Circuit analysis method for thin-film solar cell modules
NASA Technical Reports Server (NTRS)
Burger, D. R.
1985-01-01
The design of a thin-film solar cell module is dependent on the probability of occurrence of pinhole shunt defects. Using known or assumed defect density data, dichotomous population statistics can be used to calculate the number of defects expected in a module. Probability theory is then used to assign the defective cells to individual strings in a selected series-parallel circuit design. Iterative numerical calculation is used to calcuate I-V curves using cell test values or assumed defective cell values as inputs. Good and shunted cell I-V curves are added to determine the module output power and I-V curve. Different levels of shunt resistance can be selected to model different defect levels.
Customized color patterning of photovoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat
Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.
Wagatsuma, Nobuhiko; Sakai, Ko
2017-01-01
Border ownership (BO) indicates which side of a contour owns a border, and it plays a fundamental role in figure-ground segregation. The majority of neurons in V2 and V4 areas of monkeys exhibit BO selectivity. A physiological work reported that the responses of BO-selective cells show a rapid transition when a presented square is flipped along its classical receptive field (CRF) so that the opposite BO is presented, whereas the transition is significantly slower when a square with a clear BO is replaced by an ambiguous edge, e.g., when the square is enlarged greatly. The rapid transition seemed to reflect the influence of feedforward processing on BO selectivity. Herein, we investigated the role of feedforward signals and cortical interactions for time-courses in BO-selective cells by modeling a visual cortical network comprising V1, V2, and posterior parietal (PP) modules. In our computational model, the recurrent pathways among these modules gradually established the visual progress and the BO assignments. Feedforward inputs mainly determined the activities of these modules. Surrounding suppression/facilitation of early-level areas modulates the activities of V2 cells to provide BO signals. Weak feedback signals from the PP module enhanced the contrast gain extracted in V1, which underlies the attentional modulation of BO signals. Model simulations exhibited time-courses depending on the BO ambiguity, which were caused by the integration delay of V1 and V2 cells and the local inhibition therein given the difference in input stimulus. However, our model did not fully explain the characteristics of crucially slow transition: the responses of BO-selective physiological cells indicated the persistent activation several times longer than that of our model after the replacement with the ambiguous edge. Furthermore, the time-course of BO-selective model cells replicated the attentional modulation of response time in human psychophysical experiments. These attentional modulations for time-courses were induced by selective enhancement of early-level features due to interactions between V1 and PP. Our proposed model suggests fundamental roles of surrounding suppression/facilitation based on feedforward inputs as well as the interactions between early and parietal visual areas with respect to the ambiguity dependence of the neural dynamics in intermediate-level vision. PMID:28163688
Wagatsuma, Nobuhiko; Sakai, Ko
2016-01-01
Border ownership (BO) indicates which side of a contour owns a border, and it plays a fundamental role in figure-ground segregation. The majority of neurons in V2 and V4 areas of monkeys exhibit BO selectivity. A physiological work reported that the responses of BO-selective cells show a rapid transition when a presented square is flipped along its classical receptive field (CRF) so that the opposite BO is presented, whereas the transition is significantly slower when a square with a clear BO is replaced by an ambiguous edge, e.g., when the square is enlarged greatly. The rapid transition seemed to reflect the influence of feedforward processing on BO selectivity. Herein, we investigated the role of feedforward signals and cortical interactions for time-courses in BO-selective cells by modeling a visual cortical network comprising V1, V2, and posterior parietal (PP) modules. In our computational model, the recurrent pathways among these modules gradually established the visual progress and the BO assignments. Feedforward inputs mainly determined the activities of these modules. Surrounding suppression/facilitation of early-level areas modulates the activities of V2 cells to provide BO signals. Weak feedback signals from the PP module enhanced the contrast gain extracted in V1, which underlies the attentional modulation of BO signals. Model simulations exhibited time-courses depending on the BO ambiguity, which were caused by the integration delay of V1 and V2 cells and the local inhibition therein given the difference in input stimulus. However, our model did not fully explain the characteristics of crucially slow transition: the responses of BO-selective physiological cells indicated the persistent activation several times longer than that of our model after the replacement with the ambiguous edge. Furthermore, the time-course of BO-selective model cells replicated the attentional modulation of response time in human psychophysical experiments. These attentional modulations for time-courses were induced by selective enhancement of early-level features due to interactions between V1 and PP. Our proposed model suggests fundamental roles of surrounding suppression/facilitation based on feedforward inputs as well as the interactions between early and parietal visual areas with respect to the ambiguity dependence of the neural dynamics in intermediate-level vision.
Development and testing of shingle-type solar cell molecules
NASA Technical Reports Server (NTRS)
Shepard, N. F.
1978-01-01
The details of a shingle module design which produces in excess of 97 watts/sq m of module area at 1 kW/sq m insolation and at 60 C are reported. This selected design employs a tempered glass coverplate to provide the primary solar cell structural support. The fabrication and testing of a preproduction module of this design has demonstrated that this selected approach will meet the environmental testing requirements imposed by the contract.
Lenci, Elena; Innocenti, Riccardo; Biagioni, Alessio; Menchi, Gloria; Bianchini, Francesca; Trabocchi, Andrea
2016-10-20
The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2 H -furo[3,2- b ][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.
2012-03-13
Source Approach Part II. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing Report Title ABSTRACT This final report for Contract W911NF-09-C-0135 transmits the...prototype development. The second (Part II.) is "Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Test Report". The
Performance improvement of PEFC modules with cell containing low amount of platinum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Y.; Kadowaki, M.; Hamada, A.
1996-12-31
Cell components of the PEFC module were studied to improve the module performance. The cell performance in a high air utilization region was improved by selecting an air channel design of the separator in which high air flow speed was obtained. Optimization of Teflon{reg_sign} amount on the cathode backing carbon paper also contributed the cell performance. Modifications of the gas channel design and the backing carbon paper were carried out in a 200 cm{sup 2} x 20-cell module and 36-cell module. Dependence of air utilization on module performance was remarkably improved and power density of more than 0.3 W/cm{sup 2}more » was achieved in spite of the platinum amount in the cells was decreased to 1.1 Mg/cm{sup 2}.« less
Methods of using viral replicase polynucleotides and polypeptides
Gordon-Kamm, William J.; Lowe, Keith S.; Bailey, Matthew A.; Gregory, Carolyn A.; Hoerster, George J.; Larkins, Brian A.; Dilkes, Brian R.; Burnett, Ronald; Woo, Young Min
2007-12-18
The invention provides novel methods of using viral replicase polypeptides and polynucleotides. Included are methods for increasing transformation frequencies, increasing crop yield, providing a positive growth advantage, modulating cell division, transiently modulating cell division, and for providing a means of positive selection.
Neuro-immune modulation of the thymus microenvironment (review).
Mignini, Fiorenzo; Sabbatini, Maurizio; Mattioli, Laura; Cosenza, Monica; Artico, Marco; Cavallotti, Carlo
2014-06-01
The thymus is the primary site for T-cell lympho-poiesis. Its function includes the maturation and selection of antigen specific T cells and selective release of these cells to the periphery. These highly complex processes require precise parenchymal organization and compartmentation where a plethora of signalling pathways occur, performing strict control on the maturation and selection processes of T lymphocytes. In this review, the main morphological characteristics of the thymus microenvironment, with particular emphasis on nerve fibers and neuropeptides were assessed, as both are responsible for neuro-immune‑modulation functions. Among several neurotransmitters that affect thymus function, we highlight the dopaminergic system as only recently has its importance on thymus function and lymphocyte physiology come to light.
Kremoser, Claus; Albers, Michael; Burris, Thomas P; Deuschle, Ulrich; Koegl, Manfred
2007-10-01
Drugs that target nuclear receptors are clinically, as well as commercially, successful. Their widespread use, however, is limited by an inherent propensity of nuclear receptors to trigger beneficial, as well as adverse, pharmacological effects upon drug activation. Hence, selective drugs that display reduced adverse effects, such as the selective estrogen receptor modulator (SERM) Raloxifene, have been developed by guidance through classical cell culture assays and animal trials. Full agonist and selective modulator nuclear receptor drugs, in general, differ by their ability to recruit certain cofactors to the receptor protein. Hence, systematic cofactor profiling is advancing into an approach for the rationally guided identification of selective NR modulators (SNuRMs) with improved therapeutic ratio.
Modulation of Rhamm (CD168) for selective adipose tissue development
Turley, Eva A; Bissell, Mina J
2014-05-06
Herein is described the methods and compositions for modulation of Rhamm, also known as CD 186, and its effects on wound repair, muscle differentiation, bone density and adipogeneisis through its ability to regulate mesenchymal stem cell differentiation. Compositions and methods are provided for blocking Rhamm function for selectively increasing subcutaneous, but not, visceral fat. Compositions and methods for modulating Rhamm in wound repair are also described.
Block 4 solar cell module design and test specification for residential applications
NASA Technical Reports Server (NTRS)
1978-01-01
Near-term design, qualification and acceptance requirements are provided for terrestrial solar cell modules suitable for incorporation in photovoltaic power sources (2 kW to 10 kW) applied to single family residential installations. Requirement levels and recommended design limits for selected performance criteria are specified for modules intended principally for rooftop installations. Modules satisfying the requirements of this specification fall into one of two categories, residential panel or residential shingle, both meeting general performance requirements plus additional category peculiar constraints.
Jamier, Vincent; Ba, Lalla A; Jacob, Claus
2010-09-24
Various human diseases, including different types of cancer, are associated with a disturbed intracellular redox balance and oxidative stress (OS). The past decade has witnessed the emergence of redox-modulating compounds able to utilize such pre-existing disturbances in the redox state of sick cells for therapeutic advantage. Selenium- and tellurium-based agents turn the oxidizing redox environment present in certain cancer cells into a lethal cocktail of reactive species that push these cells over a critical redox threshold and ultimately kill them through apoptosis. This kind of toxicity is highly selective: normal, healthy cells remain largely unaffected, since changes to their naturally low levels of oxidizing species produce little effect. To further improve selectivity, multifunctional sensor/effector agents are now required that recognize the biochemical signature of OS in target cells. The synthesis of such compounds provides interesting challenges for chemistry in the future.
A lightweight solar array study
NASA Technical Reports Server (NTRS)
Josephs, R. H.
1977-01-01
A sample module was assembled to model a portion of a flexible extendable solar array, a type that promises to become the next generation of solar array design. The resulting study of this module is intended to provide technical support to the array designer for lightweight component selection, specifications, and tests. Selected from available lightweight components were 127-micron-thick wrap-around contacted solar cells, 34- micron-thick sputtered glass covers, and as a substrate a 13-micron-thick polyimide film clad with a copper printed circuit. Each component displayed weaknesses. The thin solar cells had excessive breakage losses. Sputtered glass cover adhesion was poor, and the covered cell was weaker than the cell uncovered. Thermal stresses caused some cell delamination from the model solar array substrate.
Design of selective nuclear receptor modulators: RAR and RXR as a case study.
de Lera, Angel R; Bourguet, William; Altucci, Lucia; Gronemeyer, Hinrich
2007-10-01
Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) are members of the nuclear receptor superfamily whose effects on cell growth and survival can be modulated therapeutically by small-molecule ligands. Although compounds that target these receptors are powerful anticancer drugs, their use is limited by toxicity. An improved understanding of the structural biology of RXRs and RARs and recent advances in the chemical synthesis of modified retinoid and rexinoid ligands should enable the rational design of more selective agents that might overcome such problems. Here, we review structural data for RXRs and RARs, discuss strategies in the design of selective RXR and RAR modulators, and consider lessons that can be learned for the design of selective nuclear-receptor modulators in general.
Diouf, Barthélémy; Collazos, Alejandra; Labesse, Gilles; Macari, Françoise; Choquet, Armelle; Clair, Philippe; Gauthier-Rouvière, Cécile; Guérineau, Nathalie C.; Jay, Philippe; Hollande, Frédéric; Joubert, Dominique
2009-01-01
In the pituitary gland, activated protein kinase C (PKC) isoforms accumulate either selectively at the cell-cell contact (α and ϵ) or at the entire plasma membrane (β1 and δ). The molecular mechanisms underlying these various subcellular locations are not known. Here, we demonstrate the existence within PKCϵ of a cell-cell contact targeting sequence (3CTS) that, upon stimulation, is capable of targeting PKCδ, chimerin-α1, and the PKCϵ C1 domain to the cell-cell contact. We show that this selective targeting of PKCϵ is lost upon overexpression of 3CTS fused to a (R-Ahx-R)4 (where Ahx is 6-aminohexanoic acid) vectorization peptide, reflecting a dominant-negative effect of the overexpressed 3CTS on targeting selectivity. 3CTS contains a putative amphipathic α-helix, a 14-3-3-binding site, and the Glu-374 amino acid, involved in targeting selectivity. We show that the integrity of the α-helix is important for translocation but that 14-3-3 is not involved in targeting selectivity. However, PKCϵ translocation is increased when PKCϵ/14-3-3 interaction is abolished, suggesting that phorbol 12-myristate 13-acetate activation may initiate two sets of PKCϵ functions, those depending on 14-3-3 and those depending on translocation to cell-cell contacts. Thus, 3CTS is involved in the modulation of translocation via its 14-3-3-binding site, in cytoplasmic desequestration via the α-helix, and in selective PKCϵ targeting at the cell-cell contact via Glu-374. PMID:19429675
Modulation of TIP60 by Human Papilloma Virus in Breast Cancer
2012-09-01
can also be a etiological agent or can augment the breast epithelial cells transformation and cancer. Body: Testing HPVE6 can degrade Tip60 in...sera, the spleen cells were collected from immunized mice and co- cultured with myeloma cells. These cells were cultured in selective HAT medium to... select for fused cells called Hybridoma cells. These hybridoma cells were cultured and tested for monoclonal antibody generation against Tip60 by ELISA
Real time outdoor exposure testing of solar cell modules and component materials
NASA Technical Reports Server (NTRS)
Anagnostou, E.; Forestieri, A. F.
1977-01-01
Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.
Old, Lloyd J.; Stockert, Elisabeth; Boyse, Edward A.; Kim, Jae Ho
1968-01-01
Antigenic modulation (the loss of TL antigens from TL+ cells exposed to TL antibody in the absence of lytic complement) has been demonstrated in vitro. An ascites leukemia, phenotype TL.1,2,3, which modulates rapidly and completely when incubated with TL antiserum in vitro, was selected for further study of the phenomenon. Over a wide range of TL antibody concentrations modulation at 37°C was detectable within 10 min and was complete within approximately 1 hr. The cells were initially sensitized to C' by their contact with antibody, thereafter losing this sensitivity to C' lysis together with their sensitivity to TL antibody and C' in the cytotoxic test. The capacity of the cells to undergo modulation was abolished by actinomycin D and by iodoacetamide, and by reducing the temperature of incubation to 0°C. Thus modulation apparently is an active cellular process. Antigens TL. 1,2, and 3 are all modulated by anti-TL.1,3 serum and by anti-TL.3 serum. This modulation affects all three TL components together, even when antibody to one or two of them is lacking. aAnti-TL.2 serum does not induce modulation and in fact impairs modulation by the other TL antibodies. The influence of the TL phenotype of cells upon the demonstrable content of H-2 (D region) isoantigen, first shown in cells modulated in vivo, has been observed with cells modulated in vitro. Cells undergoing modulation show a progressive increase in H-2 (D region) antigen over a period of 4 hr, with no change in H-2 antigens of the K region. Restoration of the TL+ phenotype of modulated cells after removal of antibody is less rapid than TL+ → TL- modulation and may require several cell divisions. PMID:5636556
Complex dynamics of selection and cellular memory in adaptation to a changing environment
NASA Astrophysics Data System (ADS)
Kussell, Edo; Lin, Wei-Hsiang
We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.
Modulation of TIP60 by Human Papilloma Virus in Breast Cancer
2013-04-01
infection caused by adenovirus make us hypothesize that adenovirus can also be a etiological agent or can augment the breast epithelial cells...cells. These cells were cultured in selective HAT medium to select for fused cells called Hybridoma cells. These hybridoma cells were cultured and...KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA et al. Association between an oncogenes and an anti -oncogene: the adenovirus EIA protein binds to
Selective Chemical Modulation of Gene Transcription Favors Oligodendrocyte Lineage Progression
Plotnikov, Alexander N.; Zhang, Guangtao; Zeng, Lei; Kaur, Jasbir; Moy, Gregory; Rusinova, Elena; Rodriguez, Yoel; Matikainen, Bridget; Vincek, Adam; Joshua, Jennifer; Casaccia, Patrizia; Zhou, Ming-Ming
2014-01-01
SUMMARY Lysine acetylation regulates gene expression through modulating protein-protein interactions in chromatin. Chemical inhibition of acetyl-lysine binding bromodomains of the major chromatin regulators BET (bromodomain and extra-terminal domain) proteins, has been shown to effectively block cell proliferation in cancer and inflammation. However, whether selective inhibition of individual BET bromodomains has distinctive functional consequences, remains only partially understood. In this study, we show that selective chemical inhibition of the first bromodomain of BET proteins using our newly designed small molecule inhibitor, Olinone, accelerated the progression of mouse primary oligodendrocyte progenitors towards differentiation, while inhibition of both bromodomains of BET proteins hindered differentiation. This effect was target-specific, as it was not detected in cells treated with inactive analogues and independent of any effect on proliferation. Therefore, selective chemical modulation of individual bromodomains, rather than use of broad-based inhibitors may enhance regenerative strategies in disorders characterized by myelin loss such as aging and neurodegeneration. PMID:24954007
Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.
Vujica, Suncica; Zelmer, Christina; Panatala, Radhakrishnan; Lim, Roderick Y H
2016-01-01
Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles.
Lee, Kuan-Ting; Lu, Yu-Jen; Mi, Fwu-Long; Burnouf, Thierry; Wei, Yi-Ting; Chiu, Shao-Chieh; Chuang, Er-Yuan; Lu, Shih-Yuan
2017-01-18
Heterogeneous Fenton reactions have been proven to be an effective and promising selective cancer cell treatment method. The key working mechanism for this method to achieve the critical therapeutic selectivity however remains unclear. In this study, we proposed and demonstrated for the first time the critical role played by catalase in realizing the therapeutic selectivity for the heterogeneous Fenton reaction-driven cancer cell treatment. The heterogeneous Fenton reaction, with the lattice ferric ions of the solid catalyst capable of converting H 2 O 2 to highly reactive hydroxyl radicals, can effectively eradicate cancer cells. In this study, SnFe 2 O 4 nanocrystals, a recently discovered outstanding heterogeneous Fenton catalyst, were applied for selective killing of lung cancer cells. The SnFe 2 O 4 nanocrystals, internalized into the cancer cells, can effectively convert endogenous H 2 O 2 into highly reactive hydroxyl radicals to invoke an intensive cytotoxic effect on the cancer cells. On the other hand, catalase, present at a significantly higher concentration in normal cells than in cancer cells, remarkably can impede the apoptotic cell death induced by the internalized SnFe 2 O 4 nanocrystals. According to the results obtained from the in vitro cytotoxicity study, the relevant oxidative attacks were effectively suppressed by the presence of normal physiological levels of catalase. The SnFe 2 O 4 nanocrystals were thus proved to effect apoptotic cancer cell death through the heterogeneous Fenton reaction and were benign to cells possessing normal physiological levels of catalase. The catalase modulation of the involved heterogeneous Fenton reaction plays the key role in achieving selective cancer cell eradication for the heterogeneous Fenton reaction-driven cancer cell treatment.
Early, Jack; Kaufman, Arthur; Stawsky, Alfred
1982-01-01
A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.
Process development for automated solar cell and module production. Task 4: Automated array assembly
NASA Technical Reports Server (NTRS)
1980-01-01
A process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use was developed. The process sequence was then critically analyzed from a technical and economic standpoint to determine the technological readiness of certain process steps for implementation. The steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect, both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development.
NASA Technical Reports Server (NTRS)
1981-01-01
Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.
Liu, Li; Ma, Hongyue; Tang, Yuping; Chen, Wenxing; Lu, Yin; Guo, Jianming; Duan, Jin-Ao
2012-01-01
The binding between the estrogen receptor α (ER-α) and a variety of compounds in traditional Chinese formulae, Si-Wu-Tang (SWT) series decoctions, was studied using a stably-transfected human breast cancer cell line (MVLN). In 38 compounds tested from SWT series decoctions, the estrogen-like activity of 22 compounds was above 60% in 20 μg mL(-1). Furthermore, theoretical affinity of these compounds was certificated using the functional virtual screen of ER-α modulators by FlexX-Pharm. The accuracy of functional virtual screening of ER-α modulators could reach to 77.27%. The results showed that some compounds, such as organic acids and flavones in SWT series decoctions could be used as selective estrogen receptor modulators (SERMs) and could be selected for further development as potential agents for estrogen related diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yu, E-S; Min, H-J; Lee, K; Lee, M-S; Nam, J-W; Seo, E-K; Hong, J-H; Hwang, E-S
2009-01-01
Background and purpose: p-Coumaryl alcohol-γ-O-methyl ether (CAME) was isolated from Alpinia galanga and shown to contain a phenylpropanoid structure similar to p-coumaryl diacetate (CDA). CDA is known to have antioxidant and anti-inflammatory activity, but the biochemical activities of CAME are unknown. Inflammation is mediated by inflammatory cytokine production, in particular, by CD4+ T helper cells (Th cells), but it is unclear whether phenylpropanoids affect cytokine production in Th cells. In this study, we decided to investigate the functions of CAME and CDA in CD4+ Th cells. Experimental approach: Mouse CD4+ Th cells were isolated from C57BL6 mice and stimulated with an antibody against T cell receptors in the presence of phenylpropanoids. Cytokine production was measured by elisa and intracellular cytokine staining. Gene knockout mice and tetracycline-inducible transgenic mice were used to examine the molecular mechanisms of phenylpropanoids on modulation of cytokine production. Key results: CAME potently reduced intracellular reactive oxygen species in Th cells, as does CDA. However, although CDA was cytotoxic, CAME selectively and potently suppresses interferon-γ (IFNγ) production in CD4+ Th cells, without toxicity. This effect was caused by attenuated expression of the transcription factor, T-box protein expressed in T cells (T-bet), and T-bet was essential for CAME to inhibit IFNγ production in CD4+ Th cells. Conclusions and implications: CAME selectively and substantially suppresses IFNγ production in CD4+ Th cells by decreasing T-bet expression. As increased IFNγ production by CD4+ Th cells can mediate inflammatory immune responses, a selective IFNγ suppressor, such as CAME may be an effective, naturally occurring, compound for modulating inflammatory immune disorders. PMID:19226286
Raudies, Florian; Hasselmo, Michael E.
2015-01-01
Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432
A Module Experimental Process System Development Unit (MEPSDU)
NASA Technical Reports Server (NTRS)
1981-01-01
Subsequent to the design review, a series of tests was conducted on simulated modules to demonstrate that all environmental specifications (wind loading, hailstone impact, thermal cycling, and humidity cycling) are satisfied by the design. All tests, except hailstone impact, were successfully completed. The assembly sequence was simplified by virtue of eliminating the frame components and assembly steps. Performance was improved by reducing the module edge border required to accommodate the frame of the preliminary design module. An ultrasonic rolling spot bonding technique was selected for use in the machine to perform the aluminum interconnect to cell metallization electrical joints required in the MEPSDU module configuration. This selection was based on extensive experimental tests and economic analyses.
Bon, Robin S; Beech, David J
2013-01-01
The primary purpose of this review is to address the progress towards small molecule modulators of human Transient Receptor Potential Canonical proteins (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7). These proteins generate channels for calcium and sodium ion entry. They are relevant to many mammalian cell types including acinar gland cells, adipocytes, astrocytes, cardiac myocytes, cochlea hair cells, endothelial cells, epithelial cells, fibroblasts, hepatocytes, keratinocytes, leukocytes, mast cells, mesangial cells, neurones, osteoblasts, osteoclasts, platelets, podocytes, smooth muscle cells, skeletal muscle and tumour cells. There are broad-ranging positive roles of the channels in cell adhesion, migration, proliferation, survival and turning, vascular permeability, hypertrophy, wound-healing, hypo-adiponectinaemia, angiogenesis, neointimal hyperplasia, oedema, thrombosis, muscle endurance, lung hyper-responsiveness, glomerular filtration, gastrointestinal motility, pancreatitis, seizure, innate fear, motor coordination, saliva secretion, mast cell degranulation, cancer cell drug resistance, survival after myocardial infarction, efferocytosis, hypo-matrix metalloproteinase, vasoconstriction and vasodilatation. Known small molecule stimulators of the channels include hyperforin, genistein and rosiglitazone, but there is more progress with inhibitors, some of which have promising potency and selectivity. The inhibitors include 2-aminoethoxydiphenyl borate, 2-aminoquinolines, 2-aminothiazoles, fatty acids, isothiourea derivatives, naphthalene sulfonamides, N-phenylanthranilic acids, phenylethylimidazoles, piperazine/piperidine analogues, polyphenols, pyrazoles and steroids. A few of these agents are starting to be useful as tools for determining the physiological and pathophysiological functions of TRPC channels. We suggest that the pursuit of small molecule modulators for TRPC channels is important but that it requires substantial additional effort and investment before we can reap the rewards of highly potent and selective pharmacological modulators. PMID:23763262
Context-Dependent Modulation of GABAAR-Mediated Tonic Currents.
Patel, Bijal; Bright, Damian P; Mortensen, Martin; Frølund, Bente; Smart, Trevor G
2016-01-13
Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders but there are no specific ligands capable of selectively reducing tonic inhibition. Here we explore the use of a GABA partial agonist as a selective chemical tool in three different brain regions. We discover that the activity of a partial agonist is heavily dependent upon the GABAA receptor subunit composition underpinning tonic inhibition, and on the ambient levels of GABA in the brain. Copyright © 2016 Patel et al.
Context-Dependent Modulation of GABAAR-Mediated Tonic Currents
Patel, Bijal; Bright, Damian P.; Mortensen, Martin; Frølund, Bente
2016-01-01
Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. SIGNIFICANCE STATEMENT A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders but there are no specific ligands capable of selectively reducing tonic inhibition. Here we explore the use of a GABA partial agonist as a selective chemical tool in three different brain regions. We discover that the activity of a partial agonist is heavily dependent upon the GABAA receptor subunit composition underpinning tonic inhibition, and on the ambient levels of GABA in the brain. PMID:26758848
Catherino, William H.; Malik, Minnie; Driggers, Paul; Chappel, Scott; Segars, James; Davis, Joseph
2012-01-01
Context Uterine leiomyomas are highly prevalent and often symptomatic. Current medical therapies are limited. A novel, potent, selective, orally active therapy is needed. Objective and Methods To determine the progesterone receptor (PR) specificity and activation, endometrial response, and impact on proliferation and extracellular matrix (ECM) production of the novel non-steroidal selective progesterone receptor modulators (SPRMs) CP8863 and CP8947 in human immortalized leiomyoma and patient-matched myometrial cells. Receptor binding in vitro was assessed using LNCaP, Ishikawa, T-47D, and HeLa cell extracts for AR, ER-α, PR, and GR, respectively. Progestational activity assessed by alkaline phosphatase assay in T47D cells and ER-α expression in human leiomyoma and myometrial cells. In vivo progestational activity assayed by the McPhail assay. Proliferation and gene expression studies (q RT-PCR and western blot) were performed in immortalized leiomyoma and myometrial cells. Results Both CP8863 and CP8947 is highly selective for PR but not for ER-α, AR, and GR. Both induced alkaline phosphatase comparably to progesterone, while CP8947 induced ER-α in leiomyoma cells but not myometrial cells. CP8947 was progestational in rabbit endometrium. Nanomolar CP8947 treatment inhibited human leiomyoma but not myometrial cell proliferation. The decreased proliferation correlated with increased TRAIL and caspase -7, suggesting induction of apoptosis in leiomyoma cells. ECM components were decreased in leiomyoma cells, including COL1A1 and COL7A1 at nanomolar concentrations. Conclusions CP8947 was a potent novel non-steroidal SPRM that was selective for PR, showed progestational activity in endometrium, inhibited leiomyoma cell proliferation (potentially via induction of apoptosis), and decreased ECM component production, without disrupting myometrial cell proliferation. PMID:20493256
Laminar Organization of Attentional Modulation in Macaque Visual Area V4.
Nandy, Anirvan S; Nassi, Jonathan J; Reynolds, John H
2017-01-04
Attention is critical to perception, serving to select behaviorally relevant information for privileged processing. To understand the neural mechanisms of attention, we must discern how attentional modulation varies by cell type and across cortical layers. Here, we test whether attention acts non-selectively across cortical layers or whether it engages the laminar circuit in specific and selective ways. We find layer- and cell-class-specific differences in several different forms of attentional modulation in area V4. Broad-spiking neurons in the superficial layers exhibit attention-mediated increases in firing rate and decreases in variability. Spike count correlations are highest in the input layer and attention serves to reduce these correlations. Superficial and input layer neurons exhibit attention-dependent decreases in low-frequency (<10 Hz) coherence, but deep layer neurons exhibit increases in coherence in the beta and gamma frequency ranges. Our study provides a template for attention-mediated laminar information processing that might be applicable across sensory modalities. Copyright © 2017 Elsevier Inc. All rights reserved.
Cheng, Xiu; Shi, Jing Bo; Liu, Hao; Chen, Liu Zeng; Wang, Yang; Tang, Wen Jian; Liu, Xin Hua
2017-01-01
Dominant-negative mutants of telomerase hTERT were demonstrated to have selective effects in tumor cells. However, no any effective and highly selective hTERT inhibitor has been developed so far. We focused on developing new hTERT modulators and synthesized a small molecular compound, named (4-bromophenyl)(3-hydroxy-4-methoxyphenyl)methanone. Our in vitro studies found that title compound showed high inhibitory activity against telomerase, had high antiproliferative capacity on SMMC-7721 cells with IC50 value 88 nm, and had no obvious toxic effect on human normal hepatocyte cells with IC50 value 10 μM. Our in vivo studies showed that this compound significantly inhibited tumor growth in xenograft tumor models. The further molecular mechanisms of title compound inhibition SMMC-7721 cell proliferation by modulating hTERT were explored; the results showed that endoplasmic reticulum stress (ERS) through ER over response (EOR) activates the expression of hTERT, and then induces ERS, which is believed to be intricately associated with oxidative stress and mitochondrial dysfunction, resulting in apoptotic cell death, thereby modulating the expression of downstream signaling molecules including CHOP (CAAT/enhancer-binding protein homologous protein)) and mitochondrion pathway of apoptosis, leading to inhibition of cell proliferation. PMID:28837145
Real-time and accelerated outdoor endurance testing of solar cells
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Anagnostou, E.
1977-01-01
Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.
Jiang, T; Jiang, C-Y; Shu, J-H; Xu, Y-J
2017-07-10
The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38 modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way. Further research is needed to explore the correlations between cell division and NPC.
Oudrhiri, N; Farcet, J P; Gourdin, M F; M'Bemba, E; Gaulard, P; Katz, A; Divine, M; Galazka, A; Reyes, F
1990-01-01
The CD3-T cell receptor (TcR) complex is central to the immune response. Upon binding by specific ligands, internalized CD3-TcR molecules increase, and either T cell response or unresponsiveness may ensue depending on the triggering conditions. Using semi-solid agar culture, we have shown previously that quiescent CD4 but not CD8 lymphocytes generate clonal colonies under phytohaemagglutinin stimulation. Here we have demonstrated that the agar induces selective CD3-TcR modulation in the CD8 and not in the CD4 subset. CD8 lymphocytes preactivated in liquid culture and recultured in agar with exogenous recombinant interleukin-2 generate colonies with a modulated CD3-TcR surface expression. The peptides composing the CD3-TcR complex are synthesized in CD8 colonies as well as in CD4; however, the CD3 gamma chain is phosphorylated at a higher level in CD8 colonies. A component of the agar polymer, absent in agarose, appears to be the ligand that induces differential CD3-TcR modulation in the CD8 subset. In contrast to agar culture, CD8 colonies can be derived from quiescent CD8 lymphocytes in agarose. These CD8 colonies express unmodulated CD-TcR. CD3-TcR modulation with anti-CD3 monoclonal antibody prior to culturing in agarose inhibits the colony formation. We conclude that given triggering conditions can result in both CD3-TcR modulation and inhibition of the proliferative response selectively in the CD8 lymphocyte subset and not in the CD4. Images Fig. 3 Fig. 4 Fig. 5 PMID:2146997
The life and miracles of kinetochores
Santaguida, Stefano; Musacchio, Andrea
2009-01-01
Kinetochores are large protein assemblies built on chromosomal loci named centromeres. The main functions of kinetochores can be grouped under four modules. The first module, in the inner kinetochore, contributes a sturdy interface with centromeric chromatin. The second module, the outer kinetochore, contributes a microtubule-binding interface. The third module, the spindle assembly checkpoint, is a feedback control mechanism that monitors the state of kinetochore–microtubule attachment to control the progression of the cell cycle. The fourth module discerns correct from improper attachments, preventing the stabilization of the latter and allowing the selective stabilization of the former. In this review, we discuss how the molecular organization of the four modules allows a dynamic integration of kinetochore–microtubule attachment with the prevention of chromosome segregation errors and cell-cycle progression. PMID:19629042
Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikunar; Nair, Bindukumar; Sykes, Donald E.; Agosto-Mujica, Arnadri; Hsiao, Chiu Bin; Schwartz, Stanley A.
2010-01-01
We used proteomic analyses to assess how drug abuse modulates immunologic responses to infections with the human immunodeficiency virus type 1 (HIV-1). Two dimensional (2D) difference gel electrophoresis was utilized to determine changes in the proteome of peripheral blood mononuclear cells (PBMC) isolated from HIV-1 positive donors that occurred after treatment with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins. We further isolated specific subpopulations of PBMC to determine which subpopulations were selectively affected by treatment with drugs of abuse. Monocytes, B cells and T cells were positively or negatively selected from PBMC isolated from HIV-1 positive donors. Our results demonstrate that cocaine and methamphetamine modulate gene expression primarily in monocytes and T cells, the primary targets of HIV-1 infection. Proteomic data were validated with quantitative, real-time PCR. These studies elucidate the molecular mechanisms underlying the effects of drugs of abuse on HIV-1 infections. Several functionally relevant classes of proteins were identified as potential mediators of HIV-1 pathogenesis and disease progression associated with drug abuse. PMID:19543960
Luo, Xia; Yin, Ping; Coon V., John S.; Cheng, You-Hong; Wiehle, Ronald D.; Bulun, Serdar E.
2009-01-01
Objective To evaluate the effects of selective progesterone receptor modulator CDB4124 on cell proliferation and apoptosis in cultured human uterine leiomyoma smooth muscle (LSM) cells and control myometrial smooth muscle (MSM) cells in matched uteri. Design Laboratory research. Setting Academic medical center. Patient(s) Premenopausal women (n=12) undergoing hysterectomy for leiomyoma-related symptoms. Intervention(s) Treatment of primary LSM and MSM cells with CDB4124 (10-8-10-6M) or vehicle for 24, 48 or 72 hours. Main Outcome Measure(s) Western blot for protein expression of proliferating cell nuclear antigen (PCNA), cleaved poly-adenosine 5’-diphosphate-ribose polymerase (PARP), Bcl-2 and Krüppel-like transcription factor 11 (KLF11); MTT assay to evaluate viable cell numbers; and real-time polymerase chain reaction to quantify mRNA levels. Result(s) Treatment with CDB4124 significantly decreased levels of the proliferation marker PCNA, the number of viable LSM cells, and the anti-apoptotic protein Bcl-2. On the other hand, treatment with CDB4124 increased levels of the apoptosis marker cleaved PARP and the tumor suppressor KLF11 in a dose- and time-dependent manner in LSM cells. In matched MSM cells, however, CDB4124 did not affect cell proliferation or apoptosis. Conclusion(s) CDB4124 selectively inhibits proliferation and induces apoptosis in LSM but not in MSM cells. PMID:20056218
Valero, Manuel; Averkin, Robert G; Fernandez-Lamo, Ivan; Aguilar, Juan; Lopez-Pigozzi, Diego; Brotons-Mas, Jorge R; Cid, Elena; Tamas, Gabor; Menendez de la Prida, Liset
2017-06-21
Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhao, Qiang; Wang, Hanlin; Ni, Zhenjie; Liu, Jie; Zhen, Yonggang; Zhang, Xiaotao; Jiang, Lang; Li, Rongjin; Dong, Huanli; Hu, Wenping
2017-09-01
Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low-cost and easy-fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half-selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm 2 V -1 s -1 (average) for 2,6-diphenylanthracene (DPA) and electron mobility of 0.124 cm 2 V -1 s -1 (average) for N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN 2 ) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric-based pixelated memory module fabrication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J
2013-01-01
The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.
Li, Gongbo; Petiwala, Sakina M.; Pierce, Dana R.; Nonn, Larisa; Johnson, Jeremy J.
2013-01-01
The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation. PMID:24367485
Selective modulation of cell response on engineered fractal silicon substrates
Gentile, Francesco; Medda, Rebecca; Cheng, Ling; Battista, Edmondo; Scopelliti, Pasquale E.; Milani, Paolo; Cavalcanti-Adam, Elisabetta A.; Decuzzi, Paolo
2013-01-01
A plethora of work has been dedicated to the analysis of cell behavior on substrates with ordered topographical features. However, the natural cell microenvironment is characterized by biomechanical cues organized over multiple scales. Here, randomly rough, self-affinefractal surfaces are generated out of silicon,where roughness Ra and fractal dimension Df are independently controlled. The proliferation rates, the formation of adhesion structures, and the morphology of 3T3 murine fibroblasts are monitored over six different substrates. The proliferation rate is maximized on surfaces with moderate roughness (Ra ~ 40 nm) and large fractal dimension (Df ~ 2.4); whereas adhesion structures are wider and more stable on substrates with higher roughness (Ra ~ 50 nm) and lower fractal dimension (Df ~ 2.2). Higher proliferation occurson substrates exhibiting densely packed and sharp peaks, whereas more regular ridges favor adhesion. These results suggest that randomly roughtopographies can selectively modulate cell behavior. PMID:23492898
Long, Meixiao; Slaiby, Aaron M.; Hagymasi, Adam T.; Mihalyo, Marianne A.; Lichtler, Alexander C.; Reiner, Steven L.; Adler, Adam J.
2010-01-01
When Th1 effector CD4 cells encounter tolerizing Ag in vivo, their capacity to express the effector cytokines IFN-γ and TNF-α is lost more rapidly than noneffector functions such as IL-2 production and proliferation. To localize the relevant intracellular signaling defects, cytokine expression was compared following restimulation with Ag vs agents that bypass TCR-proximal signaling. IFN-γ and TNF-α expression were both partially rescued when TCR-proximal signaling was bypassed, indicating that both TCR-proximal and -distal signaling defects impair the expression of these two effector cytokines. In contrast, bypassing TCR-proximal signaling fully rescued IL-2 expression. T-bet, a transcription and chromatin remodeling factor that is required to direct the differentiation of naive CD4 cells into IFN-γ -expressing Th1 effectors, was partially down-modulated in tolerized Th1 effectors. Enforcing T-bet expression during tolerization selectively rescued the ability to express IFN-γ, but not TNF-α. Conversely, expression of a dominant-negative T-bet in Th1 effectors selectively impaired the ability to express IFN-γ, but not TNF-α. Analysis of histone acetylation at the IFN-γ promoter further suggested that down-modulation of T-bet expression during Th1 effector CD4 cell tolerization does not impair IFN-γ expression potential through alterations in chromatin structure. PMID:16393991
ERIC Educational Resources Information Center
Killen, Joel D.; And Others
1990-01-01
Randomly assigned 1,218 smokers to cells in 4 (nicotine gum delivered ad lib, fixed regimen nicotine gum, placebo gum, no gum) x 3 (self-selected relapse prevention modules, randomly administered modules, no modules) design. Subjects receiving nicotine gum were more likely to be abstinent at 2- and 6-month followups. Fixed regimen accounted for…
A Module Experimental Process System Development Unit (MEPSDU)
NASA Technical Reports Server (NTRS)
1982-01-01
Restructuring research objectives from a technical readiness demonstration program to an investigation of high risk, high payoff activities associated with producing photovoltaic modules using non-CZ sheet material is reported. Deletion of the module frame in favor of a frameless design, and modification in cell series parallel electrical interconnect configuration are reviewed. A baseline process sequence was identified for the fabrication of modules using the selected dendritic web sheet material, and economic evaluations of the sequence were completed.
A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior
NASA Astrophysics Data System (ADS)
Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi
2017-12-01
In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.
Leo, Joyce C L; Lin, Valerie C L
2008-01-01
It is known that progesterone receptor (PR) isoform A (PR-A) and isoform B (PR-B) may mediate different effects of progesterone. The objective of this study was to determine if the functions of PR isoforms also vary in response to different PR modulators (PRM). The effects of 7 synthetic PRM were tested in MDA-MB-231 cells engineered to express PR-A, PR-B, or both PR isoforms. The effects of progesterone were similar in cells expressing PR-A or PR-B in which it inhibited growth and induced focal adhesion. On the other hand, synthetic PRM modulated the activity of the PR isoforms differently. RU486, CDB4124, 17alpha-hydroxy CDB4124 and VA2914 exerted agonist activities on cell growth and adhesion via PR-B. Via PR-A, however, these compounds displayed agonist effect on cell growth but induced stellate morphology which was distinct from the agonist's effect. Their dual properties via PR-A were also displayed at the gene expression level: the compounds acted as agonists on cell cycle genes but exhibited antagonistic effect on cell adhesion genes. Introduction of ERalpha by adenoviral vector to these cells did not change PR-A or PR-B mediated effect of PRM radically, but it causes significant cell rounding and modified the magnitudes of the responses to PRM. The findings suggest that the activities of PR isoforms may be modulated by different PRM through gene-specific regulatory mechanisms. This raises an interesting possibility that PRM may be designed to be PR isoform and cellular pathway selective to achieve targeted therapy in breast cancer. Copyright 2007 Wiley-Liss, Inc.
Luo, Xia; Yin, Ping; Coon V, John S; Cheng, You-Hong; Wiehle, Ronald D; Bulun, Serdar E
2010-05-15
To evaluate the effects of selective P receptor (PR) modulator CDB4124 on cell proliferation and apoptosis in cultured human uterine leiomyoma smooth muscle (LSM) cells and control myometrial smooth muscle (MSM) cells in matched uteri. Laboratory research. Academic medical center. Premenopausal women (n = 12) undergoing hysterectomy for leiomyoma-related symptoms. Treatment of primary LSM and MSM cells with CDB4124 (10(-8)-10(-6) M) or vehicle for 24, 48, or 72 hours. Western blot for protein expression of proliferating cell nuclear antigen, cleaved polyadenosine 5'-diphosphate-ribose polymerase, Bcl-2, and Krüppel-like transcription factor 11; 93-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate viable cell numbers; and real-time polymerase chain reaction (PCR) to quantify messenger RNA (mRNA) levels. Treatment with CDB4124 significantly decreased levels of the proliferation marker proliferating cell nuclear antigen, the number of viable LSM cells, and the antiapoptotic protein Bcl-2. On the other hand, treatment with CDB4124 increased levels of the apoptosis marker cleaved polyadenosine 5'-diphosphate-ribose polymerase and the tumor suppressor Krüppel-like transcription factor 11 in a dose- and time-dependent manner in LSM cells. In matched MSM cells, however, CDB4124 did not affect cell proliferation or apoptosis. CDB4124 selectively inhibits proliferation and induces apoptosis in LSM but not in MSM cells. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
A Module Experimental Process System Development Unit (MEPSDU)
NASA Technical Reports Server (NTRS)
1981-01-01
Design work for a photovoltaic module, fabricated using single crystal silicon dendritic web sheet material, resulted in the identification of surface treatment to the module glass superstrate which improved module efficiencies. A final solar module environmental test, a simulated hailstone impact test, was conducted on full size module superstrates to verify that the module's tempered glass superstrate can withstand specified hailstone impacts near the corners and edges of the module. Process sequence design work on the metallization process selective, liquid dopant investigation, dry processing, and antireflective/photoresist application technique tasks, and optimum thickness for Ti/Pd are discussed. A noncontact cleaning method for raw web cleaning was identified and antireflective and photoresist coatings for the dendritic webs were selected. The design of a cell string conveyor, an interconnect feed system, rolling ultrasonic spot bonding heat, and the identification of the optimal commercially available programmable control system are also discussed. An economic analysis to assess cost goals of the process sequence is also given.
Herwig, S; Su, Q; Tempst, P
1998-10-01
Defensin transcription in HL-60 promyelocytic leukemia cells is greatly enhanced during retinoic acid (RA)-induced differentiation. We have probed this regulatory pathway by selective modulation of various kinase activities. Induction was potentiated by elevated cAMP and attenuated by protein kinase C inhibition, entirely correlated to enhanced or blocked morphological differentiation, respectively. Yet, defensin mRNA was also induced in undifferentiated HL-60 cells, but not in others, by cAMP alone. By contrast, modulators that cooperated with RA had adverse effects on the normal capacity of dimethyl sulfoxide to up regulate these transcripts as well. Thus, defensin mRNA accumulation can be selectively uncoupled from maturation stage; and transcript levels may be regulated by multiple pathways, each independently acted upon by different chemical inducers.
Modulation of sweet responses of taste receptor cells.
Yoshida, Ryusuke; Niki, Mayu; Jyotaki, Masafumi; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo
2013-03-01
Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modulation of memory fields by dopamine Dl receptors in prefrontal cortex
NASA Astrophysics Data System (ADS)
Williams, Graham V.; Goldman-Rakic, Patricia S.
1995-08-01
Dopamine has been implicated in the cognitive process of working memory but the cellular basis of its action has yet to be revealed. By combining iontophoretic analysis of dopamine receptors with single-cell recording during behaviour, we found that D1 antagonists can selectively potentiate the 'memory fields' of prefrontal neurons which subserve working memory. The precision shown for D1 receptor modulation of mnemonic processing indicates a direct gating of selective excitatory synaptic inputs to prefrontal neurons during cognition.
Zhang, Yi; Qian, Rui-Qin; Li, Ping-Ping
2009-10-18
Steroid sulfatase (STS) has an important role in regulating the biosynthesis of estrogen within breast tumors. We aimed to investigate whether shikonin, an ingredient of Lithospermum erythrorhizon, could modulate STS expression in breast cancer cells. By MTT assay, shikonin inhibited the cell proliferation of breast cancer cells MCF-7 and SK-BR-3. Moreover, by semi-quantitative/quantitative reverse transcription polymerase chain reaction and dual-luciferase reporter based bioluminescent measurements, the mRNA and enzymatic activity levels of STS were decreased after shikonin treatment. Concluding, shikonin could act as a selective estrogen enzyme modulator by down-regulating the STS expression.
Small-Molecule Sigma1 Modulator Induces Autophagic Degradation of PD-L1.
Maher, Christina M; Thomas, Jeffrey D; Haas, Derick A; Longen, Charles G; Oyer, Halley M; Tong, Jane Y; Kim, Felix J
2018-02-01
Emerging evidence suggests that Sigma1 ( SIGMAR1 , also known as sigma-1 receptor) is a unique ligand-regulated integral membrane scaffolding protein that contributes to cellular protein and lipid homeostasis. Previously, we demonstrated that some small-molecule modulators of Sigma1 alter endoplasmic reticulum (ER)-associated protein homeostasis pathways in cancer cells, including the unfolded protein response and autophagy. Programmed death-ligand 1 (PD-L1) is a type I integral membrane glycoprotein that is cotranslationally inserted into the ER and is processed and transported through the secretory pathway. Once at the surface of cancer cells, PD-L1 acts as a T-cell inhibitory checkpoint molecule and suppresses antitumor immunity. Here, we demonstrate that in Sigma1-expressing triple-negative breast and androgen-independent prostate cancer cells, PD-L1 protein levels were suppressed by RNAi knockdown of Sigma1 and by small-molecule inhibition of Sigma1. Sigma1-mediated action was confirmed by pharmacologic competition between Sigma1-selective inhibitor and activator ligands. When administered alone, the Sigma1 inhibitor decreased cell surface PD-L1 expression and suppressed functional interaction of PD-1 and PD-L1 in a coculture of T cells and cancer cells. Conversely, the Sigma1 activator increased PD-L1 cell surface expression, demonstrating the ability to positively and negatively modulate Sigma1 associated PD-L1 processing. We discovered that the Sigma1 inhibitor induced degradation of PD-L1 via autophagy, by a mechanism distinct from bulk macroautophagy or general ER stress-associated autophagy. Finally, the Sigma1 inhibitor suppressed IFNγ-induced PD-L1. Our data demonstrate that small-molecule Sigma1 modulators can be used to regulate PD-L1 in cancer cells and trigger its degradation by selective autophagy. Implications: Sigma1 modulators sequester and eliminate PD-L1 by autophagy, thus preventing functional PD-L1 expression at the cell surface. This posits Sigma1 modulators as novel therapeutic agents in PD-L1/PD-1 blockade strategies that regulate the tumor immune microenvironment. Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/2/243/F1.large.jpg Mol Cancer Res; 16(2); 243-55. ©2017 AACR . ©2017 American Association for Cancer Research.
Schorpp, Kenji; Rothenaigner, Ina; Maier, Julia; Traenkle, Bjoern; Rothbauer, Ulrich; Hadian, Kamyar
2016-10-01
Many screening hits show relatively poor quality regarding later efficacy and safety. Therefore, small-molecule screening efforts shift toward high-content analysis providing more detailed information. Here, we describe a novel screening approach to identify cell cycle modulators with low toxicity by combining the Cell Cycle Chromobody (CCC) technology with the CytoTox-Glo (CTG) cytotoxicity assay. The CCC technology employs intracellularly functional single-domain antibodies coupled to a fluorescent protein (chromobodies) to visualize the cell cycle-dependent redistribution of the proliferating cell nuclear antigen (PCNA) in living cells. This image-based cell cycle analysis was combined with determination of dead-cell protease activity in cell culture supernatants by the CTG assay. We adopted this multiplex approach to high-throughput format and screened 960 Food and Drug Administration (FDA)-approved drugs. By this, we identified nontoxic compounds, which modulate different cell cycle stages, and validated selected hits in diverse cell lines stably expressing CCC. Additionally, we independently validated these hits by flow cytometry as the current state-of-the-art format for cell cycle analysis. This study demonstrates that CCC imaging is a versatile high-content screening approach to identify cell cycle modulators, which can be multiplexed with cytotoxicity assays for early elimination of toxic compounds during screening. © 2016 Society for Laboratory Automation and Screening.
