomyocytes was evident through immunohistochemical staining. LV wall thickness was also preserved significantly (***P<.001). Blood vessel formation was more pronounced in CPT-treated group although both cell therapy groups showed significant increase as compared to MI model. Our findings showed that pharmacological activation of Epac-Rap1 improves cardiac function through better survival, adhesion and differentiation of transplanted cells

  11. Stem cells for cardiac repair: problems and possibilities.

    PubMed

    Henning, Robert J

    2013-11-01

    Ischemic heart disease is a major cause of death throughout the world. In order to limit myocardial damage and possibly generate new myocardium, stem cells are currently being injected into patients with ischemic heart disease. Three major patient investigations, The LateTIME, the TIME and the Swiss Myocardial Infarction trials, have recently addressed the questions of whether progenitor cells from unfractionated bone marrow mononuclear cells limit myocardial damage and what the optimal time to inject these cells after acute myocardial infarctions (AMIs) is. In each of these trials, there were no significant differences between treated and control patients when bone marrow cells were administered 5-7 days or 2-3 weeks after AMIs. Nevertheless, these investigations provide important information regarding clinical trial designs. Patients with AMIs in these trials were treated with percutaneous coronary intervention within a median of 4-5 h after the onset of chest pain. Thereafter, all patients received guideline-guided optimal medical therapy. Consequently, the sizes of AMIs were significantly limited. In patients with small AMIs and near-normal left ventricular ejection fractions, progenitor cells are least effective. However, these trials do question whether autologous bone marrow mononuclear cells are the optimal cells for myocardial repair owing to low numbers of progenitor cells in bone marrow aspirates and the significant variability in potency and efficacy of these cells in patients with chronic multisystem diseases. In contrast, the SCIPIO and the CAUDUCEUS trials examined cardiac progenitor cells in patients with ischemic cardiomyopathies. These trials reported over 1-2 years that cardiac progenitor cells produced significant improvements in left ventricular contractility due to 12-24 g decreases in myocardial scars and 18-23 g increases in viable myocardial muscle. However, caution must be exercised in the interpretation of these studies due to the small

  12. Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy.

    PubMed

    Shen, Han; Wang, Ying; Zhang, Zhiwei; Yang, Junjie; Hu, Shijun; Shen, Zhenya

    2015-01-01

    With the high mortality rate, coronary heart disease (CHD) has currently become a major life-threatening disease. The main pathological change of myocardial infarction (MI) is the induction of myocardial necrosis in infarction area which finally causes heart failure. Conventional treatments cannot regenerate the functional cell efficiently. Recent researches suggest that mesenchymal stem cells (MSCs) are able to differentiate into multiple lineages, including cardiomyocyte-like cells in vitro and in vivo, and they have been used for the treatment of MI to repair the injured myocardium and improve cardiac function. In this review, we will focus on the recent progress on MSCs derived cardiomyocytes for cardiac regeneration after MI.

  13. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    PubMed

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  14. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells.

    PubMed

    Oh, Hidemasa; Chi, Xuan; Bradfute, Steven B; Mishina, Yuji; Pocius, Jennifer; Michael, Lloyd H; Behringer, Richard R; Schwartz, Robert J; Entman, Mark L; Schneider, Michael D

    2004-05-01

    The evidence of cardiomyocyte proliferation in damaged heart implied cardiac regeneration might occur by resident or extra cardiac stem cells. However, the specification and origin of these cells remain unknown. Here, we report using fluorescence-activated cell sorting that cardiac progenitor cells resided in adult heart and colocalized with small capillary vessels, within the stem cell antigen (Sca-1) population expressing high telomerase activity. Notably, hematopoietic stem cells capable of efflux Hoechst 33342, termed side population cells, also were identified within the heart-derived cells. The cardiac progenitor cells (CD45(-)/CD34(-)) express neither cardiac muscle nor endothelial cell markers at an undifferentiated stage. The exposure of 5-azacytidine induced cardiac differentiation, which depends, in part, on Bmpr1a, a type IA receptor for bone morphogenetic protein (BMP). The capability of adult Sca1(+) cells to adopt a cardiac muscle in embryogenesis was substantiated by blastocyst injection, using progenitors from the adult hearts of transgenic mice that harbor a bacterial artificial chromosome expressing GFP via the Nkx-2.5 locus. Intravenously injected progenitors, shortly after ischemic/reperfusion, homed and functionally differentiated 3.5% of total left ventricle in the host myocardium. Differentiation included both fusion-independent and fusion-associated components, proved by the Cre/loxP donor/recipient system. Our studies suggest that endogenous cardiac progenitors reside in the adult heart, regenerate cardiomyocytes functionally, and integrate into the existing heart circuitry.

  15. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  16. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    PubMed Central

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf , Muhammad N.

    2016-01-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity. PMID:28008983

  17. Mouse embryonic stem cell-derived cardiac myocytes in a cell culture dish.

    PubMed

    Glass, Carley; Singla, Reetu; Arora, Anshu; Singla, Dinender K

    2015-01-01

    Embryonic stem (ES) cells are pluripotent stem cells capable of self-renewal and have broad differentiation potential yielding cell types from all three germ layers. In the absence of differentiation inhibitory factors, when cultured in suspension, ES cells spontaneously differentiate and form three-dimensional cell aggregates termed embryoid bodies (EBs). Although various methods exist for the generation of EBs, the hanging drop method offers reproducibility and homogeneity from a predetermined number of ES cells. Herein, we describe the in vitro differentiation of mouse embryonic stem cells into cardiac myocytes using the hanging drop method and immunocytochemistry to identify cardiomyogenic differentiation. In brief, ES cells, placed in droplets on the lid of culture dishes following a 2-day incubation, yield embryoid bodies, which are resuspended and plated. 1-2 weeks following plating of the EBs, spontaneous beating areas can be observed and staining for specific cardiac markers can be achieved.

  18. Tissue-Specific Cell Cycle Indicator Reveals Unexpected Findings for Cardiac Myocyte Proliferation

    PubMed Central

    Hirai, Maretoshi; Chen, Ju; Evans, Sylvia M.

    2017-01-01

    Rationale Discerning cardiac myocyte cell cycle behavior is challenging owing to commingled cell types with higher proliferative activity. Objective To investigate cardiac myocyte cell cycle activity in development and the early postnatal period. Methods and Results To facilitate studies of cell type–specific proliferation, we have generated tissue-specific cell cycle indicator BAC transgenic mouse lines. Experiments using embryonic fibroblasts from CyclinA2-LacZ-floxed-EGFP, or CyclinA2-EGFP mice, demonstrated that CyclinA2-βgal and CyclinA2-EGFP were expressed from mid-G1 to mid-M phase. Using Troponin T-Cre;CyclinA2-LacZ-EGFP mice, we examined cardiac myocyte cell cycle activity during embryogenesis and in the early postnatal period. Our data demonstrated that right ventricular cardiac myocytes exhibited reduced cell cycle activity relative to left ventricular cardiac myocytes in the immediate perinatal period. Additionally, in contrast to a recent report, we could find no evidence to support a burst of cardiac myocyte cell cycle activity at postnatal day 15. Conclusions Our data highlight advantages of a cardiac myocyte–specific cell cycle reporter for studies of cardiac myocyte cell cycle regulation. PMID:26472817

  19. Slit and Robo control cardiac cell polarity and morphogenesis.

    PubMed

    Qian, Li; Liu, Jiandong; Bodmer, Rolf

    2005-12-20

    Basic aspects of heart morphogenesis involving migration, cell polarization, tissue alignment, and lumen formation may be conserved between Drosophila and humans, but little is known about the mechanisms that orchestrate the assembly of the heart tube in either organism. The extracellular-matrix molecule Slit and its Robo-family receptors are conserved regulators of axonal guidance. Here, we report a novel role of the Drosophila slit, robo, and robo2 genes in heart morphogenesis. Slit and Robo proteins specifically accumulate at the dorsal midline between the bilateral myocardial progenitors forming a linear tube. Manipulation of Slit localization or its overexpression causes disruption in heart tube alignment and assembly, and slit-deficient hearts show disruptions in cell-polarity marker localization within the myocardium. Similar phenotypes are observed when Robo and Robo2 are manipulated. Rescue experiments suggest that Slit is secreted from the myocardial progenitors and that Robo and Robo2 act in myocardial and pericardial cells, respectively. Genetic interactions suggest a cardiac morphogenesis network involving Slit/Robo, cell-polarity proteins, and other membrane-associated proteins. We conclude that Slit and Robo proteins contribute significantly to Drosophila heart morphogenesis by guiding heart cell alignment and adhesion and/or by inhibiting cell mixing between the bilateral compartments of heart cell progenitors and ensuring proper polarity of the myocardial epithelium.

  20. Single-cell transcriptome and epigenomic reprogramming of cardiomyocyte-derived cardiac progenitor cells

    PubMed Central

    Chen, Xin; Chakravarty, Tushar; Zhang, Yiqiang; Li, Xiaojin; Zhong, Jiang F.; Wang, Charles

    2016-01-01

    The molecular basis underlying the dedifferentiation of mammalian adult cardiomyocytes (ACMs) into myocyte-derived cardiac progenitor cells (mCPCs) during cardiac tissue regeneration is poorly understood. We present data integrating single-cell transcriptome and whole-genome DNA methylome analyses of mouse mCPCs to understand the epigenomic reprogramming governing their intrinsic cellular plasticity. Compared to parental cardiomyocytes, mCPCs display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlating well with the methylome, our single-cell transcriptomic data show that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implanting mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. This dataset suggests that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. Understanding cardiomyocyte epigenomic reprogramming may enable the design of future clinical therapies that induce cardiac regeneration, and prevent heart failure. PMID:27622691

  1. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells

    PubMed Central

    Vajravelu, Bathri N.; Moktar, Afsoon; Cao, Pengxiao; Moore, Joseph B.; Bolli, Roberto

    2017-01-01

    Although transplantation of c-kit+ cardiac progenitor cells (CPCs) significantly alleviates post-myocardial infarction left ventricular dysfunction, generation of cardiomyocytes by exogenous CPCs in the recipient heart has often been limited. Inducing robust differentiation would be necessary for improving the efficacy of the regenerative cardiac cell therapy. We assessed the hypothesis that differentiation of human c-kit+ CPCs can be enhanced by priming them with cardiac transcription factors (TFs). We introduced five different TFs (Gata4, MEF2C, NKX2.5, TBX5, and BAF60C) into CPCs, either alone or in combination, and then examined the expression of marker genes associated with the major cardiac cell types using quantitative RT-PCR. When introduced individually, Gata4 and TBX5 induced a subset of myocyte markers. Moreover, Gata4 alone significantly induced smooth muscle cell and fibroblast markers. Interestingly, these gene expression changes brought by Gata4 were also accompanied by morphological changes. In contrast, MEF2C and NKX2.5 were largely ineffective in initiating cardiac gene expression in CPCs. Surprisingly, introduction of multiple TFs in different combinations mostly failed to act synergistically. Likewise, addition of BAF60C to Gata4 and/or TBX5 did not further potentiate their effects on cardiac gene expression. Based on our results, it appears that GATA4 is able to potentiate gene expression programs associated with multiple cardiovascular lineages in CPCs, suggesting that GATA4 may be effective in priming CPCs for enhanced differentiation in the setting of stem cell therapy. PMID:28355297

  2. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells.

    PubMed

    Al-Maqtari, Tareq; Hong, Kyung U; Vajravelu, Bathri N; Moktar, Afsoon; Cao, Pengxiao; Moore, Joseph B; Bolli, Roberto

    2017-01-01

    Although transplantation of c-kit+ cardiac progenitor cells (CPCs) significantly alleviates post-myocardial infarction left ventricular dysfunction, generation of cardiomyocytes by exogenous CPCs in the recipient heart has often been limited. Inducing robust differentiation would be necessary for improving the efficacy of the regenerative cardiac cell therapy. We assessed the hypothesis that differentiation of human c-kit+ CPCs can be enhanced by priming them with cardiac transcription factors (TFs). We introduced five different TFs (Gata4, MEF2C, NKX2.5, TBX5, and BAF60C) into CPCs, either alone or in combination, and then examined the expression of marker genes associated with the major cardiac cell types using quantitative RT-PCR. When introduced individually, Gata4 and TBX5 induced a subset of myocyte markers. Moreover, Gata4 alone significantly induced smooth muscle cell and fibroblast markers. Interestingly, these gene expression changes brought by Gata4 were also accompanied by morphological changes. In contrast, MEF2C and NKX2.5 were largely ineffective in initiating cardiac gene expression in CPCs. Surprisingly, introduction of multiple TFs in different combinations mostly failed to act synergistically. Likewise, addition of BAF60C to Gata4 and/or TBX5 did not further potentiate their effects on cardiac gene expression. Based on our results, it appears that GATA4 is able to potentiate gene expression programs associated with multiple cardiovascular lineages in CPCs, suggesting that GATA4 may be effective in priming CPCs for enhanced differentiation in the setting of stem cell therapy.

  3. Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.

    PubMed

    Di Felice, Valentina; Serradifalco, Claudia; Rizzuto, Luigi; De Luca, Angela; Rappa, Francesca; Barone, Rosario; Di Marco, Patrizia; Cassata, Giovanni; Puleio, Roberto; Verin, Lucia; Motta, Antonella; Migliaresi, Claudio; Guercio, Annalisa; Zummo, Giovanni

    2015-11-01

    The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient's life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric nets were used. Cardiac progenitor cells isolated from adult rats were seeded by capillarity in the 3D structures and cultured inside inserts for 21 days. Under this condition, the cells expressed a high level of sarcomeric and cardiac proteins and synthesized a great quantity of ECM. In particular, partially orientated scaffolds induced the synthesis of titin, which is a fundamental protein in sarcomere assembly.

  4. Electrophysiological effects of risperidone in mammalian cardiac cells.

    PubMed

    Magyar, János; Bányász, Tamás; Bagi, Zsolt; Pacher, Pál; Szentandrássy, Norbert; Fülöp, László; Kecskeméti, Valéria; Nánási, Péter P

    2002-10-01

    In this study, the effects of risperidone, the widely used antipsychotic drug, on isolated canine ventricular myocytes and guinea-pig papillary muscles were analyzed using conventional microelectrode and whole cell voltage-clamp techniques. Risperidone concentration-dependently lengthened action potential duration in guinea-pig papillary muscles (EC(50)=0.29+/-0.02 micro M) and single canine ventricular myocytes (EC(50)=0.48+/-0.14 micro M). This effect was reversible, showed reverse rate dependence, and it was most prominent on the terminal portion of repolarization. No significant effect of risperidone on the resting membrane potential, action potential amplitude or maximum rate of depolarization was observed. In voltage-clamped canine ventricular myocytes risperidone caused concentration-dependent block of the rapid component of the delayed rectifier K(+) current ( I(Kr)), measured as outward current tails at -40 mV, with an IC(50) of 0.92+/-0.26 micro M. Suppression of I(Kr) was not associated with changes in activation or deactivation kinetics. High concentration of risperidone (10 micro M) suppressed also the slow component of the delayed rectifier K(+) current ( I(Ks)) by 9.6+/-1.5% at +50 mV. These effects of risperidone developed rapidly and were readily reversible. Risperidone had no significant effect on the amplitude of other K(+) currents ( I(K1) and I(to)). The inhibition of cardiac I(Kr) current by risperidone may explain the cardiac side-effects observed occasionally with the drug. Our results suggest that risperidone displays class III antiarrhythmic properties, and as such, may produce QTc prolongation, especially in patients with long QT syndrome. Therefore, in psychotic patients having also cardiac disorders, ECG control may be suggested during risperidone therapy.

  5. Spatiotemporal control of cell fate and cardiac differentiation.

    PubMed

    Davis, Michael E

    2011-01-01

    Congestive heart failure is a leading cause of morbidity and mortality in the United States and worldwide [1]. Although not the only cause of congestive heart failure, loss of myocardium due to obstructive coronary artery disease is a major contributor to this condition [2,3]. The loss of myocardium is mainly regional and, therefore, localized therapy holds the most promise. In recent years, many clinical studies have been initiated to deliver localized therapy in the form of various cell types for reconstitution of the myocardium [4-6]. However, there is much debate on the optimal cell type, whether or not stem cells can differentiate into functional myocardium and the long-term effects of these non-myocytes. In addition to exogenous cell delivery, paracrine effects arising from delivery of angiogenic factors and other biochemical agents suggest that the myocardium retains the ability to remodel and heal [7,8]. Understandably, there has been tremendous focus on both growth factor- and gene therapy-based therapeutics. While a source of great promise, direct growth factor delivery to the myocardium will most likely be inefficient as several studies have noted that many of these small proteins are carried away in the highly vascularized cardiac tissue [9,10]. Gene therapy, while providing an excellent analytical tool, has not met with enthusiasm clinically, mostly due to the inability to quantify delivery and nonspecific targeting in vivo. This body of work supports two crucial conclusions: (1) appropriate biological cues that act locally on the myocardium can improve functional outcomes, and (2) spatiotemporal control over the delivery and presentation of these cues remains challenging and inefficient. The current body of work on cardiac drug delivery and stem cell therapy support two crucial conclusions: (1) appropriate biological cues that act locally on the myocardium can improve functional outcomes, and (2) spatiotemporal control over the delivery and

  6. Restoration of WNT4 inhibits cell growth in leukemia-derived cell lines

    PubMed Central

    2013-01-01

    Background WNT signaling pathways are significantly altered during cancer development. Vertebrates possess two classes of WNT signaling pathways: the “canonical” WNT/β-catenin signaling pathway, and the “non-canonical” pathways including WNT/Ca2+ and WNT/Planar cell polarity [PCP] signaling. WNT4 influences hematopoietic progenitor cell expansion and survival; however, WNT4 function in cancer development and the resulting implications for oncogenesis are poorly understood. The aim of this study was twofold: first, to determine the expression of WNT4 in mature peripheral blood cells and diverse leukemia-derived cells including cell lines from hematopoietic neoplasms and cells from patients with leukemia; second, to identify the effect of this ligand on the proliferation and apoptosis of the blast-derived cell lines BJAB, Jurkat, CEM, K562, and HL60. Methods We determined WNT4 expression by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) and T- and B-lymphocytes from healthy individuals, as well as from five leukemia-derived cell lines and blasts derived from patients with leukemia. To analyze the effect of WNT4 on cell proliferation, PBMCs and cell lines were exposed to a commercially available WNT4 recombinant human protein. Furthermore, WNT4 expression was restored in BJAB cells using an inducible lentiviral expression system. Cell viability and proliferation were measured by the addition of WST-1 to cell cultures and counting cells; in addition, the progression of the cell cycle and the amount of apoptosis were analyzed in the absence or presence of WNT4. Finally, the expression of WNT-pathway target genes was measured by qRT-PCR. Results WNT4 expression was severely reduced in leukemia-derived cell lines and blasts derived from patients with leukemia. The exposure of cell lines to WNT4 recombinant protein significantly inhibited cell proliferation; inducing WNT4 expression in BJAB

  7. CALCIUM-DRIVEN TRANSCRIPTION OF CARDIAC SPECIFYING GENE PROGRAM IN LIVER STEM CELLS

    EPA Science Inventory

    We have previously shown that a cloned liver stem cell line (WB F344) acquires a cardiac phenotype when seeded in a cardiac microenvironment in vivo and ex vivo. Here we investigated the mechanisms of this transdifferentiation in early (<72 hr) WB F344 cell, rat neonatal ventricu...

  8. CALCIUM-DRIVEN TRANSCRIPTION OF CARDIAC SPECIFYING GENE PROGRAM IN LIVER STEM CELLS

    EPA Science Inventory

    We have previously shown that a cloned liver stem cell line (WB F344) acquires a cardiac phenotype when seeded in a cardiac microenvironment in vivo and ex vivo. Here we investigated the mechanisms of this transdifferentiation in early (<72 hr) WB F344 cell, rat neonatal ventricu...

  9. Fibronectin biosynthesis and cell-surface expression by cardiac and non-cardiac endothelial cells.

    PubMed Central

    Johnson, C. M.; Helgeson, S. C.

    1993-01-01

    We examined the biosynthesis and surface expression of fibronectin, an adhesive glycoprotein, in several types of cultured porcine endothelial cells: pulmonary artery, thoracic aorta, coronary artery, aortic valve, and mitral valve. We used immunocytochemical staining to compare the levels of fibronectin present in these same tissues in vivo. Using endogenous radiolabeling, we found that all cell types except aortic valve endothelial cells synthesized and released into the culture media substantial quantities of fibronectin. Using radioiodination of intact cells, we found that, whereas both thoracic aorta and pulmonary artery cells had measurable fibronectin on the surface, aortic valve, mitral valve, and coronary artery cells had little cell-surface fibronectin present. Immunocytochemical staining showed that all endothelial regions except aortic valve had substantial quantities of immunoreactive fibronectin in vivo. These data suggest that the aortic valve endothelium may be distinct from other endothelia. Such differences could be important for the pathogenesis of valvular disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8494044

  10. Cellular cardiac electrophysiology modeling with Chaste and CellML

    PubMed Central

    Cooper, Jonathan; Spiteri, Raymond J.; Mirams, Gary R.

    2014-01-01

    Chaste is an open-source C++ library for computational biology that has well-developed cardiac electrophysiology tissue simulation support. In this paper, we introduce the features available for performing cardiac electrophysiology action potential simulations using a wide range of models from the Physiome repository. The mathematics of the models are described in CellML, with units for all quantities. The primary idea is that the model is defined in one place (the CellML file), and all model code is auto-generated at compile or run time; it never has to be manually edited. We use ontological annotation to identify model variables describing certain biological quantities (membrane voltage, capacitance, etc.) to allow us to import any relevant CellML models into the Chaste framework in consistent units and to interact with them via consistent interfaces. This approach provides a great deal of flexibility for analysing different models of the same system. Chaste provides a wide choice of numerical methods for solving the ordinary differential equations that describe the models. Fixed-timestep explicit and implicit solvers are provided, as discussed in previous work. Here we introduce the Rush–Larsen and Generalized Rush–Larsen integration techniques, made available via symbolic manipulation of the model equations, which are automatically rearranged into the forms required by these approaches. We have also integrated the CVODE solvers, a ‘gold standard’ for stiff systems, and we have developed support for symbolic computation of the Jacobian matrix, yielding further increases in the performance and accuracy of CVODE. We discuss some of the technical details of this work and compare the performance of the available numerical methods. Finally, we discuss how this is generalized in our functional curation framework, which uses a domain-specific language for defining complex experiments as a basis for comparison of model behavior. PMID:25610400

  11. Cellular cardiac electrophysiology modeling with Chaste and CellML.

    PubMed

    Cooper, Jonathan; Spiteri, Raymond J; Mirams, Gary R

    2014-01-01

    Chaste is an open-source C++ library for computational biology that has well-developed cardiac electrophysiology tissue simulation support. In this paper, we introduce the features available for performing cardiac electrophysiology action potential simulations using a wide range of models from the Physiome repository. The mathematics of the models are described in CellML, with units for all quantities. The primary idea is that the model is defined in one place (the CellML file), and all model code is auto-generated at compile or run time; it never has to be manually edited. We use ontological annotation to identify model variables describing certain biological quantities (membrane voltage, capacitance, etc.) to allow us to import any relevant CellML models into the Chaste framework in consistent units and to interact with them via consistent interfaces. This approach provides a great deal of flexibility for analysing different models of the same system. Chaste provides a wide choice of numerical methods for solving the ordinary differential equations that describe the models. Fixed-timestep explicit and implicit solvers are provided, as discussed in previous work. Here we introduce the Rush-Larsen and Generalized Rush-Larsen integration techniques, made available via symbolic manipulation of the model equations, which are automatically rearranged into the forms required by these approaches. We have also integrated the CVODE solvers, a 'gold standard' for stiff systems, and we have developed support for symbolic computation of the Jacobian matrix, yielding further increases in the performance and accuracy of CVODE. We discuss some of the technical details of this work and compare the performance of the available numerical methods. Finally, we discuss how this is generalized in our functional curation framework, which uses a domain-specific language for defining complex experiments as a basis for comparison of model behavior.

  12. Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease

    PubMed Central

    Karantalis, Vasileios; Hare, Joshua M.

    2015-01-01

    Despite substantial clinical advances over the past 65 years, cardiovascular disease remains the leading cause of death in America. The past 15 years has witnessed major basic and translational interest in the use of stem and/or precursor cells as a therapeutic agent for chronically injured organs. Among the cell types under investigation, adult mesenchymal stem cells (MSCs) are widely studied and in early stage clinical studies show promise for repair and regeneration of cardiac tissues. The ability of MSCs to differentiate into mesoderm and non-mesoderm derived tissues, their immunomodulatory effects, their availability and their key role in maintaining and replenishing endogenous stem cell niches have rendered them one of the most heavily investigated and clinically tested type of stem cell. Accumulating data from preclinical and early phase clinical trials document their safety when delivered as either autologous or allogeneic forms in a range of cardiovascular diseases, but also importantly define parameters of clinical efficacy that justify further investigation in larger clinical trials. Here, we review the biology of MSCs, their interaction with endogenous molecular and cellular pathways, and their modulation of immune responses. Additionally, we discuss factors that enhance their proliferative and regenerative ability and factors that may hinder their effectiveness in the clinical setting. PMID:25858066

  13. Induced pluripotent stem cell intervention rescues ventricular wall motion disparity, achieving biological cardiac resynchronization post-infarction

    PubMed Central

    Yamada, Satsuki; Nelson, Timothy J; Kane, Garvan C; Martinez-Fernandez, Almudena; Crespo-Diaz, Ruben J; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre

    2013-01-01

    Dyssynchronous myocardial motion aggravates cardiac pump function. Cardiac resynchronization using pacing devices is a standard-of-care in the management of heart failure. Post-infarction, however, scar tissue formation impedes the efficacy of device-based therapy. The present study tests a regenerative approach aimed at targeting the origin of abnormal motion to prevent dyssynchronous organ failure. Induced pluripotent stem (iPS) cells harbour a reparative potential, and were here bioengineered from somatic fibroblasts reprogrammed with the stemness factors OCT3/4, SOX2, KLF4, and c-MYC. In a murine infarction model, within 30 min of coronary ligation, iPS cells were delivered to mapped infarcted areas. Focal deformation and dysfunction underlying progressive heart failure was resolved prospectively using speckle-tracking imaging. Tracked at high temporal and spatial resolution, regional iPS cell transplantation restored, within 10 days post-infarction, the contractility of targeted infarcted foci and nullified conduction delay in adjacent non-infarcted regions. Local iPS cell therapy, but not delivery of parental fibroblasts or vehicle, prevented or normalized abnormal strain patterns correcting the decrease in peak strain, disparity of time-to-peak strain, and pathological systolic stretch. Focal benefit of iPS cell intervention translated into improved left ventricular conduction and contractility, reduced scar, and reversal of structural remodelling, protecting from organ decompensation. Thus, in ischaemic cardiomyopathy, targeted iPS cell transplantation synchronized failing ventricles, offering a regenerative strategy to achieve biological resynchronization. PMID:23568891

  14. Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts

    PubMed Central

    Song, Heesang; Hwang, Hye Jin; Chang, Woochul; Song, Byeong-Wook; Cha, Min-Ji; Lim, Soyeon; Choi, Eun Ju; Ham, Onju; Lee, Chang Youn; Park, Jun-Hee; Lee, Se-Yeon; Choi, Eunmi; Lee, Chungkeun; Lee, Myoungho; Lee, Moon-Hyoung; Kim, Sung-Hou; Jang, Yangsoo; Hwang, Ki-Chul

    2011-01-01

    Despite the safety and feasibility of mesenchymal stem cell (MSC) therapy, an optimal cell type has not yet emerged in terms of electromechanical integration in infarcted myocardium. We found that poor to moderate survival benefits of MSC-implanted rats were caused by incomplete electromechanical integration induced by tissue heterogeneity between myocytes and engrafted MSCs in the infarcted myocardium. Here, we report the development of cardiogenic cells from rat MSCs activated by phorbol myristate acetate, a PKC activator, that exhibited high expressions of cardiac-specific markers and Ca2+ homeostasis-related proteins and showed adrenergic receptor signaling by norepinephrine. Histological analysis showed high connexin 43 coupling, few inflammatory cells, and low fibrotic markers in myocardium implanted with these phorbol myristate acetate-activated MSCs. Infarct hearts implanted with these cells exhibited restoration of conduction velocity through decreased tissue heterogeneity and improved myocardial contractility. These findings have major implications for the development of better cell types for electromechanical integration of cell-based treatment for infarcted myocardium. PMID:21173226

  15. Ramipril restores PPARβ/δ and PPARγ expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat.

    PubMed

    Cernecka, Hana; Doka, Gabriel; Srankova, Jasna; Pivackova, Lenka; Malikova, Eva; Galkova, Kristina; Kyselovic, Jan; Krenek, Peter; Klimas, Jan

    2016-11-15

    We hypothesized that peroxisome proliferator-activated receptors (PPARs) might be involved in a complex protective action of ACE inhibitors (ACEi) in anthracyclines-induced cardiomyopathy. For purpose of study, we compared effects of ramipril on cardiac dysfunction, cardiac failure markers and PPAR isoforms in moderate and severe chronic daunorubicin-induced cardiomyopathy. Male Wistar rats were administered with a single intravenous injection of daunorubicin: 5mg/kg (moderate cardiomyopathy), or 15mg/kg (severe cardiomyopathy) or co-administered with daunorubicin and ramipril (1mg/kg/d, orally) or vehicle for 8 weeks. Left ventricular function was measured invasively under anesthesia. Cardiac mRNA levels of heart failure markers (ANP, Myh6, Myh7, Myh7b) and PPARs (alpha, beta/delta and gama) were measured by qRT-PCR. Protein expression of NADPH subunit (gp91phox) was measured by Western blot. Moderate cardiomyopathy exhibited only minor cardiac dysfunction what was corrected by ramipril. In severe cardiomyopathy, hemodynamic dysfunction remained unaltered upon ramipril although it decreased the significantly up-regulated cardiac ANP mRNA expression. Simultaneously, while high-dose daunorubicin significantly decreased PPARbeta/delta and PPARgama mRNA, ramipril normalized these abnormalities. Similarly, ramipril reduced altered levels of oxidative stress-related gp91phox. On the other hand, ramipril was unable to correct both the significantly decreased relative abundance of Myh6 and increased Myh7 mRNA levels, respectively. In conclusion, ramipril had a protective effect on cardiac function exclusively in moderate chronic daunorubicin-induced cardiomyopathy. Although it normalized abnormal PPARs expression and exerted also additional protective effects also in severe cardiomyopathy, it was insufficient to influence impaired cardiac function probably because of a shift in myosin heavy chain isoform content. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Force generation of different human cardiac valve interstitial cells: relevance to individual valve function and tissue engineering.

    PubMed

    Smith, Sally; Taylor, Patricia M; Chester, Adrian H; Allen, Sean P; Dreger, Sally A; Eastwood, Mark; Yacoub, Magdi H

    2007-07-01

    Cardiac valves perform highly sophisticated functions that depend upon the specific characteristics of the component interstitial cells (ICs). The ability of valve ICs to contribute to these functions may be related to the generation of different types of tension within the valve structure. The study aim was to characterize cellular morphology and the forces generated by valve ICs and to compare this with morphology and forces generated by other cell types. Cultured human valve ICs, pericardial fibroblasts and vascular smooth muscle cells were seeded in 3-D collagen gels and placed in a device that accurately measures the forces generated. Cell morphology was determined in seeded gels fixed in glutaraldehyde, stained with toluidine blue and visualized using a high-definition stereo light microscope. Valve ICs generated an average peak force of 30.9 +/- 10.4 dynes over a 24-h period which, unlike other cell types tested, increased as cell density decreased (R = 0.67, p <0.0001). The temporal pattern of force generation in mitral valve cells was significantly faster than in aortic or tricuspid cells (p <0.05). Microscopic examination revealed the formation of cellular processes establishing a cell/cell and cell/matrix network. When externally induced changes in matrix tension occurred, the valve ICs unlike the other cell types - did not respond to restore the previous level of tension. Human cardiac valve ICs produce a specific pattern of force generation that may be related to the individual function of each heart valve. The specialized function of these cells may serve as a guide for the choice of candidate cells for tissue engineering heart valves.

  17. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair.

    PubMed

    Kishore, Raj; Khan, Mohsin

    2016-01-22

    Stem cell therapy provides immense hope for regenerating the pathological heart, yet has been marred by issues surrounding the effectiveness, unclear mechanisms, and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been used with varied success. Cell-free components, such as exosomes enriched in proteins, messenger RNAs, and miRs characteristic of parental stem cells, represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively used to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes, including their potential benefits and limitations to develop a potentially viable therapy for cardiovascular problems. © 2016 American Heart Association, Inc.

  18. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte.

    PubMed

    Claycomb, W C; Lanson, N A; Stallworth, B S; Egeland, D B; Delcarpio, J B; Bahinski, A; Izzo, N J

    1998-03-17

    We have derived a cardiac muscle cell line, designated HL-1, from the AT-1 mouse atrial cardiomyocyte tumor lineage. HL-1 cells can be serially passaged, yet they maintain the ability to contract and retain differentiated cardiac morphological, biochemical, and electrophysiological properties. Ultrastructural characteristics typical of embryonic atrial cardiac muscle cells were found consistently in the cultured HL-1 cells. Reverse transcriptase-PCR-based analyses confirmed a pattern of gene expression similar to that of adult atrial myocytes, including expression of alpha-cardiac myosin heavy chain, alpha-cardiac actin, and connexin43. They also express the gene for atrial natriuretic factor. Immunohistochemical staining of the HL-1 cells indicated that the distribution of the cardiac-specific markers desmin, sarcomeric myosin, and atrial natriuretic factor was similar to that of cultured atrial cardiomyocytes. A delayed rectifier potassium current (IKr) was the most prominent outward current in HL-1 cells. The activating currents displayed inward rectification and deactivating current tails were voltage-dependent, saturated at >+20 mV, and were highly sensitive to dofetilide (IC50 of 46.9 nM). Specific binding of [3H]dofetilide was saturable and fit a one-site binding isotherm with a Kd of 140 +/- 60 nM and a Bmax of 118 fmol per 10(5) cells. HL-1 cells represent a cardiac myocyte cell line that can be repeatedly passaged and yet maintain a cardiac-specific phenotype.

  19. Restoration of Circulating MFGE8 (Milk Fat Globule-EGF Factor 8) Attenuates Cardiac Hypertrophy Through Inhibition of Akt Pathway.

