Science.gov

Sample records for cells undergoing apoptosis

  1. Altered Processing of Amyloid Precursor Protein in Cells Undergoing Apoptosis

    PubMed Central

    Fiorelli, Tina; Kirouac, Lisa; Padmanabhan, Jaya

    2013-01-01

    Altered proteolysis of amyloid precursor protein is an important determinant of pathology development in Alzheimer's disease. Here, we describe the detection of two novel fragments of amyloid precursor protein in H4 neuroglioma cells undergoing apoptosis. Immunoreactivity of these 25–35 kDa fragments to two different amyloid precursor protein antibodies suggests that they contain the amyloid-β region and an epitope near the C-terminus of amyloid precursor protein. Generation of these fragments is associated with cleavage of caspase-3 and caspase-7, suggesting activation of these caspases. Studies in neurons undergoing DNA damage-induced apoptosis also showed similar results. Inclusion of caspase inhibitors prevented the generation of these novel fragments, suggesting that they are generated by a caspase-dependent mechanism. Molecular weight prediction and immunoreactivity of the fragments generated suggested that such fragments could not be generated by cleavage at any previously identified caspase, secretase, or calpain site on amyloid precursor protein. Bioinformatic analysis of the amino acid sequence of amyloid precursor protein revealed that fragments fitting the observed size and immunoreactivity could be generated by either cleavage at a novel, hitherto unidentified, caspase site or at a previously identified matrix metalloproteinase site in the extracellular domain. Proteolytic cleavage at any of these sites leads to a decrease in the generation of α-secretase cleaved secreted APP, which has both anti-apoptotic and neuroprotective properties, and thus may contribute to neurodegeneration in Alzheimer's disease. PMID:23469123

  2. Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis

    SciTech Connect

    Lizard, G.; Fournel, S.; Genestier, L.; Dhedin, N.

    1995-11-01

    Programmed cell death or apoptosis is characterized by typical morphological alterations. By transmission electron microscopy, apoptotic cells are identified by condensation of the chromatin in tight apposition to the nuclear envelope, alteration of the nuclear envelope and fragmentation of the nucleus, whereas integrity of the plasma membrane and organelles is preserved. Conversely cells undergoing necrosis display and early desintegration of cytoplasmic membrane and swelling of mitochondria. In this study we assessed by flow cytometry the sequential alterations of forward angle light scatter, 90{degrees} light scatter, and fluorescence associated with fluorescein diacetate, rhodamine 123, and propidium iodide in two human B cell lines undergoing apoptosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by sodium azide. At the same time intervals, cells were examined by transmission electron microscopy and by UV microscopy after staining with Hoechst 33342. We report that sequential changes in light scatters and fluorescein diacetate are similar in cells undergoing apoptosis or necrosis, whereas apoptosis is characterized by a slightly delayed decrease of mitochondrial activity as assessed by rhodamine 123 staining. Surprisingly, a part of cells undergoing apoptosis displayed an early uptake of propidium iodide followed by a condensation and then a fragmentation of their nuclei. It is concluded that uptake of propidium iodide is a very early marker of cell death which does not discriminate between necrosis and apoptosis. Along with biochemical criteria, nuclear morphology revealed by staining with Hoechst 33342 would seem to be of the most simple and most discriminative assay of apoptosis. 33 refs., 5 figs., 1 tab.

  3. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress.

    PubMed

    Lu, Jun; Chen, Jian; Xu, Nianjun; Wu, Jun; Kang, Yani; Shen, Tingting; Kong, Hualei; Ma, Chao; Cheng, Ming; Shao, Zhifeng; Xu, Ling; Zhao, Xiaodong

    2016-09-06

    Application of cisplatin (DDP) for treating lung cancer is restricted due to its toxicity and lung cancer's drug resistance. In this study, we examined the effect of Jinfukang (JFK), an effective herbal medicine against lung cancer, on DDP-induced cytotoxicity in lung cancer cells. Morphologically, we observed that JFK increases DDP-induced pro-apoptosis in A549 cells in a synergistic manner. Transcriptome profiling analysis indicated that the combination of JFK and DDP regulates genes involved in apoptosis-related signaling pathways. Moreover, we found that the combination of JFK and DDP produces synergistic pro-apoptosis effect in other lung cancer cell lines, such as NCI-H1975, NCI-H1650, and NCI-H2228. Particularly, we demonstrated that AIFM2 is activated by the combined treatment of JFK and DDP and partially mediates the synergistic pro-apoptosis effect. Collectively, this study not only offered the first evidence that JFK promotes DDP-induced cytotoxicity, and activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress, but also provided a novel insight for improving cytotoxicity by combining JFK with DDP to treat lung cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis.

    PubMed Central

    Oliverio, S; Amendola, A; Di Sano, F; Farrace, M G; Fesus, L; Nemes, Z; Piredda, L; Spinedi, A; Piacentini, M

    1997-01-01

    The retinoblastoma gene product (pRB) plays an important role in controlling both cell release from the G1 phase and apoptosis. We show here that in the early phases of apoptosis, pRB is posttranslationally modified by a tissue transglutaminase (tTG)-catalyzed reaction. In fact, by employing a novel haptenized lysis synthetic substrate which allows the isolation of glutaminyl-tTG substrates in vivo, we identified pRB as a potential tTG substrate in U937 cells undergoing apoptosis. In keeping with this finding, we showed that apoptosis of U937 cells is characterized by the rapid disappearance of the 105,000- to 110,000-molecular-weight pRB forms concomitantly with the appearance of a smear of immunoreactive products with a molecular weight of greater than 250,000. The shift in pRB molecular weight was reproduced by adding exogenous purified tTG to extracts obtained from viable U937 cells and was prevented by dansylcadaverine, a potent enzyme inhibitor. The effect of the pRB posttranslational modification during apoptosis was investigated by determining the E2F-1 levels and by isolating and characterizing pRB-null clones from U937 cells. Notably, the lack of pRB in these U937-derived clones renders these p53-null cells highly resistant to apoptosis induced by serum withdrawal, calphostin C, and ceramide. Taken together, these data suggest that tTG, acting on the pRB protein, might play an important role in the cell progression through the death program. PMID:9315663