Ali, Yousuf O; Bradley, Gillian; Lu, Hui-Chen
2017-03-07
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer's, Huntington's, Parkinson's diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons.
Ali, Yousuf O.; Bradley, Gillian; Lu, Hui-Chen
2017-01-01
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer’s, Huntington’s, Parkinson’s diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons. PMID:28266613
Borgegard, Tomas; Juréus, Anders; Olsson, Fredrik; Rosqvist, Susanne; Sabirsh, Alan; Rotticci, Didier; Paulsen, Kim; Klintenberg, Rebecka; Yan, Hongmei; Waldman, Magnus; Stromberg, Kia; Nord, Johan; Johansson, Jonas; Regner, Anna; Parpal, Santiago; Malinowsky, David; Radesater, Ann-Cathrin; Li, Tingsheng; Singh, Rajeshwar; Eriksson, Hakan; Lundkvist, Johan
2012-04-06
γ-Secretase-mediated cleavage of amyloid precursor protein (APP) results in the production of Alzheimer disease-related amyloid-β (Aβ) peptides. The Aβ42 peptide in particular plays a pivotal role in Alzheimer disease pathogenesis and represents a major drug target. Several γ-secretase modulators (GSMs), such as the nonsteroidal anti-inflammatory drugs (R)-flurbiprofen and sulindac sulfide, have been suggested to modulate the Alzheimer-related Aβ production by targeting the APP. Here, we describe novel GSMs that are selective for Aβ modulation and do not impair processing of Notch, EphB2, or EphA4. The GSMs modulate Aβ both in cell and cell-free systems as well as lower amyloidogenic Aβ42 levels in the mouse brain. Both radioligand binding and cellular cross-competition experiments reveal a competitive relationship between the AstraZeneca (AZ) GSMs and the established second generation GSM, E2012, but a noncompetitive interaction between AZ GSMs and the first generation GSMs (R)-flurbiprofen and sulindac sulfide. The binding of a (3)H-labeled AZ GSM analog does not co-localize with APP but overlaps anatomically with a γ-secretase targeting inhibitor in rodent brains. Combined, these data provide compelling evidence of a growing class of in vivo active GSMs, which are selective for Aβ modulation and have a different mechanism of action compared with the original class of GSMs described.
Attentional modulation of cell-class specific gamma-band synchronization in awake monkey area V4
Vinck, Martin; Womelsdorf, Thilo; Buffalo, Elizabeth A.; Desimone, Robert; Fries, Pascal
2013-01-01
Summary Selective visual attention is subserved by selective neuronal synchronization, entailing precise orchestration among excitatory and inhibitory cells. We tentatively identified these as broad (BS) and narrow spiking (NS) cells and analyzed their synchronization to the local field potential in two macaque monkeys performing a selective visual attention task. Across cells, gamma phases scattered widely but were unaffected by stimulation or attention. During stimulation, NS cells lagged BS cells on average by ~60° and gamma synchronized twice as strongly. Attention enhanced and reduced the gamma locking of strongly and weakly activated cells, respectively. During a pre-stimulus attentional cue period, BS cells showed weak gamma synchronization, while NS cells gamma synchronized as strongly as with visual stimulation. These analyses reveal the cell-type specific dynamics of the gamma cycle in macaque visual cortex and suggest that attention affects neurons differentially depending on cell type and activation level. PMID:24267656
Du, William Weidong; Yang, Burton B.; Yang, Bing L.; Deng, Zhaoqun; Fang, Ling; Shan, Sze Wan; Jeyapalan, Zina; Zhang, Yaou; Seth, Arun; Yee, Albert J.
2011-01-01
Overexpression of EGFR and versican has been reported in association with breast cancers. Considered oncogenic, these molecules may be attractive therapeutic targets. Possessing anti-apoptotic and drug resistant properties, overexpression of these molecules is accompanied by selective sensitization to the process of apoptosis. In this study, we exogenously expressed a versican G3 construct in breast cancer cell lines and analyzed the effects of G3 on cell viability in fetal bovine serum free conditioned media and evaluated the effects of apoptotic agent C2-ceramide, and chemotherapeutic agents including Docetaxel, Doxorubicin, and Epirubicin. Versican G3 domain enhanced tumor cell resistance to apoptosis when cultured in serum free medium, Doxorubicin, or Epirubicin by up-regulating pERK and GSK-3β (S9P). However, it could be prevented by selective EGFR inhibitor AG 1478 and selective MEK inhibitor PD 98059. Both AG 1478 and PD 98059 enhanced expression of pSAPK/JNK, while selective JNK inhibitor SP 600125 enhanced expression of GSK-3β (S9P). Versican G3 promoted cell apoptosis induced by C2-ceramide or Docetaxel by enhancing expression of pSAPK/JNK and decreasing expression of GSK-3β (S9P), an observation blocked by AG 1478 or SP 6000125. Inhibition of endogenous versican expression by siRNA or reduction of versican G3's expression by linking G3 with 3′UTR prevented G3 modulated cell apoptosis. The dual roles of G3 in modulating breast cancer cell resistance to chemotherapeutic agents may in part explain a potential mechanism for breast cancer cell resistance to chemotherapy and EGFR therapy. The apoptotic effects of chemotherapeutics depend upon the activation and balance of down stream signals in the EGFR pathway. GSK-3β (S9P) appears to function as a key checkpoint in this balance of apoptosis and anti-apoptosis. Investigation and potential consideration of targeting GSK-3β (S9P) merits further study. PMID:22096483
Du, William Weidong; Yang, Burton B; Yang, Bing L; Deng, Zhaoqun; Fang, Ling; Shan, Sze Wan; Jeyapalan, Zina; Zhang, Yaou; Seth, Arun; Yee, Albert J
2011-01-01
Overexpression of EGFR and versican has been reported in association with breast cancers. Considered oncogenic, these molecules may be attractive therapeutic targets. Possessing anti-apoptotic and drug resistant properties, overexpression of these molecules is accompanied by selective sensitization to the process of apoptosis. In this study, we exogenously expressed a versican G3 construct in breast cancer cell lines and analyzed the effects of G3 on cell viability in fetal bovine serum free conditioned media and evaluated the effects of apoptotic agent C2-ceramide, and chemotherapeutic agents including Docetaxel, Doxorubicin, and Epirubicin. Versican G3 domain enhanced tumor cell resistance to apoptosis when cultured in serum free medium, Doxorubicin, or Epirubicin by up-regulating pERK and GSK-3β (S9P). However, it could be prevented by selective EGFR inhibitor AG 1478 and selective MEK inhibitor PD 98059. Both AG 1478 and PD 98059 enhanced expression of pSAPK/JNK, while selective JNK inhibitor SP 600125 enhanced expression of GSK-3β (S9P). Versican G3 promoted cell apoptosis induced by C2-ceramide or Docetaxel by enhancing expression of pSAPK/JNK and decreasing expression of GSK-3β (S9P), an observation blocked by AG 1478 or SP 6000125. Inhibition of endogenous versican expression by siRNA or reduction of versican G3's expression by linking G3 with 3'UTR prevented G3 modulated cell apoptosis. The dual roles of G3 in modulating breast cancer cell resistance to chemotherapeutic agents may in part explain a potential mechanism for breast cancer cell resistance to chemotherapy and EGFR therapy. The apoptotic effects of chemotherapeutics depend upon the activation and balance of down stream signals in the EGFR pathway. GSK-3β (S9P) appears to function as a key checkpoint in this balance of apoptosis and anti-apoptosis. Investigation and potential consideration of targeting GSK-3β (S9P) merits further study.
Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.
Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel
2017-06-27
Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.
Solid-state energy storage module employing integrated interconnect board
Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.
2004-09-28
An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.
Hot-spot heating susceptibility due to reverse bias operating conditions
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.
1985-01-01
Because of field experience (indicating that cell and module degradation could occur as a result of hot spot heating), a laboratory test was developed at JPL to determine hot spot susceptibility of modules. The initial hot spot testing work at JPL formed a foundation for the test development. Test parameters are selected as follows. For high shunt resistance cells, the applied back bias test current is set equal to the test cell current at maximum power. For low shunt resistance cells, the test current is set equal to the cell short circuit current. The shadow level is selected to conform to that which would lead to maximum back bias voltage under the appropriate test current level. The test voltage is determined by the bypass diode frequency. The test conditions are meant to simulate the thermal boundary conditions for 100 mW/sq cm, 40C ambient environment. The test lasts 100 hours. A key assumption made during the development of the test is that no current imbalance results from the connecting of multiparallel cell strings. Therefore, the test as originally developed was applicable for single string case only.
Mutation in Fas Ligand Impairs Maturation of Thymocytes Bearing Moderate Affinity T Cell Receptors
Boursalian, Tamar E.; Fink, Pamela J.
2003-01-01
Fas ligand, best known as a death-inducer, is also a costimulatory molecule required for maximal proliferation of mature antigen-specific CD4+ and CD8+ T cells. We now extend the role of Fas ligand by showing that it can also influence thymocyte development. T cell maturation in some, but not all, strains of TCR transgenic mice is severely impaired in thymocytes expressing mutant Fas ligand incapable of interacting with Fas. Mutant Fas ligand inhibits neither negative selection nor death by neglect. Instead, it appears to modulate positive selection of thymocytes expressing both class I– and class II–restricted T cell receptors of moderate affinity for their positively selecting ligands. Fas ligand is therefore an inducer of death, a costimulator of peripheral T cell activation, and an accessory molecule in positive selection. PMID:12860933
Ivy and neurogliaform interneurons are a major target of μ opioid receptor modulation
Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan
2011-01-01
Mu opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous, but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABAB response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Further, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR-activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking PV basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR-activation. Together these findings identify a major, previously unrecognized, target of μOR-modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications. PMID:22016519
Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation.
Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan
2011-10-19
μ-Opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin-expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABA(B) response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that, across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Furthermore, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking parvalbumin basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR activation. Together, these findings identify a major, previously unrecognized, target of μOR modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications.
Helicases as Prospective Targets for Anti-Cancer Therapy
Gupta, Rigu; Brosh, Robert M.
2008-01-01
It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint. PMID:18473724
Dussault, Nathalie; Ducas, Eric; Racine, Claudia; Jacques, Annie; Paré, Isabelle; Côté, Serge; Néron, Sonia
2008-11-01
In the treatment of autoimmune diseases, intravenous Igs (IVIg) are assumed to modulate immune cells through the binding of surface receptors. IVIg act upon definite human B cell populations to modulate Ig repertoire, and such modulation might proceed through intracellular signaling. However, the heterogeneity of human B cell populations complicates investigations of the intracellular pathways involved in IVIg-induced B cell modulation. The aim of this study was to establish a model allowing the screening of IVIg signal transduction in human B cell lines and to attempt transposing observations made in cell lines to normal human B lymphocytes. Nine human B cell lines were treated with IVIg with the goal of selecting the most suitable model for human B lymphocytes. The IgG(+) DB cell line, whose response was similar to that of human B lymphocytes, showed reduced IVIg modulation following addition of PD98059, an inhibitor of extracellular signal-regulated protein kinase 1/2 (ERK1/2). The IVIg-induced ERK1/2 phosphorylation was indeed proportional to the dosage of monomeric IVIg used when tested on DB cells as well as Pfeiffer cells, another IgG(+) cell line. In addition, two other intermediates, Grb2-associated binder 1 (Gab1) and Akt, showed increased phosphorylation in IVIg-treated DB cells. IVIg induction of ERK1/2 phosphorylation was finally observed in peripheral human B lymphocytes, specifically within the IgG(+) B cell population. In conclusion, IVIg immunomodulation of human B cells can thus be linked to intracellular transduction pathways involving the phosphorylation of ERK1/2, which in combination with Gab1 and Akt, may be related to B cell antigen receptor signaling.
High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics.
Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine.
Bhat, Roopa; Mahapatra, Sidharth; Axtell, Robert C; Steinman, Lawrence
2017-12-15
In patients with multiple sclerosis, the selective serotonin reuptake inhibitor, fluoxetine, resulted in less acute disease activity. We tested the immune modulating effects of fluoxetine in a mouse model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE). We show that fluoxetine delayed the onset of disease and reduced clinical paralysis in mice with established disease. Fluoxetine had abrogating effects on proliferation of immune cells and inflammatory cytokine production by both antigen-presenting cells and T cells. Specifically, in CD 4 T cells, fluoxetine increased Fas-induced apoptosis. We conclude that fluoxetine possesses immune-modulating effects resulting in the amelioration of symptoms in EAE. Copyright © 2017 Elsevier B.V. All rights reserved.
Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter
2017-02-10
One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.
Phase-sensitive flow cytometer
Steinkamp, John A.
1993-01-01
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.
1999-06-16
selective modulation of y/5 T- cell activity after major burn trauma may provide therapeutic advantages for such patients. 17 SERUM MELATONIN LEVELS...and GM 568501). 145 EFFECT OF SELECT CYCLOOXYGENASE (COX>l AND COX-2 INHIBITORS ON PROSTAGLANDIN PRODUCTION AND T-CELL PROLIFERATION IN SEPSIS...imported from non-ischemic tissues. Treatment with NG- monomethyl-L-arginine, a non selective inhibitor of nitric oxide synthase (given at 10 mg/kg i.V
Cell death in the thymus--it' s all a matter of contacts.
Minter, Lisa M; Osborne, Barbara A
2003-06-01
Apoptosis, or programmed cell death, plays a critical role in shaping the T cell repertoire, deleting unproductive as well as potentially autoreactive T cells. Our understanding of how thymocyte apoptosis is regulated is continually evolving, as new essential modulators of this process are discovered. A conundrum that remains, however, is how signaling through essentially the same receptors and cascades evokes distinct biological responses: death by neglect, positive or negative selection. We hypothesize that the immunological synapse (IS) may be critical to transducing survival signals during thymocyte development, and suggest that factors affecting IS assembly may also influence T cell selection.
Selective estrogen receptor modulation in pancreatic β-cells and the prevention of type 2 diabetes.
Tiano, Joseph; Mauvais-Jarvis, Franck
2012-01-01
We recently showed that the female hormone 17β-estradiol (E2) protects against β-cell failure in rodent models of type 2 diabetes (T2D) by suppressing islet fatty acids and glycerolipids synthesis, thus preventing lipotoxic β-cell failure. E2 anti-lipogenic actions were recapitulated by pharmacological activation of the estrogen receptor (ER)α, ERβ and the G-protein coupled ER (GPER) in cultured rodent and human β-cells. In vivo, in mouse islets, ERα activation inhibited β-cell lipogenesis by suppressing fatty acid synthase expression (and activity) via an extranuclear, estrogen response element (ERE)-independent pathway requiring the signal transducer and activator of transcription 3. Here, we show that in INS-1 insulin-secreting cells, the selective ER modulator (SERM), Raloxifene, behaves both as ER antagonist with regard to nuclear ERE-dependent actions and as an ER agonist with regard to suppressing triglyceride accumulation. This additional finding opens the perspective that SERMs harboring ER agonistic activity in β-cells could have application in postmenopausal prevention of T2D. Additional studies using novel generation SERMs are needed to address this issue.
A selective estrogen receptor modulator for the treatment of hot flushes.
Wallace, Owen B; Lauwers, Kenneth S; Dodge, Jeffrey A; May, Scott A; Calvin, Joel R; Hinklin, Ronald; Bryant, Henry U; Shetler, Pamela K; Adrian, Mary D; Geiser, Andrew G; Sato, Masahiko; Burris, Thomas P
2006-02-09
A selective estrogen receptor modulator (SERM) for the potential treatment of hot flushes is described. (R)-(+)-7,9-difluoro-5-[4-(2-piperidin-1-ylethoxy)phenyl]-5H-6-oxachrysen-2-ol, LSN2120310, potently binds ERalpha and ERbeta and is an antagonist in MCF-7 breast adenocarcinoma and Ishikawa uterine cancer cell lines. The compound is a potent estrogen antagonist in the rat uterus. In ovariectomized rats, the compound lowers cholesterol, maintains bone mineral density, and is efficacious in a morphine dependent rat model of hot flush efficacy.
Integrated residential photovoltaic array development
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1981-01-01
The design details of an optimized integrated residential photovoltaic module/array are presented. This selected design features a waterproofing and mounting scheme which was devised to simplify the installation procedures by the avoidance of complex gasketed or caulked joints, while still maintaining a high confidence that the watertight integrity of the integral roofing surface will be achieved for the design lifetime of the system. The production and installation costs for the selected module/array design are reported for a range of annual production rates as a function of the cost of solar cells.
Solid-state energy storage module employing integrated interconnect board
Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.
2003-11-04
The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.
Engineered Aptamers to Probe Molecular Interactions on the Cell Surface
Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E.; Mallikaratchy, Prabodhika
2017-01-01
Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics. PMID:28850067
Yang, Chao; Wang, Wanhe; Liang, Jia-Xin; Li, Guodong; Vellaisamy, Kasipandi; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang
2017-03-23
We report herein a novel rhodium(III) complex 1 as a new LSD1 targeting agent and epigenetic modulator. Complex 1 disrupted the interaction of LSD1-H3K4me2 in human prostate carcinoma cells and enhanced the amplification of p21, FOXA2, and BMP2 gene promoters. Complex 1 was selective for LSD1 over other histone demethylases, such as KDM2b, KDM7, and MAO activities, and also showed antiproliferative activity toward human cancer cells. To date, complex 1 is the first metal-based inhibitor of LSD1 activity.
Bocsik, Alexandra; Walter, Fruzsina R; Gyebrovszki, Andrea; Fülöp, Lívia; Blasig, Ingolf; Dabrowski, Sebastian; Ötvös, Ferenc; Tóth, András; Rákhely, Gábor; Veszelka, Szilvia; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A
2016-02-01
The intercellular junctions restrict the free passage of hydrophilic compounds through the paracellular clefts. Reversible opening of the tight junctions of biological barriers is investigated as one of the ways to increase drug delivery to the systemic circulation or the central nervous system. Six peptides, ADT-6, HAV-6, C-CPE, 7-mer (FDFWITP, PN-78), AT-1002, and PN-159, acting on different integral membrane and linker junctional proteins were tested on Caco-2 intestinal epithelial cell line and a coculture model of the blood-brain barrier. All peptides tested in nontoxic concentrations showed a reversible tight junctions modulating effect and were effective to open the paracellular pathway for the marker molecules fluorescein and albumin. The change in the structure of cell-cell junctions was verified by immunostaining for occludin, claudin-4,-5, ZO-1, β-catenin, and E-cadherin. Expression levels of occludin and claudins were measured in both models. We could demonstrate a selectivity of C-CPE, ADT-6, and HAV-6 peptides for epithelial cells and 7-mer and AT-1002 peptides for brain endothelial cells. PN-159 was the most effective modulator of junctional permeability in both models possibly acting via claudin-1 and -5. Our results indicate that these peptides can be effectively and selectively used as potential pharmaceutical excipients to improve drug delivery across biological barriers. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Identification of cancer cytotoxic modulators of PDE3A by predictive chemogenomics
de Waal, Luc; Lewis, Timothy A.; Rees, Matthew G.; Tsherniak, Aviad; Wu, Xiaoyun; Choi, Peter S.; Gechijian, Lara; Hartigan, Christina; Faloon, Patrick W.; Hickey, Mark J.; Tolliday, Nicola; Carr, Steven A.; Clemons, Paul A.; Munoz, Benito; Wagner, Bridget K.; Shamji, Alykhan F.; Koehler, Angela N.; Schenone, Monica; Burgin, Alex B.; Schreiber, Stuart L.; Greulich, Heidi; Meyerson, Matthew
2015-01-01
High cancer death rates indicate the need for new anti-cancer therapeutic agents. Approaches to discover new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds by phenotypic compound library screening and target deconvolution by predictive chemogenomics. We found that sensitivity to 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, across 766 cancer cell lines correlates with expression of the phosphodiesterase 3A gene, PDE3A. Like DNMDP, a subset of known PDE3A inhibitors kill selected cancer cells while others do not. Furthermore, PDE3A depletion leads to DNMDP resistance. We demonstrated that DNMDP binding to PDE3A promotes an interaction between PDE3A and Schlafen 12 (SLFN12), suggesting a neomorphic activity. Co-expression of SLFN12 with PDE3A correlates with DNMDP sensitivity, while depletion of SLFN12 results in decreased DNMDP sensitivity. Our results implicate PDE3A modulators as candidate cancer therapeutic agents and demonstrate the power of predictive chemogenomics in small-molecule discovery. PMID:26656089
Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells.
Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu
2017-01-01
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells
Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu
2017-01-01
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177
Mellencamp, M W; O'Brien, P C; Stevenson, J R
1991-01-01
The ability of pseudorabies virus (PrV) to down-modulate expression of major histocompatibility complex class I antigens in murine and porcine cells was investigated. When quantified by flow cytometry, surface expression of class I Kk and Dk antigens on PrV-infected cells decreased by 60% or more. Down-modulation was associated with a decrease in total cellular class I antigens, indicating regulation at the transcriptional or posttranscriptional level. PrV did not suppress expression of transferrin receptor, suggesting a selective regulatory mechanism. Images PMID:1851884
Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1
Hill, Michelle M.; Daud, Noor Huda; Aung, Cho Sanda; Loo, Dorothy; Martin, Sally; Murphy, Samantha; Black, Debra M.; Barry, Rachael; Simpson, Fiona; Liu, Libin; Pilch, Paul F.; Hancock, John F.; Parat, Marie-Odile; Parton, Robert G.
2012-01-01
Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration. PMID:22912783
Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.
Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke
2013-12-15
The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. Copyright © 2013 Elsevier GmbH. All rights reserved.
Evolution of functional specialization and division of labor.
Rueffler, Claus; Hermisson, Joachim; Wagner, Günter P
2012-02-07
Division of labor among functionally specialized modules occurs at all levels of biological organization in both animals and plants. Well-known examples include the evolution of specialized enzymes after gene duplication, the evolution of specialized cell types, limb diversification in arthropods, and the evolution of specialized colony members in many taxa of marine invertebrates and social insects. Here, we identify conditions favoring the evolution of division of labor by means of a general mathematical model. Our starting point is the assumption that modules contribute to two different biological tasks and that the potential of modules to contribute to these tasks is traded off. Our results are phrased in terms of properties of performance functions that map the phenotype of modules to measures of performance. We show that division of labor is favored by three factors: positional effects that predispose modules for one of the tasks, accelerating performance functions, and synergistic interactions between modules. If modules can be lost or damaged, selection for robustness can counteract selection for functional specialization. To illustrate our theory we apply it to the evolution of specialized enzymes coded by duplicated genes.
Liu, Zheyi; Wang, Fangjun; Chen, Jin; Zhou, Ye; Zou, Hanfa
2016-08-26
Although many affinity adsorbents have been developed for phosphopeptides enrichment, high-specifically capturing the multi-phosphopeptides is still a big challenge. Here, we investigated the mechanism of phosphate ion coordination and substitution on affinity adsorbents surfaces and modulated the selectivity of affinity adsorbents to multi-phosphopeptides based on the different capability of mono- and multi-phosphopeptides in competitively substituting the pre-coordinated phosphate ions at strong acidic condition. We demonstrated both the species of pre-coordinated phosphate ions and the substituting conditions played crucial roles in modulating the enrichment selectivity to multi-phosphopeptides, and the pre-coordinated affinity materials with relative more surfaces positive charges exhibited better enrichment efficiency due to the cooperative effect of electrostatic interaction and competitive substitution. Finally, an enrichment selectivity of 85% to multi-phosphopeptides was feasibly achieved with 66% improvement in identification numbers for complex protein sample extracted from HepG2 cells. Data are available via ProteomeXchange with identifier PXD004252. Copyright © 2016 Elsevier B.V. All rights reserved.
Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma.
Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J; Reifenberger, Guido; Büsselberg, Dietrich
2017-04-04
Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1-10 μM) or TOPO (0.1 nM-1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.
Phase-sensitive flow cytometer
Steinkamp, J.A.
1993-12-14
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.
Wang, Baojun; Barahona, Mauricio; Buck, Martin
2013-01-01
Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411
Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility
Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F.; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L.; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B.; Murray, Brion W.
2015-01-01
Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; K i<0.5 nM; cellular IC50 2–6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug. PMID:26398286
Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility.
Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B; Murray, Brion W
2015-01-01
Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Ki<0.5 nM; cellular IC50 2-6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug.
What makes a cell face-selective: the importance of contrast
Ohayon, Shay; Freiwald, Winrich A; Tsao, Doris Y
2012-01-01
Summary Faces are robustly detected by computer vision algorithms that search for characteristic coarse contrast features. Here, we investigated whether face-selective cells in the primate brain exploit contrast features as well. We recorded from face-selective neurons in macaque inferotemporal cortex, while presenting a face-like collage of regions whose luminances were changed randomly. Modulating contrast combinations between regions induced activity changes ranging from no response to a response greater than that to a real face in 50% of cells. The critical stimulus factor determining response magnitude was contrast polarity, e.g., nose region brighter than left eye. Contrast polarity preferences were consistent across cells, suggesting a common computational strategy across the population, and matched features used by computer vision algorithms for face detection. Furthermore, most cells were tuned both for contrast polarity and for the geometry of facial features, suggesting cells encode information useful both for detection and recognition. PMID:22578507
Gharat, Amol; Baker, Curtis L
2017-01-25
Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields. Copyright © 2017 the authors 0270-6474/17/370998-16$15.00/0.
Apparatus for measuring resistance change only in a cell analyzer and method for calibrating it
Hoffman, Robert A.
1980-01-01
The disclosure relates to resistance only monitoring and calibration in an electrical cell analyzer. Sample and sheath fluid flows of different salinities are utilized, the sample flow being diameter modulated to produce a selected pattern which is compared to the resistance measured across the flows.
System and method for charging electrochemical cells in series
DeLuca, William H.; Hornstra, Jr, Fred; Gelb, George H.; Berman, Baruch; Moede, Larry W.
1980-01-01
A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.
Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events
Llewellyn, Amy; Foey, Andrew
2017-01-01
There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology. PMID:29065562
Bonura, Angela; Vizzini, Aiti; Vlah, Sara; Gervasi, Francesco; Longo, Alessandra; Melis, Mario R; Schildberg, Frank A; Colombo, Paolo
2018-02-01
The selective modulation of immunity is an emerging concept driven by the vast advances in our understanding of this crucial host defense system. Invertebrates have raised researchers' interest as potential sources of new bioactive molecules owing to their antibacterial, anticancer and immunomodulatory activities. A LipoPolySaccharide (LPS) challenge in the ascidian Ciona intestinalis generates the transcript, Ci8 short, with cis-regulatory elements in the 3' UTR region that are essential for shaping innate immune responses. The derived amino acidic sequence in silico analysis showed specific binding to human Major Histocompatibility Complex (MHC) Class I and Class II alleles. The role of Ci8 short peptide was investigated in a more evolved immune system using human Peripheral Blood Mononuclear Cells (PBMCs) as in vitro model. The biological activities of this molecule include the activation of 70kDa TCR ζ chain Associated Protein kinase (ZAP-70) and T Cell Receptor (TCR) Vβ oligo clonal selection on CD4 + T lymphocytes as well as increased proliferation and IFN-γ secretion. Furthermore Ci8 short affects CD4 + /CD25 high induced regulatory T cells (iTreg) subset selection which co-expressed the functional markers TGF-β1/Latency Associated Protein (LAP) and CD39/CD73. This paper describes a new molecule that modulates important responses of the human adaptive immune system. Copyright © 2017 Elsevier GmbH. All rights reserved.
Kapoor, Vikrant; Provost, Allison; Agarwal, Prateek; Murthy, Venkatesh N.
2015-01-01
The serotonergic raphe nuclei are involved in regulating brain states over time-scales of minutes and hours. We examined more rapid effects of serotonergic activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets. Brief stimulation of the raphe nuclei led to excitation of tufted cells at rest and potentiation of their odor responses. While mitral cells at rest were also excited by raphe activation, their odor responses were bidirectionally modulated, leading to improved pattern separation of odors. In vitro whole-cell recordings revealed that specific optogenetic activation of raphe axons affected bulbar neurons through dual release of serotonin and glutamate. Therefore, the raphe nuclei, in addition to their role in neuromodulation of brain states, are also involved in fast, sub-second top-down modulation, similar to cortical feedback. This modulation can selectively and differentially sensitize or decorrelate distinct output channels. PMID:26752161
Instrumentation and optimization of intra-cavity fiber laser gas absorption sensing system
NASA Astrophysics Data System (ADS)
Liu, Kun; Liu, Tiegen; Jiang, Junfeng; Liang, Xiao; Zhang, Yimo
2011-11-01
Detection of pollution, inflammable, explosive gases such as methane, acetylene, carbon monoxide and so on is very important for many areas, such as environmental, mining and petrochemical industry. Intra-cavity gas absorption sensing technique (ICGAST) based on Erbium-doped fiber ring laser (EDFRL) is one of novel methods for trace gas with higher precision. It has attracted considerable attention, and many research institutes focus on it. Instrumentation and optimization of ICGAST was reported in this paper. The system consists of five parts, which are variable gain module, intelligent frequency-selection module, gas cell, DAQ module and computer respectively. Variable gain module and intelligent frequency-selection module are combined to establish the intra-cavity of the ring laser. Gas cell is used as gas sensor. DAQ module is used to realize data acquisition synchronously. And gas demodulation is finished in the computer finally. The system was optimized by adjusting the sequence of the components. Take experimental simulation as an example, the absorptance of gas was increased five times after optimization, and the sensitivity enhancement factor can reach more than twenty. By using Fabry-Perot (F-P) etalon, the absorption wavelength of the detected gas can be obtained, with error less than 20 pm. The spectra of the detected gas can be swept continuously to obtain several absorption lines in one loop. The coefficient of variation (CV) was used to show the repeatability of gas concentration detection. And results of CV value can be less than 0.014.
Motile membrane protrusions regulate cell-cell adhesion and migration of olfactory ensheathing glia.
Windus, Louisa C E; Claxton, Christina; Allen, Chelsea L; Key, Brian; St John, James A
2007-12-01
Olfactory ensheathing cells (OECs) are candidates for therapeutic approaches for neural regeneration due to their ability to assist axon regrowth in central nervous system lesion models. However, little is understood about the processes and mechanisms underlying migration of these cells. We report here that novel lamellipodial protrusions, termed lamellipodial waves, are integral to OEC migration. Time-lapse imaging of migrating OECs revealed that these highly dynamic waves progress along the shaft of the cells and are crucial for mediating cell-cell adhesion. Without these waves, cell-cell adhesion does not occur and migrational rates decline. The activity of waves is modulated by both glial cell line-derived neurotrophic factor and inhibitors of the JNK and SRC kinases. Furthermore, the activity of lamellipodial waves can be modulated by Mek1, independently of leading edge activity. The ability to selectively regulate cell migration via lamellipodial waves has implications for manipulating the migratory behavior of OECs during neural repair. (c) 2007 Wiley-Liss, Inc.
Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume
2017-01-01
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10−7), -24.1 (p<5.6 10−9) and -17.7 (p<1.2 10−7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram. PMID:28467792
Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume
2017-06-27
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10-7), -24.1 (p<5.6 10-9) and -17.7 (p<1.2 10-7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram.
Vaziri-Gohar, Ali; Houston, Kevin D
2016-02-15
Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Garg, Neeraj; Li, Yi-Lin; Garcia Collazo, Ana Maria; Litten, Chris; Ryono, Denis E; Zhang, Minsheng; Caringal, Yolanda; Brigance, Robert P; Meng, Wei; Washburn, William N; Agback, Peter; Mellström, Karin; Rehnmark, Stefan; Rahimi-Ghadim, Mahmoud; Norin, Thomas; Grynfarb, Marlena; Sandberg, Johnny; Grover, Gary; Malm, Johan
2007-08-01
Based on the scaffold of the pharmacologically selective thyromimetic 2b, structurally a close analog to KB-141 (2a), a number of novel N-acylated-alpha-amino acid derivatives were synthesized and tested in a TR radioligand binding assay as well as in a reporter cell assay. On the basis of TRbeta(1)-isoform selectivity and affinity, as well as affinity to the reporter cell assay, 3d was selected for further studies in the cholesterol-fed rat model. In this model 3d revealed an improved therapeutic window between cholesterol and TSH lowering but decreased margins versus tachycardia compared with 2a.
Ghosh, Monisankar; Saha, Suchandrima; Dutta, Samir Kumar
2016-02-07
Herein, we synthesize and elucidate the potential of a novel 'dual hit' molecule, LDCA, to constitutively block lactate dehydrogenase isoform-A (LDH-A) to selectively subvert apoptosis and rigorously attenuate breast tumor progression in a mouse model, comprehensively delineating the therapeutic prospectus of LDCA in the field of cancer metabolics.
Farnell, Yuhua Z; Ing, Nancy H
2003-03-01
The purpose of this study was to identify an endometrial cell line that maintained the E2 up-regulation of estrogen receptor (ER) mRNA by enhanced message stability and to assess its dependence on ER protein. Estradiol (E2) effects on gene expression were measured in three cell lines: one immortalized from sheep endometrial stroma (ST) and two from human endometrial adenocarcinomas (Ishikawa and ECC-1). E2 up-regulated ER mRNA levels in ST and Ishikawa cells, but down-regulated ER mRNA levels in ECC-1 cells. E2 up-regulated progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and transforming growth factor-alpha (TGF-alpha) in both Ishikawa and ECC-1 cells. The selective estrogen receptor modulator ICI 182,780 antagonized the E2-induced up-regulation of ER and/or PR mRNA levels in all three cells, while another, GW 5638, antagonized the up-regulation of PR mRNA in Ishikawa and ECC-1 cells. In mechanistic studies, E2 had no effect on ER mRNA stability in ST cells and it destabilized ER mRNA in ECC-1 cells. Thus, Ishikawa cells appear to be the most physiologically relevant cell line in which to study the up-regulation of ER mRNA levels by enhanced mRNA stability. Its antagonism by ICI 182,780 reveals that ER protein is involved in this E2 response.
Lohman, Rink-Jan; Hamidon, Johan K; Reid, Robert C; Rowley, Jessica A; Yau, Mei-Kwan; Halili, Maria A; Nielsen, Daniel S; Lim, Junxian; Wu, Kai-Chen; Loh, Zhixuan; Do, Anh; Suen, Jacky Y; Iyer, Abishek; Fairlie, David P
2017-08-24
Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines.Complement C3a is an important protein in innate and adaptive immunity, but its roles in vivo are unclear. Here the authors develop novel chemical agonists and antagonists for the C3a receptor, and show that they modulate mast cell degranulation and inflammation in a rat paw edema model.
Cell module and fuel conditioner development
NASA Astrophysics Data System (ADS)
Hoover, D. Q., Jr.
1980-01-01
Components for the first 5 cell stack (no cooling plates) of the MK-2 design were fabricated. Preliminary specfications and designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative geometry for the reformer was conceived and modifications of the computer program to be used in its design were stated.
van den Heuvel, José K; Boon, Mariëtte R; van Hengel, Ingmar; Peschier-van der Put, Emma; van Beek, Lianne; van Harmelen, Vanessa; van Dijk, Ko Willems; Pereira, Alberto M; Hunt, Hazel; Belanoff, Joseph K; Rensen, Patrick C N; Meijer, Onno C
2016-06-01
High-fat diet consumption results in obesity and chronic low-grade inflammation in adipose tissue. Whereas glucocorticoid receptor (GR) antagonism reduces diet-induced obesity, GR agonism reduces inflammation, the combination of which would be desired in a strategy to combat the metabolic syndrome. The purpose of this study was to assess the beneficial effects of the selective GR modulator C108297 on both diet-induced weight gain and inflammation in mice and to elucidate underlying mechanisms. Ten-week-old C57Bl/6 J mice were fed a high-fat diet for 4 weeks while being treated with the selective GR modulator C108297, a full GR antagonist (RU486/mifepristone) or vehicle. C108297 and, to a lesser extent, mifepristone reduced body weight gain and fat mass. C108297 decreased food and fructose intake and increased lipolysis in white adipose tissue (WAT) and free fatty acid levels in plasma, resulting in decreased fat cell size and increased fatty acid oxidation. Furthermore, C108297 reduced macrophage infiltration and pro-inflammatory cytokine expression in WAT, as well as in vitro LPS-stimulated TNF-α secretion in macrophage RAW 264.7 cells. However, mifepristone also increased energy expenditure, as measured by fully automatic metabolic cages, and enhanced expression of thermogenic markers in energy-combusting brown adipose tissue (BAT) but did not affect inflammation. C108297 attenuates obesity by reducing caloric intake and increasing lipolysis and fat oxidation, and in addition attenuates inflammation. These data suggest that selective GR modulation may be a viable strategy for the reduction of diet-induced obesity and inflammation. © 2016 The British Pharmacological Society.
Jarajapu, Yagna P R
2017-01-01
In recent years, previously unknown functions have been conferred to the RAAS and have been explored in mechanistic studies and disease models. Implication of bone marrow stem/progenitor cells in the cardiovascular protective or detrimental effects of RAAS is a prominent advancement because of the translational significance. Selected members of RAAS are now known to modulate migration, proliferation, and mobilization of bone marrow cells in response to ischemic insult, which are sensitive indicators of vascular repair-relevant functions. In this Chapter, protocols for most frequently used, in vitro, ex vivo, and in vivo assays to explore the potential of RAAS members to stimulate vascular repair-relevant functions of bone marrow stem/progenitor cells of human and murine origin.
A new series of estrogen receptor modulators that display selectivity for estrogen receptor beta.
Henke, Brad R; Consler, Thomas G; Go, Ning; Hale, Ron L; Hohman, Dana R; Jones, Stacey A; Lu, Amy T; Moore, Linda B; Moore, John T; Orband-Miller, Lisa A; Robinett, R Graham; Shearin, Jean; Spearing, Paul K; Stewart, Eugene L; Turnbull, Philip S; Weaver, Susan L; Williams, Shawn P; Wisely, G Bruce; Lambert, Millard H
2002-12-05
A series of 1,3,5-triazine-based estrogen receptor (ER) modulators that are modestly selective for the ERbeta subtype are reported. Compound 1, which displayed modest potency and selectivity for ERbeta vs ERalpha, was identified via high-throughput screening utilizing an ERbeta SPA-based binding assay. Subsequent analogue preparation resulted in the identification of compounds such as 21 and 43 that display 25- to 30-fold selectivity for ERbeta with potencies in the 10-30 nM range. These compounds profile as full antagonists at ERbeta and weak partial agonists at ERalpha in a cell-based reporter gene assay. In addition, the X-ray crystal structure of compound 15 complexed with the ligand binding domain of ERbeta has been solved and was utilized in the design of more conformationally restrained analogues such as 31 in an attempt to increase selectivity for the ERbeta subtype.
Benson, Kathleen F.; Beaman, Joni L.; Ou, Boxin; Okubena, Ademola; Okubena, Olajuwon
2013-01-01
Abstract The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3− CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support. PMID:23289787
Ciaglia, Elena; Pisanti, Simona; Picardi, Paola; Laezza, Chiara; Malfitano, Anna Maria; D'Alessandro, Alba; Gazzerro, Patrizia; Vitale, Mario; Carbone, Ennio; Bifulco, Maurizio
2013-12-01
iPA is a naturally occurring nucleoside with an isopentenyl moiety derived from the mevalonate pathway and a well-established anti-tumor activity. In analogy to the unique specificity for phosphoantigens, such as IPP, shown by human Vγ9Vδ2 T cells, here, we report for the first time the ability of iPA to selectively expand and directly target human NK cells. Interestingly, submicromolar doses of iPA stimulate resting human NK cells and synergize with IL-2 to induce a robust activation ex vivo with significant secretion of CCL5 and CCL3 and a large increase in TNF-α and IFN-γ production when compared with IL-2 single cytokine treatment. Moreover, iPA promotes NK cell proliferation and up-regulates the expression of specific NK cell-activating receptors, as well as CD69 and CD107a expression. Accordingly, this phenotype correlates with significantly greater cytotoxicity against tumor targets. At the molecular level, iPA leads to a selective, potent activation of MAPK signaling intermediaries downstream of the IL-2R. The effect results, at least in part, from the fine modulation of the FDPS activity, the same enzyme implicated in the stimulation of the human γδ T cells. The iPA-driven modulation of FDPS can cause an enhancement of post-translational prenylation essential for the biological activity of key proteins in NK signaling and effector functions, such as Ras. These unanticipated properties of iPA provide an additional piece of evidence of the immunoregulatory role of the intermediates of the mevalonate pathway and open novel therapeutic perspectives for this molecule as an immune-modulatory drug.
Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma
Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E.; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J.; Reifenberger, Guido; Büsselberg, Dietrich
2017-01-01
Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1−10 μM) or TOPO (0.1 nM−1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment. PMID:28206967
Bifidobacterium breve - HT-29 cell line interaction: modulation of TNF-α induced gene expression.
Boesten, R J; Schuren, F H J; Willemsen, L E M; Vriesema, A; Knol, J; De Vos, W M
2011-06-01
To provide insight in the molecular basis for intestinal host-microbe interactions, we determined the genome-wide transcriptional response of human intestinal epithelial cells following exposure to cells of Bifidobacterium breve. To select an appropriate test system reflecting inflammatory conditions, the responsiveness to TNF-α was compared in T84, Caco-2 and HT-29 cells. The highest TNF-α response was observed in HT-29 cells and this cell line was selected for exposure to the B. breve strains M-16V, NR246 and UCC2003. After one hour of bacterial pre-incubation followed by two hours of additional TNF-α stimulation, B. breve M-16V (86%), but to a much lesser extent strains NR246 (50%) or UCC2003 (32%), showed a strain-specific reduction of the HT-29 transcriptional response to the inflammatory treatment. The most important functional groups of genes that were transcriptionally suppressed by the presence of B. breve M-16V, were found to be involved in immune regulation and apoptotic processes. About 54% of the TNF-α induced genes were solely suppressed by the presence of B. breve M-16V. These included apoptosis-related cysteine protease caspase 7 (CASP7), interferon regulatory factor 3 (IRF3), amyloid beta (A4) precursor proteinbinding family A member 1 (APBA1), NADPH oxidase (NOX5), and leukemia inhibitory factor receptor (LIFR). The extracellular IL-8 concentration was determined by an immunological assay but did not change significantly, indicating that B. breve M-16V only partially modulates the TNF-α pathway. In conclusion, this study shows that B. breve strains modulate gene expression in HT-29 cells under inflammatory conditions in a strain-specific way.
Recombinant protein production and insect cell culture and process
NASA Technical Reports Server (NTRS)
Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)
1993-01-01
A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.
Recombinant Protein Production and Insect Cell Culture and Process
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)
1997-01-01
A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, Tercia Rodrigues; Universidade Federal do Rio de Janeiro; Carvalho da Fonseca, Anna Carolina
2011-09-10
The extracellular matrix (ECM) contains important cues for tissue homeostasis and morphogenesis. The matricellular protein tenascin-C (TN-C) is overexpressed in remodeling tissues and cancer. In the present work, we studied the effect of different ECM-which exhibited a significant diversity in their TN-C content-in endothelial survival, proliferation and tubulogenic differentiation: autologous (endothelial) ECM devoid of TN-C, but bearing large amounts of FN; fibroblast ECM, bearing both high TN-C and FN contents; and finally, glioma-derived matrices, usually poor in FN, but very rich in TN-C. HUVECs initially adhered to the immobilized matrix produced by U373 MG glioma cells, but significantly detached andmore » died by anoikis (50 to 80%) after 24 h, as compared with cells incubated with endothelial and fibroblast matrices. Surviving endothelial cells (20 to 50%) became up to 6-fold more proliferative and formed 74-97% less tube-like structures in vitro than cells grown on non-tumoral matrices. An antibody against the EGF-like repeats of tenascin-C (TN-C) partially rescued cells from the tubulogenic defect, indicating that this molecule is responsible for the selection of highly proliferative and tubulogenic defective endothelial cells. Interestingly, by using defined substrata, in conditions that mimic glioma and normal cell ECM composition, we observed that fibronectin (FN) modulates the TN-C-induced selection of endothelial cells. Our data show that TN-C is able to modulate endothelial branching morphogenesis in vitro and, since it is prevalent in matrices of injured and tumor tissues, also suggest a role for this protein in vascular morphogenesis, in these physiological contexts.« less
The Effect of Glycolytic Modulation in Prostate Cancer
2009-11-01
glycolysis to induce cytotox- icity, despite diagnostic studies developing positron emission tomography (PET), which uses a trapped glucose analogue, 2...controlled by androgen ablation therapy or chemotherapy, warranting the study ofnovel approaches. In this regard, recent studies have demonstrated...dependence on glycolysis, supporting arationale for selectivity of abrogating glycolysis in tumor cells compared to normal cells. Additional recent studies
Carbon monoxide is a rapid modulator of recombinant and native P2X(2) ligand-gated ion channels.
Wilkinson, W J; Gadeberg, H C; Harrison, A W J; Allen, N D; Riccardi, D; Kemp, P J
2009-10-01
Carbon monoxide (CO) is a potent modulator of a wide variety of physiological processes, including sensory signal transduction. Many afferent sensory pathways are dependent upon purinergic neurotransmission, but direct modulation of the P2X purinoceptors by this important, endogenously produced gas has never been investigated. Whole-cell patch-clamp experiments were used to measure ATP-elicited currents in human embryonic kidney 293 cells heterologously expressing P2X(2), P2X(3), P2X(2/3) and P2X(4) receptors and in rat pheochromocytoma (PC12) cells known to express native P2X(2) receptors. Modulation was investigated using solutions containing CO gas and the CO donor molecule, tricarbonyldichlororuthenium (II) dimer (CORM-2). CO was a potent and selective modulator of native P2X(2) receptors, and these effects were mimicked by a CO donor (CORM-2). Neither pre-incubation with 8-bromoguanosine-3',5'-cyclomonophosphate nor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (a potent blocker of soluble guanylyl cyclase) affected the ability of the CO donor to enhance the ATP-evoked P2X(2) currents. The CO donor caused a small, but significant inhibition of currents evoked by P2X(2/3) and P2X(4) receptors, but was without effect on P2X(3) receptors. These data provided an explanation for how CO might regulate sensory neuronal traffic in physiological reflexes such as systemic oxygen sensing but also showed that CO could be used as a selective pharmacological tool to assess the involvement of homomeric P2X(2) receptors in physiological systems.
Using cancer cell-line profiling, we established an ongoing resource to identify, as comprehensively as possible, the drug-targetable dependencies that specific genomic alterations impart on human cancers. We measured the sensitivity of hundreds of genetically characterized cancer cell lines to hundreds of small-molecule probes and drugs that have highly selective interactions with their targets, and that collectively modulate many distinct nodes in cancer cell circuitry.
Solid-state energy storage module employing integrated interconnect board
Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.
2000-01-01
The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.
Solar cells and modules from dentritic web silicon
NASA Technical Reports Server (NTRS)
Campbell, R. B.; Rohatgi, A.; Seman, E. J.; Davis, J. R.; Rai-Choudhury, P.; Gallagher, B. D.
1980-01-01
Some of the noteworthy features of the processes developed in the fabrication of solar cell modules are the handling of long lengths of web, the use of cost effective dip coating of photoresist and antireflection coatings, selective electroplating of the grid pattern and ultrasonic bonding of the cell interconnect. Data on the cells is obtained by means of dark I-V analysis and deep level transient spectroscopy. A histogram of over 100 dentritic web solar cells fabricated in a number of runs using different web crystals shows an average efficiency of over 13%, with some efficiencies running above 15%. Lower cell efficiency is generally associated with low minority carrier time due to recombination centers sometimes present in the bulk silicon. A cost analysis of the process sequence using a 25 MW production line indicates a selling price of $0.75/peak watt in 1986. It is concluded that the efficiency of dentritic web cells approaches that of float zone silicon cells, reduced somewhat by the lower bulk lifetime of the former.
Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Munoz, Rafael; Villarreal-Silva, Marcela; Gonzalez-Ramirez, Ricardo
The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrixmore » observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.« less
A Functional and Regulatory Network Associated with PIP Expression in Human Breast Cancer
Debily, Marie-Anne; Marhomy, Sandrine El; Boulanger, Virginie; Eveno, Eric; Mariage-Samson, Régine; Camarca, Alessandra; Auffray, Charles; Piatier-Tonneau, Dominique; Imbeaud, Sandrine
2009-01-01
Background The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. Principal Findings Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP−] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. Conclusions Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator. PMID:19262752
Identification of a Novel Pathway That Selectively Modulates Apoptosis of Breast Cancer Cells
Tinnikov, Alexander A.; Yeung, Kay T.; Das, Sharmistha; Samuels, Herbert H.
2014-01-01
Expression of the nuclear receptor interacting factor 3 (NRIF3) coregulator in a wide variety of breast cancer cells selectively leads to rapid caspase-2–dependent apoptotic cell death. A novel death domain (DD1) was mapped to a 30– amino acid region of NRIF3. Because the cytotoxicity of NRIF3 and DD1 seems to be cell type–specific, these studies suggest that breast cancer cells contain a novel “death switch” that can be specifically modulated by NRIF3 or DD1. Using an MCF-7 cell cDNA library in a yeast two-hybrid screen, we cloned a factor that mediates apoptosis by DD1 and refer to this factor as DD1-interacting factor-1 (DIF-1). DIF-1 is a transcriptional repressor that mediates its effect through SirT1, and this repression is attenuated by the binding of NRIF3/DD1. DIF-1 expression rescues breast cancer cells from NRIF3/DD1-induced apoptosis. Small interfering RNA (siRNA) knockdown of DIF-1 selectively leads to apoptosis of breast cancer cells, further suggesting that DIF-1 plays a key role in NRIF3/DD1-mediated apoptosis. A protein kinase A inhibitor (H89) also elicits apoptosis of breast cancer cells but not of the other cell types examined, and DIF-1 also protects these cells from H89-mediated apoptosis. In addition, H89 incubation results in a rapid increase in NRIF3 levels and siRNA knockdown of NRIF3 protects breast cancer cells from H89-mediated apoptosis. Our results indicate that DIF-1 plays a key role in breast cancer cell survival and further characterizing this pathway may provide important insights into developing novel therapies to selec tively target breast cancer cells for apoptosis. PMID:19190336
Computer-guided design of optimal microbial consortia for immune system modulation
Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya
2018-01-01
Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (Treg) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to Treg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting Treg activation and rank them by the Treg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured Treg. We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. PMID:29664397
Computer-guided design of optimal microbial consortia for immune system modulation.