    PubMed

    Deng, Ke-Qiong; Li, Jing; She, Zhi-Gang; Gong, Jun; Cheng, Wen-Lin; Gong, Fu-Han; Zhu, Xue-Yong; Zhang, Yan; Wang, Zhihua; Li, Hongliang

    2017-10-01

    Cardiac hypertrophy occurs in response to numerous stimuli like neurohumoral stress, pressure overload, infection, and injury, and leads to heart failure. Mfge8 (milk fat globule-EGF factor 8) is a secreted protein involved in various human diseases, but its regulation and function during cardiac hypertrophy remain unexplored. Here, we found that circulating MFGE8 levels declined significantly in failing hearts from patients with dilated cardiomyopathy. Correlation analyses revealed that circulating MFGE8 levels were negatively correlated with the severity of cardiac dysfunction and remodeling in affected patients. Deleting Mfge8 in mice maintained normal heart function at basal level but substantially exacerbated the hypertrophic enlargement of cardiomyocytes, reprogramming of pathological genes, contractile dysfunction, and myocardial fibrosis after aortic banding surgery. In contrast, cardiac-specific Mfge8 overexpression in transgenic mice significantly blunted aortic banding-induced cardiac hypertrophy. Whereas MAPK (mitogen-activated protein kinase) pathways were unaffected in either Mfge8-knockout or Mfge8-overexpressing mice, the activated Akt/PKB (protein kinase B)-Gsk-3β (glycogen synthase kinase-3β)/mTOR (mammalian target of rapamycin) pathway after aortic banding was significantly potentiated by Mfge8 deficiency but suppressed by Mfge8 overexpression. Inhibition of Akt with MK-2206 blocked the prohypertrophic effects of Mfge8 deficiency in angiotensin II-treated neonatal rat cardiomyocytes. Finally, administering a recombinant human MFGE8 in mice in vivo alleviated cardiac hypertrophy induced by aortic banding. Our findings indicate that Mfge8 is an endogenous negative regulator of pathological cardiac hypertrophy and may, thus, have potential both as a novel biomarker and as a therapeutic target for treatment of cardiac hypertrophy. © 2017 American Heart Association, Inc.

  20. Exon Skipping and Gene Transfer Restore Dystrophin Expression in Human Induced Pluripotent Stem Cells-Cardiomyocytes Harboring DMD Mutations

    PubMed Central

    Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H.; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns

    2013-01-01

    With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47–50 or 48–50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart. PMID:23829870

  1. Exon skipping and gene transfer restore dystrophin expression in human induced pluripotent stem cells-cardiomyocytes harboring DMD mutations.

    PubMed

    Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns; Denning, Chris

    2013-10-15

    With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47-50 or 48-50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart.

  2. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease.

    PubMed

    Atmanli, Ayhan; Domian, Ibrahim John

    2016-12-19

    The advent of human pluripotent stem cell (hPSC) biology has opened unprecedented opportunities for the use of tissue engineering to generate human cardiac tissue for in vitro study. Engineering cardiac constructs that recapitulate human development and disease requires faithful recreation of the cardiac niche in vitro. Here we discuss recent progress in translating the in vivo cardiac microenvironment into PSC models of the human heart. We review three key physiologic features required to recreate the cardiac niche and facilitate normal cardiac differentiation and maturation: the biochemical, biophysical, and bioelectrical signaling cues. Finally, we discuss key barriers that must be overcome to fulfill the promise of stem cell biology in preclinical applications and ultimately in clinical practice.

  3. Spontaneous Calcium Oscillations Regulate Human Cardiac Progenitor Cell Growth

    PubMed Central

    Ferreira-Martins, João; Rondon-Clavo, Carlos; Tugal, Derin; Korn, Justin A; Rizzi, Roberto; Padin-Iruegas, Maria Elena; Ottolenghi, Sergio; De Angelis, Antonella; Urbanek, Konrad; Iwata, Noriko; D’Amario, Domenico; Hosoda, Toru; Leri, Annarosa; Kajstura, Jan; Anversa, Piero; Rota, Marcello

    2009-01-01

    Rationale The adult heart possesses a pool of progenitor cells stored in myocardial niches but the mechanisms involved in the activation of this cell compartment are currently unknown. Objective Ca2+ promotes cell growth raising the possibility that changes in intracellular Ca2+ initiate division of c-kit-positive human cardiac progenitor cells (hCPCs) and determine their fate. Methods and Results Ca2+ oscillations were identified in hCPCs and these events occurred independently from coupling with cardiomyocytes or the presence of extracellular Ca2+. These findings were confirmed in the heart of transgenic mice in which EGFP was under the control of the c-kit-promoter. Ca2+ oscillations in hCPCs were regulated by the release of Ca2+ from the ER through activation of inositol 1,4,5-triphosphate receptors (IP3Rs) and the re-uptake of Ca2+ by the sarco/endoplasmic reticulum Ca2+ pump (SERCA). IP3Rs and SERCA were highly expressed in hCPCs while ryanodine receptors were not detected. Although Na+-Ca2+ exchanger, store-operated Ca2+-channels and plasma membrane Ca2+-pump were present and functional in hCPCs, they had no direct effects on Ca2+ oscillations. Conversely, Ca2+ oscillations and their frequency markedly increased with ATP and histamine which activated purinoceptors and histamine-1 receptors highly expressed in hCPCs. Importantly, Ca2+ oscillations in hCPCs were coupled with the entry of cells into the cell cycle and BrdUrd incorporation. Induction of Ca2+ oscillations in hCPCs prior to their intramyocardial delivery to infarcted hearts was associated with enhanced engraftment and expansion of these cells promoting the generation of a large myocyte progeny. Conclusion IP3R-mediated Ca2+ mobilization control hCPC growth and their regenerative potential. PMID:19745162

  4. HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells.

    PubMed

    Rossini, Alessandra; Zacheo, Antonella; Mocini, David; Totta, Pierangela; Facchiano, Antonio; Castoldi, Raffaella; Sordini, Paolo; Pompilio, Giulio; Abeni, Damiano; Capogrossi, Maurizio C; Germani, Antonia

    2008-04-01

    High Mobility Box 1 Protein (HMGB1) is a cytokine released into the extracellular space by necrotic cells and activated macrophages in response to injury. We recently demonstrated that HMGB1 administration into the mouse heart during acute myocardial infarction induces cardiac tissue regeneration by activating resident cardiac c-kit+ cells (CSCs) and significantly enhances left ventricular function. In the present study it was analyzed the hypothesis that human cardiac fibroblasts (cFbs) exposed to HMGB1 may exert a paracrine effect on mouse and human CSCs. Human cFbs expressed the HMGB1 receptor RAGE. Luminex technology and ELISA assays revealed that HMGB1 significantly enhanced VEGF, PlGF, Mip-1alpha, IFN-gamma, GM-CSF, Il-10, Il-1beta, Il-4, Il-1ra, Il-9 and TNF-alpha in cFbs cell culture medium. HMGB1-stimulated cFbs conditioned media induced CSC migration and proliferation. These effects were significantly higher to those obtained when HMGB1 was added directly to the culture medium. In conclusion, we provide evidence that HMGB1 may act in a paracrine manner stimulating growth factor, cytokine and chemokine release by cFbs which, in turn, modulate CSC function. Via this mechanism HMGB1 may contribute to cardiac tissue regeneration.

  5. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    SciTech Connect

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  6. Analysis of electric field stimulation of single cardiac muscle cells.

    PubMed Central

    Tung, L; Borderies, J R

    1992-01-01

    Electrical stimulation of cardiac cells by imposed extracellular electric fields results in a transmembrane potential which is highly nonuniform, with one end of the cell depolarized and the other end hyperpolarized along the field direction. To date, the implications of the close proximity of oppositely polarized membranes on excitability have not been explored. In this work we compare the biophysical basis for field stimulation of cells at rest with that for intracellular current injection, using three Luo-Rudy type membrane patches coupled together as a lumped model to represent the cell membrane. Our model shows that cell excitation is a function of the temporal and spatial distribution of ionic currents and transmembrane potential. The extracellular and intracellular forms of stimulation were compared in greater detail for monophasic and symmetric biphasic rectangular pulses, with duration ranging from 0.5 to 10 ms. Strength-duration curves derived for field stimulation show that over a wide range of pulse durations, biphasic waveforms can recruit and activate membrane patches about as effectively as can monophasic waveforms having the same total pulse duration. We find that excitation with biphasic stimulation results from a synergistic, temporal summation of inward currents through the sodium channel in membrane patches at opposite ends of the cell. Furthermore, with both waveform types, a net inward current through the inwardly rectifying potassium channel contributes to initial membrane depolarization. In contrast, models of stimulation by intracellular current injection do not account for the nonuniformity of transmembrane potential and produce substantially different (even contradictory) results for the case of stimulation from rest. PMID:1420884

  7. Second heart field cardiac progenitor cells in the early mouse embryo.

    PubMed

    Francou, Alexandre; Saint-Michel, Edouard; Mesbah, Karim; Théveniau-Ruissy, Magali; Rana, M Sameer; Christoffels, Vincent M; Kelly, Robert G

    2013-04-01

    At the end of the first week of mouse gestation, cardiomyocyte differentiation initiates in the cardiac crescent to give rise to the linear heart tube. The heart tube subsequently elongates by addition of cardiac progenitor cells from adjacent pharyngeal mesoderm to the growing arterial and venous poles. These progenitor cells, termed the second heart field, originate in splanchnic mesoderm medial to cells of the cardiac crescent and are patterned into anterior and posterior domains adjacent to the arterial and venous poles of the heart, respectively. Perturbation of second heart field cell deployment results in a spectrum of congenital heart anomalies including conotruncal and atrial septal defects seen in human patients. Here, we briefly review current knowledge of how the properties of second heart field cells are controlled by a network of transcriptional regulators and intercellular signaling pathways. Focus will be on 1) the regulation of cardiac progenitor cell proliferation in pharyngeal mesoderm, 2) the control of progressive progenitor cell differentiation and 3) the patterning of cardiac progenitor cells in the dorsal pericardial wall. Coordination of these three processes in the early embryo drives progressive heart tube elongation during cardiac morphogenesis. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

  8. Role of cytosolic calcium diffusion in cardiac purkinje cells.

    PubMed

    Limbu, Bijay; Shah, Kushal; Deo, Makarand

    2016-08-01

    The Cardiac Purkinje cells (PCs) exhibit distinct calcium (Ca2+) homeostasis than that in ventricular myocytes (VMs). Due to lack of t-tubules in PCs, the Ca2+ ions entering the cell have to diffuse through the cytoplasm to reach the sarcoplasmic reticulum (SR) before triggering Ca2+-induced-Ca2+-release (CICR). In recent experimental studies PCs have been shown to be more susceptible to action potential (AP) abnormalities than the VMs, however the exact mechanisms are poorly understood. In this study, we utilize morphologically realistic detailed biophysical mathematical model of a murine PC to systematically examine the role intracellular Ca2+ diffusion in the APs of PCs. A biphasic spatiotemporal Ca2+ diffusion process, as observed experimentally, was implemented in the model which includes radial Ca2+ wavelets and cell wide longitudinal Ca2+ diffusion wave (CWW). The AP morphology, specifically plateau, is affected due to changes in intracellular Ca2+ dynamics. When Ca2+ concentration in sarcolemmal region is elevated, it activated inward sodium Ca2+ exchanger (NCX) current resulting into prolongation of the plateau at faster diffusion rates. Our results demonstrate that the cytosolic Ca2+ diffusion waves play a significant role in shaping APs of PCs and could provide mechanistic insights into the increased arrhythmogeneity of PCs.

  9. Bradykinin regulates cell growth and migration in cultured human cardiac c-Kit+ progenitor cells.

    PubMed

    Li, Gang; Wang, Yan; Li, Gui-Rong

    2017-02-14

    Bradykinin is a well-known endogenous vasoactive peptide. The present study investigated the bradykinin receptor expression in human cardiac c-Kit+ progenitor cells and the potential role of bradykinin in regulating cell cycling progression and mobility. It was found that mRNA and protein of bradykinin type 2 receptors, but not bradykinin type 1 receptors, were abundant in cultured human cardiac c-Kit+ progenitor cells. Bradykinin (1-10 nM) stimulated cell growth and migration in a concentration-dependent manner. The increase of cell proliferation was related to promoting G0/G1 transition into G2/M and S phase. Western blots revealed that bradykinin significantly increased pAkt and pERK1/2 as well as cyclin D1, which were countered by HOE140 (an antagonist of bradykinin type 2 receptors) or by silencing bradykinin type 2 receptors. The increase of pAkt, pERK1/2 and cyclin D1 by bradykinin was prevented by the PI3K inhibitor Ly294002, the PLC inhibitors U73122 and neomycin, and/or the PKC inhibitor chelerythrine and the MAPK inhibitor PD98059. Our results demonstrate the novel information that bradykinin promotes cell cycling progression and migration in human cardiac c-Kit+ progenitor cells via activating PI3K, PLC, PKC, cyclin D1, pERK1/2, and pAkt.

  10. Overexpression of TIMP-1 in embryonic stem cells attenuates adverse cardiac remodeling following myocardial infarction.

    PubMed

    Glass, Carley; Singla, Dinender K

    2012-01-01

    Transplanted embryonic stem (ES) cells, following myocardial infarction (MI), contribute to limited cardiac repair and regeneration with improved function. Therefore, novel strategies are still needed to understand the effects of genetically modified transplanted stem cells on cardiac remodeling. The present study evaluates whether transplanted mouse ES cells overexpressing TIMP-1, an antiapoptotic and antifibrotic protein, can enhance cardiac myocyte differentiation, inhibit native cardiac myocyte apoptosis, reduce fibrosis, and improve cardiac function in the infarcted myocardium. MI was produced in C57BL/6 mice by coronary artery ligation. TIMP-1-ES cells, ES cells, or culture medium (control) were transplanted into the peri-infarct region of the heart. Immunofluorescence, TUNEL staining, caspase-3 activity, ELISAs, histology, and echocardiography were used to identify newly differentiated cardiac myocytes and assess apoptosis, fibrosis, and heart function. Two weeks post-MI, significantly (p < 0.05) enhanced engraftment and cardiac myocyte differentiation was observed in TIMP-1-ES cell-transplanted hearts compared with hearts transplanted with ES cells and control. Hearts transplanted with TIMP-1-ES cells demonstrated a reduction in apoptosis as well as an increase (p< 0.05) in p-Akt activity compared with ES cells or culture media controls. Infarct size and interstitial and vascular fibrosis were significantly (p< 0.05) decreased in the TIMP-1-ES cell group compared to controls. Furthermore, MMP-9, a key profibrotic protein, was significantly (p < 0.01) reduced following TIMP-1-ES cell transplantation. Echocardiography data showed fractional shortening and ejection fraction were significantly (p< 0.05) improved in the TIMP-1-ES cell group compared with respective controls. Our data suggest that transplanted ES cells overexpressing TIMP-1 attenuate adverse myocardial remodeling and improve cardiac function compared with ES cells that may have therapeutic

  11. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification

    PubMed Central

    Ahmad, Shaad M.; Busser, Brian W.; Huang, Di; Cozart, Elizabeth J.; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L.; Ovcharenko, Ivan; Michelson, Alan M.

    2014-01-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks. PMID:24496624

  12. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification.

    PubMed

    Ahmad, Shaad M; Busser, Brian W; Huang, Di; Cozart, Elizabeth J; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L; Ovcharenko, Ivan; Michelson, Alan M

    2014-02-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks.

  13. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  14. Embryonic stem cells improve cardiac function in Doxorubicin-induced cardiomyopathy mediated through multiple mechanisms.

    PubMed

    Singla, Dinender K; Ahmed, Aisha; Singla, Reetu; Yan, Binbin

    2012-01-01

    Doxorubicin (DOX) is an effective antineoplastic agent used for the treatment of a variety of cancers. Unfortunately, its use is limited as this drug induces cardiotoxicity and heart failure as a side effect. There is no report that describes whether transplanted embryonic stem (ES) cells or their conditioned medium (CM) in DOX-induced cardiomyopathy (DIC) can repair and regenerate myocardium. Therefore, we transplanted ES cells or CM in DIC to examine apoptosis, fibrosis, cytoplasmic vacuolization, and myofibrillar loss and their associated Akt and ERK pathway. Moreover, we also determined activation of endogenous c-kit(+ve) cardiac stem cells (CSCs), levels of HGF and IGF-1, growth factors required for c-kit cell activation, and their differentiation into cardiac myocytes, which also contributes in cardiac regeneration and improved heart function. We generated DIC in C57Bl/6 mice (cumulative dose of DOX 12 mg/kg body weight, IP), and animals were treated with ES cells, CM, or cell culture medium in controls. Two weeks post-DIC, ES cells or CM transplanted hearts showed a significant (p < 0.05) decrease in cardiac apoptotic nuclei and their regulation with Akt and ERK pathway. Cardiac fibrosis observed in the ES cell or CM groups was significantly less compared with DOX and cell culture medium groups (p < 0.05). Next, cytoplasmic vacuolization and myofibrillar loss was reduced (p < 0.05) following treatment with ES cells or CM. Moreover, our data also demonstrated increased levels of c-kit(+ve) CSCs in ES cells or CM hearts and differentiated cardiac myocytes from these CSCs, suggesting endogenous cardiac regeneration. Importantly, the levels of HFG and IGF-1 were significantly increased in ES cells or CM transplanted hearts. In conclusion, we reported that transplanted ES cells or CM in DIC hearts significantly decreases various adverse pathological mechanisms as well as enhances cardiac regeneration that effectively contributes to improved heart function.

  15. Human cord blood CD34+ progenitor cells acquire functional cardiac properties through a cell fusion process.

    PubMed

    Avitabile, Daniele; Crespi, Alessia; Brioschi, Chiara; Parente, Valeria; Toietta, Gabriele; Devanna, Paolo; Baruscotti, Mirko; Truffa, Silvia; Scavone, Angela; Rusconi, Francesca; Biondi, Andrea; D'Alessandra, Yuri; Vigna, Elisa; Difrancesco, Dario; Pesce, Maurizio; Capogrossi, Maurizio C; Barbuti, Andrea

    2011-05-01

    The efficacy of cardiac repair by stem cell administration relies on a successful functional integration of injected cells into the host myocardium. Safety concerns have been raised about the possibility that stem cells may induce foci of arrhythmia in the ischemic myocardium. In a previous work (36), we showed that human cord blood CD34(+) cells, when cocultured on neonatal mouse cardiomyocytes, exhibit excitation-contraction coupling features similar to those of cardiomyocytes, even though no human genes were upregulated. The aims of the present work are to investigate whether human CD34(+) cells, isolated after 1 wk of coculture with neonatal ventricular myocytes, possess molecular and functional properties of cardiomyocytes and to discriminate, using a reporter gene system, whether cardiac differentiation derives from a (trans)differentiation or a cell fusion process. Umbilical cord blood CD34(+) cells were isolated by a magnetic cell sorting method, transduced with a lentiviral vector carrying the enhanced green fluorescent protein (EGFP) gene, and seeded onto primary cultures of spontaneously beating rat neonatal cardiomyocytes. Cocultured EGFP(+)/CD34(+)-derived cells were analyzed for their electrophysiological features at different time points. After 1 wk in coculture, EGFP(+) cells, in contact with cardiomyocytes, were spontaneously contracting and had a maximum diastolic potential (MDP) of -53.1 mV, while those that remained isolated from the surrounding myocytes did not contract and had a depolarized resting potential of -11.4 mV. Cells were then resuspended and cultured at low density to identify EGFP(+) progenitor cell derivatives. Under these conditions, we observed single EGFP(+) beating cells that had acquired an hyperpolarization-activated current typical of neonatal cardiomyocytes (EGFP(+) cells, -2.24 ± 0.89 pA/pF; myocytes, -1.99 ± 0.63 pA/pF, at -125 mV). To discriminate between cell autonomous differentiation and fusion, EGFP(+)/CD34

  16. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker.

    PubMed

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-07-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes.

  17. Characterization of functional ion channels in human cardiac c-kit+ progenitor cells.

    PubMed

    Zhang, Ying-Ying; Li, Gang; Che, Hui; Sun, Hai-Ying; Li, Xin; Au, Wing-Kuk; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2014-05-01

    Cardiac progenitor cells play an important role in cardiac repair and regeneration; however, their cellular biology and electrophysiology are not understood. The present study characterizes the functional ion channels in human cardiac c-kit(+) progenitor cells using whole-cell patch voltage-clamp, RT-PCR, and Western blots. We found that several ionic currents were present in human cardiac c-kit(+) progenitor cells, including a large-conductance Ca(2+)-activated K(+) current (BKCa) in 86 % of cells, an inwardly rectifying K(+) current (I Kir) in 84 % of cells, a transient outward K(+) current (I to) in 47 % of cells, a voltage-gated tetrodotoxin-sensitive Na(+) current (I Na,TTX) in 61 % of cells. Molecular identities of these ionic currents were determined with RT-PCR and Western-blot analysis. KCa.1.1 (for BKCa), Kir2.1 (for I Kir), Kv4.2 and Kv4.3 (for I to), Nav1.3 and Nav1.6 (for I Na.TTX) were abundantly expressed in human cardiac c-kit(+) progenitor cells, which do not resemble cardiomyocytes at all. These results demonstrate for the first time that four types of ionic currents including BKCa, I to, I Kir, and I Na.TTX, are heterogeneously present in human cardiac c-kit(+) cells, which may be involved in regulating cellular physiology.

  18. Tubular Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells Generate Pulse Pressure In Vivo

    PubMed Central

    Seta, Hiroyoshi; Matsuura, Katsuhisa; Sekine, Hidekazu; Yamazaki, Kenji; Shimizu, Tatsuya

    2017-01-01

    Human induced pluripotent stem (iPS) cell-derived cardiac cells provide the possibility to fabricate cardiac tissues for transplantation. However, it remains unclear human bioengineered cardiac tissues function as a functional pump in vivo. Human iPS cells induced to cardiomyocytes in suspension were cultured on temperature-responsive dishes to fabricate cardiac cell sheets. Two pairs of triple-layered sheets were transplanted to wrap around the inferior vena cava (IVC) of nude rats. At 4 weeks after transplantation, inner pressure changes in the IVC were synchronized with electrical activations of the graft. Under 80 pulses per minute electrical stimulation, the inner pressure changes at 8 weeks increased to 9.1 ± 3.2 mmHg, which were accompanied by increases in the baseline inner pressure of the IVC. Immunohistochemical analysis revealed that 0.5-mm-thick cardiac troponin T-positive cardiac tissues, which contained abundant human mitochondria, were clearly engrafted lamellar around the IVC and surrounded by von Willebrand factor-positive capillary vessels. The mRNA expression of several contractile proteins in cardiac tissues at 8 weeks in vivo was significantly upregulated compared with those at 4 weeks. We succeeded in generating pulse pressure by tubular human cardiac tissues in vivo. This technology might lead to the development of a bioengineered heart assist pump. PMID:28358136

  19. Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf Whirler Mice.

    PubMed

    Chien, Wade W; Isgrig, Kevin; Roy, Soumen; Belyantseva, Inna A; Drummond, Meghan C; May, Lindsey A; Fitzgerald, Tracy S; Friedman, Thomas B; Cunningham, Lisa L

    2016-02-01

    Hereditary deafness is one of the most common disabilities affecting newborns. Many forms of hereditary deafness are caused by morphological defects of the stereocilia bundles on the apical surfaces of inner ear hair cells, which are responsible for sound detection. We explored the effectiveness of gene therapy in restoring the hair cell stereocilia architecture in the whirlin mouse model of human deafness, which is deaf due to dysmorphic, short stereocilia. Wild-type whirlin cDNA was delivered via adeno-associated virus (AAV8) by injection through the round window of the cochleas in neonatal whirler mice. Subsequently, whirlin expression was detected in infected hair cells (IHCs), and normal stereocilia length and bundle architecture were restored. Whirlin gene therapy also increased inner hair cell survival in the treated ears compared to the contralateral nontreated ears. These results indicate that a form of inherited deafness due to structural defects in cochlear hair cells is amenable to restoration through gene therapy.

  20. Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf Whirler Mice

    PubMed Central

    Chien, Wade W; Isgrig, Kevin; Roy, Soumen; Belyantseva, Inna A; Drummond, Meghan C; May, Lindsey A; Fitzgerald, Tracy S; Friedman, Thomas B; Cunningham, Lisa L

    2016-01-01

    Hereditary deafness is one of the most common disabilities affecting newborns. Many forms of hereditary deafness are caused by morphological defects of the stereocilia bundles on the apical surfaces of inner ear hair cells, which are responsible for sound detection. We explored the effectiveness of gene therapy in restoring the hair cell stereocilia architecture in the whirlin mouse model of human deafness, which is deaf due to dysmorphic, short stereocilia. Wild-type whirlin cDNA was delivered via adeno-associated virus (AAV8) by injection through the round window of the cochleas in neonatal whirler mice. Subsequently, whirlin expression was detected in infected hair cells (IHCs), and normal stereocilia length and bundle architecture were restored. Whirlin gene therapy also increased inner hair cell survival in the treated ears compared to the contralateral nontreated ears. These results indicate that a form of inherited deafness due to structural defects in cochlear hair cells is amenable to restoration through gene therapy. PMID:26307667

  1. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.

  2. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart.

    PubMed

    Castaldo, Clotilde; Di Meglio, Franca; Miraglia, Rita; Sacco, Anna Maria; Romano, Veronica; Bancone, Ciro; Della Corte, Alessandro; Montagnani, Stefania; Nurzynska, Daria

    2013-01-01

    Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM) change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease) and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix), composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  3. Four cardiac hormones eliminate 4-fold more human glioblastoma cells than the green mamba snake peptide.

    PubMed

    Vesely, Brian A; Eichelbaum, Ehrentraud J; Alli, Abdel A; Sun, Ying; Gower, William R; Vesely, David L

    2007-08-28

    Within 24h four cardiac hormones, i.e., vessel dilator, kaliuretic peptide, atrial natriuretic peptide, and long acting natriuretic peptide decrease the number of human glioblastoma cells 75%, 68%, 67%, and 65% while Dendroaspis (green mamba) peptide caused a 17% decrease when each were utilized at 100 microM. The four cardiac hormones decreased DNA synthesis 65-87% and increased cyclic GMP 1.3- to 3.8-fold in the glioblastoma cells. Natriuretic peptide receptors (NPR)-A and -C were present. four cardiac hormones eliminate up to 75% of glioblastoma cells via cyclic GMP-mediated up to 87% decrease in DNA synthesis.

  4. Constitutive properties of adult mammalian cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th

    1998-01-01

    BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.

  5. Constitutive properties of adult mammalian cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th

    1998-01-01

    BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.

  6. Rejuvenation of human cardiac progenitor cells with Pim-1 kinase.

    PubMed

    Mohsin, Sadia; Khan, Mohsin; Nguyen, Jonathan; Alkatib, Monique; Siddiqi, Sailay; Hariharan, Nirmala; Wallach, Kathleen; Monsanto, Megan; Gude, Natalie; Dembitsky, Walter; Sussman, Mark A

    2013-10-25

    Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. C-kit-positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC.

  7. Rejuvenation of Human Cardiac Progenitor Cells With Pim-1 Kinase

    PubMed Central

    Mohsin, Sadia; Khan, Mohsin; Nguyen, Jonathan; Alkatib, Monique; Siddiqi, Sailay; Hariharan, Nirmala; Wallach, Kathleen; Monsanto, Megan; Gude, Natalie; Dembitsky, Walter; Sussman, Mark A.

    2014-01-01

    Rationale Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. Objective Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. Methods and Results C-kit–positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. Conclusions Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC. PMID:24044948

  8. Glutamine regulates cardiac progenitor cell metabolism and proliferation

    PubMed Central

    Salabei, Joshua K.; Lorkiewicz, Pawel K.; Holden, Candice R.; Li, Qianhong; Hong, Kyung U.; Bolli, Roberto; Bhatnagar, Aruni; Hill, Bradford G.

    2015-01-01

    Autologous transplantation of cardiac progenitor cells (CPCs) alleviates myocardial dysfunction in the damaged heart; however, the mechanisms that contribute to their reparative qualities remain poorly understood. In this study, we examined CPC metabolism to elucidate the metabolic pathways that regulate their proliferative capacity. In complete growth medium, undifferentiated CPCs isolated from adult mouse heart proliferated rapidly (Td = 13.8 h). CPCs expressed the Glut1 transporter and their glycolytic rate was increased by high extracellular glucose concentration, in the absence of insulin. Although high glucose concentrations did not stimulate proliferation, glutamine increased CPC doubling time and promoted survival under conditions of oxidative stress. In comparison with glucose, pyruvate or BSA-palmitate, glutamine, when provided as the sole metabolic substrate, increased ATP-linked and uncoupled respiration. Although fatty acids were not used as respiratory substrates when present as a sole carbon source, glutamine-induced respiration was doubled in the presence of BSA-palmitate, suggesting that glutamine stimulates fatty acid oxidation. Additionally, glutamine promoted rapid phosphorylation of the mTORC1 substrate, p70S6k, as well as retinoblastoma protein, followed by induction of cyclin D1 and cdk4. Inhibition of either mTORC1 or glutaminolysis was sufficient to diminish CPC proliferation, and provision of cell permeable α-ketoglutarate in the absence of glutamine increased both respiration and cell proliferation, indicating a key role of glutamine anaplerosis in cell growth. These findings suggest that glutamine, by enhancing mitochondrial function and stimulating mTORC1, increases CPC proliferation, and that interventions to increase glutamine uptake or oxidation may improve CPC therapy. PMID:25917428

  9. Porous nanofibrous poly(L-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering.

    PubMed

    Liu, Qihai; Tian, Shuo; Zhao, Chao; Chen, Xin; Lei, Ienglam; Wang, Zhong; Ma, Peter X

    2015-10-01

    Myocardial infarction (MI) is the irreversible necrosis of heart with approximately 1.5 million cases every year in the United States. Tissue engineering offers a promising strategy for cardiac repair after MI. However, the optimal cell source for heart tissue regeneration and the ideal scaffolds to support cell survival, differentiation, and integration, remain to be developed. To address these issues, we developed the technology to induce cardiovascular progenitor cells (CPCs) derived from mouse embryonic stem cells (ESCs) towards desired cardiomyocytes as well as smooth muscle cells and endothelial cells. We fabricated extracellular matrix (ECM)-mimicking nanofibrous poly(l-lactic acid) (PLLA) scaffolds with porous structure of high interconnection for cardiac tissue formation. The CPCs were seeded into the scaffolds to engineer cardiac constructs in vitro. Fluorescence staining and RT-PCR assay showed that the scaffolds facilitated cell attachment, extension, and differentiation. Subcutaneous implantation of the cell/scaffold constructs in a nude mouse model showed that the scaffolds favorably supported survival of the grafted cells and their commitment to the three desired lineages in vivo. Thus, our study suggested that the porous nanofibrous PLLA scaffolds support cardiac tissue formation from CPCs. The integration of CPCs with the nanofibrous PLLA scaffolds represents a promising tissue engineering strategy for cardiac repair. Myocardial infarction is the irreversible necrosis of heart with approximately 1.5 million cases every year in the United States. Tissue engineering offers a promising strategy for cardiac repair after MI. However, the optimal cell source for heart tissue regeneration and the ideal scaffolds to support cell survival, differentiation, and integration, remain to be developed. To address these issues, we developed porous nanofibrous PLLA scaffolds that mimic natural extracellular matrix to support cardiac tissue formation from CPCs. The

  10. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells

    PubMed Central

    van Meer, Berend J.; Tertoolen, Leon G. J.

    2017-01-01

    ABSTRACT Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully recapitulate native human physiology in vitro would therefore ideally incorporate this cardiomyocyte-endothelium crosstalk. Here, we have generated and characterized human cardiac microtissues in vitro that integrate both cell types in complex 3D structures. We established conditions for simultaneous differentiation of cardiomyocytes and endothelial cells from human pluripotent stem cells following initial cardiac mesoderm induction. The endothelial cells expressed cardiac markers that were also present in primary cardiac microvasculature, suggesting cardiac endothelium identity. These cell populations were further enriched based on surface markers expression, then recombined allowing development of beating 3D structures termed cardiac microtissues. This in vitro model was robustly reproducible in both embryonic and induced pluripotent stem cells. It thus represents an advanced human stem cell-based platform for cardiovascular disease modelling and testing of relevant drugs. PMID:28279973

  11. Potential effects of intrinsic heart pacemaker cell mechanisms on dysrhythmic cardiac action potential firing

    PubMed Central

    Yaniv, Yael; Tsutsui, Kenta; Lakatta, Edward G.

    2015-01-01

    The heart's regular electrical activity is initiated by specialized cardiac pacemaker cells residing in the sinoatrial node. The rate and rhythm of spontaneous action potential firing of sinoatrial node cells are regulated by stochastic mechanisms that determine the level of coupling of chemical to electrical clocks within cardiac pacemaker cells. This coupled-clock system is modulated by autonomic signaling from the brain via neurotransmitter release from the vagus and sympathetic nerves. Abnormalities in brain-heart clock connections or in any molecular clock activity within pacemaker cells lead to abnormalities in the beating rate and rhythm of the pacemaker tissue that initiates the cardiac impulse. Dysfunction of pacemaker tissue can lead to tachy-brady heart rate alternation or exit block that leads to long atrial pauses and increases susceptibility to other cardiac arrhythmia. Here we review evidence for the idea that disturbances in the intrinsic components of pacemaker cells may be implemented in arrhythmia induction in the heart. PMID:25755643

  12. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise.

    PubMed

    Duelen, Robin; Sampaolesi, Maurilio

    2017-01-27

    Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs) have emerged as attractive cell source to obtain cardiomyocytes (CMs), with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation.

  13. Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision.

    PubMed

    Beier, Corinne; Hovhannisyan, Anahit; Weiser, Sydney; Kung, Jennifer; Lee, Seungjun; Lee, Dae Yeong; Huie, Philip; Dalal, Roopa; Palanker, Daniel; Sher, Alexander

    2017-04-26

    Upon degeneration of photoreceptors in the adult retina, interneurons, including bipolar cells, exhibit a plastic response leading to their aberrant rewiring. Photoreceptor reintroduction has been suggested as a potential approach to sight restoration, but the ability of deafferented bipolar cells to establish functional synapses with photoreceptors is poorly understood. Here we use photocoagulation to selectively destroy photoreceptors in adult rabbits while preserving the inner retina. We find that rods and cones shift into the ablation zone over several weeks, reducing the blind spot at scotopic and photopic luminances. During recovery, rod and cone bipolar cells exhibit markedly different responses to deafferentation. Rod bipolar cells extend their dendrites to form new synapses with healthy photoreceptors outside the lesion, thereby restoring visual function in the deafferented retina. Secretagogin-positive cone bipolar cells did not exhibit such obvious dendritic restructuring. These findings are encouraging to the idea of photoreceptor reintroduction for vision restoration in patients blinded by retinal degeneration. At the same time, they draw attention to the postsynaptic side of photoreceptor reintroduction; various bipolar cell types, representing different visual pathways, vary in their response to the photoreceptor loss and in their consequent dendritic restructuring.SIGNIFICANCE STATEMENT Loss of photoreceptors during retinal degeneration results in permanent visual impairment. Strategies for vision restoration based on the reintroduction of photoreceptors inherently rely on the ability of the remaining retinal neurons to correctly synapse with new photoreceptors. We show that deafferented bipolar cells in the adult mammalian retina can reconnect to rods and cones and restore retinal sensitivity at scotopic and photopic luminances. Rod bipolar cells extend their dendrites to form new synapses with healthy rod photoreceptors. These findings support the

  14. Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling.