  5. Cornea graft endothelial cells undergo apoptosis by way of an alternate (caspase-independent) pathway.

    PubMed

    Bourges, Jean-Louis; Valamanesh, Fatemeh; Torriglia, Alicia; Jeanny, Jean-Claude; Savoldelli, Michèle; Renard, Gilles; BenEzra, David; de Kozak, Yvonne; Behar-Cohen, Francine

    2004-08-15

    To look for apoptosis pathways involved in corneal endothelial cell death during acute graft rejection and to evaluate the potential role of nitric oxide in this process. Corneal buttons from Brown-Norway rats were transplanted into Lewis rat corneas. At different time intervals after transplantation, apoptosis was assessed by diamino-2-phenylindol staining and annexin-V binding on flat-mount corneas, and by terminal transferase dUTP nick end labeling (TUNEL), caspase-3 dependent and leukocyte elastase inhibitor (LEI)/LDNase II caspase-independent pathways on sections. Inducible nitric oxide synthase (NOS-II) expression and the presence of nitrotyrosine were assayed by immunohistochemistry. Graft endothelial cells demonstrated nuclear fragmentation and LEI nuclear translocation, annexin-V binding, and membranes bleb formation. Apoptosis associated with caspase-3 activity or TUNEL-positive reaction was not observed at any time either in the graft or in the recipient corneal endothelial cells. During 14 days posttransplantation, the recipient corneal endothelial cells remained unaltered and their number unchanged in all studied corneas. NOS-II was expressed in infiltrating cells present within the graft. This expression was closely associated with the presence of nitrotyrosine in endothelial and infiltrating cells. During the time course of corneal graft rejection, graft endothelial cells undergo apoptosis. Apoptosis is caspase 3 independent and TUNEL negative and is, probably, carried out by an alternative pathway driven by an LEI/L-Dnase II. Peroxynitrite formation may be an additional mechanism for cell toxicity and programmed cell death of the graft endothelial cells during the rejection process in this model.

  6. Involvement of soluble Fas Ligand in germ cell apoptosis in testis of rats undergoing autoimmune orchitis.

    PubMed

    Jacobo, Patricia Verónica; Fass, Mónica; Pérez, Cecilia Valeria; Jarazo-Dietrich, Sabrina; Lustig, Livia; Theas, María Susana

    2012-11-01

    Experimental autoimmune orchitis (EAO) is a model of chronic inflammation and infertility useful for studying immune and germ cell (GC) interactions. EAO is characterized by severe damage of seminiferous tubules (STs) with GCs that undergo apoptosis and sloughing. Based on previous results showing that Fas-Fas Ligand (L) system is one of the main mediators of apoptosis in EAO, in the present work we studied the involvement of Fas and the soluble form of FasL (sFasL) in GC death induction. EAO was induced in rats by immunization with testis homogenate and adjuvants; control (C) rats were injected with adjuvants; a group of non-immunized normal (N) rats was also studied. Activation of Fas employing an anti-Fas antibody decreased viability (trypan blue exclusion test) and induced apoptosis (TUNEL) of GCs from STs of N and EAO rats, an effect more pronounced on GCs from EAO STs. By Western blot we detected an increase in sFasL content in the testicular fluid of rats with severe EAO compared to N and C rats. By intratesticular injection of FasL conjugated to Strep-Tag molecule (FasL-Strep, BioTAGnology) and its immunofluorescent localization, we demonstrated that sFasL is able to enter the adluminal compartment of the STs. Moreover, FasL-Strep induced GC apoptosis in testicular fragments of N rats. By flow cytometry, we detected an increase in the number of membrane FasL-expressing CD4+ and CD8+ T cells in testis during EAO development but no expression of FasL by macrophages. Our results demonstrate that sFasL is locally produced in the chronically inflamed testis and that this molecule is able to enter the adluminal compartment of STs and induce apoptosis of Fas-bearing GCs.

  7. Label-Free Discrimination of Cells Undergoing Apoptosis by Hyperspectral Confocual Reflectance Imaging

    NASA Astrophysics Data System (ADS)

    Bertani, F. R.; Botti, E.; Costanzo, A.; Ferrari, L.; Mussi, V.; D'Alessandro, M.; Selci, S.

    2013-12-01

    Among the optical techniques used for exploring the properties of cells and tissues, those based on hyperspectral label-free analysis are particularly interesting due to their non-invasive character and their ability to fast collect a huge number of information on the different sample constituents and their spatial distribution. Here we present results obtained with a novel hyperspectral reflectance confocal microscope of label-free discrimination of cells undergoing apoptosis. Our data, analyzed by means of a powerful statistical method, enable to obtain information on the biological status at a single cell level through the local measurement of reflectivity. Furthermore, an optical model of the local dielectric response gives an additional insight of the parameters linking the optical responsivity to the biological status.

  8. The gene BRAF is underexpressed in bipolar subject olfactory neuroepithelial progenitor cells undergoing apoptosis.

    PubMed

    Schroeder, Emily; Gao, Yonglin; Lei, Zhenmin; Roisen, Fred; El-Mallakh, Rif S

    2016-02-28

    Bipolar disorder is a devastating psychiatric condition that frequently results in various degrees of brain tissue loss, cognitive decline, and premature death. The documentation of brain tissue loss implicates apoptosis as the likely underlying degenerative process, but direct experimental demonstration is lacking. Olfactory neuroepithelial biopsies from individuals with and without bipolar I disorder yielded olfactory neuroepithelial progenitor cells (ONPs), which spontaneously differentiate into neurons and glia. Glutamate, 0.1M, for 3 and 6h was used to induce apoptosis. Genes involved in the apoptotic pathway were interrogated with micro-array analysis before and after glutamate treatment for 6h. Confirmation was accomplished with real-time PCR. Total and phospho-B-Raf protein levels were measured using Western blot analysis. ONPs from bipolar individuals demonstrated significantly greater apoptosis than cells from non-bipolar subjects. Microarray results revealed 12 differentially expressed genes. Five genes were further examined. BRAF mRNA and protein levels were significantly reduced in bipolar ONPs. ONPs with the genetic heritage of bipolar I disorder were more sensitive to glutamate induced apoptosis. Under expression of the BRAF gene and protein, which plays a role in regulating the pro-survival MEK/ERK signaling pathway, may contribute to this apoptotic sensitivity. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Bcl2-low-expressing MCF7 cells undergo necrosis rather than apoptosis upon staurosporine treatment.