Stein, Richard R; Tanoue, Takeshi; Szabady, Rose L; Bhattarai, Shakti K; Olle, Bernat; Norman, Jason M; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Gerber, Georg K; Sander, Chris; Honda, Kenya; Bucci, Vanni
2018-04-17
Manipulation of the gut microbiota holds great promise for the treatment of diseases. However, a major challenge is the identification of therapeutically potent microbial consortia that colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel workflow to select optimal immune-inducing consortia from microbiome compositicon and immune effectors measurements. Using published and newly generated microbial and regulatory T-cell (T reg ) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with known immune-modulating effect to T reg induction. Combining this with a longitudinal data-constrained ecological model, we predict the ability of every attainable and ecologically stable subconsortium in promoting T reg activation and rank them by the T reg Induction Score (TrIS). Experimental validation of selected consortia indicates a strong and statistically significant correlation between predicted TrIS and measured T reg . We argue that computational indexes, such as the TrIS, are valuable tools for the systematic selection of immune-modulating bacteriotherapeutics. © 2018, Stein et al.
Guimarães-Souza, E M; Calaza, K C
2012-12-01
Glutamate, the major excitatory neurotransmitter in the retina, functions by activation of both ionotropic (iGluR) and metabotropic (mGluR) glutamate receptors. Group III mGluRs, except for mGluR6, are mostly found in the inner plexiform layer (IPL), and their retinal functions are not well known. Therefore, we decided to investigate the effect of mGluRIII on glutamate release and GABAergic amacrine cells in the chick retina. The nonselective mGluRIII agonist L-SOP promoted a decrease in the number of γ-aminobutyric acid (GABA)-positive cells and in the GABA immunoreactivity in all sublayers of the IPL. This effect was prevented by the antagonist MAP-4, by GAT-1 inhibitor, and by antagonists of iGluR. Under the conditions used, L-SOP did not alter endogenous glutamate release. VU0155041, an mGluR4-positive allosteric modulator, reduced GABA immunoreactivity in amacrine cells and in sublayers 2 and 4 of the IPL but evoked an increase in the glutamate released. VU0155041's effect was inhibited by the absence of calcium. AMN082, a selective mGluR7-positive allosteric modulator, also decreased GABA immunoreactivity in amacrine cells and sublayers 1, 2, and 3 and increased glutamate release, and this effect was also inhibited by calcium absence. DCPG, an mGluR8-selective agonist, did not significantly alter GABA immunoreactivity in amacrine cells or glutamate release. However, it did significantly increase GABA immunoreactivity in sublayers 4 and 5. The results suggest that mGluRIIIs are involved in the modulation of glutamate and GABA release in the retina, possibly participating in distinct visual pathways: mGluR4 might be involved with cholinergic circuitry, whereas mGluR7 and mGluR8 might participate, respectively, in the OFF and the ON pathways. Copyright © 2012 Wiley Periodicals, Inc.
Carey, Christine M; Kostrzynska, Magdalena
2013-01-01
Inflammation is a physiological response to infections and tissue injury; however, abnormal immune responses can give rise to chronic inflammation and contribute to disease progression. Various dietary components, including probiotic lactic acid bacteria and prebiotics, have the potential to modulate intestinal inflammatory responses. One factor in particular, the chemokine interleukin-8 (IL-8, CXCL-8), is one of the major mediators of the inflammatory response. The purpose of this study was to investigate modulation of the inflammatory host response induced by Salmonella enterica serovar Typhimurium DT104 in the presence of selected probiotics and lactic acid bacteria (LAB) isolated from human sources, dairy products, and farm animals. IL-8 gene expression and protein production in HT-29 cells were evaluated by real-time PCR and ELISA, respectively. Pre-incubation of HT-29 cells with Lactobacillus kefir IM002, Bifidobacterium adolescentis FRP 61, Bifidobacterium longum FRP 68 and FRP 69, Bifidobacterium breve FRP 334, and Leuconostoc mesenteroides IM080 significantly inhibited IL-8 secretion induced by Salmonella Typhimurium DT104. Co-culture of selected probiotics and Salmonella Typhimurium DT104 reduced IL-8 production, while potential probiotics and LAB had no effect on IL-8 secretion in HT-29 cells preincubated with Salmonella Typhimurium DT104 prior to adding probiotics. Lactobacillus kefir IM002 supernatant also significantly reduced IL-8 production. In conclusion, our study suggests that probiotic bifidobacteria and LAB modulate cytokine induction and possess anti-inflammatory properties; however, the effectiveness is strain dependent.
Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells
Fukuda, Seiji; Abe, Mariko; Onishi, Chie; Taketani, Takeshi; Purevsuren, Jamiyan; Yamaguchi, Seiji; Conway, Edward M.; Pelus, Louis M.
2011-01-01
ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy. PMID:21253548
Pei, Jinxin V; Kourghi, Mohamad; De Ieso, Michael L; Campbell, Ewan M; Dorward, Hilary S; Hardingham, Jennifer E; Yool, Andrea J
2016-10-01
Aquaporin-1 (AQP1) is a major intrinsic protein that facilitates flux of water and other small solutes across cell membranes. In addition to its function as a water channel in maintaining fluid homeostasis, AQP1 also acts as a nonselective cation channel gated by cGMP, a property shown previously to facilitate rapid cell migration in a AQP1-expressing colon cancer cell line. Here we report two new modulators of AQP1 channels, bacopaside I and bacopaside II, isolated from the medicinal plant Bacopa monnieri Screening was conducted in the Xenopus oocyte expression system, using quantitative swelling and two-electrode voltage clamp techniques. Results showed bacopaside I blocked both the water (IC50 117 μM) and ion channel activities of AQP1 but did not alter AQP4 activity, whereas bacopaside II selectively blocked the AQP1 water channel (IC50 18 μM) without impairing the ionic conductance. These results fit with predictions from in silico molecular modeling. Both bacopasides were tested in migration assays using HT29 and SW480 colon cancer cell lines, with high and low levels of AQP1 expression, respectively. Bacopaside I (IC50 48 μM) and bacopaside II (IC50 14 μM) impaired migration of HT29 cells but had minimal effect on SW480 cell migration. Our results are the first to identify differential AQP1 modulators isolated from a medicinal plant. Bacopasides could serve as novel lead compounds for pharmaceutic development of selective aquaporin modulators. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
[Supramolecular Agents for Theranostics].
Deyev, S M; Lebedenko, E N
2015-01-01
This mini-review summarizes recent data obtained in the process of creation of a versatile module platform suitable for construction of supramolecular theranostic agents. As an example, we consider multifunctional hybrid agents for imaging and elimination of cancer cells. The use of an adapter protein system barnase:barstar for producing targeted multifunctional hybrid structures on the basis of highly specific peptides and mini-antibodies as addressing modules and recombinant proteins and/or nanoparticles of different nature (quantum dots, nanogold, magnetic nanoparticles, nanodiamonds, upconverting nanophosphores, polymer nanoparticles) as agents visualizing and damaging cancer cells is described. New perspectives for creation of selective and highly effective compounds for theranostics and personified medicine are contemplated.
How pattern is selected in drift wave turbulence: Role of parallel flow shear
NASA Astrophysics Data System (ADS)
Kosuga, Y.
2017-12-01
The role of parallel shear flow in the pattern selection problem in drift wave turbulence is discussed. Patterns of interest here are E × B convective cells, which include poloidally symmetric zonal flows and radially elongated streamers. The competition between zonal flow formation and streamer formation is analyzed in the context of modulational instability analysis, with the parallel flow shear as a parameter. For drift wave turbulence with k⊥ρs ≲ O (1 ) and without parallel flow coupling, zonal flows are preferred structures. While increasing the magnitude of parallel flow shear, streamer growth overcomes zonal flow growth. This is because the self-focusing effect of the modulational instability becomes more effective for streamers through density and parallel velocity modulation. As a consequence, the bursty release of free energy may result as the parallel flow shear increases.
Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guojian; Lou, Chaogang; Kang, Jian
2015-12-21
Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluatemore » roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.« less
Dron, M; Modjtahedi, N; Brison, O; Tovey, M G
1986-05-01
Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells.
Samiec, M; Skrzyszowska, M
2018-03-01
The efficiency of somatic cell cloning in mammals remains disappointingly low. Incomplete and aberrant reprogramming of epigenetic memory of somatic cell nuclei in preimplantation nuclear- transferred (NT) embryos is one of the most important factors that limit the cloning effectiveness. The extent of epigenetic genome-wide alterations, involving histone or DNA methylation and histone deacetylation, that are mediated by histone-lysine methyltransferases (HMTs) or DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be modulated/reversed via exogenous inhibitors of these enzymes throughout in vitro culture of nuclear donor cells, nuclear recipient oocytes and/or cloned embryos. The use of the artificial modifiers of epigenomically-conditioned gene expression leads to inhibition of both chromatin condensation and transcriptional silencing the genomic DNA of somatic cells that provide a source of nuclear donors for reconstruction of enucleated oocytes and generation of cloned embryos. The onset of chromatin decondensation and gene transcriptional activity is evoked both through specific/selective inactivating HMTs by BIX-01294 and through non-specific/non-selective blocking the activity of either DNMTs by 5-aza-2'-deoxycytidine, zebularine, S-adenosylhomocysteine or HDACs by trichostatin A, valproic acid, scriptaid, oxamflatin, sodium butyrate, m-carboxycinnamic acid bishydroxamide, panobinostat, abexinostat, quisinostat, dacinostat, belinostat and psammaplin A. Epigenomic modulation of nuclear donor cells, nuclear recipient cells and/or cloned embryos may facilitate and accelerate the reprogrammability for gene expression of donor cell nuclei that have been transplanted into a host ooplasm and subsequently underwent dedifferentiating and re-establishing the epigenetically dependent status of their transcriptional activity during pre- and postimplantation development of NT embryos. Nevertheless, a comprehensive additional work is necessary to determine whether failures in the early-stage reprogramming of somatic cell-inherited genome are magnified downstream in development of cloned conceptuses and neonates. Copyright© by the Polish Academy of Sciences.
Selective Modulation of Integrin-mediated Cell Migration by Distinct ADAM Family MembersV⃞
Huang, Jing; Bridges, Lance C.; White, Judith M.
2005-01-01
A disintegrin and a metalloprotease (ADAM) family members have been implicated in many biological processes. Although it is recognized that recombinant ADAM disintegrin domains can interact with integrins, little is known about ADAM-integrin interactions in cellular context. Here, we tested whether ADAMs can selectively regulate integrin-mediated cell migration. ADAMs were expressed in Chinese hamster ovary cells that express defined integrins (α4β1, α5β1, or both), and cell migration on full-length fibronectin or on its α4β1 or α5β1 binding fragments was studied. We found that ADAMs inhibit integrin-mediated cell migration in patterns dictated by the integrin binding profiles of their isolated disintegrin domains. ADAM12 inhibited cell migration mediated by the α4β1 but not the α5β1 integrin. ADAM17 had the reciprocal effect; it inhibited α5β1- but not α4β1-mediated cell migration. ADAM19 and ADAM33 inhibited migration mediated by both α4β1 and α5β1 integrins. A point mutation in the ADAM12 disintegrin loop partially reduced the inhibitory effect of ADAM12 on cell migration on the α4β1 binding fragment of fibronectin, whereas mutations that block metalloprotease activity had no effect. Our results indicate that distinct ADAMs can modulate cell migration mediated by specific integrins in a pattern dictated, at least in part, by their disintegrin domains. PMID:16079176
Oliván-Viguera, Aida; Valero, Marta Sofía; Pinilla, Estéfano; Amor, Sara; García-Villalón, Ángel Luis; Coleman, Nichole; Laría, Celia; Calvín-Tienza, Víctor; García-Otín, Ángel-Luis; Fernández-Fernández, José M.; Murillo, Ma Divina; Gálvez, José A.; Díaz-de-Villegas, María D.; Badorrey, Ramón; Simonsen, Ulf; Rivera, Luis; Wulff, Heike; Köhler, Ralf
2017-01-01
Opening of intermediate-conductance calcium-activated potassium channels (KCa3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KCa3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KCa3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KCa currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked by a KCa3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KCa3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KCa3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KCa3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease. PMID:26821335
Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation
He, Lian; Zhang, Yuanwei; Ma, Guolin; Tan, Peng; Li, Zhanjun; Zang, Shengbing; Wu, Xiang; Jing, Ji; Fang, Shaohai; Zhou, Lijuan; Wang, Youjun; Huang, Yun; Hogan, Patrick G; Han, Gang; Zhou, Yubin
2015-01-01
The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed 'Opto-CRAC') that selectively and remotely controls Ca2+ oscillations and Ca2+-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca2+-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded 'photoactivatable adjuvant' to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote and wireless control of Ca2+-modulated activities with tailored function. DOI: http://dx.doi.org/10.7554/eLife.10024.001 PMID:26646180
Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes.
Harizi, Hedi; Grosset, Christophe; Gualde, Norbert
2003-06-01
We have reported previously that PGE(2) inhibits dendritic cells (DC) functions. Because E prostanoid receptor (EPR) subtypes involved in this action are unknown, expression and functions of these receptors were examined in DC. Western blot and flow cytometry analyses showed that all EPRs were coexpressed in DC. In a dose-dependent manner, lipopolysaccharide (LPS) enhanced EP(2)R/EP(4)R but not EP(1)R/EP(3)R expressions. NS-398, a cyclooxygenase (COX)-2-selective inhibitor, suppressed LPS-enhanced EP(2)R/EP(4)R expression, suggesting that COX-2-issued prostaglandin E(2) (PGE(2)) modulates DC function through stimulation of specific EPR subtypes. Using selective agonists, we found that butaprost, an EP(2)R agonist, and PGE(1) alcohol, an EP(2)R and EP(2)R/EP(4)R agonist, inhibited major histocompatibility complex class II expression and enhanced interleukin-10 production from DC. However, no effect was observed with sulprostone and 17-phenyl-omega-trinor-PGE(2), selective agonists for EP(1)R and EP(1)R/EP(3)R, respectively. Treatment of DC with dibutyryl cyclic adenosine monophosphate (cAMP), an analog of cAMP, mimics PGE(2)-induced, inhibitory effects. Taken together, our data demonstrate that EP(2)R/EP(4)R are efficient for mediating PGE(2)-induced modulation of DC functions.
In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment
van Dam, Peter A.; van Dam, Pieter-Jan H. H.; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A. A.; van Laere, Steven
2016-01-01
An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206
Malcova, Ivana; Farkasovsky, Marian; Senohrabkova, Lenka; Vasicova, Pavla; Hasek, Jiri
2016-05-01
Live-imaging analysis is performed in many laboratories all over the world. Various tools have been developed to enable protein labeling either in plasmid or genomic context in live yeast cells. Here, we introduce a set of nine integrative modules for the C-terminal gene tagging that combines three fluorescent proteins (FPs)-ymTagBFP, mCherry and yTagRFP-T with three dominant selection markers: geneticin, nourseothricin and hygromycin. In addition, the construction of two episomal modules for Saccharomyces cerevisiae with photostable yTagRFP-T is also referred to. Our cassettes with orange, red and blue FPs can be combined with other fluorescent probes like green fluorescent protein to prepare double- or triple-labeled strains for multicolor live-cell imaging. Primers for PCR amplification of the cassettes were designed in such a way as to be fully compatible with the existing PCR toolbox representing over 50 various integrative modules and also with deletion cassettes either for single or repeated usage to enable a cost-effective and an easy exchange of tags. New modules can also be used for biochemical analysis since antibodies are available for all three fluorescent probes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Opiela, J; Samiec, M; Romanek, J
2017-07-15
Artificial epigenomic modulation of in vitro cultured mesenchymal stem cells (MSCs) by applying a non-selective HDAC inhibitor, termed TSA, can facilitate more epigenetic reprogramming of transcriptional activity of the somatic cell-descended nuclear genome in NT pig embryos. The results of the present investigation showed that TSA-dependent epigenomic modulation of nuclear donor MSCs highly affects both the in vitro developmental capability and the cytological quality of inter-species (porcine→bovine) cloned embryos. The developmental competences to reach the blastocyst stage among hybrid (porcine→bovine) nuclear-transferred embryos that had been reconstructed with bovine ooplasts and epigenetically modulated porcine MSCs were maintained at a relatively high level. These competences were higher than those noted in studies by other authors, but they were still decreased compared to those of intra-species (porcine) cloned embryos that had been reconstituted with porcine ooplasts and either the cell nuclei of epigenetically transformed MSCs or the cell nuclei of epigenetically non-transformed MSCs. In conclusion, MSCs undergoing TSA-dependent epigenetic transformation were used for the first time as a source of nuclear donor cells not only for inter-species somatic cell cloning in pigs but also for inter-species somatic cell cloning in other livestock species. Moreover, as a result of the current research, efficient sequential physicochemical activation of inter-species nuclear-transferred clonal cybrids derived from bovine ooplasm and porcine MSC nuclei was developed. Copyright © 2017 Elsevier Inc. All rights reserved.
Braga, Luis Eduardo Gomes; Miranda, Renan Lyra; Granja, Marcelo Gomes; Giestal-de-Araujo, Elizabeth; Dos Santos, Aline Araujo
2018-06-12
Protein kinase C (PKC) is a family of serine/threonine kinases related to several phenomena as cell proliferation, differentiation and survival. Our previous data demonstrated that treatment of axotomized neonatal rat retinal cell cultures for 48 h with phorbol 12-myristate 13-acetate (PMA), a PKC activator, increases retinal ganglion cells (RGCs) survival. Moreover, this treatment decreases M1 receptors (M1R) and modulates BDNF levels. The aim of this work was to assess the possible involvement of neurotrophins BDNF and NGF in the modulation of M1R levels induced by PKC activation, and its involvement on RGCs survival. Our results show that PMA (50 ng/mL) treatment, via PKC delta activation, modulates NGF, BDNF and M1R levels. BDNF and NGF mediate the decrease of M1R levels induced by PMA treatment. M1R activation is essential to PMA neuroprotective effect on RGCs as telenzepine (M1R selective antagonist) abolished it. Based on our results we suggest that PKC delta activation modulates neurotrophins levels by a signaling pathway that involves M1R activation and ultimately leading to an increase in RGCs survival in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.
Dose-dependent modulation of CD8 and functional avidity as a result of peptide encounter
Kroger, Charles J; Alexander-Miller, Martha A
2007-01-01
The generation of an optimal CD8+ cytotoxic T lymphocyte (CTL) response is critical for the clearance of many intracellular pathogens. Previous studies suggest that one contributor to an optimal immune response is the presence of CD8+ cells exhibiting high functional avidity. In this regard, CD8 expression has been shown to contribute to peptide sensitivity. Here, we investigated the ability of naive splenocytes to modulate CD8 expression according to the concentration of stimulatory peptide antigen. Our results showed that the level of CD8 expressed was inversely correlated with the amount of peptide used for the primary stimulation, with higher concentrations of antigen resulting in lower expression of both CD8α and CD8β. Importantly the ensuing CD8low and CD8high CTL populations were not the result of the selective outgrowth of naive CD8+ T-cell subpopulations expressing distinct levels of CD8. Subsequent encounter with peptide antigen resulted in continued modulation of both the absolute level and the isoform of CD8 expressed and in the functional avidity of the responding cells. We propose that CD8 cell surface expression is not a static property, but can be modulated to ‘fine tune’ the sensitivity of responding CTL to a defined concentration of antigen. PMID:17484768
Investigation of test methods, material properties and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1985-01-01
The historical development of ethylene vinyl acetate (EVA) is presented, including the functional requirements, polymer selection, curing, stabilization, production and module processing. The construction and use of a new method for the accelerated aging of polymers is detailed. The method more closely resembles the conditions that may be encountered in actual module field exposure and additionally may permit service life to be predicted accurately. The use of hardboard as a low cost candidate substrate material is studied. The performance of surface antisoiling treatments useful for imparting a self cleaning property to modules is updated.
The Vitamin D nuclear receptor (VDR) is a selective, ligand-inducible transcription factor involved in numerous biological processes such as cell proliferation, differentiation, detoxification, calcium homeostasis, neurodevelopment, immune system regulation, cardiovascular functi...
Britton, Graham J; Ambler, Rachel; Clark, Danielle J; Hill, Elaine V; Tunbridge, Helen M; McNally, Kerrie E; Burton, Bronwen R; Butterweck, Philomena; Sabatos-Peyton, Catherine; Hampton-O’Neil, Lea A; Verkade, Paul; Wülfing, Christoph; Wraith, David Cameron
2017-01-01
Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways. DOI: http://dx.doi.org/10.7554/eLife.20003.001 PMID:28112644
MYB46 Modulates Disease Susceptibility to Botrytis cinerea in Arabidopsis12[W
Ramírez, Vicente; Agorio, Astrid; Coego, Alberto; García-Andrade, Javier; Hernández, M. José; Balaguer, Begoña; Ouwerkerk, Pieter B.F.; Zarra, Ignacio; Vera, Pablo
2011-01-01
In this study, we show that the Arabidopsis (Arabidopsis thaliana) transcription factor MYB46, previously described to regulate secondary cell wall biosynthesis in the vascular tissue of the stem, is pivotal for mediating disease susceptibility to the fungal pathogen Botrytis cinerea. We identified MYB46 by its ability to bind to a new cis-element located in the 5′ promoter region of the pathogen-induced Ep5C gene, which encodes a type III cell wall-bound peroxidase. We present genetic and molecular evidence indicating that MYB46 modulates the magnitude of Ep5C gene induction following pathogenic insults. Moreover, we demonstrate that different myb46 knockdown mutant plants exhibit increased disease resistance to B. cinerea, a phenotype that is accompanied by selective transcriptional reprogramming of a set of genes encoding cell wall proteins and enzymes, of which extracellular type III peroxidases are conspicuous. In essence, our results substantiate that defense-related signaling pathways and cell wall integrity are interconnected and that MYB46 likely functions as a disease susceptibility modulator to B. cinerea through the integration of cell wall remodeling and downstream activation of secondary lines of defense. PMID:21282403
Ursolic acid mediates photosensitization by initiating mitochondrial-dependent apoptosis
NASA Astrophysics Data System (ADS)
Lee, Yuan-Hao; Wang, Exing; Kumar, Neeru; Glickman, Randolph D.
2013-02-01
The signaling pathways PI3K/Akt and MAPK play key roles in transcription, translation and carcinogenesis, and may be activated by light exposure. These pathways may be modulated or inhibited by naturally-occurring compounds, such as the triterpenoid, ursolic acid (UA). Previously, the transcription factors p53 and NF-kB, which transactivate mitochondrial apoptosis-related genes, were shown to be differentially modulated by UA. Our current work indicates that UA causes these effects via the mTOR and insulin-mediated pathways. UA-modulated apoptosis, following exposure to UV radiation, is observed to correspond to differential levels of oxidative stress in retinal pigment epithelial (RPE) and skin melanoma (SM) cells. Flow cytometry analysis, DHE (dihydroethidium) staining and membrane permeability assay showed that UA pretreatment potentiated cell cycle arrest and radiation-induced apoptosis selectively on SM cells while DNA photo-oxidative damage (i.e. strand breakage) was reduced, presumably by some antioxidant activity of UA in RPE cells. The UA-mediated NF-κB activation in SM cells was reduced by rapamycin pretreatment, which indicates that these agents exert inter-antagonistic effects in the PI3K/Akt/mTOR pathway. In contrast, the antagonistic effect of UA on the PI3K/Akt pathway was reversed by insulin leading to greater NF-κB and p53 activation in RPE cells. MitoTracker, a mitochondrial functional assay, indicated that mitochondria in RPE cells experienced reduced oxidative stress while those in SM cells exhibited increased oxidative stress upon UA pretreatment. When rapamycin administration was followed by UA, mitochondrial oxidative stress was increased in RPE cells but decreased in SM cells. These results indicate that UA modulates p53 and NF-κB, initiating a mitogenic response to radiation that triggers mitochondria-dependent apoptosis.
Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites
LaRocca, Greg
2017-01-01
In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. SIGNIFICANCE STATEMENT The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. PMID:28003347
Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells.
Streicher, Carmen; Heyny, Alexandra; Andrukhova, Olena; Haigl, Barbara; Slavic, Svetlana; Schüler, Christiane; Kollmann, Karoline; Kantner, Ingrid; Sexl, Veronika; Kleiter, Miriam; Hofbauer, Lorenz C; Kostenuik, Paul J; Erben, Reinhold G
2017-07-25
Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.
Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.
Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin
2016-04-21
The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.
Presence of claudins mRNA in the brain. Selective modulation of expression by kindling epilepsy.
Lamas, Mónica; González-Mariscal, Lorenza; Gutiérrez, Rafael
2002-08-15
In the central nervous system, the junctional types that establish and maintain tissue architecture include gap junctions, for cytoplasmic connectivity, and tight junctions, for paracellular and/or cell polarity barriers. Connexins are the integral membrane proteins of gap junctions, whereas occludin and members of the multigene family of claudins form tight junctions. In the brain, there are no transendothelial pathways, as continuous tight junctions are present between the endothelial cells. Thus, they provide a continuous cellular barrier between the blood and the insterstitial fluid. However, several brain pathologies, including epilepsy, are known to alter the permeability of the blood-brain barrier and to cause edema. Therefore, since claudins, as constitutive proteins of tight junctions are likely candidates for modulation under pathological states, we explored their normal pattern of expression in the brain and its modulation by seizures. We found that several members of this family are normally expressed in the hippocampus and cortex. Interestingly, claudin-7 is expressed in the hippocampus but not in the cortex. On the other hand, the expression of claudin-8 is selectively down-regulated in the hippocampus as kindling evolves. These results link for the first time the modulation of expression of a tight junction protein to abnormal neuronal synchronization that could probably be reflected in permeability changes of the blood-brain barrier or edema.
1993-01-27
Considerable effect was expended in investigating shifts in intercellular calcium of one particular cell line, Jurket, using flow cytometry methods. No...culture. The following analysis were used to characterize the immortalized cell lines: flow cytometry , electron microscopy, two-dimensional protein gel...further characterized by flow cytometry , electron microscopy, two dimensional protein electrophoresis and nuclear run-off assay. Flow cytometric analysis of
Prosper, Boris W.; Marathe, Swanand; Husain, Basma F. A.; Kernie, Steven G.; Bartlett, Perry F.; Vaidya, Vidita A.
2014-01-01
Norepinephrine regulates latent neural stem cell activity and adult hippocampal neurogenesis, and has an important role in modulating hippocampal functions such as learning, memory and mood. Adult hippocampal neurogenesis is a multi-stage process, spanning from the activation and proliferation of hippocampal stem cells, to their differentiation into neurons. However, the stage-specific effects of noradrenergic receptors in regulating adult hippocampal neurogenesis remain poorly understood. In this study, we used transgenic Nestin-GFP mice and neurosphere assays to show that modulation of α2- and β-adrenergic receptor activity directly affects Nestin-GFP/GFAP-positive precursor cell population albeit in an opposing fashion. While selective stimulation of α2-adrenergic receptors decreases precursor cell activation, proliferation and immature neuron number, stimulation of β-adrenergic receptors activates the quiescent precursor pool and enhances their proliferation in the adult hippocampus. Furthermore, our data indicate no major role for α1-adrenergic receptors, as we did not observe any change in either the activation and proliferation of hippocampal precursors following selective stimulation or blockade of α1-adrenergic receptors. Taken together, our data suggest that under physiological as well as under conditions that lead to enhanced norepinephrine release, the balance between α2- and β-adrenergic receptor activity regulates precursor cell activity and hippocampal neurogenesis. PMID:24922313
Phosphodiesterases regulate airway smooth muscle function in health and disease.
Krymskaya, Vera P; Panettieri, Reynold A
2007-01-01
On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.
Desjardins, Stephane; Belkai, Emilie; Crete, Dominique; Cordonnier, Laurie; Scherrmann, Jean-Michel; Noble, Florence; Marie-Claire, Cynthia
2008-12-01
Chronic morphine treatment alters gene expression in brain structures. There are increasing evidences showing a correlation, in gene expression modulation, between blood cells and brain in psychological troubles. To test whether gene expression regulation in blood cells could be found in drug addiction, we investigated gene expression profiles in peripheral blood mononuclear (PBMC) cells of saline and morphine-treated rats. In rats chronically treated with morphine, the behavioral signs of spontaneous withdrawal were observed and a withdrawal score was determined. This score enabled to select the time points at which the animals displayed the mildest and strongest withdrawal signs (12 h and 36 h after the last injection). Oligonucleotide arrays were used to assess differential gene expression in the PBMCs and quantitative real-time RT-PCR to validate the modulation of several candidate genes 12 h and 36 h after the last injection. Among the 812 differentially expressed candidates, several genes (Adcy5, Htr2a) and pathways (Map kinases, G-proteins, integrins) have already been described as modulated in the brain of morphine-treated rats. Sixteen out of the twenty-four tested candidates were validated at 12 h, some of them showed a sustained modulation at 36 h while for most of them the modulation evolved as the withdrawal score increased. This study suggests similarities between the gene expression profile in PBMCs and brain of morphine-treated rats. Thus, the searching of correlations between the severity of the withdrawal and the PBMCs gene expression pattern by transcriptional analysis of blood cells could be promising for the study of the mechanisms of addiction.
Lee, Yuan-Hao; Wang, Exing; Kumar, Neeru; Glickman, Randolph D
2014-05-01
The signaling pathways via mTOR (mammalian target of rapamycin) and AMPK (AMP-activated protein kinase) play key roles in transcription, translation and carcinogenesis, and may be activated by light exposure. These pathways can be modulated by naturally occurring compounds, such as the triterpenoid, ursolic acid (UA). Previously, the transcription factors p53 and NF-κB, which transactivate mitochondrial apoptosis-related genes, were shown to be differentially modulated by UA. UA-modulated apoptosis, following exposure to UV-VIS radiation (ultraviolet to visible light broadband radiation, hereafter abbreviated to UVR), is observed to correspond to differential levels of oxidative stress in retinal pigment epithelial (RPE) and skin melanoma (SM) cells. The cellular response to this phytochemical was characterized using western blot, flow cytometry, microscopy with reactive oxidative species probes MitoTracker and dihydroethidium, and membrane permeability assay. UA pretreatment potentiated cell cycle arrest and UVR-induced apoptosis selectively in SM cells while reducing photo-oxidative stress in the DNA of RPE cells presumably by antioxidant activity of UA. Mechanistically, the nuclear transportation of p65 and p53 was reduced by UA administration prior to UVR exposure while the levels of p65 and p53 nuclear transportation in SM cells were sustained at a substantially higher level. Finally, the mitochondrial functional assay showed that UVR induced the collapse of the mitochondrial membrane potential, and this effect was exacerbated by rapamycin or UA pretreatment in SM preferentially. These results were consistent with reduced proliferation observed in the clonogenic assay, indicating that UA treatment enhanced the phototoxicity of UVR, by modulating the activation of p53 and NF-κB and initiating a mitogenic response to optical radiation that triggered mitochondria-dependent apoptosis, particularly in skin melanoma cells. The study indicates that this compound has multiple actions with the potential for protecting normal cells while sensitizing skin melanoma cells to UV irradiation.
Breast cancer cell-associated endopeptidase EC 24.11 modulates proliferative response to bombesin.
Burns, D M; Walker, B; Gray, J; Nelson, J
1999-01-01
We have investigated the production, growth and inactivation of gastrin-releasing peptide (GRP)-like peptides in human breast cancer cell lines. Radioimmunoassay detected GRP-like immunoreactivity (GRP-LI) in T47D breast cancer cells but not in the conditioned medium, indicating rapid clearance. No GRP-LI was found in the ZR-75-1 or MDA-MB-436 cells or their conditioned medium. High-performance liquid chromatography (HPLC) analysis of the GRP-LI in the T47D cells revealed a major peak, which co-eluted with GRP(18-27), and a minor more hydrophilic peak. In vitro stimulation of T47D cell growth by bombesin (BN) was enhanced to 138% of control levels (bombesin alone) by the addition of the selective endopeptidase EC 3.4.24.11 inhibitor phosphoramidon (0.1 ng ml(-1)). Fluorogenic analysis using whole cells confirmed low levels of this phosphoramidon-sensitive enzyme on the T47D cells. This enzyme, previously unreported in human breast cancer cells, significantly modulates both T47D growth and its response to BN-induced growth.
Breast cancer cell-associated endopeptidase EC 24.11 modulates proliferative response to bombesin
Burns, D M; Walker, B; Gray, J; Nelson, J
1999-01-01
We have investigated the production, growth and inactivation of gastrin-releasing peptide (GRP)-like peptides in human breast cancer cell lines. Radioimmunoassay detected GRP-like immunoreactivity (GRP-LI) in T47D breast cancer cells but not in the conditioned medium, indicating rapid clearance. No GRP-LI was found in the ZR-75-1 or MDA-MB-436 cells or their conditioned medium. High-performance liquid chromatography (HPLC) analysis of the GRP-LI in the T47D cells revealed a major peak, which co-eluted with GRP18–27, and a minor more hydrophilic peak. In vitro stimulation of T47D cell growth by bombesin (BN) was enhanced to 138% of control levels (bombesin alone) by the addition of the selective endopeptidase EC 3.4.24.11 inhibitor phosphoramidon (0.1 ng ml−;1). Fluorogenic analysis using whole cells confirmed low levels of this phosphoramidon-sensitive enzyme on the T47D cells. This enzyme, previously unreported in human breast cancer cells, significantly modulates both T47D growth and its response to BN-induced growth. © 1999 Cancer Research Campaign PMID:9888460
Network models of frequency modulated sweep detection.
Skorheim, Steven; Razak, Khaleel; Bazhenov, Maxim
2014-01-01
Frequency modulated (FM) sweeps are common in species-specific vocalizations, including human speech. Auditory neurons selective for the direction and rate of frequency change in FM sweeps are present across species, but the synaptic mechanisms underlying such selectivity are only beginning to be understood. Even less is known about mechanisms of experience-dependent changes in FM sweep selectivity. We present three network models of synaptic mechanisms of FM sweep direction and rate selectivity that explains experimental data: (1) The 'facilitation' model contains frequency selective cells operating as coincidence detectors, summing up multiple excitatory inputs with different time delays. (2) The 'duration tuned' model depends on interactions between delayed excitation and early inhibition. The strength of delayed excitation determines the preferred duration. Inhibitory rebound can reinforce the delayed excitation. (3) The 'inhibitory sideband' model uses frequency selective inputs to a network of excitatory and inhibitory cells. The strength and asymmetry of these connections results in neurons responsive to sweeps in a single direction of sufficient sweep rate. Variations of these properties, can explain the diversity of rate-dependent direction selectivity seen across species. We show that the inhibitory sideband model can be trained using spike timing dependent plasticity (STDP) to develop direction selectivity from a non-selective network. These models provide a means to compare the proposed synaptic and spectrotemporal mechanisms of FM sweep processing and can be utilized to explore cellular mechanisms underlying experience- or training-dependent changes in spectrotemporal processing across animal models. Given the analogy between FM sweeps and visual motion, these models can serve a broader function in studying stimulus movement across sensory epithelia.
Strowbridge, Ben W
2010-02-11
In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks. Copyright 2010 Elsevier Inc. All rights reserved.
Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting.
Jakobsson, Lars; Franco, Claudio A; Bentley, Katie; Collins, Russell T; Ponsioen, Bas; Aspalter, Irene M; Rosewell, Ian; Busse, Marta; Thurston, Gavin; Medvinsky, Alexander; Schulte-Merker, Stefan; Gerhardt, Holger
2010-10-01
Sprouting angiogenesis requires the coordinated behaviour of endothelial cells, regulated by Notch and vascular endothelial growth factor receptor (VEGFR) signalling. Here, we use computational modelling and genetic mosaic sprouting assays in vitro and in vivo to investigate the regulation and dynamics of endothelial cells during tip cell selection. We find that endothelial cells compete for the tip cell position through relative levels of Vegfr1 and Vegfr2, demonstrating a biological role for differential Vegfr regulation in individual endothelial cells. Differential Vegfr levels affect tip selection only in the presence of a functional Notch system by modulating the expression of the ligand Dll4. Time-lapse microscopy imaging of mosaic sprouts identifies dynamic position shuffling of tip and stalk cells in vitro and in vivo, indicating that the VEGFR-Dll4-Notch signalling circuit is constantly re-evaluated as cells meet new neighbours. The regular exchange of the leading tip cell raises novel implications for the concept of guided angiogenic sprouting.
Wang, Jiankang; Luo, Bingling; Li, Xiaobing; Lu, Wenhua; Yang, Jing; Hu, Yumin; Huang, Peng; Wen, Shijun
2017-06-22
Reactive oxygen species (ROS) have a crucial role in cell signaling and cellular functions. Mounting evidences suggest that abnormal increase of ROS is often observed in cancer cells and that this biochemical feature can be exploited for selective killing of the malignant cells. A naturally occurring compound phenethyl isothiocyanate (PEITC) has been shown to have promising anticancer activity by modulating intracellular ROS. Here we report a novel synthetic analog of PEITC with superior in vitro and in vivo antitumor effects. Mechanistic study showed that LBL21 induced a rapid depletion of intracellular glutathione (GSH), leading to abnormal ROS accumulation and mitochondrial dysfunction, evident by a decrease in mitochondrial respiration and transmembrane potential. Importantly, LBL21 exhibited the ability to abrogate stem cell-like cancer side population (SP) cells in non-small cell lung cancer A549 cells associated with a downregulation of stem cell markers including OCT4, ABCG2, SOX2 and CD133. Functionally, LBL21 inhibited the ability of cancer cells to form colonies in vitro and develop tumor in vivo. The therapeutic efficacy of LBL21 was further demonstrated in mice bearing A549 lung cancer xenografts. Our study suggests that the novel ROS-modulating agent LBL21 has promising anticancer activity with an advantage of elimination of stem-like cancer cells. This compound merits further study to evaluate its potential for use in cancer treatment.
Talarico, Cristina; Dattilo, Vincenzo; D'Antona, Lucia; Barone, Agnese; Amodio, Nicola; Belviso, Stefania; Musumeci, Francesca; Abbruzzese, Claudia; Bianco, Cataldo; Trapasso, Francesco; Schenone, Silvia; Alcaro, Stefano; Ortuso, Francesco; Florio, Tullio; Paggi, Marco G.; Perrotti, Nicola; Amato, Rosario
2016-01-01
Glioblastoma multiforme (GBM) is the most aggressive CNS tumor and is characterized by a very high frequency of clinical relapse after therapy and thus by a dismal prognosis, which strongly compromises patients survival. We have recently identified the small molecule SI113, as a potent and selective inhibitor of SGK1, a serine/threonine protein kinase, that modulates several oncogenic signaling cascades. The SI113-dependent SGK1 inhibition induces cell death, blocks proliferation and perturbs cell cycle progression by modulating SGK1-related substrates. SI113 is also able to strongly and consistently block, in vitro and in vivo, growth and survival of human hepatocellular-carcinomas, either used as a single agent or in combination with ionizing radiations. In the present paper we aim to study the effect of SI113 on human GBM cell lines with variable p53 expression. Cell viability, cell death, caspase activation and cell cycle progression were then analyzed by FACS and WB-based assays, after exposure to SI113, with or without oxidative stress and ionizing radiations. Moreover, autophagy and related reticulum stress response were evaluated. We show here, that i) SGK1 is over-expressed in highly malignant gliomas and that the treatment with SI113 leads to ii) significant increase in caspase-mediated apoptotic cell death in GBM cell lines but not in normal fibroblasts; iii)enhancement of the effects of ionizing radiations; iv) modulation of the response to oxidative reticulum stress; v) induction of cytotoxic autophagy. Evidence reported here underlines the therapeutic potential of SI113 in GBM, suggesting a new therapeutic strategy either alone or in combination with radiotherapy. PMID:26908461
Talarico, Cristina; Dattilo, Vincenzo; D'Antona, Lucia; Barone, Agnese; Amodio, Nicola; Belviso, Stefania; Musumeci, Francesca; Abbruzzese, Claudia; Bianco, Cataldo; Trapasso, Francesco; Schenone, Silvia; Alcaro, Stefano; Ortuso, Francesco; Florio, Tullio; Paggi, Marco G; Perrotti, Nicola; Amato, Rosario
2016-03-29
Glioblastoma multiforme (GBM) is the most aggressive CNS tumor and is characterized by a very high frequency of clinical relapse after therapy and thus by a dismal prognosis, which strongly compromises patients survival. We have recently identified the small molecule SI113, as a potent and selective inhibitor of SGK1, a serine/threonine protein kinase, that modulates several oncogenic signaling cascades. The SI113-dependent SGK1 inhibition induces cell death, blocks proliferation and perturbs cell cycle progression by modulating SGK1-related substrates. SI113 is also able to strongly and consistently block, in vitro and in vivo, growth and survival of human hepatocellular-carcinomas, either used as a single agent or in combination with ionizing radiations. In the present paper we aim to study the effect of SI113 on human GBM cell lines with variable p53 expression. Cell viability, cell death, caspase activation and cell cycle progression were then analyzed by FACS and WB-based assays, after exposure to SI113, with or without oxidative stress and ionizing radiations. Moreover, autophagy and related reticulum stress response were evaluated. We show here, that i) SGK1 is over-expressed in highly malignant gliomas and that the treatment with SI113 leads to ii) significant increase in caspase-mediated apoptotic cell death in GBM cell lines but not in normal fibroblasts; iii)enhancement of the effects of ionizing radiations; iv) modulation of the response to oxidative reticulum stress; v) induction of cytotoxic autophagy. Evidence reported here underlines the therapeutic potential of SI113 in GBM, suggesting a new therapeutic strategy either alone or in combination with radiotherapy.
Lavoie, Michel; Raven, John A; Levasseur, Maurice
2016-04-01
Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl-sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (<12%) of the total photon energy cost for growth. Cell wall formation in E. huxleyi was the least costly ballast strategy, whereas in T. pseudonana, the photon energy cost of the three ballast strategies was similar. In E. rex, carbohydrate storage and mobilization appear to be energetically cheaper than modulations in organic solute synthesis to achieve vertical migration. This supports the carbohydrate-ballast strategy for vertical migration for this species, but argues against the theory of replacement of low- or high-density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton. © 2016 Phycological Society of America.
Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R
2017-03-01
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Brooke, Greg N; Gamble, Simon C; Hough, Michael A; Begum, Shajna; Dart, D Alwyn; Odontiadis, Michael; Powell, Sue M; Fioretti, Flavia M; Bryan, Rosie A; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L
2015-05-01
Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic responses dependent upon cellular context. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Rahman, Wahida; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H
2008-06-01
Activity in descending systems from the brainstem modulates nociceptive transmission through the dorsal horn. Intrathecal injection of the neurotoxin saporin conjugated to SP (SP-SAP) into the lumbar spinal cord results in the selective ablation of NK(1) receptor expressing (NK(1)+ve) neurones in the superficial dorsal horn (lamina I/III). Loss of these NK(1)+ve neurones attenuates excitability of deep dorsal horn neurones due to a disruption of both intrinsic spinal circuits and a spino-bulbo-spinal loop, which activates a descending excitatory drive, mediated through spinal 5HT(3) receptors. Descending inhibitory pathways also modulate spinal activity and hence control the level of nociceptive transmission relayed to higher centres. To ascertain the spinal origins of the major descending noradrenergic inhibitory pathway we studied the effects of a selective alpha2-adrenoceptor antagonist, atipamezole, on neuronal activity in animals pre-treated with SP-SAP. Intrathecal application of atipamezole dose dependently facilitated the mechanically evoked neuronal responses of deep dorsal horn neurones to low intensity von Frey hairs (5-15 g) and noxious thermal (45-50 degrees C) evoked responses in SAP control animals indicating a physiological alpha2-adrenoceptor control. This facilitatory effect of atipamezole was lost in the SP-SAP treated group. These data suggest that activity within noradrenergic pathways have a dependence on dorsal horn NK(1)+ve cells. Further, noradrenergic descending inhibition may in part be driven by lamina I/III (NK(1)+ve) cells, and mediated via spinal alpha2-adrenoceptor activation. Since the same neuronal population drives descending facilitation and inhibition, the reduced excitability of lamina V/VI WDR neurones seen after loss of these NK(1)+ve neurones indicates a dominant role of descending facilitation.
Brooke, Greg N.; Gamble, Simon C.; Hough, Michael A.; Begum, Shajna; Dart, D. Alwyn; Odontiadis, Michael; Powell, Sue M.; Fioretti, Flavia M.; Bryan, Rosie A.; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L.
2015-01-01
Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic responses dependent upon cellular context. PMID:25693800
Chen, Jian Jeffrey; Qian, Wenyuan; Biswas, Kaustav; Yuan, Chester; Amegadzie, Albert; Liu, Qingyian; Nixey, Thomas; Zhu, Joe; Ncube, Mqhele; Rzasa, Robert M; Chavez, Frank; Chen, Ning; DeMorin, Frenel; Rumfelt, Shannon; Tegley, Christopher M; Allen, Jennifer R; Hitchcock, Stephen; Hungate, Randy; Bartberger, Michael D; Zalameda, Leeanne; Liu, Yichin; McCarter, John D; Zhang, Jianhua; Zhu, Li; Babu-Khan, Safura; Luo, Yi; Bradley, Jodi; Wen, Paul H; Reid, Darren L; Koegler, Frank; Dean, Charles; Hickman, Dean; Correll, Tiffany L; Williamson, Toni; Wood, Stephen
2013-12-01
γ-Secretase modulators (GSMs) are potentially disease-modifying treatments for Alzheimer's disease. They selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ-secretase activity, possibly avoiding known adverse effects observed with complete inhibition of the enzyme complex. A cell-based HTS effort identified the sulfonamide 1 as a GSM lead. Lead optimization studies identified compound 25 with improved cell potency, PKDM properties, and it lowered Aβ42 levels in the cerebrospinal fluid (CSF) of Sprague-Dawley rats following oral administration. Further optimization of 25 to improve cellular potency is described. Copyright © 2013 Elsevier Ltd. All rights reserved.
Implications of Differential Stress Response Activation Following Non-Frozen Hepatocellular Storage
Corwin, William L.; Baust, John G.; Van Buskirk, Robert G.
2013-01-01
Hepatocytes are critical for numerous cell therapies and in vitro investigations. A limiting factor for their use in these applications is the ability to process and preserve them without loss of viability or functionality. Normal rat hepatocytes (NHEPs) and human hepatoma (C3A) cells were stored at either 4°C or 37°C to examine post-processing stress responses. Resveratrol and salubrinal were used during storage to determine how targeted molecular stress pathway modulation would affect cell survival. This study revealed that storage outcome is dependent upon numerous factors including: cell type, storage media, storage length, storage temperature, and chemical modulator. These data implicate a molecular-based stress response that is not universal but is specific to the set of conditions under which cells are stored. Further, these findings allude to the potential for targeted protection or destruction of particular cell types for numerous applications, from diagnostic cell selection to cell-based therapy. Ultimately, this study demonstrates the need for further in-depth molecular investigations into the cellular stress response to bioprocessing and preservation. PMID:24845253
Selective dissolution of halide perovskites as a step towards recycling solar cells
NASA Astrophysics Data System (ADS)
Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk
2016-05-01
Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.
Selective dissolution of halide perovskites as a step towards recycling solar cells.
Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk
2016-05-23
Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb(2+) cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.
Louw-du Toit, Renate; Perkins, Meghan S.; Snoep, Jacky L.; Storbeck, Karl-Heinz; Africander, Donita
2016-01-01
Progestins used in contraception and hormone replacement therapy are synthetic compounds designed to mimic the actions of the natural hormone progesterone and are classed into four consecutive generations. The biological actions of progestins are primarily determined by their interactions with steroid receptors, and factors such as metabolism, pharmacokinetics, bioavailability and the regulation of endogenous steroid hormone biosynthesis are often overlooked. Although some studies have investigated the effects of select progestins on a few steroidogenic enzymes, studies comparing the effects of progestins from different generations are lacking. This study therefore explored the putative modulatory effects of progestins on de novo steroid synthesis in the adrenal by comparing the effects of select progestins from the respective generations, on endogenous steroid hormone production by the H295R human adrenocortical carcinoma cell line. Ultra-performance liquid chromatography/tandem mass spectrometry analysis showed that the fourth-generation progestins, nestorone (NES), nomegestrol acetate (NoMAC) and drospirenone (DRSP), unlike the progestins selected from the first three generations, modulate the biosynthesis of several endogenous steroids. Subsequent assays performed in COS-1 cells expressing human 3βHSD2, suggest that these progestins modulate the biosynthesis of steroid hormones by inhibiting the activity of 3βHSD2. The Ki values determined for the inhibition of human 3βHSD2 by NES (9.5 ± 0.96 nM), NoMAC (29 ± 7.1 nM) and DRSP (232 ± 38 nM) were within the reported concentration ranges for the contraceptive use of these progestins in vivo. Taken together, our results suggest that newer, fourth-generation progestins may exert both positive and negative physiological effects via the modulation of endogenous steroid hormone biosynthesis. PMID:27706226
Dron, M; Modjtahedi, N; Brison, O; Tovey, M G
1986-01-01
Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells. Images PMID:3785169
Deng, Zhengyu; Yuan, Shuai; Xu, Ronald X; Liang, Haojun; Liu, Shiyong
2018-05-16
A dilemma exists between the circulation stability and cargo release/mass diffusion at desired sites for designing delivery nanocarriers and in vivo nanoreactors. We herein report disulfide-crosslinked (DCL) micelles exhibiting reduction-triggered switching of crosslinking modules and synchronized hydrophobic-to-hydrophilic transition. Tumor cell-targeted DCL micelles undergo cytoplasmic milieu-triggered disulfide cleavage and cascade self-immolative decaging reactions at chemically adjustable rates, generating primary amine moieties. Extensive amidation reactions with neighboring ester moieties then occur due to high local concentrations and suppression of apparent amine pKa within hydrophobic cores, leading to the transformation of crosslinking modules and formation of tracelessly crosslinked (TCL) micelles with hydrophilic cores inside live cells. We further integrate this design principle with theranostic nanocarriers for selective intracellular drug transport guided by enhanced magnetic resonance (MR) imaging performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smink, Alexandra M; de Vos, Paul
2018-05-19
Extracellular matrix (ECM) components modulate the interaction between pancreatic islet cells. During the islet isolation prior to transplantation as treatment for type 1 diabetes, the ECM is disrupted impacting functional graft survival. Recently, strategies for restoring ECM have shown to improve transplantation outcomes. This review discusses the current therapeutic strategies to modulate ECM components to improve islet engraftment. Approaches applied are seeding islets in ECM of decellularized organs, supplementation of specific ECM components in polymeric scaffolds or immunoisolating capsules, and stimulating islet ECM production with specific growth factors or ECM-producing cells. These strategies have shown success in improving functional islet survival. However, the same experiments show that caution should be taken as some ECM components may negatively impact islet function and engraftment. ECM restoration resulted in improved transplantation outcomes, but careful selection of beneficial ECM components and strategies is warranted.