    PubMed

    Iglesias-García, Olalla; Pelacho, Beatriz; Prósper, Felipe

    2013-09-01

    The possibility to induce pluripotency in somatic cells or, even further, to induce cell transdifferentiation through the forced expression of reprogramming factors has offered new, attractive options for cardiovascular regenerative medicine. In fact, recent discoveries have demonstrated that induced pluripotent stem (iPS) cells can be differentiated into cardiomyocytes, suggesting that iPS cells have the potential to significantly advance future cardiac regenerative therapies. Herein, we provide an overview of the characteristics and differentiation potential associated with iPS cells. In addition, we discuss current methods for inducing their specification towards a cardiovascular phenotype as well as in vivo evidence supporting the therapeutic benefit of iPS-derived cardiac cells. Finally, we describe recent findings regarding the use of iPS-derived cells for modeling several genetic cardiac disorders, which have indicated that these pluripotent cells represent an ideal tool for drug testing and might contribute to the development of future personalized regenerative cell therapies.

  15. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction.

    PubMed

    Llucià-Valldeperas, Aida; Soler-Botija, Carolina; Gálvez-Montón, Carolina; Roura, Santiago; Prat-Vidal, Cristina; Perea-Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak-Novakovic, Gordana; Bayes-Genis, Antoni

    2017-03-01

    Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2-millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post-MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970-981.

  16. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction

    PubMed Central

    Llucià‐Valldeperas, Aida; Soler‐Botija, Carolina; Gálvez‐Montón, Carolina; Roura, Santiago; Prat‐Vidal, Cristina; Perea‐Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak‐Novakovic, Gordana

    2016-01-01

    Abstract Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue‐engineered construct with cardiac adipose tissue‐derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2‐millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post‐MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970–981 PMID:28297585

  17. Endoplasmic reticulum (ER) stress triggers Hax1-dependent mitochondrial apoptotic events in cardiac cells.

    PubMed

    Abdelwahid, Eltyeb; Li, Haijie; Wu, Jianxin; Irioda, Ana Carolina; de Carvalho, Katherine Athayde Teixeira; Luo, Xuelai

    2016-11-01

    Cardiomyocyte apoptosis is a major process in pathogenesis of a number of heart diseases, including ischemic heart diseases and cardiac failure. Ensuring survival of cardiac cells by blocking apoptotic events is an important strategy to improve cardiac function. Although the role of ER disruption in inducing apoptosis has been demonstrated, we do not yet fully understand how it influences the mitochondrial apoptotic machinery in cardiac cell models. Recent investigations have provided evidences that the prosurvival protein HCLS1-associated protein X-1 (Hax1) protein is intimately associated with the pathogenesis of heart disease, mitochondrial biology, and protection from apoptotic cell death. To study the role of Hax1 upon ER stress induction, Hax1 was overexpressed in cardiac cells subjected to ER stress, and cell death parameters as well as mitochondrial alterations were examined. Our results demonstrated that the Hax1 is significantly downregulated in cardiac cells upon ER stress induction. Moreover, overexpression of Hax1 protected from apoptotic events triggered by Tunicamycin-induced ER stress. Upon treatment with Tunicamycin, Hax1 protected from mitochondrial fission, downregulation of mitofusins 1 and 2 (MFN1 and MFN2), loss of mitochondrial membrane potential (∆Ψm), production of reactive oxygen species (ROS) and apoptotic cell death. Taken together, our results suggest that Hax1 inhibits ER stress-induced apoptosis at both the pre- and post-mitochondrial levels. These findings may offer an opportunity to develop new agents that inhibit cell death in the diseased heart.

  18. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux

    PubMed Central

    Gu, Hong-Feng; Li, Hai-Zhe; Tang, Ya-Ling; Tang, Xiao-Qing; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis. PMID:27128486

  19. Hyperglycemic and hyperlipidemic conditions alter cardiac cell biomechanical properties.

    PubMed

    Michaelson, Jarett; Hariharan, Venkatesh; Huang, Hayden

    2014-06-03

    Currently, many diabetic cardiomyopathy (DC) studies focus on either in vitro molecular pathways or in vivo whole-heart properties such as ejection fraction. However, as DC is primarily a disease caused by changes in structural and functional properties, such studies may not precisely identify the influence of hyperglycemia or hyperlipidemia in producing specific cellular changes, such as increased myocardial stiffness or diastolic dysfunction. To address this need, we developed an in vitro approach to examine how structural and functional properties may change as a result of a diabetic environment. Particle-tracking microrheology was used to characterize the biomechanical properties of cardiac myocytes and fibroblasts under hyperglycemia or hyperlipidemic conditions. We showed that myocytes, but not fibroblasts, exhibited increased stiffness under diabetic conditions. Hyperlipidemia, but not hyperglycemia, led to increased cFos expression. Although direct application of reactive oxygen species had only limited effects that altered myocyte properties, the antioxidant N-acetylcysteine had broader effects in limiting glucose or fatty-acid alterations. Changes consistent with clinical DC alterations occur in cells cultured in elevated glucose or fatty acids. However, the individual roles of glucose, reactive oxygen species, and fatty acids are varied, suggesting multiple pathway involvement.

  20. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    PubMed

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  1. Hyperglycemic and Hyperlipidemic Conditions Alter Cardiac Cell Biomechanical Properties

    PubMed Central

    Michaelson, Jarett; Hariharan, Venkatesh; Huang, Hayden

    2014-01-01

    Currently, many diabetic cardiomyopathy (DC) studies focus on either in vitro molecular pathways or in vivo whole-heart properties such as ejection fraction. However, as DC is primarily a disease caused by changes in structural and functional properties, such studies may not precisely identify the influence of hyperglycemia or hyperlipidemia in producing specific cellular changes, such as increased myocardial stiffness or diastolic dysfunction. To address this need, we developed an in vitro approach to examine how structural and functional properties may change as a result of a diabetic environment. Particle-tracking microrheology was used to characterize the biomechanical properties of cardiac myocytes and fibroblasts under hyperglycemia or hyperlipidemic conditions. We showed that myocytes, but not fibroblasts, exhibited increased stiffness under diabetic conditions. Hyperlipidemia, but not hyperglycemia, led to increased cFos expression. Although direct application of reactive oxygen species had only limited effects that altered myocyte properties, the antioxidant N-acetylcysteine had broader effects in limiting glucose or fatty-acid alterations. Changes consistent with clinical DC alterations occur in cells cultured in elevated glucose or fatty acids. However, the individual roles of glucose, reactive oxygen species, and fatty acids are varied, suggesting multiple pathway involvement. PMID:24896111

  2. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    PubMed

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835. © 2016 AlphaMed Press.

  3. Tbx18-dependent differentiation of brown adipose tissue-derived stem cells toward cardiac pacemaker cells.

    PubMed

    Chen, Lei; Deng, Zi-Jun; Zhou, Jian-Sheng; Ji, Rui-Juan; Zhang, Xi; Zhang, Chuan-Sen; Li, Yu-Quan; Yang, Xiang-Qun

    2017-04-05

    A cell-sourced biological pacemaker is a promising therapeutic approach for sick sinus syndrome (SSS) or severe atrial ventricular block (AVB). Adipose tissue-derived stem cells (ATSCs), which are optimal candidate cells for possible use in regenerative therapy for acute or chronic myocardial injury, have the potential to differentiate into spontaneous beating cardiomyocytes. However, the pacemaker characteristics of the beating cells need to be confirmed, and little is known about the underlying differential mechanism. In this study, we found that brown adipose tissue-derived stem cells (BATSCs) in mice could differentiate into spontaneous beating cells in 15% FBS Dulbecco's modified Eagle's medium (DMEM) without additional treatment. Subsequently, we provide additional evidence, including data regarding ultrastructure, protein expression, electrophysiology, and pharmacology, to support the differentiation of BATSCs into a cardiac pacemaker phenotype during the course of early cultivation. Furthermore, we found that silencing Tbx18, a key transcription factor in the development of pacemaker cells, terminated the differentiation of BATSCs into a pacemaker phenotype, suggesting that Tbx18 is required to direct BATSCs toward a cardiac pacemaker fate. The expression of Tbx3 and shox2, the other two important transcription factors in the development of pacemaker cells, was decreased by silencing Tbx18, which suggests that Tbx18 mediates the differentiation of BATSCs into a pacemaker phenotype via these two downstream transcription factors.

  4. Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues

    PubMed Central

    Liau, Brian; Jackman, Christopher P.; Li, Yanzhen; Bursac, Nenad

    2017-01-01

    We investigated whether the developmental stage of mouse cardiac fibroblasts (CFs) influences the formation and function of engineered cardiac tissues made of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs). Engineered cardiac tissue patches were fabricated by encapsulating pure mESC-CMs, mESC-CMs + adult CFs, or mESC-CMs + fetal CFs in fibrin-based hydrogel. Tissue patches containing fetal CFs exhibited higher velocity of action potential propagation and contractile force amplitude compared to patches containing adult CFs, while pure mESC-CM patches did not form functional syncytium. The functional improvements in mESC-CM + fetal CF patches were associated with differences in structural remodeling and increased expression of proteins involved in cardiac function. To determine role of paracrine signaling, we cultured pure mESC-CMs within miniature tissue “micro-patches” supplemented with media conditioned by adult or fetal CFs. Fetal CF-conditioned media distinctly enhanced CM spreading and contractile activity, which was shown by pathway inhibitor experiments and Western blot analysis to be mediated via MEK-ERK signaling. In mESC-CM monolayers, CF-conditioned media did not alter CM spreading or MEK-ERK activation. Collectively, our studies show that 3D co-culture of mESC-CMs with embryonic CFs is superior to co-culture with adult CFs for in vitro generation of functional myocardium. Ensuring consistent developmental stages of cardiomyocytes and supporting non-myocytes may be a critical factor for promoting functional maturation of engineered cardiac tissues. PMID:28181589

  5. Primary cardiac B cell lymphoma: Manifestation of Felty's syndrome or TNFα antagonist.

    PubMed

    Benzerdjeb, Nazim; Ameur, Fatima; Ikoli, Jean-Fortune; Sevestre, Henri

    2016-12-01

    Primary cardiac B cell lymphoma is rare. To date, fewer than 90 cases have been described in the literature. We report a 67-year-old woman with a 30-year history of rheumatoid arthritis, who had received treatment with leflunomide for 10 years and infliximab for 2 years. Secondary Felty's syndrome appeared. She was admitted to the hospital for abdominal pain. Investigations disclosed a 5cm cardiac mass in the right atrium. Histopathologic examination of tissue specimens obtained at surgical myocardial biopsy demonstrated primary cardiac B cell lymphoma. The other iatrogenic lymphoproliferative disorders are reviewed. This lesion might be a manifestation of long term TNFα antagonists treatment.

  6. Photopharmacological control of bipolar cells restores visual function in blind mice

    PubMed Central

    Tochitsky, Ivan; Kaur, Kuldeep; Stein, Marco; Barber, David M.; Schön, Christian; Biel, Martin; Kramer, Richard H.; Sumser, Martin P.; Trauner, Dirk; Van Gelder, Russell N.

    2017-01-01

    Photopharmacological control of neuronal activity using synthetic photochromic ligands, or photoswitches, is a promising approach for restoring visual function in patients suffering from degenerative retinal diseases. Azobenzene photoswitches, such as AAQ and DENAQ, have been shown to restore the responses of retinal ganglion cells to light in mouse models of retinal degeneration but do not recapitulate native retinal signal processing. Here, we describe diethylamino-azo-diethylamino (DAD), a third-generation photoswitch that is capable of restoring retinal ganglion cell light responses to blue or white light. In acute brain slices of murine layer 2/3 cortical neurons, we determined that the photoswitch quickly relaxes to its inactive form in the dark. DAD is not permanently charged, and the uncharged form enables the photoswitch to rapidly and effectively cross biological barriers and thereby access and photosensitize retinal neurons. Intravitreal injection of DAD restored retinal light responses and light-driven behavior to blind mice. Unlike DENAQ, DAD acts upstream of retinal ganglion cells, primarily conferring light sensitivity to bipolar cells. Moreover, DAD was capable of generating ON and OFF visual responses in the blind retina by utilizing intrinsic retinal circuitry, which may be advantageous for restoring visual function. PMID:28581442

  7. Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells.

    PubMed

    Tanaka, Tomohiro; Obana, Masanori; Mohri, Tomomi; Ebara, Masaki; Otani, Yuta; Maeda, Makiko; Fujio, Yasushi

    2015-10-01

    Cytokines play important roles in cardiac repair and regeneration. Recently, we demonstrated that interleukin (IL)-6 family cytokines induce the endothelial differentiation of Sca-1+ cardiac resident stem cells through STAT3/Pim-1 signaling pathway. In contrast, the biological functions of IL-12 family cytokines in heart remain to be elucidated, though they show structural homology with IL-6. In the present study, we examined the effects of IL-12 family cytokines on the transdifferentiation of cardiac Sca-1+ cells into cardiac cells. RT-PCR analyses revealed that IL-27 receptor α (IL-27Rα), but not IL-12R or IL-23R, was expressed in cardiac Sca-1+ cells. The transcript expression of IL-27 was elevated in murine hearts in cardiac injury models. Intriguingly, IL-27 stimulation for 14 days induced the endothelial cell (EC) marker genes, such as CD-31 and VE-cadherin. Immunoblot analyses clarified that IL-27 treatment rapidly phosphorylated STAT3. IL-27 upregulated the expression of Pim-1, but the overexpression of dominant negative STAT3 abrogated the induction of Pim-1 by IL-27. Finally, adenoviral transfection of dominant negative Pim-1 inhibited IL-27-induced EC differentiation of cardiac Sca-1+ cells. These findings demonstrated that IL-27 promoted the commitment of cardiac stem cells into the EC lineage, possibly leading to neovascularization as a novel biological function. IL-27 could not only regulate the inflammation but also contribute to the maintenance of the tissue homeostasis through stem cell differentiation at inflammatory sites. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Rejuvenating stem cells to restore muscle regeneration in aging

    PubMed Central

    Bengal, Eyal; Perdiguero, Eusebio; Serrano, Antonio L.; Muñoz-Cánoves, Pura

    2017-01-01

    Adult muscle stem cells, originally called satellite cells, are essential for muscle repair and regeneration throughout life. Besides a gradual loss of mass and function, muscle aging is characterized by a decline in the repair capacity, which blunts muscle recovery after injury in elderly individuals. A major effort has been dedicated in recent years to deciphering the causes of satellite cell dysfunction in aging animals, with the ultimate goal of rejuvenating old satellite cells and improving muscle function in elderly people. This review focuses on the recently identified network of cell-intrinsic and -extrinsic factors and processes contributing to the decline of satellite cells in old animals. Some studies suggest that aging-related satellite-cell decay is mostly caused by age-associated extrinsic environmental changes that could be reversed by a “youthful environment”. Others propose a central role for cell-intrinsic mechanisms, some of which are not reversed by environmental changes. We believe that these proposals, far from being antagonistic, are complementary and that both extrinsic and intrinsic factors contribute to muscle stem cell dysfunction during aging-related regenerative decline. The low regenerative potential of old satellite cells may reflect the accumulation of deleterious changes during the life of the cell; some of these changes may be inherent (intrinsic) while others result from the systemic and local environment (extrinsic). The present challenge is to rejuvenate aged satellite cells that have undergone reversible changes to provide a possible approach to improving muscle repair in the elderly. PMID:28163911

  9. Method for restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    2000-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  10. Cobalt chloride pretreatment promotes cardiac differentiation of human embryonic stem cells under atmospheric oxygen level.

    PubMed

    Ng, Kwong-Man; Chan, Yau-Chi; Lee, Yee-Ki; Lai, Wing-Hon; Au, Ka-Wing; Fung, Man-Lung; Siu, Chung-Wah; Li, Ronald A; Tse, Hung-Fat

    2011-12-01

    Our previous study demonstrated the direct involvement of the HIF-1α subunit in the promotion of cardiac differentiation of murine embryonic stem cells (ESCs). We report the use of cobalt chloride to induce HIF-1α stabilization in human ESCs to promote cardiac differentiation. Treatment of undifferentiated hES2 human ESCs with 50 μM cobalt chloride markedly increased protein levels of the HIF-1α subunit, and was associated with increased expression of early cardiac specific transcription factors and cardiotrophic factors including NK2.5, vascular endothelial growth factor, and cardiotrophin-1. When pretreated cells were subjected to cardiac differentiation, a notable increase in the occurrence of beating embryoid bodies and sarcomeric actinin-positive cells was observed, along with increased expression of the cardiac-specific markers, MHC-A, MHC-B, and MLC2V. Electrophysiological study revealed increased atrial- and nodal-like cells in the cobalt chloride-pretreated group. Confocal calcium imaging analysis indicated that the maximum upstroke and decay velocities were significantly increased in both noncaffeine and caffeine-induced calcium transient in cardiomyocytes derived from the cobalt chloride-pretreated cells, suggesting these cells were functionally more mature. In conclusion, our study demonstrated that cobalt chloride pretreatment of hES2 human ESCs promotes cardiac differentiation and the maturation of calcium homeostasis of cardiomyocytes derived from ESCs.

  11. Fabrication of Mouse Embryonic Stem Cell-Derived Layered Cardiac Cell Sheets Using a Bioreactor Culture System

    PubMed Central

    Matsuura, Katsuhisa; Wada, Masanori; Konishi, Kanako; Sato, Michi; Iwamoto, Ushio; Sato, Yuko; Tachibana, Aki; Kikuchi, Tetsutaro; Iwamiya, Takahiro; Shimizu, Tatsuya; Yamashita, Jun K.; Yamato, Masayuki; Hagiwara, Nobuhisa; Okano, Teruo

    2012-01-01

    Bioengineered functional cardiac tissue is expected to contribute to the repair of injured heart tissue. We previously developed cardiac cell sheets using mouse embryonic stem (mES) cell-derived cardiomyocytes, a system to generate an appropriate number of cardiomyocytes derived from ES cells and the underlying mechanisms remain elusive. In the present study, we established a cultivation system with suitable conditions for expansion and cardiac differentiation of mES cells by embryoid body formation using a three-dimensional bioreactor. Daily conventional medium exchanges failed to prevent lactate accumulation and pH decreases in the medium, which led to insufficient cell expansion and cardiac differentiation. Conversely, a continuous perfusion system maintained the lactate concentration and pH stability as well as increased the cell number by up to 300-fold of the seeding cell number and promoted cardiac differentiation after 10 days of differentiation. After a further 8 days of cultivation together with a purification step, around 1×108 cardiomyocytes were collected in a 1-L bioreactor culture, and additional treatment with noggin and granulocyte colony stimulating factor increased the number of cardiomyocytes to around 5.5×108. Co-culture of mES cell-derived cardiomyocytes with an appropriate number of primary cultured fibroblasts on temperature-responsive culture dishes enabled the formation of cardiac cell sheets and created layered-dense cardiac tissue. These findings suggest that this bioreactor system with appropriate medium might be capable of preparing cardiomyocytes for cell sheet-based cardiac tissue. PMID:23284924

  12. Fabrication of mouse embryonic stem cell-derived layered cardiac cell sheets using a bioreactor culture system.

    PubMed

    Matsuura, Katsuhisa; Wada, Masanori; Konishi, Kanako; Sato, Michi; Iwamoto, Ushio; Sato, Yuko; Tachibana, Aki; Kikuchi, Tetsutaro; Iwamiya, Takahiro; Shimizu, Tatsuya; Yamashita, Jun K; Yamato, Masayuki; Hagiwara, Nobuhisa; Okano, Teruo

    2012-01-01

    Bioengineered functional cardiac tissue is expected to contribute to the repair of injured heart tissue. We previously developed cardiac cell sheets using mouse embryonic stem (mES) cell-derived cardiomyocytes, a system to generate an appropriate number of cardiomyocytes derived from ES cells and the underlying mechanisms remain elusive. In the present study, we established a cultivation system with suitable conditions for expansion and cardiac differentiation of mES cells by embryoid body formation using a three-dimensional bioreactor. Daily conventional medium exchanges failed to prevent lactate accumulation and pH decreases in the medium, which led to insufficient cell expansion and cardiac differentiation. Conversely, a continuous perfusion system maintained the lactate concentration and pH stability as well as increased the cell number by up to 300-fold of the seeding cell number and promoted cardiac differentiation after 10 days of differentiation. After a further 8 days of cultivation together with a purification step, around 1 × 10(8) cardiomyocytes were collected in a 1-L bioreactor culture, and additional treatment with noggin and granulocyte colony stimulating factor increased the number of cardiomyocytes to around 5.5 × 10(8). Co-culture of mES cell-derived cardiomyocytes with an appropriate number of primary cultured fibroblasts on temperature-responsive culture dishes enabled the formation of cardiac cell sheets and created layered-dense cardiac tissue. These findings suggest that this bioreactor system with appropriate medium might be capable of preparing cardiomyocytes for cell sheet-based cardiac tissue.

  13. T3 and cardiac myocyte cell: a theoretical model.

    PubMed

    Athanasios, Tsatsaris; Antonios, Baldoukas; Antonios, Loumousiotis; Eustathios, Koukounaris; Maria, Giota; Despina, Perrea

    2013-08-01

    In the last decades, the outstanding role of Thyroid gland in regulating both physiological and pathological operation of cardiovascular system has been acknowledged worldwide. Three main domains of Thyroid function, that is to say, euthyroidism -hyperthyroidism-hypothyroidism, have a direct impact on cardiac response through a variety of mechanisms. Cellular pathways mediate in cardiac contractility, cardiac output, cardiac rhythm, arterial blood pressure and peripheral vessel resistance. Particular biochemical algorithms exist not only between Thyroid hormones' serum concentration and thyroid gland but also between the hormones' serum level and heart muscle genes. These biochemical pathways primarily regulate the appropriate secretion of levothyroxine (T4) and triiodothyronine(T3) via Thyroid- Stimulating-Hormone(TSH) pituitary system, and secondly adjust the cardiac function. In this study, a mathematic model has been developed describing significant aspects of positive or negative feedback mechanisms of THYRO-CARDIAC (THY-CAR) system along with potential applications of novel up-to-date patents in this area of research.

  14. Identification of drugs that restore primary cilium expression in cancer cells

    PubMed Central

    Khan, Niamat Ali; Willemarck, Nicolas; Talebi, Ali; Marchand, Arnaud; Binda, Maria Mercedes; Dehairs, Jonas; Rueda-Rincon, Natalia; Daniels, Veerle W.; Bagadi, Muralidhararao; Raj, Deepak Balaji Thimiri Govinda; Vanderhoydonc, Frank; Munck, Sebastian; Chaltin, Patrick; Swinnen, Johannes V.

    2016-01-01

    The development of cancer is often accompanied by a loss of the primary cilium, a microtubule-based cellular protrusion that functions as a cellular antenna and that puts a break on cell proliferation. Hence, restoration of the primary cilium in cancer cells may represent a novel promising approach to attenuate tumor growth. Using a high content analysis-based approach we screened a library of clinically evaluated compounds and marketed drugs for their ability to restore primary cilium expression in pancreatic ductal cancer cells. A diverse set of 118 compounds stimulating cilium expression was identified. These included glucocorticoids, fibrates and other nuclear receptor modulators, neurotransmitter regulators, ion channel modulators, tyrosine kinase inhibitors, DNA gyrase/topoisomerase inhibitors, antibacterial compounds, protein inhibitors, microtubule modulators, and COX inhibitors. Certain compounds also dramatically affected the length of the cilium. For a selection of compounds (Clofibrate, Gefitinib, Sirolimus, Imexon and Dexamethasone) their ability to restore ciliogenesis was confirmed in a panel of human cancer cell line models representing different cancer types (pancreas, lung, kidney, breast). Most compounds attenuated cell proliferation, at least in part through induction of the primary cilium, as demonstrated by cilium removal using chloral hydrate. These findings reveal that several commonly used drugs restore ciliogenesis in cancer cells, and warrant further investigation of their antineoplastic properties. PMID:26862738

  15. Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development

    PubMed Central

    Holler, Kristen L.; Hendershot, Tyler J.; Troy, Sophia E.; Vincentz, Joshua W.; Firulli, Anthony B.; Howard, Marthe J.

    2010-01-01

    The basic helix-loop-helix DNA binding protein Hand2 has critical functions in cardiac development both in neural crest-derived and mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest has allowed us to genetically dissect Hand2-dependent defects specifically in outflow tract and cardiac cushion independent of Hand2 functions in mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest results in misalignment of the aortic arch arteries and outflow tract, contributing to development of double outlet right ventricle (DORV) and ventricular septal defects (VSD). These neural crest-derived developmental anomalies are associated with altered expression of Hand2-target genes we have identified by gene profiling. A number of Hand2 direct target genes have been identified using ChIP and ChIP-on-chip analyses. We have identified and validated a number of genes related to cell migration, proliferation/cell cycle and intracellular signaling whose expression is affected by Hand2 deletion in the neural crest and which are associated with development of VSD and DORV. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting expression of target genes associated with a number of functional interactions in neural crest-derived cells required for proper patterning of the outflow tract, generation of the appropriate number of neural crest-derived cells for elongation of the conotruncus and cardiac cushion organization. Our genetic model has made it possible to investigate the molecular genetics of neural crest contributions to outflow tract morphogenesis and cell differentiation. PMID:20144608

  16. Cardiac regeneration using pluripotent stem cells--progression to large animal models.

    PubMed

    Chong, James J H; Murry, Charles E

    2014-11-01

    Pluripotent stem cells (PSCs) have indisputable cardiomyogenic potential and therefore have been intensively investigated as a potential cardiac regenerative therapy. Current directed differentiation protocols are able to produce high yields of cardiomyocytes from PSCs and studies in small animal models of cardiovascular disease have proven sustained engraftment and functional efficacy. Therefore, the time is ripe for cardiac regenerative therapies using PSC derivatives to be tested in large animal models that more closely resemble the hearts of humans. In this review, we discuss the results of our recent study using human embryonic stem cell derived cardiomyocytes (hESC-CM) in a non-human primate model of ischemic cardiac injury. Large scale remuscularization, electromechanical coupling and short-term arrhythmias demonstrated by our hESC-CM grafts are discussed in the context of other studies using adult stem cells for cardiac regeneration. Copyright © 2014. Published by Elsevier B.V.

  17. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    PubMed

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  18. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation

    PubMed Central

    Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T.; Kattman, Steven J.; Andersson, Henrik; Anson, Blake; Swanson, Bradley J.; Wang, Qing-Dong; Brolen, Gabriella

    2016-01-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDRpos/CKITneg/NKX2.5pos CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic screens

  19. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm(3) pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit(+) cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit(-) mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit(+) population is further enriched by selection for a CD133(+) endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  20. Restoring balance to B cells in ADA deficiency.

    PubMed

    Luning Prak, Eline T

    2012-06-01

    It is paradoxical that immunodeficiency disorders are associated with autoimmunity. Adenosine deaminase (ADA) deficiency, a cause of X-linked severe combined immunodeficiency (SCID), is a case in point. In this issue of the JCI, Sauer and colleagues investigate the B cell defects in ADA-deficient patients. They demonstrate that ADA patients receiving enzyme replacement therapy had B cell tolerance checkpoint defects. Remarkably, gene therapy with a retrovirus that expresses ADA resulted in the apparent correction of these defects, with normalization of peripheral B cell autoantibody frequencies. In vitro, agents that either block ADA or overexpress adenosine resulted in altered B cell receptor and TLR signaling. Collectively, these data implicate a B cell-intrinsic mechanism for alterations in B cell tolerance in the setting of partial ADA deficiency that is corrected by gene therapy.

  1. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review

    PubMed Central

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-01-01

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field. PMID:27426082

  2. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    PubMed

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.

  3. Recent insights in the paracrine modulation of cardiomyocyte contractility by cardiac endothelial cells.

    PubMed

    Noireaud, Jacques; Andriantsitohaina, Ramaroson

    2014-01-01

    The cardiac endothelium is formed by a continuous monolayer of cells that line the cavity of the heart (endocardial endothelial cells (EECs)) and the luminal surface of the myocardial blood vessels (intramyocardial capillary endothelial cells (IMCEs)). EECs and IMCEs can exercise substantial control over the contractility of cardiomyocytes by releasing various factors such as nitric oxide (NO) via a constitutive endothelial NO-synthase (eNOS), endothelin-1, prostaglandins, angiotensin II, peptide growth factors, and neuregulin-1. The purpose of the present paper is actually to shortly review recent new information concerning cardiomyocytes as effectors of endothelium paracrine signaling, focusing particularly on contractile function. The modes of action and the regulatory paracrine role of the main mediators delivered by cardiac endothelial cells upon cardiac contractility identified in cardiomyocytes are complex and not fully described. Thus, careful evaluation of new therapeutic approaches is required targeting important physiological signaling pathways, some of which have been until recently considered as deleterious, like reactive oxygen species. Future works in the field of cardiac endothelial cells and cardiac function will help to better understand the implication of these mediators in cardiac physiopathology.

  4. Recent Insights in the Paracrine Modulation of Cardiomyocyte Contractility by Cardiac Endothelial Cells

    PubMed Central

    Andriantsitohaina, Ramaroson

    2014-01-01

    The cardiac endothelium is formed by a continuous monolayer of cells that line the cavity of the heart (endocardial endothelial cells (EECs)) and the luminal surface of the myocardial blood vessels (intramyocardial capillary endothelial cells (IMCEs)). EECs and IMCEs can exercise substantial control over the contractility of cardiomyocytes by releasing various factors such as nitric oxide (NO) via a constitutive endothelial NO-synthase (eNOS), endothelin-1, prostaglandins, angiotensin II, peptide growth factors, and neuregulin-1. The purpose of the present paper is actually to shortly review recent new information concerning cardiomyocytes as effectors of endothelium paracrine signaling, focusing particularly on contractile function. The modes of action and the regulatory paracrine role of the main mediators delivered by cardiac endothelial cells upon cardiac contractility identified in cardiomyocytes are complex and not fully described. Thus, careful evaluation of new therapeutic approaches is required targeting important physiological signaling pathways, some of which have been until recently considered as deleterious, like reactive oxygen species. Future works in the field of cardiac endothelial cells and cardiac function will help to better understand the implication of these mediators in cardiac physiopathology. PMID:24745027

  5. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model.

    PubMed

    Nguyen, Mai-Dung; Tinney, Joseph P; Ye, Fei; Elnakib, Ahmed A; Yuan, Fangping; El-Baz, Ayman; Sethu, Palaniappan; Keller, Bradley B; Giridharan, Guruprasad A

    2015-02-17

    Hemodynamic mechanical cues play a critical role in the early development and functional maturation of cardiomyocytes (CM). Therefore, tissue engineering approaches that incorporate immature CM into functional cardiac tissues capable of recovering or replacing damaged cardiac muscle require physiologically relevant environments to provide the appropriate mechanical cues. The goal of this work is to better understand the subcellular responses of immature cardiomyocytes using an in vitro cardiac cell culture model that realistically mimics in vivo mechanical conditions, including cyclical fluid flows, chamber pressures, and tissue strains that could be experienced by implanted cardiac tissues. Cardiomyocytes were cultured in a novel microfluidic cardiac cell culture model (CCCM) to achieve accurate replication of the mechanical cues experienced by ventricular CM. Day 10 chick embryonic ventricular CM (3.5 × 10(4) cell clusters per cell chamber) were cultured for 4 days in the CCCM under cyclic mechanical stimulation (10 mmHg, 8-15% stretch, 2 Hz frequency) and ventricular cells from the same embryo were cultured in a static condition for 4 days as controls. Additionally, ventricular cell suspensions and ventricular tissue from day 16 chick embryo were collected and analyzed for comparison with CCCM cultured CM. The gene expressions and protein synthesis of calcium handling proteins decreased significantly during the isolation process. Mechanical stimulation of the cultured CM using the CCCM resulted in an augmentation of gene expression and protein synthesis of calcium handling proteins compared to the 2D constructs cultured in the static conditions. Further, the CCCM conditioned 2D constructs have a higher beat rate and contractility response to isoproterenol. These results demonstrate that early mechanical stimulation of embryonic cardiac tissue is necessary for tissue proliferation and for protein synthesis of the calcium handling constituents required for tissue

  6. Fibrogenic Potential of PW1/Peg3 Expressing Cardiac Stem Cells.

    PubMed

    Yaniz-Galende, Elisa; Roux, Maguelonne; Nadaud, Sophie; Mougenot, Nathalie; Bouvet, Marion; Claude, Olivier; Lebreton, Guillaume; Blanc, Catherine; Pinet, Florence; Atassi, Fabrice; Perret, Claire; Dierick, France; Dussaud, Sébastien; Leprince, Pascal; Trégouët, David-Alexandre; Marazzi, Giovanna; Sassoon, David; Hulot, Jean-Sébastien

    2017-08-08

    Pw1 gene expression is a marker of adult stem cells in a wide range of tissues. PW1-expressing cells are detected in the heart but are not well characterized. The authors characterized cardiac PW1-expressing cells and their cell fate potentials in normal hearts and during cardiac remodeling following myocardial infarction (MI). A human cardiac sample was obtained from a patient presenting with reduced left ventricular (LV) function following a recent MI. The authors used the PW1(nLacZ+/-) reporter mouse to identify, track, isolate, and characterize PW1-expressing cells in the LV myocardium in normal and ischemic conditions 7 days after complete ligature of the left anterior descending coronary artery. In both human and mouse ischemic hearts, PW1 expression was found in cells that were mainly located in the infarct and border zones. Isolated cardiac resident PW1(+) cells form colonies and have the potential to differentiate into multiple cardiac and mesenchymal lineages, with preferential differentiation into fibroblast-like cells but not into cardiomyocytes. Lineage-tracing experiments revealed that PW1(+) cells differentiated into fibroblasts post-MI. Although the expression of c-Kit and PW1 showed little overlap in normal hearts, a marked increase in cells coexpressing both markers was observed in ischemic hearts (0.1 ± 0.0% in control vs. 5.7 ± 1.2% in MI; p < 0.001). In contrast to the small proportion of c-Kit(+)/PW1(-) cells that showed cardiogenic potential, c-Kit(+)/PW1(+) cells were fibrogenic. This study demonstrated the existence of a novel population of resident adult cardiac stem cells expressing PW1(+) and their involvement in fibrotic remodeling after MI. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors

    PubMed Central

    Skelton, Rhys J.P.; Khoja, Suhail; Almeida, Shone; Rapacchi, Stanislas; Han, Fei; Engel, James; Zhao, Peng; Hu, Peng; Stanley, Edouard G.; Elefanty, Andrew G.; Kwon, Murray

    2016-01-01

    Given the limited regenerative capacity of the heart, cellular therapy with stem cell-derived cardiac cells could be a potential treatment for patients with heart disease. However, reliable imaging techniques to longitudinally assess engraftment of the transplanted cells are scant. To address this issue, we used ferumoxytol as a labeling agent of human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) to facilitate tracking by magnetic resonance imaging (MRI) in a large animal model. Differentiating hESCs were exposed to ferumoxytol at different time points and varying concentrations. We determined that treatment with ferumoxytol at 300 μg/ml on day 0 of cardiac differentiation offered adequate cell viability and signal intensity for MRI detection without compromising further differentiation into definitive cardiac lineages. Labeled hESC-CPCs were transplanted by open surgical methods into the left ventricular free wall of uninjured pig hearts and imaged both ex vivo and in vivo. Comprehensive T2*-weighted images were obtained immediately after transplantation and 40 days later before termination. The localization and dispersion of labeled cells could be effectively imaged and tracked at days 0 and 40 by MRI. Thus, under the described conditions, ferumoxytol can be used as a long-term, differentiation-neutral cell-labeling agent to track transplanted hESC-CPCs in vivo using MRI. Significance The development of a safe and reproducible in vivo imaging technique to track the fate of transplanted human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) is a necessary step to clinical translation. An iron oxide nanoparticle (ferumoxytol)-based approach was used for cell labeling and subsequent in vivo magnetic resonance imaging monitoring of hESC-CPCs transplanted into uninjured pig hearts. The present results demonstrate the use of ferumoxytol labeling and imaging techniques in tracking the location and dispersion of cell grafts

  8. Restoration of Immune Surveillance in Lung Cancer by Natural Killer Cells

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0400 TITLE: Restoration of Immune Surveillance in Lung Cancer by Natural Killer Cells PRINCIPAL INVESTIGATOR...related to natural killer (NK) cells . The goal of this application is to uncover how a microRNA, namely miR183, can disrupt the expression of a critical...molecule, DAP12, that controls tumoricidal function in human Natural Killer (NK) Cells and to understand how nicotine, contained in tobacco smoke

  9. Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn-/- but not aged mdx mouse models for duchenne muscular dystrophy.