    PubMed Central

    Poliseno, Laura; Bianchi, Laura; Citti, Lorenzo; Liberatori, Sabrina; Mariani, Laura; Salvetti, Alessandra; Evangelista, Monica; Bini, Luca; Pallini, Vitaliano; Rainaldi, Giuseppe

    2004-01-01

    We present a ribozyme-based strategy for studying the effects of Bcl2 down-regulation. The anti-bcl2 hammerhead ribozyme Rz-bcl2 was stably transfected into MCF7 cancer cells and the cleavage of Bcl2 mRNA was demonstrated using a new assay for cleavage product detection, while Western blot analysis showed a concomitant depletion of Bcl2 protein. Rz-bcl2-expressing cells were more sensitive to staurosporine than control cells. Moreover, both molecular and cellular read-outs indicated that staurosporine-induced cell death was necrosis rather than apoptosis in these cells. The study of the effects of Bcl2 down-regulation was extended to the global MCF7 protein expression profile, exploiting a proteomic approach. Two reference electro-pherograms of Rz-bcl2-transfected cells, one with the ribozyme in a catalytically active form and the other with the ribozyme in a catalytically inactive form, were obtained. When comparing the two-dimensional maps, 53 differentially expressed spots were found, four of which were identified by MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS as calreticulin, nucleophosmin, phosphoglycerate kinase and pyruvate kinase. How the up-regulation of these proteins might help to explain the modification of Bcl2 activity is discussed. PMID:14748742

  10. Bcl2-low-expressing MCF7 cells undergo necrosis rather than apoptosis upon staurosporine treatment.

    PubMed

    Poliseno, Laura; Bianchi, Laura; Citti, Lorenzo; Liberatori, Sabrina; Mariani, Laura; Salvetti, Alessandra; Evangelista, Monica; Bini, Luca; Pallini, Vitaliano; Rainaldi, Giuseppe

    2004-05-01

    We present a ribozyme-based strategy for studying the effects of Bcl2 down-regulation. The anti-bcl2 hammerhead ribozyme Rz-bcl2 was stably transfected into MCF7 cancer cells and the cleavage of Bcl2 mRNA was demonstrated using a new assay for cleavage product detection, while Western blot analysis showed a concomitant depletion of Bcl2 protein. Rz-bcl2-expressing cells were more sensitive to staurosporine than control cells. Moreover, both molecular and cellular read-outs indicated that staurosporine-induced cell death was necrosis rather than apoptosis in these cells. The study of the effects of Bcl2 down-regulation was extended to the global MCF7 protein expression profile, exploiting a proteomic approach. Two reference electro-pherograms of Rz-bcl2-transfected cells, one with the ribozyme in a catalytically active form and the other with the ribozyme in a catalytically inactive form, were obtained. When comparing the two-dimensional maps, 53 differentially expressed spots were found, four of which were identified by MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS as calreticulin, nucleophosmin, phosphoglycerate kinase and pyruvate kinase. How the up-regulation of these proteins might help to explain the modification of Bcl2 activity is discussed.

  11. AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity.

    PubMed

    Bobba, A; Casalino, E; Amadoro, G; Petragallo, V A; Atlante, A

    2017-06-22

    The neurodegeneration of cerebellar granule cells, after low potassium induced apoptosis, is known to be temporally divided into an early and a late phase. Voltage-dependent anion channel-1 (VDAC1) protein, changing from the closed inactive state to the active open state, is central to the switch between the early and late phase. It is also known that: (i) VDAC1 can undergo phosphorylation events and (ii) AMP-activated protein kinase (AMPK), the sensor of cellular stress, may have a role in neuronal homeostasis. In the view of this, the involvement of AMPK activation and its correlation with VDAC1 status and activity has been investigated in the course of cerebellar granule cells apoptosis. The results reported in this study show that an increased level of the phosphorylated, active, isoform of AMPK occurs in the early phase, peaks at 3 h and guarantees an increase in the phosphorylation status of VDCA1, resulting in a reduced activity of this latter. However this situation is transient in nature, since, in the late phase, AMPK activation decreases as well as the level of phosphorylated VDAC1. In a less phosphorylated status, VDAC1 fully recovers its gating activity and drives cells along the death route.

  12. Real-time investigation of cytochrome c release profiles in living neuronal cells undergoing amyloid beta oligomer-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Park, Younggeun; Pun, San; Lee, Sung Sik; Lo, Joe F.; Lee, Luke P.

    2015-06-01

    Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy.Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02390d

  13. Optical scatter imaging as an apoptosis assay for cells undergoing ALA-mediated photodynamic therapy in vitro

    NASA Astrophysics Data System (ADS)

    Rossi, Vincent M.; Baugher, Paige J.; Jacques, Steven L.

    2013-02-01

    Aminolevulinic acid (ALA) is converted to protoporphyrin-IX (PpIX) within mitochondria, causing the assumption that ALA-mediated photodynamic therapy (PDT) results in mitochondrial damage and therefore an apoptotic response. Mitochondria within apoptosing cells swell, forming pores in their outer mitochondrial membranes which release cytochrome-c, triggering apoptosis. Optical scatter imaging (OSI) makes use of scattered fields in order to indicate the morphology of subcellular components, and is used here in order to measure changes in mitochondrial size as a response to ALA-mediated PDT. Two images of the same field of view are spatially filtered in the Fourier plane of a 4-F system. Both spatial filters block directly transmitted light, while accepting different angles of scattered light through an adjustable iris. The optical scatter image ratio (OSIR) of the local intensities of these two spatially filtered images is indicative of scattering particle size. Mie theory is used to calculate the predicted OSIR as a function of scattering particle size. In this fashion, the OSI system is calibrated using polystyrene microspheres of know sizes. Comparison of the measured OSIR from cellular images to theoretical values predicted for mitochondria then serves as an indication as to whether cells are apoptosing. Cells are treated at varying concentrations of ALA and varying exposures of 635 nm light and imaged at varying time points in order to develop a broader understanding of an apoptotic response of cells undergoing ALA mediated PDT.