NASA Astrophysics Data System (ADS)
Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore
2015-10-01
A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands.
Oh, Jaeho; Edwards, Erin E.; McClatchey, P. Mason; Thomas, Susan N.
2015-01-01
ABSTRACT Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell–cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner. PMID:26349809
Systematic Identification of MCU Modulators by Orthogonal Interspecies Chemical Screening.
Arduino, Daniela M; Wettmarshausen, Jennifer; Vais, Horia; Navas-Navarro, Paloma; Cheng, Yiming; Leimpek, Anja; Ma, Zhongming; Delrio-Lorenzo, Alba; Giordano, Andrea; Garcia-Perez, Cecilia; Médard, Guillaume; Kuster, Bernhard; García-Sancho, Javier; Mokranjac, Dejana; Foskett, J Kevin; Alonso, M Teresa; Perocchi, Fabiana
2017-08-17
The mitochondrial calcium uniporter complex is essential for calcium (Ca 2+ ) uptake into mitochondria of all mammalian tissues, where it regulates bioenergetics, cell death, and Ca 2+ signal transduction. Despite its involvement in several human diseases, we currently lack pharmacological agents for targeting uniporter activity. Here we introduce a high-throughput assay that selects for human MCU-specific small-molecule modulators in primary drug screens. Using isolated yeast mitochondria, reconstituted with human MCU, its essential regulator EMRE, and aequorin, and exploiting a D-lactate- and mannitol/sucrose-based bioenergetic shunt that greatly minimizes false-positive hits, we identify mitoxantrone out of more than 600 clinically approved drugs as a direct selective inhibitor of human MCU. We validate mitoxantrone in orthogonal mammalian cell-based assays, demonstrating that our screening approach is an effective and robust tool for MCU-specific drug discovery and, more generally, for the identification of compounds that target mitochondrial functions. Copyright © 2017 Elsevier Inc. All rights reserved.
Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seula; Woo, Jong Kyu; Jung, Yuchae
In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less
Oliván-Viguera, Aida; Valero, Marta Sofía; Pinilla, Estéfano; Amor, Sara; García-Villalón, Ángel Luis; Coleman, Nichole; Laría, Celia; Calvín-Tienza, Víctor; García-Otín, Ángel-Luis; Fernández-Fernández, José M; Murillo, M Divina; Gálvez, José A; Díaz-de-Villegas, María D; Badorrey, Ramón; Simonsen, Ulf; Rivera, Luis; Wulff, Heike; Köhler, Ralf
2016-08-01
Opening of intermediate-conductance calcium-activated potassium channels (KC a 3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KC a 3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KC a 3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KC a currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked by a KC a 3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KC a 3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KC a 3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KC a 3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Kaufmann, Roland; Hascher, Alexander; Mussbach, Franziska; Henklein, Petra; Katenkamp, Kathrin; Westermann, Martin; Settmacher, Utz
2012-12-01
In this study, we demonstrate functional expression of the proteinase-activated receptor 2 (PAR(2)), a member of a G-protein receptor subfamily in primary cholangiocarcinoma (PCCA) cell cultures. Treatment of PCCA cells with the serine proteinase trypsin and the PAR(2)-selective activating peptide, furoyl-LIGRLO-NH(2), increased migration across a collagen membrane barrier. This effect was inhibited by a PAR(2)-selective pepducin antagonist peptide (P2pal-18S) and it was also blocked with the Met receptor tyrosine kinase (Met) inhibitors SU 11274 and PHA 665752, the MAPKinase inhibitors PD 98059 and SL 327, and the Stat3 inhibitor Stattic. The involvement of Met, p42/p44 MAPKinases and Stat3 in PAR(2)-mediated PCCA cell signaling was further supported by the findings that trypsin and the PAR(2)-selective agonist peptide, 2-furoyl-LIGRLO-NH(2), stimulated activating phosphorylation of these signaling molecules in cholangiocarcinoma cells. With our results, we provide a novel signal transduction module in cholangiocarcinoma cell migration involving PAR(2)-driven activation of Met, p42/p44 MAPKinases and Stat3.
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation
Duraes, Fernanda V.; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-01-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. PMID:26341385
Miller, Laurence J.
2010-01-01
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures. PMID:20392808
Design of a small molecule against an oncogenic noncoding RNA.
Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D
2016-05-24
The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.
Resistance to Cell Death and Its Modulation in Cancer Stem Cells
Safa, Ahmad R.
2017-01-01
Accumulating evidence has demonstrated that human cancers arise from various tissues of origin that initiate from cancer stem cells (CSCs) or cancer-initiating cells. The extrinsic and intrinsic apoptotic pathways are dysregulated in CSCs, and these cells play crucial roles in tumor initiation, progression, cell death resistance, chemo- and radiotherapy resistance, and tumor recurrence. Understanding CSC-specific signaling proteins and pathways is necessary to identify specific therapeutic targets that may lead to the development of more efficient therapies selectively targeting CSCs. Several signaling pathways—including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin—and expression of the CSC markers CD133, CD24, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain CSC properties. Studying such pathways may help to understand CSC biology and lead to the development of potential therapeutic interventions to render CSCs more sensitive to cell death triggered by chemotherapy and radiation therapy. Moreover, recent demonstrations of dedifferentiation of differentiated cancer cells into CSC-like cells have created significant complexity in the CSCs hypothesis. Therefore, any successful therapeutic agent or combination of drugs for cancer therapy must eliminate not only CSCs but differentiated cancer cells and the entire bulk of tumor cells. This review article expands on the CSC hypothesis and paradigm with respect to major signaling pathways and effectors that regulate CSC apoptosis resistance. Moreover, selective CSC apoptotic modulators and their therapeutic potential for making tumors more responsive to therapy are discussed. The use of novel therapies, including small-molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of CSCs, immunotherapy, and noncoding microRNAs may provide better means of treating CSCs. PMID:27915972
Compact propane fuel processor for auxiliary power unit application
NASA Astrophysics Data System (ADS)
Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.
With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.
Autophagy in lung disease pathogenesis and therapeutics
Ryter, Stefan W.; Choi, Augustine M.K.
2015-01-01
Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy) may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics. PMID:25617802
Estradiol selectively enhances auditory function in avian forebrain neurons
Caras, Melissa L.; O’Brien, Matthew; Brenowitz, Eliot A.; Rubel, Edwin W
2012-01-01
Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or non-breeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate-level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate-level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner. PMID:23223283
An, Byoung Ha; Jeong, Hyesoo; Zhou, Wenmei; Liu, Xiyuan; Kim, Soolin; Jang, Chang Young; Kim, Hyun-Sook; Sohn, Johann; Park, Hye-Jin; Sung, Na-Hye; Hong, Cheol Yi; Chang, Minsun
2016-06-01
Phytoestrogens are selective estrogen receptor modulators (SERMs) with potential for use in hormone replacement therapy (HRT) to relieve peri/postmenopausal symptoms. This study was aimed at elucidating the molecular mechanisms underlying the SERM properties of the extract of Korean-grown Opuntia ficus-indica (KOFI). The KOFI extract induced estrogen response element (ERE)-driven transcription in breast and endometrial cancer cell lines and the expression of endogenous estrogen-responsive genes in breast cancer cells. The flavonoid content of different KOFI preparations affected ERE-luciferase activities, implying that the flavonoid composition likely mediated the estrogenic activities in cells. Oral administration of KOFI decreased the weight gain and levels of both serum glucose and triglyceride in ovariectomized (OVX) rats. Finally, KOFI had an inhibitory effect on the 17β-estradiol-induced proliferation of the endometrial epithelium in OVX rats. Our data demonstrate that KOFI exhibited SERM activity with no uterotrophic side effects. Therefore, KOFI alone or in combination with other botanical supplements, vitamins, or minerals may be an effective and safe alternative active ingredient to HRTs, for the management of postmenopausal symptoms. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Evolving targeted therapies for right ventricular failure.
Di Salvo, Thomas G
2015-01-01
Although right and left ventricular embryological origins, morphology and cardiodynamics differ, the notion of selectively targeted right ventricular therapies remains controversial. This review focuses on both the currently evolving pharmacologic agents targeting right ventricular failure (metabolic modulators, phosphodiesterase type V inhibitors) and future therapeutic approaches including epigenetic modulation by miRNAs, chromatin binding complexes, long non-coding RNAs, genomic editing, adoptive gene transfer and gene therapy, cell regeneration via cell transplantation and cell reprogramming and cardiac tissue engineering. Strategies for adult right ventricular regeneration will require a more holistic approach than strategies for adult left ventricular failure. Instances of right ventricular failure requiring global reconstitution of right ventricular myocardium, attractive approaches include: i) myocardial patches seeded with cardiac fibroblasts reprogrammed into cardiomyocytes in vivo by small molecules, miRNAs or other epigenetic modifiers; and ii) administration of miRNAs, lncRNAs or small molecules by non-viral vector delivery systems targeted to fibroblasts (e.g., episomes) to stimulate in vivo reprogramming of fibroblasts into cardiomyocytes. For selected heritable genetic myocardial diseases, genomic editing affords exciting opportunities for allele-specific silencing by site-specific directed silencing, mutagenesis or gene excision. Genomic editing by adoptive gene transfer affords similarly exciting opportunities for restoration of myocardial gene expression.
Multi-100 kW: Planar low cost solar array development
NASA Technical Reports Server (NTRS)
1982-01-01
The applicability of selected low cost options to solar array blanket design was studied by fabricating representative modules and submitting them to thermal cycle environment. Large area (5.9 x 5.9 cm) solar cells of 3 varieties were purchased: (1) Standard wraparound, (2) Copper contacts substituted for the conventional Titanium-Palladium-Silver, and (3) Standard wraparound except with gridded back contact instead of continuous metallization. The baseline cell was purchased to compare fabrication cost and to serve as a control cell during test evaluation of the other two cells. All cells were assembled into either substrate modules where the cell is individually filtered and welded to an integrated Kapton-copper circuit or into a superstrate configuration with 4 cells jointly adhered to a single sheet of microsheet and then welded to the integrated Kapton-copper circuit. Cell quality, particularly in the metallization of contacts, was less than desired. Problems were encountered with copper metallization in laying down a barrier metal which would ohmically bond to the silicon. The cells received were shunted (sintered) or with low contact pull strength (non-sintered), thus leading to the decision to solder rather than weld the copper cells to the Kapton substrate.
Marzano, Valeria; Santini, Simonetta; Rossi, Claudia; Zucchelli, Mirco; D'Alessandro, Annamaria; Marchetti, Carlo; Mingardi, Michele; Stagni, Venturina; Barilà, Daniela; Urbani, Andrea
2012-01-01
Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics. PMID:22641158
Moreno, Cristina; de la Cruz, Alicia; Valenzuela, Carmen
2016-01-01
Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the KV channel modulation by PUFAs: (i) the exact residues involved in PUFAs-KV channels interaction; (ii) the structural PUFAs determinants important for their effects on KV channels; (iii) the mechanism of the gating modulation of KV channels and, finally, (iv) the PUFAs modulation of a few new targets present in smooth muscle cells (SMC), KCa1.1, K2P, and KATP channels, involved in vascular relaxation. PMID:27933000
Endothelin-converting enzyme 2 differentially regulates opioid receptor activity
Gupta, A; Fujita, W; Gomes, I; Bobeck, E; Devi, L A
2015-01-01
BACKGROUND AND PURPOSE Opioid receptor function is modulated by post-activation events such as receptor endocytosis, recycling and/or degradation. While it is generally understood that the peptide ligand gets co-endocytosed with the receptor, relatively few studies have investigated the role of the endocytosed peptide and peptide processing enzymes in regulating receptor function. In this study, we focused on endothelin-converting enzyme 2 (ECE2), a member of the neprilysin family of metallopeptidases that exhibits an acidic pH optimum, localizes to an intracellular compartment and selectively processes neuropeptides including opioid peptides in vitro, and examined its role in modulating μ receptor recycling and resensitization. EXPERIMENTAL APPROACH The effect of ECE2 inhibition on hydrolysis of the endocytosed peptide was examined using thin-layer chromatography and on μ opioid receptor trafficking using either elisa or microscopy. The effect of ECE2 inhibition on receptor signalling was measured using a cAMP assay and, in vivo, on antinociception induced by intrathecally administered opioids by the tail-flick assay. KEY RESULTS The highly selective ECE2 inhibitor, S136492, significantly impaired μ receptor recycling and signalling by only those ligands that are ECE2 substrates and this was seen both in heterologous cells and in cells endogenously co-expressing μ receptors with ECE2. We also found that ECE2 inhibition attenuated antinociception mediated only by opioid peptides that are ECE2 substrates. CONCLUSIONS AND IMPLICATIONS These results suggest that ECE2, by selectively processing endogenous opioid peptides in the endocytic compartment, plays a role in modulating opioid receptor activity. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24990314
Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S
2006-05-01
The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.
Lash, Lawrence H.; Putt, David A.; Huang, Paul; Hueni, Sarah E.; Parker, Jean C.
2007-01-01
The relative importance of metabolism of trichloroethylene (Tri) and perchloroethylene (Perc) by the cytochrome P450 (P450) and glutathione (GSH) conjugation pathways in their acute renal and hepatic toxicity was studied in isolated cells and microsomes from rat kidney and liver after various treatments to modulate P450 activity/expression or GSH status. Inhibitors of P450 stimulated GSH conjugation of Tri and, to a lesser extent, Perc, in both kidney cells and hepatocytes. Perc was a more potent, acute cytotoxic agent in isolated kidney cells than Tri but Perc-induced toxicity was less responsive than Tri-induced toxicity to modulation of P450 status. These observations are consistent with P450-dependent bioactivation being more important for Tri than for Perc. Incubation of isolated rat hepatocytes with Tri produced no acute cytotoxicity in isolated hepatocytes while Perc produced comparable cytotoxicity as in kidney cells. Modulation of P450 status in hepatocytes produced larger changes in Tri- and Perc-induced cytotoxicity than in kidney cells, with non-selective P450 inhibitors increasing toxicity. Induction of CYP2E1 with pyridine also markedly increased sensitivity of hepatocytes to Tri but had little effect on Perc-induced cytotoxicity. Increases in cellular GSH concentrations increased Tri- and Perc-induced cytotoxicity in kidney cells but not in hepatocytes, consistent with the role of GSH conjugation in Tri- and Perc-induced nephrotoxicity. In contrast, depletion of cellular GSH concentrations moderately decreased Tri- and Perc-induced cytotoxicity in kidney cells but increased cytotoxicity in hepatocytes, again pointing to the importance of different bioactivation pathways and modes of action in kidney and liver. PMID:17433522
Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph
2015-01-01
HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272-specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.
Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph
2015-01-01
Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554
Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells
Si, Bailu; Romani, Sandro; Tsodyks, Misha
2014-01-01
The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations. PMID:24743341
Eliseeva, Elena; Boutin, Alisa; Barnaeva, Elena; Ferrer, Marc; Southall, Noel; Kim, David; Hu, Xin; Morgan, Sarah J.; Marugan, Juan J.; Gershengorn, Marvin C.
2018-01-01
Recently, we showed that TSH-enhanced differentiation of a human preosteoblast-like cell model involved a β-arrestin 1 (β-Arr 1)-mediated pathway. To study this pathway in more detail, we sought to discover a small molecule ligand that was functionally selective toward human TSH receptor (TSHR) activation of β-Arr 1. High-throughput screening using a cell line stably expressing mutated TSHRs and mutated β-Arr 1 (DiscoverX1 cells) led to the discovery of agonists that stimulated translocation of β-Arr 1 to the TSHR, but did not activate Gs-mediated signaling pathways, i.e., cAMP production. D3-βArr (NCGC00379308) was selected. In DiscoverX1 cells, D3-βArr stimulated β-Arr 1 translocation with a 5.1-fold greater efficacy than TSH and therefore potentiated the effect of TSH in stimulating β-Arr 1 translocation. In human U2OS-TSHR cells expressing wild-type TSHRs, which is a model of human preosteoblast-like cells, TSH upregulated the osteoblast-specific genes osteopontin (OPN) and alkaline phosphatase (ALPL). D3-βArr alone had only a weak effect to upregulate these bone markers, but D3-βArr potentiated TSH-induced upregulation of ALPL and OPN mRNA levels 1.6-fold and 5.5-fold, respectively, at the maximum dose of ligands. Furthermore, the positive allosteric modulator effect of D3-βArr resulted in an increase of TSH-induced secretion of OPN protein. In summary, we have discovered the first small molecule positive allosteric modulator of TSHR. As D3-βArr potentiates the effect of TSH to enhance differentiation of a human preosteoblast in an in vitro model, it will allow a novel experimental approach for probing the role of TSH-induced β-Arr 1 signaling in osteoblast differentiation. PMID:29089368
Neumann, Susanne; Eliseeva, Elena; Boutin, Alisa; Barnaeva, Elena; Ferrer, Marc; Southall, Noel; Kim, David; Hu, Xin; Morgan, Sarah J; Marugan, Juan J; Gershengorn, Marvin C
2018-01-01
Recently, we showed that TSH-enhanced differentiation of a human preosteoblast-like cell model involved a β -arrestin 1 ( β -Arr 1)-mediated pathway. To study this pathway in more detail, we sought to discover a small molecule ligand that was functionally selective toward human TSH receptor (TSHR) activation of β -Arr 1. High-throughput screening using a cell line stably expressing mutated TSHRs and mutated β -Arr 1 (DiscoverX1 cells) led to the discovery of agonists that stimulated translocation of β -Arr 1 to the TSHR, but did not activate G s -mediated signaling pathways, i.e., cAMP production. D3- β Arr (NCGC00379308) was selected. In DiscoverX1 cells, D3- β Arr stimulated β -Arr 1 translocation with a 5.1-fold greater efficacy than TSH and therefore potentiated the effect of TSH in stimulating β -Arr 1 translocation. In human U2OS-TSHR cells expressing wild-type TSHRs, which is a model of human preosteoblast-like cells, TSH upregulated the osteoblast-specific genes osteopontin (OPN) and alkaline phosphatase (ALPL). D3- β Arr alone had only a weak effect to upregulate these bone markers, but D3- β Arr potentiated TSH-induced upregulation of ALPL and OPN mRNA levels 1.6-fold and 5.5-fold, respectively, at the maximum dose of ligands. Furthermore, the positive allosteric modulator effect of D3- β Arr resulted in an increase of TSH-induced secretion of OPN protein. In summary, we have discovered the first small molecule positive allosteric modulator of TSHR. As D3- β Arr potentiates the effect of TSH to enhance differentiation of a human preosteoblast in an in vitro model, it will allow a novel experimental approach for probing the role of TSH-induced β -Arr 1 signaling in osteoblast differentiation. U.S. Government work not protected by U.S. copyright.
A neural model of the temporal dynamics of figure-ground segregation in motion perception.
Raudies, Florian; Neumann, Heiko
2010-03-01
How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy. We propose that the different temporal episodes in the response pattern of V1 cells, as recorded in recent experiments, reflect the strength of modulating feedback signals. This feedback results from the consolidated shape representations from coherent motion patterns and the attentive modulation of responses along the cortical hierarchy. The model makes testable predictions concerning the duration and delay of the temporal episodes of V1 cell responses as well as their response variations that were caused by modulating feedback signals. Copyright 2009 Elsevier Ltd. All rights reserved.
Study program for encapsulation materials interface for low-cost solar array
NASA Technical Reports Server (NTRS)
Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.
1981-01-01
The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.
Neural correlates for angular head velocity in the rat dorsal tegmental nucleus
NASA Technical Reports Server (NTRS)
Bassett, J. P.; Taube, J. S.; Oman, C. M. (Principal Investigator)
2001-01-01
Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal.
How nonuniform contact profiles of T cell receptors modulate thymic selection outcomes
NASA Astrophysics Data System (ADS)
Chen, Hanrong; Chakraborty, Arup K.; Kardar, Mehran
2018-03-01
T cell receptors (TCRs) bind foreign or self-peptides attached to major histocompatibility complex (MHC) molecules, and the strength of this interaction determines T cell activation. Optimizing the ability of T cells to recognize a diversity of foreign peptides yet be tolerant of self-peptides is crucial for the adaptive immune system to properly function. This is achieved by selection of T cells in the thymus, where immature T cells expressing unique, stochastically generated TCRs interact with a large number of self-peptide-MHC; if a TCR does not bind strongly enough to any self-peptide-MHC, or too strongly with at least one self-peptide-MHC, the T cell dies. Past theoretical work cast thymic selection as an extreme value problem and characterized the statistical enrichment or depletion of amino acids in the postselection TCR repertoire, showing how T cells are selected to be able to specifically recognize peptides derived from diverse pathogens yet have limited self-reactivity. Here, we investigate how the diversity of the postselection TCR repertoire is modified when TCRs make nonuniform contacts with peptide-MHC. Specifically, we were motivated by recent experiments showing that amino acids at certain positions of a TCR sequence have large effects on thymic selection outcomes, and crystal structure data that reveal a nonuniform contact profile between a TCR and its peptide-MHC ligand. Using a representative TCR contact profile as an illustration, we show via simulations that the statistical enrichment or depletion of amino acids now varies by position according to the contact profile, and, importantly, it depends on the implementation of nonuniform contacts during thymic selection. We explain these nontrivial results analytically. Our study has implications for understanding the selection forces that shape the functionality of the postselection TCR repertoire.
Pluripotency factors in embryonic stem cells regulate differentiation into germ layers.
Thomson, Matt; Liu, Siyuan John; Zou, Ling-Nan; Smith, Zack; Meissner, Alexander; Ramanathan, Sharad
2011-06-10
Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura
2015-12-10
Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.
Dendritic cells control fibroblastic reticular network tension and lymph node expansion.
Acton, Sophie E; Farrugia, Aaron J; Astarita, Jillian L; Mourão-Sá, Diego; Jenkins, Robert P; Nye, Emma; Hooper, Steven; van Blijswijk, Janneke; Rogers, Neil C; Snelgrove, Kathryn J; Rosewell, Ian; Moita, Luis F; Stamp, Gordon; Turley, Shannon J; Sahai, Erik; Reis e Sousa, Caetano
2014-10-23
After immunogenic challenge, infiltrating and dividing lymphocytes markedly increase lymph node cellularity, leading to organ expansion. Here we report that the physical elasticity of lymph nodes is maintained in part by podoplanin (PDPN) signalling in stromal fibroblastic reticular cells (FRCs) and its modulation by CLEC-2 expressed on dendritic cells. We show in mouse cells that PDPN induces actomyosin contractility in FRCs via activation of RhoA/C and downstream Rho-associated protein kinase (ROCK). Engagement by CLEC-2 causes PDPN clustering and rapidly uncouples PDPN from RhoA/C activation, relaxing the actomyosin cytoskeleton and permitting FRC stretching. Notably, administration of CLEC-2 protein to immunized mice augments lymph node expansion. In contrast, lymph node expansion is significantly constrained in mice selectively lacking CLEC-2 expression in dendritic cells. Thus, the same dendritic cells that initiate immunity by presenting antigens to T lymphocytes also initiate remodelling of lymph nodes by delivering CLEC-2 to FRCs. CLEC-2 modulation of PDPN signalling permits FRC network stretching and allows for the rapid lymph node expansion--driven by lymphocyte influx and proliferation--that is the critical hallmark of adaptive immunity.
Role of Arginase 1 from Myeloid Cells in Th2-Dominated Lung Inflammation
Barron, Luke; Smith, Amber M.; El Kasmi, Karim C.; Qualls, Joseph E.; Huang, Xiaozhu; Cheever, Allen; Borthwick, Lee A.; Wilson, Mark S.; Murray, Peter J.; Wynn, Thomas A.
2013-01-01
Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution. PMID:23637937
Gill, Tejpal; Levine, Alan D
2013-09-06
T cell receptor (TCR)-initiated signal transduction is reported to increase production of intracellular reactive oxygen species, such as superoxide (O2˙(-)) and hydrogen peroxide (H2O2), as second messengers. Although H2O2 can modulate signal transduction by inactivating protein phosphatases, the mechanism and the subcellular localization of intracellular H2O2 as a second messenger of the TCR are not known. The antioxidant enzyme superoxide dismutase (SOD) catalyzes the dismutation of highly reactive O2˙(-) into H2O2 and thus acts as an intracellular generator of H2O2. As charged O2˙(-) is unable to diffuse through intracellular membranes, cells express distinct SOD isoforms in the cytosol (Cu,Zn-SOD) and mitochondria (Mn-SOD), where they locally scavenge O2˙(-) leading to production of H2O2. A 2-fold organelle-specific overexpression of either SOD in Jurkat T cell lines increases intracellular production of H2O2 but does not alter the levels of intracellular H2O2 scavenging enzymes such as catalase, membrane-bound peroxiredoxin1 (Prx1), and cytosolic Prx2. We report that overexpression of Mn-SOD enhances tyrosine phosphorylation of TCR-associated membrane proximal signal transduction molecules Lck, LAT, ZAP70, PLCγ1, and SLP76 within 1 min of TCR cross-linking. This increase in mitochondrial H2O2 specifically modulates MAPK signaling through the JNK/cJun pathway, whereas overexpressing Cu,Zn-SOD had no effect on any of these TCR-mediated signaling molecules. As mitochondria translocate to the immunological synapse during TCR activation, we hypothesize this translocation provides the effective concentration of H2O2 required to selectively modulate downstream signal transduction pathways.
Beck, Ilse M.; Drebert, Zuzanna J.; Hoya-Arias, Ruben; Bahar, Ali A.; Devos, Michael; Clarisse, Dorien; Desmet, Sofie; Bougarne, Nadia; Ruttens, Bart; Gossye, Valerie; Denecker, Geertrui; Lievens, Sam; Bracke, Marc; Tavernier, Jan; Declercq, Wim; Gevaert, Kris; Berghe, Wim Vanden; Haegeman, Guy; De Bosscher, Karolien
2013-01-01
Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells. PMID:23935933
Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.
Burton, Shawn D; LaRocca, Greg; Liu, Annie; Cheetham, Claire E J; Urban, Nathaniel N
2017-02-01
In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. Copyright © 2017 the authors 0270-6474/17/371117-22$15.00/0.
N-Substituted carbazolyloxyacetic acids modulate Alzheimer associated gamma-secretase.
Narlawar, Rajeshwar; Pérez Revuelta, Blanca I; Baumann, Karlheinz; Schubenel, Robert; Haass, Christian; Steiner, Harald; Schmidt, Boris
2007-01-01
N-Sulfonylated and N-alkylated carbazolyloxyacetic acids were investigated for the inhibition and modulation of the Alzheimer's disease associated gamma-secretase. The introduction of a lipophilic substituent, which may vary from arylsulfone to alkyl, turned 2-carbazolyloxyacetic acids into potent gamma-secretase modulators. This resulted in the selective reduction of Abeta(42) and an increase of the less aggregatory Abeta(38) fragment by several compounds (e.g., 7d and 8c). Introduction of an electron donating group at position 6 and 8 of N-substituted carbazolyloxyacetic acids either decreased the activity or inversed modulation. The most active compounds displayed activity on amyloid precursor protein (APP) overexpressing cell lines in the low micromolar range and little or no effect on the gamma-secretase cleavage at the epsilon-site.
Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis.
Dewangan, Jayant; Kaushik, Shweta; Rath, Srikanta Kumar; Balapure, Anil K
2018-01-15
Angiogenesis is a recognized hallmark of cancer which promotes cancer cell progression and metastasis. Inhibition of angiogenesis to attenuate cancer growth is becoming desirable strategy for breast cancer management. The present study is aimed to investigate the antiangiogenic efficacy of a novel selective estrogen receptor modulator Centchroman (CC) on human breast cancer cells. Effect of CC on cell viability was evaluated using Sulforhodamine B assay. Endothelial cell proliferation, wound healing, Boyden chamber cell invasion, tube formation and chorioallantoic membrane (CAM) assays were performed to assess the effect of CC on migration, invasion and angiogenesis. Apoptosis, reactive oxygen species generation, caspase-3/7 and intracellular calcium ion level were measured through flow cytometry. Expression levels of HIF-1α, VEGF, VEGFR2, AKT and ERK were assessed by western blot analysis. CC selectively induces apoptosis in human breast cancer cells without affecting non-tumorigenic breast epithelial cells MCF-10A. Moreover, it inhibits migratory, invasive and mammosphere forming potential of breast cancer. Furthermore, CC also inhibited VEGF-induced migration, invasion and tube formation of HUVECs in vitro. CC effectively inhibited neovasculature formation in chicken CAM. Western blot analysis demonstrated that CC inhibited expression of HIF-1α and its downstream target VEGF. Interestingly, CC also suppressed VEGFR2 phosphorylation and consequently attenuated AKT and ERK phosphorylation. Our findings suggest that CC downregulates VEGF-induced angiogenesis by modulating HIF-1α/VEGFR2 pathway and recommend it (CC) as a potential therapeutic drug for breast cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M. F.; Downes, C. Peter; Batty, Ian H.
2012-01-01
Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105–107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules. PMID:22493426
IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Miles J.; Gray, Alexander; Schenning, Martijn
2012-10-16
Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those ofmore » the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.« less
Active RNA replication of hepatitis C virus downregulates CD81 expression.
Ke, Po-Yuan; Chen, Steve S-L
2013-01-01
So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.
Active RNA Replication of Hepatitis C Virus Downregulates CD81 Expression
Ke, Po-Yuan; Chen, Steve S.-L.
2013-01-01
So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81. PMID:23349980
Chakravarthy, B R; Wong, J; Durkin, J P
1995-10-01
Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.
De Filippis, D; Russo, A; D'Amico, A; Esposito, G; Concetta, P; Cinelli, M; Russo, G; Iuvone, T
2008-01-01
Background and purpose: Chronic inflammatory conditions, such as granulomas, are associated with angiogenesis. Mast cells represent the main cell type orchestrating angiogenesis, through the release of their granule content. Therefore, compounds able to modulate mast cell behaviour may be considered as a new pharmacological approach to treat angiogenesis-dependent events. Here, we tested the effect of selective cannabinoid (CB) receptor agonists in a model of angiogenesis-dependent granuloma formation induced by λ-carrageenin in rats. Experimental approach: Granulomas were induced by λ-carrageenin-soaked sponges implanted subcutaneously on the back of male Wistar rats. After 96 h, implants were removed and granuloma formation was measured (wet weight); angiogenesis was evaluated by histological analysis and by the measurement of haemoglobin content. Mast cells in the granulomas were evaluated histologically and by RT-PCR and immunoblotting analysis for mast cell-derived proteins (rat mast cell protease-5 (rMCP-5) and nerve growth factor). Selective CB1 and CB2 receptor agonists, ACEA and JWH-015 (0.001–0.1 mg mL−1), were given locally only once, at the time of implantation. Key results: The CB1 and CB2 receptor agonists decreased the weight and vascularization of granulomas after 96 h. This treatment also reduced mast cell number and activation in granulomatous tissue. Specifically, these compounds prevented the transcription and expression of rMCP-5, a protein involved in sprouting and advance of new blood vessels. Conclusion and implications: Modulation of mast cell function by cannabinoids reduced granuloma formation and associated angiogenesis. Therefore cannabinoid-related drugs may be useful in the management of granulomatous diseases accompanied by angiogenesis. PMID:18552882
DOE Office of Scientific and Technical Information (OSTI.GOV)
Python, Francois; Goebel, Carsten; Aeby, Pierre
2009-09-15
The number of studies involved in the development of in vitro skin sensitization tests has increased since the adoption of the EU 7th amendment to the cosmetics directive proposing to ban animal testing for cosmetic ingredients by 2013. Several studies have recently demonstrated that sensitizers induce a relevant up-regulation of activation markers such as CD86, CD54, IL-8 or IL-1{beta} in human myeloid cell lines (e.g., U937, MUTZ-3, THP-1) or in human peripheral blood monocyte-derived dendritic cells (PBMDCs). The present study aimed at the identification of new dendritic cell activation markers in order to further improve the in vitro evaluation ofmore » the sensitizing potential of chemicals. We have compared the gene expression profiles of PBMDCs and the human cell line MUTZ-3 after a 24-h exposure to the moderate sensitizer cinnamaldehyde. A list of 80 genes modulated in both cell types was obtained and a set of candidate marker genes was selected for further analysis. Cells were exposed to selected sensitizers and non-sensitizers for 24 h and gene expression was analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction. Results indicated that PIR, TRIM16 and two Nrf2-regulated genes, CES1 and NQO1, are modulated by most sensitizers. Up-regulation of these genes could also be observed in our recently published DC-activation test with U937 cells. Due to their role in DC activation, these new genes may help to further refine the in vitro approaches for the screening of the sensitizing properties of a chemical.« less
High-Throughput Patch Clamp Screening in Human α6-Containing Nicotinic Acetylcholine Receptors
Armstrong, Lucas C.; Kirsch, Glenn E.; Fedorov, Nikolai B.; Wu, Caiyun; Kuryshev, Yuri A.; Sewell, Abby L.; Liu, Zhiqi; Motter, Arianne L.; Leggett, Carmine S.; Orr, Michael S.
2017-01-01
Nicotine, the addictive component of tobacco products, is an agonist at nicotinic acetylcholine receptors (nAChRs) in the brain. The subtypes of nAChR are defined by their α- and β-subunit composition. The α6β2β3 nAChR subtype is expressed in terminals of dopaminergic neurons that project to the nucleus accumbens and striatum and modulate dopamine release in brain regions involved in nicotine addiction. Although subtype-dependent selectivity of nicotine is well documented, subtype-selective profiles of other tobacco product constituents are largely unknown and could be essential for understanding the addiction-related neurological effects of tobacco products. We describe the development and validation of a recombinant cell line expressing human α6/3β2β3V273S nAChR for screening and profiling assays in an automated patch clamp platform (IonWorks Barracuda). The cell line was pharmacologically characterized by subtype-selective and nonselective reference agonists, pore blockers, and competitive antagonists. Agonist and antagonist effects detected by the automated patch clamp approach were comparable to those obtained by conventional electrophysiological assays. A pilot screen of a library of Food and Drug Administration–approved drugs identified compounds, previously not known to modulate nAChRs, which selectively inhibited the α6/3β2β3V273S subtype. These assays provide new tools for screening and subtype-selective profiling of compounds that act at α6β2β3 nicotinic receptors. PMID:28298165
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Near infrared photoimmunotherapy (NIR-PIT) is a new type of molecularly-targeted photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting target-specific cell-surface molecules. When exposed to NIR light, the conjugate rapidly induces a highly-selective cell death only in receptor-positive, MAb-IR700-bound cells. Current immunotherapies for cancer seek to modulate the balance among different immune cell populations, thereby promoting anti-tumor immune responses. However, because these are systemic therapies, they often cause treatment-limiting autoimmune adverse effects. It would be ideal to manipulate the balance between suppressor and effector cells within the tumor without disturbing homeostasis elsewhere in the body. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are well-known immune-suppressor cells that play a key role in tumor immuno-evasion and have been the target of systemic immunotherapies. We used CD25-targeted NIR-PIT to selectively deplete Tregs, thus activating CD8+ T and NK cells and restoring local anti-tumor immunity. This not only resulted in regression of the treated tumor but also induced responses in separate untreated tumors of the same cell-line derivation. We conclude that CD25-targeted NIR-PIT causes spatially selective depletion of Tregs, thereby providing an alternative approach to cancer immunotherapy that can treat not only local tumors but also distant metastatic tumors.
Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James
2015-12-01
The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.
Development of an Acetate-Fed or Sugar-Fed Microbial Power Generator for Military Bases
2011-01-01
quarter. We tested graphite and stainless steel as anode materials for ARB growth, showing the greater suitability of carbon fibers as anode material...microbial electrolysis cells (MECs) with graphite rods and stainless steel meshes as anodes to select the optimum material for use in MFC modules to...be tested in the future. We selected meshes made from 316-grade stainless steel for these initial studies. We conducted several trials with the MECs
Selective layer disordering in III-nitrides with a capping layer
Wierer, Jr., Jonathan J.; Allerman, Andrew A.
2016-06-14
Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.
NASA Astrophysics Data System (ADS)
Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.
2017-06-01
We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.
Diversity of actions of GnRHs mediated by ligand-induced selective signaling
Millar, Robert P.; Pawson, Adam J.; Morgan, Kevin; Rissman, Emilie F.; Lu, Zhi-Liang
2009-01-01
Geoffrey Wingfield Harris’ demonstration of hypothalamic hormones regulating pituitary function led to their structural identification and therapeutic utilization in a wide spectrum of diseases. Amongst these, Gonadotropin Releasing Hormone (GnRH) and its analogs are widely employed in modulating gonadotropin and sex steroid secretion to treat infertility, precocious puberty and many hormone-dependent diseases including endometriosis, uterine fibroids and prostatic cancer. While these effects are all mediated via modulation of the pituitary gonadotrope GnRH receptor and the Gq signaling pathway, it has become increasingly apparent that GnRH regulates many extrapituitary cells in the nervous system and periphery. This review focuses on two such examples, namely GnRH analog effects on reproductive behaviors and GnRH analog effects on the inhibition of cancer cell growth. For both effects the relative activities of a range of GnRH analogs is distinctly different from their effects on the pituitary gonadotrope and different signaling pathways are utilized. As there is only a single functional GnRH receptor type in man we have proposed that the GnRH receptor can assume different conformations which have different selectivity for GnRH analogs and intracellular signaling proteins complexes. This ligand-induced selective-signaling recruits certain pathways while by-passing others and has implications in developing more selective GnRH analogs for highly specific therapeutic intervention. PMID:17976709
The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis
2012-01-01
Under physiological conditions, intracellular and tissue levels of reactive oxygen species (ROS) are carefully controlled and employed as fine modulators of signal transduction, gene expression and cell functional responses (redox signaling). A significant derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, plays a role in the pathogenesis of human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis, including chronic liver diseases. In this chapter major concepts and mechanisms in redox signaling will be briefly recalled to introduce a number of selected examples of redox-related mechanisms that can actively contribute to critical events in the natural history of a chronic liver diseases, including induction of cell death, perpetuation of chronic inflammatory responses and fibrogenesis. A major focus will be on redox-dependent mechanisms involved in the modulation of phenotypic responses of activated, myofibroblast-like, hepatic stellate cells (HSC/MFs), still considered as the most relevant pro-fibrogenic cells operating in chronic liver diseases. PMID:23259696
Tailoring recombinant protein quality by rational media design.
Brühlmann, David; Jordan, Martin; Hemberger, Jürgen; Sauer, Markus; Stettler, Matthieu; Broly, Hervé
2015-01-01
Clinical efficacy and safety of recombinant proteins are closely associated with their structural characteristics. The major quality attributes comprise glycosylation, charge variants (oxidation, deamidation, and C- & N-terminal modifications), aggregates, low-molecular-weight species (LMW), and misincorporation of amino acids in the protein backbone. Cell culture media design has a great potential to modulate these quality attributes due to the vital role of medium in mammalian cell culture. The purpose of this review is to provide an overview of the way both classical cell culture medium components and novel supplements affect the quality attributes of recombinant therapeutic proteins expressed in mammalian hosts, allowing rational and high-throughput optimization of mammalian cell culture media. A selection of specific and/or potent inhibitors and activators of oligosaccharide processing as well as components affecting multiple quality attributes are presented. Extensive research efforts in this field show the feasibility of quality engineering through media design, allowing to significantly modulate the protein function. © 2015 American Institute of Chemical Engineers.
Photovoltaic cell module and method of forming
Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay
2017-12-12
A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.
Deressa, Tekalign; Strandt, Helen; Florindo Pinheiro, Douglas; Mittermair, Roberta; Pizarro Pesado, Jennifer; Thalhamer, Josef; Hammerl, Peter; Stoecklinger, Angelika
2015-01-01
The skin accommodates multiple dendritic cell (DC) subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal) and chicken ovalbumin (OVA) under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC) as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation. PMID:26030383
Selective dissolution of halide perovskites as a step towards recycling solar cells
Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk
2016-01-01
Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells. PMID:27211006
Gautam, Dinesh; Han, Sung-Jun; Hamdan, Fadi F; Jeon, Jongrye; Li, Bo; Li, Jian Hua; Cui, Yinghong; Mears, David; Lu, Huiyan; Deng, Chuxia; Heard, Thomas; Wess, Jürgen
2006-06-01
One of the hallmarks of type 2 diabetes is that pancreatic beta cells fail to release sufficient amounts of insulin in the presence of elevated blood glucose levels. Insulin secretion is modulated by many hormones and neurotransmitters including acetylcholine, the major neurotransmitter of the peripheral parasympathetic nervous system. The physiological role of muscarinic acetylcholine receptors expressed by pancreatic beta cells remains unclear at present. Here, we demonstrate that mutant mice selectively lacking the M3 muscarinic acetylcholine receptor subtype in pancreatic beta cells display impaired glucose tolerance and greatly reduced insulin release. In contrast, transgenic mice selectively overexpressing M3 receptors in pancreatic beta cells show a profound increase in glucose tolerance and insulin release. Moreover, these mutant mice are resistant to diet-induced glucose intolerance and hyperglycemia. These findings indicate that beta cell M3 muscarinic receptors play a key role in maintaining proper insulin release and glucose homeostasis.
Selective dissolution of halide perovskites as a step towards recycling solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee
Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Here, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO 2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easilymore » decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb 2+ cations. After 10 cycles of recycling, a mesoporous TiO 2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.« less
Selective dissolution of halide perovskites as a step towards recycling solar cells
Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; ...
2016-05-23
Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Here, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO 2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easilymore » decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb 2+ cations. After 10 cycles of recycling, a mesoporous TiO 2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.« less
Design of a small molecule against an oncogenic noncoding RNA
Velagapudi, Sai Pradeep; Cameron, Michael D.; Haga, Christopher L.; Rosenberg, Laura H.; Lafitte, Marie; Duckett, Derek R.; Phinney, Donald G.; Disney, Matthew D.
2016-01-01
The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif–small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm. PMID:27170187
Bebo, Bruce F; Dehghani, Babak; Foster, Scott; Kurniawan, Astrid; Lopez, Francisco J; Sherman, Larry S
2009-05-01
Steroidal estrogens can regulate inflammatory immune responses and may be involved in the suppression of multiple sclerosis (MS) during pregnancy. However, the risks and side effects associated with steroidal estrogens may limit their usefulness for long-term MS therapy. Selective estrogen receptor modulators (SERMs) could provide an alternative therapeutic strategy, because they behave as estrogen agonists in some tissues, but are either inert or behave like estrogen antagonists in other tissues. In this study, we investigated the ability of two commercially available SERMs (tamoxifen and raloxifene) to regulate myelin specific immunity and experimental autoimmune encephalomyelitis (EAE) in mice. Both tamoxifen and raloxifene suppressed myelin antigen specific T-cell proliferation. However, tamoxifen was more effective in this regard. Tamoxifen treatment reduced the induction of major histocompatibility complex II by lipopolysaccharide stimulated dendritic cells and decreased their ability to activate myelin specific T-cells. At lower doses, tamoxifen was found to increase the levels of Th2 transcription factors and induce a Th2 bias in cultures of myelin-specific splenocytes. EAE symptoms and the degree of demyelination were less severe in mice treated with tamoxifen than in control mice. These findings support the notion that tamoxifen or related SERMs are potential agents that could be used in the treatment of inflammatory autoimmune disorders that affect the central nervous system.
Rohban, Rokhsareh; Reinisch, Andreas; Etchart, Nathalie; Schallmoser, Katharina; Hofmann, Nicole A.; Szoke, Krisztina; Brinchmann, Jan E.; Rad, Ehsan Bonyadi; Rohde, Eva; Strunk, Dirk
2013-01-01
Therapeutic neo-vasculogenesis in vivo can be achieved by the co-transplantation of human endothelial colony-forming progenitor cells (ECFCs) with mesenchymal stem/progenitor cells (MSPCs). The underlying mechanism is not completely understood thus hampering the development of novel stem cell therapies. We hypothesized that proteomic profiling could be used to retrieve the in vivo signaling signature during the initial phase of human neo-vasculogenesis. ECFCs and MSPCs were therefore either transplanted alone or co-transplanted subcutaneously into immune deficient mice. Early cell signaling, occurring within the first 24 hours in vivo, was analyzed using antibody microarray proteomic profiling. Vessel formation and persistence were verified in parallel transplants for up to 24 weeks. Proteomic analysis revealed significant alteration of regulatory components including caspases, calcium/calmodulin-dependent protein kinase, DNA protein kinase, human ErbB2 receptor-tyrosine kinase as well as mitogen-activated protein kinases. Caspase-4 was selected from array results as one therapeutic candidate for targeting vascular network formation in vitro as well as modulating therapeutic vasculogenesis in vivo. As a proof-of-principle, caspase-4 and general caspase-blocking led to diminished endothelial network formation in vitro and significantly decreased vasculogenesis in vivo. Proteomic profiling ex vivo thus unraveled a signaling signature which can be used for target selection to modulate neo-vasculogenesis in vivo. PMID:23826172
Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues
Rhee, Ki-Jong; Jasper, Paul J.; Sethupathi, Periannan; Shanmugam, Malathy; Lanning, Dennis; Knight, Katherine L.
2005-01-01
Gut-associated lymphoid tissues (GALTs) interact with intestinal microflora to drive GALT development and diversify the primary antibody repertoire; however, the molecular mechanisms that link these events remain elusive. Alicia rabbits provide an excellent model to investigate the relationship between GALT, intestinal microflora, and modulation of the antibody repertoire. Most B cells in neonatal Alicia rabbits express VHn allotype immunoglobulin (Ig)M. Within weeks, the number of VHn B cells decreases, whereas VHa allotype B cells increase in number and become predominant. We hypothesized that the repertoire shift from VHn to VHa B cells results from interactions between GALT and intestinal microflora. To test this hypothesis, we surgically removed organized GALT from newborn Alicia pups and ligated the appendix to sequester it from intestinal microflora. Flow cytometry and nucleotide sequence analyses revealed that the VHn to VHa repertoire shift did not occur, demonstrating the requirement for interactions between GALT and intestinal microflora in the selective expansion of VHa B cells. By comparing amino acid sequences of VHn and VHa Ig, we identified a putative VH ligand binding site for a bacterial or endogenous B cell superantigen. We propose that interaction of such a superantigen with VHa B cells results in their selective expansion. PMID:15623575
Van den Abbeele, Pieter; Taminiau, Bernard; Pinheiro, Iris; Duysburgh, Cindy; Jacobs, Heidi; Pijls, Loek; Marzorati, Massimo
2018-02-07
Fecal batch fermentations coupled to cocultures of epithelial cells and macrophages were used to compare how arabinoxylo-oligosaccharides (AXOS) and inulin modulate gut microbial activity and composition of three different human donors and subsequently the epithelial permeability and immune response. Both inulin and AXOS decreased the pH during incubation (-1.5 pH units), leading to increased productions of acetate, propionate, and butyrate. Differences in terms of metabolites production could be linked to specific microbial alterations at genus level upon inulin/AXOS supplementation (i.e., Bifidobacterium, Bacteroides, Prevotella and unclassified Erysipelotrichaceae), as shown by 16S-targeted Illumina sequencing. Both products stimulated gut barrier and immune function with increases in TEER, NF-KB, IL-10, and IL-6. Ingredients with different structures selectively modulate the microbiota of a specific donor leading to differential changes at metabolic level. The extent of this effect is donor specific and is linked to a final specific modulation of the host's immune system.
Callies, Oliver; Sánchez-Cañete, María P; Gamarro, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Bazzocchi, Isabel L
2016-03-10
P-glycoprotein (P-gp) plays a crucial role in the development of multidrug resistance (MDR), a major obstacle for successful chemotherapy in cancer. Herein, we report on the development of a natural-product-based library of 81 dihydro-β-agarofuran sesquiterpenes (2-82) by optimization of the lead compound 1. The compound library was evaluated for its ability to inhibit P-gp-mediated daunomycin efflux in MDR cells. Selected analogues were further analyzed for their P-gp inhibition constant, intrinsic toxicity, and potency to reverse daunomycin and vinblastine resistances. Analogues 6, 24, 28, 59, and 66 were identified as having higher potency than compound 1 and verapamil, a first-generation P-gp modulator. SAR analysis revealed the size of the aliphatic chains and presence of nitrogen atoms are important structural characteristics to modulate reversal activity. The present study highlights the potential of these analogues as modulators of P-gp mediated MDR in cancer cells.
Longley, Daniel B.; Wilson, Richard H.; Johnston, Patrick G.; Waugh, David J. J.
2012-01-01
Background The current study was undertaken to characterize the effect of anti-metabolites on inducing CXCL8 signaling and determining whether the constitutive and/or drug-induced CXCL8 signaling in metastatic prostate cancer (CaP) cells modulates their sensitivity to this class of agent. Methods The response of metastatic CaP cells to 5-Fluorouracil (5-FU), Pemetrexed or Tomudex was determined using cell count assays, flow cytometry and PARP cleavage analysis. Quantitative-PCR, ELISA and immunoblots were employed to determine effects of drugs or CXCL8 administration on target gene/protein expression. Results Administration of 5-FU but not pemetrexed potentiated CXCL8 secretion and increased CXCR1 and CXCR2 gene expression in metastatic PC3 cells. Consistent with this, the inhibition of CXCL8 signaling using a CXCR2 antagonist, AZ10397767, increased the cytotoxicity of 5-FU by 4-fold (P<0.001), and increased 5-FU-induced apoptosis in PC3 cells (P<0.01). In contrast, while administration of AZ10397767 had no effect on the sensitivity of pemetrexed, the CXCR2 antagonist exerted the greatest effect in increasing the sensitivity of PC3 cells to Tomudex, a directed thymidylate synthase (TS) inhibitor. Subsequent experiments confirmed that administration of recombinant human CXCL8 increased TS expression, a response mediated in part by the CXCR2 receptor. Moreover, siRNA-mediated knockdown of the CXCL8-target gene Bcl-2 increased the sensitivity of PC3 cells to 5-FU. Conclusions CXCL8 signaling provides a selective resistance of metastatic prostate cancer cells to specific anti-metabolites by promoting a target-associated resistance, in addition to underpinning an evasion of treatment-induced apoptosis. PMID:22590561
Ion transport in broad bean leaf mesophyll under saline conditions.