    PubMed

    Chun, Ju Lan; O'Brien, Robert; Song, Min Ho; Wondrasch, Blake F; Berry, Suzanne E

    2013-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy. DMD patients lack dystrophin protein and develop skeletal muscle pathology and dilated cardiomyopathy (DCM). Approximately 20% succumb to cardiac involvement. We hypothesized that mesoangioblast stem cells (aorta-derived mesoangioblasts [ADMs]) would restore dystrophin and alleviate or prevent DCM in animal models of DMD. ADMs can be induced to express cardiac markers, including Nkx2.5, cardiac tropomyosin, cardiac troponin I, and α-actinin, and adopt cardiomyocyte morphology. Transplantation of ADMs into the heart of mdx/utrn(-/-) mice prior to development of DCM prevented onset of cardiomyopathy, as measured by echocardiography, and resulted in significantly higher CD31 expression, consistent with new vessel formation. Dystrophin-positive cardiomyocytes and increased proliferation of endogenous Nestin(+) cardiac stem cells were detected in ADM-injected heart. Nestin(+) striated cells were also detected in four of five mdx/utrn(-/-) hearts injected with ADMs. In contrast, when ADMs were injected into the heart of aged mdx mice with advanced fibrosis, no functional improvement was detected by echocardiography. Instead, ADMs exacerbated some features of DCM. No dystrophin protein, increase in CD31 expression, or increase in Nestin(+) cell proliferation was detected following ADM injection in aged mdx heart. Dystrophin was observed following transplantation of ADMs into the hearts of young mdx mice, however, suggesting that pathology in aged mdx heart may alter the fate of donor stem cells. In summary, ADMs delay or prevent development of DCM in dystrophin-deficient heart, but timing of stem cell transplantation may be critical for achieving benefit with cell therapy in DMD cardiac muscle.

  10. Injection of Vessel-Derived Stem Cells Prevents Dilated Cardiomyopathy and Promotes Angiogenesis and Endogenous Cardiac Stem Cell Proliferation in mdx/utrn−/− but Not Aged mdx Mouse Models for Duchenne Muscular Dystrophy

    PubMed Central

    Chun, Ju Lan; O'Brien, Robert; Song, Min Ho; Wondrasch, Blake F.

    2013-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy. DMD patients lack dystrophin protein and develop skeletal muscle pathology and dilated cardiomyopathy (DCM). Approximately 20% succumb to cardiac involvement. We hypothesized that mesoangioblast stem cells (aorta-derived mesoangioblasts [ADMs]) would restore dystrophin and alleviate or prevent DCM in animal models of DMD. ADMs can be induced to express cardiac markers, including Nkx2.5, cardiac tropomyosin, cardiac troponin I, and α-actinin, and adopt cardiomyocyte morphology. Transplantation of ADMs into the heart of mdx/utrn−/− mice prior to development of DCM prevented onset of cardiomyopathy, as measured by echocardiography, and resulted in significantly higher CD31 expression, consistent with new vessel formation. Dystrophin-positive cardiomyocytes and increased proliferation of endogenous Nestin+ cardiac stem cells were detected in ADM-injected heart. Nestin+ striated cells were also detected in four of five mdx/utrn−/− hearts injected with ADMs. In contrast, when ADMs were injected into the heart of aged mdx mice with advanced fibrosis, no functional improvement was detected by echocardiography. Instead, ADMs exacerbated some features of DCM. No dystrophin protein, increase in CD31 expression, or increase in Nestin+ cell proliferation was detected following ADM injection in aged mdx heart. Dystrophin was observed following transplantation of ADMs into the hearts of young mdx mice, however, suggesting that pathology in aged mdx heart may alter the fate of donor stem cells. In summary, ADMs delay or prevent development of DCM in dystrophin-deficient heart, but timing of stem cell transplantation may be critical for achieving benefit with cell therapy in DMD cardiac muscle. PMID:23283493

  11. Evidence for a discrete UTP receptor in cardiac endothelial cells.

    PubMed Central

    Yang, S.; Buxton, I. L.; Probert, C. B.; Talbot, J. N.; Bradley, M. E.

    1996-01-01

    1. We have examined the effects of various purine and pyrimidine nucleotides upon cells cultured from guinea-pig cardiac endothelium (CEC), and find the P2Y-agonist 2-methylthioadenosine triphosphate (2MeSATP) to be a potent (EC50 = 85 +/- 10.2 nM) stimulator of increase in intracellular calcium concentrations, while uridine 5'-triphosphate (UTP) and adenosine 5'-triphosphate (ATP) are less potent but equipotent with one another (EC50s = 2.1 +/- 0.3 and 1.8 +/- 0.2 microM, respectively). 2. While the P2Y receptor exhibited rapid homologous desensitization, this had no effect upon subsequent responsiveness of CEC to either ATP or UTP. Effects of maximal concentrations of ATP and UTP were not only additive, but did not cross-desensitize. Responses to UTP (but not to ATP or 2MeSATP) were blocked by treatment with pertussis toxin (PTX); all three nucleotides appeared to liberate calcium from an intracellular pool. 3. Suramin (30 microM) significantly (P < 0.05) increased the EC50 for ATP-dependent increases in intracellular calcium (5.3 +/- 2.2 microM vs. 2.0 +/- 0.9 microM in the absence of suramin), while it completely blocked the response to 2MeSATP. Suramin had no effect upon responses to UTP at concentrations of 100 microM. 4. We conclude that in addition to the P2Y and P2U subtypes of the ATP receptor, an additional receptor responsive to UTP but exhibiting no affinity for purine nucleotides is present in CEC; this "pyrimidine receptor' liberates intracellular calcium via a G-protein, and may partly mediate the contractile response to UTP in the coronary vasculature. PMID:8730756

  12. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    PubMed

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  13. Dendritic cells restore CD8+ T cell reactivity to autologous HIV-1.

    PubMed

    Smith, Kellie N; Mailliard, Robbie B; Larsen, Brendan B; Wong, Kim; Gupta, Phalguni; Mullins, James I; Rinaldo, Charles R

    2014-09-01

    Recall T cell responses to HIV-1 antigens are used as a surrogate for endogenous cellular immune responses generated during infection. Current methods of identifying antigen-specific T cell reactivity in HIV-1 infection use bulk peripheral blood mononuclear cells (PBMC) yet ignore professional antigen-presenting cells (APC) that could reveal otherwise hidden responses. In the present study, peptides representing autologous variants of major histocompatibility complex (MHC) class I-restricted epitopes from HIV-1 Gag and Env were used as antigens in gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and polyfunctional cytokine assays. Here we show that dendritic cells (DC) enhanced T cell reactivity at all stages of disease progression but specifically restored T cell reactivity after combination antiretroviral therapy (cART) to early infection levels. Type 1 cytokine secretion was also enhanced by DC and was most apparent late post-cART. We additionally show that DC reveal polyfunctional T cell responses after many years of treatment, when potential immunotherapies would be implemented. These data underscore the potential efficacy of DC immunotherapy that aims to awaken a dormant, autologous, HIV-1-specific CD8+ T cell response. Assessment of endogenous HIV-1-specific T cell responses is critical for generating immunotherapies for subjects on cART. Current assays ignore the ability of dendritic cells to reveal these responses and may therefore underestimate the breadth and magnitude of T cell reactivity. As DC do not prime new responses in these assays, it can be assumed that the observed responses are not detected without appropriate stimulation. This is important because dogma states that HIV-1 mutates to evade host recognition and that CD8+ cytotoxic T lymphocyte (CTL) failure is due to the inability of T cells to recognize the autologous virus. The results presented here indicate that responses to autologous virus are generated during infection

  14. The Histone Methyltransferase Inhibitor BIX01294 Enhances the Cardiac Potential of Bone Marrow Cells

    PubMed Central

    Mezentseva, Nadejda V.; Yang, Jinpu; Kaur, Keerat; Iaffaldano, Grazia; Rémond, Mathieu C.; Eisenberg, Carol A.

    2013-01-01

    Bone marrow (BM) has long been considered a potential stem cell source for cardiac repair due to its abundance and accessibility. Although previous investigations have generated cardiomyocytes from BM, yields have been low, and far less than produced from ES or induced pluripotent stem cells (iPSCs). Since differentiation of pluripotent cells is difficult to control, we investigated whether BM cardiac competency could be enhanced without making cells pluripotent. From screens of various molecules that have been shown to assist iPSC production or maintain the ES cell phenotype, we identified the G9a histone methyltransferase inhibitor BIX01294 as a potential reprogramming agent for converting BM cells to a cardiac-competent phenotype. BM cells exposed to BIX01294 displayed significantly elevated expression of brachyury, Mesp1, and islet1, which are genes associated with embryonic cardiac progenitors. In contrast, BIX01294 treatment minimally affected ectodermal, endodermal, and pluripotency gene expression by BM cells. Expression of cardiac-associated genes Nkx2.5, GATA4, Hand1, Hand2, Tbx5, myocardin, and titin was enhanced 114, 76, 276, 46, 635, 123, and 5-fold in response to the cardiogenic stimulator Wnt11 when BM cells were pretreated with BIX01294. Immunofluorescent analysis demonstrated that BIX01294 exposure allowed for the subsequent display of various muscle proteins within the cells. The effect of BIX01294 on the BM cell phenotype and differentiation potential corresponded to an overall decrease in methylation of histone H3 at lysine9, which is the primary target of G9a histone methyltransferase. In summary, these data suggest that BIX01294 inhibition of chromatin methylation reprograms BM cells to a cardiac-competent progenitor phenotype. PMID:22994322

  15. The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow cells.

    PubMed

    Mezentseva, Nadejda V; Yang, Jinpu; Kaur, Keerat; Iaffaldano, Grazia; Rémond, Mathieu C; Eisenberg, Carol A; Eisenberg, Leonard M

    2013-02-15

    Bone marrow (BM) has long been considered a potential stem cell source for cardiac repair due to its abundance and accessibility. Although previous investigations have generated cardiomyocytes from BM, yields have been low, and far less than produced from ES or induced pluripotent stem cells (iPSCs). Since differentiation of pluripotent cells is difficult to control, we investigated whether BM cardiac competency could be enhanced without making cells pluripotent. From screens of various molecules that have been shown to assist iPSC production or maintain the ES cell phenotype, we identified the G9a histone methyltransferase inhibitor BIX01294 as a potential reprogramming agent for converting BM cells to a cardiac-competent phenotype. BM cells exposed to BIX01294 displayed significantly elevated expression of brachyury, Mesp1, and islet1, which are genes associated with embryonic cardiac progenitors. In contrast, BIX01294 treatment minimally affected ectodermal, endodermal, and pluripotency gene expression by BM cells. Expression of cardiac-associated genes Nkx2.5, GATA4, Hand1, Hand2, Tbx5, myocardin, and titin was enhanced 114, 76, 276, 46, 635, 123, and 5-fold in response to the cardiogenic stimulator Wnt11 when BM cells were pretreated with BIX01294. Immunofluorescent analysis demonstrated that BIX01294 exposure allowed for the subsequent display of various muscle proteins within the cells. The effect of BIX01294 on the BM cell phenotype and differentiation potential corresponded to an overall decrease in methylation of histone H3 at lysine9, which is the primary target of G9a histone methyltransferase. In summary, these data suggest that BIX01294 inhibition of chromatin methylation reprograms BM cells to a cardiac-competent progenitor phenotype.

  16. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    PubMed Central

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-01-01

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity. PMID:27735842

  17. Cardiac tissue engineering in magnetically actuated scaffolds

    NASA Astrophysics Data System (ADS)

    Sapir, Yulia; Polyak, Boris; Cohen, Smadar

    2014-01-01

    Cardiac tissue engineering offers new possibilities for the functional and structural restoration of damaged or lost heart tissue by applying cardiac patches created in vitro. Engineering such functional cardiac patches is a complex mission, involving material design on the nano- and microscale as well as the application of biological cues and stimulation patterns to promote cell survival and organization into a functional cardiac tissue. Herein, we present a novel strategy for creating a functional cardiac patch by combining the use of a macroporous alginate scaffold impregnated with magnetically responsive nanoparticles (MNPs) and the application of external magnetic stimulation. Neonatal rat cardiac cells seeded within the magnetically responsive scaffolds and stimulated by an alternating magnetic field of 5 Hz developed into matured myocardial tissue characterized by anisotropically organized striated cardiac fibers, which preserved its features for longer times than non-stimulated constructs. A greater activation of AKT phosphorylation in cardiac cell constructs after applying a short-term (20 min) external magnetic field indicated the efficacy of magnetic stimulation to actuate at a distance and provided a possible mechanism for its action. Our results point to a synergistic effect of magnetic field stimulation together with nanoparticulate features of the scaffold surface as providing the regenerating environment for cardiac cells driving their organization into functionally mature tissue.

  18. Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts.

    PubMed

    Yu, Jinzhu; Entcheva, Emilia

    2016-01-01

    We describe in detail a method to introduce optogenetic actuation tools, a mutant version of channelrhodopsin-2, ChR2(H134R), and archaerhodopsin (ArchT), into primary cardiac fibroblasts (cFB) in vitro by adenoviral infection to yield quick, robust, and consistent expression. Instructions on adjusting infection parameters such as the multiplicity of infection and virus incubation duration are provided to generalize the method for different lab settings or cell types. Specific conditions are discussed to create hybrid co-cultures of the optogenetically modified cFB and non-transformed cardiomyocytes to obtain light-sensitive excitable cardiac syncytium, including stencil-patterned cell growth. We also describe an all-optical framework for the functional testing of responsiveness of these opsins in cFB. The presented methodology provides cell-specific tools for the mechanistic investigation of the functional bioelectric contribution of different non-excitable cells in the heart and their electrical coupling to cardiomyocytes under different conditions.

  19. Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts

    PubMed Central

    Yu, Jinzhu; Entcheva, Emilia

    2016-01-01

    We describe in detail a method to introduce optogenetic actuation tools, a mutant version of channelrhodopsin- 2, ChR2(H134R), and archaerhodopsin (ArchT), into primary cardiac fibroblasts (cFB) in vitro by adenoviral infection to yield quick, robust, and consistent expression. Instructions on adjusting infection parameters such as the multiplicity of infection and virus incubation duration are provided to generalize the method for different lab settings or cell types. Specific conditions are discussed to create hybrid co-cultures of the optogenetically modified cFB and non-transformed cardiomyocytes to obtain light- sensitive excitable cardiac syncytium, including stencil-patterned cell growth. We also describe an all-optical framework for the functional testing of responsiveness of these opsins in cFB. The presented methodology provides cell-specific tools for the mechanistic investigation of the functional bioelectric contribution of different non-excitable cells in the heart and their electrical coupling to cardiomyocytes under different conditions. PMID:26965132

  20. Platelet endothelial cell adhesion molecule-1 mediates endothelial-cardiomyocyte communication and regulates cardiac function.

    PubMed

    McCormick, Margaret E; Collins, Caitlin; Makarewich, Catherine A; Chen, Zhongming; Rojas, Mauricio; Willis, Monte S; Houser, Steven R; Tzima, Ellie

    2015-01-19

    Dilated cardiomyopathy is characterized by impaired contractility of cardiomyocytes, ventricular chamber dilatation, and systolic dysfunction. Although mutations in genes expressed in the cardiomyocyte are the best described causes of reduced contractility, the importance of endothelial-cardiomyocyte communication for proper cardiac function is increasingly appreciated. In the present study, we investigate the role of the endothelial adhesion molecule platelet endothelial cell adhesion molecule (PECAM-1) in the regulation of cardiac function. Using cell culture and animal models, we show that PECAM-1 expressed in endothelial cells (ECs) regulates cardiomyocyte contractility and cardiac function via the neuregulin-ErbB signaling pathway. Conscious echocardiography revealed left ventricular (LV) chamber dilation and systolic dysfunction in PECAM-1(-/-) mice in the absence of histological abnormalities or defects in cardiac capillary density. Despite deficits in global cardiac function, cardiomyocytes isolated from PECAM-1(-/-) hearts displayed normal baseline and isoproterenol-stimulated contractility. Mechanistically, absence of PECAM-1 resulted in elevated NO/ROS signaling and NRG-1 release from ECs, which resulted in augmented phosphorylation of its receptor ErbB2. Treatment of cardiomyocytes with conditioned media from PECAM-1(-/-) ECs resulted in enhanced ErbB2 activation, which was normalized by pre-treatment with an NRG-1 blocking antibody. To determine whether normalization of increased NRG-1 levels could correct cardiac function, PECAM-1(-/-) mice were treated with the NRG-1 blocking antibody. Echocardiography showed that treatment significantly improved cardiac function of PECAM-1(-/-) mice, as revealed by increased ejection fraction and fractional shortening. We identify a novel role for PECAM-1 in regulating cardiac function via a paracrine NRG1-ErbB pathway. These data highlight the importance of tightly regulated cellular communication for proper

  1. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    NASA Astrophysics Data System (ADS)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  2. Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair.

    PubMed

    Barad, Lili; Schick, Revital; Zeevi-Levin, Naama; Itskovitz-Eldor, Joseph; Binah, Ofer

    2014-11-01

    Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have the capacity to differentiate into any specialized cell type, including cardiomyocytes. Therefore, hESC-derived and hiPSC-derived cardiomyocytes (hESC-CMs and hiPSC-CMs, respectively) offer great potential for cardiac regenerative medicine. Unlike some organs, the heart has a limited ability to regenerate, and dysfunction resulting from significant cardiomyocyte loss under pathophysiological conditions, such as myocardial infarction (MI), can lead to heart failure. Unfortunately, for patients with end-stage heart failure, heart transplantation remains the main alternative, and it is insufficient, mainly because of the limited availability of donor organs. Although left ventricular assist devices are progressively entering clinical practice as a bridge to transplantation and even as an optional therapy, cell replacement therapy presents a plausible alternative to donor organ transplantation. During the past decade, multiple candidate cells were proposed for cardiac regeneration, and their mechanisms of action in the myocardium have been explored. The purpose of this article is to critically review the comprehensive research involving the use of hESCs and hiPSCs in MI models and to discuss current controversies, unresolved issues, challenges, and future directions.

  3. Innovation in basic science: stem cells and their role in the treatment of paediatric cardiac failure--opportunities and challenges.

    PubMed

    Kaushal, Sunjay; Jacobs, Jeffrey Phillip; Gossett, Jeffrey G; Steele, Ann; Steele, Peter; Davis, Craig R; Pahl, Elfriede; Vijayan, Kalpana; Asante-Korang, Alfred; Boucek, Robert J; Backer, Carl L; Wold, Loren E

    2009-11-01

    Heart failure is a leading cause of death worldwide. Current therapies only delay progression of the cardiac disease or replace the diseased heart with cardiac transplantation. Stem cells represent a recently discovered novel approach to the treatment of cardiac failure that may facilitate the replacement of diseased cardiac tissue and subsequently lead to improved cardiac function and cardiac regeneration. A stem cell is defined as a cell with the properties of being clonogenic, self-renewing, and multipotent. In response to intercellular signalling or environmental stimuli, stem cells differentiate into cells derived from any of the three primary germ layers: ectoderm, endoderm, and mesoderm, a powerful advantage for regenerative therapies. Meanwhile, a cardiac progenitor cell is a multipotent cell that can differentiate into cells of any of the cardiac lineages, including endothelial cells and cardiomyocytes. Stem cells can be classified into three categories: (1) adult stem cells, (2) embryonic stem cells, and (3) induced pluripotential cells. Adult stem cells have been identified in numerous organs and tissues in adults, including bone-marrow, skeletal muscle, adipose tissue, and, as was recently discovered, the heart. Embryonic stem cells are derived from the inner cell mass of the blastocyst stage of the developing embryo. Finally through transcriptional reprogramming, somatic cells, such as fibroblasts, can be converted into induced pluripotential cells that resemble embryonic stem cells. Four classes of stem cells that may lead to cardiac regeneration are: (1) Embryonic stem cells, (2) Bone Marrow derived stem cells, (3) Skeletal myoblasts, and (4) Cardiac stem cells and cardiac progenitor cells. Embryonic stem cells are problematic because of several reasons: (1) the formation of teratomas, (2) potential immunologic cellular rejection, (3) low efficiency of their differentiation into cardiomyocytes, typically 1% in culture, and (4) ethical and political

  4. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    SciTech Connect

    Madonna, Rosalinda; Shelat, Harnath; Xue, Qun; Willerson, James T.; De Caterina, Raffaele; Geng, Yong-Jian

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  5. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats.

    PubMed

    Jumabay, Medet; Matsumoto, Taro; Yokoyama, Shin-ichiro; Kano, Koichiro; Kusumi, Yoshiaki; Masuko, Takayuki; Mitsumata, Masako; Saito, Satoshi; Hirayama, Atsushi; Mugishima, Hideo; Fukuda, Noboru

    2009-11-01

    Adipose tissue-derived stem cells have been demonstrated to differentiate into cardiomyocytes and vascular endothelial cells. Here we investigate whether mature adipocyte-derived dedifferentiated fat (DFAT) cells can differentiate to cardiomyocytes in vitro and in vivo by establishing DFAT cell lines via ceiling culture of mature adipocytes. DFAT cells were obtained by dedifferentiation of mature adipocytes from GFP-transgenic rats. We evaluated the differentiating ability of DFAT cells into cardiomyocytes by detection of the cardiac phenotype markers in immunocytochemical and RT-PCR analyses in vitro. We also examined effects of the transplantation of DFAT cells into the infarcted heart of rats on cardiomyocytes regeneration and angiogenesis. DFAT cells expressed cardiac phenotype markers when cocultured with cardiomyocytes and also when grown in MethoCult medium in the absence of cardiomyocytes, indicating that DFAT cells have the potential to differentiate to cardiomyocyte lineage. In a rat acute myocardial infarction model, transplanted DFAT cells were efficiently accumulated in infarcted myocardium and expressed cardiac sarcomeric actin at 8 weeks after the cell transplantation. The transplantation of DFAT cells significantly (p<0.05) increased capillary density in the infarcted area when compared with hearts from saline-injected control rats. We demonstrated that DFAT cells have the ability to differentiate to cardiomyocyte-like cells in vitro and in vivo. In addition, transplantation of DFAT cells led to neovascuralization in rats with myocardial infarction. We propose that DFAT cells represent a promising candidate cell source for cardiomyocyte regeneration in severe ischemic heart disease.

  6. Understanding a Period-Doubling Bifurcation in Cardiac Cells

    NASA Astrophysics Data System (ADS)

    Berger, Carolyn; Zhao, Xiaopeng; Schaeffer, David; Idriss, Salim; Gauthier, Daniel

    2008-03-01

    Bifurcations in the electrical response of cardiac tissue can destabilize spatio-temporal waves of electrochemical activity in the heart, leading to tachycardia or even fibrillation. Therefore, it is important to classify these bifurcations so that we can understand the mechanisms that cause instabilities in cardiac tissue. We have determined that the period-doubling bifurcation in paced myocardium is of the unfolded border-collision type. To understand how this new type of bifurcation manifest itself in cardiac tissue, we have also studied the role of calcium in inducing the bifurcation. We will discuss the nature of the unfolded border-collision bifurcation and present our results of dual voltage and calcium measurements in a frog ventricle preparation.

  7. Challenges to success in heart failure: Cardiac cell therapies in patients with heart diseases.

    PubMed

    Oh, Hidemasa; Ito, Hiroshi; Sano, Shunji

    2016-11-01

    Heart failure remains the leading cause of death worldwide, and is a burgeoning problem in public health due to the limited capacity of postnatal hearts to self-renew. The pathophysiological changes in injured hearts can sometimes be manifested as scar formation or myocardial degradation, rather than supplemental muscle regeneration to replenish lost tissue during the healing processes. Stem cell therapies have been investigated as a possible treatment approach for children and adults with potentially fatal cardiovascular disease that does not respond to current medical therapies. Although the heart is one of the least regenerative organs in mammals, discoveries made during the past few decades have improved our understanding of cardiac development and resident stem/progenitor pools, which may be lineage-restricted subpopulations during the post-neonatal stage of cardiac morphogenesis. Recently, investigation has specifically focused on factors that activate either endogenous progenitor cells or preexisting cardiomyocytes, to regenerate cardiovascular cells and replace the damaged heart tissues. The discovery of induced pluripotent stem cells has advanced our technological capability to direct cardiac reprogramming by essential factors that are crucial for heart field completion in each stage. Cardiac tissue engineering technology has recently shown progress in generating myocardial tissue on human native cardiac extracellular matrix scaffolds. This review summarizes recent advances in the field of cardiac cell therapies with an emphasis on cellular mechanisms, such as bone marrow stem cells and cardiac progenitor cells, which show the high potential for success in preclinical and clinical meta-analysis studies. Expanding our current understanding of mechanisms of self-renewal in the neonatal mammalian heart may lead to the development of novel cardiovascular regenerative medicines for pediatric heart diseases. Copyright © 2016 Japanese College of Cardiology

  8. Induced Pluripotent Stem Cells Restore Function in a Human Cell Loss Model of Open-Angle Glaucoma

    PubMed Central

    Abu-Hassan, Diala W; Li, Xinbo; Ryan, Eileen I; Acott, Ted S; Kelley, Mary J

    2015-01-01

    Normally, trabecular meshwork (TM) and Schlemm's canal inner wall endothelial cells within the aqueous humor outflow pathway maintain intraocular pressure within a narrow safe range. Elevation in intraocular pressure, because of the loss of homeostatic regulation by these outflow pathway cells, is the primary risk factor for vision loss due to glaucomatous optic neuropathy. A notable feature associated with glaucoma is outflow pathway cell loss. Using controlled cell loss in ex vivo perfused human outflow pathway organ culture, we developed compelling experimental evidence that this level of cell loss compromises intraocular pressure homeostatic function. This function was restored by repopulation of the model with fresh TM cells. We then differentiated induced pluripotent stem cells (iPSCs) and used them to repopulate this cell depletion model. These differentiated cells (TM-like iPSCs) became similar to TM cells in both morphology and expression patterns. When transplanted, they were able to fully restore intraocular pressure homeostatic function. This successful transplantation of TM-like iPSCs establishes the conceptual feasibility of using autologous stem cells to restore intraocular pressure regulatory function in open-angle glaucoma patients, providing a novel alternative treatment option. Stem Cells 2015;33:751–761 PMID:25377070

  9. Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma.

    PubMed

    Abu-Hassan, Diala W; Li, Xinbo; Ryan, Eileen I; Acott, Ted S; Kelley, Mary J

    2015-03-01

    Normally, trabecular meshwork (TM) and Schlemm's canal inner wall endothelial cells within the aqueous humor outflow pathway maintain intraocular pressure within a narrow safe range. Elevation in intraocular pressure, because of the loss of homeostatic regulation by these outflow pathway cells, is the primary risk factor for vision loss due to glaucomatous optic neuropathy. A notable feature associated with glaucoma is outflow pathway cell loss. Using controlled cell loss in ex vivo perfused human outflow pathway organ culture, we developed compelling experimental evidence that this level of cell loss compromises intraocular pressure homeostatic function. This function was restored by repopulation of the model with fresh TM cells. We then differentiated induced pluripotent stem cells (iPSCs) and used them to repopulate this cell depletion model. These differentiated cells (TM-like iPSCs) became similar to TM cells in both morphology and expression patterns. When transplanted, they were able to fully restore intraocular pressure homeostatic function. This successful transplantation of TM-like iPSCs establishes the conceptual feasibility of using autologous stem cells to restore intraocular pressure regulatory function in open-angle glaucoma patients, providing a novel alternative treatment option. © 2014 The Authors. STEM CELLS Published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. Ovarian-Cell-Like Cells from Skin Stem Cells Restored Estradiol Production and Estrus Cycling in Ovariectomized Mice

    PubMed Central

    Park, Bong-Wook; Pan, Bo; Toms, Derek; Huynh, Evanna; Byun, June-Ho; Lee, Yeon-Mi; Shen, Wei

    2014-01-01

    Reduction of estradiol production and high serum concentrations of follicular stimulating hormone (FSH) are endocrine disorders associated with premature ovarian failure. Here, we report that transplantation of ovarian-like cells differentiated from stem cells restored endogenous serum estradiol levels. Stem cells were isolated from postnatal mouse skin and differentiated into ovarian-cell-like cells that are consistent with female germ, and ovarian follicle somatic cells. The ovarian-cell-like cells were transplanted into ovariectomized mice (Cell Trans), whereas control mice were subjected to bilateral ovariectomies without cell transplantation (OVX). Using vaginal cytology analysis, it was revealed that in 13 out of 19 Cell Trans mice, estrus cycles were restored around 8 weeks after cell transplantation and were maintained until 16 weeks post-transplantation, whereas in the OVX group, all mice were arrested at metestrus/diestrus of the estrus cycle. The uterine weight in the Cell Trans group was similar to sham operation mice (Sham OP), while severe uterine atrophy and a decreased uterine weight were observed in the OVX group. Histologically, ectopic follicle-like structures and blood vessels were found within and around the transplants. At 12–14 weeks after cell transplantation, mean serum estradiol level in Cell Trans mice (178.0±35 pg/mL) was comparable to that of the Sham OP group (188.9±29 pg/mL), whereas it was lower in the OVX group (59.0±4 pg/mL). Serum FSH concentration increased in the OVX group (1.62±0.32 ng/mL) compared with the Sham OP group (0.39±0.34 ng/mL). Cell Trans mice had a similar FSH level (0.94±0.23 ng/mL; P<0.05) to Sham OP mice. Our results suggest that ovarian somatic cells differentiated from stem cells are functional in vivo. In addition to providing insights into the function of ovarian somatic cells derived from stem cells, our study may offer potential therapeutic means for patients with hypo-estradiol levels

  11. Cardiac Non-myocyte Cells Show Enhanced Pharmacological Function Suggestive of Contractile Maturity in Stem Cell Derived Cardiomyocyte Microtissues

    PubMed Central

    Ravenscroft, Stephanie M.; Pointon, Amy; Williams, Awel W.; Cross, Michael J.; Sidaway, James E.

    2016-01-01

    The immature phenotype of stem cell derived cardiomyocytes is a significant barrier to their use in translational medicine and pre-clinical in vitro drug toxicity and pharmacological analysis. Here we have assessed the contribution of non-myocyte cells on the contractile function of co-cultured human embryonic stem cell derived cardiomyocytes (hESC-CMs) in spheroid microtissue format. Microtissues were formed using a scaffold free 96-well cell suspension method from hESC-CM cultured alone (CM microtissues) or in combination with human primary cardiac microvascular endothelial cells and cardiac fibroblasts (CMEF microtissues). Contractility was characterized with fluorescence and video-based edge detection. CMEF microtissues displayed greater Ca2+ transient amplitudes, enhanced spontaneous contraction rate and remarkably enhanced contractile function in response to both positive and negative inotropic drugs, suggesting a more mature contractile phenotype than CM microtissues. In addition, for several drugs the enhanced contractile response was not apparent when endothelial cell or fibroblasts from a non-cardiac tissue were used as the ancillary cells. Further evidence of maturity for CMEF microtissues was shown with increased expression of genes that encode proteins critical in cardiac Ca2+ handling (S100A1), sarcomere assembly (telethonin/TCAP) and β-adrenergic receptor signalling. Our data shows that compared with single cell-type cardiomyocyte in vitro models, CMEF microtissues are superior at predicting the inotropic effects of drugs, demonstrating the critical contribution of cardiac non-myocyte cells in mediating functional cardiotoxicity. PMID:27125969

  12. Comparing mouse and human pluripotent stem cell derived cardiac cells: Both systems have advantages for pharmacological and toxicological screening.

    PubMed

    Lagerqvist, E L; Finnin, B A; Elliott, D A; Anderson, D J; Wu, S M; Pouton, C W; Haynes, J M

    2015-01-01

    Pluripotent stem cells offer an unparalleled opportunity to investigate cardiac physiology, pharmacology, toxicology and pathophysiology. In this paper we describe the use of both mouse (Nkx2-5(eGFP/w)) and human (NKX2-5(eGFP/w)) pluripotent stem cell reporter lines, differentiated toward cardiac lineage, for live single cell high acquisition rate calcium imaging. We also assess the potential of NKX2-5(eGFP/w) cardiac lineage cells for use toxicological screening as well as establish their sensitivity to a shift between low and high oxygen environments. Differentiated mouse Nkx2-5(eGFP/w) cells demonstrated a wide range of spontaneous oscillation rates that could be reduced by ryanodine (10μM), thapsigargin (1μM) and ZD7288 (10μM). In contrast human NKX2-5(eGFP/w) cell activity was only reduced by thapsigargin (1μM). Human cell survival was sensitive to the addition of trastuzumab and doxorubicin, while the switch from a low to a high oxygen environment affected oscillation frequency. We suggest that the human NKX2-5(eGFP/w) cells are less suitable for studies of compounds affecting cardiac pacemaker activity than mouse Nkx2-5(eGFP/w) cells, but are very suitable for cardiac toxicity studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients.