  14. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis

    SciTech Connect

    Reich, Charles F.; Pisetsky, David S.

    2009-03-10

    Microparticles are small membrane-bound vesicles that are released from apoptotic cells during blebbing. These particles contain DNA and RNA and display important functional activities, including immune system activation. Furthermore, nucleic acids inside the particle can be analyzed as biomarkers in a variety of disease states. To elucidate the nature of microparticle nucleic acids, DNA and RNA released in microparticles from the Jurkat T and HL-60 promyelocytic cell lines undergoing apoptosis in vitro were studied. Microparticles were isolated from culture media by differential centrifugation and characterized by flow cytometry and molecular approaches. In these particles, DNA showed laddering by gel electrophoresis and was present in a form that allowed direct binding by a monoclonal anti-DNA antibody, suggesting antigen accessibility even without fixation. Analysis of RNA by gel electrophoresis showed intact 18s and 28s ribosomal RNA bands, although lower molecular bands consistent with 28s ribosomal RNA degradation products were also present. Particles also contained messenger RNA as shown by RT-PCR amplification of sequences for {beta}-actin and GAPDH. In addition, gel electrophoresis showed the presence of low molecular weight RNA in the size range of microRNA. Together, these results indicate that microparticles from apoptotic Jurkat and HL-60 cells contain diverse nucleic acid species, indicating translocation of both nuclear and cytoplasmic DNA and RNA as particle release occurs during death.

  15. Early Decrease in Respiration and Uncoupling Event Independent of Cytochrome c Release in PC12 Cells Undergoing Apoptosis

    PubMed Central

    Berghella, Libera; Ferraro, Elisabetta

    2012-01-01

    Cytochrome c is a key molecule in mitochondria-mediated apoptosis. It also plays a pivotal role in cell respiration. The switch between these two functions occurs at the moment of its release from mitochondria. This process is therefore extremely relevant for the fate of the cell. Since cytochrome c mediates respiration, we studied the changes in respiratory chain activity during the early stages of apoptosis in order to contribute to unravel the mechanisms of cytochrome c release. We found that, during staurosporine (STS)- induced apoptosis in PC12 cells, respiration is affected before the release of cytochrome c, as shown by a decrease in the endogenous uncoupled respiration and an uncoupling event, both occurring independently of cytochrome c release. The decline in the uncoupled respiration occurs also upon Bcl-2 overexpression (which inhibits cytochrome c release), while the uncoupling event is inhibited by Bcl-2. We also observed that the first stage of nuclear condensation during STS-induced apoptosis does not depend on the release of cytochrome c into the cytosol and is a reversibile event. These findings may contribute to understand the mechanisms affecting mitochondria during the early stages of apoptosis and priming them for the release of apoptogenic factors. PMID:22666257

  16. Augmented damage of islets by impaired exocrine acinar cells undergoing apoptosis that is possibly converted to necrosis during isolation.

    PubMed

    Elgendy, Hamed; Okitsu, Teru; Kimura, Yasuko; Liu, Xibao; Nafady-Hego, Hanaa; Kurata, Jiro; Teramae, Hiroki; Elbahrawy, Ashraf; Uemoto, Shinji; Fukuda, Kazuhiko

    2011-01-01

    Islet damage attributed to impaired exocrine cells during pancreas preservation and isolation procedure remains elusive, although released exocrine enzymes could directly damage islets. The aim of this study is to investigate the cellular mechanisms associated with exocrine cells and their possible impact on the islet cell survival and function after isolation. Mouse pancreata were stored in cold University of Wisconsin preservation solution for 0, 24 and 48 h and incubated with or without collagenase at 37°C for 15 min. During preservation, the percentage of exocrine cells with necrosis, which means impaired cellular membrane that allows intracellular enzymes to be released, remains low (< 10%) regardless of preservation time; whereas the percentage of exocrine cells with apoptosis, which means impaired nucleus and possible intact cellular membrane, increases over time of preservation. After collagenase-free incubation, however, the percentage of exocrine cells with necrosis became higher in longer preservation time, and more than 60% of the necrotic exocrine cells contained apoptosis as well. Islet cells located in pancreata with intact structure are almost kept away either from necrotic or apoptotic changes even after 48 h preservation followed by collagenase-free incubation. However, when islets are isolated after collagenase-containing incubation, the percentage of islet cells with necrosis increases over time of preservation up to approximately 40%. This study suggests that exocrine cells with necrosis could cause damage of isolated islets when the pancreas is dissociated and that the necrosis in exocrine cells might be induced mainly as the conversion from apoptosis that has already existed during preservation.

  17. Paclitaxel-resistant human ovarian cancer cells undergo c-Jun NH2-terminal kinase-mediated apoptosis in response to noscapine.

    PubMed

    Zhou, Jun; Gupta, Kamlesh; Yao, Joyce; Ye, Keqiang; Panda, Dulal; Giannakakou, Paraskevi; Joshi, Harish C