Percey, William J; Shabala, Lana; Breadmore, Michael C; Guijt, Rosanne M; Bose, Jayakumar; Shabala, Sergey
2014-10-01
Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na (+) induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na(+) significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na(+) also induced a significant K(+) efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv'/Fm' were linked to K(+) homeostasis in the mesophyll tissue. Increased apoplastic Na(+) concentrations induced vanadate-sensitive net H(+) efflux, presumably mediated by the plasma membrane H(+)-ATPase. It is concluded that the observed pump's activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.
Yu, Shan; Gao, Ying; Mei, Xu; Ren, Tanchen; Liang, Su; Mao, Zhengwei; Gao, Changyou
2016-11-02
Selective adhesion and migration of endothelial cells (ECs) over smooth muscle cells (SMCs) is very important in the rapid endothelialization of blood-contacting implants to prevent vascular restenosis. In this study, a uniform cell-resistant layer of methacrylate-functionalized hyaluronic acid (HA) was first immobilized on a poly(ε-caprolactone) (PCL) film via polydopamine coupling. Then, a density gradient of thiol-functionalized Arg-Glu-Asp-Val (REDV) peptide was prepared on the HA layer via thiol-ene click chemistry and the continuous injection method. The REDV gradient selectively enhanced EC adhesion and preferential directional migration toward the region of higher REDV density, reaching 86% directionality in the middle of the gradient. The migration rate of ECs was also significantly enhanced twofold compared with that on tissue culture polystyrene (TCPS). In contrast, the gradient significantly weakened the adhesion of SMCs to 25% of that on TCPS but had no obvious impact on the migration rate and directionality. Successful modulation of the selective adhesion and directional migration of ECs over SMCs on biodegradable polymers serves as an important step toward practical applications for guided tissue regeneration.
Goldberg, Deborah S; Ghandehari, Hamidreza; Swaan, Peter W
2010-08-01
This study investigates the mechanisms of G3.5 poly (amido amine) dendrimer cellular uptake, intracellular trafficking, transepithelial transport and tight junction modulation in Caco-2 cells in the context of oral drug delivery. Chemical inhibitors blocking clathrin-, caveolin- and dynamin-dependent endocytosis pathways were used to investigate the mechanisms of dendrimer cellular uptake and transport across Caco-2 cells using flow cytometry and confocal microscopy. Dendrimer cellular uptake was found to be dynamin-dependent and was reduced by both clathrin and caveolin endocytosis inhibitors, while transepithelial transport was only dependent on dynamin- and clathrin-mediated endocytosis. Dendrimers were quickly trafficked to the lysosomes after 15 min of incubation and showed increased endosomal accumulation at later time points, suggesting saturation of this pathway. Dendrimers were unable to open tight junctions in cell monolayers treated with dynasore, a selective inhibitor of dynamin, confirming that dendrimer internalization promotes tight junction modulation. G3.5 PAMAM dendrimers take advantage of several receptor-mediated endocytosis pathways for cellular entry in Caco-2 cells. Dendrimer internalization by dynamin-dependent mechanisms promotes tight junction opening, suggesting that dendrimers act on intracellular cytoskeletal proteins to modulate tight junctions, thus catalyzing their own transport via the paracellular route.
Controlling Destiny through Chemistry: Small-Molecule Regulators of Cell Fate
2009-01-01
Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics. PMID:20000447
Controlling destiny through chemistry: small-molecule regulators of cell fate.
Firestone, Ari J; Chen, James K
2010-01-15
Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics.
Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death
Kenyon, Emma J.; Kirkwood, Nerissa K.; Kitcher, Siân R.; O’Reilly, Molly; Cantillon, Daire M.; Goodyear, Richard J.; Secker, Abigail; Baxendale, Sarah; Bull, James C.; Waddell, Simon J.; Whitfield, Tanya T.; Ward, Simon E.; Kros, Corné J.; Richardson, Guy P.
2017-01-01
Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red–conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem. PMID:29263311
Kenyon, Emma J; Kirkwood, Nerissa K; Kitcher, Siân R; O'Reilly, Molly; Derudas, Marco; Cantillon, Daire M; Goodyear, Richard J; Secker, Abigail; Baxendale, Sarah; Bull, James C; Waddell, Simon J; Whitfield, Tanya T; Ward, Simon E; Kros, Corné J; Richardson, Guy P
2017-12-21
Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation.
Duraes, Fernanda V; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-02-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases.
Borroto, Aldo; Reyes-Garau, Diana; Jiménez, M Angeles; Carrasco, Esther; Moreno, Beatriz; Martínez-Pasamar, Sara; Cortés, José R; Perona, Almudena; Abia, David; Blanco, Soledad; Fuentes, Manuel; Arellano, Irene; Lobo, Juan; Heidarieh, Haleh; Rueda, Javier; Esteve, Pilar; Cibrián, Danay; Martinez-Riaño, Ana; Mendoza, Pilar; Prieto, Cristina; Calleja, Enrique; Oeste, Clara L; Orfao, Alberto; Fresno, Manuel; Sánchez-Madrid, Francisco; Alcamí, Antonio; Bovolenta, Paola; Martín, Pilar; Villoslada, Pablo; Morreale, Antonio; Messeguer, Angel; Alarcon, Balbino
2016-12-21
Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC 50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases. Copyright © 2016, American Association for the Advancement of Science.
Nicotine-mediated signals modulate cell death and survival of T lymphocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oloris, Silvia C.S.; Instituto de Ciencias Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoro, RN; Frazer-Abel, Ashley A.
The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act bothmore » as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.« less
HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.
Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P
2012-01-01
Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.
Printed interconnects for photovoltaic modules
Fields, J. D.; Pach, G.; Horowitz, K. A. W.; ...
2016-10-21
Film-based photovoltaic modules employ monolithic interconnects to minimize resistance loss and enhance module voltage via series connection. Conventional interconnect construction occurs sequentially, with a scribing step following deposition of the bottom electrode, a second scribe after deposition of absorber and intermediate layers, and a third following deposition of the top electrode. This method produces interconnect widths of about 300 µm, and the area comprised by interconnects within a module (generally about 3%) does not contribute to power generation. The present work reports on an increasingly popular strategy capable of reducing the interconnect width to less than 100 µm: printing interconnects.more » Cost modeling projects a savings of about $0.02/watt for CdTe module production through the use of printed interconnects, with savings coming from both reduced capital expense and increased module power output. Printed interconnect demonstrations with copper-indium-gallium-diselenide and cadmium-telluride solar cells show successful voltage addition and miniaturization down to 250 µm. As a result, material selection guidelines and considerations for commercialization are discussed.« less
NASA Astrophysics Data System (ADS)
Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke
2016-04-01
This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.
Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.
2014-01-01
Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620
Corral, L G; Haslett, P A; Muller, G W; Chen, R; Wong, L M; Ocampo, C J; Patterson, R T; Stirling, D I; Kaplan, G
1999-07-01
TNF-alpha mediates both protective and detrimental manifestations of the host immune response. Our previous work has shown thalidomide to be a relatively selective inhibitor of TNF-alpha production in vivo and in vitro. Additionally, we have recently reported that thalidomide exerts a costimulatory effect on T cell responses. To develop thalidomide analogues with increased anti-TNF-alpha activity and reduced or absent toxicities, novel TNF-alpha inhibitors were designed and synthesized. When a selected group of these compounds was examined for their immunomodulatory activities, different patterns of cytokine modulation were revealed. The tested compounds segregated into two distinct classes: one class of compounds, shown to be potent phosphodiesterase 4 inhibitors, inhibited TNF-alpha production, increased IL-10 production by LPS-induced PBMC, and had little effect on T cell activation; the other class of compounds, similar to thalidomide, were not phosphodiesterase 4 inhibitors and markedly stimulated T cell proliferation and IL-2 and IFN-gamma production. These compounds inhibited TNF-alpha, IL-1beta, and IL-6 and greatly increased IL-10 production by LPS-induced PBMC. Similar to thalidomide, the effect of these agents on IL-12 production was dichotomous; IL-12 was inhibited when PBMC were stimulated with LPS but increased when cells were stimulated by cross-linking the TCR. The latter effect was associated with increased T cell CD40 ligand expression. The distinct immunomodulatory activities of these classes of thalidomide analogues may potentially allow them to be used in the clinic for the treatment of different immunopathological disorders.
Brachwitz, Kristin; Voigt, Burkhardt; Meijer, Laurent; Lozach, Olivier; Schächtele, Christoph; Molnár, Josef; Hilgeroth, Andreas
2003-02-27
The first series of synthetic 1-aza-9-oxafluorenes with cytostatic activities in the micromolar range was evaluated as cyclin-dependent kinase (CDK1) inhibitors. Activity was found to be selective in comparison to the inhibition of other kinases within the CDK family. Compounds were shown to inhibit the membrane-efflux pump P-glycoprotein responsible for multidrug resistance in cancer cells. First structure-activity relationships are discussed.
Ravet, S; Munaut, C; Blacher, S; Brichant, G; Labied, S; Beliard, A; Chabbert-Buffet, N; Bouchard, P; Foidart, J-M; Pintiaux, A
2008-11-01
VA-2914 is a selective progesterone receptor modulator with potential contraceptive activity that induces amenorrhea, whereas progestins cause endometrial spotting and bleeding. This abnormal bleeding due to progestins is a consequence of focal stromal proteolysis by an increase in naked vessel size and density. Our objective was to quantify the effects of VA-2914 on endometrial vascularization, fibrillar matrix, and vascular endothelial growth factor (VEGF)-A expression in endometrial biopsies from 41 women before and after 12 wk daily treatment with a placebo, or 2.5, 5, or 10 mg VA-2914. Collagen fibrillar network was stained by silver impregnation. Vessel area, density, and structure were quantified with a computer-assisted image analysis system after double immunostaining using an anti-von Willebrand factor (endothelial cells) and an anti-alpha smooth muscle actin (vascular smooth muscle cells) marker antibody. VEGF-A mRNAs were quantified by RT-PCR and localized by immunohistochemistry. The endometrial vessels, collagen network, and mRNA levels of VEGF-A were identical during the luteal phase at baseline and in VA-2914 treated women. VEGF-A distribution was unchanged. VA-2914 does not alter the endometrial matrix and cells, and does not modify the endometrial vessel morphology as compared with baseline biopsies.
Multiwavelength micromirrors in the cuticle of scarab beetle Chrysina gloriosa.
Agez, Gonzague; Bayon, Chloé; Mitov, Michel
2017-01-15
Beetles from the genus Chrysina show vivid reflections from bright green to metallic silver-gold as a consequence of the cholesteric liquid crystal organization of chitin molecules. Particularly, the cuticle of Chrysina gloriosa exhibits green and silver stripes. By combining confocal microscopy and spectrophotometry, scanning electron microscopy and numerical simulations, the relationship between the reflectance and the structural parameters for both stripes at the micro- and nanoscales are established. Over the visible and near IR spectra, polygonal cells in tessellated green stripes behave as multiwavelength selective micro-mirrors and the silver stripes as specular broadband mirrors. Thermoregulation, conspecifics or intra-species communication, or camouflage against predators are discussed as possible functions. As a prerequisite to bio-inspired artificial replicas, the physical characteristics of the polygonal texture in Chrysina gloriosa cuticle are compared to their equivalents in synthetic cholesteric oligomers and their fundamental differences are ascertained. It is shown that the cuticle has concave cells whereas the artificial films have convex cells, contrary to expectation and assumption in the literature. The present results may provide inspiration for fabricating multiwavelength selective micromirrors or spatial wavelength-specific light modulators. Many insects own a tessellated carapace with bumps, pits or indentations. Little is known on the physical properties of these geometric variations and biological functions are unknown or still debated. We show that the polygonal cells in scarab beetle Chrysina gloriosa behave as multiwavelength selective micromirrors over the visible and infrared spectra, with a variety of spatial patterns. In the context of biomimetic materials, we demonstrate that the carapace has concave cells whereas the artificial films have convex cells, contrary to expectation in the literature. Thermoregulation, communication or camouflage are discussed as advanced functions. Results may provide inspiration for fabricating spatial wavelength-specific light modulators and optical packet switching in routing technologies. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Divac Rankov, Aleksandra; Ljujić, Mila; Petrić, Marija; Radojković, Dragica; Pešić, Milica; Dinić, Jelena
2017-11-01
Autophagy is linked to multiple cancer-related signaling pathways, and represents a defense mechanism for cancer cells under therapeutic stress. The crosstalk between apoptosis and autophagy is essential for both tumorigenesis and embryonic development. We studied the influence of autophagy on cell survival in pro-apoptotic conditions induced by anticancer drugs in three model systems: human cancer cells (NCI-H460, COR-L23 and U87), human normal cells (HaCaT and MRC-5) and zebrafish embryos (Danio rerio). Autophagy induction with AZD2014 and tamoxifen antagonized the pro-apoptotic effect of chemotherapeutics doxorubicin and cisplatin in cell lines, while autophagy inhibition by wortmannin and chloroquine synergized the action of both anticancer agents. This effect was further verified by assessing cleaved caspase-3 and PARP-1 levels. Autophagy inhibitors significantly increased both apoptotic markers when applied in combination with doxorubicin while autophagy inducers had the opposite effect. In a similar manner, autophagy induction in zebrafish embryos prevented cisplatin-induced apoptosis in the tail region while autophagy inhibition increased cell death in the tail and retina of cisplatin-treated animals. Autophagy modulation with direct inhibitors of the PI3kinase/Akt/mTOR pathway (AZD2014 and wortmannin) triggered the cellular response to anticancer drugs more effectively in NCI-H460 and zebrafish embryonic models compared to HaCaT suggesting that these modulators are selective towards rapidly proliferating cells. Therefore, evaluating the autophagic properties of chemotherapeutics could help determine more accurately the fate of different cell types under treatment. Our study underlines the importance of testing autophagic activity of potential anticancer agents in a comparative approach to develop more rational anticancer therapeutic strategies.
Breast cancer therapy based on melatonin.
Sanchez-Barcelo, Emilio J; Mediavilla, Maria D; Alonso-Gonzalez, Carolina; Rueda, Noemi
2012-05-01
The usefulness of melatonin and melatoninergic drugs in breast cancer therapy is based on its Selective Estrogen Receptor Modulator (SERM) and Selective Estrogen Enzyme Modulator (SEEM) properties. Because of the oncostatic properties of melatonin, its nocturnal suppression by light-at-night (LAN) has been considered a risk-factor for breast cancer. Melatonin's SERM actions include modulation of estrogen-regulated cell proliferation, invasiveness and expression of proteins, growth factors and proto-oncogenes (hTERT, p53, p21, TGFβ, E-cadherin, etc.). These actions are observable with physiologic doses of melatonin only in cells expressing ERα, and mediated by MT1 melatonin receptors. Melatonin acts like a SEEM, inhibiting expression and activity of P450 aromatase, estrogen sulfatase and type 1, 17β- hydroxysteroid dehydrogenase, but stimulating that of estrogen sulfotransferase. This double action mechanism (SERM and SEEM), and the specificity for ERα bestows melatonin with potential advantages for breast cancer treatments, associated with other antiestrogenic drugs, and idea already patented. LAN enhances the growth of rat mammary tumors by decreasing or suppressing melatonin production. Epidemiologic studies have also described increased breast cancer risk in women exposed to LAN. Since the strongest suppression of nocturnal melatonin occurs with wavelength light of the blue spectral region, optical and lightening devices filtering the blue light spectrum have been proposed to avoid the risks of light-induced suppression of nocturnal melatonin.
Brühlmann, David; Sokolov, Michael; Butté, Alessandro; Sauer, Markus; Hemberger, Jürgen; Souquet, Jonathan; Broly, Hervé; Jordan, Martin
2017-07-01
Rational and high-throughput optimization of mammalian cell culture media has a great potential to modulate recombinant protein product quality. We present a process design method based on parallel design-of-experiment (DoE) of CHO fed-batch cultures in 96-deepwell plates to modulate monoclonal antibody (mAb) glycosylation using medium supplements. To reduce the risk of losing valuable information in an intricate joint screening, 17 compounds were separated into five different groups, considering their mode of biological action. The concentration ranges of the medium supplements were defined according to information encountered in the literature and in-house experience. The screening experiments produced wide glycosylation pattern ranges. Multivariate analysis including principal component analysis and decision trees was used to select the best performing glycosylation modulators. Subsequent D-optimal quadratic design with four factors (three promising compounds and temperature shift) in shake tubes confirmed the outcome of the selection process and provided a solid basis for sequential process development at a larger scale. The glycosylation profile with respect to the specifications for biosimilarity was greatly improved in shake tube experiments: 75% of the conditions were equally close or closer to the specifications for biosimilarity than the best 25% in 96-deepwell plates. Biotechnol. Bioeng. 2017;114: 1448-1458. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Comparison of Pyranometers and Reference Cells on Fixed and One-Axis Tracking Surfaces: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooraghi, Michael R; Sengupta, Manajit; Vignola, Frank
A wide variety of sensors are used to monitor the irradiance incident on solar modules to evaluate the performance of photovoltaic (PV) systems. These instruments range from secondary standard pyranometers to photodiode-based pyranometers to reference cells. Although instruments are mounted in the plane of array of the modules, a wide range of results have been obtained. Some of these difference have been assumed to come from systematic uncertainties associated with the irradiance sensors. This study is an attempt to quantify these differences by comparing the output of selected thermopile pyranometers to photodiode-based pyranometers and reference cells on a horizontal surface,more » a fixed-tilt surface, and a one-axis tracking surface. This analysis focuses on clear-sky results from two sites with different climatic conditions. Several important features were observed. Photodiode-based pyranometers and reference cells produce widely different results under clear skies, especially at larger angles of incidence, even though both instruments are based on measuring the short-circuit current of solar cells. The difference is caused by the scattering of light as it passes through the glazing of the reference cell or the diffuser lens of the photodioded-base pyranometer. Both instruments are shown to have similar response to the spectral distribution of the irradiance when compared to the thermopile-based pyranometer, which has a response nearly independent of the wavelength of light used by PV modules.« less
Probiotics as an Immune Modulator.
Kang, Hye-Ji; Im, Sin-Hyeog
2015-01-01
Probiotics are nonpathogenic live microorganism that can provide a diverse health benefits on the host when consumed in adequate amounts. Probiotics are consumed in diverse ways including dairy product, food supplements and functional foods with specific health claims. Recently, many reports suggest that certain probiotic strains or multi strain mixture have potent immunomodulatory activity in diverse disorders including allergic asthma, atopic dermatitis and rheumatoid arthritis. However, underlying mechanism of action is still unclear and efficacy of probiotic administration is quite different depending on the type of strains and the amounts of doses. We and others have suggested that live probiotics or their metabolites could interact with diverse immune cells (antigen presenting cells and T cells) and confer them to have immunoregulatory functions. Through this interaction, probiotics could contribute to maintaining immune homeostasis by balancing pro-inflammatory and anti-inflammatory immune responses. However, the effect of probiotics in prevention or modulation of ongoing disease is quite diverse even within a same species. Therefore, identification of functional probiotics with specific immune regulatory property is a certainly important issue. Herein, we briefly review selection methods for immunomodulatory probiotic strains and the mechanism of action of probiotics in immune modulation.
Battle of the Bacteria: Characterizing the Evolutionary Advantage of Stationary Phase Growth †
Kram, Karin E.; Yim, Kristina M.; Coleman, Aaron B.; Sato, Brian K.
2016-01-01
Providing students with authentic research opportunities has been shown to enhance learning and increase retention in STEM majors. Accordingly, we have developed a novel microbiology lab module, which focuses on the molecular mechanisms of evolution in E. coli, by examining the growth advantage in stationary phase (GASP) phenotype. The GASP phenotype is demonstrated by growing cells into long-term stationary phase (LTSP) and then competing them against un-aged cells in a fresh culture. This module includes learning goals related to strengthening practical laboratory skills and improving student understanding of evolution. In addition, the students generate novel data regarding the effects of different environmental stresses on GASP and the relationship between evolution, genotypic change, mutation frequency, and cell stress. Pairs of students are provided with the experimental background, select a specific aspect of the growth medium to modify, and generate a hypothesis regarding how this alteration will impact the GASP phenotype. From this module, we have demonstrated that students are able to achieve the established learning goals and have produced data that has furthered our understanding of the GASP phenotype. Journal of Microbiology & Biology Education PMID:27158307
Tan, Jen-Kit; Then, Sue-Mian; Mazlan, Musalmah; Jamal, Rahman; Ngah, Wan Zurinah Wan
2016-01-01
The induction of reactive oxygen species (ROS) to selectively kill cancer cells is an important feature of radiotherapy and various chemotherapies. Depletion of glutathione can induce apoptosis in cancer cells or sensitize them to anticancer treatments intended to modulate ROS levels. In contrast, antioxidants protect cancer cells from oxidative stress-induced cell death by scavenging ROS. The role of exogenous antioxidants in cancer cells under oxidative insults remains controversial and unclear. This study aimed to identify protective pathways modulated by γ-tocotrienol (γT3), an isomer of vitamin E, in human neuroblastoma SH-SY5Y cells under oxidative stress. Using buthionine sulfoximine (BSO) as an inhibitor of glutathione synthesis, we found that BSO treatment reduced the viability of SH-SY5Y cells. BSO induced cell death by increasing apoptosis, decreased the level of reduced glutathione (GSH), and increased ROS levels in SH-SY5Y cells. Addition of γT3 increased the viability of BSO-treated cells, suppressed apoptosis, and decreased the ROS level induced by BSO, while the GSH level was unaffected. These results suggest that decreasing GSH levels by BSO increased ROS levels, leading to apoptosis in SH-SY5Y cells. γT3 attenuated the BSO-induced cell death by scavenging free radicals.
Sánchez-Aguilera, Abel; Arranz, Lorena; Martín-Pérez, Daniel; García-García, Andrés; Stavropoulou, Vaia; Kubovcakova, Lucia; Isern, Joan; Martín-Salamanca, Sandra; Langa, Xavier; Skoda, Radek C; Schwaller, Jürg; Méndez-Ferrer, Simón
2014-12-04
Estrogens are potent regulators of mature hematopoietic cells; however, their effects on primitive and malignant hematopoietic cells remain unclear. Using genetic and pharmacological approaches, we observed differential expression and function of estrogen receptors (ERs) in hematopoietic stem cell (HSC) and progenitor subsets. ERα activation with the selective ER modulator (SERM) tamoxifen induced apoptosis in short-term HSCs and multipotent progenitors. In contrast, tamoxifen induced proliferation of quiescent long-term HSCs, altered the expression of self-renewal genes, and compromised hematopoietic reconstitution after myelotoxic stress, which was reversible. In mice, tamoxifen treatment blocked development of JAK2(V617F)-induced myeloproliferative neoplasm in vivo, induced apoptosis of human JAK2(V617F+) HSPCs in a xenograft model, and sensitized MLL-AF9(+) leukemias to chemotherapy. Apoptosis was selectively observed in mutant cells, and tamoxifen treatment only had a minor impact on steady-state hematopoiesis in disease-free animals. Together, these results uncover specific regulation of hematopoietic progenitors by estrogens and potential antileukemic properties of SERMs. Copyright © 2014 Elsevier Inc. All rights reserved.
mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes
Patruno, Antonia; Pesce, Mirko; Grilli, Alfredo; Speranza, Lorenza; Franceschelli, Sara; De Lutiis, Maria Anna; Vianale, Giovina; Costantini, Erica; Amerio, Paolo; Muraro, Raffaella; Felaco, Mario; Reale, Marcella
2015-01-01
Several reports suggest that ELF-EMF exposures interact with biological processes including promotion of cell proliferation. However, the molecular mechanisms by which ELF-EMF controls cell growth are not completely understood. The present study aimed to investigate the effect of ELF-EMF on keratinocytes proliferation and molecular mechanisms involved. Effect of ELF-EMF (50 Hz, 1 mT) on HaCaT cell cycle and cells growth and viability was monitored by FACS analysis and BrdU assay. Gene expression profile by microarray and qRT-PCR validation was performed in HaCaT cells exposed or not to ELF-EMF. mTOR, Akt and MAPKs expressions were evaluated by Western blot analysis. In HaCaT cells, short ELF-EMF exposure modulates distinct patterns of gene expression involved in cell proliferation and in the cell cycle. mTOR activation resulted the main molecular target of ELF-EMF on HaCaT cells. Our data showed the increase of the canonical pathway of mTOR regulation (PI3K/Akt) and activation of ERK signaling pathways. Our results indicate that ELF-EMF selectively modulated the expression of multiple genes related to pivotal biological processes and functions that play a key role in physio-pathological mechanisms such as wound healing. PMID:26431550
Vasanthakumar, B; Ravishankar, H; Subramanian, S
2013-12-01
The selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using cells and extracellular secretions of Bacillus megaterium after adaptation to the chosen minerals. The extracellular secretions obtained after thermolysis of bacterial cells adapted to sphalerite yield the highest flotation recovery of sphalerite with a selectivity index value of 24.5, in comparison to the other cellular and extra-cellular bio-reagents studied. The protein profile for the unadapted and mineral-adapted cells has been found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances (EPS). The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of B. megaterium have been quantified. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface charge of the bacterial cells as well as the minerals under study has been confirmed using various enzymatic treatments of the bacterial cells. It has been demonstrated that the induction of additional molecular weight protein fractions as well as the higher amount of extracellular proteins and phosphate secreted after adaptation to sphalerite vis-à-vis galena are contributory factors for the selective separation of sphalerite from galena. Copyright © 2013 Elsevier B.V. All rights reserved.
Stice, James P.; Mbai, Fiona N.; Chen, Le; Knowlton, Anne A.
2012-01-01
17β-estradiol (E2) treatment activates a set of protective response that have been found to protect cells from injury and more importantly to significantly abate the injuries associated with trauma-hemorrhage in vivo. Rapid NFκB activation has been found to be an important signaling step in E2 mediated protection in cell culture, in vivo ischemia and trauma-hemorrhage. In the current study, we investigated the signaling cascades linking E2 signaling with NFκB activation and the protective response, and compared them with the effects of two selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen. Two candidate pathways, mitogen activated protein kinases (MAPK), and phosphatidylinositol-3-kinase (PI3-K) were studied. Selective inhibitors were used to identify each pathway's contribution to NFκB activation. Treatment of HCAECs with E2 activated PI3-K/Akt, p38, and JNK, all of which activated ERK 1/2 followed by NFκB activation. The combined activation of Akt, p38 and JNK was essential to activate NFκB. The two SERMs activated PI3-K and p38, which then phosphorylated ERK 1/2 and activated NFκB independent of the JNK pathway. NFkB activation by these compounds protected cells from hypoxia/reoxygenation injury. However, E2, unlike either SERM, led to modest increases in apoptosis through the JNK pathway. SERM treatment led to increased expression of the protective proteins, Mn-superoxide dismutase and endothelial nitric oxide synthase, that was not seen with E2. These results provide new insight into the pathways activating NFkB by E2 and SERMS and demonstrate that SERMs may have greater protective benefits than E2 in adult endothelial cells and potentially in vivo, as well. PMID:22683727
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seong-Su, E-mail: seong-su-han@uiowa.edu; Han, Sangwoo; Kamberos, Natalie L.
Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL onmore » the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.« less
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1981-01-01
A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.
NASA Astrophysics Data System (ADS)
Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar
2014-05-01
Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00974f
Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.
1977-01-01
Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.
Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.
Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro
2013-02-01
Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Marostica, Lucas Lourenço; Silva, Izabella Thaís; Kratz, Jadel Müller; Persich, Lara; Geller, Fabiana Cristina; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Simões, Cláudia Maria Oliveira
2015-10-19
Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.
Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V
2013-01-01
Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946
Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita
2013-10-01
Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Budzinski, Jason W; Trudeau, Vance L; Drouin, Cathy E; Panahi, Mitra; Arnason, J Thor; Foster, Brian C
2007-09-01
In this study, we used an in vitro Caco-2 cell monolayer model to evaluate aqueous extracts of commercial-source goldenseal (Hydrastis canadensis) and milk thistle (Silybum marianum) capsule formulations, their marker phytochemicals (berberine and silibinin, respectively), as well as dillapiol, vinblastine, and the HIV protease inhibitor saquinavir for their ability to modulate CYP3A4 and ABCB1 expression after short-term exposure (48 h). Both upregulation and downregulation of CYP3A4 expression was observed with extracts of varying concentrations of the two natural health products (NHPs). CYP3A4 was highly responsive in our system, showing a strong dose-dependent modulation by the CYP3A4 inhibitor dillapiol (upregulation) and the milk thistle flavonolignan silibinin (downregulation). ABCB1 was largely unresponsive in this cellular model and appears to be of little value as a biomarker under our experimental conditions. Therefore, the modulation of CYP3A4 gene expression can serve as an important marker for the in vitro assessment of NHP-drug interactions.
PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC
Parkhurst, David L.; Wissmeier, Laurin
2015-01-01
PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.
Miconi, Thomas; VanRullen, Rufin
2016-02-01
Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.
MacPherson, Kathryn P; Sompol, Pradoldej; Kannarkat, George T; Chang, Jianjun; Sniffen, Lindsey; Wildner, Mary E; Norris, Christopher M; Tansey, Malú G
2017-06-01
Clinical and animal model studies have implicated inflammation and peripheral immune cell responses in the pathophysiology of Alzheimer's disease (AD). Peripheral immune cells including T cells circulate in the cerebrospinal fluid (CSF) of healthy adults and are found in the brains of AD patients and AD rodent models. Blocking entry of peripheral macrophages into the CNS was reported to increase amyloid burden in an AD mouse model. To assess inflammation in the 5xFAD (Tg) mouse model, we first quantified central and immune cell profiles in the deep cervical lymph nodes and spleen. In the brains of Tg mice, activated (MHCII + , CD45 high , and Ly6C high ) myeloid-derived CD11b + immune cells are decreased while CD3 + T cells are increased as a function of age relative to non-Tg mice. These immunological changes along with evidence of increased mRNA levels for several cytokines suggest that immune regulation and trafficking patterns are altered in Tg mice. Levels of soluble Tumor Necrosis Factor (sTNF) modulate blood-brain barrier (BBB) permeability and are increased in CSF and brain parenchyma post-mortem in AD subjects and Tg mice. We report here that in vivo peripheral administration of XPro1595, a novel biologic that sequesters sTNF into inactive heterotrimers, reduced the age-dependent increase in activated immune cells in Tg mice, while decreasing the overall number of CD4 + T cells. In addition, XPro1595 treatment in vivo rescued impaired long-term potentiation (LTP) measured in brain slices in association with decreased Aβ plaques in the subiculum. Selective targeting of sTNF may modulate brain immune cell infiltration, and prevent or delay neuronal dysfunction in AD. Immune cells and cytokines perform specialized functions inside and outside the brain to maintain optimal brain health; but the extent to which their activities change in response to neuronal dysfunction and degeneration is not well understood. Our findings indicate that neutralization of sTNF reduced the age-dependent increase in activated immune cells in Tg mice, while decreasing the overall number of CD4 + T cells. In addition, impaired long-term potentiation (LTP) was rescued by XPro1595 in association with decreased hippocampal Aβ plaques. Selective targeting of sTNF holds translational potential to modulate brain immune cell infiltration, dampen neuroinflammation, and prevent or delay neuronal dysfunction in AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition
van Baarsel, Eric D.; Metz, Patrick J.; Fisch, Kathleen; Widjaja, Christella E.; Kim, Stephanie H.; Lopez, Justine; Chang, Aaron N.; Geurink, Paul P.; Florea, Bogdan I.; Overkleeft, Hermen S.; Ovaa, Huib; Bui, Jack D.; Yang, Jing; Chang, John T.
2016-01-01
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy. PMID:26930717
Specific GFP-binding artificial proteins (αRep): a new tool for in vitro to live cell applications
Chevrel, Anne; Urvoas, Agathe; de la Sierra-Gallay, Ines Li; Aumont-Nicaise, Magali; Moutel, Sandrine; Desmadril, Michel; Perez, Franck; Gautreau, Alexis; van Tilbeurgh, Herman; Minard, Philippe; Valerio-Lepiniec, Marie
2015-01-01
A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific αReps are clearly sequestrated by their cognate target protein addressed to various cell compartments. These results suggest that αRep proteins with tailor-made specificity can be selected and used in living cells to track, modulate or interfere with intracellular processes. PMID:26182430
Sharma, Arun; Li, Guang; Rajarajan, Kuppusamy; Hamaguchi, Ryoko; Burridge, Paul W; Wu, Sean M
2015-03-18
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have become an important cell source to address the lack of primary cardiomyocytes available for basic research and translational applications. To differentiate hiPSCs into cardiomyocytes, various protocols including embryoid body (EB)-based differentiation and growth factor induction have been developed. However, these protocols are inefficient and highly variable in their ability to generate purified cardiomyocytes. Recently, a small molecule-based protocol utilizing modulation of Wnt/β-Catenin signaling was shown to promote cardiac differentiation with high efficiency. With this protocol, greater than 50%-60% of differentiated cells were cardiac troponin-positive cardiomyocytes were consistently observed. To further increase cardiomyocyte purity, the differentiated cells were subjected to glucose starvation to specifically eliminate non-cardiomyocytes based on the metabolic differences between cardiomyocytes and non-cardiomyocytes. Using this selection strategy, we consistently obtained a greater than 30% increase in the ratio of cardiomyocytes to non-cardiomyocytes in a population of differentiated cells. These highly purified cardiomyocytes should enhance the reliability of results from human iPSC-based in vitro disease modeling studies and drug screening assays.
Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation.
Cairns, Junmei; Fridley, Brooke L; Jenkins, Gregory D; Zhuang, Yongxian; Yu, Jia; Wang, Liewei
2018-03-01
AKT signaling is modulated by a complex network of regulatory proteins and is commonly deregulated in cancer. Here, we present a dual mechanism of AKT regulation by the ERBB receptor feedback inhibitor 1 (ERRFI1). We show that in cells expressing high levels of EGFR, ERRF1 inhibits growth and enhances responses to chemotherapy. This is mediated in part through the negative regulation of AKT signaling by direct ERRFI1-dependent inhibition of EGFR In cells expressing low levels of EGFR, ERRFI1 positively modulates AKT signaling by interfering with the interaction of the inactivating phosphatase PHLPP with AKT, thereby promoting cell growth and chemotherapy desensitization. These observations broaden our understanding of chemotherapy response and have important implications for the selection of targeted therapies in a cell context-dependent manner. EGFR inhibition can only sensitize EGFR-high cells for chemotherapy, while AKT inhibition increases chemosensitivity in EGFR-low cells. By understanding these mechanisms, we can take advantage of the cellular context to individualize antineoplastic therapy. Finally, our data also suggest targeting of EFFRI1 in EGFR-low cancer as a promising therapeutic approach. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma
NASA Astrophysics Data System (ADS)
Hsieh, Ya-Ju; Chen, Fu-Du; Wang, Fu Hui; Ke, Chien Chih; Wang, Hsin-Ell; Liu, Ren-Shyan
2007-02-01
For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC.
Characterization and modulation of canine mast cell derived eicosanoids
Lin, Tzu-Yin; London, Cheryl A.
2013-01-01
Mast cells play an important role in both innate and acquired immunity as well as several pathological conditions including allergy, arthritis and neoplasia. They influence these processes by producing a variety of mediators including cytokines, chemokines and eicosanoids. Very little is currently known about the spectrum of inflammatory mediators, particularly eicosanoids (prostaglandins and leukotrienes), produced by canine mast cells. This is important since modulating mast cell derived eicosanoids may help in the treatment of autoimmune and inflammatory disorders. The purpose of this study was to investigate the spectrum of eicosanoids produced by normal canine mast cells and to evaluate the effects of cytokines and non-steroidal anti-inflammatory mediators (NSAIDS) on eicosanoid production and release. Canine bone marrow derived cultured mast cells (cBMCMCs) expressed COX-1, COX-2, and 5-LOX and synthesized and released PGD2, PGE2, LTB4, and LTC4 following activation by a variety of stimuli. The selective COX-2 NSAIDs carprofen (Rimadyl®) and deracoxib (Deramaxx®) inhibited PGD2 and PGE2 production but only slightly inhibited LTB4 and LTC4. The mixed COX-1/COX-2 inhibitor piroxicam blocked PGD2 and PGE2 production, but upregulated LTC4 following treatment while tepoxilan (Zubrin®), a pan COX/LOX inhibitor, markedly reduced the production of all eicosanoids. The LOX inhibitor nordihydroguaiaretic acid (NDGA) prevented LTB4/LTC4 release and BMBMC degranulation. Pre-incubation of cBMCMCs with IL-4 and SCF sensitized these cells to degranulation in response to substance P. In conclusion, canine BMCMCs produce an array of eicosanoids similar to those produced by mast cells from other species. Tepoxilan appeared to be the most effective NSAID for blocking eicosanoid production and thus may be useful for modulating mast cell mediated responses in dogs. PMID:20036014
Tao, Ling; Park, Jong-Yung; Lambert, Joshua D
2015-02-01
We have previously reported that the green tea catechin, (-)-epigallocatechin-3-gallate (EGCG), can induce oxidative stress in oral cancer cells but exerts antioxidant effects in normal cells. Here, we report that these differential prooxidative effects are associated with sirtuin 3 (SIRT3), an important mitochondrial redox modulator. EGCG rapidly induced mitochondria-localized reactive oxygen species in human oral squamous carcinoma cells (SCC-25, SCC-9) and premalignant leukoplakia cells (MSK-Leuk1), but not in normal human gingival fibroblast cells (HGF-1). EGCG suppressed SIRT3 mRNA and protein expression, as well as, SIRT3 activity in SCC-25 cells, whereas it increased SIRT3 activity in HGF-1 cells. EGCG selectively decreased the nuclear localization of the estrogen-related receptor α (ERRα), the transcription factor regulating SIRT3 expression, in SCC-25 cells. This indicates that EGCG may regulate SIRT3 transcription in oral cancer cells via ERRα. EGCG also differentially modulated the mRNA expressions of SIRT3-associated downstream targets including glutathione peroxidase 1 and superoxide dismutase 2 in normal and oral cancer cells. SIRT3 represents a novel potential target through which EGCG exerts differential prooxidant effects in cancer and normal cells. Our results provide new biomarkers to be further explored in animal studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characteristics of spectro-temporal modulation frequency selectivity in humans.
Oetjen, Arne; Verhey, Jesko L
2017-03-01
There is increasing evidence that the auditory system shows frequency selectivity for spectro-temporal modulations. A recent study of the authors has shown spectro-temporal modulation masking patterns that were in agreement with the hypothesis of spectro-temporal modulation filters in the human auditory system [Oetjen and Verhey (2015). J. Acoust. Soc. Am. 137(2), 714-723]. In the present study, that experimental data and additional data were used to model this spectro-temporal frequency selectivity. The additional data were collected to investigate to what extent the spectro-temporal modulation-frequency selectivity results from a combination of a purely temporal amplitude-modulation filter and a purely spectral amplitude-modulation filter. In contrast to the previous study, thresholds were measured for masker and target modulations with opposite directions, i.e., an upward pointing target modulation and a downward pointing masker modulation. The comparison of this data set with previous corresponding data with the same direction from target and masker modulations indicate that a specific spectro-temporal modulation filter is required to simulate all aspects of spectro-temporal modulation frequency selectivity. A model using a modified Gabor filter with a purely temporal and a purely spectral filter predicts the spectro-temporal modulation masking data.
Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis
de la Cueva-Méndez, Guillermo; Mills, Anthony D.; Clay-Farrace, Lorena; Díaz-Orejas, Ramón; Laskey, Ronald A.
2003-01-01
Plasmid R1 inhibits growth of bacteria by synthesizing an inhibitor of cell proliferation, Kid, and a neutralizing antidote, Kis, which binds tightly to the toxin. Here we report that this toxin and antidote, which have evolved to function in bacteria, also function efficiently in a wide range of eukaryotes. Kid inhibits cell proliferation in yeast, Xenopus laevis and human cells, whilst Kis protects. Moreover, we show that Kid triggers apoptosis in human cells. These effects can be regulated in vivo by modulating the relative amounts of antidote and toxin using inducible eukaryotic promoters for independent transcriptional control of their genes. These findings allow highly regulatable, selective killing of eukaryotic cells, and could be applied to eliminate cancer cells or specific cell lineages in development. PMID:12514130
Regulation of the Water Channel Aquaporin-2 via 14-3-3θ and -ζ*
Moeller, Hanne B.; Slengerik-Hansen, Joachim; Aroankins, Takwa; Assentoft, Mette; MacAulay, Nanna; Moestrup, Soeren K.; Bhalla, Vivek; Fenton, Robert A.
2016-01-01
The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function. With the exception of σ, all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3β and -ζ, whereas levels of 14-3-3η and -θ were decreased. Co-immunoprecipitation (co-IP) studies in mpkCCD14 cells uncovered an AQP2/14-3-3 interaction that was modulated by acute dDAVP treatment. Additional co-IP studies in HEK293 cells determined that AQP2 interacts selectively with 14-3-3ζ and -θ. Use of phosphatase inhibitors in mpkCCD14 cells, co-IP with phosphorylation deficient forms of AQP2 expressed in HEK293 cells, or surface plasmon resonance studies determined that the AQP2/14-3-3 interaction was modulated by phosphorylation of AQP2 at various sites in its carboxyl terminus, with Ser-256 phosphorylation critical for the interactions. shRNA-mediated knockdown of 14-3-3ζ in mpkCCD14 cells resulted in increased AQP2 ubiquitylation, decreased AQP2 protein half-life, and reduced AQP2 levels. In contrast, knockdown of 14-3-3θ resulted in increased AQP2 half-life and increased AQP2 levels. In conclusion, this study demonstrates phosphorylation-dependent interactions of AQP2 with 14-3-3θ and -ζ. These interactions play divergent roles in modulating AQP2 trafficking, phosphorylation, ubiquitylation, and degradation. PMID:26645691
NASA Technical Reports Server (NTRS)
Namkoong, D.; Simon, F. F.
1981-01-01
Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.
Bentur, Ohad S; Chernichovski, Tamara; Ingbir, Merav; Weinstein, Talia; Schwartz, Idit F
2016-10-01
Dimethyl sulfoxide (DMSO) is a solvent that is commonly used in medicine. Conflicting data exist as to its effects on endothelial function. Endothelial cell dysfunction (ECD) is characterized by decreased endothelial nitric oxide synthase (eNOS) activity. Cationic amino acid transporter-1 (CAT-1), the specific arginine transporter for eNOS, has been shown to modulate eNOS activity. We hypothesize that DMSO inhibits eNOS activity through modulation of its selective arginine supplier CAT-1. We studied the effect of DMSO on arginine transport, NO2/NO3 generation as an index of NO production, as well as CAT-1 and Protein Kinase C alpha (PKC-α) (CAT-1 inhibitor) protein expression in human umbilical vein endothelial cell cultures (HUVECs). DMSO 2.5% and 3.5% (v/v) significantly attenuated arginine transport, a phenomenon which was prevented by co-incubation with l-arginine (1 mM). The aforementioned findings were accompanied by a decrease in NO2/NO3 generation. DMSO significantly increased the abundance of phosphorylated CAT-1 (the inactive form) and phosphorylated PKC-α protein, an effect that was attenuated by l-arginine. GO 6976 (PKC-α antagonist) prevented the decrease in arginine transport caused by DMSO. DMSO also induced profound transient morphological changes in HUVECs' structure but these were not related to its effect on arginine transport. In conclusion, DMSO inhibits NO generation by endothelial cells through modulation of CAT-1 activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Integrins are Mechanosensors That Modulate Human Eosinophil Activation
Ahmadzai, Mustafa; Small, Mike; Sehmi, Roma; Gauvreau, Gail; Janssen, Luke J.
2015-01-01
Eosinophil migration to the lung is primarily regulated by the eosinophil-selective family of eotaxin chemokines, which mobilize intracellular calcium (Ca2+) and orchestrate myriad changes in cell structure and function. Eosinophil function is also known to be flow-dependent, although the molecular cognate of this mechanical response has yet to be adequately characterized. Using confocal fluorescence microscopy, we determined the effects of fluid shear stress on intracellular calcium concentration ([Ca2+]i) in human peripheral blood eosinophils by perfusing cells in a parallel-plate flow chamber. Our results indicate that fluid perfusion evokes a calcium response that leads to cell flattening, increase in cell area, shape change, and non-directional migration. None of these changes are seen in the absence of a flow stimulus, and all are blocked by chelation of intracellular Ca2+ using BAPTA. These changes are enhanced by stimulating the cells with eotaxin-1. The perfusion-induced calcium response (PICR) could be blocked by pre-treating cells with selective (CDP-323) and non-selective (RGD tripeptides) integrin receptor antagonists, suggesting that α4β7/α4β1 integrins mediate this response. Overall, our study provides the first pharmacological description of a molecular mechanosensor that may collaborate with the eotaxin-1 signaling program in order to control human eosinophil activation. PMID:26539194
Photovoltaic module bypass diode encapsulation
NASA Technical Reports Server (NTRS)
Shepard, N. J., Jr.
1983-01-01
The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.
Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues.
Rhee, Ki-Jong; Jasper, Paul J; Sethupathi, Periannan; Shanmugam, Malathy; Lanning, Dennis; Knight, Katherine L
2005-01-03
Gut-associated lymphoid tissues (GALTs) interact with intestinal microflora to drive GALT development and diversify the primary antibody repertoire; however, the molecular mechanisms that link these events remain elusive. Alicia rabbits provide an excellent model to investigate the relationship between GALT, intestinal microflora, and modulation of the antibody repertoire. Most B cells in neonatal Alicia rabbits express V(H)n allotype immunoglobulin (Ig)M. Within weeks, the number of V(H)n B cells decreases, whereas V(H)a allotype B cells increase in number and become predominant. We hypothesized that the repertoire shift from V(H)n to V(H)a B cells results from interactions between GALT and intestinal microflora. To test this hypothesis, we surgically removed organized GALT from newborn Alicia pups and ligated the appendix to sequester it from intestinal microflora. Flow cytometry and nucleotide sequence analyses revealed that the V(H)n to V(H)a repertoire shift did not occur, demonstrating the requirement for interactions between GALT and intestinal microflora in the selective expansion of V(H)a B cells. By comparing amino acid sequences of V(H)n and V(H)a Ig, we identified a putative V(H) ligand binding site for a bacterial or endogenous B cell superantigen. We propose that interaction of such a superantigen with V(H)a B cells results in their selective expansion.
Deng, Youcai; Chu, Jianhong; Ren, Yulin; Fan, Zhijin; Ji, Xiaotian; Mundy, Bethany; Yuan, Shunzong; Hughes, Tiffany; Zhang, Jianying; Cheema, Baljash; Camardo, Andrew T.; Xia, Yong; Wu, Lai-Chu; Wang, Li-Shu; He, Xiaoming; Kinghorn, A. Douglas; Li, Xiaohui; Caligiuri, Michael A; Yu, Jianhua
2014-01-01
Natural products are a major source for cancer drug development. NK cells are a critical component of innate immunity with the capacity to destroy cancer cells, cancer initiating cells, and clear viral infections. However, few reports describe a natural product that selectively stimulates NK cell IFN-γ production and unravel a mechanism of action. In this study, through screening, we found that a natural product, phyllanthusmin C (PL-C), alone enhanced IFN-γ production by human NK cells. PL-C also synergized with IL-12, even at the low cytokine concentration of 0.1 mg/ml, and stimulated IFN-γ production in both human CD56bright and CD56dim NK cell subsets. Mechanistically, TLR1 and/or TLR6 mediated PL-C’s activation of the NF-κB p65 subunit that in turn bound to the proximal promoter of IFNG and subsequently resulted in increased IFN-γ production in NK cells. However, IL-12/IL-15 receptors and their related STAT signaling pathways were not significantly modulated by PL-C. PL-C induced little or no T cell IFN-γ production or NK cell cytotoxicity. Collectively, we identify a natural product with the capacity to selectively activate human NK cell IFN-γ. Given the role of IFN-γ in immune surveillance, additional studies to understand the role of this natural product in prevention of cancer or infection in select populations are warranted. PMID:25122922
Low cost label-free live cell imaging for biological samples
NASA Astrophysics Data System (ADS)
Seniya, C.; Towers, C. E.; Towers, D. P.
2017-02-01
This paper reports the progress to develop a practical phase measuring microscope offering new capabilities in terms of phase measurement accuracy and quantification of cell:cell interactions over the longer term. A novel, low cost phase interference microscope for imaging live cells (label-free) is described. The method combines the Zernike phase contrast approach with a dual mirror design to enable phase modulation between the scattered and un-scattered optical fields. Two designs are proposed and demonstrated, one of which retains the common path nature of Zernike's original microscopy concept. In both setups the phase shift is simple to control via a piezoelectric driven mirror in the back focal plane of the imaging system. The approach is significantly cheaper to implement than those based on spatial light modulators (SLM) at approximately 20% of the cost. A quantitative assessment of the performance of a set of phase shifting algorithms is also presented, specifically with regard to broad bandwidth illumination in phase contrast microscopy. The simulation results show that the phase measurement accuracy is strongly dependent on the algorithm selected and the optical path difference in the sample.
Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.