    PubMed

    Pala, Francesca; Morbach, Henner; Castiello, Maria Carmina; Schickel, Jean-Nicolas; Scaramuzza, Samantha; Chamberlain, Nicolas; Cassani, Barbara; Glauzy, Salome; Romberg, Neil; Candotti, Fabio; Aiuti, Alessandro; Bosticardo, Marita; Villa, Anna; Meffre, Eric

    2015-10-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by microthrombocytopenia, eczema, and high susceptibility to developing tumors and autoimmunity. Recent evidence suggests that B cells may be key players in the pathogenesis of autoimmunity in WAS. Here, we assessed whether WAS protein deficiency (WASp deficiency) affects the establishment of B cell tolerance by testing the reactivity of recombinant antibodies isolated from single B cells from 4 WAS patients before and after gene therapy (GT). We found that pre-GT WASp-deficient B cells were hyperreactive to B cell receptor stimulation (BCR stimulation). This hyperreactivity correlated with decreased frequency of autoreactive new emigrant/transitional B cells exiting the BM, indicating that the BCR signaling threshold plays a major role in the regulation of central B cell tolerance. In contrast, mature naive B cells from WAS patients were enriched in self-reactive clones, revealing that peripheral B cell tolerance checkpoint dysfunction is associated with impaired suppressive function of WAS regulatory T cells. The introduction of functional WASp by GT corrected the alterations of both central and peripheral B cell tolerance checkpoints. We conclude that WASp plays an important role in the establishment and maintenance of B cell tolerance in humans and that restoration of WASp by GT is able to restore B cell tolerance in WAS patients.

  14. Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells

    PubMed Central

    Nakano, Ayako; Tsuji, Daisuke; Miki, Hirokazu; Cui, Qu; Sayed, Salah Mohamed El; Ikegame, Akishige; Oda, Asuka; Amou, Hiroe; Nakamura, Shingen; Harada, Takeshi; Fujii, Shiro; Kagawa, Kumiko; Takeuchi, Kyoko; Sakai, Akira; Ozaki, Shuji; Okano, Kazuma; Nakamura, Takahiro; Itoh, Kohji; Matsumoto, Toshio; Abe, Masahiro

    2011-01-01

    Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2), KG-1 (ABCB1) and HepG2 cells (ABCB1 and ABCG2). Interestingly, although side population (SP) cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells. PMID:22073292

  15. Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients

    PubMed Central

    Pala, Francesca; Morbach, Henner; Castiello, Maria Carmina; Schickel, Jean-Nicolas; Scaramuzza, Samantha; Chamberlain, Nicolas; Cassani, Barbara; Glauzy, Salome; Romberg, Neil; Candotti, Fabio; Aiuti, Alessandro; Bosticardo, Marita; Villa, Anna; Meffre, Eric

    2015-01-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by microthrombocytopenia, eczema, and high susceptibility to developing tumors and autoimmunity. Recent evidence suggests that B cells may be key players in the pathogenesis of autoimmunity in WAS. Here, we assessed whether WAS protein deficiency (WASp deficiency) affects the establishment of B cell tolerance by testing the reactivity of recombinant antibodies isolated from single B cells from 4 WAS patients before and after gene therapy (GT). We found that pre-GT WASp-deficient B cells were hyperreactive to B cell receptor stimulation (BCR stimulation). This hyperreactivity correlated with decreased frequency of autoreactive new emigrant/transitional B cells exiting the BM, indicating that the BCR signaling threshold plays a major role in the regulation of central B cell tolerance. In contrast, mature naive B cells from WAS patients were enriched in self-reactive clones, revealing that peripheral B cell tolerance checkpoint dysfunction is associated with impaired suppressive function of WAS regulatory T cells. The introduction of functional WASp by GT corrected the alterations of both central and peripheral B cell tolerance checkpoints. We conclude that WASp plays an important role in the establishment and maintenance of B cell tolerance in humans and that restoration of WASp by GT is able to restore B cell tolerance in WAS patients. PMID:26368308

  16. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience.

    PubMed

    Menasché, Philippe; Vanneaux, Valérie; Fabreguettes, Jean-Roch; Bel, Alain; Tosca, Lucie; Garcia, Sylvie; Bellamy, Valérie; Farouz, Yohan; Pouly, Julia; Damour, Odile; Périer, Marie-Cécile; Desnos, Michel; Hagège, Albert; Agbulut, Onnik; Bruneval, Patrick; Tachdjian, Gérard; Trouvin, Jean-Hugues; Larghero, Jérôme

    2015-03-21

    There is now compelling evidence that cells committed to a cardiac lineage are most effective for improving the function of infarcted hearts. This has been confirmed by our pre-clinical studies entailing transplantation of human embryonic stem cell (hESC)-derived cardiac progenitors in rat and non-human primate models of myocardial infarction. These data have paved the way for a translational programme aimed at a phase I clinical trial. The main steps of this programme have included (i) the expansion of a clone of pluripotent hESC to generate a master cell bank under good manufacturing practice conditions (GMP); (ii) a growth factor-induced cardiac specification; (iii) the purification of committed cells by immunomagnetic sorting to yield a stage-specific embryonic antigen (SSEA)-1-positive cell population strongly expressing the early cardiac transcription factor Isl-1; (iv) the incorporation of these cells into a fibrin scaffold; (v) a safety assessment focused on the loss of teratoma-forming cells by in vitro (transcriptomics) and in vivo (cell injections in immunodeficient mice) measurements; (vi) an extensive cytogenetic and viral testing; and (vii) the characterization of the final cell product and its release criteria. The data collected throughout this process have led to approval by the French regulatory authorities for a first-in-man clinical trial of transplantation of these SSEA-1(+) progenitors in patients with severely impaired cardiac function. Although several facets of this manufacturing process still need to be improved, these data may yet provide a useful platform for the production of hESC-derived cardiac progenitor cells under safe and cost-effective GMP conditions. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  17. Hypoxia Enhances Differentiation of Hair Follicle-Associated-Pluripotent (HAP) Stem Cells to Cardiac-Muscle Cells.

    PubMed

    Shirai, Kyoumi; Hamada, Yuko; Arakawa, Nobuko; Yamazaki, Aiko; Tohgi, Natsuko; Aki, Ryoichi; Mii, Sumiyuki; Hoffman, Robert M; Amoh, Yasuyuki

    2017-03-01

    We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair-follicle stem cells located in the bulge area which are termed hair-follicle-associated pluripotent (HAP) stem cells. HAP stem cells from mouse and human could form spheres in culture, termed hair spheres, which are keratin 15-negative and nestin-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. Subsequently, we demonstrated that nestin-expressing stem cells could effect nerve and spinal cord regeneration in mouse models. Recently, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. We recently observed that isoproterenol directs HAP stem cells to differentiate to cardiac-muscle cells in large numbers in culture compared to HAP stem cells not supplemented with isoproterenol. The addition of activin A, bone morphogenetic protein 4, and basic fibroblast growth factor, along with isoproternal, induced the cardiac muscle cells to form tissue sheets of beating heart muscle cells. In the present study, we report that, under hypoxic conditions, HAP stem cells differentiated to troponin-positive cardiac-muscle cells at a higher rate that under normoxic conditions. Hypoxia did not influence the differentiation to other cell types. For future use of HAP stem cells for cardiac muscle regeneration, hypoxia should enhance the rate of differentiation thereby providing patients more opportunities to use their own HAP stem cells which are easily accessible, for this purpose. J. Cell. Biochem. 118: 554-558, 2017. © 2016 Wiley Periodicals, Inc.

  18. Evidence for Transfer of Membranes from Mesenchymal Stem Cells to HL-1 Cardiac Cells.

    PubMed

    Boomsma, Robert A; Geenen, David L

    2014-01-01

    This study examined the interaction of mouse bone marrow mesenchymal stem cells (MSC) with cardiac HL-1 cells during coculture by fluorescent dye labeling and then flow cytometry. MSC were layered onto confluent HL-1 cell cultures in a 1 : 4 ratio. MSC gained gap junction permeant calcein from HL-1 cells after 4 hours which was partially reduced by oleamide. After 20 hours, 99% MSC gained calcein, unaffected by oleamide. Double-labeling HL-1 cells with calcein and the membrane dye DiO resulted in transfer of both calcein and DiO to MSC. When HL-1 cells were labeled with calcein and MSC with DiO, MSC gained calcein while HL-1 cells gained DiO. Very little fusion was observed since more than 90% Sca-1 positive MSC gained DiO from HL-1 cells while less than 9% gained gap junction impermeant CMFDA after 20 hours with no Sca-1 transfer to HL-1 cells. Time dependent transfer of membrane DiD was observed from HL-1 cells to MSC (100%) and vice versa (50%) after 20 hours with more limited transfer of CMFDA. These results demonstrate that MSC and HL-1 cells exchange membrane components which may account for some of the beneficial effect of MSC in the heart after myocardial infarction.

  19. Oxygen cycling in conjunction with stem cell transplantation induces NOS3 expression leading to attenuation of fibrosis and improved cardiac function

    PubMed Central

    Khan, Mahmood; Meduru, Sarath; Gogna, Rajan; Madan, Esha; Citro, Lucas; Kuppusamy, Muthulakshmi L.; Sayyid, Muzzammil; Mostafa, Mahmoud; Hamlin, Robert L.; Kuppusamy, Periannan

    2012-01-01

    Aims Myocardial infarction (MI) is associated with irreversible loss of viable cardiomyocytes. Cell therapy is a potential option to replace the lost cardiomyocytes and restore cardiac function. However, cell therapy is faced with a number of challenges, including survival of the transplanted cells in the infarct region, which is characterized by abundant levels of oxidants and lack of a pro-survival support mechanism. The goal of the present study was to evaluate the effect of supplemental oxygenation on cell engraftment and functional recovery in a rat model. Methods and results MI was induced in rats by a 60-min occlusion of the coronary artery, followed by restoration of flow. Mesenchymal stem cells (MSCs), isolated from adult rat bone marrow, were transplanted in the MI region. Rats with transplanted MSCs were exposed to hyperbaric oxygen (HBO: 100% O2, 2 atmospheres absolute) for 90 min, 5 days/week for 4 weeks. The experimental groups were: MI (control), Ox (MI + HBO), MSC (MI + MSC), and MSC + Ox (MI + MSC + HBO). HBO exposure (oxygenation) was started 3 days after induction of MI. MSCs were transplanted 1 week after induction of MI. Echocardiography showed a significant recovery of cardiac function in the MSC + Ox group, when compared with the MI or MSC group. Oxygenation increased the engraftment of MSCs and vascular density in the infarct region. Molecular analysis of infarct tissue showed a four-fold increase in NOS3 expression in the MSC + Ox group compared with the MI group. Conclusions The results showed that post-MI exposure of rats to daily cycles of hyperoxygenation (oxygen cycling) improved stem cell engraftment, cardiac function, and increased NOS3 expression. PMID:22012955

  20. Calcitriol restores antiestrogen responsiveness in estrogen receptor negative breast cancer cells: A potential new therapeutic approach

    PubMed Central

    2014-01-01

    Background Approximately 30% of breast tumors do not express the estrogen receptor (ER) α, which is necessary for endocrine therapy approaches. Studies are ongoing in order to restore ERα expression in ERα-negative breast cancer. The aim of the present study was to determine if calcitriol induces ERα expression in ER-negative breast cancer cells, thus restoring antiestrogen responses. Methods Cultured cells derived from ERα-negative breast tumors and an ERα-negative breast cancer cell line (SUM-229PE) were treated with calcitriol and ERα expression was assessed by real time PCR and western blots. The ERα functionality was evaluated by prolactin gene expression analysis. In addition, the effects of antiestrogens were assessed by growth assay using the XTT method. Gene expression of cyclin D1 (CCND1), and Ether-à-go-go 1 (EAG1) was also evaluated in cells treated with calcitriol alone or in combination with estradiol or ICI-182,780. Statistical analyses were determined by one-way ANOVA. Results Calcitriol was able to induce the expression of a functional ERα in ER-negative breast cancer cells. This effect was mediated through the vitamin D receptor (VDR), since it was abrogated by a VDR antagonist. Interestingly, the calcitriol-induced ERα restored the response to antiestrogens by inhibiting cell proliferation. In addition, calcitriol-treated cells in the presence of ICI-182,780 resulted in a significant reduction of two important cell proliferation regulators CCND1 and EAG1. Conclusions Calcitriol induced the expression of ERα and restored the response to antiestrogens in ERα-negative breast cancer cells. The combined treatment with calcitriol and antiestrogens could represent a new therapeutic strategy in ERα-negative breast cancer patients. PMID:24678876

  1. Calcitriol restores antiestrogen responsiveness in estrogen receptor negative breast cancer cells: a potential new therapeutic approach.

    PubMed

    Santos-Martínez, Nancy; Díaz, Lorenza; Ordaz-Rosado, David; García-Quiroz, Janice; Barrera, David; Avila, Euclides; Halhali, Ali; Medina-Franco, Heriberto; Ibarra-Sánchez, María J; Esparza-López, José; Camacho, Javier; Larrea, Fernando; García-Becerra, Rocío

    2014-03-29

    Approximately 30% of breast tumors do not express the estrogen receptor (ER) α, which is necessary for endocrine therapy approaches. Studies are ongoing in order to restore ERα expression in ERα-negative breast cancer. The aim of the present study was to determine if calcitriol induces ERα expression in ER-negative breast cancer cells, thus restoring antiestrogen responses. Cultured cells derived from ERα-negative breast tumors and an ERα-negative breast cancer cell line (SUM-229PE) were treated with calcitriol and ERα expression was assessed by real time PCR and western blots. The ERα functionality was evaluated by prolactin gene expression analysis. In addition, the effects of antiestrogens were assessed by growth assay using the XTT method. Gene expression of cyclin D1 (CCND1), and Ether-à-go-go 1 (EAG1) was also evaluated in cells treated with calcitriol alone or in combination with estradiol or ICI-182,780. Statistical analyses were determined by one-way ANOVA. Calcitriol was able to induce the expression of a functional ERα in ER-negative breast cancer cells. This effect was mediated through the vitamin D receptor (VDR), since it was abrogated by a VDR antagonist. Interestingly, the calcitriol-induced ERα restored the response to antiestrogens by inhibiting cell proliferation. In addition, calcitriol-treated cells in the presence of ICI-182,780 resulted in a significant reduction of two important cell proliferation regulators CCND1 and EAG1. Calcitriol induced the expression of ERα and restored the response to antiestrogens in ERα-negative breast cancer cells. The combined treatment with calcitriol and antiestrogens could represent a new therapeutic strategy in ERα-negative breast cancer patients.

  2. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming.

    PubMed

    Yamakawa, Hiroyuki; Ieda, Masaki

    2015-01-01

    Cardiovascular disease remains a leading cause of death for which current therapeutic regimens are limited. Following myocardial injury, endogenous cardiac fibroblasts, which account for more than half of the cells in the heart, proliferate and synthesize extracellular matrix, leading to fibrosis and heart failure. As terminally differentiated cardiomyocytes have little regenerative capacity following injury, development of cardiac regenerative therapy is highly desired. Embryonic stem (ES) and induced pluripotent stem (iPS) cells are promising tools for regenerative medicine; however, these stem cells demonstrate variable cardiac differentiation efficiency and tumorigenicity, which should be solved for clinical applications. Up until the last decade, it was an established theory that cardiomyocytes could only be produced from fibroblasts mediating through stem cells. However, in 2010, we reported for the first time a novel method of the direct reprogramming of fibroblasts into cardiomyocytes, demonstrating various reprogramming pathways exist. This review summarizes the latest trends in stem cell and regenerative research, touching upon iPS cells, partial reprogramming strategy, and direct cardiac reprogramming. Specifically, we examine the many recent advances in both in vitro and in vivo direct cardiac reprogramming, and explore the application of these methods to cardiovascular regenerative medicine.

  3. Computational biology in the study of cardiac ion channels and cell electrophysiology

    PubMed Central

    Rudy, Yoram; Silva, Jonathan R.

    2007-01-01

    The cardiac cell is a complex biological system where various processes interact to generate electrical excitation (the action potential, AP) and contraction. During AP generation, membrane ion channels interact nonlinearly with dynamically changing ionic concentrations and varying transmembrane voltage, and are subject to regulatory processes. In recent years, a large body of knowledge has accumulated on the molecular structure of cardiac ion channels, their function, and their modification by genetic mutations that are associated with cardiac arrhythmias and sudden death. However, ion channels are typically studied in isolation (in expression systems or isolated membrane patches), away from the physiological environment of the cell where they interact to generate the AP. A major challenge remains the integration of ion-channel properties into the functioning, complex and highly interactive cell system, with the objective to relate molecular-level processes and their modification by disease to whole-cell function and clinical phenotype. In this article we describe how computational biology can be used to achieve such integration. We explain how mathematical (Markov) models of ion-channel kinetics are incorporated into integrated models of cardiac cells to compute the AP. We provide examples of mathematical (computer) simulations of physiological and pathological phenomena, including AP adaptation to changes in heart rate, genetic mutations in SCN5A and HERG genes that are associated with fatal cardiac arrhythmias, and effects of the CaMKII regulatory pathway and β-adrenergic cascade on the cell electrophysiological function. PMID:16848931

  4. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    PubMed Central

    Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.

    2016-01-01

    Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064

  5. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction

    PubMed Central

    Li, Xiao-Hong; Li, Qianqian; Jiang, Lin; Deng, Chunyu; Liu, Zaiyi; Fu, Yongheng; Zhang, Mengzhen; Tan, Honghong; Feng, Yuliang; Shan, Zhixin

    2015-01-01

    The reprogramming of fibroblasts to induced pluripotent stem cells raises the possibility that somatic cells could be directly reprogrammed to cardiac progenitor cells (CPCs). The present study aimed to assess highly efficient protein-based approaches to reduce or eliminate the genetic manipulations to generate CPCs for cardiac regeneration therapy. A combination of QQ-reagent-modified Gata4, Hand2, Mef2c, and Tbx5 and three cytokines rapidly and efficiently reprogrammed human dermal fibroblasts (HDFs) into CPCs. This reprogramming process enriched trimethylated histone H3 lysine 4, monoacetylated histone H3 lysine 9, and Baf60c at the Nkx2.5 cardiac enhancer region by the chromatin immunoprecipitation quantitative polymerase chain reaction assay. Protein-induced CPCs transplanted into rat hearts after myocardial infarction improved cardiac function, and this was related to differentiation into cardiomyocyte-like cells. These findings demonstrate that the highly efficient protein-transduction method can directly reprogram HDFs into CPCs. This protein reprogramming strategy lays the foundation for future refinements both in vitro and in vivo and might provide a source of CPCs for regenerative approaches. Significance The findings from the present study have demonstrated an efficient protein-transduction method of directly reprogramming fibroblasts into cardiac progenitor cells. These results have great potential in cell-based therapy for cardiovascular diseases. PMID:26564862

  6. Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine.

    PubMed

    Wei, Fulan; Song, Tieli; Ding, Gang; Xu, Junji; Liu, Yi; Liu, Dayong; Fan, Zhipeng; Zhang, Chunmei; Shi, Songtao; Wang, Songlin

    2013-06-15

    Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model.

  7. Functional Tooth Restoration by Allogeneic Mesenchymal Stem Cell-Based Bio-Root Regeneration in Swine

    PubMed Central

    Wei, Fulan; Song, Tieli; Ding, Gang; Xu, Junji; Liu, Yi; Liu, Dayong; Fan, Zhipeng; Zhang, Chunmei

    2013-01-01

    Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model. PMID:23363023

  8. Cardiac stem cell niche, MMP9, and culture and differentiation of embryonic stem cells.

    PubMed

    Mishra, Paras Kumar; Kuypers, Nicholas John; Singh, Shree Ram; Leiberh, Noel Diaz; Chavali, Vishalakshi; Tyagi, Suresh C

    2013-01-01

    Embryonic stem cells (ESC) are totipotent, self-renewing, and clonogenic, having potential to differentiate into a wide variety of cell types. Due to regenerative capability, it has tremendous potential for treating myocardial infarction (death of myocardial tissue) and type 1 diabetes (death of pancreatic beta cells). Understanding the components regulating ESC differentiation is the key to unlock the regenerative potential of ESC-based therapies. Both the stiffness of extracellular matrix (ECM) and surrounding niche/microenvironment play pivotal roles in ESC differentiation. Matrix metalloproteinase-9 (MMP9) induces fibrosis that causes stiffness of the ECM and impairs differentiation of cardiac stem cells into cardiomyocytes. Here, we describe the method of ESC culture and differentiation, and the expression of MMP9 and its inhibitor, tissue inhibitor of metalloproteinase-4 (TIMP4) in differentiating ESC.

  9. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA.

    PubMed

    Tan, An S; Baty, James W; Dong, Lan-Feng; Bezawork-Geleta, Ayenachew; Endaya, Berwini; Goodwin, Jacob; Bajzikova, Martina; Kovarova, Jaromira; Peterka, Martin; Yan, Bing; Pesdar, Elham Alizadeh; Sobol, Margarita; Filimonenko, Anatolyj; Stuart, Shani; Vondrusova, Magdalena; Kluckova, Katarina; Sachaphibulkij, Karishma; Rohlena, Jakub; Hozak, Pavel; Truksa, Jaroslav; Eccles, David; Haupt, Larisa M; Griffiths, Lyn R; Neuzil, Jiri; Berridge, Michael V

    2015-01-06

    We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.

  10. Restoring E-cadherin-mediated cell-cell adhesion increases PTEN protein level and stability in human breast carcinoma cells

    SciTech Connect

    Li Zengxia; Wang Liying; Zhang Wen; Fu Yi; Zhao Hongbo; Hu Yali; Prins, Bram Peter; Zha Xiliang

    2007-11-09

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well-characterized tumor suppressor that negatively regulates cell growth and survival. Despite the critical role of PTEN in cell signaling, the mechanisms of its regulation are still under investigation. We reported here that PTEN expression could be controlled by overexpression or knock-down of E-cadherin in several mammary carcinoma cell lines. Furthermore, we showed that the accumulation of PTEN protein in E-cadherin overexpressing cells was due to increased PTEN protein stability rather than the regulation of its transcription. The proteasome-dependent PTEN degradation pathway was impaired after restoring E-cadherin expression. Moreover, maintenance of E-cadherin mediated cell-cell adhesion was necessary for its regulating PTEN. Altogether, our results suggested that E-cadherin mediated cell-cell adhesion was essential for preventing the proteasome degradation of PTEN, which might explain how breast carcinoma cells which lost cell-cell contact proliferate rapidly and are prone to metastasis.

  11. Restoration of Chloride Efflux by Azithromycin in Airway Epithelial Cells of Cystic Fibrosis Patients▿

    PubMed Central

    Saint-Criq, Vinciane; Rebeyrol, Carine; Ruffin, Manon; Roque, Telma; Guillot, Loïc; Jacquot, Jacky; Clement, Annick; Tabary, Olivier

    2011-01-01

    Azithromycin (AZM) has shown promising anti-inflammatory properties in chronic obstructive pulmonary diseases, and clinical studies have presented an improvement in the respiratory condition of cystic fibrosis (CF) patients. The aim of this study was to investigate, in human airway cells, the mechanism by which AZM has beneficial effects in CF. We demonstrated that AZM did not have any anti-inflammatory effect on CF airway cells but restored Cl− efflux. PMID:21220528

  12. Human Thymus Mesenchymal Stromal Cells Augment Force Production in Self-Organized Cardiac Tissue

    PubMed Central

    Sondergaard, Claus S.; Hodonsky, Chani J.; Khait, Luda; Shaw, John; Sarkar, Bedabrata; Birla, Ravi; Bove, Edward; Nolta, Jan; Si, Ming-Sing

    2011-01-01

    Background Mesenchymal stromal cells have been recently isolated from thymus gland tissue discarded after surgical procedures. The role of this novel cell type in heart regeneration has yet to be defined. The purpose of this study was to evaluate the therapeutic potential of human thymus-derived mesenchymal stromal cells using self-organized cardiac tissue as an in vitro platform for quantitative assessment. Methods Mesenchymal stromal cells were isolated from discarded thymus tissue from neonates undergoing heart surgery and were incubated in differentiation media to demonstrate multipotency. Neonatal rat cardiomyocytes self-organized into cardiac tissue fibers in a custom culture dish either alone or in combination with varying numbers of mesenchymal stromal cells. A transducer measured force generated by spontaneously contracting self-organized cardiac tissue fibers. Work and power outputs were calculated from force tracings. Immunofluorescence was performed to determine the fate of the thymus-derived mesenchymal stromal cells. Results Mesenchymal stromal cells were successfully isolated from discarded thymus tissue. After incubation in differentiation media, mesenchymal stromal cells attained the expected phenotypes. Although mesenchymal stromal cells did not differentiate into mature cardiomyocytes, addition of these cells increased the rate of fiber formation, force production, and work and power outputs. Self-organized cardiac tissue containing mesenchymal stromal cells acquired a defined microscopic architecture. Conclusions Discarded thymus tissue contains mesenchymal stromal cells, which can augment force production and work and power outputs of self-organized cardiac tissue fibers by several-fold. These findings indicate the potential utility of mesenchymal stromal cells in treating heart failure. PMID:20732499

  13. Non-monotonic wave dispersion in one-dimensional spiral track of cardiac cells

    NASA Astrophysics Data System (ADS)

    Kim, Tae Yun; Kwon, Okyu; Lee, Kyoung J.

    2009-03-01

    Alternans, periodic cardiac beat-to-beat alternation, is an important precursor to cardiac fibrillation. The underlying mechanism for this phenomenon has been discussed mostly based on the electro-chemical kinetics of constituent cells (myocytes) that comprise the heart system. An important unexplored aspect of this phenomenon is the role of wave dispersion that reflects the cell-to-cell coupling as well as the local kinetic properties. A recent modeling study in fact suggests that a non-monotonic wave dispersion can be a source for alternans. We have designed and built very long (˜ 15 cm) in vitro quasi-one dimensional tracks of rat ventricular cells for elucidating the instability responsible for the transition to alternans. One dimensional tracks are favorable, since it excludes the effect of local wave curvature. Systematic investigations based on S1-S2 stimulation protocols are carried out and here we present some preliminary evidence of non-monotonicity in cardiac wave dispersion.

  14. Sickle cell anaemia and the consequences on the anaesthetic management of cardiac surgery.

    PubMed

    Mennes, I; Van de Velde, M; Missant, C

    2012-01-01

    A review of the available literature on genetics and pathophysiology of Sickle Cell Anaemia was performed with special emphasis on the intraoperative management during cardiac surgery. Hypoxia, acidosis and hypothermia have been identified as independent sickling provoking factors. Although no official guidelines on transfusion for Sickle Cell patients have been published, useful directives on preoperative transfusion could be derived from available data. Additionally, we bundled and reviewed the published expertise in the management of cardiopulmonary bypass and the necessity of hypothermia during cardiac surgery in Sickle Cell patients. Our conclusion is that the available data in case reports and case series on cardiac surgery in case of Sickle Cell Anaemia suggest a necessary preoperative or on bypass blood transfusion to guarantee an uncomplicated course of cardiopulmonary bypass and hypothermia.

  15. Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration.

    PubMed

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2013-09-01

    The constantly expanding repository of novel polymers and stem cells has opened up new vistas in the field of cardiac tissue engineering. Successful regeneration of the complex cardiac tissue mainly centres on the appropriate scaffold material with topographical features that mimic the native environment. The integration of stem cells on these scaffolds is expected to enhance the regeneration potential. This review elaborates on the interplay of these vital factors in achieving the functional cardiac tissue. The recent advances in polymers, nanocomposites, and stem cells from different sources are highlighted. Special emphasis is laid on the clinical trials involving stem cells and the state-of-the-art materials to obtain a balanced perspective on the translational potential of this strategy.

  16. Isolation, characterization and cardiac differentiation of human thymus tissue derived mesenchymal stromal cells.

    PubMed

    Lin, Ze Bang; Qian, Bo; Yang, Yu Zhong; Zhou, Kai; Sun, Jian; Mo, Xu Ming; Wu, Kai Hong

    2015-07-01

    Mesenchymal stromal cells (MSCs) are promising candidate donor cells for replacement of cardiomyocyte loss during ischemia and in vitro generation of myocardial tissue. We have successfully isolated MSCs from the discarded neonatal thymus gland during cardiac surgery. The thymus MSCs were characterized by cell-surface antigen expression. These cells have high ability for proliferation and are able to differentiate into osteoblasts and adipocytes in vitro. For cardiac differentiation, the cells were divided into 3 groups: untreated control; 5-azacytidine group and sequential exposure to 5-azacytidine, bone morphogenetic protein 4, and basic fibroblast growth factor. Thymus MSCs showed a fibrolast-like morphology and some differentiated cells increased in size, formed a ball-like appearance over time and spontaneously contracting cells were observed in sequential exposure group. Immunostaining studies, cardiac specific genes/protein expression confirmed the cardiomyocyte phenotype of the differentiated cells. These results demonstrate that thymus MSCs can be a promising cellular source for cardiac cell therapy and tissue engineering. © 2014 Wiley Periodicals, Inc.

  17. A meta-analysis of the success rates of heartbeat restoration within the platinum 10 min among outpatients suffering from sudden cardiac arrest in China.

    PubMed

    Gu, Xiang-Min; Li, Zhi-Hui; He, Zhong-Jie; Zhao, Zhe-Wei; Liu, Shuang-Qing

    2016-01-01

    The optimal time to save a person who has had a sudden cardiac arrest is within the first few minutes of the incident. Early compression and early defibrillation should be performed at this time. Timeliness is the key to successful CPR; as such, Prof. He proposed the "platinum 10 min" system to study early CPR issues. This paper systematically evaluates the success rates of heartbeat restoration within the "platinum 10 min" among patients suffering from sudden cardiac arrest. The clinical data of outpatients suffering from a cardiac arrest were retrieved from the China Knowledge Network (January 1975-January 2015), the Chongqing VIP database (January 1989-January 2015), and the Wanfang database (January 1990-January 2015). The success of the cardiopulmonary resuscitation (CPR) performed at different times after the patients had cardiac arrests was analyzed. Two researchers screened the literature and extracted the data independently. A meta-analysis was conducted using Stata12.0. A total of 57 papers met the inclusion criteria, including 29,269 patients. Of these patients, 1776 had their heartbeats successfully restored. The results showed high heterogeneity (X (2)  = 3428.85, P < 0.01, I(2) = 98.4 %). The meta-analysis was conducted using a random-effects model. The combined effect size was 0.171 (0.144-0.199). (1) The success rate of heartbeat restoration did not differ among the four emergency treatment methods that patients received: the methods described in the 2000 Guidelines for CPR and Emergency Cardiovascular Care, that described in the 2005 version, 2010 version, and another CPR method. (2) The patients were divided into five groups based on the time when CPR was performed: the ≤1 min group, the 1- ≤ 5 min group, the 5- ≤ 10 min group, the 10- ≤ 15 min group and the >15 min group. The CPR success rates of these five groups were 0.247 (0.15-0.344), 0.353 (0.250-0.456), 0.136 (0.109-0.163), 0.058 (0.041-0.075), and 0

  18. Myeloid cells that impair immunotherapy are restored in melanomas which acquire resistance to BRAF inhibitors.

    PubMed

    Steinberg, Shannon M; Shabaneh, Tamer; Zhang, Peisheng; Martyanov, Viktor; Li, Zhenghui; Malik, Brian; Wood, Tammara; Boni, Andrea; Molodtsov, Aleksey; Angeles, Christina V; Curiel, Tyler J; Whitfield, Michael; Turk, Mary Jo

    2017-02-15

    Acquired resistance to BRAFV600E inhibitors (BRAFi) in melanoma remains a common clinical obstacle, as is the case for any targeted drug therapy that can be developed given the plastic nature of cancers. While there has been significant focus on the cancer cell-intrinsic properties of BRAFi resistance, the impact of BRAFi resistance on host immunity has not been explored. Here we provide preclinical evidence that resistance to BRAFi in an autochthonous mouse model of melanoma is associated with restoration of myeloid-derived suppressor cells (MDSC) in the tumor microenvironment initially reduced by BRAFi treatment. In contrast to restoration of MDSC, levels of T regulatory cells remained reduced in BRAFi-resistant tumors. Accordingly, tumor gene expression signatures specific for myeloid cell chemotaxis and homeostasis reappeared in BRAFi-resistant tumors. Notably, MDSC restoration relied upon MAPK pathway reactivation and downstream production of the myeloid attractant CCL2 in BRAFi-resistant melanoma cells. Strikingly, while combination checkpoint blockade (anti-CTLA-4 + anti-PD-1) was ineffective against BRAFi-resistant melanomas, the addition of MDSC depletion/blockade (anti-Gr-1 + CCR2 antagonist) prevented outgrowth of BRAFi-resistant tumors. Our results illustrate how extrinsic pathways of immunosuppression elaborated by melanoma cells dominate the tumor microenvironment and highlight the need to target extrinsic as well as intrinsic mechanisms of drug resistance.

  19. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.

    PubMed

    Baar, Marjolein P; Brandt, Renata M C; Putavet, Diana A; Klein, Julian D D; Derks, Kasper W J; Bourgeois, Benjamin R M; Stryeck, Sarah; Rijksen, Yvonne; van Willigenburg, Hester; Feijtel, Danny A; van der Pluijm, Ingrid; Essers, Jeroen; van Cappellen, Wiggert A; van IJcken, Wilfred F; Houtsmuller, Adriaan B; Pothof, Joris; de Bruin, Ron W F; Madl, Tobias; Hoeijmakers, Jan H J; Campisi, Judith; de Keizer, Peter L J

    2017-03-23

    The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging Xpd(TTD/TTD) and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart.

    PubMed

    Buccini, Stephanie; Haider, Khawaja Husnain; Ahmed, Rafeeq P H; Jiang, Shujia; Ashraf, Muhammad

    2012-11-01

    The strategy to reprogram somatic stem cells to pluripotency status has provided an alternative source of surrogate ES cells (ESC). We report efficient reprogramming of multipotent bone marrow (BM) mesenchymal stem cells (MSC) to pluripotent status and the resultant MSC derived iPS cells (MiPS) and their derived progenitors effectively repaired the infarcted heart. MSC from young, male, Oct4-GFP transgenic mice were reprogrammed by retroviral transduction with Oct4, Sox2, Klf4, and c-Myc stemness factors. MiPS thus generated displayed characteristics of mouse ESC including morphology, surface antigens, gene and miR expression profiles. MiPS also formed spontaneously beating cardiac progenitors which expressed cardiac specific transcription factors and protein markers including Gata4, Mef2c, Nkx2.5, myosin heavy chain, troponin-I, and troponin-T, and showed ultra structural characteristics typical of cardiomyocytes. Intramyocardial delivery of MiPS (group-2) and their derivative cardiac-like cells (MiPS-CP; group-3) in a mouse model of acute myocardial infarction showed extensive survival and engraftment at 4 weeks with resultant attenuation of infarct size (p < 0.001 vs. DMEM injected control; n = 4). Engraftment of MiPS-CP was without cardiac tumorigenesis as compared to 21 % in MiPS transplanted animals. Furthermore, angiogenesis was improved in groups-2 and 3 (p < 0.001 vs. control). Transthoracic echocardiography revealed significantly preserved indices of cardiac contractility (ejection fraction p < 0.001 and fractional shortening p < 0.001 vs. control; n = 7). MSC were successfully reprogrammed into MiPS that displayed ESC-like characteristics and differentiated into spontaneously beating cardiomyocytes. Cardiac progenitors derived from MiPS repopulated the infarcted heart without tumorigenesis and improved global cardiac function.