    2002-10-18

    We have previously discovered the opium alkaloid noscapine as a microtubule interacting agent that binds to tubulin, alters the dynamics of microtubule assembly, and arrests mammalian cells at mitosis (Ye, K., Ke, Y., Keshava, N., Shanks, J., Kapp, J. A., Tekmal, R. R., Petros, J., and Joshi, H. C. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 1601-1606; Ye, K., Zhou, J., Landen, J. W., Bradbury, E. M., and Joshi, H. C. (2001) J. Biol. Chem. 276, 46697-46700; Zhou, J., Panda, D., Landen, J. W., Wilson, L., and Joshi, H. C. (2002) J. Biol. Chem. 277, 17200-17208). Here we show that noscapine does not compete with paclitaxel for tubulin binding and can efficiently inhibit the proliferation of both paclitaxel-sensitive and paclitaxel-resistant human ovarian carcinoma cells (i.e. the parental cell line 1A9 and two derivative cell lines, 1A9PTX10 and 1A9PTX22, which harbor beta-tubulin mutations that impair paclitaxel-tubulin interaction (Giannakakou, P., Sackett, D. L., Kang, Y. K., Zhan, Z., Buters, J. T., Fojo, T., and Poruchynsky, M. S. (1997) J. Biol. Chem. 272, 17118-17125). Strikingly, these cells undergo apoptotic death upon noscapine treatment, accompanied by activation of the c-Jun NH(2)-terminal kinases (JNK). Furthermore, inhibition of JNK activity by treatment with antisense oligonucleotide or transfection with dominant-negative JNK blocks noscapine-induced apoptosis. These findings thus indicate a great potential for noscapine in the treatment of paclitaxel-resistant human cancers. In addition, our results suggest that the JNK pathway plays an essential role in microtubule inhibitor-induced apoptosis.

  18. Transport and metabolism of L-lactate occur in mitochondria from cerebellar granule cells and are modified in cells undergoing low potassium dependent apoptosis.

    PubMed

    Atlante, Anna; de Bari, Lidia; Bobba, Antonella; Marra, Ersilia; Passarella, Salvatore

    2007-11-01

    Having confirmed that externally added L-lactate can enter cerebellar granule cells, we investigated whether and how L-lactate is metabolized by mitochondria from these cells under normal or apoptotic conditions. (1) L-lactate enters mitochondria, perhaps via an L-lactate/H+ symporter, and is oxidized in a manner stimulated by ADP. The existence of an L-lactate dehydrogenase, located in the inner mitochondrial compartment, was shown by immunological analysis. Neither the protein level nor the Km and Vmax values changed en route to apoptosis. (2) In both normal and apoptotic cell homogenates, externally added L-lactate caused reduction of the intramitochondrial pyridine cofactors, inhibited by phenylsuccinate. This process mirrored L-lactate uptake by mitochondria and occurred with a hyperbolic dependence on L-lactate concentrations. Pyruvate appeared outside mitochondria as a result of external addition of L-lactate. The rate of the process depended on L-lactate concentration and showed saturation characteristics. This shows the occurrence of an intracellular L-lactate/pyruvate shuttle, whose activity was limited by the putative L-lactate/pyruvate antiporter. Both the carriers were different from the monocarboxylate carrier. (3) L-lactate transport changed en route to apoptosis. Uptake increased in the early phase of apoptosis, but decreased in the late phase with characteristics of a non-competitive like inhibition. In contrast, the putative L-lactate/pyruvate antiport decreased en route to apoptosis with characteristics of a competitive like inhibition in early apoptosis, and a mixed non-competitive like inhibition in late apoptosis.

  19. Balance of unidirectional monovalent ion fluxes in cells undergoing apoptosis: why does Na+/K+ pump suppression not cause cell swelling?

    PubMed

    Yurinskaya, Valentina E; Rubashkin, Andrey A; Vereninov, Alexey A

    2011-05-01

    Cells dying according to the apoptotic program, unlike cells dying via an unprogrammed mode, are able to avoid swelling and osmotic bursting with membrane disruption.There are indications that apoptosis is accompanied by suppression of the Na+/K+ pump and changes in the K+ and Cl− channels. It remains unclear how ion fluxes through individual ion pathways are integrated so as to induce loss of intracellular ions and concomitant apoptotic volume decrease. A decrease in activity of the sodium pump during apoptosis should cause cell swelling rather than shrinkage. We have made the first systemic analysis of the monovalent ion flux balance in apoptotic cells. Experimental data were obtained for human U937 cells treated with staurosporine for 4–5 h, which is known to induce apoptosis. The data include cellular Cl− content and fluxes, K+, Na+, water content and ouabain-sensitive and -resistant Rb+ fluxes.Unidirectional monovalent ion fluxeswere calculated using these data and a cell model comprising the double Donnan system with the Na+/K+ pump, Cl−, K+, Na+ channels, the Na+–K+–2Cl−cotransporter (NKCC), the Na+–Cl− cotransporter (NC), and the equivalent Cl−/Cl− exchange.Apoptotic cell shrinkage was found to be caused, depending on conditions, either by an increase in the integral channel permeability of membrane for K+ or by suppression of the pump coupledwith a decrease in the integral channel permeability of membrane for Na+. The decrease in the channel permeability of membrane for Na+ plays a crucial role in cell dehydration in apoptosis accompanied by suppression of the pump. Supplemental Table S1 is given for easy calculating flux balance under specified conditions.

  20. Balance of unidirectional monovalent ion fluxes in cells undergoing apoptosis: why does Na+/K+ pump suppression not cause cell swelling?

    PubMed Central

    Yurinskaya, Valentina E; Rubashkin, Andrey A; Vereninov, Alexey A

    2011-01-01

    Abstract Cells dying according to the apoptotic program, unlike cells dying via an unprogrammed mode, are able to avoid swelling and osmotic bursting with membrane disruption. There are indications that apoptosis is accompanied by suppression of the Na+/K+ pump and changes in the K+ and Cl− channels. It remains unclear how ion fluxes through individual ion pathways are integrated so as to induce loss of intracellular ions and concomitant apoptotic volume decrease. A decrease in activity of the sodium pump during apoptosis should cause cell swelling rather than shrinkage. We have made the first systemic analysis of the monovalent ion flux balance in apoptotic cells. Experimental data were obtained for human U937 cells treated with staurosporine for 4–5 h, which is known to induce apoptosis. The data include cellular Cl− content and fluxes, K+, Na+, water content and ouabain-sensitive and -resistant Rb+ fluxes. Unidirectional monovalent ion fluxes were calculated using these data and a cell model comprising the double Donnan system with the Na+/K+ pump, Cl−, K+, Na+ channels, the Na+–K+–2Cl− cotransporter (NKCC), the Na+–Cl− cotransporter (NC), and the equivalent Cl−/Cl− exchange. Apoptotic cell shrinkage was found to be caused, depending on conditions, either by an increase in the integral channel permeability of membrane for K+ or by suppression of the pump coupled with a decrease in the integral channel permeability of membrane for Na+. The decrease in the channel permeability of membrane for Na+ plays a crucial role in cell dehydration in apoptosis accompanied by suppression of the pump. Supplemental Table S1 is given for easy calculating flux balance under specified conditions. PMID:21486767

  1. Impaired hepatitis C virus (HCV)-specific effector CD8+ T cells undergo massive apoptosis in the peripheral blood during acute HCV infection and in the liver during the chronic phase of infection.