2018-01-01
Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638
Scholl, Elizabeth Storer; Pirone, Antonella; Cox, Daniel H; Duncan, R Keith; Jacob, Michele H
2014-01-01
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses. PMID:24394769
Reverón, Inés; Rodríguez, Héctor; Campos, Gema; Curiel, José Antonio; Ascaso, Carmen; Carrascosa, Alfonso V.; Prieto, Alicia; de las Rivas, Blanca; Muñoz, Rosario; de Felipe, Félix López
2013-01-01
Background Owing to its antimicrobial properties dietary tannins may alter the functional efficacy of probiotic lactobacilli in the gastrointestinal (GI)-tract influencing their growth, viability and molecular adaptation to the intestinal environment. Methods and Findings The effects of tannic acid on Lactobacillus plantarum WCFS1 were studied by in vitro growth monitoring and visualizing the morphological alteration on the cell wall using transmission electron microscopy. Growth upon tannic acid was characterized by dose-dependent reductions of initial viable counts and extended lag phases. Lag phase-cells growing upon 0.5 mM tannic acid were abnormally shaped and experienced disturbance on the cell wall such as roughness, occasional leakage and release of cell debris, but resumed growth later at tannic acid concentrations high as 2.5 mM. To gain insight on how the response to tannic acid influenced the molecular adaptation of L. plantarum to the GI-tract conditions, gene expression of selected biomarkers for GI-survival was assessed by RT-qPCR on cDNA templates synthetized from mRNA samples obtained from cells treated with 0.5 or 2 mM tannic acid. Tannic acid-dependent gene induction was confirmed for selected genes highly expressed in the gut or with confirmed roles in GI-survival. No differential expression was observed for the pbp2A gene, a biomarker negatively related with GI-survival. However PBP2A was not labeled by Bocillin FL, a fluorescent dye-labeled penicillin V derivative, in the presence of tannic acid which suggests for enhanced GI-survival reportedly associated with the inactivation of this function. Conclusions Probiotic L. plantarum WCFS1 is able to overcome the toxic effects of tannic acid. This dietary constituent modulates molecular traits linked to the adaptation to intestinal environment in ways previously shown to enhance GI-survival. PMID:23776675
Kwei, Kevin A; Baker, Joffre B; Pelham, Robert J
2012-01-01
The phosphoinositide 3-kinase (PI3K) signaling pathway is significantly altered in a wide variety of human cancers, driving cancer cell growth and survival. Consequently, a large number of PI3K inhibitors are now in clinical development. To begin to improve the selection of patients for treatment with PI3K inhibitors and to identify de novo determinants of patient response, we sought to identify and characterize candidate genomic and phosphoproteomic biomarkers predictive of response to the selective PI3K inhibitor, GDC-0941, using the NCI-60 human tumor cell line collection. In this study, sixty diverse tumor cell lines were exposed to GDC-0941 and classified by GI(50) value as sensitive or resistant. The most sensitive and resistant cell lines were analyzed for their baseline levels of gene expression and phosphorylation of key signaling nodes. Phosphorylation or activation status of both the PI3K-Akt signaling axis and PARP were correlated with in vitro response to GDC-0941. A gene expression signature associated with in vitro sensitivity to GDC-0941 was also identified. Furthermore, in vitro siRNA-mediated silencing of two genes in this signature, OGT and DDN, validated their role in modulating sensitivity to GDC-0941 in numerous cell lines and begins to provide biological insights into their role as chemosensitizers. These candidate biomarkers will offer useful tools to begin a more thorough understanding of determinants of patient response to PI3K inhibitors and merit exploration in human cancer patients treated with PI3K inhibitors.
Kwei, Kevin A.; Baker, Joffre B.; Pelham, Robert J.
2012-01-01
The phosphoinositide 3-kinase (PI3K) signaling pathway is significantly altered in a wide variety of human cancers, driving cancer cell growth and survival. Consequently, a large number of PI3K inhibitors are now in clinical development. To begin to improve the selection of patients for treatment with PI3K inhibitors and to identify de novo determinants of patient response, we sought to identify and characterize candidate genomic and phosphoproteomic biomarkers predictive of response to the selective PI3K inhibitor, GDC-0941, using the NCI-60 human tumor cell line collection. In this study, sixty diverse tumor cell lines were exposed to GDC-0941 and classified by GI50 value as sensitive or resistant. The most sensitive and resistant cell lines were analyzed for their baseline levels of gene expression and phosphorylation of key signaling nodes. Phosphorylation or activation status of both the PI3K-Akt signaling axis and PARP were correlated with in vitro response to GDC-0941. A gene expression signature associated with in vitro sensitivity to GDC-0941 was also identified. Furthermore, in vitro siRNA-mediated silencing of two genes in this signature, OGT and DDN, validated their role in modulating sensitivity to GDC-0941 in numerous cell lines and begins to provide biological insights into their role as chemosensitizers. These candidate biomarkers will offer useful tools to begin a more thorough understanding of determinants of patient response to PI3K inhibitors and merit exploration in human cancer patients treated with PI3K inhibitors. PMID:23029544
NASA Astrophysics Data System (ADS)
di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio
2015-11-01
Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.
Functional metagenomics to decipher food-microbe-host crosstalk.
Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël
2015-02-01
The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.
Hakimuddin, Fatima; Paliyath, Gopinadhan; Meckling, Kelly
2006-10-04
Food components influence the physiology by modulating gene expression and biochemical pathways within the human body. The disease-preventive roles of several fruit and vegetable components have been related to such properties. Polyphenolic components such as flavonoids are strong antioxidants and induce the expression of several xenobiotic-detoxifying enzymes. The mechanism of selective cytotoxicity induced by red grape wine polyphenols against MCF-7 breast cancer cells was investigated in relation to their interference with calcium homeostasis. MCF-7 cells showed an increase in cytosolic calcium levels within 10 min of treatment with the polyphenols. Immunohistochemical localization of calmodulin with secondary gold-labeled antibodies showed similar levels of gold labeling in both MCF-7 cells and the spontaneously immortalized, normal MCF-10A cell line. MCF-7 cells treated with the red wine polyphenol fraction (RWPF) showed swelling of endoplasmic reticulum, dissolution of the nucleus, and loss of plasma membrane integrity as well as reduced mitochondrial membrane potential. These cells were arrested at the G2/M interphase. By contrast, MCF-10A cells did not show such changes after RWPF treatment. The results suggest that polyphenol-induced calcium release may disrupt mitochondrial function and cause membrane damage, resulting in selective cytotoxicity toward MCF-7 cells. This property could further be developed toward breast cancer prevention strategies either independently or in conjunction with conventional prevention therapies where a positive drug-nutrient interaction can be demonstrated.
Amorphous-silicon module hot-spot testing
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.
1985-01-01
Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.
Cell-type-specific role of ΔFosB in nucleus accumbens in modulating inter-male aggression.
Aleyasin, Hossein; Flanigan, Meghan E; Golden, Sam A; Takahashi, Aki; Menard, Caroline; Pfau, Madeline L; Multer, Jacob; Pina, Jacqueline; McCabe, Kathryn A; Bhatti, Naemal; Hodes, Georgia E; Heshmati, Mitra; Neve, Rachael L; Nestler, Eric J; Heller, Elizabeth A; Russo, Scott J
2018-06-11
A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc)-a key reward region-in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1) expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior, without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward. Significance Statement: Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for the individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens (NAc) in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses. Copyright © 2018 the authors.
Lewandowska, Urszula; Szewczyk, Karolina; Owczarek, Katarzyna; Hrabec, Zbigniew; Podsędek, Anna; Sosnowska, Dorota; Hrabec, Elżbieta
2013-01-01
There is a growing interest in plant polyphenols (including flavanols) that exhibit pleiotropic biological activities such as antiinflammatory, antioxidant, and anticancer effects. Here, we report for the first time the inhibition of MDA-MB-231 breast cancer cell viability and invasiveness by an evening primrose flavanol preparation (EPFP). We observed a decrease in MDA-MB-231 viability of 50% vs. a control after 72 h of incubation with EPFP at a concentration of 58 μM gallic acid equivalents (GAE) and an inhibition of their invasiveness of 65% vs. a control at 75 μM GAE after 48 h of incubation. EPFP caused a 10-fold reduction in matrix metalloproteinase-9 (MMP-9) activity at 100 μM GAE. Furthermore, through modulation of mRNA expression, EPFP reduced the expression levels of the following proteins: antiapoptotic Bcl-2, angiogenic vascular endothelial growth factor (VEGF), and 2 transcription factors (c-Jun, c-Fos). Moreover, analysis by flow cytometry revealed that EPFP induced apoptosis in MDA-MB-231 cells. In conclusion, our data shows that EPFP inhibits cell viability by increasing apoptosis and decreases cell invasiveness by decreasing angiogenesis.
Mooney, R A; Freund, G G; Way, B A; Bordwell, K L
1992-11-25
Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.
Photovoltaic materials and devices 2016
Sopori, Bhushan; Basnyat, Prakash; Mehta, Vishal
2016-01-01
Photovoltaic energy continues to grow with about 59 GW of solar PV installed in 2015. While most of the PV production (about 93%) was Si wafer based, both CdTe and CI(G)S are growing in their shares. There is also continued progress at the laboratory scale in OPV and dye sensitized solar cells. As the market grows, emphasis on reducing the cost of modules and systems continues to grow. This is the fourth special issue of this journal that is dedicated to gathering selected papers on recent advances in materials, devices, and modules/PV systems. This issue contains sixteen papers on variousmore » aspects of photovoltaics. As a result, these fall in four broad categories of novel materials, device design and fabrication, modules, and systems.« less
NASA Astrophysics Data System (ADS)
Zheng, Li-Rong; Che, Rong-Zheng; Liu, Jing; Du, Yong-Hua; Zhou, Ying-Li; Hu, Tian-Dou
2009-08-01
X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 GPa) were obtained by this cell.
NASA Technical Reports Server (NTRS)
1981-01-01
Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.
mda-7/IL-24 induces cell death in neuroblastoma through a novel mechanism involving AIF and ATM
Bhoopathi, Praveen; Lee, Nathaniel; Pradhan, Anjan K.; Shen, Xue-Ning; Das, Swadesh K.; Sarkar, Devanand; Emdad, Luni; Fisher, Paul B.
2016-01-01
Advanced stages of neuroblastoma, the most common extracranial malignant solid tumor of the central nervous system in infants and children, are refractive to therapy. Ectopic expression of melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24) promotes broad-spectrum antitumor activity in vitro, in vivo in pre-clinical animal models and in a Phase I clinical trial in patients with advanced cancers, without harming normal cells. mda-7/IL-24 exerts cancer-specific toxicity (apoptosis or toxic autophagy) by promoting ER stress and modulating multiple signal transduction pathways regulating cancer cell growth, invasion, metastasis, survival and angiogenesis. To enhance cancer-selective expression and targeted anti-cancer activity of mda-7/IL-24 we created a tropism-modified Cancer Terminator Virus (Ad.5/3-CTV), which selectively replicates in cancer cells producing robust expression of mda-7/IL-24. We now show that Ad.5/3-CTV induces profound neuroblastoma anti-proliferative activity and apoptosis in a caspase 3/9-independent manner both in vitro and in vivo in a tumor xenograft model. Ad.5/3-CTV promotes these effects through a unique pathway involving apoptosis inducing factor (AIF) translocation into the nucleus. Inhibiting AIF rescued neuroblastoma cells from Ad.5/3-CTV-induced cell death, whereas pan-caspase inhibition failed to promote survival. Ad.5/3-CTV infection of neuroblastoma cells increased ATM phosphorylation instigating nuclear translocation and increased γ–H2AX, triggering nuclear translocation and intensified expression of AIF. These results were validated further using two ATM small molecule inhibitors that attenuated PARP cleavage by inhibiting γ–H2AX, which in turn inhibited AIF changes in Ad.5/3-CTV-infected neuroblastoma cells. Taken together, we elucidate a novel pathway for mda-7/IL-24-induced caspase-independent apoptosis in neuroblastoma cells mediated through modulation of AIF, ATM and γ–H2AX. PMID:27197168
NASA Technical Reports Server (NTRS)
Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu
2008-01-01
Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.
Discovery and development of small molecule SHIP phosphatase modulators.
Viernes, Dennis R; Choi, Lydia B; Kerr, William G; Chisholm, John D
2014-07-01
Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds. © 2013 Wiley Periodicals, Inc.
Heightman, Tom D; Berdini, Valerio; Braithwaite, Hannah; Buck, Ildiko M; Cassidy, Megan; Castro, Juan; Courtin, Aurélie; Day, James E H; East, Charlotte; Fazal, Lynsey; Graham, Brent; Griffiths-Jones, Charlotte M; Lyons, John F; Martins, Vanessa; Muench, Sandra; Munck, Joanne M; Norton, David; O'Reilly, Marc; Palmer, Nick; Pathuri, Puja; Reader, Michael; Rees, David C; Rich, Sharna J; Richardson, Caroline; Saini, Harpreet; Thompson, Neil T; Wallis, Nicola G; Walton, Hugh; Wilsher, Nicola E; Woolford, Alison J-A; Cooke, Michael; Cousin, David; Onions, Stuart; Shannon, Jonathan; Watts, John; Murray, Christopher W
2018-05-31
Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.
Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M
2016-11-30
It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.
Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake
Wang, Fushun; Xu, Qiwu; Wang, Weishan; Takano, Takahiro; Nedergaard, Maiken
2012-01-01
Recent studies have shown that cerebellar Bergmann glia display coordinated Ca2+ transients in live mice. However, the functional significance of Bergmann glial Ca2+ signaling remains poorly understood. Using transgenic mice that allow selective stimulation of glial cells, we report here that cytosolic Ca2+ regulates uptake of K+ by Bergmann glia, thus providing a powerful mechanism for control of Purkinje cell-membrane potential. The decline in extracellular K+ evoked by agonist-induced Ca2+ in Bergmann glia transiently increased spike activity of Purkinje cells in cerebellar slices as well as in live anesthetized mice. Thus, Bergmann glia play a previously unappreciated role in controlling the membrane potential and thereby the activity of adjacent Purkinje cells. PMID:22547829
Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch
Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J. C.; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut
2017-01-01
Abstract The CRISPR–Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR–Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. PMID:28525578
Antioxidant gene therapy against neuronal cell death
Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo
2014-01-01
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264
Donnelly-Roberts, Diana; McGaraughty, Steve; Shieh, Char-Chang; Honore, Prisca; Jarvis, Michael F
2008-02-01
Multiple P2 receptor-mediated mechanisms exist by which ATP can alter nociceptive sensitivity following tissue injury. Evidence from a variety of experimental strategies, including genetic disruption studies and the development of selective antagonists, has indicated that the activation of P2X receptor subtypes, including P2X(3), P2X(2/3), P2X(4) and P2X(7), and P2Y (e.g., P2Y(2)) receptors, can modulate pain. For example, administration of a selective P2X(3) antagonist, A-317491, has been shown to effectively block both hyperalgesia and allodynia in different animal models of pathological pain. Intrathecally delivered antisense oligonucleotides targeting P2X(4) receptors decrease tactile allodynia following nerve injury. Selective antagonists for the P2X(7) receptor also reduce sensitization in animal models of inflammatory and neuropathic pain, providing evidence that purinergic glial-neural interactions are important modulators of noxious sensory neurotransmission. Furthermore, activation of P2Y(2) receptors leads to sensitization of polymodal transient receptor potential-1 receptors. Thus, ATP acting at multiple purinergic receptors, either directly on neurons (e.g., P2X(3), P2X(2/3), and P2Y receptors) or indirectly through neural-glial cell interactions (P2X(4) and P2X(7) receptors), alters nociceptive sensitivity. The development of selective antagonists for some of these P2 receptors has greatly aided investigations into the nociceptive role of ATP. This perspective highlights some of the recent advances to identify selective P2 receptor ligands, which has enhanced the investigation of ATP-related modulation of pain sensitivity.
Modulating the sensing properties of Escherichia coli-based bioreporters for cadmium and mercury.
Kang, Yerin; Lee, Woonwoo; Jang, Geupil; Kim, Bong-Gyu; Yoon, Youngdae
2018-06-01
Despite the large number of bioreporters developed to date, the ability to detect heavy metal(loid)s with bioreporters has thus far been limited owing to the lack of appropriate genetic systems. We here present a novel approach to modulate the selectivity and sensitivity of microbial whole-cell bioreporters (WCBs) for sensing metal(loid)s via the znt-operon from Escherichia coli, which were applied to quantify the bioavailability of these contaminants in environmental samples. The WCB harboring the fusion gene zntAp::egfp was used as a microbial metal(loid) sensor, which was turned on by the interaction between ZntR and metal(loid) ions. This design makes it possible to modulate the selectivity and sensitivity to metal(loid)s simply by changing the metal-binding property of ZntR and by disrupting the metal efflux system of E. coli, respectively. In fact, the E. coli cell-based bioreporter harboring zntAp::egfp showed multi-target responses to Cd(II), Hg(II), and Zn(II). However, the WCBs showed responses toward only Cd(II) and Hg(II) when the amino acid sequence of the metal-binding loop of ZntR was changed to CNHEPGTVCPIC and CPGDDSADC, respectively. Moreover, the sensitivity toward both Cd(II) and Hg(II) was enhanced when copA, which is known to export copper and silver, was deleted. Thus, our findings provide a strong foundation for expanding the target of WCBs from the currently limited number of genetic systems available.
Hernandez-Sanabria, Emma; Slomka, Vera; Herrero, Esteban R.; Kerckhof, Frederiek-Maarten; Zaidel, Lynette; Teughels, Wim; Boon, Nico
2017-01-01
Understanding the driving forces behind the shifts in the ecological balance of the oral microbiota will become essential for the future management and treatment of periodontitis. As the use of competitive approaches for modulating bacterial outgrowth is unexplored in the oral ecosystem, our study aimed to investigate both the associations among groups of functional compounds and the impact of individual substrates on selected members of the oral microbiome. We employed the Phenotype Microarray high-throughput technology to analyse the microbial cellular phenotypes of 15 oral bacteria. Multivariate statistical analysis was used to detect respiratory activity triggers and to assess similar metabolic activities. Carbon and nitrogen were relevant for the respiration of health-associated bacteria, explaining competitive interactions when grown in biofilms. Carbon, nitrogen, and peptides tended to decrease the respiratory activity of all pathobionts, but not significantly. None of the evaluated compounds significantly increased activity of pathobionts at both 24 and 48 h. Additionally, metabolite requirements of pathobionts were dissimilar, suggesting that collective modulation of their respiratory activity may be challenging. Flow cytometry indicated that the metabolic activity detected in the Biolog plates may not be a direct result of the number of bacterial cells. In addition, damage to the cell membrane may not influence overall respiratory activity. Our methodology confirmed previously reported competitive and collaborative interactions among bacterial groups, which could be used either as marker of health status or as targets for modulation of the oral environment. PMID:28638806
Evolving Novel Chemical Entities for Management of Benign Prostatic Hyperplasia.
Gupta, Sonal; Gupta, Gopal; Sharma, V L
2017-01-01
Proliferation of the smooth muscle and epithelial cells within the prostatic transition zone in older men leads to benign prostatic hyperplasia (BPH), which is hallmarked by the troublesome lower urinary tract symptoms. The affair responsible for the initiation and promotion of disease is still unresolved, though alpha-blockers and 5α-reductase inhibitors are used as management options for relief from the dynamic and static components respectively. Combination therapy including both the alpha blocker and 5α-reductase inhibitor is emerging as inclusive parcel for treatment. However, selective androgen receptor modulators (SARM) and selective estrogen receptor modulators (SERM) are the other management resources, which are in the limelight. This review gives a glimpse of BPH and the various chemical entities which have been reported in literature till date for the condition since 2005. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Technical Reports Server (NTRS)
Feldman, M. S.; Ferrara, L. A.; Havenstein, P. L.; Volonte, J. E.; Whipple, P. H.
1967-01-01
This study is one of several being conducted at Bellcomm and in Manned Space Flight whose purpose is to give guidance to the Apollo Applications Program's technical objectives by focusing on a longer range goal. The assumed mission in this case is a three-man flyby of Venus launched in November, 1973 on a single standard Saturn V. The selected flight configuration includes a Command and Service Module similar in some respects to Apollo, an Environmental Support Module which occupies the adapter area and a spent S-IVB stage which is utilized for habitable volume and structural support of a solar cell electrical power system. The total injected weight, 106,775 lbs., is within the capability of a single Saturn V of the early 1970's. The study is focused on the selection of subsystem technologies appropriate to long duration flight. The conclusions are reported in terms of the technical characteristics to be achieved as part of the Apollo Applications Program's long duration objectives.
Cox, David A; Helvering, Leah M
2006-03-09
Recent gene microarray studies have illustrated heterogeneity in gene expression changes not only between estrogens and selective estrogen receptor modulators (SERMs), but also across different SERM molecules. In ovariectomized rats, this phenomenon was observed with respect to a number of genes involved in collagen turnover and extracellular matrix (ECM) integrity in the uterus and vaginal tissues. Preliminary mechanistic data suggest that these effects on ECM integrity may have relevance in the context of the effect of estrogens and some SERMs to increase the risk of pelvic organ prolapse and the incidence of urinary incontinence in postmenopausal women. Given the pivotal role of ECM integrity and collagen turnover in other tissues and disease states, these processes may provide a fruitful target for future research into the mechanisms for the heterogeneous pharmacology of estrogens and SERMs across different cell types and target tissues.
Electron cryo-microscopy structure of the canonical TRPC4 ion channel
Vinayagam, Deivanayagabarathy; Mager, Thomas; Apelbaum, Amir; Bothe, Arne; Merino, Felipe; Hofnagel, Oliver; Gatsogiannis, Christos
2018-01-01
Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology. PMID:29717981
Beers, Stephen A; French, Ruth R; Chan, H T Claude; Lim, Sean H; Jarrett, Timothy C; Vidal, Regina Mora; Wijayaweera, Sahan S; Dixon, Sandra V; Kim, Hyungjin; Cox, Kerry L; Kerr, Jonathan P; Johnston, David A; Johnson, Peter W M; Verbeek, J Sjef; Glennie, Martin J; Cragg, Mark S
2010-06-24
Rituximab, a monoclonal antibody that targets CD20 on B cells, is now central to the treatment of a variety of malignant and autoimmune disorders. Despite this success, a substantial proportion of B-cell lymphomas are unresponsive or develop resistance, hence more potent anti-CD20 monoclonal antibodies (mAbs) are continuously being sought. Here we demonstrate that type II (tositumomab-like) anti-CD20 mAbs are 5 times more potent than type I (rituximab-like) reagents in depleting human CD20 Tg B cells, despite both operating exclusively via activatory Fcgamma receptor-expressing macrophages. Much of this disparity in performance is attributable to type I mAb-mediated internalization of CD20 by B cells, leading to reduced macrophage recruitment and the degradation of CD20/mAb complexes, shortening mAb half-life. Importantly, human B cells from healthy donors and most cases of chronic lymphatic leukemia and mantle cell lymphoma, showed rapid CD20 internalization that paralleled that seen in the Tg mouse B cells, whereas most follicular lymphoma and diffuse large B-cell lymphoma cells were far more resistant to CD20 loss. We postulate that differences in CD20 modulation may play a central role in determining the relative efficacy of rituximab in treating these diseases and strengthen the case for focusing on type II anti-CD20 mAb in the clinic.
The selective digital integrator: A new device for modulated polarization spectroscopy
NASA Astrophysics Data System (ADS)
Vrancic, Aljosa
1998-12-01
A new device, a selective digital integrator (SDI), for the acquisition of modulated polarization spectroscopy (MPS) signals is described. Special attention is given to the accurate measurement of very small (AC component of interest <10-3 x DC component), rapidly modulated (~50 kHz) signals at or below noise levels. Various data acquisition methods and problems associated with the collection of modulated signals are discussed. The SDI solves most of these problems and has the following advantages: it provides the average-time resolved profile of a modulated signal; it eliminates errors if the modulation is not sinusoidal; it enables separate measurements of the various phases of the signal modulation cycle; it permits simultaneous measurement of absorption, circular dichroism (CD) and linear dichroism (LD) spectra; it facilitates 3-D absorbance measurements; it has a wide gain-switching-free dynamic range (10 orders of magnitude or more); it offers a constant S/N ratio mode of operation; it eliminates the need for photomultiplier voltage feedback, and it has faster scanning speeds. The time-resolution, selectivity, wide dynamic range, and low-overhead on-the-fly data processing are useful for other modulated spectroscopy (MS) and non-MS experiments such as pulse height distribution and time-resolved pulse counting measurements. The advantages of the MPS-SDI method are tested on the first Rydberg electronic transitions of (+)-3- methylcyclopentanone. The experimental results validate the predicted SDI capabilities. However, they also point to two difficulties that had not been noted previously: the presence of LD in a gaseous sample and a pressure- dependence of the relative peak heights of the CD spectrum. Models for these anomalies are proposed. The presence of the oscillatory LD (but not an LD background) is explained with a sample cell model based on the observed polarization-dependent time-resolved profiles of transmitted light intensity. To obtain expressions for these intensities, a theoretical background, which provides a new approach to the treatment of light/matter interaction, is included as an Appendix. To explain the second anomaly, present only at high optical densities, a model based on the presence of scattered light is introduced and verified. The mode of correction for the scattering problem is outlined.
Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca; Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca; Tan, Bo, E-mail: tanbo@ryerson.ca
2015-09-10
Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approachmore » to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel cancer cells while favoring the adhesion of normal cells. - Highlights: • Si platforms with cytophobic/philic patterns were developed to program cell growth. • Both nanotopography and chemistry contributed to the cytophobic property. • Cytophobic zones efficiently repel and drive HeLa cells to migrate to adhesive sites. • The approach enables cell patterning, directionality, channelling, and trapping. • This approach paves the way for developing anti-cancer platforms.« less
Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.
Rau, Florian; Clemens, Jan; Naumov, Victor; Hennig, R Matthias; Schreiber, Susanne
2015-11-01
In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.
Gonzalez, Eva; Nagiel, Aaron; Lin, Alison J; Golan, David E; Michel, Thomas
2004-09-24
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Vikas; Sharma, Vikas; Singh, Vishal
The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as themore » most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of Countervailing Duty... silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507.20.80... photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells...
Wang, Yinglin; Yang, Lin; Zhang, Jing; Li, Renzhi; Zhang, Min; Wang, Peng
2014-04-14
Herein we selected the model organic donor-acceptor dye C218 and modulated the self-organization of dye molecules on the surface of titania by changing the dyeing solvent from chlorobenzene to a mixture of acetonitrile and tert-butanol. We further unveiled the relationship between the microstructure of a dye layer and the multichannel charge-transfer dynamics that underlie the photovoltaic performance of dye-sensitized solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma
Sareddy, Gangadhara R.; Li, Xiaonan; Liu, Jinyou; Viswanadhapalli, Suryavathi; Garcia, Lauren; Gruslova, Aleksandra; Cavazos, David; Garcia, Mike; Strom, Anders M.; Gustafsson, Jan-Ake; Tekmal, Rajeshwar Rao; Brenner, Andrew; Vadlamudi, Ratna K.
2016-01-01
Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM. PMID:27126081
NASA Astrophysics Data System (ADS)
Jenkins, J. Logan; Kao, Chris C.; Cayce, Jonathan M.; Mahadevan-Jansen, Anita; Jansen, E. Duco
2017-02-01
Infrared neural modulation (INM) is a label-free method for eliciting neural activity with high spatial selectivity in mammalian models. While there has been an emphasis on INM research towards applications in the peripheral nervous system and the central nervous system (CNS), the biophysical mechanisms by which INM occurs remains largely unresolved. In the rat CNS, INM has been shown to elicit and inhibit neural activity, evoke calcium signals that are dependent on glutamate transients and astrocytes, and modulate inhibitory GABA currents. So far, in vivo experiments have been restricted to layers I and II of the rat cortex which consists mainly of astrocytes, inhibitory neurons, and dendrites from deeper excitatory neurons owing to strong absorption of light in these layers. Deeper cortical layers (III-VI) have vastly different cell type composition, consisting predominantly of excitatory neurons which can be targeted for therapies such as deep brain stimulation. The neural responses to infrared light of deeper cortical cells have not been well defined. Acute thalamocortical brain slices will allow us to analyze the effects of INS on various components of the cortex, including different cortical layers and cell populations. In this study, we present the use of photoablation with an erbium:YAG laser to reduce the thickness of the dead cell zone near the cutting surface of brain slices. This technique will allow for more optical energy to reach living cells, which should contribute the successful transduction of pulsed infrared light to neural activity. In the future, INM-induced neural responses will lead to a finer characterization of the parameter space for the neuromodulation of different cortical cell types and may contribute to understanding the cell populations that are important for allowing optical stimulation of neurons in the CNS.
Exosomal tumor microRNA modulates premetastatic organ cells.
Rana, Sanyukta; Malinowska, Kamilla; Zöller, Margot
2013-03-01
Tumor exosomes educate selected host tissues toward a prometastatic phenotype. We demonstrated this for exosomes of the metastatic rat adenocarcinoma BSp73ASML (ASML), which modulate draining lymph nodes and lung tissue to support settlement of poorly metastatic BSp73ASML-CD44v4-v7 knockdown (ASML-CD44v(kd)) cells. Now, we profiled mRNA and microRNA (miRNA) of ASML(wt) and ASML-CD44v(kd) exosomes to define the pathway(s), whereby exosomes prepare the premetastatic niche. ASML exosomes, recovered in draining lymph nodes after subcutaneous injection, preferentially are taken up by lymph node stroma cells (LnStr) and lung fibroblasts (LuFb) that were chosen as exosome targets. ASML(wt) and ASML-CD44v(kd) exosomes contain a restricted mRNA and miRNA repertoire that differs significantly between the two lines and exosomes thereof due to CD44v6 influencing gene and miRNA transcription/posttranscriptional regulation. Exosomal mRNA and miRNA are recovered in target cells, where transferred miRNA significantly affected mRNA translation. Besides others, this was exemplified for abundant ASML(wt)-exosomal miR-494 and miR-542-3p, which target cadherin-17 (cdh17). Concomitantly, matrix metalloproteinase transcription, accompanying cdh17 down-regulation, was upregulated in LnStr transfected with miR-494 or miR-542-3p or co-cultured with tumor exosomes. Thus, tumor exosomes target non-transformed cells in premetastatic organs and modulate premetastatic organ cells predominantly through transferred miRNA, where miRNA from a metastasizing tumor prepares premetastatic organ stroma cells for tumor cell hosting. Fitting the demands of metastasizing tumor cells, transferred exosomal miRNA mostly affected proteases, adhesion molecules, chemokine ligands, cell cycle- and angiogenesis-promoting genes, and genes engaged in oxidative stress response. The demonstration of function-competent exosomal miRNA in host target cells encourages exploiting exosomes as a therapeutic gene delivery system.
Octahydropyrrolo[3,4-c]pyrrole negative allosteric modulators of mGlu1.
Manka, Jason T; Rodriguez, Alice L; Morrison, Ryan D; Venable, Daryl F; Cho, Hyekyung P; Blobaum, Anna L; Daniels, J Scott; Niswender, Colleen M; Conn, P Jeffrey; Lindsley, Craig W; Emmitte, Kyle A
2013-09-15
Development of SAR in an octahydropyrrolo[3,4-c]pyrrole series of negative allosteric modulators of mGlu1 using a functional cell-based assay is described in this Letter. The octahydropyrrolo[3,4-c]pyrrole scaffold was chosen as an isosteric replacement for the piperazine ring found in the initial hit compound. Characterization of selected compounds in protein binding assays was used to identify the most promising analogs, which were then profiled in P450 inhibition assays in order to further assess the potential for drug-likeness within this series of compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bachir, Alexia I; Horwitz, Alan Rick; Nelson, W James; Bianchini, Julie M
2017-07-05
Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Singh, Sukhbir S; Belland, Liane; Leyland, Nicholas; von Riedemann, Sarah; Murji, Ally
2017-12-21
Uterine fibroids are common in women of reproductive age and can have a significant impact on quality of life and fertility. Although a number of international obstetrics/gynecology societies have issued evidence-based clinical practice guidelines for the management of symptomatic uterine fibroids, many of these guidelines do not yet reflect the most recent clinical evidence and approved indication for one of the key medical management options: the selective progesterone receptor modulator class. This article aims to share the clinical experience gained with selective progesterone receptor modulators in Europe and Canada by reviewing the historical development of selective progesterone receptor modulators, current best practices for selective progesterone receptor modulator use based on available data, and potential future uses for selective progesterone receptor modulators in uterine fibroids and other gynecologic conditions. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Electroluminescence of thin-film CdTe solar cells and modules
NASA Astrophysics Data System (ADS)
Raguse, John Michael
Thin-film photovoltaics has the potential to be a major source of world electricity. Mitigation of non-uniformities in thin-film solar cells and modules may help improve photovoltaic conversion efficiencies. In this manuscript, a measurement technique is discussed in detail which has the capability of detecting such non-uniformities in a form useful for analysis. Thin-film solar cells emit radiation while operating at forward electrical bias, analogous to an LED, a phenomena known as electroluminescence (EL). This process relatively is inefficient for polycrystalline CdTe devices, on the order of 10-4%, as most of the energy is converted into heat, but still strong enough for many valuable measurements. A EL system was built at the Colorado State University Photovoltaics Laboratory to measure EL from CdTe cells and modules. EL intensity normalized to exposure time and injection current density has been found to correlate very well with the difference between ideal and measured open-circuit voltage from devices that include a GaAs cell, an AlGaAs LED, and several CdTe cells with variations in manufacturing. Furthermore, these data points were found to be in good agreement when overlaid with calibrated data from two additional sources. The magnitude of the inverse slope of the fit is in agreement with the thermal voltage and the intercept was found to have a value near unity, in agreement with theory. The expanded data set consists of devices made from one of seven different band gaps and spans eight decades of EQELED efficiencies. As expected, cells which exhibit major failure of light-dark J-V superposition did not follow trend of well-behaved cells. EL images of selected defects from CdTe cells and modules are discussed and images are shown to be highly sensitive to defects in devices, since the intensity depends exponentially on the cells' voltages. The EL technique has proven to be a useful high-throughput tool for screening of cells. In addition to EL images, other opto-electronics characterization techniques were used to analyze defects in cells and modules such as weak-diode areas, cell delineation near substrate edge, non-uniform chlorine passivation, holes in back contact, high-resistance foreign layer, high back-contact sheet resistance, a discontinuous P3 line scribe (intercell shunt) and shunt through a cell (intracell shunt). Although EL images are proficient at illustrating the location and severity of defects with potentially high spatial resolution and short measurement times, their ability to identify the cause of such defects is limited. EL in concert with Light-Beam-Induced Current (LBIC), however, makes for a powerful ensemble as LBIC can probe different film layers at arbitrary voltage bias conditions, albeit with increased measurement times and potentially reduced spatial resolution.
2017-01-01
Protein phosphatase‐1 and phosphatase‐2A are two ubiquitously expressed enzymes known to catalyze the majority of dephosphorylation reactions on serine and threonine inside cells. They play roles in most cellular processes and are tightly regulated by regulatory subunits in holoenzymes. Their misregulation and malfunction contribute to disease development and progression, such as in cancer, diabetes, viral infections, and neurological as well as heart diseases. Therefore, targeting these phosphatases for therapeutic use would be highly desirable; however, their complex regulation and high conservation of the active site have been major hurdles for selectively targeting them in the past. In the last decade, new approaches have been developed to overcome these hurdles and have strongly revived the field. I will focus here on peptide‐based approaches, which contributed to showing that these phosphatases can be targeted selectively and aided in rethinking the design of selective phosphatase modulators. Finally, I will give a perspective on www.depod.org, the human dephosphorylation database, and how it can aid phosphatase modulator design. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. PMID:28876538
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Countervailing... photovoltaic cells, whether or not assembled into modules (solar cells), from the People's Republic of China... material injury to a U.S. industry.\\1\\ \\1\\ See Crystalline Silicon Photovoltaic Cells and Modules from...
Emotional modulation of body-selective visual areas.
Peelen, Marius V; Atkinson, Anthony P; Andersson, Frederic; Vuilleumier, Patrik
2007-12-01
Emotionally expressive faces have been shown to modulate activation in visual cortex, including face-selective regions in ventral temporal lobe. Here, we tested whether emotionally expressive bodies similarly modulate activation in body-selective regions. We show that dynamic displays of bodies with various emotional expressions vs neutral bodies, produce significant activation in two distinct body-selective visual areas, the extrastriate body area and the fusiform body area. Multi-voxel pattern analysis showed that the strength of this emotional modulation was related, on a voxel-by-voxel basis, to the degree of body selectivity, while there was no relation with the degree of selectivity for faces. Across subjects, amygdala responses to emotional bodies positively correlated with the modulation of body-selective areas. Together, these results suggest that emotional cues from body movements produce topographically selective influences on category-specific populations of neurons in visual cortex, and these increases may implicate discrete modulatory projections from the amygdala.
Voltage gated sodium channels as drug discovery targets
Bagal, Sharan K; Marron, Brian E; Owen, Robert M; Storer, R Ian; Swain, Nigel A
2015-01-01
Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter. PMID:26646477
Designing degradable hydrogels for orthogonal control of cell microenvironments
Kharkar, Prathamesh M.
2013-01-01
Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications. PMID:23609001
Chiantore, Maria Vincenza; Mangino, Giorgio; Iuliano, Marco; Zangrillo, Maria Simona; De Lillis, Ilaria; Vaccari, Gabriele; Accardi, Rosita; Tommasino, Massimo; Fiorucci, Gianna; Romeo, Giovanna
2017-01-01
Human Papilloma Viruses (HPVs) are the causative agents of cervical cancer although other types of cancers are associated with HPV infection. Type I Interferons can interfere with HPV E6- and/or E7-dependent transformation and can affect microRNA (miRNA) expression. Cancer cells show a specific pattern of miRNA expression and HPVs are able to modulate miRNAs expressed in infected cells. Keratinocytes transduced with E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 (K16 and K38) were studied to analyze the involvement of HPV oncoproteins in the anti-proliferative activity of IFN-β. In view of our previous data showing senescence induction by the cytokine in K38 cells, we observe that IFN-β treatment leads to p53-indipendent apoptosis in K16 cells whereas induces senescence in K16 cells if E6 is silenced and p53 expression is restored. The levels of selected miRNAs, deregulated in K16 and K38 cells, can be modulated by IFN-β when E6 and E7 proteins of HPV-16, but not HPV-38, are expressed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae.
Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo
2016-10-26
The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes.
Osmotic modulation of chromatin impacts on efficiency and kinetics of cell fate modulation.
Lima, A F; May, G; Colunga, J; Pedreiro, S; Paiva, A; Ferreira, L; Enver, T; Iborra, F J; Pires das Neves, R
2018-05-08
Chromatin structure is a major regulator of transcription and gene expression. Herein we explore the use of osmotic modulation to modify the chromatin structure and reprogram gene expression. In this study we use the extracellular osmotic pressure as a chromatin structure and transcriptional modulator. Hyposmotic modulation promotes chromatin loosening and induces changes in RNA polymerase II (Pol II) activity. The chromatin decondensation opens space for higher amounts of DNA engaged RNA Pol II. Hyposmotic modulation constitutes an alternative route to manipulate cell fate decisions. This technology was tested in model protocols of induced pluripotency and transdifferentiation in cells growing in suspension and adherent to substrates, CD34 + umbilical-cord-blood (UCB), fibroblasts and B-cells. The efficiency and kinetics of these cell fate modulation processes were improved by transient hyposmotic modulation of the cell environment.
76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
...)] Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1... injured by reason of imports from China of crystalline silicon photovoltaic cells and modules, provided... imports of crystalline silicon photovoltaic cells and modules from China. Accordingly, effective October...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lecomte, Sylvain; Lelong, Marie; Bourgine, Gaëlle
Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as amore » model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases. - Highlights: • SERM activity of dietary compounds on proliferation and differentiation is studied. • All the dietary compounds tested transactivate estrogen receptors. • Apigenin and resveratrol could be good candidates for future therapeutics. • Daidzein and zearalenone are to be avoided to maintain human health.« less
Rani, Bhavna; Malfettone, Andrea; Dituri, Francesco; Soukupova, Jitka; Lupo, Luigi; Mancarella, Serena; Fabregat, Isabel; Giannelli, Gianluigi
2018-03-07
Cancer stem cells (CSCs) niche in the tumor microenvironment is responsible for cancer recurrence and therapy failure. To better understand its molecular and biological involvement in hepatocellular carcinoma (HCC) progression, one can design more effective therapies and tailored then to individual patients. While sorafenib is currently the only approved drug for first-line treatment of advanced stage HCC, its role in modulating the CSC niche is estimated to be small. By contrast, transforming growth factor (TGF)-β pathway seems to influence the CSC and thus may impact hallmarks of HCC, such as liver fibrosis, cirrhosis, and tumor progression. Therefore, blocking this pathway may offer an appealing and druggable target. In our study, we have used galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGFβI/ALK5) activation, currently under clinical investigation in HCC patients. Because the drug resistance is mainly mediated by CSCs, we tested the effects of galunisertib on stemness phenotype in HCC cells to determine whether TGF-β signaling modulates CSC niche and drug resistance. Galunisertib modulated the expression of stemness-related genes only in the invasive (HLE and HLF) HCC cells inducing a decreased expression of CD44 and THY1. Furthermore, galunisertib also reduced the stemness-related functions of invasive HCC cells decreasing the formation of colonies, liver spheroids and invasive growth ability. Interestingly, CD44 loss of function mimicked the galunisertib effects on HCC stemness-related functions. Galunisertib treatment also reduced the expression of stemness-related genes in ex vivo human HCC specimens. Our observations are the first evidence that galunisertib effectiveness overcomes stemness-derived aggressiveness via decreased expression CD44 and THY1.
Improving stability of prediction models based on correlated omics data by using network approaches.
Tissier, Renaud; Houwing-Duistermaat, Jeanine; Rodríguez-Girondo, Mar
2018-01-01
Building prediction models based on complex omics datasets such as transcriptomics, proteomics, metabolomics remains a challenge in bioinformatics and biostatistics. Regularized regression techniques are typically used to deal with the high dimensionality of these datasets. However, due to the presence of correlation in the datasets, it is difficult to select the best model and application of these methods yields unstable results. We propose a novel strategy for model selection where the obtained models also perform well in terms of overall predictability. Several three step approaches are considered, where the steps are 1) network construction, 2) clustering to empirically derive modules or pathways, and 3) building a prediction model incorporating the information on the modules. For the first step, we use weighted correlation networks and Gaussian graphical modelling. Identification of groups of features is performed by hierarchical clustering. The grouping information is included in the prediction model by using group-based variable selection or group-specific penalization. We compare the performance of our new approaches with standard regularized regression via simulations. Based on these results we provide recommendations for selecting a strategy for building a prediction model given the specific goal of the analysis and the sizes of the datasets. Finally we illustrate the advantages of our approach by application of the methodology to two problems, namely prediction of body mass index in the DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome study (DILGOM) and prediction of response of each breast cancer cell line to treatment with specific drugs using a breast cancer cell lines pharmacogenomics dataset.
Csukai, M; Mochly-Rosen, D
1999-04-01
Protein kinase C (PKC) isozymes are highly homologous kinases and several different isozymes can be present in a cell. Each isozyme is likely to mediate unique functions, but pharmacological tools to explore their isozyme-specific roles have not been available until recently. In this review, we describe the development and application of isozyme-selective inhibitors of PKC. The identification of these inhibitors stems from the observation that PKC isozymes are each localised to unique subcellular locations following activation. Inhibitors of this isozyme-unique localisation have been shown to act as selective inhibitors of the functions of individual isozymes. The identification of isozyme-specific inhibitors should allow the exploration of individual PKC isozyme function in a wide range of cell systems. Copyright 1999 The Italian Pharmacological Society.
NASA Technical Reports Server (NTRS)
Griffith, J. S.
1979-01-01
Qualification tests of solar cell modules are described. These modules continue to show improvement over earlier type modules tested. Cell cracking and delamination are less prevalent, and interconnect problems and electrical degradation from environmental testing are now rare.
Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W
2013-01-01
HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death. PMID:23519119
Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W
2013-03-21
HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.
Hümmer, Christiane; Poppe, Carolin; Bunos, Milica; Stock, Belinda; Wingenfeld, Eva; Huppert, Volker; Stuth, Juliane; Reck, Kristina; Essl, Mike; Seifried, Erhard; Bonig, Halvard
2016-03-16
Automation of cell therapy manufacturing promises higher productivity of cell factories, more economical use of highly-trained (and costly) manufacturing staff, facilitation of processes requiring manufacturing steps at inconvenient hours, improved consistency of processing steps and other benefits. One of the most broadly disseminated engineered cell therapy products is immunomagnetically selected CD34+ hematopoietic "stem" cells (HSCs). As the clinical GMP-compliant automat CliniMACS Prodigy is being programmed to perform ever more complex sequential manufacturing steps, we developed a CD34+ selection module for comparison with the standard semi-automatic CD34 "normal scale" selection process on CliniMACS Plus, applicable for 600 × 10(6) target cells out of 60 × 10(9) total cells. Three split-validation processings with healthy donor G-CSF-mobilized apheresis products were performed; feasibility, time consumption and product quality were assessed. All processes proceeded uneventfully. Prodigy runs took about 1 h longer than CliniMACS Plus runs, albeit with markedly less hands-on operator time and therefore also suitable for less experienced operators. Recovery of target cells was the same for both technologies. Although impurities, specifically T- and B-cells, were 5 ± 1.6-fold and 4 ± 0.4-fold higher in the Prodigy products (p = ns and p = 0.013 for T and B cell depletion, respectively), T cell contents per kg of a virtual recipient receiving 4 × 10(6) CD34+ cells/kg was below 10 × 10(3)/kg even in the worst Prodigy product and thus more than fivefold below the specification of CD34+ selected mismatched-donor stem cell products. The products' theoretical clinical usability is thus confirmed. This split validation exercise of a relatively short and simple process exemplifies the potential of automatic cell manufacturing. Automation will further gain in attractiveness when applied to more complex processes, requiring frequent interventions or handling at unfavourable working hours, such as re-targeting of T-cells.
Graphene-augmented nanofiber scaffolds demonstrate new features in cells behaviour
NASA Astrophysics Data System (ADS)
Kazantseva, Jekaterina; Ivanov, Roman; Gasik, Michael; Neuman, Toomas; Hussainova, Irina
2016-07-01
Three-dimensional (3D) customized scaffolds capable to mimic a native extracellular matrix open new frontiers in cells manipulation and advanced therapy. The major challenge is in a proper substrate for in vitro models on engineered scaffolds, capable to modulate cells differentiation. Here for the first time we demonstrate novel design and functionality of the 3D porous scaffolds of aligned, self-assembled ceramic nanofibers of ultra-high anisotropy ratio (~107), augmented into graphene shells. This unique hybrid nano-network allows an exceptional combination of selective guidance stimuli of stem cells differentiation, immune reactions variations, and local immobilization of cancer cells, which was not available before. The scaffolds were shown to be able to direct human mesenchymal stem cells (important for stimulation of neuronal and muscle cells) preferential orientation, to suppress major inflammatory factors, and to localize cancer cells; all without additions of specific culture media. The selective downregulation of specific cytokines is anticipated as a new tool for understanding of human immune system and ways of treatment of associated diseases. The effects observed are self-regulated by cells only, without side effects, usually arising from use of external factors. New scaffolds may open new horizons for stem cells fate control such as towards axons and neurites regeneration (Alzheimer’s disease) as well as cancer therapy development.
77 FR 72884 - Crystalline Silicon Photovoltaic Cells and Modules From China
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1\\ developed... imports of crystalline silicon photovoltaic cells and modules from China, provided for in subheadings 8501... silicon photovoltaic cells and modules from China. Chairman Irving A. Williamson and Commissioner Dean A...
Hotspot Endurance Of Solar-Cell Modules
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.
1989-01-01
Procedure for evaluating modules for use with concentrators now available. Solar simulator illuminates photovoltaic cells through Fresnel lens of concentrator module. Module and test cells inspected visually at 24-h intervals during test and again when test completed. After test, electrical characteristics of module measured for comparison with pretest characteristics.
Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64+ cells
Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M.; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich
2015-01-01
Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64+ monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients’ inflamed joints that comprised enhanced numbers of CD64+ cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64+ cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64+ cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions. PMID:26670584
Zhang, Li; Paine, Catherine
2010-01-01
Nuclear orphan receptors 4A (NR4A) are early responsive genes that belong to the superfamily of hormone receptors and comprise NR4A1, NR4A2 and NR4A3. They have been associated to transcriptional activation of multiple genes involved in inflammation, apoptosis and cell cycle control. Here, we establish a link between NR4As and adenosine, a paradoxical inflammatory molecule that can contribute to persistence of inflammation or mediate inflammatory shutdown. Transcriptomics screening of the human mast cell-line HMC-1 revealed a sharp induction of transcriptionally active NR4A2 and NR4A3 by the adenosine analogue NECA. The concomitant treatment of NECA and the adenosine receptor A2A (A2AAR) selective antagonist SCH-58261 exaggerated this effect, suggesting that upregulation of these factors in mast cells is mediated by other AR subtypes (A2B and A3) and that A2AAR activation counteracts NR4A2 and NR4A3 induction. In agreement with this, A2AAR-silencing amplified NR4A induction by NECA. Interestingly, a similar A2AAR modulatory effect was observed on ERK1/2 phosphorylation because A2AAR blockage exacerbated NECA-mediated phosphorylation of ERK1/2. In addition, PKC or MEK1/2 inhibition prevented ERK1/2 phosphorylation and antagonized AR-mediated induction of NR4A2 and NR4A3, suggesting the involvement of these kinases in AR to NR4A signaling. Finally, we observed that selective A2AAR activation with CGS-21680 blocked PMA-induced ERK1/2 phosphorylation and modulated the overexpression of functional nuclear orphan receptors 4A. Taken together, these results establish a novel PKC/ERK/nuclear orphan receptors 4A axis for adenosinergic signaling in mast cells, which can be modulated by A2AAR activation, not only in the context of adenosine but of other mast cell activating stimuli as well. PMID:21234122
Marhefka, Craig A; Gao, Wenqing; Chung, Kiwon; Kim, Juhyun; He, Yali; Yin, Donghua; Bohl, Casey; Dalton, James T; Miller, Duane D
2004-02-12
A series of nonsteroidal ligands were synthesized as second-generation agonists for the androgen receptor (AR). These ligands were designed to eliminate metabolic sites identified in one of our first-generation AR agonists, which was inactive in vivo due to its rapid metabolism to inactive constituents. The binding affinity of these compounds was evaluated using AR isolated from rat ventral prostate. These second-generation compounds bound the AR in a high affinity and stereoselective manner, with K(i) values ranging from about 4 to 130 nM. The ability of these ligands to stimulate AR-mediated transcriptional activation was examined in cells transfected with the human AR and a hormone-dependent luciferase reporter gene. Although some compounds were unable to stimulate AR-mediated transcription, several demonstrated activity similar to that of dihydrotestosterone (DHT, an endogenous steroidal ligand for the AR). We also evaluated the in vivo pharmacologic activity of selected compounds in castrated male rats. Three compounds were identified as selective androgen receptor modulators (SARMs), exhibiting significant anabolic activity while having only moderate to minimal androgenic activity in vivo.