  1. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway.

    PubMed

    Li, Fuhai; Li, Zongzhuang; Jiang, Zhi; Tian, Ye; Wang, Zhi; Yi, Wei; Zhang, Chenyun

    2016-01-01

    Background: Hypoxia has been reported to possess the ability to induce mature lipid-filled adipocytes to differentiate into fibroblast-like multipotent dedifferentiated fat (DFAT) cells and stem cells such as iPSCs (interstitial pluripotent stem cells) and ESCs (embryonic stem cells) and then to differentiate into cardiomyocytes. However, the effect of hypoxia on cardiac differentiation of DFAT cells and its underlying molecular mechanism remains to be investigated. Objective: To investigate the role of hypoxia in early cardiac differentiation of DFAT cells and the underlying molecular mechanism. Methods: DFAT cells were prepared from 4 to 6 week-age mice and cultured under hypoxic conditions by adding Prolyl hydroxylase inhibitor and dimethyloxalylglycine (DMOG) into the culture media. To inhibit or block Notch signaling, γ-secretase inhibitor-II (GSI-II) and Notch1 siRNA (si-Notch1) were used. DFAT cell viability was detected using MTT assay. qRT-PCR, immunofluorescence microscopy and western blotting were used to evaluate the cardiac differentiation of DFAT cells and co-immunoprecipitation was used to study the interaction between HIF-1α and Notch signaling. Results: 0.6-mM DMOG failed to affect the viability of DFAT cells, but stimulated the cells to express early cardiac transcription factors including Islet1, Nkx2.5 and Gata4 in a time-dependent manner and increase the number of cTnT(+) cardiomyocytes (detected at the 28(th) day after stimulation). It was also demonstrated that DMOG was involved in HIF-1α and Notch signaling as well as HIF-1α-NICD complex formation. Conclusion: Hypoxia enhanced early cardiac differentiation of DFAT cells through HIF-1α and Notch signaling pathway.

  2. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway

    PubMed Central

    Li, Fuhai; Li, Zongzhuang; Jiang, Zhi; Tian, Ye; Wang, Zhi; Yi, Wei; Zhang, Chenyun

    2016-01-01

    Background: Hypoxia has been reported to possess the ability to induce mature lipid-filled adipocytes to differentiate into fibroblast-like multipotent dedifferentiated fat (DFAT) cells and stem cells such as iPSCs (interstitial pluripotent stem cells) and ESCs (embryonic stem cells) and then to differentiate into cardiomyocytes. However, the effect of hypoxia on cardiac differentiation of DFAT cells and its underlying molecular mechanism remains to be investigated. Objective: To investigate the role of hypoxia in early cardiac differentiation of DFAT cells and the underlying molecular mechanism. Methods: DFAT cells were prepared from 4 to 6 week-age mice and cultured under hypoxic conditions by adding Prolyl hydroxylase inhibitor and dimethyloxalylglycine (DMOG) into the culture media. To inhibit or block Notch signaling, γ-secretase inhibitor-II (GSI-II) and Notch1 siRNA (si-Notch1) were used. DFAT cell viability was detected using MTT assay. qRT-PCR, immunofluorescence microscopy and western blotting were used to evaluate the cardiac differentiation of DFAT cells and co-immunoprecipitation was used to study the interaction between HIF-1α and Notch signaling. Results: 0.6-mM DMOG failed to affect the viability of DFAT cells, but stimulated the cells to express early cardiac transcription factors including Islet1, Nkx2.5 and Gata4 in a time-dependent manner and increase the number of cTnT+ cardiomyocytes (detected at the 28th day after stimulation). It was also demonstrated that DMOG was involved in HIF-1α and Notch signaling as well as HIF-1α-NICD complex formation. Conclusion: Hypoxia enhanced early cardiac differentiation of DFAT cells through HIF-1α and Notch signaling pathway. PMID:27904680

  3. SHP-2 deletion in postmigratory neural crest cells results in impaired cardiac sympathetic innervation

    PubMed Central

    Lajiness, Jacquelyn D.; Snider, Paige; Wang, Jian; Feng, Gen-Sheng; Krenz, Maike; Conway, Simon J.

    2014-01-01

    Autonomic innervation is an essential component of cardiovascular regulation that is first established from the neural crest (NC) lineage in utero and continues developing postnatally. Although in vitro studies have indicated that SH2-containing protein tyrosine phosphatase 2 (SHP-2) is a signaling factor critical for regulating sympathetic neuron differentiation, this has yet to be shown in the complex in vivo environment of cardiac autonomic innervation. Targeting SHP-2 within postmigratory NC lineages resulted in a fully penetrant mouse model of diminished sympathetic cardiac innervation and concomitant bradycardia. Immunohistochemistry of the sympathetic nerve marker tyrosine hydroxylase revealed a progressive loss of adrenergic ganglionic neurons and reduction of cardiac sympathetic axon density in Shp2 cKOs. Molecularly, Shp2 cKOs exhibit lineage-specific suppression of activated phospo-ERK1/2 signaling but not of other downstream targets of SHP-2 such as pAKT. Genetic restoration of the phosphorylated-extracellular signal-regulated kinase (pERK) deficiency via lineage-specific expression of constitutively active MEK1 was sufficient to rescue the sympathetic innervation deficit and its physiological consequences. These data indicate that SHP-2 signaling specifically through pERK in postmigratory NC lineages is essential for development and maintenance of sympathetic cardiac innervation postnatally. PMID:24706815

  4. Influence of aging on the activity of mice Sca-1+CD31− cardiac stem cells

    PubMed Central

    Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-01

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31− subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31− subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending. PMID:27980224

  5. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin.

    PubMed

    Song, Imane; Patel, Oelfah; Himpe, Eddy; Muller, Christo J F; Bouwens, Luc

    2015-01-01

    One week of treatment with EGF and gastrin (EGF/G) was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of insulin. The

  6. 3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    PubMed

    Yang, Xiao-Yuan; He, Ke; Pan, Chun-Shui; Li, Quan; Liu, Yu-Ying; Yan, Li; Wei, Xiao-Hong; Hu, Bai-He; Chang, Xin; Mao, Xiao-Wei; Huang, Dan-Dan; Wang, Li-Jun; Hu, Shui-Wang; Jiang, Yong; Wang, Guo-Cheng; Fan, Jing-Yu; Fan, Tai-Ping; Han, Jing-Yan

    2015-06-01

    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1.

  7. Cardiac differentiation potential of human induced pluripotent stem cells in a 3D self-assembling peptide scaffold.

    PubMed

    Puig-Sanvicens, Veronica A C; Semino, Carlos E; Zur Nieden, Nicole I

    2015-01-01

    In the past decade, various strategies for cardiac reparative medicine involving stem cells from multiple sources have been investigated. However, the intra-cardiac implantation of cells with contractile ability may seriously disrupt the cardiac syncytium and de-synchronize cardiac rhythm. For this reason, bioactive cardiac implants, consisting of stem cells embedded in biomaterials that act like band aids, have been exploited to repair the cardiac wall after myocardial infarction. For such bioactive implants to function properly after transplantation, the choice of biomaterial is equally important as the selection of the stem cell source. While adult stem cells have shown promising results, they have various disadvantages including low proliferative potential in vitro, which make their successful usage in human transplants difficult. As a first step towards the development of a bioactive cardiac patch, we investigate here the cardiac differentiation properties of human induced pluripotent stem cells (hiPSCs) when cultured with and without ascorbic acid (AA) and when embedded in RAD16-I, a biomaterial commonly used to develop cardiac implants. In adherent cultures and in the absence of RAD16-I, AA promotes the cardiac differentiation of hiPSCs by enhancing the expression of specific cardiac genes and proteins and by increasing the number of contracting clusters. In turn, embedding in peptide hydrogel based on RAD16-I interferes with the normal cardiac differentiation progression. Embedded hiPSCs up-regulate genes associated with early cardiogenesis by up to 105 times independently of the presence of AA. However, neither connexin 43 nor troponin I proteins, which are related with mature cardiomyocytes, were detected and no contraction was noted in the constructs. Future experiments will need to focus on characterizing the mature cardiac phenotype of these cells when implanted into infarcted myocardia and assess their regenerative potential in vivo.

  8. Cardiac Regenerative Medicine: The Potential of a New Generation of Stem Cells

    PubMed Central

    Cambria, Elena; Steiger, Julia; Günter, Julia; Bopp, Annina; Wolint, Petra; Hoerstrup, Simon P.; Emmert, Maximilian Y.

    2016-01-01

    Cardiac stem cell therapy holds great potential to prompt myocardial regeneration in patients with ischemic heart disease. The selection of the most suitable cell type is pivotal for its successful application. Various cell types, including crude bone marrow mononuclear cells, skeletal myoblast, and hematopoietic and endothelial progenitors, have already advanced into the clinical arena based on promising results from different experimental and preclinical studies. However, most of these so-called first-generation cell types have failed to fully emulate the promising preclinical data in clinical trials, resulting in heterogeneous outcomes and a critical lack of translation. Therefore, different next-generation cell types are currently under investigation for the treatment of the diseased myocardium. This review article provides an overview of current stem cell therapy concepts, including the application of cardiac stem (CSCs) and progenitor cells (CPCs) and lineage commitment via guided cardiopoiesis from multipotent cells such as mesenchymal stem cells (MSCs) or pluripotent cells such as embryonic and induced pluripotent stem cells. Furthermore, it introduces new strategies combining complementary cell types, such as MSCs and CSCs/CPCs, which can yield synergistic effects to boost cardiac regeneration. PMID:27721703

  9. Cardiac Regenerative Medicine: The Potential of a New Generation of Stem Cells.

    PubMed

    Cambria, Elena; Steiger, Julia; Günter, Julia; Bopp, Annina; Wolint, Petra; Hoerstrup, Simon P; Emmert, Maximilian Y

    2016-07-01

    Cardiac stem cell therapy holds great potential to prompt myocardial regeneration in patients with ischemic heart disease. The selection of the most suitable cell type is pivotal for its successful application. Various cell types, including crude bone marrow mononuclear cells, skeletal myoblast, and hematopoietic and endothelial progenitors, have already advanced into the clinical arena based on promising results from different experimental and preclinical studies. However, most of these so-called first-generation cell types have failed to fully emulate the promising preclinical data in clinical trials, resulting in heterogeneous outcomes and a critical lack of translation. Therefore, different next-generation cell types are currently under investigation for the treatment of the diseased myocardium. This review article provides an overview of current stem cell therapy concepts, including the application of cardiac stem (CSCs) and progenitor cells (CPCs) and lineage commitment via guided cardiopoiesis from multipotent cells such as mesenchymal stem cells (MSCs) or pluripotent cells such as embryonic and induced pluripotent stem cells. Furthermore, it introduces new strategies combining complementary cell types, such as MSCs and CSCs/CPCs, which can yield synergistic effects to boost cardiac regeneration.

  10. Improving Cardiac Action Potential Measurements: 2D and 3D Cell Culture.

    PubMed

    Daily, Neil J; Yin, Yue; Kemanli, Pinar; Ip, Brian; Wakatsuki, Tetsuro

    2015-11-01

    Progress in the development of assays for measuring cardiac action potential is crucial for the discovery of drugs for treating cardiac disease and assessing cardiotoxicity. Recently, high-throughput methods for assessing action potential using induced pluripotent stem cell (iPSC) derived cardiomyocytes in both two-dimensional monolayer cultures and three-dimensional tissues have been developed. We describe an improved method for assessing cardiac action potential using an ultra-fast cost-effective plate reader with commercially available dyes. Our methods improve dramatically the detection of the fluorescence signal from these dyes and make way for the development of more high-throughput methods for cardiac drug discovery and cardiotoxicity.

  11. Cardiac Relapse of Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Sánchez-Quintana, Ana; Quijada-Fumero, Alejandro; Laynez-Carnicero, Ana; Breña-Atienza, Joaquín; Poncela-Mireles, Francisco J.; Llanos-Gómez, Juan M.; Cabello-Rodríguez, Ana I.; Ramos-López, María

    2016-01-01

    Secondary or metastatic cardiac tumors are much more common than primary benign or malignant cardiac tumors. Any tumor can cause myocardial or pericardial metastasis, although isolated or combined tumor invasion of the pericardium is more common. Types of neoplasia with the highest rates of cardiac or pericardial involvement are melanoma, lung cancer, and breast and mediastinal carcinomas. Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Initial treatment involves chemotherapy followed by consolidation treatment to reduce the risk of relapse. In high-risk patients, the treatment of choice for consolidation is hematopoietic stem cell transplantation (HSCT). Relapse of AML is the most common cause of HSCT failure. Extramedullary relapse is rare. The organs most frequently affected, called “sanctuaries,” are the testes, ovaries, and central nervous system. We present a case with extramedullary relapse in the form of a solid cardiac mass. PMID:27642531

  12. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium.

    PubMed

    Wang, Qiang-Li; Wang, Hai-Jie; Li, Zhi-Hua; Wang, Yong-Li; Wu, Xue-Ping; Tan, Yu-Zhen

    2017-02-28

    Cardiac patch is considered a promising strategy for enhancing stem cell therapy of myocardial infarction (MI). However, the underlying mechanisms for cardiac patch repairing infarcted myocardium remain unclear. In this study, we investigated the mechanisms of PCL/gelatin patch loaded with MSCs on activating endogenous cardiac repair. PCL/gelatin patch was fabricated by electrospun. The patch enhanced the survival of the seeded MSCs and their HIF-1α, Tβ4, VEGF and SDF-1 expression and decreased CXCL14 expression in hypoxic and serum-deprived conditions. In murine MI models, the survival and distribution of the engrafted MSCs and the activation of the epicardium were examined, respectively. At 4 weeks after transplantation of the cell patch, the cardiac functions were significantly improved. The engrafted MSCs migrated across the epicardium and into the myocardium. Tendency of HIF-1α, Tβ4, VEGF, SDF-1 and CXCL14 expression in the infarcted myocardium was similar with expression in vitro. The epicardium was activated and epicardial-derived cells (EPDCs) migrated into deep tissue. The EPDCs differentiated into endothelial cells and smooth muscle cells, and some of EPDCs showed to have differentiated into cardiomyocytes. Density of blood and lymphatic capillaries increased significantly. More c-kit(+) cells were recruited into the infarcted myocardium after transplantation of the cell patch. The results suggest that epicardial transplantation of the cell patch promotes repair of the infarcted myocardium and improves cardiac functions by enhancing the survival of the transplanted cells, accelerating locality paracrine, and then activating the epicardium and recruiting endogenous c-kit(+) cells. Epicardial transplantation of the cell patch may be applied as a novel effective MI therapy.

  13. Functional TRPV2 and TRPV4 channels in human cardiac c-kit(+) progenitor cells.

    PubMed

    Che, Hui; Xiao, Guo-Sheng; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2016-06-01

    The cellular physiology and biology of human cardiac c-kit(+) progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c-kit(+) progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c-kit(+) cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca(2+) (Ca(2+) i ), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α-phorbol 12-13-dicaprinate induced Ca(2+) i oscillations, which can be inhibited by the TRPV4 blocker RN-1734. The alteration of Ca(2+) i by probenecid or 4α-phorbol 12-13-dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c-kit(+) progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c-kit(+) progenitor cells. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Targeting cardiac mast cells: pharmacological modulation of the local renin-angiotensin system.

    PubMed

    Reid, Alicia C; Brazin, Jacqueline A; Morrey, Christopher; Silver, Randi B; Levi, Roberto

    2011-11-01

    Enhanced production of angiotensin II and excessive release of norepinephrine in the ischemic heart are major causes of arrhythmias and sudden cardiac death. Mast cell-dependent mechanisms are pivotal in the local formation of angiotensin II and modulation of norepinephrine release in cardiac pathophysiology. Cardiac mast cells increase in number in myocardial ischemia and are located in close proximity to sympathetic neurons expressing angiotensin AT1- and histamine H3-receptors. Once activated, cardiac mast cells release a host of potent pro-inflammatory and pro-fibrotic cytokines, chemokines, preformed mediators (e.g., histamine) and proteases (e.g., renin). In myocardial ischemia, angiotensin II (formed locally from mast cell-derived renin) and histamine (also released from local mast cells) respectively activate AT1- and H3-receptors on sympathetic nerve endings. Stimulation of angiotensin AT1-receptors is arrhythmogenic whereas H3-receptor activation is cardioprotective. It is likely that in ischemia/reperfusion the balance may be tipped toward the deleterious effects of mast cell renin, as demonstrated in mast cell-deficient mice, lacking mast cell renin and histamine in the heart. In these mice, no ventricular fibrillation occurs at reperfusion following ischemia, as opposed to wild-type hearts which all fibrillate. Preventing mast cell degranulation in the heart and inhibiting the activation of a local renin-angiotensin system, hence abolishing its detrimental effects on cardiac rhythmicity, appears to be more significant than the loss of histamine-induced cardioprotection. This suggests that therapeutic targets in the treatment of myocardial ischemia, and potentially congestive heart failure and hypertension, should include prevention of mast cell degranulation, mast cell renin inhibition, local ACE inhibition, ANG II antagonism and H3-receptor activation.

  15. Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells.

    PubMed

    Roy, Soumya Sinha; Biswas, Swati; Ray, Manju; Ray, Subhankar

    2003-06-01

    Previous publications from our laboratory have shown that methylglyoxal inhibits mitochondrial respiration of malignant and cardiac cells, but it has no effect on mitochondrial respiration of other normal cells [Biswas, Ray, Misra, Dutta and Ray (1997) Biochem. J. 323, 343-348; Ray, Biswas and Ray (1997) Mol. Cell. Biochem. 171, 95-103]. However, this inhibitory effect of methylglyoxal is not significant in cardiac tissue slices. Moreover, post-mitochondrial supernatant (PMS) of cardiac cells could almost completely protect the mitochondrial respiration against the inhibitory effect of methylglyoxal. A systematic search indicated that creatine present in cardiac cells is responsible for this protective effect. Glutathione has also some protective effect. However, creatine phosphate, creatinine, urea, glutathione disulphide and beta-mercaptoethanol have no protective effect. The inhibitory and protective effects of methylglyoxal and creatine respectively on cardiac mitochondrial respiration were studied with various concentrations of both methylglyoxal and creatine. Interestingly, neither creatine nor glutathione have any protective effect on the inhibition by methylglyoxal on the mitochondrial respiration of Ehrlich ascites carcinoma cells. The creatine and glutathione contents of several PMS, which were tested for the possible protective effect, were measured. The activities of two important enzymes, namely glyoxalase I and creatine kinase, which act upon glutathione plus methylglyoxal and creatine respectively, were also measured in different PMS. Whether mitochondrial creatine kinase had any role in the protective effect of creatine had also been investigated using 1-fluoro-2,4-dinitrobenzene, an inhibitor of creatine kinase. The differential effect of creatine on mitochondria of cardiac and malignant cells has been discussed with reference to the therapeutic potential of methylglyoxal.

  16. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function.

    PubMed

    Liau, Brian; Christoforou, Nicolas; Leong, Kam W; Bursac, Nenad

    2011-12-01

    Recent advances in pluripotent stem cell research have provided investigators with potent sources of cardiogenic cells. However, tissue engineering methodologies to assemble cardiac progenitors into aligned, 3-dimensional (3D) myocardial tissues capable of physiologically relevant electrical conduction and force generation are lacking. In this study, we introduced 3D cell alignment cues in a fibrin-based hydrogel matrix to engineer highly functional cardiac tissues from genetically purified mouse embryonic stem cell-derived cardiomyocytes (CMs) and cardiovascular progenitors (CVPs). Procedures for CM and CVP derivation, purification, and functional differentiation in monolayer cultures were first optimized to yield robust intercellular coupling and maximize velocity of action potential propagation. A versatile soft-lithography technique was then applied to reproducibly fabricate engineered cardiac tissues with controllable size and 3D architecture. While purified CMs assembled into a functional 3D syncytium only when supplemented with supporting non-myocytes, purified CVPs differentiated into cardiomyocytes, smooth muscle, and endothelial cells, and autonomously supported the formation of functional cardiac tissues. After a total culture time similar to period of mouse embryonic development (21 days), the engineered cardiac tissues exhibited unprecedented levels of 3D organization and functional differentiation characteristic of native neonatal myocardium, including: 1) dense, uniformly aligned, highly differentiated and electromechanically coupled cardiomyocytes, 2) rapid action potential conduction with velocities between 22 and 25 cm/s, and 3) significant contractile forces of up to 2 mN. These results represent an important advancement in stem cell-based cardiac tissue engineering and provide the foundation for exploiting the exciting progress in pluripotent stem cell research in the future tissue engineering therapies for heart disease. Copyright © 2011

  17. Transplantation of Epigenetically Modified Adult Cardiac c-Kit+ Cells Retards Remodeling and Improves Cardiac Function in Ischemic Heart Failure Model.

    PubMed

    Zakharova, Liudmila; Nural-Guvener, Hikmet; Feehery, Lorraine; Popovic-Sljukic, Snjezana; Gaballa, Mohamed A

    2015-09-01

    Cardiac c-Kit+ cells have a modest cardiogenic potential that could limit their efficacy in heart disease treatment. The present study was designed to augment the cardiogenic potential of cardiac c-Kit+ cells through class I histone deacetylase (HDAC) inhibition and evaluate their therapeutic potency in the chronic heart failure (CHF) animal model. Myocardial infarction (MI) was created by coronary artery occlusion in rats. c-Kit+ cells were treated with mocetinostat (MOCE), a specific class I HDAC inhibitor. At 3 weeks after MI, CHF animals were retrogradely infused with untreated (control) or MOCE-treated c-Kit+ cells (MOCE/c-Kit+ cells) and evaluated at 3 weeks after cell infusion. We found that class I HDAC inhibition in c-Kit+ cells elevated the level of acetylated histone H3 (AcH3) and increased AcH3 levels in the promoter regions of pluripotent and cardiac-specific genes. Epigenetic changes were accompanied by increased expression of cardiac-specific markers. Transplantation of CHF rats with either control or MOCE/c-Kit+ cells resulted in an improvement in cardiac function, retardation of CHF remodeling made evident by increased vascularization and scar size, and cardiomyocyte hypertrophy reduction. Compared with CHF infused with control cells, infusion of MOCE/c-Kit+ cells resulted in a further reduction in left ventricle end-diastolic pressure and total collagen and an increase in interleukin-6 expression. The low engraftment of infused cells suggests that paracrine effects might account for the beneficial effects of c-Kit+ cells in CHF. In conclusion, selective inhibition of class I HDACs induced expression of cardiac markers in c-Kit+ cells and partially augmented the efficacy of these cells for CHF repair. The study has shown that selective class 1 histone deacetylase inhibition is sufficient to redirect c-Kit+ cells toward a cardiac fate. Epigenetically modified c-Kit+ cells improved contractile function and retarded remodeling of the congestive heart

  18. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    PubMed

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Exploring the Role of Calcium in Cardiac Cell Dynamics

    NASA Astrophysics Data System (ADS)

    Berger, Carolyn; Idriss, Salim; Rouze, Ned; Hall, David; Gauthier, Daniel

    2007-03-01

    Bifurcations in the electrical response of cardiac tissue can destabilize spatio-temporal waves of electrochemical activity in the heart, leading to tachycardia or even fibrillation. Therefore, it is important to understand the mechanisms that cause instabilities in cardiac tissue.Traditionally, researchers have focused on understanding how the transmembrane voltage is altered in response to an increase in pacing rate, i.e. a shorter time interval between propagating electrochemical waves. However, the dynamics of the transmembrane voltage are coupled to the activity of several ions that traverse the membrane. Therefore, to fully understand the mechanisms that drive these bifurcations, we must include an investigation of the ionic behavior. We will present our recent investigation of the role of intracellular calcium in an experimental testbed of frog ventricle. Calcium and voltage are measured simultaneously, allowing for the previous research regarding voltage to guide our understanding of the calcium dynamics.

  20. Cardiac cell proliferation is not necessary for exercise-induced cardiac growth but required for its protection against ischaemia/reperfusion injury.

    PubMed

    Bei, Yihua; Fu, Siyi; Chen, Xiangming; Chen, Mei; Zhou, Qiulian; Yu, Pujiao; Yao, Jianhua; Wang, Hongbao; Che, Lin; Xu, Jiahong; Xiao, Junjie

    2017-03-17

    The adult heart retains a limited ability to regenerate in response to injury. Although exercise can reduce cardiac ischaemia/reperfusion (I/R) injury, the relative contribution of cardiac cell proliferation including newly formed cardiomyocytes remains unclear. A 4-week swimming murine model was utilized to induce cardiac physiological growth. Simultaneously, the antineoplastic agent 5-fluorouracil (5-FU), which acts during the S phase of the cell cycle, was given to mice via intraperitoneal injections. Using EdU and Ki-67 immunolabelling, we showed that exercise-induced cardiac cell proliferation was blunted by 5-FU. In addition, the growth of heart in size and weight upon exercise was unaltered, probably due to the fact that exercise-induced cardiomyocyte hypertrophy was not influenced by 5-FU as demonstrated by wheat germ agglutinin staining. Meanwhile, the markers for pathological hypertrophy, including ANP and BNP, were not changed by either exercise or 5-FU, indicating that physiological growth still developed in the presence of 5-FU. Furthermore, we showed that CITED4, a key regulator for cardiomyocyte proliferation, was blocked by 5-FU. Meanwhile, C/EBPβ, a transcription factor responsible for both cellular proliferation and hypertrophy, was not altered by treatment with 5-FU. Importantly, the effects of exercise in reducing cardiac I/R injury could be abolished when cardiac cell proliferation was attenuated in mice treated with 5-FU. In conclusion, cardiac cell proliferation is not necessary for exercise-induced cardiac physiological growth, but it is required for exercise-associated protection against I/R injury.

  1. Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats

    PubMed Central

    Xu, Bin; Li, Yang; Deng, Bo; Liu, Xiaojing; Wang, Lin; Zhu, Qing-Lei

    2017-01-01

    Myocardial infarction (MI) remains the leading cause of cardiovascular-associated mortality and morbidity. Improving the retention rate, survival and cardiomyocyte differentiation of mesenchymal stem cells (MSCs) is important in improving the treatment of patients with MI. In the present study, temperature-responsive chitosan hydrogel, an injectable scaffold, was used to deliver MSCs directly into the infarcted myocardium of rats following MI. Histopathology and immunohistochemical staining were used to evaluate cardiac cell survival and regeneration, and cardiac function was assessed using an echocardiograph. It was demonstrated that chitosan hydrogel increased graft size and cell retention in the ischemic heart, promoted MSCs to differentiate into cardiomyocytes and increased the effects of MSCs on neovasculature formation. Furthermore, chitosan hydrogel enhanced the effect of MSCs on the improvement of cardiac function and hemodynamics in the infarcted area of rats following MI. These findings suggest that chitosan hydrogel is an appropriate material to deliver MSCs into infarcted myocardium. PMID:28352335

  2. Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration.

    PubMed

    Kanashiro-Takeuchi, Rosemeire M; Schulman, Ivonne Hernandez; Hare, Joshua M

    2011-10-01

    Cell-based therapy is emerging as an exciting potential therapeutic approach for cardiac regeneration following myocardial infarction (MI). As heart failure (HF) prevalence increases over time, development of new interventions designed to aid cardiac recovery from injury are crucial and should be considered more broadly. In this regard, substantial efforts to enhance the efficacy and safety of cell therapy are continuously growing along several fronts, including modifications to improve the reprogramming efficiency of inducible pluripotent stem cells (iPS), genetic engineering of adult stem cells, and administration of growth factors or small molecules to activate regenerative pathways in the injured heart. These interventions are emerging as potential therapeutic alternatives and/or adjuncts based on their potential to promote stem cell homing, proliferation, differentiation, and/or survival. Given the promise of therapeutic interventions to enhance the regenerative capacity of multipotent stem cells as well as specifically guide endogenous or exogenous stem cells into a cardiac lineage, their application in cardiac regenerative medicine should be the focus of future clinical research. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure." Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Embryonic stem cell-based cardiopatches improve cardiac function in infarcted rats.

    PubMed

    Vallée, Jean-Paul; Hauwel, Mathieu; Lepetit-Coiffé, Matthieu; Bei, Wang; Montet-Abou, Karin; Meda, Paolo; Gardier, Stephany; Zammaretti, Prisca; Kraehenbuehl, Thomas P; Herrmann, Francois; Hubbell, Jeffrey A; Jaconi, Marisa E

    2012-03-01

    Pluripotent stem cell-seeded cardiopatches hold promise for in situ regeneration of infarcted hearts. Here, we describe a novel cardiopatch based on bone morphogenetic protein 2-primed cardiac-committed mouse embryonic stem cells, embedded into biodegradable fibrin matrices and engrafted onto infarcted rat hearts. For in vivo tracking of the engrafted cardiac-committed cells, superparamagnetic iron oxide nanoparticles were magnetofected into the cells, thus enabling detection and functional evaluation by high-resolution magnetic resonance imaging. Six weeks after transplantation into infarcted rat hearts, both local (p < .04) and global (p < .015) heart function, as well as the left ventricular dilation (p < .0011), were significantly improved (p < .001) as compared with hearts receiving cardiopatches loaded with iron nanoparticles alone. Histological analysis revealed that the fibrin scaffolds had degraded over time and clusters of myocyte enhancer factor 2-positive cardiac-committed cells had colonized most of the infarcted myocardium, including the fibrotic area. De novo CD31-positive blood vessels were formed in the vicinity of the transplanted cardiopatch. Altogether, our data provide evidence that stem cell-based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction.

  4. Pharmacologic And Genetic Strategies To Enhance Cell Therapy For Cardiac Regeneration

    PubMed Central

    Kanashiro-Takeuchi, Rosemeire M.; Schulman, Ivonne Hernandez; Hare, Joshua M.

    2012-01-01

    Cell-based therapy is emerging as an exciting potential therapeutic approach for cardiac regeneration following myocardial infarction (MI). As heart failure (HF) prevalence increases over time, development of new interventions designed to aid cardiac recovery from injury are crucial and should be considered more broadly. In this regard, substantial efforts to enhance the efficacy and safety of cell therapy are continuously growing along several fronts, including modifications to improve the reprogramming efficiency of inducible pluripotent stem cells (iPS), genetic engineering of adult stem cells, and administration of growth factors or small molecules to activate regenerative pathways in the injured heart. These interventions are emerging as potential therapeutic alternatives and/or adjuncts based on their potential to promote stem cell homing, proliferation, differentiation, and/or survival. Given the promise of therapeutic interventions to enhance the regenerative capacity of multipotent stem cells as well as specifically guide endogenous or exogenous stem cells into a cardiac lineage, their application in cardiac regenerative medicine should be the focus of future clinical research. This article is part of a Special Issue entitled ‘Key Signaling Molecules Special Issue’. PMID:21645519

  5. Hybrid carbon nanotube-polymer scaffolds for cardiac tissue regeneration

    NASA Astrophysics Data System (ADS)

    Ahadian, Samad; Davenport-Huyer, Locke; Smith, Nathaniel; Radisic, Milica

    2017-02-01

    Due to insufficient supply of heart transplants and limited regenerative ability of heart tissues, cardiac tissue engineering has emerged to restore or regenerate the structure and function of native cardiac tissues. Scaffolds play a major role in fabrication of functional cardiac tissues, providing structural support, biodegradation, and cell affinity. However, currently used scaffolds in cardiac tissue regeneration tend to lack adequate electrical conductivity and favorable mechanical properties. In response to these concerns, carbon nanotubes (CNTs) have been used to enhance electrical and mechanical properties of scaffolds in cardiac tissue engineering. Here, we review different hybrid CNT-biomaterial scaffolds, both natural and synthetic, in cardiac tissue regeneration and their fabrication methods. Furthermore, CNT toxicity is also discussed. We further outline future trends in this research area toward using CNTs as a functional nanomaterial in cardiac tissue engineering.

  6. Challenges in identifying the best source of stem cells for cardiac regeneration therapy.

    PubMed

    Dixit, Parul; Katare, Rajesh

    2015-03-13

    The overall clinical cardiac regeneration experience suggests that stem cell therapy can be safely performed, but it also underlines the need for reproducible results for their effective use in a real-world scenario. One of the significant challenges is the identification and selection of the best suited stem cell type for regeneration therapy. Bone marrow mononuclear cells, bone marrow-derived mesenchymal stem cells, resident or endogenous cardiac stem cells, endothelial progenitor cells and induced pluripotent stem cells are some of the stem cell types which have been extensively tested for their ability to regenerate the lost myocardium. While most of these cell types are being evaluated in clinical trials for their safety and efficacy, results show significant heterogeneity in terms of efficacy. The enthusiasm surrounding regenerative medicine in the heart has been dampened by the reports of poor survival, proliferation, engraftment, and differentiation of the transplanted cells. Therefore, the primary challenge is to create clearcut evidence on what actually drives the improvement of cardiac function after the administration of stem cells. In this review, we provide an overview of different types of stem cells currently being considered for cardiac regeneration and discuss why associated factors such as practicality and difficulty in cell collection should also be considered when selecting the stem cells for transplantation. Next, we discuss how the experimental variables (type of disease, marker-based selection and use of different isolation techniques) can influence the study outcome. Finally, we provide an outline of the molecular and genetic approaches to increase the functional ability of stem cells before and after transplantation.

  7. Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands.

    PubMed

    Pringle, Sarah; Maimets, Martti; van der Zwaag, Marianne; Stokman, Monique A; van Gosliga, Djoke; Zwart, Erik; Witjes, Max J H; de Haan, Gerald; van Os, Ronald; Coppes, Rob P

    2016-03-01

    Adult stem cells are often touted as therapeutic agents in the regenerative medicine field, however data detailing both the engraftment and functional capabilities of solid tissue derived human adult epithelial stem cells is scarce. Here we show the isolation of adult human salivary gland (SG) stem/progenitor cells and demonstrate at the single cell level in vitro self-renewal and differentiation into multilineage organoids. We also show in vivo functionality, long-term engraftment, and functional restoration in a xenotransplantation model. Indeed, transplanted human salisphere-derived cells restored saliva production and greatly improved the regenerative potential of irradiated SGs. Further selection for c-Kit expression enriched for cells with enhanced regenerative potencies. Interestingly, interaction of transplanted cells with the recipient SG may also be involved in functional recovery. Thus, we show for the first time that salispheres cultured from human SGs contain stem/progenitor cells capable of self-renewal and differentiation and rescue of saliva production. Our study underpins the therapeutic promise of salisphere cell therapy for the treatment of xerostomia.