    PubMed

    Radziewicz, Henry; Ibegbu, Chris C; Hon, Huiming; Osborn, Melissa K; Obideen, Kamil; Wehbi, Mohammad; Freeman, Gordon J; Lennox, Jeffrey L; Workowski, Kimberly A; Hanson, Holly L; Grakoui, Arash

    2008-10-01

    A majority of patients infected with hepatitis C virus (HCV) do not sustain an effective T-cell response, and viremia persists. The mechanism leading to failure of the HCV-specific CD8(+) T-cell response in patients developing chronic infection is unclear. We investigated apoptosis susceptibility of HCV-specific CD8(+) T cells during the acute and chronic stages of infection. Although HCV-specific CD8(+) T cells in the blood during the acute phase of infection and in the liver during the chronic phase were highly activated and expressed an effector phenotype, the majority was undergoing apoptosis. In contrast, peripheral blood HCV-specific CD8(+) T cells during the chronic phase expressed a resting memory phenotype. Apoptosis susceptibility of HCV-specific CD8(+) T cells was associated with very high levels of programmed death-1 (PD-1) and low CD127 expression and with significant functional T-cell deficits. Further evaluation of the "death phase" of HCV-specific CD8(+) T cells during acute HCV infection showed that the majority of cells were dying by a process of cytokine withdrawal, mediated by activated caspase 9. Contraction during the acute phase occurred rapidly via this process despite the persistence of the virus. Remarkably, in the chronic phase of HCV infection, at the site of infection in the liver, a substantial frequency of caspase 9-mediated T-cell death was also present. This study highlights the importance of cytokine deprivation-mediated apoptosis with consequent down-modulation of the immune response to HCV during acute and chronic infections.

  2. ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence

    SciTech Connect

    Park, Jun; Jo, Yong Hwa; Cho, Chang Hoon; Choe, Wonchae; Kang, Insug; Baik, Hyung Hwan; Yoon, Kyung-Sik

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer A-T cells were not hypersensitive to low levels of DNA DSBs. Black-Right-Pointing-Pointer A-T cells have enhanced Akt but defect in activation of p53 and apoptotic proteins. Black-Right-Pointing-Pointer A-T cells underwent premature senescence after DNA damage accumulated. Black-Right-Pointing-Pointer Chemotherapeutic effect in cancer therapy may be associated with premature senescence. -- Abstract: DNA DSBs are induced by IR or radiomimetic drugs such as doxorubicin. It has been indicated that cells from ataxia-telangiectasia patients are highly sensitive to radiation due to defects in DNA repair, but whether they have impairment in apoptosis has not been fully elucidated. A-T cells showed increased sensitivity to high levels of DNA damage, however, they were more resistant to low doses. Normal cells treated with combination of KU55933, a specific ATM kinase inhibitor, and doxorubicin showed increased resistance as they do in a similar manner to A-T cells. A-T cells have higher viability but more DNA breaks, in addition, the activations of p53 and apoptotic proteins (Bax and caspase-3) were deficient, but Akt expression was enhanced. A-T cells subsequently underwent premature senescence after treatment with a low dose of doxorubicin, which was confirmed by G2 accumulation, senescent morphology, and SA-{beta}-gal positive until 15 days repair incubation. Finally, A-T cells are radio-resistant at low doses due to its defectiveness in detecting DNA damage and apoptosis, but the accumulation of DNA damage leads cells to premature senescence.

  3. Granule swelling and cleavage of mitogen-activated protein kinases in human neutrophils undergoing apoptosis

    SciTech Connect

    Kato, Takayuki; Ikemoto, Masaru; Hato, Fumihiko; Kitagawa, Seiichi

    2009-04-10

    Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-{alpha} and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.

  4. B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection

    PubMed Central

    Nothelfer, Katharina; Arena, Ellen T.; Pinaud, Laurie; Neunlist, Michel; Mozeleski, Brian; Belotserkovsky, Ilia; Parsot, Claude; Dinadayala, Premkumar; Burger-Kentischer, Anke; Raqib, Rubhana; Sansonetti, Philippe J.

    2014-01-01

    Antibody-mediated immunity to Shigella, the causative agent of bacillary dysentery, requires several episodes of infection to get primed and is short-lasting, suggesting that the B cell response is functionally impaired. We show that upon ex vivo infection of human colonic tissue, invasive S. flexneri interacts with and occasionally invades B lymphocytes. The induction of a type three secretion apparatus (T3SA)–dependent B cell death is observed in the human CL-01 B cell line in vitro, as well as in mouse B lymphocytes in vivo. In addition to cell death occurring in Shigella-invaded CL-01 B lymphocytes, we provide evidence that the T3SA needle tip protein IpaD can induce cell death in noninvaded cells. IpaD binds to and induces B cell apoptosis via TLR2, a signaling receptor thus far considered to result in activation of B lymphocytes. The presence of bacterial co-signals is required to sensitize B cells to apoptosis and to up-regulate tlr2, thus enhancing IpaD binding. Apoptotic B lymphocytes in contact with Shigella-IpaD are detected in rectal biopsies of infected individuals. This study therefore adds direct B lymphocyte targeting to the diversity of mechanisms used by Shigella to dampen the host immune response. PMID:24863068

  5. Can mesenchymal cells undergo collective cell migration?

    PubMed Central

    Theveneau, Eric

    2011-01-01

    Cell migration is critical for proper development of the embryo and is also used by many cell types to perform their physiological function. For instance, cell migration is essential for immune cells to monitor the body and for epithelial cells to heal a wound whereas, in cancer cells, acquisition of migratory capabilities is a critical step toward malignancy. Migratory cells are often categorized into two groups: (1) mesenchymal cells, produced by an epithelium-to-mesenchyme transition, that undergo solitary migration and (2) epithelial-like cells which migrate collectively. However, on some occasions, mesenchymal cells may travel in large, dense groups and exhibit key features of collectively migrating cells such as coordination and cooperation. Here, using data published on neural crest cells, a highly invasive mesenchymal cell population that extensively migrate throughout the embryo, we explore the idea that mesenchymal cells, including cancer cells, might be able to undergo collective cell migration under certain conditions and discuss how they could do so. PMID:22274714

  6. Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo.