Marhefka, Craig A.; Gao, Wenqing; Chung, Kiwon; Kim, Juhyun; He, Yali; Yin, Donghua; Bohl, Casey; Dalton, James T.; Miller, Duane D.
2007-01-01
A series of nonsteroidal ligands were synthesized as second-generation agonists for the androgen receptor (AR). These ligands were designed to eliminate metabolic sites identified in one of our first-generation AR agonists, which was inactive in vivo due to its rapid metabolism to inactive constituents. The binding affinity of these compounds was evaluated using AR isolated from rat ventral prostate. These second-generation compounds bound the AR in a high affinity and stereoselective manner, with Ki values ranging from about 4 to 130 nM. The ability of these ligands to stimulate AR-mediated transcriptional activation was examined in cells transfected with the human AR and a hormone-dependent luciferase reporter gene. Although some compounds were unable to stimulate AR-mediated transcription, several demonstrated activity similar to that of dihydrotestosterone (DHT, an endogenous steroidal ligand for the AR). We also evaluated the in vivo pharmacologic activity of selected compounds in castrated male rats. Three compounds were identified as selective androgen receptor modulators (SARMs), exhibiting significant anabolic activity while having only moderate to minimal androgenic activity in vivo. PMID:14761201
Jin, Xiaoxin; Cai, Lifeng; Wang, Changfa; Deng, Xiaofeng; Yi, Shengen; Lei, Zhao; Xiao, Qiangsheng; Xu, Hongbo; Luo, Hongwu; Sun, Jichun
2018-02-23
Hepatocellular carcinoma is one of the most common solid tumors in the digestive system. The prognosis of patients with hepatocellular carcinoma is still poor due to the acquisition of multi-drug resistance. TNF Related Apoptosis Inducing Ligand (TRAIL), an attractive anticancer agent, exerts its effect of selectively inducing apoptosis in tumor cells through death receptors and the formation of the downstream death-inducing signaling complex, which activates apical caspases 3/8 and leads to apoptosis. However, hepatocellular carcinoma cells are resistant to TRAIL. Non-coding RNAs, including long non-coding RNAs (lncRNAs) and miRNAs have been regarded as major regulators of normal development and diseases, including cancers. Moreover, lncRNAs and miRNAs have been reported to be associated with multi-drug resistance. In the present study, we investigated the mechanism by which TRAIL resistance of hepatocellular carcinoma is affected from the view of non-coding RNA regulation. We selected and validated candidate miRNAs, miR-24 and miR-221, that regulated caspase 3/8 expression through direct targeting, and thereby affecting TRAIL-induced tumor cell apoptosis TRAIL resistance of hepatocellular carcinoma. In addition, we revealed that CASC2, a well-established tumor suppressive long non-coding RNA, could serve as a "Sponge" of miR-24 and miR-221, thus modulating TRAIL-induced tumor cell apoptosis TRAIL resistance of hepatocellular carcinoma. Taken together, we demonstrated a CASC2/miR-24/miR-221 axis, which can affect the TRAIL resistance of hepatocellular carcinoma through regulating caspase 3/8; through acting as a "Sponge" of miR-24 and miR-221, CASC2 may contribute to improving hepatocellular carcinoma TRAIL resistance, and finally promoting the treatment efficiency of TRAIL-based therapies.
Thermally-Activated Metal-to-Glass Bonding
NASA Technical Reports Server (NTRS)
Gallagher, B. D.
1986-01-01
Hermetic seals formed easily by use of metallo-organic film. Metallo-organic film thermally bonded to glass and soldered or welded to form hermetic seal. Film applied as ink consisting of silver neodecanoate in xylene. Relative amounts of ingredients selected to obtain desired viscosity. Material applied by printing or even by scribing with pen. Sealing technique useful in making solar-cell modules, microelectronic packages, and other hermetic silicon devices.
Loukogeorgakis, Stavros P; De Coppi, Paolo
2017-07-01
The amniotic fluid has been identified as an untapped source of cells with broad potential, which possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. CD117(c-Kit)+ cells selected from amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumors, making them ideal candidates for regenerative medicine applications. Moreover, their ability to engraft in injured organs and modulate immune and repair responses of host tissues, suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases. Although significant questions remain regarding the origin, heterogeneous phenotype, and expansion potential of amniotic fluid stem cells, evidence to date supports their potential role as a valuable stem cell source for the field of regenerative medicine. Stem Cells 2017;35:1663-1673. © 2016 AlphaMed Press.
Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver
Stadlbauer, Sven; Rios, Pablo; Ohmori, Ken; Suzuki, Keisuke; Köhn, Maja
2015-01-01
Natural polyphenols like oligomeric catechins (procyanidins) derived from green tea and herbal medicines are interesting compounds for pharmaceutical research due to their ability to protect against carcinogenesis in animal models. It is nevertheless still unclear how intracellular pathways are modulated by polyphenols. Monomeric polyphenols were shown to affect the activity of some protein phosphatases (PPs). The three phosphatases of regenerating liver (PRLs) are close relatives and promising therapeutic targets in cancer. In the present study we show that several procyanidins inhibit the activity of all three members of the PRL family in the low micromolar range, whereas monomeric epicatechins show weak inhibitory activity. Increasing the number of catechin units in procyanidins to more than three does not further enhance the potency. Remarkably, the tested procyanidins showed selectivity in vitro when compared to other PPs, and over 10-fold selectivity toward PRL-1 over PRL-2 and PRL-3. As PRL overexpression induces cell migration compared to control cells, the effect of procyanidins on this phenotype was studied. Treatment with procyanidin C2 led to a decrease in cell migration of PRL-1- and PRL-3-overexpressing cells, suggesting the compound-dependent inhibition of PRL-promoted cell migration. Treatment with procyanidin B3 led to selective suppression of PRL-1 overexpressing cells, thereby corroborating the selectivity toward PRL-1- over PRL-3 in vitro. Together, our results show that procyanidins negatively affect PRL activity, suggesting that PRLs could be targets in the polypharmacology of natural polyphenols. Furthermore, they are interesting candidates for the development of PRL-1 inhibitors due to their low cellular toxicity and the selectivity within the PRL family. PMID:26226290
Hartung, Jeffrey P.; Peach, Robert J.; Boehm, Marcus F.; Rosen, Hugh; Smith, Heather; Brooks, Jennifer L.; Timony, Gregg A.; Olson, Allan D.; Gujrathi, Sheila; Frohna, Paul A.
2017-01-01
Abstract The sphingosine‐1‐phosphate 1 receptor (S1P1R) is expressed by lymphocytes, dendritic cells, and vascular endothelial cells and plays a role in the regulation of chronic inflammation and lymphocyte egress from peripheral lymphoid organs. Ozanimod is an oral selective modulator of S1P1R and S1P5R receptors in clinical development for the treatment of chronic immune‐mediated, inflammatory diseases. This first‐in‐human study characterized the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of ozanimod in 88 healthy volunteers using a range of single and multiple doses (7 and 28 days) and a dose‐escalation regimen. Ozanimod was generally well tolerated up to a maximum single dose of 3 mg and multiple doses of 2 mg/d, with no severe adverse events (AEs) and no dose‐limiting toxicities. The most common ozanimod‐related AEs included headache, somnolence, dizziness, nausea, and fatigue. Ozanimod exhibited linear PK, high steady‐state volume of distribution (73–101 L/kg), moderate oral clearance (204–227 L/h), and an elimination half‐life of approximately 17 to 21 hours. Ozanimod produced a robust dose‐dependent reduction in total peripheral lymphocytes, with a median decrease of 65% to 68% observed after 28 days of dosing at 1 and 1.5 mg/d, respectively. Ozanimod selectivity affected lymphocyte subtypes, causing marked decreases in cells expressing CCR7 and variable decreases in subsets lacking CCR7. A dose‐dependent negative chronotropic effect was observed following the first dose, with the dose‐escalation regimen attenuating the first‐dose negative chronotropic effect. Ozanimod safety, PK, and PD properties support the once‐daily regimens under clinical investigation. PMID:28398597
Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C
2017-11-10
Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.
Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe
2015-03-01
A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Amengual, Jennifer E; Prabhu, Sathyen A; Lombardo, Maximilian; Zullo, Kelly; Johannet, Paul M; Gonzalez, Yulissa; Scotto, Luigi; Serrano, Xavier Jirau; Wei, Ying; Duong, Jimmy; Nandakumar, Renu; Cremers, Serge; Verma, Akanksha; Elemento, Olivier; O'Connor, Owen A
2017-06-15
Purpose: Pan-class I/II histone deacetylase (HDAC) inhibitors are effective treatments for select lymphomas. Isoform-selective HDAC inhibitors are emerging as potentially more targeted agents. ACY-1215 (ricolinostat) is a first-in-class selective HDAC6 inhibitor. To better understand the discrete function of HDAC6 and its role in lymphoma, we developed a lymphoma cell line resistant to ACY-1215. Experimental Design: The diffuse large B-cell lymphoma cell line OCI-Ly10 was exposed to increasing concentrations of ACY-1215 over an extended period of time, leading to the development of a resistant cell line. Gene expression profiling (GEP) was performed to investigate differentially expressed genes. Combination studies of ACY-1215 and ibrutinib were performed in cell lines, primary human lymphoma tissue, and a xenograft mouse model. Results: Systematic incremental increases in drug exposure led to the development of distinct resistant cell lines with IC 50 values 10- to 20-fold greater than that for parental lines. GEP revealed upregulation of MAPK10, HELIOS, HDAC9, and FYN, as well as downregulation of SH3BP5 and LCK. Gene-set enrichment analysis (GSEA) revealed modulation of the BTK pathway. Ibrutinib was found to be synergistic with ACY-1215 in cell lines as well as in 3 primary patient samples of lymphoma. In vivo confirmation of antitumor synergy was demonstrated with a xenograft of DLBCL. Conclusions: The development of this ACY-1215-resistant cell line has provided valuable insights into the mechanistic role of HDAC6 in lymphoma and offered a novel method to identify rational synergistic drug combinations. Translation of these findings to the clinic is underway. Clin Cancer Res; 23(12); 3084-96. ©2016 AACR . ©2016 American Association for Cancer Research.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Postponement of... investigation of crystalline silicon photovoltaic cells, whether or not assembled into modules, from the People..., 2012. \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the...
Vapor compression distillation module
NASA Technical Reports Server (NTRS)
Nuccio, P. P.
1975-01-01
A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.
Cleary, Daniel R.; Roeder, Zachary; Elkhatib, Rania; Heinricher, Mary M.
2014-01-01
Chronic pain reflects not only sensitization of the ascending nociceptive pathways, but also changes in descending modulation. The rostral ventromedial medulla (RVM) is a key structure in a well-studied descending pathway, and contains two classes of modulatory neurons, the ON-cells and the OFF-cells. Disinhibition of OFF-cells depresses nociception; increased ON-cell activity facilitates nociception. Multiple lines of evidence show that sensitization of ON-cells contributes to chronic pain, and reversing or blocking this sensitization is of interest as a treatment of persistent pain. Neuropeptide Y (NPY) acting via the Y1 receptor has been shown to attenuate hypersensitivity in nerve-injured animals without affecting normal nociception when microinjected into the RVM, but the neural basis for this effect was unknown. We hypothesized that behavioral anti-hyperalgesia was due to selective inhibition of ON-cells by NPY at the Y1 receptor. To explore the possibility of Y1 selectivity on ON-cells, we stained for the NPY-Y1 receptor in the RVM, and found it broadly expressed on both serotonergic and non-serotonergic neurons. In subsequent behavioral experiments, NPY microinjected into the RVM in lightly anesthetized animals reversed signs of mechanical hyperalgesia following either nerve injury or chronic hindpaw inflammation. Unexpectedly, rather than decreasing ON-cell activity, NPY increased spontaneous activity of both ON- and OFF-cells without altering noxious-evoked changes in firing. Based on these results, we conclude that the anti-hyperalgesic effects of NPY in the RVM are not explained by selective inhibition of ON-cells, but rather by increased spontaneous activity of OFF-cells. Although ON-cells undoubtedly facilitate nociception and contribute to hypersensitivity, the present results highlight the importance of parallel OFF-cell mediated descending inhibition in limiting the expression of chronic pain. PMID:24792711
Selective catalyst reduction light-off strategy
Gonze, Eugene V [Pinckney, MI
2011-10-18
An emissions control system includes a temperature determination module and an emissions control module. The temperature determination module determines a first temperature of a heater element of a diesel particulate filter (DPF) assembly in an exhaust system and determines a second temperature of a catalyst of the DPF assembly. The emissions control module selectively activates the heater element, selectively initiates a predefined combustion process in an engine based upon the first temperature, and selectively starts a reductant injection process based upon the second temperature.
Evaluation of Mismatch Losses due to Shunts in industrial Silicon Photovoltaic Modules
NASA Astrophysics Data System (ADS)
Somasundaran, P.; Shilpi, M.; Gupta, R.
2017-05-01
In order to achieve higher efficiencies in photovoltaic module technology, it is important to characterize the shunts and other defects which degrade the performance of cells and modules as well as decrease their efficiency. These shunts also affect the reliability of cells and modules. It is important to understand how much fill factor and power loss is caused by the presence of shunts in the module. Shunts not only reduce the module power output, but also affect the I-V characteristics of the cell and hence the characteristics of the shunted cells are different from those of the shunt-free cells connected in the module leading to the mismatch effect. This is an interesting effect which has been systematically investigated in the present work. Moreover, the flow of increased shunt current will give rise to increased temperature in the region of shunt, which will affect the cell and hence module performance. In the present study, the distributed diode model has been extended to the module level and applied to evaluate the electrical mismatch losses and thermal mismatch losses due to shunts in industrial Silicon PV modules.
Dong, Zhaojun; Shang, Haixiao; Chen, Yong Q.; Pan, Li-Long
2016-01-01
Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κB activation and modulated NF-κB-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF-κB inflammatory pathways in acinar cells, thereby protecting against AP. PMID:27847555
Dong, Zhaojun; Shang, Haixiao; Chen, Yong Q; Pan, Li-Long; Bhatia, Madhav; Sun, Jia
2016-01-01
Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κ B activation and modulated NF- κ B-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF- κ B inflammatory pathways in acinar cells, thereby protecting against AP.
Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition.
Grama, Abhinav; Engert, Florian
2012-01-01
The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons.
Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition
Grama, Abhinav; Engert, Florian
2012-01-01
The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons. PMID:22969706
Histone deacetylase inhibitors selectively suppress expression of HDAC7.
Dokmanovic, Milos; Perez, Gisela; Xu, Weisheng; Ngo, Lang; Clarke, Cathy; Parmigiani, Raphael B; Marks, Paul A
2007-09-01
There are 18 histone deacetylases (HDAC) generally divided into four classes based on homology to yeast HDACs. HDACs have many protein substrates in addition to histones that are involved in regulation of gene expression, cell proliferation, and cell death. Inhibition of HDACs can cause accumulation of acetylated forms of these proteins, thus altering their function. HDAC inhibitors (HDACi), such as the hydroxamic acid-based vorinostat (suberoylanilide hydroxamic acid), inhibit the zinc-containing classes I, II, and IV, but not the NAD(+)-dependent class III, enzymes. HDACis are a group of novel anticancer agents. Vorinostat is the first HDACi approved for clinical use in the treatment of the cancer cutaneous T-cell lymphoma. Factors affecting expression of HDACs are not well understood. This study focuses on the effect of the HDACi vorinostat on the expression of class I and class II HDACs. We found that vorinostat selectively down-regulates HDAC7 with little or no effect on the expression of other class I or class II HDACs. Fourteen cell lines were examined, including normal, immortalized, genetically transformed, and human cancer-derived cell lines. Down-regulation of HDAC7 by vorinostat is more pronounced in transformed cells sensitive to inhibitor-induced cell death than in normal cells or cancer cells resistant to induced cell death. Modulation of HDAC7 levels by small interfering RNA-mediated knockdown or by HDAC7 overexpression is associated with growth arrest but without detectable changes in acetylation of histones or p21 gene expression. Selective down-regulation of HDAC7 protein may serve as a marker of response of tumors to HDACi.
Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control
Rothenberg, Ellen V.; Ungerbäck, Jonas; Champhekar, Ameya
2016-01-01
T lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of Innate Lymphoid Cells (ILCs) that share transcriptional regulation programs extensively with T cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly-common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate. PMID:26791859
Oliveira, A L D; Levada, P M; Zanotti-Magalhaes, E M; Magalhães, L A; Ribeiro-Paes, J T
2010-12-21
The relationships between schistosomiasis and its intermediate host, mollusks of the genus Biomphalaria, have been a concern for decades. It is known that the vector mollusk shows different susceptibility against parasite infection, whose occurrence depends on the interaction between the forms of trematode larvae and the host defense cells. These cells are called amebocytes or hemocytes and are responsible for the recognition of foreign bodies and for phagocytosis and cytotoxic reactions. The defense cells mediate the modulation of the resistant and susceptible phenotypes of the mollusk. Two main types of hemocytes are found in the Biomphalaria hemolymph: the granulocytes and the hyalinocytes. We studied the variation in the number (kinetics) of hemocytes for 24 h after exposing the parasite to genetically selected and non-selected strains of Biomphalaria tenagophila, susceptible or not to infection by Schistosoma mansoni. The differences were analyzed referred to the variations in the number of hemocytes in mollusks susceptible or not to infection by S. mansoni. The hemolymph of the selected and non-selected snails was collected, and hemocytes were counted using a Neubauer chamber at six designated periods: 0 h (control, non-exposed individuals), 2 h, 6 h, 12 h, 18 h and, 24 h after parasite exposure. Samples of hemolymph of five selected mollusks and five non-selected mollusks were separately used at each counting time. There was a significant variation in the number of hemocytes between the strains, which indicates that defense cells have different behaviors in resistant and susceptible mollusks.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1982-01-01
The efforts performed to develop a phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration are described. The work involves: (1) Performance of pertinent functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes, (2) characterization of fuel cell materials and components, and performance testing and evaluation of the repeating electrode components, (3) establishment of the state-of-the-art manufacturing technology for all fuel cell components at Westinghouse and the fabrication of short stacks of various sites, and (4) development of a 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering approach.
Innate lymphoid cells in the initiation, regulation and resolution of inflammation
Sonnenberg, Gregory F.; Artis, David
2016-01-01
A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review, we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be employed to selectively modulate ILC responses and limit chronic inflammatory diseases in patients. PMID:26121198
Winkler, Dirk; Beconi, Maria; Toledo-Sherman, Leticia M; Prime, Michael; Ebneth, Andreas; Dominguez, Celia; Muñoz-Sanjuan, Ignacio
2013-09-01
Kynurenine monooxygenase (KMO) catalyzes the conversion of kynurenine to 3-hydroxykynurenine. Modulation of KMO activity has been implicated in several neurodegenerative diseases, including Huntington disease. Our goal is to develop potent and selective small-molecule KMO inhibitors with suitable pharmacokinetic characteristics for in vivo proof-of-concept studies and subsequent clinical development. We developed a comprehensive panel of biochemical and cell-based assays that use liquid chromatography/tandem mass spectrometry to quantify unlabeled kynurenine and 3-hydroxykynurenine. We describe assays to measure KMO inhibition in cell and tissue extracts, as well as cellular assays including heterologous cell lines and primary rat microglia and human peripheral blood mononuclear cells.
Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.
Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C
2017-03-09
We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.
Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M.G.; Mazzanti, Michele; Florio, Tullio
2014-01-01
Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment. PMID:25361004
Gritti, Marta; Würth, Roberto; Angelini, Marina; Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M G; Mazzanti, Michele; Florio, Tullio
2014-11-30
Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment.
Multidimensional signal modulation and/or demodulation for data communications
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2008-03-04
Systems and methods are described for multidimensional signal modulation and/or demodulation for data communications. A method includes modulating a carrier signal in a first domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; modulating the carrier signal in a second domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; and modulating the carrier signal in a third domain selected from the group consisting of phase, frequency, amplitude, polarization and spread.
An alternative pluripotent state confers interspecies chimaeric competency
Wu, Jun; Okamura, Daiji; Li, Mo; Suzuki, Keiichiro; Luo, Chongyuan; Ma, Li; He, Yupeng; Li, Zhongwei; Benner, Chris; Tamura, Isao; Krause, Marie N.; Nery, Joseph R.; Du, Tingting; Zhang, Zhuzhu; Hishida, Tomoaki; Takahashi, Yuta; Aizawa, Emi; Kim, Na Young; Lajara, Jeronimo; Guillen, Pedro; Campistol, Josep M.; Esteban, Concepcion Rodriguez; Ross, Pablo J.; Saghatelian, Alan; Ren, Bing; Ecker, Joseph R.; Belmonte, Juan Carlos Izpisua
2017-01-01
Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution. PMID:25945737
Elder, B. Laurel; Arlian, Larry G.; Morgan, Marjorie S.
2007-01-01
The inflammatory and immune responses seen with the worldwide disease scabies (caused by the mite Sarcoptes scabiei) are complex. Clinical symptoms are delayed for weeks in patients when they are infested with scabies for the first time. This study was undertaken to elucidate the role of the human dermal microvascular endothelial cell (HMVEC-D) in modulating the inflammatory and immune responses in the skin to S. scabiei. Extracts of S. scabiei were incubated with HMVEC-D and the expression of adhesion molecules and chemokine receptors on the cells and the secretion of selected cytokines were determined by ELISA. S. scabiei extract was found to inhibit HMVEC-D expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) although not intercellular adhesion molecule-1 (ICAM-1). The secretion of interleukin-8 (IL-8) was also inhibited by S. scabiei extract. S. scabiei extract increased expression of the chemokine receptor CXCR-1, and both down-regulated and up-regulated expression of CXCR-2 depending on the concentration tested. These findings help explain the delayed inflammatory reaction to infestation with S. scabiei. PMID:17017228
Harizi, H; Gualde, N
2002-01-01
Eicosanoids have been shown to be potent immunoregulatory arachidonic acid (AA) metabolites. AA is the precursor of prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) which are able to modulate both inflammation and the immune response. Dendritic cells process and present antigens to T lymphocytes. They are highly specialized antigen-presenting cells (APC) and usually considered as 'professional APC'. In the present paper, we report some data on the biosynthetic capacity of murine APC from the bone marrow (BM-DCs) to produce AA metabolites. Using an ELISA we have observed that BM-DCs spontaneously produce both PGE(2) and LTB(4) whose production increased in response to bacterial lipopolysaccharides (LPS). In addition we found that LTB(4) production was twice as high when both COX pathways were blocked with selective COX-inhibitors. We have also investigated the effect of PGE(2) and LTB(4) on the in vitro generation of the so-called BM-DCs. Exogenous PGE(2) and LTB(4) added to bone marrow cultures inhibit and promote, respectively, BM-DC generation. PGE(2) added to the maturing BM-DCs reduces their MHC class-II expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Thomas J.; Markillie, Lye MENG.; Chrisler, William B.
2002-12-01
Prostaglandin F2a (PGF2a) has been associated with the modulation of clonal selection processes in the mouse skin model of carcinogenesis. We have investigated whether JB6 mouse epidermal cells express a functional PGF2a receptor (FP) coupled to the regulation of anchorage-dependent and -independent growth. Treatment of JB6 cells with a FP receptor ligand (fluprostenol) potently (pM-nM) increased anchorage-dependent and -independent growth, as determined by a battery of in vitro assays. Treatment of JB6 cells with PGF2a and fluprostenol increased inositol phospholipid accumulation and extracellular signal regulated kinase (ERK) activity, consistent with FP receptor-related signaling. FP receptor mRNA was detected by reversemore » transcription-polymerase chain reaction and a radiolabel binding assay determined the average specific [3H]PGF2a binding to be 8.25 + 0.95 fmol/mg protein. Treatment of cells with fluprostenol as a single exposure resulted in a significant increase in anchorage-dependent and -independent growth in media containing low (0.1-0.5%), but not high (5%) concentrations of fetal bovine serum (FBS). In contrast, treatment of cells with fluprostenol at two day intervals resulted in a more robust growth response under anchorage-dependent conditions only in media containing low FBS concentrations; and under anchorage-independent conditions only in media containing high FBS concentrations. ERK activation and colony size were increased by cotreatment of JB6 cells with EGF and fluprostenol to a greater extent than either treatment alone, while the cotreatment effect on colony number appeared to be simply additive. In summary, FBS concentration and signal oscillation exert pronounced effects on the biological response to a FP receptor agonist. The data raise the possibility that the FP receptor may independently contribute to clonal selection processes, but may play a more important role as a response modifier.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atmaram, G.H.; Ventre, G.G.; Maytrott, C.W.
This study evaluates the long-term effects of outdoor exposure and high voltage operation on the performance and reliability of flat-plate crystalline silicon photovoltaic modules. The photovoltaic modules selected for this study were employed in the arrays of grid-connected residential photovoltaic prototype systems for over ten years at the Southeast Regional Experiment Station (SE RES) in Cape Canaveral, Florida. The modules included Mobil Ra-180 EFG ribbon silicon modules, Photowatt MU-7061 and ARCO 16-2000 single-crystal silicon modules with round cells. The Mobil and Photowatt modules were Block 5 generation, while the ARCO modules were Block 4 generation type. In all three typesmore » of photovoltaic modules (Mobil, Photowatt and ARCO), no significant power loss occurred over more than ten years of outdoor operation in the warm, humid and ocean-salt environments of coastal Florida. However, the wet insulation resistance values of a majority of the modules in all three types were lower than the values recommended in IEEE Standard 1262. This indicates potential future safety, reliability and lifetime related problems. The visual defects were more pronounced in the ARCO modules, which were manufactured in 1980 than in the Mobil and Photowatt modules, both of which were fabricated in 1983. The ARCO modules showed significant damage to the back surface tedlar in the form of tearing of the tedlar. All of the Mobil and most of the ARCO modules showed significant browning of the encapsulant, while only about half of the Photowatt modules showed significant encapsulant browning. The encapsulant discoloration generally did not appear to have any effect on the modules` power generation.« less
Baker, Michael W; Macagno, Eduardo R
2014-04-17
Recent evidence indicates that gap junction (GJ) proteins can play a critical role in controlling neuronal connectivity as well as cell morphology in the developing nervous system. GJ proteins may function analogously to cell adhesion molecules, mediating cellular recognition and selective neurite adhesion. Moreover, during synaptogenesis electrical synapses often herald the later establishment of chemical synapses, and thus may help facilitate activity-dependent sculpting of synaptic terminals. Recent findings suggest that the morphology and connectivity of embryonic leech neurons are fundamentally organized by the type and perhaps location of the GJ proteins they express. For example, ectopic expression in embryonic leech neurons of certain innexins that define small GJ-linked networks of cells leads to the novel coupling of the expressing cell into that network. Moreover, gap junctions appear to mediate interactions among homologous neurons that modulate process outgrowth and stability. We propose that the selective formation of GJs between developing neurons and perhaps glial cells in the CNS helps orchestrate not only cellular synaptic connectivity but also can have a pronounced effect on the arborization and morphology of those cells involved. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Biona-C Cell Culture pH Monitoring System
NASA Technical Reports Server (NTRS)
Friedericks, C.
1999-01-01
Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.
The DAN family: modulators of TGF-β signaling and beyond.
Nolan, Kristof; Thompson, Thomas B
2014-08-01
Extracellular binding proteins or antagonists are important factors that modulate ligands in the transforming growth factor (TGF-β) family. While the interplay between antagonists and ligands are essential for developmental and normal cellular processes, their imbalance can lead to the pathology of several disease states. In particular, recent studies have implicated members of the differential screening-selected gene in neuroblastoma (DAN) family in disease such as renal fibrosis, pulmonary arterial hypertension, and reactivation of metastatic cancer stem cells. DAN family members are known to inhibit the bone morphogenetic proteins (BMP) of the TGF-β family. However, unlike other TGF-β antagonist families, DAN family members have roles beyond ligand inhibition and can modulate Wnt and vascular endothelial growth factor (VEGF) signaling pathways. This review describes recent structural and functional advances that have expanded our understanding of DAN family proteins with regards to BMP inhibition and also highlights their emerging roles in the modulation of Wnt and VEGF signaling pathways. © 2014 The Protein Society.
Dendritic Cells Control Fibroblastic Reticular Network Tension and Lymph Node Expansion
Acton, Sophie E.; Farrugia, Aaron J.; Astarita, Jillian L.; Mourão-Sá, Diego; Jenkins, Robert P.; Nye, Emma; Hooper, Steven; van Blijswijk, Janneke; Rogers, Neil C.; Snelgrove, Kathryn J.; Rosewell, Ian; Moita, Luis F.; Stamp, Gordon; Turley, Shannon J.; Sahai, Erik; Sousa, Caetano Reis e
2014-01-01
Following immunogenic challenge, infiltrating and dividing lymphocytes significantly increase lymph node (LN) cellularity leading to organ expansion1,2. Here we report that the physical elasticity of LNs is maintained in part by podoplanin (PDPN) signalling in stromal fibroblastic reticular cells (FRCs) and its modulation by CLEC-2 expressed on dendritic cells (DCs). We show that PDPN induces actomyosin contractility in FRCs via activation of RhoA/C and downstream Rho-kinase. Engagement by CLEC-2 causes PDPN clustering and rapidly uncouples PDPN from RhoA/C activation, relaxing the actomyosin cytoskeleton and permitting FRC stretching. Notably, administration of CLEC-2 protein to immunised mice augments LN expansion. In contrast, the latter is significantly constrained in mice selectively lacking CLEC-2 expression in DCs. Thus, the same DCs that initiate immunity by presenting antigens to T lymphocytes3 also initiate remodeling of LNs by delivering CLEC-2 to FRCs. CLEC-2 modulation of PDPN signalling permits FRC network stretching and allows for the rapid LN expansion driven by lymphocyte influx and proliferation that is the critical hallmark of adaptive immunity. PMID:25341788
Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha
2012-04-15
Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.
Bao, Xingfeng; Zheng, Wanjun; Sugi, Naoko Hata; Agarwala, Kishan L; Xu, Qunli; Wang, Zichun; Tendyke, Karen; Lee, Winnie; Parent, Lana; Li, Wei; Cheng, Hongsheng; Shen, Yongchun; Taylor, Noel; Dezso, Zoltan; Du, Hong; Kotake, Yoshihiko; Zhao, Nanding; Wang, John; Postema, Maarten; Woodall-Jappe, Mary; Takase, Yasutaka; Uenaka, Toshimitsu; Kingston, David G I; Nomoto, Kenichi
2015-01-01
Natural compound schweinfurthins are of considerable interest for novel therapy development because of their selective anti-proliferative activity against human cancer cells. We previously reported the isolation of highly active schweinfurthins E-H, and in the present study, mechanisms of the potent and selective anti-proliferation were investigated. We found that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation. Mechanistically, schweinfurthins and their analogs arrested trans-Golgi-network trafficking, an intracellular vesicular trafficking system, resulting in the induction of endoplasmic reticulum stress and the suppression of both lipid raft-mediated PI3K activation and mTOR/RheB complex formation, which collectively led to an effective inhibition of mTOR/AKT signaling. The trans-Golgi-network traffic arresting effect of schweinfurthins was associated with their in vitro binding activity to oxysterol-binding proteins that are known to regulate intracellular vesicular trafficking. Moreover, schweinfurthins were found to be highly toxic toward PTEN-deficient B cell lymphoma cells, and displayed 2 orders of magnitude lower activity toward normal human peripheral blood mononuclear cells and primary fibroblasts in vitro. These results revealed a previously unrecognized role of schweinfurthins in regulating trans-Golgi-network trafficking, and linked mechanistically this cellular effect with mTOR/AKT signaling and with cancer cell survival and growth. Our findings suggest the schweinfurthin class of compounds as a novel approach to modulate oncogenic mTOR/AKT signaling for cancer treatment. PMID:25729885
Lightweight fuel cell powerplant components program
NASA Technical Reports Server (NTRS)
Martin, R. E.
1980-01-01
A lightweight hydrogen-oxygen alkaline fuel cell incorporated into the design of a lightweight fuel cell powerplant (LFCP) was analytically and experimentally developed. The powerplant operates with passive water removal which contributes to a lower system weight and extended operating life. A preliminary LFCP specification and design table were developed along with a lightweight power section for the LFCP design, consisting of repeating two-cell modules was designed. Two, four-cell modules were designed incorporating 0.508 sq ft active area space shuttle technology fuel cells. Over 1,200 hours of single-cell and over 8,800 hours of two-cell module testing was completed. The 0.25 sq ft active area lightweight cell design was shown to be capable of operating on propellant purity reactants out to a current density of 600ASF. Endurance testing of the two-cell module configuration exceeded the 2,500-hour LFCP voltage requirements out to 3700-hours. A two-cell module capable of operating at increased reactant pressure completed 1000 hours of operation at a 30 psia reactant pressure. A lightweight power section consisting of fifteen, two-cell modules connected electrically in series was fabricated.
Automated solar module assembly line
NASA Technical Reports Server (NTRS)
Bycer, M.
1980-01-01
The solar module assembly machine which Kulicke and Soffa delivered under this contract is a cell tabbing and stringing machine, and capable of handling a variety of cells and assembling strings up to 4 feet long which then can be placed into a module array up to 2 feet by 4 feet in a series of parallel arrangement, and in a straight or interdigitated array format. The machine cycle is 5 seconds per solar cell. This machine is primarily adapted to 3 inch diameter round cells with two tabs between cells. Pulsed heat is used as the bond technique for solar cell interconnects. The solar module assembly machine unloads solar cells from a cassette, automatically orients them, applies flux and solders interconnect ribbons onto the cells. It then inverts the tabbed cells, connects them into cell strings, and delivers them into a module array format using a track mounted vacuum lance, from which they are taken to test and cleaning benches prior to final encapsulation into finished solar modules. Throughout the machine the solar cell is handled very carefully, and any contact with the collector side of the cell is avoided or minimized.
Stackpole, C W
1980-04-01
Exposure of mouse leukemia cells bearing thymus-leukemia (TL) surface antigens to whole TL alloantiserum has previously been shown to desensitize the cells to subsequent lysis by guinea pig complement (C) and fresh antiserum (antigenic modulation) and to correlate with the ability of cells to escape immune destruction in mice immunized against TL antigens. Tested in vitro, IgG of TL.1,2,3,5 antiserum modulated RADA1 leukemia cells (TL.1,2,3,5) completely within 2 hours at 37 degrees C when fully sensitizing amounts were used, with normal mouse serum as a source of C3. Similar results were obtained with IgG1, IgG2a, and IgG2b fractions of TL antiserum. An IgG2a monoclonal TL.3 antibody also completely modulated TL.3 antigens and partially modulated all antigens detected with TL.1,2,3,5 antiserum. IgM anti-TL.1,2,3,5 failed to modulate RADA1 cells even after 6 hours in vitro when fully sensitizing amounts of antibody were used. An IgM monoclonal TL antibody also failed to induce modulation. Modulation did occur on cells incubated with fully sensitizing amounts of IgG and IgM TL.1,2,3,5 antibody simultaneously, and nearly all cell-bound immunoglobulins were IgG. In mice passively immunized with IgG TL antibody, RADA1 cells modulated completely within 24 hours, whereas no modulation occurred during 4 days in mice immunized with IgM antibody. However, in both instances, tumor cells grew actively, which indicated that tumor escape did not depend on achievement of a modulated state.
NASA Astrophysics Data System (ADS)
Zhu, Yizheng; Li, Chengshuai
2016-03-01
Morphological assessment of spermatozoa is of critical importance for in vitro fertilization (IVF), especially intracytoplasmic sperm injection (ICSI)-based IVF. In ICSI, a single sperm cell is selected and injected into an egg to achieve fertilization. The quality of the sperm cell is found to be highly correlated to IVF success. Sperm morphology, such as shape, head birefringence and motility, among others, are typically evaluated under a microscope. Current observation relies on conventional techniques such as differential interference contrast microscopy and polarized light microscopy. Their qualitative nature, however, limits the ability to provide accurate quantitative analysis. Here, we demonstrate quantitative morphological measurement of sperm cells using two types of spectral interferometric techniques, namely spectral modulation interferometry and spectral multiplexing interferometry. Both are based on spectral-domain low coherence interferometry, which is known for its exquisite phase determination ability. While spectral modulation interferometry encodes sample phase in a single spectrum, spectral multiplexing interferometry does so for sample birefringence. Therefore they are capable of highly sensitive phase and birefringence imaging. These features suit well in the imaging of live sperm cells, which are small, dynamic objects with only low to moderate levels of phase and birefringence contrast. We will introduce the operation of both techniques and demonstrate their application to measuring the phase and birefringence morphology of sperm cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Christina T., E-mail: teng1@niehs.nih.gov; Beames, Burton; Alex Merrick, B.
Highlights: • We developed a stable cell line with intact PGC-1α/ERRα axis. • The ERRα repressor, XCT790, down regulates this pathway. • Phytoestrogen, genisten stimulates this pathway. - Abstract: The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axismore » that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway.« less
Hossler, Patrick; McDermott, Sean; Racicot, Christopher; Chumsae, Christopher; Raharimampionona, Haly; Zhou, Yu; Ouellette, David; Matuck, Joseph; Correia, Ivan; Fann, John; Li, Jianmin
2014-01-01
Protein glycosylation is an important post-translational modification toward the structure and function of recombinant therapeutics. The addition of oligosaccharides to recombinant proteins has been shown to greatly influence the overall physiochemical attributes of many proteins. It is for this reason that protein glycosylation is monitored by the developer of a recombinant protein therapeutic, and why protein glycosylation is typically considered a critical quality attribute. In this work, we highlight a systematic study toward the supplementation of sucrose and tagatose into cell culture media for the targeted modulation of protein glycosylation profiles on recombinant proteins. Both sugars were found to affect oligosaccharide maturation resulting in an increase in the percentage of high mannose N-glycan species, as well as a concomitant reduction in fucosylation. The latter effect was demonstrated to increase antibody-dependent cell-mediated cytotoxicity for a recombinant antibody. These aforementioned results were found to be reproducible at different scales, and across different Chinese hamster ovary cell lines. Through the selective supplementation of these described sugars, the targeted modulation of protein glycosylation profiles is demonstrated, as well as yet another tool in the cell culture toolbox for ensuring product comparability. © 2014 American Institute of Chemical Engineers.
Emerin modulates spatial organization of chromosome territories in cells on softer matrices
Pradhan, Roopali; Ranade, Devika
2018-01-01
Abstract Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus. PMID:29684168
Epigenetic silencing of CYP24 in the tumor microenvironment
Johnson, Candace S.; Chung, Ivy; Trump, Donald L.
2010-01-01
Calcitriol (1,25 dihydroxycholecalciferol) has significant antitumor activity in vitro and in vivo in a number of tumor model systems. We developed a system for isolation of fresh endothelial cells from tumors and Matrigel environments which demonstrate that CYP24, the catabolic enzyme involved in vitamin D signaling, is epigenetically silenced selectively in tumor-derived endothelial cells (TDEC). TDEC maintain phenotypic characteristics which are distinct from endothelial cells isolated from normal tissues and from Matrigel plugs (MDEC). In TDEC, calcitriol induces G0/G1 arrest, modulates p27 and p21, and induces apoptotic cell death and decreases P-Erk and P-Akt. In contrast, endothelial cells isolated from normal tissues and MDEC are unresponsive to calcitriol-mediated anti-proliferative effects despite intact signaling through the vitamin D receptor (VDR). In TDEC, which is sensitive to calcitriol, the CYP24 promoter is hypermethylated in two CpG island regions located at the 5′end; this hypermethylation may contribute to gene silencing of CYP24. The extent of methylation in these two regions is significantly less in MDEC. Lastly, treatment of TDEC with a DNA methyltransferase inhibitor restores calcitriol-mediated induction of CYP24 and resistance to calcitriol. These data suggest that epigenetic silencing of CYP24 modulates cellular responses to calcitriol. PMID:20304059
Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules
NASA Technical Reports Server (NTRS)
Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.
1992-01-01
In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.
Johnson, Jeffrey S.; Yin, Pingbo; O'Connor, Kevin N.
2012-01-01
Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1. PMID:22422997
An Update on the Lithium-Ion Cell Low-Earth-Orbit Verification Test Program
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Manzo, Michelle A.; Miller, Thomas B.; McKissock, Barbara I.; Bennett, William
2007-01-01
A Lithium-Ion Cell Low-Earth-Orbit Verification Test Program is being conducted by NASA Glenn Research Center to assess the performance of lithium-ion (Li-ion) cells over a wide range of low-Earth-orbit (LEO) conditions. The data generated will be used to build an empirical model for Li-ion batteries. The goal of the modeling will be to develop a tool to predict the performance and cycle life of Li-ion batteries operating at a specified set of mission conditions. Using this tool, mission planners will be able to design operation points of the battery system while factoring in mission requirements and the expected life and performance of the batteries. Test conditions for the program were selected via a statistical design of experiments to span a range of feasible operational conditions for LEO aerospace applications. The variables under evaluation are temperature, depth-of-discharge (DOD), and end-of-charge voltage (EOCV). The baseline matrix was formed by generating combinations from a set of three values for each variable. Temperature values are 10 C, 20 C and 30 C. Depth-of-discharge values are 20%, 30% and 40%. EOCV values are 3.85 V, 3.95 V, and 4.05 V. Test conditions for individual cells may vary slightly from the baseline test matrix depending upon the cell manufacturer s recommended operating conditions. Cells from each vendor are being evaluated at each of ten sets of test conditions. Cells from four cell manufacturers are undergoing life cycle tests. Life cycling on the first sets of cells began in September 2004. These cells consist of Saft 40 ampere-hour (Ah) cells and Lith ion 30 Ah cells. These cells have achieved over 10,000 cycles each, equivalent to about 20 months in LEO. In the past year, the test program has expanded to include the evaluation of Mine Safety Appliances (MSA) 50 Ah cells and ABSL battery modules. The MSA cells will begin life cycling in October 2006. The ABSL battery modules consist of commercial Sony hard carbon 18650 lithium-ion cells configured in series and parallel combinations to create nominal 14.4 volt, 3 Ah packs (4s-2p). These modules have accumulated approximately 3000 cycles. Results on the performance of the cells and modules will be presented in this paper. The life prediction and performance model for Li-ion cells in LEO will be built by analyzing the data statistically and performing regression analysis. Cells are being cycled to failure so that differences in performance trends that occur at different stages in the life of the cell can be observed and accurately modeled. Cell testing is being performed at the Naval Surface Warfare Center in Crane, IN.
Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch.
Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J C; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut; Saito, Hirohide
2017-07-27
The CRISPR-Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR-Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John
2013-01-01
Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130
Liu, Cuilian; Zhai, Halei; Zhang, Zhisen; Li, Yaling; Xu, Xurong; Tang, Ruikang
2016-11-09
Hydroxyapatite (HAP) nanocrystallites in all types of bones are distinguished by their ultrathin characteristics, which are uniaxially oriented with fibrillar collagen to uniquely expose the (100) faces. We speculate that living organisms prefer the specific crystal morphology and orientation of HAP because of the interactions between cells and crystals at the mineral-cell interface. Here, bone-like platy HAP (p-HAP) and two different rod-like HAPs were synthesized to investigate the ultrathin mineral modulating effect on cell bioactivity and bone generation. Cell viability and osteogenic differentiation of mesenchymal stem cells (MSCs) were significantly promoted by the platy HAP with (100) faces compared to rod-like HAPs with (001) faces as the dominant crystal orientation, which indicated that MSCs can recognize the crystal face and prefer the (100) HAP faces. This face-specific preference is dependent on the selective adsorption of fibronectin (FN), a plasma protein that plays a central role in cell adhesion, on the HAP surface. This selective adsorption is further confirmed by molecule dynamics (MD) simulation. Our results demonstrate that it is an intelligent choice for cells to use ultrathin HAP with a large (100) face as a basic building block in the hierarchical structure of bone, which is crucial to the promotion of MSCs osteoinductions during bone formation.
Solar Cell Modules with Parallel Oriented Interconnections
NASA Technical Reports Server (NTRS)
1979-01-01
Twenty-four solar modules, half of which were 48 cells in an all-series electrical configuration and half of a six parallel cells by eight series cells were provided. Upon delivery of environmentally tested modules, low power outputs were discovered. These low power modules were determined to have cracked cells which were thought to cause the low output power. The cracks tended to be linear or circular which were caused by different stressing mechanisms. These stressing mechanisms were fully explored. Efforts were undertaken to determine the causes of cell fracture. This resulted in module design and process modifications. The design and process changes were subsequently implemented in production.
Hot-spot qualification testing of concentrator modules
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.
1987-01-01
Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.
NMR apparatus for in situ analysis of fuel cells
Gerald, II, Rex E; Rathke, Jerome W
2012-11-13
The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.
Concentrator hot-spot testing, phase 1
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.
1987-01-01
Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.
Flexible, FEP-Teflon covered solar cell module development
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.; Cannady, M. D.
1976-01-01
Techniques and equipment were developed for the large scale, low-cost fabrication of lightweight, roll-up and fold-up, FEP-Teflon encapsulated solar cell modules. Modules were fabricated by interconnecting solderless single-crystal silicon solar cells and heat laminating them at approximately 300 C between layers of optically clear FEP and to a loadbearing Kapton substrate sheet. Modules were fabricated from both conventional and wraparound contact solar cells. A heat seal technique was developed for mechanically interconnecting modules into an array. The electrical interconnections for both roll-up and fold-up arrays were also developed. The use of parallel-gap resistance welding, ultrasonic bonding, and thermocompression bonding processes for attaching interconnects to solar cells were investigated. Parallel-gap welding was found to be best suited for interconnecting the solderless solar cells into modules. Details of the fabrication equipment, fabrication processes, module and interconnect designs, environmental test equipment, and test results are presented.
The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases
Nisini, Roberto; Poerio, Noemi; Mariotti, Sabrina; De Santis, Federica; Fraziano, Maurizio
2018-01-01
Liposomes are closed bilayer structures spontaneously formed by hydrated phospholipids that are widely used as efficient delivery systems for drugs or antigens, due to their capability to encapsulate bioactive hydrophilic, amphipathic, and lipophilic molecules into inner water phase or within lipid leaflets. The efficacy of liposomes as drug or antigen carriers has been improved in the last years to ameliorate pharmacokinetics and capacity to release their cargo in selected target organs or cells. Moreover, different formulations and variations in liposome composition have been often proposed to include immunostimulatory molecules, ligands for specific receptors, or stimuli responsive compounds. Intriguingly, independent research has unveiled the capacity of several phospholipids to play critical roles as intracellular messengers in modulating both innate and adaptive immune responses through various mechanisms, including (i) activation of different antimicrobial enzymatic pathways, (ii) driving the fusion–fission events between endosomes with direct consequences to phagosome maturation and/or to antigen presentation pathway, and (iii) modulation of the inflammatory response. These features can be exploited by including selected bioactive phospholipids in the bilayer scaffold of liposomes. This would represent an important step forward since drug or antigen carrying liposomes could be engineered to simultaneously activate different signal transduction pathways and target specific cells or tissues to induce antigen-specific T and/or B cell response. This lipid-based host-directed strategy can provide a focused antimicrobial innate and adaptive immune response against specific pathogens and offer a novel prophylactic or therapeutic option against chronic, recurrent, or drug-resistant infections. PMID:29459867
Wie, Jinhong; Jeong, SeungJoo; Kwak, Misun; Myeong, Jongyun; Chae, MeeRee; Park, Jong Kwan; Lee, Sung Won; So, Insuk
2017-06-01
The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to the fruit fly Drosophila TRP. The TRP superfamily is distinct from other groups of ion channels in displaying a large diversity in ion selectivity, modes of activation, and physiological functions. Classical TRP (transient receptor potential canonical (TRPC)) channels are activated by stimulation of Gq-PLC-coupled receptors and modulated by phosphorylation. The cyclic guanosine monophosphate (cGMP)-PKG pathway is involved in the regulation of TRPC3 and TRPC6 channels. Phosphodiesterase (PDE) 5 inhibitor induced muscle relaxation in corporal smooth muscle cells and was used to treat erectile dysfunction by inhibiting cGMP degradation. Here, we report the functional relationship between TRPC4 and cGMP. In human embryonic kidney (HEK) 293 cells overexpressing TRPC4, cGMP selectively activated TRPC4 channels and increased cytosolic calcium level through TRPC4 channel. We investigated phosphorylation sites in TRPC4 channels and identified S688 as an important phosphorylation site for the cGMP-PKG pathway. Cyclic GMP also activated TRPC4-like current with doubly rectifying current-voltage relationship in prostate smooth muscle cell lines. Taken together, these results show that TRPC4 is phosphorylated by the cGMP-PKG pathway and might be an important target for modulating prostate function by PDE5 inhibitors.
Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.
Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev
2015-01-01
In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers.
Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer
Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev
2015-01-01
In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers. PMID:25932049
Win, Joe; Kamoun, Sophien
2008-04-01
Plant pathogenic microbes deliver effector proteins inside host cells to modulate plant defense circuitry and enable parasitic colonization. As genome sequences from plant pathogens become available, genome-wide evolutionary analyses will shed light on how pathogen effector genes evolved and adapted to the cellular environment of their host plants. In the August 2007 issue of Plant Cell, we described adaptive evolution (positive selection) in the cytoplasmic RXLR effectors of three recently sequenced oomycete plant pathogens. Here, we summarize our findings and describe additional data that further validate our approach.