  8. Gene printer: laser-scanning targeted transfection of cultured cardiac neonatal rat cells.

    PubMed

    Nikolskaya, Alena V; Nikolski, Vladimir P; Efimov, Igor R

    2006-01-01

    Heterogeneous gene expression in cardiac cells and tissues which requires targeted delivery of foreign DNA into selected cells or regions is needed for the development of novel therapies. Several techniques have been employed for targeted transfection, such as direct microinjection into cells or targeted electroporation. However, these techniques have limited bandwidth or spatial resolution of transfection. We aimed to develop a method for transfection of cardiac cells by means of laser-assisted optoporation using a standard confocal microscope. This technique allows for the transfection of selected cell types in the presence of other cell types as long as they are distinguishable with a microscope. This technique can work as a "gene printer" creating arbitrarily shaped areas of transfected cells.

  9. T-cell post-transplantation lymphoproliferative disorders after cardiac transplantation: a single institutional experience.

    PubMed

    Draoua, H Y; Tsao, Lawrence; Mancini, Donna M; Addonizio, Linda J; Bhagat, Govind; Alobeid, Bachir

    2004-11-01

    Post-transplantation lymphoproliferative disorders (PTLDs) are a well-recognized and potentially life-threatening complication of solid organ transplantation. While the vast majority of PTLDs are B-cell lymphoproliferations, T-cell PTLDs are rarely seen. Among 898 patients receiving cardiac transplants between 1990 and 2003, 34 patients (3.8%) developed PTLDs with two (0.2%) T-cell PTLDs, 31 (3.5%) B-cell PTLDs and one (0.1%) natural killer cell PTLD. An additional three cases of T-cell PTLD were identified among all cardiac transplant patients followed at our institution. These T-cell PTLDs comprised a heterogeneous group of Epstein-Barr virus negative lymphoproliferations that developed late after transplantation and followed an aggressive course.

  10. Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms

    PubMed Central

    Liu, Lijun; Wu, Jian; Kennedy, David J.

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling. PMID:27667975

  11. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms.

    PubMed

    Liu, Lijun; Wu, Jian; Kennedy, David J

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na(+)/K(+)-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na(+)/K(+)-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na(+)/K(+)-ATPase regulates intracellular Ca(2+) signaling, contractility and pathological hypertrophy. The α3 isoform of the Na(+)/K(+)-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na(+)/K(+)-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na(+)/K(+)-ATPase in the cardiomyocytes. (2) the role of cardiac Na(+)/K(+)-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na(+)/K(+)-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  12. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature.

    PubMed

    Demyanets, Svitlana; Kaun, Christoph; Pentz, Richard; Krychtiuk, Konstantin A; Rauscher, Sabine; Pfaffenberger, Stefan; Zuckermann, Andreas; Aliabadi, Arezu; Gröger, Marion; Maurer, Gerald; Huber, Kurt; Wojta, Johann

    2013-07-01

    Interleukin-33 (IL-33) is a recently described member of the IL-1 family of cytokines, which was identified as a ligand for the ST2 receptor. Components of the IL-33/ST2 system were shown to be expressed in normal and pressure overloaded human myocardium, and soluble ST2 (sST2) has emerged as a prognostic biomarker in myocardial infarction and heart failure. However, expression and regulation of IL-33 in human adult cardiac myocytes and fibroblasts was not tested before. In this study we found that primary human adult cardiac fibroblasts (HACF) and human adult cardiac myocytes (HACM) constitutively express nuclear IL-33 that is released during cell necrosis. Tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-1β significantly increased both IL-33 protein and IL-33 mRNA expression in HACF and HACM as well as in human coronary artery smooth muscle cells (HCASMC). The nuclear factor-κB (NF-κB) inhibitor dimethylfumarate inhibited TNF-α- and IL-1β-induced IL-33 production as well as nuclear translocation of p50 and p65 NF-κB subunits in these cells. Mitogen-activated protein/extracellular signal-regulated kinase inhibitor U0126 abrogated TNF-α-, IFN-γ-, and IL-1β-induced and Janus-activated kinase inhibitor I reduced IFN-γ-induced IL-33 production. We detected IL-33 mRNA in human myocardial tissue from patients undergoing heart transplantation (n=27) where IL-33 mRNA levels statistically significant correlated with IFN-γ (r=0.591, p=0.001) and TNF-α (r=0.408, p=0.035) mRNA expression. Endothelial cells in human heart expressed IL-33 as well as ST2 protein. We also reveal that human cardiac and vascular cells have different distribution patterns of ST2 isoforms (sST2 and transmembrane ST2L) mRNA expression and produce different amounts of sST2 protein. Both human macrovascular (aortic and coronary artery) and heart microvascular endothelial cells express specific mRNA for both ST2 isoforms (ST2L and sST2) and are a source for sST2 protein, whereas

  13. Impact of Cell Composition and Geometry on Human Induced Pluripotent Stem Cells-Derived Engineered Cardiac Tissue

    PubMed Central

    Nakane, Takeichiro; Masumoto, Hidetoshi; Tinney, Joseph P.; Yuan, Fangping; Kowalski, William J.; Ye, Fei; LeBlanc, Amanda J.; Sakata, Ryuzo; Yamashita, Jun K.; Keller, Bradley B.

    2017-01-01

    The current study describes a scalable, porous large-format engineered cardiac tissue (LF-ECT) composed of human induced pluripotent stem cells (hiPSCs) derived multiple lineage cardiac cells with varied 3D geometries and cell densities developed towards the goal of scale-up for large animal pre-clinical studies. We explored multiple 15 × 15 mm ECT geometries using molds with rectangular internal staggered posts (mesh, ME), without posts (plain sheet, PS), or long parallel posts (multiple linear bundles, ML) and a gel matrix containing hiPSC-derived cardiomyocytes, endothelial, and vascular mural cells matured in vitro for 14 days. ME-ECTs displayed the lowest dead cell ratio (p < 0.001) and matured into 0.5 mm diameter myofiber bundles with greater 3D cell alignment and higher active stress than PS-ECTs. Increased initial ECT cell number beyond 6 M per construct resulted in reduced cell survival and lower active stress. The 6M-ME-ECTs implanted onto 1 week post-infarct immune tolerant rat hearts engrafted, displayed evidence for host vascular coupling, and recovered myocardial structure and function with reduced scar area. We generated a larger (30 × 30 mm) ME-ECT to confirm scalability. Thus, large-format ECTs generated from hiPSC-derived cardiac cells may be feasible for large animal preclinical cardiac regeneration paradigms. PMID:28368043

  14. The role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair.

    PubMed

    Saparov, Arman; Chen, Chien-Wen; Beckman, Sarah A; Wang, Yadong; Huard, Johnny

    2013-08-06

    Oxidative stress and inflammation play major roles in the pathogenesis of coronary heart disease including myocardial infarction (MI). The pathological progression following MI is very complex and involves a number of cell populations including cells localized within the heart, as well as cells recruited from the circulation and other tissues that participate in inflammatory and reparative processes. These cells, with their secretory factors, have pleiotropic effects that depend on the stage of inflammation and regeneration. Excessive inflammation leads to enlargement of the infarction site, pathological remodeling and eventually, heart dysfunction. Stem cell therapy represents a unique and innovative approach to ameliorate oxidative stress and inflammation caused by ischemic heart disease. Consequently, it is crucial to understand the crosstalk between stem cells and other cells involved in post-MI cardiac tissue repair, especially immune cells, in order to harness the beneficial effects of the immune response following MI and further improve stem cell-mediated cardiac regeneration. This paper reviews the recent findings on the role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair following ischemic heart disease, particularly acute MI and focuses specifically on mesenchymal, muscle and blood-vessel-derived stem cells due to their antioxidant and immunomodulatory properties.

  15. G-CSF displays restricted ability to promote Sca-1(+) cardiac stem cell proliferation in vitro.

    PubMed

    Luo, Haijian; Bassi, Giulio; Tessari, Maddalena; Yang, Zhenyu; Faggian, Giuseppe

    2014-12-01

    Granulocyte colony-stimulating factor (G-CSF) is a controversial chemical in cardiac cell therapy. Myocardial homing of mobilized bone marrow-derived cells is thought to play a critical role in observed G-CSF-induced cardiac repair; meanwhile, the activation of proliferative potential of cardiac stem cells (CSCs) residing in the heart is a significant challenge. The present study aims to investigate whether G-CSF receptor is expressed in adult resident Sca-1(+) CSCs and determine the effect of G-CSF treatment on the proliferation of CSCs. For cardiac cells isolation, 12-week-old male C57BL/6 mice were anesthetized in a chamber containing 2.5% isoflurane in oxygen, euthanized by CO2 inhalation and then sacrificed by cervical dislocation. Magnetic-activated cell sorting was employed to acquire highly purified Sca-1(+) CSCs. We found that G-CSF receptor was expressed in adult resident Sca-1(+) CSCs by immunofluorescence staining and Western blotting. Exposure of Sca-1(+) cells to G-CSF in the culture medium for 72 h induced time-dependent but self-limiting cell cycle acceleration with a restricted effect on the CSC proliferation. As a result, it has provided a new insight to focus on the association between cardiac G-CSF therapy and adult resident stem cell activation. It may suggest gaining a deeper insight into the mechanisms of the interaction between CSCs and G-CSF to develop a synergistic strategy based on resident stem cell and G-CSF therapy for heart disease.

  16. Trichostatin A enhances differentiation of human induced pluripotent stem cells to cardiogenic cells for cardiac tissue engineering.

    PubMed

    Lim, Shiang Y; Sivakumaran, Priyadharshini; Crombie, Duncan E; Dusting, Gregory J; Pébay, Alice; Dilley, Rodney J

    2013-09-01

    Human induced pluripotent stem (iPS) cells are a promising source of autologous cardiomyocytes to repair and regenerate myocardium for treatment of heart disease. In this study, we have identified a novel strategy to enhance cardiac differentiation of human iPS cells by treating embryoid bodies (EBs) with a histone deacetylase inhibitor, trichostatin A (TSA), together with activin A and bone morphogenetic protein 4 (BMP4). Over a narrow window of concentrations, TSA (1 ng/ml) directed the differentiation of human iPS cells into a cardiomyocyte lineage. TSA also exerted an additive effect with activin A (100 ng/ml) and BMP4 (20 ng/ml). The resulting cardiomyocytes expressed several cardiac-specific transcription factors and contractile proteins at both gene and protein levels. Functionally, the contractile EBs displayed calcium cycling and were responsive to the chronotropic agents isoprenaline (0.1 μM) and carbachol (1 μM). Implanting microdissected beating areas of iPS cells into tissue engineering chambers in immunocompromised rats produced engineered constructs that supported their survival, and they maintained spontaneous contraction. Human cardiomyocytes were identified as compact patches of muscle tissue incorporated within a host fibrocellular stroma and were vascularized by host neovessels. In conclusion, human iPS cell-derived cardiomyocytes can be used to engineer functional cardiac muscle tissue for studying the pathophysiology of cardiac disease, for drug discovery test beds, and potentially for generation of cardiac grafts to surgically replace damaged myocardium.

  17. Activin A Modulates CRIPTO-1/HNF4α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells

    PubMed Central

    Duelen, Robin; Gilbert, Guillaume; Patel, Abdulsamie; de Schaetzen, Nathalie; De Waele, Liesbeth; Roderick, Llewelyn; Sipido, Karin R.; Verfaillie, Catherine M.; Buyse, Gunnar M.

    2017-01-01

    The use of human pluripotent stem cells in basic and translational cardiac research requires efficient differentiation protocols towards cardiomyocytes. In vitro differentiation yields heterogeneous populations of ventricular-, atrial-, and nodal-like cells hindering their potential applications in regenerative therapies. We described the effect of the growth factor Activin A during early human embryonic stem cell fate determination in cardiac differentiation. Addition of high levels of Activin A during embryoid body cardiac differentiation augmented the generation of endoderm derivatives, which in turn promoted cardiomyocyte differentiation. Moreover, a dose-dependent increase in the coreceptor expression of the TGF-β superfamily member CRIPTO-1 was observed in response to Activin A. We hypothesized that interactions between cells derived from meso- and endodermal lineages in embryoid bodies contributed to improved cell maturation in early stages of cardiac differentiation, improving the beating frequency and the percentage of contracting embryoid bodies. Activin A did not seem to affect the properties of cardiomyocytes at later stages of differentiation, measuring action potentials, and intracellular Ca2+ dynamics. These findings are relevant for improving our understanding on human heart development, and the proposed protocol could be further explored to obtain cardiomyocytes with functional phenotypes, similar to those observed in adult cardiac myocytes. PMID:28163723

  18. Characterization of rat very small embryonic-like stem cells and cardiac repair after cell transplantation for myocardial infarction.

    PubMed

    Wu, Jin-Hong; Wang, Hai-Jie; Tan, Yu-Zhen; Li, Zhi-Hua

    2012-05-20

    Stem cell therapy is a promising therapeutic strategy for treating myocardial infarction (MI). However, it is necessary to identify ideal adult stem cells for transplantation and explore mechanisms of the transplanted cells in improving cardiac functions after MI. In this study, a population of embryonic-like stem cells (ELSCs) was isolated from rat bone marrow. The cells express pluripotent stem cell transcriptional factors and present high proliferative activity on mouse embryonic fibroblast feeder. ELSCs retain clonal expansion and may form embryoid-like bodies in soft agarose containing leukemia inhibitory factor and basic fibroblast growth factor. The cells of the embryoid-like bodies can differentiate into the cells from 3 germ layers. Under induction, the cells can differentiate into cardiomyocytes and endothelial cells. In MI models of female rats, the transplantation of preinduced ELSCs of male rats reduce scar area and improve cardiac function significantly. Comparing with marrow-derived mesenchymal stem cells and ELSCs without induction, effects of the preinduced ELSCs on myocardial repair and improvement of cardiac function are greater. Survival of the transplanted cells in the peri-infarcted and infarcted regions was examined by fluorescence in situ hybridization. Y chromosome-positive cells may differentiate toward cardiomyocytes and express cTnT and Cx43. Cx43 expression was observed at conjunction of Y chromosome-positive cells and recipient cardiomyocytes. Some Y chromosome-positive cells express CD31 and incorporate into the microvessels in the infarcted tissue. These results suggest that a population of ELSCs resides in rat bone marrow and display similar biological characteristics of ESCs. ELSCs can differentiate into cardiomyocytes and endothelial cells and contribute to cardiomyogenesis and angiogenesis in vivo. Cardiac function after MI may be significantly improved with transplantation of the preinduced ELSCs. Therefore, ELSCs are novel seed

  19. The Impact of Juvenile Coxsackievirus Infection on Cardiac Progenitor Cells and Postnatal Heart Development

    PubMed Central

    Sin, Jon; Puccini, Jenna M.; Huang, Chengqun; Konstandin, Mathias H.; Gilbert, Paul E.; Sussman, Mark A.; Gottlieb, Roberta A.; Feuer, Ralph

    2014-01-01

    Coxsackievirus B (CVB) is an enterovirus that most commonly causes a self-limited febrile illness in infants, but cases of severe infection can manifest in acute myocarditis. Chronic consequences of mild CVB infection are unknown, though there is an epidemiologic association between early subclinical infections and late heart failure, raising the possibility of subtle damage leading to late-onset dysfunction, or chronic ongoing injury due to inflammatory reactions during latent infection. Here we describe a mouse model of juvenile infection with a subclinical dose of coxsackievirus B3 (CVB3) which showed no evident symptoms, either immediately following infection or in adult mice. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected adult mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. Evaluation of the vasculature in the hearts of adult mice subjected to cardiac stress showed a compensatory increase in CD31+ blood vessel formation, although this effect was suppressed in juvenile-infected mice. Moreover, CVB3 efficiently infected juvenile c-kit+ cells, and cardiac progenitor cell numbers were reduced in the hearts of juvenile-infected adult mice. These results suggest that the exhausted cardiac progenitor cell pool following juvenile CVB3 infection may impair the heart's ability to increase capillary density to adapt to increased load. PMID:25079373

  20. The modulation of cardiac progenitor cell function by hydrogel-dependent Notch1activation

    PubMed Central

    Boopathy, Archana V.; Che, Pao Lin; Somasuntharam, Inthirai; Fiore, Vincent F.; Cabigas, E. Bernadette; Ban, Kiwon; Brown, Milton E.; Narui, Yoshie; Barker, Thomas H.; Yoon, Young-sup; Salaita, Khalid; García, Andrés J.; Davis, Michael E.

    2014-01-01

    Myocardial infarction is the leading cause of death worldwide and phase I clinical trials utilizing cardiac progenitor cells (CPCs) have shown promising outcomes. Notch1 signaling plays a critical role in cardiac development and in the survival, cardiogenic lineage commitment, and differentiation of cardiac stem/progenitor cells. In this study, we functionalized self-assembling peptide (SAP) hydrogels with a peptide mimic of the Notch1 ligand Jagged1 (RJ) to evaluate the therapeutic benefit of CPC delivery in the hydrogels in a rat model of myocardial infarction. The behavior of CPCs cultured in the 3D hydrogels in vitro including gene expression, proliferation, and growth factor production was evaluated. Interestingly, we observed Notch1 activation to be dependent on hydrogel polymer density/stiffness with synergistic increase in presence of RJ. Our results show that RJ mediated Notch1 activation depending on hydrogel concentration differentially regulated cardiogenic gene expression, proliferation, and growth factor production in CPCs in vitro. In rats subjected to experimental myocardial infarction, improvement in acute retention and cardiac function was observed following cell therapy in RJ hydrogels compared to unmodified or scrambled peptide containing hydrogels. This study demonstrates the potential therapeutic benefit of functionalizing SAP hydrogels with RJ for CPC based cardiac repair. PMID:24974008

  1. The modulation of cardiac progenitor cell function by hydrogel-dependent Notch1 activation.

    PubMed

    Boopathy, Archana V; Che, Pao Lin; Somasuntharam, Inthirai; Fiore, Vincent F; Cabigas, E Bernadette; Ban, Kiwon; Brown, Milton E; Narui, Yoshie; Barker, Thomas H; Yoon, Young-Sup; Salaita, Khalid; García, Andrés J; Davis, Michael E

    2014-09-01

    Myocardial infarction is the leading cause of death worldwide and phase I clinical trials utilizing cardiac progenitor cells (CPCs) have shown promising outcomes. Notch1 signaling plays a critical role in cardiac development and in the survival, cardiogenic lineage commitment, and differentiation of cardiac stem/progenitor cells. In this study, we functionalized self-assembling peptide (SAP) hydrogels with a peptide mimic of the Notch1 ligand Jagged1 (RJ) to evaluate the therapeutic benefit of CPC delivery in the hydrogels in a rat model of myocardial infarction. The behavior of CPCs cultured in the 3D hydrogels in vitro including gene expression, proliferation, and growth factor production was evaluated. Interestingly, we observed Notch1 activation to be dependent on hydrogel polymer density/stiffness with synergistic increase in presence of RJ. Our results show that RJ mediated Notch1 activation depending on hydrogel concentration differentially regulated cardiogenic gene expression, proliferation, and growth factor production in CPCs in vitro. In rats subjected to experimental myocardial infarction, improvement in acute retention and cardiac function was observed following cell therapy in RJ hydrogels compared to unmodified or scrambled peptide containing hydrogels. This study demonstrates the potential therapeutic benefit of functionalizing SAP hydrogels with RJ for CPC based cardiac repair. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A Mouse Model for Fetal Maternal Stem Cell Transfer During Ischemic Cardiac Injury

    PubMed Central

    Kara, Rina J.; Bolli, Paola; Matsunaga, Iwao; Tanweer, Omar; Altman, Perry; Chaudhry, Hina W.

    2012-01-01

    Fetal cells enter the maternal circulation during pregnancies and can persist in blood and tissues for decades, creating a state of physiologic microchimerism. Microchimerism refers to acquisition of cells from another individual and can be due to bi-directional cell traffic between mother and fetus during pregnancy. Peripartum cardiomyopathy, a rare cardiac disorder associated with high mortality rates has the highest recovery rate amongst all etiologies of heart failure although the reason is unknown. Collectively, these observations led us to hypothesize that fetal cells enter the maternal circulation and may be recruited to the sites of myocardial disease or injury. The ability to genetically modify mice makes them an ideal system for studying the phenomenon of microchimerism in cardiac disease. Described here is a mouse model for ischemic cardiac injury during pregnancy designed to study microchimerism. Wild-type virgin female mice mated with eGFP male mice underwent ligation of the left anterior descending artery to induce a myocardial infarction at gestation day 12. We demonstrate the selective homing of eGFP cells to the site of cardiac injury without such homing to nonfinjured tissues suggesting the presence of precise signals sensed by fetal cells enabling them to target diseased myocardium specifically. PMID:22883609

  3. Stem cell therapy: a novel approach for vision restoration in retinitis pigmentosa.

    PubMed

    Uy, Harvey Siy; Chan, Pik Sha; Cruz, Franz Marie

    2013-01-01

    Unfortunately, at present, degenerative retinal diseases such as retinitis pigmentosa remains untreatable. Patients with these conditions suffer progressive visual decline resulting from continuing loss of photoreceptor cells and outer nuclear layers. However, stem cell therapy is a promising approach to restore visual function in eyes with degenerative retinal diseases such as retinitis pigmentosa. Animal studies have established that pluripotent stem cells when placed in the mouse retinitis pigmentosa models have the potential not only to survive, but also to differentiate, organize into and function as photoreceptor cells. Furthermore, there is early evidence that these transplanted cells provide improved visual function. These groundbreaking studies provide proof of concept that stem cell therapy is a viable method of visual rehabilitation among eyes with retinitis pigmentosa. Further studies are required to optimize these techniques in human application. This review focuses on stem cell therapy as a new approach for vision restitution in retinitis pigmentosa.

  4. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    PubMed

    Danoviz, Maria E; Nakamuta, Juliana S; Marques, Fabio L N; dos Santos, Leonardo; Alvarenga, Erica C; dos Santos, Alexandra A; Antonio, Ednei L; Schettert, Isolmar T; Tucci, Paulo J; Krieger, Jose E

    2010-08-10

    Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). 99mTc-labeled ASCs (1x10(6) cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  5. Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    PubMed Central

    Danoviz, Maria E.; Nakamuta, Juliana S.; Marques, Fabio L. N.; dos Santos, Leonardo; Alvarenga, Erica C.; dos Santos, Alexandra A.; Antonio, Ednei L.; Schettert, Isolmar T.; Tucci, Paulo J.; Krieger, Jose E.

    2010-01-01

    Background Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings 99mTc-labeled ASCs (1×106 cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by γ-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8±2.0 and 26.8±2.4% vs. 4.8±0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers. PMID:20711471

  6. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells

    SciTech Connect

    Nakanishi, Chiaki; Yamagishi, Masakazu; Yamahara, Kenichi; Hagino, Ikuo; Mori, Hidezo; Sawa, Yoshiki; Yagihara, Toshikatsu; Kitamura, Soichiro; Nagaya, Noritoshi

    2008-09-12

    Mesenchymal stem cells (MSC) transplantation has been proved to be promising strategy to treat the failing heart. The effect of MSC transplantation is thought to be mediated mainly in a paracrine manner. Recent reports have suggested that cardiac progenitor cells (CPC) reside in the heart. In this study, we investigated whether MSC had paracrine effects on CPC in vitro. CPC were isolated from the neonatal rat heart using an explant method. MSC were isolated from the adult rat bone marrow. MSC-derived conditioned medium promoted proliferation of CPC and inhibited apoptosis of CPC induced by hypoxia and serum starvation. Chemotaxis chamber assay demonstrated that MSC-derived conditioned medium enhanced migration of CPC. Furthermore, MSC-derived conditioned medium upregulated expression of cardiomyocyte-related genes in CPC such as {beta}-myosin heavy chain ({beta}-MHC) and atrial natriuretic peptide (ANP). In conclusion, MSC-derived conditioned medium had protective effects on CPC and enhanced their migration and differentiation.

  7. Evaluating the quality of implantation of percutaneous ventricular restoration device (Parachute®) by cardiac computed tomography.

    PubMed

    Alaiti, Mohamad Amer; Fares, Anas; Erglis, Andrejs; Nshisso, Lemba; Shaikh, Kashif; DeCicco, Anthony E; Nasif, Marwan; Alkhalil, Ahmad; Ince, Hüseyin; Abraham, William T; Simon, Daniel I; Costa, Marco A; Attizzani, Guilherme F; Bezerra, Hiram G

    2017-03-01

    The Parachute is a novel percutaneously implanted ventricular partitioning device (VPD) that has emerged as a safe and feasible treatment option for patients with heart failure following anterior wall myocardial infarction. VPD efficacy is likely dependent on optimal device placement, but to date there are no published data examining the effect of device positioning on patient outcomes. We retrospectively identified 32 patients successfully implanted with the Parachute device, all of whom underwent cardiac computed tomography (CCT) at baseline and after 6 months of follow-up. Patients were divided into two groups based on self-reported improvement in New York Heart Association (NYHA) functional class: "not improved NYHA" (n = 12) and "improved NYHA" (n = 20). There were significant differences between both groups with regard to device positioning on follow-up CCT. Compared to patients with "improved NYHA," patients with "not improved NYHA" had longer distances from device foot to left ventricular apex (8.0 ± 4.9 vs. 2.9 ± 4.6 mm; P = 0.01), and higher lateral angles (18.0 ± 14 vs. 9.1 ± 6.8 degrees; P = 0.02), respectively. There was no significant difference between the two groups in landing zone (45.4 ± 7. vs. 45.1 ± 6.9 mm; P = 0.92) and inferior angle (14.0 ± 11.9 vs. 14.3 ± 10.1 degrees; P = 0.95). There was a numerically larger malapposition area in the "not improved NYHA" group (5.1 ± 4.5 vs. 3.2 ± 2.2 cm2; P = 0.12). Quality of Parachute implant impacted clinical outcome, these findings should be applied prospectively in helping operators to achieve optimal implant. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    PubMed Central

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C.I. Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E.; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-01-01

    Summary The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo. PMID:27052314

  9. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells.

    PubMed

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C I Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-04-12

    The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Cardiac repair in a mouse model of acute myocardial infarction with trophoblast stem cells

    PubMed Central

    Li, Guannan; Chen, Jianzhou; Zhang, Xinlin; He, Guixin; Tan, Wei; Wu, Han; Li, Ran; Chen, Yuhan; Gu, Rong; Xie, Jun; Xu, Biao

    2017-01-01

    Various stem cells have been explored for the purpose of cardiac repair. However, any individual stem cell population has not been considered as the ideal source. Recently, trophoblast stem cells (TSCs), a newly described stem cell type, have demonstrated extensive plasticity. The present study evaluated the therapeutic effect of TSCs transplantation for heart regeneration in a mouse model of myocardial infarction (MI) and made a direct comparison with the most commonly used mesenchymal stem cells (MSCs). Transplantation of TSCs and MSCs led to a remarkably improved cardiac function in contrast with the PBS control, but only the TSCs exhibited the potential of differentiation into cardiomyocytes in vivo. In addition, a significantly high proliferation level of both transplanted stem cells and resident cardiomyocytes was observed in the TSCs group. These findings primary revealed the therapeutic potential of TSCs in transplantation therapy for MI. PMID:28295048

  11. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  12. The structure and distribution of satellite cells of cardiac muscles in decapod crustaceans.

    PubMed

    Midsukami, M

    1981-01-01

    The structure and distribution of satellite cells of cardiac muscles were examined in twenty-one species of animals chosen from each tribe within the order Decapoda (Arthropoda, Crustacea). The satellite cells were found in all animals observed. Most of them are morphologically identical with those described in different striated muscles of other species, but some cells have unusual features. The decapod satellite cell occasionally lies right over the region corresponding to the intercalated disc between the apposed cardiac muscle cells. The cell sends cytoplasmic processes into the adjacent muscle cells, enabling the plasma membrane to make close contact with the cleft opening of the intercalated disc, and with the myofibril at the level of the Z-line. Another characteristic feature is the presence of "paired" cells. Such cells are clearly separated from each other over most of the contact area by the respective plasma membranes, which are smooth in appearance and devoid of specialized regions. The significance of the presence of satellite cells in decapod cardiac muscle and its possible role are discussed and compared with those described for other species.

  13. A role for matrix stiffness in the regulation of cardiac side population cell function

    PubMed Central

    Qiu, Yiling; Bayomy, Ahmad F.; Gomez, Marcus V.; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin

    2015-01-01

    The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration. PMID:25724498

  14. A role for matrix stiffness in the regulation of cardiac side population cell function.

    PubMed

    Qiu, Yiling; Bayomy, Ahmad F; Gomez, Marcus V; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin; Liao, Ronglih

    2015-05-01

    The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration.

  15. PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle.

    PubMed

    Gargioli, Cesare; Coletta, Marcello; De Grandis, Fabrizio; Cannata, Stefano M; Cossu, Giulio

    2008-09-01

    Sclerosis and reduced microvessel density characterize advanced stages of muscular dystrophy and hamper cell or gene delivery, precluding treatment of most individuals with Duchenne muscular dystrophy. Modified tendon fibroblasts expressing an angiogenic factor (placenta growth factor, PlGF) and a metalloproteinase (matrix metalloproteinase-9, MMP-9) are able to restore a vascular network and reduce collagen deposition, allowing efficient cell therapy in aged dystrophic mice. These data open the possibility of extending new therapies to currently untreatable individuals.

  16. Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture.

    PubMed

    Orlandi, Alessia; Pagani, Francesca; Avitabile, Daniele; Bonanno, Giuseppina; Scambia, Giovanni; Vigna, Elisa; Grassi, Francesca; Eusebi, Fabrizio; Fucile, Sergio; Pesce, Maurizio; Capogrossi, Maurizio C

    2008-04-01

    Prior in vitro studies suggested that different types of hematopoietic stem cells may differentiate into cardiomyocytes. The present work examined whether human CD34(+) cells from the human umbilical cord blood (hUCB), cocultured with neonatal mouse cardiomyocytes, acquire the functional properties of myocardial cells and express human cardiac genes. hUCB CD34(+) cells were cocultured onto cardiomyocytes following an infection with a lentivirus-encoding enhanced green fluorescent protein (EGFP). After 7 days, mononucleated EGFP(+) cells were tested for their electrophysiological features by patch clamp and for cytosolic [Ca(2+)] ([Ca(2+)](i)) homeostasis by [Ca(2+)](i) imaging of X-rhod1-loaded cells. Human Nkx2.5 and GATA-4 expression was examined in cocultured cell populations by real-time RT-PCR. EGFP(+) cells were connected to surrounding cells by gap junctions, acquired electrophysiological properties similar to those of cardiomyocytes, and showed action potential-associated [Ca(2+)](i) transients. These cells also exhibited spontaneous sarcoplasmic reticulum [Ca(2+)](i) oscillations and the associated membrane potential depolarization. However, RT-PCR of both cell populations showed no upregulation of human-specific cardiac genes. In conclusion, under our experimental conditions, hUCB CD34(+) cells cocultured with murine cardiomyocytes formed cells that exhibited excitation-contraction coupling features similar to those of cardiomyocytes. However, the expression of human-specific cardiac genes was undetectable by RT-PCR.

  17. Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand 1-mediated immune suppression.

    PubMed

    Haile, Samuel T; Dalal, Sonia P; Clements, Virginia; Tamada, Koji; Ostrand-Rosenberg, Suzanne

    2013-09-01

    Many tumor cells escape anti-tumor immunity through their expression of programmed death ligand-1 (PDL1 or B7-H1), which interacts with T cell-expressed PD1 and results in T cell apoptosis. We previously reported that transfection of human tumor cells with a membrane-bound form of the human costimulatory molecule CD80 prevented PD1 binding and restored T cell activation. We now report that a membrane-bound form of murine CD80 similarly reduces PDL1-PD1-mediated suppression by mouse tumor cells and that a soluble protein consisting of the extracellular domains of human or mouse CD80 fused to the Fc domain of IgG1 (CD80-Fc) overcomes PDL1-mediated suppression by human and mouse tumor cells, respectively. T cell activation experiments with human and mouse tumor cells indicate that CD80-Fc facilitates T cell activation by binding to PDL1 to inhibit PDL1-PD1 interactions and by costimulating through CD28. CD80-Fc is more effective in preventing PD1-PDL1-mediated suppression and restoring T cell activation compared with treatment with mAb to either PD1 or PDL1. These studies identify CD80-Fc as an alternative and potentially more efficacious therapeutic agent for overcoming PDL1-induced immune suppression and facilitating tumor-specific immunity.

  18. The infarcted cardiac microenvironment cannot selectively promote embryonic stem cell differentiation into cardiomyocytes.

    PubMed

    Chen, You-Ren; Li, Yang; Chen, Li; Yang, Xin-Chun; Su, Pi-Xiong; Cai, Jun

    2011-01-01

    Postinfarct congestive heart failure is one of the leading causes of morbidity and mortality in industrialized countries. It is controversial whether embryonic stem cells are feasible sources for in situ cardiac regeneration in infarcted hearts. In order to investigate whether the infarcted cardiac microenvironment could selectively promote embryonic stem cell differentiation into cardiomyocytes, we assessed the cardiac differentiation potential of mouse embryonic stem cells (mESCs) injected into normal (n=16) or acutely infarcted rat hearts (n=18). We found that the transplanted 4',6-diamidino-2-phenylindole (DAPI)-labeled mESCs were able to survive and form stable intracardiac grafts both in normal and infarcted hearts, along with macrophages found specifically in the engraftment area. Two to four weeks after mESC transplantation, we found that more DAPI-positive mESCs differentiated into cardiomyocytes, marked by cardiac troponin T (cTnT), in normal than those in infarcted hearts (2.67±0.79% vs. 1.06±0.52%, P<.01). However, the discrepancy between the percentage of DAPI-positive cells that express cTnT in normal and that in infarcted hearts was diminished after 4 weeks (1.17±0.98% vs. 1.07±1.02%, P>.05), when the transverse striation began to present in the mESCs-derived cardiomyocytes. In addition, mESCs differentiated into vimentin-positive cardiac fibroblasts in normal and infracted hearts. Our results indicated that transplanted mESCs cannot only survive but differentiate into cardiomyocytes in infarcted rat hearts. However, the infarcted cardiac microenvironment cannot selectively promote mESCs differentiation into cardiomyocytes.

  19. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    PubMed Central

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z; Gimzewski, James K; Nakano, Atsushi

    2013-01-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell–cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes. PMID:24311969

  20. Cardiac complications after haploidentical HLA-mismatched hematopoietic stem cell transplantation using in vivo alemtuzumab.

    PubMed

    Oshima, K; Sakata-Yanagimoto, M; Asano-Mori, Y; Izutsu, K; Watanabe, T; Shoda, E; Ogawa, S; Motokura, T; Chiba, S; Kurokawa, M; Hirai, H; Kanda, Y

    2005-11-01

    Alemtuzumab is a humanized monoclonal antibody directed against human CD52 with a strong lympholytic effect. We have performed unmanipulated hematopoietic stem cell transplantation (HSCT) from 2- or 3-locus-mismatched family donors in 14 patients using in vivo alemtuzumab. All achieved complete donor cell engraftment and grade III-IV acute graft-versus-host disease was observed in only one patient. However, eight of the 14 patients developed grade II-IV cardiac complications according to Bearman's criteria. Next, we retrospectively analyzed the records of 142 adult patients who underwent allogeneic HSCT from 1995 to 2004 to evaluate whether the use of alemtuzumab was an independent risk factor for cardiac complications. Among several factors that increased the incidence of grade II-IV cardiac complications with at least borderline significance, a multivariate analysis identified the cumulative dose of anthracyclines (P=0.0016) and the use of alemtuzumab (P=0.0001) as independent significant risk factors. All of the cardiac complications in the alemtuzumab group were successfully treated with diuretics and/or catecholamines. Patient selection and close monitoring of cardiac function may be important in HLA-mismatched HSCT using in vivo alemtuzumab.