    PubMed

    Ikegami, R; Hunter, P; Yager, T D

    1999-05-15

    In this study, we demonstrate the developmental activation, in the zebrafish embryo, of a surveillance mechanism which triggers apoptosis to remove damaged cells. We determine the time course of activation of this mechanism by exposing embryos to camptothecin, an agent which specifically inhibits topoisomerase I within the DNA replication complex and which, as a consequence of this inhibition, also produces strand breaks in the genomic DNA. In response to an early (pre-gastrula) treatment with camptothecin, apoptosis is induced at a time corresponding approximately to mid-gastrula stage in controls. This apoptotic response to a block of DNA replication can also be induced by early (pre-MBT) treatment with the DNA synthesis inhibitors hydroxyurea and aphidicolin. After camptothecin treatment, a high proportion of cells in two of the embryo's three mitotic domains (the enveloping and deep cell layers), but not in the remaining domain (the yolk syncytial layer), undergoes apoptosis in a cell-autonomous fashion. The first step in this response is an arrest of the proliferation of all deep- and enveloping-layer cells. These cells continue to increase in nuclear volume and to synthesize DNA. Eventually they become apoptotic, by a stereotypic pathway which involves cell membrane blebbing, "margination" and fragmentation of nuclei, and cleavage of the genomic DNA to produce a nucleosomal ladder. Fragmentation of nuclei can be blocked by the caspase-1,4,5 inhibitor Ac-YVAD-CHO, but not by the caspase-2,3,7[, 1] inhibitor Ac-DEVD-CHO. This suggests a functional requirement for caspase-4 or caspase-5 in the apoptotic response to camptothecin. Recently, Xenopus has been shown to display a developmental activation of the capability for stress- or damaged-induced apoptosis at early gastrula stage. En masse, our experiments suggest that the apoptotic responses in zebrafish and Xenopus are fundamentally similar. Thus, as for mammals, embryos of the lower vertebrates exhibit the

  7. FADD null mouse embryonic fibroblasts undergo apoptosis after photosensitization with the silicon phthalocyanine Pc 4.

    PubMed

    Nagy, B; Yeh, W C; Mak, T W; Chiu, S M; Separovic, D

    2001-01-01

    Oxidative stress, such as photodynamic therapy with the silicon phthalocyanine Pc 4 (Pc 4-PDT), can induce apoptosis and tumor necrosis factor alpha (TNF) production. TNF receptors, as well as other death receptors, have been implicated in stress-induced apoptosis. To assess directly the role of FADD, a death receptor-associated protein, in induction of apoptosis post-Pc 4-PDT, embryonic fibroblasts from FADD knock out (k/o) and wild-type (wt) mice were used. Pc 4-PDT induced casp-3 activation and apoptosis in both cell types. In the presence of zVAD, a pancaspase inhibitor, Pc 4-PDT-induced apoptosis was abrogated in both cell lines. Fumonisin B1 (FB), an inhibitor of ceramide synthase, had no effect on apoptosis after Pc 4-PDT in either cell line. Similar to Pc 4-PDT, exogenous C6-ceramide bypassed FADD deficiency and induced zVAD-sensitive apoptosis. In contrast to Pc 4 photosensitization, TNF did not induce either apoptosis or ceramide accumulation in FADD k/o cells. In the absence of FADD deficiency, TNF-induced apoptosis was zVAD-sensitive and FB-insensitive. Induced ceramide levels remained elevated after cotreatment with TNF and zVAD in FADD wt cells. Taken together, these data provide genetic evidence for a lack of FADD requirement in Pc 4-PDT- or C6-ceramide-induced apoptosis. FB-sensitive ceramide production accompanies, but does not suffice, for apoptosis after Pc 4 photosensitization or TNF.

  8. Apoptosis in Cryopreserved Eukaryotic Cells.

    PubMed

    Savitskaya, M A; Onishchenko, G E

    2016-05-01

    This review considers apoptosis mechanisms that have been revealed in cryopreserved cells and which can be controlled using different chemical agents, thereby improving the viability of cells after their return to normal conditions. The role of oxidative stress as of the most significant damaging factor is discussed, as well as the reasonability of including antioxidants into cryopreservation/thawing protocols as independent agents or in combination with other compounds.

  9. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  10. Fluidization of tissues by cell division and apoptosis.

    PubMed

    Ranft, Jonas; Basan, Markus; Elgeti, Jens; Joanny, Jean-François; Prost, Jacques; Jülicher, Frank

    2010-12-07

    During the formation of tissues, cells organize collectively by cell division and apoptosis. The multicellular dynamics of such systems is influenced by mechanical conditions and can give rise to cell rearrangements and movements. We develop a continuum description of tissue dynamics, which describes the stress distribution and the cell flow field on large scales. In the absence of division and apoptosis, we consider the tissue to behave as an elastic solid. Cell division and apoptosis introduce stress sources that, in general, are anisotropic. By combining cell number balance with dynamic equations for the stress source, we show that the tissue effectively behaves as a viscoelastic fluid with a relaxation time set by the rates of division and apoptosis. If the system is confined in a fixed volume, it reaches a homeostatic state in which division and apoptosis balance. In this state, cells undergo a diffusive random motion driven by the stochasticity of division and apoptosis. We calculate the expression for the effective diffusion coefficient as a function of the tissue parameters and compare our results concerning both diffusion and viscosity to simulations of multicellular systems using dissipative particle dynamics.