Agwa, Akello J; Peigneur, Steve; Chow, Chun Yuen; Lawrence, Nicole; Craik, David J; Tytgat, Jan; King, Glenn F; Henriques, Sonia Troeira; Schroeder, Christina I
2018-04-27
Gating modifier toxins (GMTs) are venom-derived peptides isolated from spiders and other venomous creatures that modulate activity of disease-relevant voltage-gated ion channels and are therefore being pursued as therapeutic leads. The amphipathic surface profile of GMTs has prompted the proposal that some GMTs simultaneously bind to the cell membrane and voltage-gated ion channels in a trimolecular complex. Here we examined whether there is a relationship among spider GMT amphipathicity, membrane binding and potency or selectivity for voltage-gated sodium (NaV) channels. We used NMR spectroscopy and in silico calculations to examine the structures and physicochemical properties of a panel of nine GMTs and deployed surface plasmon resonance to measure GMT affinity for lipids putatively found in proximity to NaV channels. Electrophysiology was used to quantify GMT activity on NaV1.7, an ion channel linked to chronic pain. Selectivity of the peptides was further examined against a panel of NaV channel subtypes. We show that GMTs adsorb to the outer leaflet of anionic lipid bilayers through electrostatic interactions. We did not observe a direct correlation between GMT amphipathicity and affinity for lipid bilayers. Furthermore, GMT-lipid bilayer interactions did not correlate with potency or selectivity for NaVs. We therefore propose that increased membrane binding is unlikely to improve subtype selectivity and that the conserved amphipathic GMT surface profile is an adaptation that facilitates simultaneous modulation of multiple NaVs. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Non-invasive optical modulation of local vascular permeability
NASA Astrophysics Data System (ADS)
Choi, Myunghwan; Choi, Chulhee
2011-03-01
For a systemically administered drug to act, it first needs to cross the vascular wall. This step represents a bottleneck for drug development, especially in the brain or retina, where tight junctions between endothelial cells form physiological barriers. Here, we demonstrate that femtosecond pulsed laser irradiation focused on the blood vessel wall induces transient permeabilization of plasma. Nonlinear absorption of the pulsed laser enabled the noninvasive modulation of vascular permeability with high spatial selectivity in three dimensions. By combining this method with systemic injection, we could locally deliver molecular probes in various tissues, such as brain cortex, meninges, ear, striated muscle, and bone. We suggest this method as a novel delivery tool for molecular probes or drugs.
Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila
Aso, Yoshinori; Sitaraman, Divya; Ichinose, Toshiharu; Kaun, Karla R; Vogt, Katrin; Belliart-Guérin, Ghislain; Plaçais, Pierre-Yves; Robie, Alice A; Yamagata, Nobuhiro; Schnaitmann, Christopher; Rowell, William J; Johnston, Rebecca M; Ngo, Teri-T B; Chen, Nan; Korff, Wyatt; Nitabach, Michael N; Heberlein, Ulrike; Preat, Thomas; Branson, Kristin M; Tanimoto, Hiromu; Rubin, Gerald M
2014-01-01
Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection. DOI: http://dx.doi.org/10.7554/eLife.04580.001 PMID:25535794
Gerstenberger, Brian S; Trzupek, John D; Tallant, Cynthia; Fedorov, Oleg; Filippakopoulos, Panagis; Brennan, Paul E; Fedele, Vita; Martin, Sarah; Picaud, Sarah; Rogers, Catherine; Parikh, Mihir; Taylor, Alexandria; Samas, Brian; O'Mahony, Alison; Berg, Ellen; Pallares, Gabriel; Torrey, Adam D; Treiber, Daniel K; Samardjiev, Ivan J; Nasipak, Brian T; Padilla-Benavides, Teresita; Wu, Qiong; Imbalzano, Anthony N; Nickerson, Jeffrey A; Bunnage, Mark E; Müller, Susanne; Knapp, Stefan; Owen, Dafydd R
2016-05-26
The acetyl post-translational modification of chromatin at selected histone lysine residues is interpreted by an acetyl-lysine specific interaction with bromodomain reader modules. Here we report the discovery of the potent, acetyl-lysine-competitive, and cell active inhibitor PFI-3 that binds to certain family VIII bromodomains while displaying significant, broader bromodomain family selectivity. The high specificity of PFI-3 for family VIII was achieved through a novel bromodomain binding mode of a phenolic headgroup that led to the unusual displacement of water molecules that are generally retained by most other bromodomain inhibitors reported to date. The medicinal chemistry program that led to PFI-3 from an initial fragment screening hit is described in detail, and additional analogues with differing family VIII bromodomain selectivity profiles are also reported. We also describe the full pharmacological characterization of PFI-3 as a chemical probe, along with phenotypic data on adipocyte and myoblast cell differentiation assays.
Metal-free bioconjugation reactions.
van Berkel, Sander S; van Delft, Floris L
2013-01-01
The recent strategy to apply chemical reactions to address fundamental biological questions has led to the emergence of entirely new conjugation reactions that are fast and irreversible, yet so mild and selective that they can be performed even in living cells or organisms. These so-called bioorthogonal reactions open novel avenues, not only in chemical biology research, but also in many other life sciences applications, including the modulation of biopharmaceuticals by site-specific modification approaches.
Substance P inhibits natural killer cell cytotoxicity through the neurokinin-1 receptor.
Monaco-Shawver, Linda; Schwartz, Lynnae; Tuluc, Florin; Guo, Chang-Jiang; Lai, Jian Ping; Gunnam, Satya M; Kilpatrick, Laurie E; Banerjee, Pinaki P; Douglas, Steven D; Orange, Jordan S
2011-01-01
SP is a potent neuroimmunomodulator that functions through ligating members of the neurokinin receptor family, one of which, NK1R, is widely expressed in immune cells. As in humans, circulating SP levels are increased in pathologic states associated with impairment of NK cell functions, such as depression and HIV infection, we hypothesized that SP has a direct, inhibitory effect upon NK cells. We have studied a clonal human NK cell line (YTS) as well as ex vivo human NK cells and have determined that truncated and full-length NK1R isoforms are expressed in and SP bound by ex vivo NK cells and the YTS NK cell line. Incubation of YTS cells with 10⁻⁶ M SP and ex vivo NK cells with 10⁻⁵ M SP inhibited cytotoxic ability by ∼20% and reduced degranulation. This inhibitory effect upon cytotoxicity was partially prevented by the NK1R antagonist CP96,345. The treatment of YTS or ex vivo NK cells with SP neither down-modulated NCR expression nor affected triggering receptor-induced NF-κB activation. Preincubation of YTS cells with SP, however, did abbreviate the typically prolonged intracellular calcium increase induced by target cell engagement and reduced triggering receptor-induced pERK. Thus, SP has the potential to regulate NK cell functions and acts downstream from neurokinin receptors to modulate NK cell activation signaling. This mechanism may contribute to impairment of NK cell function in certain disease states associated with increased circulating SP. Antagonism of this system may present an opportunity to augment NK cell function therapeutically in selected human diseases.
Ecology of Flows and Drift Wave Turbulence: Reduced Models and Applications
NASA Astrophysics Data System (ADS)
Huang, Wen-Hsi
A major obstacle to sustainable solar technologies is end-of-life solar modules. In this thesis, a recycling process is proposed for crystalline-Si solar modules. It is a three-step process to break down Si modules and recover various materials. Over 95% of a module by weight can be recovered with this process. Two new technologies are demonstrated to enable the proposed recycling process. One is sequential electrowinning which allows multiple metals to be recovered one by one from Si modules, Ag, Pb, Sn and Cu. The other is sheet resistance monitoring by the 4-point probe which maximizes the amount of solar-grade Si recovered from Si modules with high throughput. The purity of the recovered metals is above 99% and the recovery rate can achieve between 70 80%. The recovered Si meets the specifications for solar-grade Si and at least 91% of Si from c-Si solar cells can be recovered. The recovered Si and metals are new feedstocks to the solar industry and generate over $12/module in revenue. This revenue enables a profitable recycling business for Si modules without any government support. The chemicals for recycling are carefully selected to minimize their environmental impact and also the cost. A network for collecting end-of-life solar modules is proposed based on the current distribution network for solar modules to contain the collection cost. As a result, the proposed recycling process for c-Si modules is technically, environmentally and financially sustainable.
Material selection and assembly method of battery pack for compact electric vehicle
NASA Astrophysics Data System (ADS)
Lewchalermwong, N.; Masomtob, M.; Lailuck, V.; Charoenphonphanich, C.
2018-01-01
Battery packs become the key component in electric vehicles (EVs). The main costs of which are battery cells and assembling processes. The battery cell is indeed priced from battery manufacturers while the assembling cost is dependent on battery pack designs. Battery pack designers need overall cost as cheap as possible, but it still requires high performance and more safety. Material selection and assembly method as well as component design are very important to determine the cost-effectiveness of battery modules and battery packs. Therefore, this work presents Decision Matrix, which can aid in the decision-making process of component materials and assembly methods for a battery module design and a battery pack design. The aim of this study is to take the advantage of incorporating Architecture Analysis method into decision matrix methods by capturing best practices for conducting design architecture analysis in full account of key design components critical to ensure efficient and effective development of the designs. The methodology also considers the impacts of choice-alternatives along multiple dimensions. Various alternatives for materials and assembly techniques of battery pack are evaluated, and some sample costs are presented. Due to many components in the battery pack, only seven components which are positive busbar and Z busbar are represented in this paper for using decision matrix methods.
Small Molecule Inhibitors of Protein Arginine Methyltransferases
Hu, Hao; Qian, Kun; Ho, Meng-Chiao; Zheng, Y. George
2016-01-01
Introduction Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. Areas covered The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. Expert opinion Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead. PMID:26789238
Cancer-linked targets modulated by curcumin
Hasima, Noor; Aggarwal, Bharat B
2012-01-01
In spite of major advances in oncology, the World Health Organization predicts that cancer incidence will double within the next two decades. Although it is well understood that cancer is a hyperproliferative disorder mediated through dysregulation of multiple cell signaling pathways, most cancer drug development remains focused on modulation of specific targets, mostly one at a time, with agents referred to as “targeted therapies,” “smart drugs,” or “magic bullets.” How many cancer targets there are is not known, and how many targets must be attacked to control cancer growth is not well understood. Although more than 90% of cancer-linked deaths are due to metastasis of the tumor to vital organs, most drug targeting is focused on killing the primary tumor. Besides lacking specificity, the targeted drugs induce toxicity and side effects that sometimes are greater problems than the disease itself. Furthermore, the cost of some of these drugs is so high that most people cannot afford them. The present report describes the potential anticancer properties of curcumin, a component of the Indian spice turmeric (Curcuma longa), known for its safety and low cost. Curcumin can selectively modulate multiple cell signaling pathways linked to inflammation and to survival, growth, invasion, angiogenesis, and metastasis of cancer cells. More clinical trials of curcumin are needed to prove its usefulness in the cancer setting. PMID:23301199
Regulation of humoral immunity by complement.
Carroll, Michael C; Isenman, David E
2012-08-24
The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity. Copyright © 2012 Elsevier Inc. All rights reserved.
Photodynamic immune modulation (PIM)
NASA Astrophysics Data System (ADS)
North, John R.; Hunt, David W. C.; Simkin, Guillermo O.; Ratkay, Leslie G.; Chan, Agnes H.; Lui, Harvey; Levy, Julia G.
1999-09-01
Photodynamic Therapy (PDT) is accepted for treatment of superficial and lumen-occluding tumors in regions accessible to activating light and is now known to be effective in closure of choroidal neovasculature in Age Related Macular Degeneration. PDT utilizes light absorbing drugs (photosensitizers) that generate the localized formation of reactive oxygen species after light exposure. In a number of systems, PDT has immunomodulatory effects; Photodynamic Immune Modulation (PIM). Using low- intensity photodynamic regimens applied over a large body surface area, progression of mouse autoimmune disease could be inhibited. Further, this treatment strongly inhibited the immunologically- medicated contact hypersensitivity response to topically applied chemical haptens. Immune modulation appears to result from selective targeting of activated T lymphocytes and reduction in immunostimulation by antigen presenting cells. Psoriasis, an immune-mediated skin condition, exhibits heightened epidermal cell proliferation, epidermal layer thickening and plaque formation at different body sites. In a recent clinical trial, approximately one-third of patients with psoriasis and arthritis symptoms (psoriatic arthritis) displayed a significant clinical improvement in several psoriasis-related parameters after four weekly whole-body PIM treatments with verteporfin. The safety profile was favorable. The capacity of PIM to influence other human immune disorders including rheumatoid arthritis is under extensive evaluation.
Development of a Synthetic Switch to Control Protein Stability in Eukaryotic Cells with Light.
Taxis, Christof
2017-01-01
In eukaryotic cells, virtually all regulatory processes are influenced by proteolysis. Thus, synthetic control of protein stability is a powerful approach to influence cellular behavior. To achieve this, selected target proteins are modified with a conditional degradation sequence (degron) that responds to a distinct signal. For development of a synthetic degron, an appropriate sensor domain is fused with a degron such that activity of the degron is under control of the sensor. This chapter describes the development of a light-activated, synthetic degron in the model organism Saccharomyces cerevisiae. This photosensitive degron module is composed of the light-oxygen-voltage (LOV) 2 photoreceptor domain of Arabidopsis thaliana phototropin 1 and a degron derived from murine ornithine decarboxylase (ODC). Excitation of the photoreceptor with blue light induces a conformational change that leads to exposure and activation of the degron. Subsequently, the protein is targeted for degradation by the proteasome. Here, the strategy for degron module development and optimization is described in detail together with experimental aspects, which were pivotal for successful implementation of light-controlled proteolysis. The engineering of the photosensitive degron (psd) module may well serve as a blueprint for future development of sophisticated synthetic switches.
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
Inside HDAC with HDAC inhibitors.
Bertrand, Philippe
2010-06-01
Histone deacetylase inhibitors are a large group of diverse molecules intrinsically able to inhibit cell proliferation in various cancer cell lines. Their apoptotic effects have been linked to the modulation in the expression of several regulatory tumor suppressor genes caused by the modified status of histone acetylation, a key event in chromatin remodelling. As the initial histone deacetylase activity of HDAC has been extended to other proteins, the possible other biological mechanisms modified by HDAC inhibitor treatments are still to be clarified. The need for HDAC isoform selective inhibitors is an important issue to serve this goal. This review discusses the approaches proposed by several research groups working on the synthesis of HDAC inhibitors, based on modelling studies and the way these findings were used to obtain new HDAC inhibitors with possible isoform selectivity. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Laminated photovoltaic modules using back-contact solar cells
Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter
1999-09-14
Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.
Wang, Xiao-Dan; Gao, Zu-Hua; Xue, Xia; Cheng, Yan-Na; Yue, Pan; Fang, Xu-Wen; Qu, Xian-Jun
2011-06-01
(2S,4R)-methyl 1-acetyl-4-(N-(4-bromophenyl)sulfamoyloxy)pyrrolidine-2-carboxylate (CIP-A5) is the N1-acetyl substituted pyrrolidine derivative which was designed against the structure of matrix metalloproteinase (MMP-2) and MMP-9. CIP-A5 has been considered as a candidate compound for treatment of liver cirrhosis. In this study, we evaluated the efficacy of CIP-A5 on the activity of hepatic stellate cells. CIP-A5 prevented the transforming growth factor β (TGF-β)-induced proliferation of hepatic stellate HSC-T6 cells as estimated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. CIP-A5 stimulated MMPs activity as evidenced by an increase of degradation of succinylated gelatin. Gelatin zymography analysis showed that CIP-A5 stimulated the secretion and activity of MMP-2 and MMP-9 in HSC-T6 cells. This stimulatory effect on MMPs was verified by the observation of increased expression of MMP-2 and MMP-9 as evaluated by Western blot assay. At the same time, a significant decrease of the expression of tissue inhibitors of matrix metalloproteinases-1 (TIMP-1) was observed, suggesting a modulation of the balance of MMPs/TIMPs in hepatic stellate cells. CIP-A5 treatment also resulted in suppression of the profibrogenic cytokines, such as TGF-β, tumor necrosis factor alpha (TNF-α) and connective tissue growth factor (CTGF) in HSC-T6 cells. CIP-A5 did not have cytotoxicity to human normal hepatic cells. These results implied that CIP-A5 could selectively ameliorate the process of liver cirrhosis through modulation of activated hepatic stellate cell activity, which offers hope for prevention and treatment of this devastating end-stage liver disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jurzak, Magdalena; Adamczyk, Katarzyna; Antończak, Paweł; Garncarczyk, Agnieszka; Kuśmierz, Dariusz; Latocha, Małgorzata
2014-01-01
Keloids are characterized by overgrowth of connective tissue in the skin that arises as a consequence of abnormal wound healing. Normal wound healing is regulated by a complex set of interactions within a network of profibrotic and antifibrotic cytokines that regulate new extracellular matrix (ECM) synthesis and remodeling. These proteins include transforming growth factor β (TGFβ) isoforms and connective tissue growth factor (CTGF). TGFβ1 stimulates fibroblasts to synthesize and contract ECM and acts as a central mediator of profibrotic response. CTGF is induced by TGFβ1 and is considered a downstream mediator of TGFβ1action in fibroblasts. CTGF plays a crucial role in keloid pathogenesis by promoting prolonged collagen synthesis and deposition and as a consequence sustained fibrotic response. During keloids formation, besides imbalanced ECM synthesis and degradation, fibroblast proliferation and it's resistance to apoptosis is observed. Key genes that may play a role in keloid formation and growth involve: suppressor gene p53.,cyclin-depend- ent kinase inhibitor CDKN1A (p21) and BCL2 family genes: antiapoptotic BCL-2 and proapoptotic BAX. Genistein (4',5,7-trihydroxyisoflavone) exhibits multidirectional biological action. The concentration of genistein is relatively high in soybean. Genistein has been shown as effective antioxidant and chemopreventive agent. Genistein can bind to estrogen receptors (ERs) and modulate estrogen action due to its structure similarity to human estrogens. Genistein also inhibits transcription factors NFκB. Akt and AP-l signaling pathways, that are important for cytokines expression and cell proliferation, differentiation, survival and apoptosis. The aim of the study was to investigate genistein as a potential inhibitor of CTGF and TGFβ1, β2 and β3 isoforms expression and a potential regulator of p53. CDKN1A(p21), BAX and BCL-2 expression in normal fibroblasts and fibroblasts derived from keloids cultured in vitro. Real time RT-QPCR was used to estimate transcription level of selected genes in normal and keloid fibroblasts treated with genistein. Secreted/cell-associated CTGF protein was evaluated in cell growth's medium by ELISA. Total protein quantification was evaluated by fluorimetric assay in cells llsates (Quant-iT TM Protein Assay Kit). It was found that TGFβ1, β2 and β3 genes expression are decreased by genistein. Genistein suppresses the expression of CTGF mRNA and CTGF protein in a concentration dependent manner, p53 and p21 genes expression are modulated by genistein in concentration dependent manner. The agent also modulates BAX/BCL-2 ratio in examined cells in vitro.
Identification of novel indole based heterocycles as selective estrogen receptor modulator.
Singla, Ramit; Prakash, Kunal; Bihari Gupta, Kunj; Upadhyay, Shishir; Dhiman, Monisha; Jaitak, Vikas
2018-04-24
In the present study, we have designed and synthesized indole derivatives by coalescing the indole nucleus with chromene carbonitrile and dihydropyridine nucleus. Two compounds 5c and 6d were selected from series I and II after sequential combinatorial library generation, docking, absorption, distribution, metabolism and excretion (ADME) filtering, anti-proliferative activity, cytotoxicity, and ER-α competitor assay kit by utilizing estrogen receptor-α (ER-α) dominant T47D BC cells line and PBMCs (Peripheral Blood Mononuclear Cells). Cell imaging experiment suggested that both the compounds successfully cross cellular biomembrane and accumulate in nuclear, cytoplasmic and plasma membrane region. Semiquantitative RT-PCR and Western blotting experiments further supported that both compounds reduced the expression of mRNA and receptor protein of ER-α, thereby preventing downstream transactivation and signaling pathway in T47D cells line. Current findings imply that 5c and 6d represent novel ER-α antagonists and may be used in the development of chemotherapy for the management of BC. Copyright © 2018 Elsevier Inc. All rights reserved.
Regulation of endoplasmic reticulum turnover by selective autophagy.
Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan
2015-06-18
The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.
Potential Therapeutic Benefits of Strategies Directed to Mitochondria
Lesnefsky, Edward J.; Stowe, David F.
2010-01-01
Abstract The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy. Antioxid. Redox Signal. 13, 279–347. PMID:20001744
Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications.
Diaz-Rodriguez, P; Garcia-Triñanes, P; Echezarreta López, M M; Santoveña, A; Landin, M
2018-09-01
The search for an ideal bone tissue replacement has led to the development of new composite materials designed to simulate the complex inorganic/organic structure of bone. The present work is focused on the development of mineralized calcium alginate hydrogels by the addition of marine derived calcium carbonate biomineral particles. Following a novel approach, we were able to obtain calcium carbonate particles of high purity and complex micro and nanostructure dependent on the source material. Three different types of alginates were selected to develop inorganic/organic scaffolds in order to correlate alginate composition with scaffold properties and cell behavior. The incorporation of calcium carbonates into alginate networks was able to promote extracellular matrix mineralization and osteoblastic differentiation of mesenchymal stem cells when added at 7 mg/ml. We demonstrated that the selection of the alginate type and calcium carbonate origin is crucial to obtain adequate systems for bone tissue engineering as they modulate the mechanical properties and cell differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Block 2 solar cell module environmental test program
NASA Technical Reports Server (NTRS)
Holloway, K. L.
1978-01-01
Environmental tests were performed of on 76 solar cell modules produced by four different manufacturers. The following tests were performed: (1) 28 day temperature and humidity; (2) rain and icing; (3) salt fog; (4) sand and dust; (5) vacuum/steam/pressure; (6) fungus; (7) temperature/altitude; and (8) thermal shock. Environmental testing of the solar cell modules produced cracked cells, cracked encapsulant and encapsulant delaminations on various modules. In addition, there was some minor cell and frame corrosion.
Van Wagoner, Ryan M; Eichner, Amy; Bhasin, Shalender; Deuster, Patricia A; Eichner, Daniel
2017-11-28
Recent reports have described the increasing use of nonsteroidal selective androgen receptor modulators, which have not been approved by the US Food and Drug Administration (FDA), to enhance appearance and performance. The composition and purity of such products is not known. To determine the chemical identity and the amounts of ingredients in dietary supplements and products marketed and sold through the internet as selective androgen receptor modulators and compare the analyzed contents with product labels. Web-based searches were performed from February 18, 2016, to March 25, 2016, using the Google search engine on the Chrome and Internet Explorer web browsers to identify suppliers selling selective androgen receptor modulators. The products were purchased and the identities of the compounds and their amounts were determined from April to August 2016 using chain-of-custody and World Anti-Doping Association-approved analytical procedures. Analytical findings were compared against the label information. Products marketed and sold as selective androgen receptor modulators. Chemical identities and the amount of ingredients in each product marketed and sold as selective androgen receptor modulators. Among 44 products marketed and sold as selective androgen receptor modulators, only 23 (52%) contained 1 or more selective androgen receptor modulators (Ostarine, LGD-4033, or Andarine). An additional 17 products (39%) contained another unapproved drug, including the growth hormone secretagogue ibutamoren, the peroxisome proliferator-activated receptor-δ agonist GW501516, and the Rev-ErbA agonist SR9009. Of the 44 tested products, no active compound was detected in 4 (9%) and substances not listed on the label were contained in 11 (25%). In only 18 of the 44 products (41%), the amount of active compound in the product matched that listed on the label. The amount of the compounds listed on the label differed substantially from that found by analysis in 26 of 44 products (59%). In this limited investigation involving chemical analyses of 44 products marketed as selective androgen receptor modulators and sold via the internet, most products contained unapproved drugs and substances. Only 52% contained selective androgen receptor modulators and many were inaccurately labeled.
Comodulation of dopamine and serotonin on prefrontal cortical rhythms: a theoretical study
Wang, Da-Hui; Wong-Lin, KongFatt
2013-01-01
The prefrontal cortex (PFC) is implicated to play an important role in cognitive control. Abnormal PFC activities and rhythms have been observed in some neurological and neuropsychiatric disorders, and evidences suggest influences from the neuromodulators dopamine (DA) and serotonin (5-HT). Despite the high level of interest in these brain systems, the combined effects of DA and 5-HT modulation on PFC dynamics remain unknown. In this work, we build a mathematical model that incorporates available experimental findings to systematically study the comodulation of DA and 5-HT on the network behavior, focusing on beta and gamma band oscillations. Single neuronal model shows pyramidal cells with 5-HT1A and 2A receptors can be non-monotonically modulated by 5-HT. Two-population excitatory-inhibitory type network consisting of pyramidal cells with D1 receptors can provide rich repertoires of oscillatory behavior. In particular, 5-HT and DA can modulate the amplitude and frequency of the oscillations, which can emerge or cease, depending on receptor types. Certain receptor combinations are conducive for the robustness of the oscillatory regime, or the existence of multiple discrete oscillatory regimes. In a multi-population heterogeneous model that takes into account possible combination of receptors, we demonstrate that robust network oscillations require high DA concentration. We also show that selective D1 receptor antagonists (agonists) tend to suppress (enhance) network oscillations, increase the frequency from beta toward gamma band, while selective 5-HT1A antagonists (agonists) act in opposite ways. Selective D2 or 5-HT2A receptor antagonists (agonists) can lead to decrease (increase) in oscillation amplitude, but only 5-HT2A antagonists (agonists) can increase (decrease) the frequency. These results are comparable to some pharmacological effects. Our work illustrates the complex mechanisms of DA and 5-HT when operating simultaneously through multiple receptors. PMID:23935568
Module level solutions to solar cell polarization
Xavier, Grace , Li; Bo, [San Jose, CA
2012-05-29
A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.
Spectro-temporal modulation masking patterns reveal frequency selectivity.
Oetjen, Arne; Verhey, Jesko L
2015-02-01
The present study investigated the possibility that the human auditory system demonstrates frequency selectivity to spectro-temporal amplitude modulations. Threshold modulation depth for detecting sinusoidal spectro-temporal modulations was measured using a generalized masked threshold pattern paradigm with narrowband masker modulations. Four target spectro-temporal modulations were examined, differing in their temporal and spectral modulation frequencies: a temporal modulation of -8, 8, or 16 Hz combined with a spectral modulation of 1 cycle/octave and a temporal modulation of 4 Hz combined with a spectral modulation of 0.5 cycles/octave. The temporal center frequencies of the masker modulation ranged from 0.25 to 4 times the target temporal modulation. The spectral masker-modulation center-frequencies were 0, 0.5, 1, 1.5, and 2 times the target spectral modulation. For all target modulations, the pattern of average thresholds for the eight normal-hearing listeners was consistent with the hypothesis of a spectro-temporal modulation filter. Such a pattern of modulation-frequency sensitivity was predicted on the basis of psychoacoustical data for purely temporal amplitude modulations and purely spectral amplitude modulations. An analysis of separability indicates that, for the present data set, selectivity in the spectro-temporal modulation domain can be described by a combination of a purely spectral and a purely temporal modulation filter function.
Hybrid promoters directed tBid gene expression to breast cancer cells by transcriptional targeting.
Farokhimanesh, Samila; Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Kamali, Abbas; Mashkani, Baratali
2010-01-01
Developing cancer gene therapy constructs based on transcriptional targeting of genes to cancer cells is a new and promising modality for treatment of cancer. Introducing truncated Bid (tBid), a recently known member of the Bcl-2 family, eradicates cancer cells efficiently. For transcriptional targeting of tBid, two dual-specificity promoters, combining cancer specific core promoters and response modules, were designed. These two core promoter modules contained cancer specific promoters of MUC1 and Survivin genes accompanied by hypoxia-responsive elements and estrogen responsive elements (microenvironment condition of breast cancer cells) which were employed to achieve a higher and more specific level of tBid expression in breast cancer cells. Correlation of the level of tBid expression in normal and cancer cell lines with promoter activity was measured by RT-PCR after treatment with hypoxia and estrogen. The level of tBid expression under control of new hybrid promoters was compared with its expression under control of cytomegalovirus (CMV) promoter as a control. Our data revealed that the level of tBid expression in breast cancer cells were nearly 11 times more than normal cells because of the cancer specific promoters, although tBid expression under control of CMV promoter was almost the same in normal and cancer cell lines. Increased apoptosis was detected in the transfected breast cancer cell lines by the Caspase-3 activity assay. The application of these promoters may prove to have the advantage of tumor selective gene therapy in breast cancer cells and low-potential toxicity for normal tissues.
NASA Astrophysics Data System (ADS)
Duan, Haoran
1997-12-01
This dissertation presents the concepts, principles, performance, and implementation of input queuing and cell-scheduling modules for the Illinois Pulsar-based Optical INTerconnect (iPOINT) input-buffered Asynchronous Transfer Mode (ATM) testbed. Input queuing (IQ) ATM switches are well suited to meet the requirements of current and future ultra-broadband ATM networks. The IQ structure imposes minimum memory bandwidth requirements for cell buffering, tolerates bursty traffic, and utilizes memory efficiently for multicast traffic. The lack of efficient cell queuing and scheduling solutions has been a major barrier to build high-performance, scalable IQ-based ATM switches. This dissertation proposes a new Three-Dimensional Queue (3DQ) and a novel Matrix Unit Cell Scheduler (MUCS) to remove this barrier. 3DQ uses a linked-list architecture based on Synchronous Random Access Memory (SRAM) to combine the individual advantages of per-virtual-circuit (per-VC) queuing, priority queuing, and N-destination queuing. It avoids Head of Line (HOL) blocking and provides per-VC Quality of Service (QoS) enforcement mechanisms. Computer simulation results verify the QoS capabilities of 3DQ. For multicast traffic, 3DQ provides efficient usage of cell buffering memory by storing multicast cells only once. Further, the multicast mechanism of 3DQ prevents a congested destination port from blocking other less- loaded ports. The 3DQ principle has been prototyped in the Illinois Input Queue (iiQueue) module. Using Field Programmable Gate Array (FPGA) devices, SRAM modules, and integrated on a Printed Circuit Board (PCB), iiQueue can process incoming traffic at 800 Mb/s. Using faster circuit technology, the same design is expected to operate at the OC-48 rate (2.5 Gb/s). MUCS resolves the output contention by evaluating the weight index of each candidate and selecting the heaviest. It achieves near-optimal scheduling and has a very short response time. The algorithm originates from a heuristic strategy that leads to 'socially optimal' solutions, yielding a maximum number of contention-free cells being scheduled. A novel mixed digital-analog circuit has been designed to implement the MUCS core functionality. The MUCS circuit maps the cell scheduling computation to the capacitor charging and discharging procedures that are conducted fully in parallel. The design has a uniform circuit structure, low interconnect counts, and low chip I/O counts. Using 2 μm CMOS technology, the design operates on a 100 MHz clock and finds a near-optimal solution within a linear processing time. The circuit has been verified at the transistor level by HSPICE simulation. During this research, a five-port IQ-based optoelectronic iPOINT ATM switch has been developed and demonstrated. It has been fully functional with an aggregate throughput of 800 Mb/s. The second-generation IQ-based switch is currently under development. Equipped with iiQueue modules and MUCS module, the new switch system will deliver a multi-gigabit aggregate throughput, eliminate HOL blocking, provide per-VC QoS, and achieve near-100% link bandwidth utilization. Complete documentation of input modules and trunk module for the existing testbed, and complete documentation of 3DQ, iiQueue, and MUCS for the second-generation testbed are given in this dissertation.
Ferrari, Daniela; Cimino, Francesco; Fratantonio, Deborah; Molonia, Maria Sofia; Bashllari, Romina; Busà, Rossana; Saija, Antonella; Speciale, Antonio
2017-01-01
Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF- κ B signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF- κ B activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF- κ B activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF- α -stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G). In this model, TNF- α induced nuclear translocation of NF- κ B and TNF- α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF- α -stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF- κ B levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF- κ B pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.
Domińska, Kamila; Okła, Piotr; Kowalska, Karolina; Habrowska-Górczyńska, Dominika Ewa; Urbanek, Kinga Anna; Ochędalski, Tomasz; Piastowska-Ciesielska, Agnieszka Wanda
2018-07-07
The ACE2/Ang1-7/MAS axis was involved in the cell proliferation, migration and apoptosis of many types of reproductive tissues. The research was conducted on prostate epithelial cells, immortalized by Simian Virus 40. We examined the influence of Ang 1-7 on biological properties of PNT1A cells after 24- or 48-h treatment. The employed selective antagonists of angiotensin receptors allowed evaluation of the receptor mediating Ang1-7 action. Our data clearly indicate that Ang1-7 can decrease cell proliferation and epithelial-to-mesenchymal transition of PNT1A cells via inactivation of PI3K axis and modulation of expression of the NF-kB gene family. Furthermore, it counteracts oxidant stress and inflammation in prostate cells by inhibition of VEGF expression and MMPs activation as well as by modulating the level of ERα and ERβ. On the other hand, this heptapeptide can promote cell survival by alteration of expression of anti- and pro-apoptotic members as well as compensatory up-regulation of AR expression. Summary, the results confirm the existence of a complicated dependence networks between the various elements of the local RAS and steroid hormone receptor pathways in prostate gland. Furthermore, shows the chances of using ACE2/Ang1-7/MAS pathway as a novel therapeutic target in prevention and treatment of prostate diseases. Copyright © 2018 Elsevier Inc. All rights reserved.
Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol.
Verstraeten, Sandra V; Jaggers, Grayson K; Fraga, Cesar G; Oteiza, Patricia I
2013-11-01
Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex), although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol depletion with methyl-β-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol-Hex bonding in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to prevent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid rafts mainly through Hex-cholesterol bondings. Procyanidin-lipid raft interactions can in part explain the capacity of large procyanidins to modulate cell physiology. © 2013 Elsevier B.V. All rights reserved.
BIM determines the number of merocytic dendritic cells, a cell type that breaks immune tolerance.
Audiger, Cindy; Lesage, Sylvie
2018-05-13
In contrast to conventional dendritic cells (cDC), when merocytic dendritic cells (mcDC) present antigens derived from apoptotic bodies, T-cell anergy is reversed rather than induced, a process that promotes autoimmunity. Interestingly, mcDC are present in higher proportion in type 1 diabetes-prone NOD mice than in autoimmune-resistant B6 and BALB/c mice, and the Insulin-dependent diabetes (Idd)13 locus is linked to mcDC proportion. Therefore, mcDC are notably associated with susceptibility to autoimmune diabetes. To identify which gene determines the proportion and absolute number of mcDC, we undertook a candidate gene approach by selecting relevant candidates within the Idd13 locus. We find that neither β2m nor Sirpa appear to influence the proportion of mcDC. Instead, we show that Bim effectively modulates mcDC number in a hematopoietic-intrinsic manner. We also demonstrate that Bim-deficiency does not impact other cDC subsets and appears to play a specific role in determining the proportion and absolute number of mcDC by promoting their survival. Together, these data demonstrate that Bim specifically modulates the number of mcDC. Identifying factors that facilitate apoptosis of mcDC by increasing BIM activity in a cell type-specific manner may help prevent autoimmunity. © 2018 Australasian Society for Immunology Inc.
Nunes, Caroline Fraga; Nogueira, Jeane S; Vianna, Pedro Henrique Oliveira; Ciambarella, Bianca Torres; Rodrigues, Patrícia Machado; Miranda, Karla Rodrigues; Lobo, Leandro Araújo; Domingues, Regina Maria Cavalcanti Pillotto; Busch, Mileane; Atella, Georgia Correa; Vale, André Macedo; Bellio, Maria; Nóbrega, Alberto; Canto, Fábio B; Fucs, Rita
2018-04-03
The incidence of allergic diseases, which increased to epidemic proportions in developed countries over the last few decades, has been correlated with altered gut microbiota colonization. Although probiotics may play a critical role in the restoration of gut homeostasis, their efficiency in the control of allergy is controversial. Here, we aimed to investigate the effects of probiotic treatment initiated at neonatal or adult ages on the suppression of experimental ovalbumin (OVA)-induced asthma. Neonatal or adult mice were orally treated with probiotic bacteria and subjected to OVA-induced allergy. Asthma-like symptoms, microbiota composition and frequencies of the total CD4+ T lymphocytes and CD4+Foxp3+ regulatory T (Treg) cells were evaluated in both groups. Probiotic administration to neonates, but not to adults, was necessary and sufficient for the absolute prevention of experimental allergen-induced sensitization. The neonatally acquired tolerance, transferrable to probiotic-untreated adult recipients by splenic cells from tolerant donors, was associated with modulation of gut bacterial composition, augmented levels of cecum butyrate and selective accumulation of Treg cells in the airways. Our findings reveal that a cross-talk between a healthy microbiota and qualitative features inherent to neonatal T cells, especially in the Treg cell subset, might support the beneficial effect of perinatal exposure to probiotic bacteria on the development of long-term tolerance to allergens.
Comparison of Pyranometers and Reference Cells on Fixed and One-axis Tracking Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooraghi, Michael R; Sengupta, Manajit; Vignola, Frank
Photovoltaic (PV) system perfomance is monitored by a wide variety of sensors. These instruments range from secondary standard pyranometers to photodiode-based pyranometers to reference cells. Although instruments are mounted in the plane of array of the modules a wide range of results have been obtained. Some of these difference have been assumed to come from systematic uncertainties associated with the irradiance sensors. This study is an attempt to quantify these differences by comparing the output of selected thermopile-based pyranometers to photodiode-based pyranometers and reference cells on a horizontal surface, a fixed-tilt surface, and a one-axis tracking surface. This analysis focusesmore » on clear-sky results from two sites with different climatic conditions. Several important features were observed. Photodiode-based pyranometers and reference cells produce widely different results under clear skies, especially at larger angles-of-incidence even though both instruments are based on measuring the short circuit current of solar cells. The difference is caused by the scattering of light as it passes through the glazing of the reference cell or the diffuser lens of the photodioded- base pyranometer. Both instruments are shown to have similar response to the spectral distribution of the irradiance when compared to the thermopile-based pyranometer that has a response nearly independent of the wavelength of light used by PV modules.« less
Lash, L Leanne; Wallar, Bradley J; Turner, Julie D; Vroegop, Steven M; Kilkuskie, Robert E; Kitchen-Goosen, Susan M; Xu, H Eric; Alberts, Arthur S
2013-11-15
Although the cancer cell cytoskeleton is a clinically validated target, few new strategies have emerged for selectively targeting cell division by modulating the cytoskeletal structure, particularly ways that could avoid the cardiotoxic and neurotoxic effects of current agents such as taxanes. We address this gap by describing a novel class of small-molecule agonists of the mammalian Diaphanous (mDia)-related formins, which act downstream of Rho GTPases to assemble actin filaments, and their organization with microfilaments to establish and maintain cell polarity during migration and asymmetric division. GTP-bound Rho activates mDia family members by disrupting the interaction between the DID and DAD autoregulatory domains, which releases the FH2 domain to modulate actin and microtubule dynamics. In screening for DID-DAD disruptors that activate mDia, we identified two molecules called intramimics (IMM-01 and -02) that were sufficient to trigger actin assembly and microtubule stabilization, serum response factor-mediated gene expression, cell-cycle arrest, and apoptosis. In vivo analysis of IMM-01 and -02 established their ability to slow tumor growth in a mouse xenograft model of colon cancer. Taken together, our work establishes the use of intramimics and mDia-related formins as a new general strategy for therapeutic targeting of the cytoskeletal remodeling machinery of cancer cells. ©2013 AACR
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Preliminary... crystalline silicon photovoltaic cells, whether or not assembled into modules (``solar cells''), from the... names of these companies in the table in the ``Preliminary Determination'' section in the solar cells...
Nandy, Ashis; Roy, Kunal; Saha, Achintya
2018-01-01
Metabolic syndrome is a matrix of different metabolic disorders which are the leading cause of death in human beings. Peroxysome proliferated activated receptor (PPAR) is a nuclear receptor involved in metabolism of fats and glucose. In order to explore structural requirements for selective PPAR modulators to control lipid and carbohydrate metabolism, the multi-cheminformatics studies have been performed. In silico modeling studies have been performed on a diverse set of PPAR modulators through quantitative structure-activity relationship (QSAR), pharmacophore mapping and docking studies. It is observed that the presence of an amide fragment (-CONHRPh) has a detrimental effect while an aliphatic ether linkage has a beneficial effect on PPARα modulation. On the other hand, the presence of an amide fragment has a positive effect on PPARδ modulation, but the aliphatic ether linkage and substituted aromatic ring in the molecular scaffold are very much essential for imparting potent and selective PPARγ modulation. Negative ionizable features (i.e. polar fragments) must be present in PPARδ and α modulators, but a hydrophobic feature is the prime requirement for PPARγ modulation. Here, the essential structural features have been explored for selective modulation of each subtype of PPAR in order to design new modulators with improved activity/selectivity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spataru, Sergiu; Hacke, Peter; Sera, Dezso
2015-06-14
This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation.more » Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.« less
2017-01-01
The superior colliculus (SC) receives direct input from the retina and integrates it with information about sound, touch, and state of the animal that is relayed from other parts of the brain to initiate specific behavioral outcomes. The superficial SC layers (sSC) contain cells that respond to visual stimuli, whereas the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Here, we used a large-scale silicon probe recording system to examine the visual response properties of SC cells of head-fixed and alert male mice. We found cells with diverse response properties including: (1) orientation/direction-selective (OS/DS) cells with a firing rate that is suppressed by drifting sinusoidal gratings (negative OS/DS cells); (2) suppressed-by-contrast cells; (3) cells with complex-like spatial summation nonlinearity; and (4) cells with Y-like spatial summation nonlinearity. We also found specific response properties that are enriched in different depths of the SC. The sSC is enriched with cells with small RFs, high evoked firing rates (FRs), and sustained temporal responses, whereas the dSC is enriched with the negative OS/DS cells and with cells with large RFs, low evoked FRs, and transient temporal responses. Locomotion modulates the activity of the SC cells both additively and multiplicatively and changes the preferred spatial frequency of some SC cells. These results provide the first description of the negative OS/DS cells and demonstrate that the SC segregates cells with different response properties and that the behavioral state of a mouse affects SC activity. SIGNIFICANCE STATEMENT The superior colliculus (SC) receives visual input from the retina in its superficial layers (sSC) and induces eye/head-orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using high-density electrode recordings and novel model-based analysis, we found several novel visual response properties of the SC cells, including encoding of a cell's preferred orientation or direction by suppression of the firing rate. The sSC and the dSC are enriched with cells with different visual response properties. Locomotion modulates the cells in the SC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually guided behaviors. PMID:28760858
Fuel Cell/Electrochemical Cell Voltage Monitor
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2012-01-01
A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.
Zhang, Qinduan; Chang, Jun; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang
2017-01-01
We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f0 = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C2H2) to select the laser wavelength. The system achieved a linear response (R2 = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times. PMID:29295599
Truchliński, J; Krauze, M; Cendrowska-Pinkosz, M; Modzelewska-Banachiewicz, B
2006-01-01
Successful results of earlier studies on testing the immune-modulating and anti-microbial properties of 1,2,4-triasole derivative as well as benefitial application of natural bio-stimulators in animal's prophylaxis and treatment inspired us to undertake further investigations. The aim of the present study was to evaluate and compare the prophylaxis effects of two natural immune-modulating agents, garlic (Allium sativum) extract and Echinovit C preparation and synthetic derivative of 1,2,4-triasole on non-specific immunity indices in slaughter turkey-hens. The results obtained suggest that the strongest stimulatory effect is exerted by garlic followed by 1,2,4-triasole derivative and Echinacea juice. Immune-modulating action of the substances applied was manifested by an increase in cellular immune parameters: the percentage of phagocyting cells, NBT-positive granulocytes and lysozyme level.
Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network
Nwachukwu, Jerome C; Srinivasan, Sathish; Bruno, Nelson E; Parent, Alexander A; Hughes, Travis S; Pollock, Julie A; Gjyshi, Olsi; Cavett, Valerie; Nowak, Jason; Garcia-Ordonez, Ruben D; Houtman, René; Griffin, Patrick R; Kojetin, Douglas J; Katzenellenbogen, John A; Conkright, Michael D; Nettles, Kendall W
2014-01-01
Resveratrol has beneficial effects on aging, inflammation and metabolism, which are thought to result from activation of the lysine deacetylase, sirtuin 1 (SIRT1), the cAMP pathway, or AMP-activated protein kinase. In this study, we report that resveratrol acts as a pathway-selective estrogen receptor-α (ERα) ligand to modulate the inflammatory response but not cell proliferation. A crystal structure of the ERα ligand-binding domain (LBD) as a complex with resveratrol revealed a unique perturbation of the coactivator-binding surface, consistent with an altered coregulator recruitment profile. Gene expression analyses revealed significant overlap of TNFα genes modulated by resveratrol and estradiol. Furthermore, the ability of resveratrol to suppress interleukin-6 transcription was shown to require ERα and several ERα coregulators, suggesting that ERα functions as a primary conduit for resveratrol activity. DOI: http://dx.doi.org/10.7554/eLife.02057.001 PMID:24771768
Zhang, Qinduan; Chang, Jun; Wang, Qiang; Wang, Zongliang; Wang, Fupeng; Qin, Zengguang
2017-12-25
We proposed a new method for gas detection in photoacoustic spectroscopy based on acousto-optic Q-switched fiber laser by merging a transmission PAS cell (resonant frequency f ₀ = 5.3 kHz) inside the fiber laser cavity. The Q-switching was achieved by an acousto-optic modulator, achieving a peak pulse power of ~679 mW in the case of the acousto-optic modulation signal with an optimized duty ratio of 10%. We used a custom-made fiber Bragg grating with a central wavelength of 1530.37 nm (the absorption peak of C₂H₂) to select the laser wavelength. The system achieved a linear response (R² = 0.9941) in a concentration range from 400 to 7000 ppmv, and the minimum detection limit compared to that of a conventional intensity modulation system was enhanced by 94.2 times.
Yeasmin, Shamima; Ceccarelli, Jacob; Vigen, Marina; Carrion, Bita; Putnam, Andrew J; Tarle, Susan A; Kaigler, Darnell
2014-04-01
In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential, which could make them a very attractive cell population for utilization in regenerative cell therapies.
Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes
Castro, C N; Barcala Tabarrozzi, A E; Winnewisser, J; Gimeno, M L; Antunica Noguerol, M; Liberman, A C; Paz, D A; Dewey, R A; Perone, M J
2014-01-01
Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. PMID:24628444
Li, Xia; Sturchler, Emmanuel; Kaczanowska, Katarzyna; Cameron, Michael; Finn, M G; Griffin, Patrick; McDonald, Patricia; Markou, Athina
2017-05-01
GABA B receptors (GABA B R) play a critical role in GABAergic neurotransmission in the brain and are thought to be one of the most promising targets for the treatment of drug addiction. GABA B R positive allosteric modulators (PAMs) have shown promise as potential anti-addictive therapies, as they lack the sedative and muscle relaxant properties of full GABA B receptor agonists such as baclofen. The present study was aimed at developing novel, selective, and potent GABA B R PAMs with efficacy on abuse-related effects of nicotine. We synthetized ~100 analogs of BHF177, a GABA B R PAM that has been shown to inhibit nicotine taking and seeking, and tested their activity in multiple cell-based functional assays. Among these compounds, KK-92A displayed superior PAM properties at the GABA B R. Interestingly, our results revealed the existence of pathway-selective differential modulation of GABA B R signaling by the structurally related GABA B R allosteric modulators BHF177 and KK-92A. In vivo, similarly to BHF177, KK-92A inhibited intravenous nicotine self-administration under both fixed- and progressive-ratio schedules of reinforcement in rats. In contrast to BHF177, KK-92A had no effect on food self-administration. Furthermore, KK-92A decreased cue-induced nicotine-seeking behavior without affecting food seeking. These results indicate that KK-92A is a selective GABA B R PAM with efficacy in inhibition of the primary reinforcing and incentive motivational effects of nicotine, and attenuation of nicotine seeking, further confirming that GABA B R PAMs may be useful antismoking medications.
Vuong, Helen E.; Hardi, Claudia N.; Barnes, Steven
2015-01-01
An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst2A and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH–RFP mice and M1 ipRGCs in OPN4–EGFP mice. SRIF increases K+ currents, decreases Ca2+ currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst2A agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4′-piperidine]-1′-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N2-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-l-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain. SIGNIFICANCE STATEMENT Amacrine cells form multiple microcircuits in the inner retina to mediate visual processing, although their organization and function remain incompletely understood. The somatostatin [somatotropin release inhibiting factor (SRIF)]- and dopamine (DA)-releasing amacrine cells act globally, and, in this study, they are shown to interact and modulate the light response of intrinsically photosensitive retinal ganglion cells (ipRGCs). SRIF amacrine cells target both DA amacrine cells and M1 ipRGCs for inhibition. The parallel actions of SRIF may serve to compensate for the loss of DA-mediated inhibition of M1 ipRGCs. This inhibitory tuning is of particular importance because the DA system mediates a broad range of light adaptational actions in the retina and M1 ipRGCs project to brain areas that influence sleep, mood, cognition, circadian entrainment, and pupillary reflexes. PMID:26631476
Köhn, Maja
2017-10-01
Protein phosphatase-1 and phosphatase-2A are two ubiquitously expressed enzymes known to catalyze the majority of dephosphorylation reactions on serine and threonine inside cells. They play roles in most cellular processes and are tightly regulated by regulatory subunits in holoenzymes. Their misregulation and malfunction contribute to disease development and progression, such as in cancer, diabetes, viral infections, and neurological as well as heart diseases. Therefore, targeting these phosphatases for therapeutic use would be highly desirable; however, their complex regulation and high conservation of the active site have been major hurdles for selectively targeting them in the past. In the last decade, new approaches have been developed to overcome these hurdles and have strongly revived the field. I will focus here on peptide-based approaches, which contributed to showing that these phosphatases can be targeted selectively and aided in rethinking the design of selective phosphatase modulators. Finally, I will give a perspective on www.depod.org, the human dephosphorylation database, and how it can aid phosphatase modulator design. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
Allan, George; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Ng, Raymond; Sui, Zhihua; Lundeen, Scott
2008-06-01
Androgens are required for the maintenance of normal sexual activity in adulthood and for enhancing muscle growth and lean body mass in adolescents and adults. Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-37654032 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle with ED(50) 0.8 mg/kg, stimulating maximal growth at a dose of 3mg/kg. In contrast, it stimulated ventral prostate growth to 21% of its full size at 3mg/kg. At the same time, JNJ-37654032 reduced prostate weight in intact rats by 47% at 3mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging to monitor body composition, JNJ-37654032 restored about 20% of the lean body mass lost following orchidectomy in aged rats. JNJ-37654032 reduced follicle-stimulating hormone levels in orchidectomized rats and reduced testis size in intact rats. JNJ-37654032 is a potent prostate-sparing SARM with the potential for clinical benefit in muscle-wasting diseases.