  1. Complete AV Block and Torsades de Pointes in a Case of Primary Cardiac T-Cell Lymphoma

    PubMed Central

    Wang, Tzu-Lin; Lai, Chih-Hung; Liou, Jer-Young; Lo, Huey-Ming; Shyu, Kou-Gi

    2015-01-01

    Primary cardiac lymphoma is very rare, and the most common electrocardiographic finding in this condition is complete atrioventricular block. After electrolytic, metabolic, ischemic, infectious, and traumatic etiologies have been excluded, primary cardiac lymphoma should be consided as a possible cause of reversible atrioventricular block. Most patients with primary cardiac lymphoma are immunocompromised and have disease with a B-cell etiology. This is the first case report of a primary cardiac T-cell lymphoma with complete atrioventricular block and torsades de pointes in an immunocompetent patient who was successfully treated using chemotherapy. PMID:27122878

  2. A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development

    PubMed Central

    Paige, Sharon L.; Thomas, Sean; Stoick-Cooper, Cristi L.; Wang, Hao; Maves, Lisa; Sandstrom, Richard; Pabon, Lil; Reinecke, Hans; Pratt, Gabriel; Keller, Gordon; Moon, Randall T.; Stamatoyannopoulos, John; Murry, Charles E.

    2012-01-01

    Summary Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Though it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. We demonstrate using the zebrafish model that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions. PMID:22981225

  3. Restorative effect of hair follicular dermal cells on injured human hair follicles in a mouse model.

    PubMed

    Yamao, Mikaru; Inamatsu, Mutsumi; Okada, Taro; Ogawa, Yuko; Ishida, Yuji; Tateno, Chise; Yoshizato, Katsutoshi

    2015-03-01

    No model is available for examining whether in vivo-damaged human hair follicles (hu-HFs) are rescued by transplanting cultured hu-HF dermal cells (dermal papilla and dermal sheath cells). Such a model might be valuable for examining whether in vivo-damaged hu-HFs such as miniaturized hu-HFs in androgenic alopecia are improvable by auto-transplanting hu-HF dermal cells. In this study, we first developed mice with humanized skin composed of hu-keratinocytes and hu-dermal fibroblasts. Then, a 'humanized scalp model mouse' was generated by transplanting hu-scalp HFs into the humanized skin. To demonstrate the usability of the model, the lower halves of the hu-HFs in the model were amputated in situ, and cultured hu-HF dermal cells were injected around the amputated area. The results demonstrated that the transplanted cells contributed to the restoration of the damaged HFs. This model could be used to explore clinically effective technologies for hair restoration therapy by autologous cell transplantation.

  4. Concise Review: Pluripotent Stem Cell-Derived Cardiac Cells, A Promising Cell Source for Therapy of Heart Failure: Where Do We Stand?

    PubMed

    Gouadon, Elodie; Moore-Morris, Thomas; Smit, Nicoline W; Chatenoud, Lucienne; Coronel, Ruben; Harding, Sian E; Jourdon, Philippe; Lambert, Virginie; Rucker-Martin, Catherine; Pucéat, Michel

    2016-01-01

    Heart failure is still a major cause of hospitalization and mortality in developed countries. Many clinical trials have tested the use of multipotent stem cells as a cardiac regenerative medicine. The benefit for the patients of this therapeutic intervention has remained limited. Herein, we review the pluripotent stem cells as a cell source for cardiac regeneration. We more specifically address the various challenges of this cell therapy approach. We question the cell delivery systems, the immune tolerance of allogenic cells, the potential proarrhythmic effects, various drug mediated interventions to facilitate cell grafting and, finally, we describe the pathological conditions that may benefit from such an innovative approach. As members of a transatlantic consortium of excellence of basic science researchers and clinicians, we propose some guidelines to be applied to cell types and modes of delivery in order to translate pluripotent stem cell cardiac derivatives into safe and effective clinical trials.

  5. Human spermatagonial stem cells: a novel therapeutic hope for cardiac regeneration and repair?

    PubMed

    Guan, Kaomei; Cheng, I-Fen; Baazm, Maryam

    2012-01-01

    Although the identification and characterization of human spermatogonial stem cells was reported nearly 50 years ago, great progress has been made only in the last few years. Spermatogonial stem cells attract a great deal of researchers' attention because of their unique characteristics, including the ability to be converted spontaneously into pluripotent germline stem cells with embryonic stem cell-like properties. Pluripotent stem cells are able to differentiate into any desired cell type in the body; therefore, they are the most promising cell source for organ regeneration. The advantages of pluripotent germline stem cells over other stem cells are that they maintain a high degree of DNA integrity and can resolve some ethical and immunological problems related to human embryonic stem cells. In this article we address the origin, characteristics and pluripotency of spermatogonial stem cells. Their contribution to stem cell-based organ regeneration therapy with special emphasis on cardiac regeneration and repair in the future is also discussed.

  6. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice.

    PubMed

    Nagata, Hiroki; Ii, Masaaki; Kohbayashi, Eiko; Hoshiga, Masaaki; Hanafusa, Toshiaki; Asahi, Michio

    2016-02-01

    Adipose-derived stem cells (AdSCs) have recently been shown to differentiate into cardiovascular lineage cells. However, little is known about the fat tissue origin-dependent differences in AdSC function and differentiation potential. AdSC-rich cells were isolated from subcutaneous, visceral, cardiac (CA), and subscapular adipose tissue from mice and their characteristics analyzed. After four different AdSC types were cultured with specific differentiation medium, immunocytochemical analysis was performed for the assessment of differentiation into cardiovascular cells. We then examined the in vitro differentiation capacity and therapeutic potential of AdSCs in ischemic myocardium using a mouse myocardial infarction model. The cell density and proliferation activity of CA-derived AdSCs were significantly increased compared with the other adipose tissue-derived AdSCs. Immunocytochemistry showed that CA-derived AdSCs had the highest appearance rates of markers for endothelial cells, vascular smooth muscle cells, and cardiomyocytes among the AdSCs. Systemic transfusion of CA-derived AdSCs exhibited the highest cardiac functional recovery after myocardial infarction and the high frequency of the recruitment to ischemic myocardium. Moreover, long-term follow-up of the recruited CA-derived AdSCs frequently expressed cardiovascular cell markers compared with the other adipose tissue-derived AdSCs. Cardiac adipose tissue could be an ideal source for isolation of therapeutically effective AdSCs for cardiac regeneration in ischemic heart diseases. Significance: The present study found that cardiac adipose-derived stem cells have a high potential to differentiate into cardiovascular lineage cells (i.e., cardiomyocytes, endothelial cells, and vascular smooth muscle cells) compared with stem cells derived from other adipose tissue such as subcutaneous, visceral, and subscapular adipose tissue. Notably, only a small number of supracardiac adipose-derived stem cells that were

  7. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder.

    PubMed

    Jo, Hyogyeong; Jung, Minyoung; Seo, Dong Jin; Park, Dong Joon

    2015-11-13

    The purpose of the study was to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs) transplantation on olfactory epithelium (OE) of morphologic and functional restoration following neural Sensorineural Disorder in rats. Except the Normal group, twenty-one rats underwent Triton X-100 (TX-100) irrigation to induce degeneration of OE, and then BMSCs and PBS were treated from the both medial canthus to the rear part of the both nasal cavity into the experimental group and then were observed for restoration according to time point. At two and four weeks after transplantation with BMSCs, restoration of OE was observed with olfactory marker protein (OMP) and behavioral test. And we observed the expression of OMP, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). After TX-100 irrigation, the OE almost disappeared in 3 days. At four weeks after transplantation with BMSCs, the thickness and cellular composition of OE was considerably restored to normal group and expression of OMP was markedly increased when compared with PBS group and reduced the searching time in the behavioral test. Furthermore at two weeks after treatment with BMSCs, expression of NGF and BDNF was greatly increased when compared with PBS group. However at four weeks after treatment with BMSCs, expression of NGF and BDNF was slightly decreased. Our results suggest the BMSCs transplantation affect restoration of OE and olfaction, most likely via regulation of the neurotrophic factor expression, especially the expression of NGF and BDNF and has a possibility of a new therapeutic strategy for the treatment of olfactory disorder caused by the degeneration of OE.

  8. Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells.

    PubMed

    Xiao, Junjie; Xu, Tianzhao; Li, Jin; Lv, Dongcao; Chen, Ping; Zhou, Qiulian; Xu, Jiahong

    2014-01-01

    Physiological hypertrophy is featured by the hypertrophy of pre-existing cardiomyocytes and the formation of new cardiomyocytes. C-kit positive cardiac progenitor cells increased their numbers in exercise-induced physiological hypertrophy. However, the participation of Sca-1 positive cells in the physiological adaptation of the heart to exercise training is unclear. Physiological hypertrophy was induced by swimming and the mRNA levels of GATA binding protein 4 (GATA4), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), endogenous hepatocyte growth factor (HGF), and insulin like growth factor-1 (IGF-1) from the whole heart were determined by real-time polymerase chain reactions (RT-PCRs) analysis. Immunofluorescent staining was used to compare the number of C-kit and Sca-1 positive cardiac progenitor cells. In addition, mRNA levels of C-kit and Sca-1 in left ventricle (LV), right ventricle (RV), and outflow tract (OFT) were determined in mice swimming for 7, 14, and 21 days by RT-PCRs. The ratio of heart weight (HW) to body weight and HW to tibia length and the mRNA level of GATA4 were increased while mRNA levels of ANP and BNP remained unchanged. C-kit and Sca-1 positive cardiac progenitor cells were activated by swimming training. An increased endogenous production of HGF and IGF was observed at least at the mRNA level. Swimming induced a significant up-regulation of C-kit in LV of mice swimming for 1, 2 and 3 weeks and in RV of mice swimming for 3 weeks. Sca-1 positive cardiac progenitor cells were increased in LV and OFT in mice swimming for 3 weeks. This study presents that swimming-induced physiological hypertrophy initiates activation of cardiac progenitor cells.

  9. Cardiac stem cell biology: glimpse of the past, present, and future.

    PubMed

    Matsa, Elena; Sallam, Karim; Wu, Joseph C

    2014-01-03

    Cardiac regeneration strategies and de novo generation of cardiomyocytes have long been significant areas of research interest in cardiovascular medicine. In this review, we outline a variety of common cell sources and methods used to regenerate cardiomyocytes and highlight the important role that key Circulation Research articles have played in this flourishing field.

  10. TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells

    PubMed Central

    Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio

    2015-01-01

    The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615

  11. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    SciTech Connect

    Zhao, Zhuo; Wang, Hao; Lin, Marina; Groban, Leanne

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

  12. Osseous metastases from renal cell carcinoma: embolization and surgery for restoration of function. Work in progress

    SciTech Connect

    Rowe, D.M.; Becker, G.J.; Rabe, F.E.; Holden, R.W.; Richmond, B.D.; Wass, J.L.; Sequeira, F.W.

    1984-03-01

    Five patients underwent preoperative embolization of osseous metastases from renal cell carcinoma. The group consisted of four men and one woman who ranged in age from 46 to 79 years. The lesions were located in the pubic ramus and acetabulum, proximal femur, femoral midshaft, proximal humerus, and proximal tibia. All embolizations were performed within 24 hours of surgery. The internal fixation and tumor curettage was accomplished with estimated perioperative blood loss ranging from 10 ml to 1,250 ml. All patients had significant restoration of function following surgery. The authors suggest that preoperative embolization is an important and efficacious adjunct in the management of hypervascular renal cell osseous metastases.

  13. Myocardial infarction: stem cell transplantation for cardiac regeneration.

    PubMed

    Carvalho, Edmund; Verma, Paul; Hourigan, Kerry; Banerjee, Rinti

    2015-11-01

    It is estimated that by 2030, almost 23.6 million people will perish from cardiovascular disease, according to the WHO. The review discusses advances in stem cell therapy for myocardial infarction, including cell sources, methods of differentiation, expansion selection and their route of delivery. Skeletal muscle cells, hematopoietic cells and mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs)-derived cardiomyocytes have advanced to the clinical stage, while induced pluripotent cells (iPSCs) are yet to be considered clinically. Delivery of cells to the sites of injury and their subsequent retention is a major issue. The development of supportive scaffold matrices to facilitate stem cell retention and differentiation are analyzed. The review outlines clinical translation of conjugate stem cell-based cellular therapeutics post-myocardial infarction.

  14. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    PubMed Central

    Roehrich, Marc-Estienne; Spicher, Albert; Milano, Giuseppina; Vassalli, Giuseppe

    2013-01-01

    High aldehyde dehydrogenase (ALDH) activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr) cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated. PMID:23484127

  15. Prolongation of survival of rat cardiac allografts by T cell vaccination.

    PubMed Central

    Shapira, O M; Mor, E; Reshef, T; Pfeffermann, R A; Cohen, I R

    1993-01-01

    Administration of attenuated, activated autoimmune T lymphocytes to syngeneic mice and rats has been shown to prevent or induce remission of experimental autoimmune diseases specific for the autoimmune T cells. The process has been termed "T cell vaccination." In a recent study, T cell vaccination was done using T cells sensitized to rat alloantigens. The procedure produced a significant reduction of the mixed lymphocyte reaction (MLR) against allogeneic cells. The reduction in MLR was not specific: Vaccination with T cells specific for stimulator cells of one allotype led to a reduced MLR stimulated by cells of another allotype. The present study was undertaken to examine whether T cell vaccination can induce tolerance to transplantation antigens in vivo. We used the model of heterotopic cardiac transplantation in rats. We now report that vaccinating rats with syngeneic, activated, alloantigen-primed T lymphocytes significantly prolonged survival of rat cardiac allografts. The effect of T cell vaccination was most evident when the T cells had been obtained from rats specifically sensitized against the donor rats: Brown-Norway (BN) allografts in control Wistar rats survived 8.5 +/- 0.4 d while BN allografts survived 29.2 +/- 7.1 d in Wistar rats that had been vaccinated with Wistar anti-BN cells. Vaccination of Wistar rats with Wistar anti-hooded T cells prolonged survival of BN heart allografts to a lesser but significant degree (13.0 +/- 1.1 d). Thus, T cell vaccination of recipients can prolong survival of allografts. PMID:8432846

  16. A Conductive Polymer Hydrogel Supports Cell Electrical Signaling and Improves Cardiac Function After Implantation into Myocardial Infarct.

    PubMed

    Mihic, Anton; Cui, Zhi; Wu, Jun; Vlacic, Goran; Miyagi, Yasuo; Li, Shu-Hong; Lu, Sun; Sung, Hsing-Wen; Weisel, Richard D; Li, Ren-Ke

    2015-08-25

    Efficient cardiac function requires synchronous ventricular contraction. After myocardial infarction, the nonconductive nature of scar tissue contributes to ventricular dysfunction by electrically uncoupling viable cardiomyocytes in the infarct region. Injection of a conductive biomaterial polymer that restores impulse propagation could synchronize contraction and restore ventricular function by electrically connecting isolated cardiomyocytes to intact tissue, allowing them to contribute to global heart function. We created a conductive polymer by grafting pyrrole to the clinically tested biomaterial chitosan to create a polypyrrole (PPy)-chitosan hydrogel. Cyclic voltammetry showed that PPy-chitosan had semiconductive properties lacking in chitosan alone. PPy-chitosan did not reduce cell attachment, metabolism, or proliferation in vitro. Neonatal rat cardiomyocytes plated on PPy-chitosan showed enhanced Ca(2+) signal conduction in comparison with chitosan alone. PPy-chitosan plating also improved electric coupling between skeletal muscles placed 25 mm apart in comparison with chitosan alone, demonstrating that PPy-chitosan can electrically connect contracting cells at a distance. In rats, injection of PPy-chitosan 1 week after myocardial infarction decreased the QRS interval and increased the transverse activation velocity in comparison with saline or chitosan, suggesting improved electric conduction. Optical mapping showed increased activation in the border zone of PPy-chitosan-treated rats. Echocardiography and pressure-volume analysis showed improvement in load-dependent (ejection fraction, fractional shortening) and load-independent (preload recruitable stroke work) indices of heart function 8 weeks after injection. We synthesized a biocompatible conductive biomaterial (PPy-chitosan) that enhances biological conduction in vitro and in vivo. Injection of PPy-chitosan better maintained heart function after myocardial infarction than a nonconductive polymer.

  17. HDLs protect pancreatic β-cells against ER stress by restoring protein folding and trafficking.

    PubMed

    Pétremand, Jannick; Puyal, Julien; Chatton, Jean-Yves; Duprez, Jessica; Allagnat, Florent; Frias, Miguel; James, Richard W; Waeber, Gérard; Jonas, Jean-Christophe; Widmann, Christian

    2012-05-01

    Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.

  18. HDLs Protect Pancreatic β-Cells Against ER Stress by Restoring Protein Folding and Trafficking

    PubMed Central

    Pétremand, Jannick; Puyal, Julien; Chatton, Jean-Yves; Duprez, Jessica; Allagnat, Florent; Frias, Miguel; James, Richard W.; Waeber, Gérard; Jonas, Jean-Christophe; Widmann, Christian

    2012-01-01

    Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors. PMID:22399686

  19. Restoring ciliary function to differentiated Primary Ciliary Dyskinesia cells with a lentiviral vector

    PubMed Central

    Ostrowski, Lawrence E; Yin, Weining; Patel, Manij; Sechelski, John; Rogers, Troy; Burns, Kimberlie; Grubb, Barbara R; Olsen, John C

    2014-01-01

    Primary ciliary dyskinesia is a genetically heterogeneous autosomal recessive disease in which mutations disrupt ciliary function, leading to impaired mucociliary clearance and life-long lung disease. Mouse tracheal cells with a targeted deletion in the axonemal dynein intermediated chain gene Dnaic1 differentiate normally in culture but lack ciliary activity. Gene transfer to undifferentiated cultures of mouse Dnaic1−/− cells with a lentiviral vector pseudotyped with avian influenza hemagglutinin restored Dnaic1 expression and ciliary activity. Importantly, apical treatment of well-differentiated cultures of mouse Dnaic1−/− with lentiviral vector also restored ciliary activity, demonstrating successful gene transfer from the apical surface. Treatment of Dnaic1flox/flox mice expressing an estrogen responsive Cre recombinase with different doses of tamoxifen indicated that restoration of ~20% of ciliary activity may be sufficient to prevent the development of rhinosinusitis. However, while administration of a β-galactosidase expressing vector to control mice demonstrated efficient gene transfer to the nasal epithelium, treatment of Dnaic1−/− mice resulted in a low level of gene transfer, demonstrating that the severe rhinitis present in these animals impedes gene transfer. The results demonstrate that gene replacement therapy may be a viable treatment option for primary ciliary dyskinesia, but further improvements in the efficiency of gene transfer are necessary. PMID:24451115

  20. Expression and significance of fgl2 prothrombinase in cardiac microvascular endothelial cells of rats with type 2 diabetes.

    PubMed

    Ding, Yanping; Liu, Kun; Wang, Yan; Su, Guanhua; Deng, Heping; Zeng, Qiutang; Liao, Yuhua; Wang, Zhaohui

    2010-10-01

    Microthrombosis may be involved in the pathogenesis of cardiac microangiopathy due to diabetes. Recent studies have shown that fibrinogen-like protein 2 (fgl2) plays a pivotal role in microthrombosis in viral hepatitis, acute vascular xenograft rejection and cytokine-induced fetal loss syndrome. The current study was designed to examine the expression of fgl2 in microvascular endothelial cells and investigate the effects of microthrombi due to fgl2 on cardiac function and structure in rats with type 2 diabetes. Following induction of type 2 diabetes, 24 rats were observed dynamically. Fgl2 expression and related cardiac microthrombosis were examined. Local or circulating TNF-α was measured. Coronary flow (CF) per min was calculated as an index of cardiac microcirculation. Cardiac function and morphology were evaluated. It was found that Fgl2 was highly expressed in cardiac microvascular endothelial cells of rats with type 2 diabetes, which was promoted by local or circulating TNF-α. The Fgl2 expression was associated with cardiac hyaline microthrombosis. In parallel with the fgl2 expression, CF per min, cardiac diastolic or systolic function and cardiac morphology were aggravated to some extent. It was concluded that in rats with type 2 diabetes, microthrombosis due to fgl2 contributes to the impairment of cardiac diastolic or systolic function and morphological changes.

  1. Diffuse large B-cell lymphoma diagnosed by intracardiac echocardiography-guided cardiac tumor biopsy.

    PubMed

    Kamiya, Kiwamu; Sakakibara, Mamoru; Yamada, Shiro; Tan, Michinao; Furihata, Takaaki; Kubota, Kanako; Tsutsui, Hiroyuki

    2012-01-01

    A 44-year-old man presented with exertional dyspnea. Transthoracic echocardiography (TTE) revealed a large tumor protruding into the right atrium and extending into the left ventricle. Cardiac magnetic resonance imaging and contrast enhanced computed tomography also confirmed the intracardiac tumor detected by TTE. An endomyocardial biopsy was performed under the intracardiac echocardiography (ICE) guidance, and he was diagnosed to have diffuse large B-cell lymphoma following the histological analysis. ICE-guided cardiac tumor biopsy is expected to be a useful diagnostic strategy that can minimize the risk of procedural complications.

  2. Pluripotent Stem Cell-Based Platforms in Cardiac Disease Modeling and Drug Testing.

    PubMed

    Shaheen, N; Shiti, A; Gepstein, L

    2017-08-01

    The ability to generate patient/disease-specific human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) brings a unique value to the fields of cardiac disease modeling, drug testing, drug discovery, and precision medicine. Further integration of emerging innovative technologies such as developmental-biology inspired differentiation into chamber-specific cardiomyocyte subtypes, genome-editing, tissue-engineering, and novel functional phenotyping methodologies should facilitate even more advanced investigations. Here, we review cornerstone concepts and recent highlights of hPSC-based cardiac disease modeling and drug testing. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  3. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration

    PubMed Central

    Mittal, Rahul; Nguyen, Desiree; Patel, Amit P.; Debs, Luca H.; Mittal, Jeenu; Yan, Denise; Eshraghi, Adrien A.; Van De Water, Thomas R.; Liu, Xue Z.

    2017-01-01

    Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function. PMID:28824370

  4. Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing

    PubMed Central

    Sousa, Elsa J.; Graça, Inês; Baptista, Tiago; Vieira, Filipa Q.; Palmeira, Carlos; Henrique, Rui; Jerónimo, Carmen

    2013-01-01

    Prostate cancer (PCa) is one of the most incident malignancies worldwide. Although efficient therapy is available for early-stage PCa, treatment of advanced disease is mainly ineffective and remains a clinical challenge. microRNA (miRNA) dysregulation is associated with PCa development and progression. In fact, several studies have reported a widespread downregulation of miRNAs in PCa, which highlights the importance of studying compounds capable of restoring the global miRNA expression. The main aim of this study was to define the usefulness of enoxacin as an anti-tumoral agent in PCa, due to its ability to induce miRNA biogenesis in a TRBP-mediated manner. Using a panel of five PCa cell lines, we observed that all of them were wild type for the TARBP2 gene and expressed TRBP protein. Furthermore, primary prostate carcinomas displayed normal levels of TRBP protein. Remarkably, enoxacin was able to decrease cell viability, induce apoptosis, cause cell cycle arrest, and inhibit the invasiveness of cell lines. Enoxacin was also effective in restoring the global expression of miRNAs. This study is the first to show that PCa cells are highly responsive to the anti-tumoral effects of enoxacin. Therefore, enoxacin constitutes a promising therapeutic agent for PCa. PMID:23644875

  5. The double life of cardiac mesenchymal cells: Epimetabolic sensors and therapeutic assets for heart regeneration.

    PubMed

    Cencioni, Chiara; Atlante, Sandra; Savoia, Matteo; Martelli, Fabio; Farsetti, Antonella; Capogrossi, Maurizio C; Zeiher, Andreas M; Gaetano, Carlo; Spallotta, Francesco

    2017-03-01

    Organ-specific mesenchymal cells naturally reside in the stroma, where they are exposed to some environmental variables affecting their biology and functions. Risk factors such as diabetes or aging influence their adaptive response. In these cases, permanent epigenetic modifications may be introduced in the cells with important consequences on their local homeostatic activity and therapeutic potential. Numerous results suggest that mesenchymal cells, virtually present in every organ, may contribute to tissue regeneration mostly by paracrine mechanisms. Intriguingly, the heart is emerging as a source of different cells, including pericytes, cardiac progenitors, and cardiac fibroblasts. According to phenotypic, functional, and molecular criteria, these should be classified as mesenchymal cells. Not surprisingly, in recent years, the attention on these cells as therapeutic tools has grown exponentially, although only very preliminary data have been obtained in clinical trials to date. In this review, we summarized the state of the art about the phenotypic features, functions, regenerative properties, and clinical applicability of mesenchymal cells, with a particular focus on those of cardiac origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [PPARα attenuates palmitate-induced endoplasmic reticulum stress in human cardiac cells by enhancing AMPK activity].

    PubMed

    Palomer, Xavier; Capdevila-Busquets, Eva; Garreta, Gerard; Davidson, Mercy M; Vázquez-Carrera, Manuel

    2014-01-01

    Endoplasmic reticulum (ER) stress has been linked to several cardiovascular diseases, such as atherosclerosis, heart failure and cardiac hypertrophy. ER stress impairs insulin signalling, thus contributing to the development of insulin resistance and diabetes. Since several studies have reported that PPARα may inhibit ER stress, the main aim of this study consisted in investigating whether activation of this nuclear receptor is able to prevent lipid-induced ER stress in cardiac cells, as well as studying the mechanisms involved. A cardiomyocyte cell line of human origin, AC16, was treated with palmitate in the presence or absence of several AMPK and PPARα pharmacological agonists and antagonists. For the in vivo studies, wild-type male mice were fed a standard diet, or a high-fat diet (HFD), for two months. At the end of the experiments, several ER stress markers were assessed in cardiac cells or in the mice hearts, using real-time RT-PCR and Western-blot analyses. The results demonstrate that both palmitate and the HFD induced ER stress in cardiac cells, since they upregulated the expression (ATF3, BiP/GRP78 and CHOP), splicing (sXBP1), and phosphorylation (IRE-1α and eIF2α) of several ER stress markers. Interestingly, treatment with the PPARα agonist Wy-14,643 prevented an increase in the majority of these ER stress markers in human cardiac cells by means of AMPK activation. These data indicate that PPARα activation by Wy-14,643 might be useful to prevent the harmful effects of ER stress and associated cardiovascular diseases in obese patients, and even during diabetic cardiomyopathy, by enhancing AMPK activity. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  7. Recent advances in cardiac regeneration: Stem cell, biomaterial and growth factors.

    PubMed

    Cheraghi, Mostafa; Namdari, Mehrdad; Negahdari, Babak; Eatemadi, Ali

    2017-03-01

    Myocardial infarction has been reported to be responsible for about 7.3 million deaths each year globally. Present treatments for myocardial infarction have been more palliative rather than curative. Over the past few years, stem cells have demonstrated its potency in regenerating damaged cardiac tissue, especially after myocardial infarction. However, limited short half-life of the protein and cell therapy and low transplanted cell survival rate as demonstrated via several clinical trials have lead to development of more potent and novel delivery systems like biomaterial delivery system and the use of various growth factors. In this review, we will be enumerating and discussing the recent advances in cardiac regeneration with focus on stem cell, biomaterial and growth factors.

  8. Small RNA-directed epigenetic programming of embryonic stem cell cardiac differentiation.

    PubMed

    Ghanbarian, Hossein; Wagner, Nicole; Michiels, Jean-François; Cuzin, François; Wagner, Kay-Dietrich; Rassoulzadegan, Minoo

    2017-02-06

    Microinjection of small noncoding RNAs in one-cell embryos was reported in several instances to result in transcriptional activation of target genes. To determine the molecular mechanisms involved and to explore whether such epigenetic regulations could play a role in early development, we used a cell culture system as close as possible to the embryonic state. We report efficient cardiac differentiation of embryonic stem (ES) cells induced by small non-coding RNAs with sequences of Cdk9, a key player in cardiomyocyte differentiation. Transfer of oligoribonucleotides representing parts of the Cdk9 mRNA into ES and mouse embryo fibroblast cultures resulted in upregulation of transcription. Dependency on Argonaute proteins and endogenous antisense transcripts indicated that the inducer oligoribonucleotides were processed by the RNAi machinery. Upregulation of Cdk9 expression resulted in increased efficiency of cardiac differentiation suggesting a potential tool for stem cell-based regenerative medicine.

  9. Small RNA-directed epigenetic programming of embryonic stem cell cardiac differentiation

    PubMed Central

    Ghanbarian, Hossein; Wagner, Nicole; Michiels, Jean-François; Cuzin, François; Wagner, Kay-Dietrich; Rassoulzadegan, Minoo

    2017-01-01

    Microinjection of small noncoding RNAs in one-cell embryos was reported in several instances to result in transcriptional activation of target genes. To determine the molecular mechanisms involved and to explore whether such epigenetic regulations could play a role in early development, we used a cell culture system as close as possible to the embryonic state. We report efficient cardiac differentiation of embryonic stem (ES) cells induced by small non-coding RNAs with sequences of Cdk9, a key player in cardiomyocyte differentiation. Transfer of oligoribonucleotides representing parts of the Cdk9 mRNA into ES and mouse embryo fibroblast cultures resulted in upregulation of transcription. Dependency on Argonaute proteins and endogenous antisense transcripts indicated that the inducer oligoribonucleotides were processed by the RNAi machinery. Upregulation of Cdk9 expression resulted in increased efficiency of cardiac differentiation suggesting a potential tool for stem cell-based regenerative medicine. PMID:28165496

  10. Accumulation of Mitochondrial DNA Mutations Disrupts Cardiac Progenitor Cell Function and Reduces Survival.

    PubMed

    Orogo, Amabel M; Gonzalez, Eileen R; Kubli, Dieter A; Baptista, Igor L; Ong, Sang-Bing; Prolla, Tomas A; Sussman, Mark A; Murphy, Anne N; Gustafsson, Åsa B

    2015-09-04

    Transfer of cardiac progenitor cells (CPCs) improves cardiac function in heart failure patients. However, CPC function is reduced with age, limiting their regenerative potential. Aging is associated with numerous changes in cells including accumulation of mitochondrial DNA (mtDNA) mutations, but it is unknown how this impacts CPC function. Here, we demonstrate that acquisition of mtDNA mutations disrupts mitochondrial function, enhances mitophagy, and reduces the replicative and regenerative capacities of the CPCs. We show that activation of differentiation in CPCs is associated with expansion of the mitochondrial network and increased mitochondrial oxidative phosphorylation. Interestingly, mutant CPCs are deficient in mitochondrial respiration and rely on glycolysis for energy. In response to differentiation, these cells fail to activate mitochondrial respiration. This inability to meet the increased energy demand leads to activation of cell death. These findings demonstrate the consequences of accumulating mtDNA mutations and the importance of mtDNA integrity in CPC homeostasis and regenerative potential.

  11. Biomaterials for stem cell culture and seeding for the generation and delivery of cardiac myocytes.

    PubMed

    Castells-Sala, Cristina; Semino, Carlos E

    2012-12-01

    Present an overview of last year's advances in stem cell delivery for cardiac tissue engineering. Several promising novel biomaterial platforms to improve myocardial tissue repair/regeneration and local neovascularization using cellular therapy have been developed. Still today, a clear statement on cellular therapy efficacy cannot be made but nonetheless, as we describe in this review, several improved in-vivo applications have already been initiated. The newest tissue engineering platforms have basically two main objectives: to improve low cell engraftment and viability into the hostile environment of the infarcted tissue; and to promote neoformation of functional myocardial tissue. With the idea to solve these issues many groups are presently working on the association of stem cells with novel biomaterials, providing an initial appropriate microenvironment (scaffold) for successful cell transplantation, proper differentiation and improved cardiac function.

  12. Microfluidic system for monitoring of cardiac (H9C2) cell proliferation

    NASA Astrophysics Data System (ADS)

    Kobuszewska, A.; Cwik, P.; Jastrzebska, E.; Brzozka, Z.; Chudy, M.; Renaud, P.; Dybko, A.

    2017-05-01

    The paper presents the application of electrical impedance spectroscopy (EIS) analysis for investigation of cardiac cell (H9C2 - rat cardiomyoblast) proliferation after verapamil hydrochloride exposure. For this purpose, two different PDMS/glass microsystems with circular microchamber and longitudinal microchannel integrated with Pt/Al electrodes were used. The microchambers were fabricated in PDMS using photolithography and replica moulding techniques. Pt/Al electrodes were fabricated on a 4-inch glass substrate using Physical Vapor Deposition (PVD). Solution of verapamil hydrochloride was continuously introduced into the microsystems with H9C2 cell culture (a flow rate of 1 μl/min) for 72 h. The impedance spectra were recorded from 100 Hz to 1 MHz. We confirmed that impedance spectroscopy can be used for non-invasive, label-free and real-time analysis of cardiac cells proliferation based on cells dielectric properties and biological structure.

  13. PD98059 Protects Brain against Cells Death Resulting from ROS/ERK Activation in a Cardiac Arrest Rat Model.

    PubMed

    Nguyen Thi, Phuong Anh; Chen, Meng-Hua; Li, Nuo; Zhuo, Xiao-Jun; Xie, Lu

    2016-01-01

    The clinical and experimental postcardiac arrest treatment has not reached therapeutic success. The present study investigated the effect of PD98059 (PD) in rats subjected to cardiac arrest (CA)/cardiopulmonary resuscitation (CPR). Experimental rats were divided randomly into 3 groups: sham, CA, and PD. The rats except for sham group were subjected to CA for 5 min followed by CPR operation. Once spontaneous circulation was restored, saline and PD were injected in CA and PD groups, respectively. The survival rates and neurologic deficit scores (NDS) were observed, and the following indices of brain tissue were evaluated: ROS, MDA, SOD, p-ERK1/2/ERK1/2, caspase-3, Bax, Bcl-2, TUNEL positive cells, and double fluorescent staining of p-ERK/TUNEL. Our results indicated that PD treatment significantly reduced apoptotic neurons and improved the survival rates and NDS. Moreover, PD markedly downregulated the ROS, MDA, p-ERK, and caspase-3, Bax and upregulated SOD and Bcl-2 levels. Double staining p-ERK/TUNEL in choroid plexus and cortex showed that cell death is dependent on ERK activation. The findings in present study demonstrated that PD provides