  11. Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis

    PubMed Central

    Anglada, Teresa; Terradas, Mariona; Hernández, Laia; Genescà, Anna; Martín, Marta

    2016-01-01

    In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs) and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated) defective cell line, as Ataxia-Telangiectasia (AT) cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70–85% of the AT viable cells (TUNEL-negative) carried ≥10 γH2AX foci/cell, while only 12–27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis. PMID:27057549

  12. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  13. Canine distemper virus causes apoptosis of Vero cells.

    PubMed

    Guo, A; Lu, C

    2000-04-01

    Apoptosis of Vero cells infected with two canine distemper virus (CDV) vaccine strains was detected using TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick end-labelling (TUNEL), flow cytometric analysis, agarose gel electrophoresis and electron microscopy (EM). By TUNEL, apoptotic cells were found in CDV-Onderstepoort (CDV-Ond)-infected cells. DNA fragments isolated from infected cells were separated by agarose gel electrophoresis and a 'ladder' pattern appeared. EM observations demonstrated that the cells undergoing cytopathic effect (CPE) possessed morphological characteristics of apoptotic cells. Flow cytometric analysis indicated that CDV could induce apoptosis of Vero cells, but the percentages of the apoptotic cells were correlated with the CPE types. The strain showing the cell-rounding type of CPE produced a much higher percentage of apoptotic cells than CDV-Ond with the syncytium type of CPE (P < 0.01). It was concluded that CDV vaccine strains could induce apoptosis of Vero cells and the apoptosis was virus strain-dependent and cell-dependent. The mechanism remains to be studied.

  14. Regulation of apoptosis pathways in cancer stem cells.

    PubMed

    Fulda, Simone

    2013-09-10

    Cancer stem cell are considered to represent a population within the bulk tumor that share many similarities to normal stem cells as far as their capacities to self-renew, differentiate, proliferate and to reconstitute the entire tumor upon serial transplantation are concerned. Since cancer stem cells have been shown to be critical for maintaining tumor growth and have been implicated in treatment resistance and tumor progression, they constitute relevant targets for therapeutic intervention. Indeed, it has been postulated that eradication of cancer stem cells will be pivotal in order to achieve long-term relapse-free survival. However, one of the hallmarks of cancer stem cells is their high resistance to undergo cell death including apoptosis in response to environmental cues or cytotoxic stimuli. Since activation of apoptosis programs in tumor cells underlies the antitumor activity of most currently used cancer therapeutics, it will be critical to develop strategies to overcome the intrinsic resistance to apoptosis of cancer stem cells. Thus, a better understanding of the molecular mechanisms that are responsible for the ability of cancer stem cells to evade apoptosis will likely open new avenues to target this critical pool of cells within the tumor in order to develop more efficient treatment options for patients suffering from cancer.

  15. Novel synthetic organosulfur compounds induce apoptosis of human leukemic cells.

    PubMed

    Wong, W W; Macdonald, S; Langler, R F; Penn, L Z

    2000-01-01

    It has been well documented that natural organosulfur compounds (OSCs) derived from plants such as garlic, onions and mahogany trees possess antiproliferative properties; however, the essential chemical features of the active OSC compounds remain unclear. To investigate the association between OSC structure and growth inhibitory activity, we synthesized novel relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richii. In this study, we have examined the antiproliferative effects of these novel OSCs on a model human leukemic cell system and show that the compounds segregate into three groups. Group I, consisting of compounds A, B, G and J, did not affect either cell proliferation or the cell cycle profile of the leukemic cell lines. Group II, consisting of compounds F and H, induced the cells to undergo apoptosis from the G2/M phase of the cell cycle. Group III, consisting of compounds C, D, E and I, decreased cell proliferation and induced apoptosis throughout the cell cycle. The apoptotic agonists of Group II and III shared a common disulfide moiety, essential for leukemic cell cytotoxicity. Interestingly, Group II compounds did not affect cell viability of normal human diploid cells, suggesting the regions flanking the disulfide group contributes to the specificity of cell killing. Thus, we provide evidence that structure-activity analysis of natural products can identify novel compounds for the development of new therapeutics that can trigger apoptosis in a tumor-specific manner.

  16. Senescence and apoptosis: dueling or complementary cell fates?

    PubMed Central

    Childs, Bennett G; Baker, Darren J; Kirkland, James L; Campisi, Judith; van Deursen, Jan M

    2014-01-01

    In response to a variety of stresses, mammalian cells undergo a persistent proliferative arrest known as cellular senescence. Many senescence-inducing stressors are potentially oncogenic, strengthening the notion that senescence evolved alongside apoptosis to suppress tumorigenesis. In contrast to apoptosis, senescent cells are stably viable and have the potential to influence neighboring cells through secreted soluble factors, which are collectively known as the senescence-associated secretory phenotype (SASP). However, the SASP has been associated with structural and functional tissue and organ deterioration and may even have tumor-promoting effects, raising the interesting evolutionary question of why apoptosis failed to outcompete senescence as a superior cell fate option. Here, we discuss the advantages that the senescence program may have over apoptosis as a tumor protective mechanism, as well as non-neoplastic functions that may have contributed to its evolution. We also review emerging evidence for the idea that senescent cells are present transiently early in life and are largely beneficial for development, regeneration and homeostasis, and only in advanced age do senescent cells accumulate to an organism’s detriment. PMID:25312810

  17. [Endothelial cell apoptosis in erectile dysfunction].

    PubMed

    Jiang, Rui

    2012-10-01

    Erectile dysfunction (ED) is one of the most common male diseases, which seriously affects the patient's quality of life. The risk factors of ED include aging, diabetes, hypertension, hyperlipidemia, and unhealthy lifestyle, and its exact mechanism remains unclear. The apoptosis of endothelial cells in the corpus cavernosum penis may reduce NOS activity, block NO synthesis, and affect penile erection, and the mechanisms of their apoptosis vary with different causes of ED. This article updates the relationship between the apoptosis of endothelial cells and the development of ED.

  18. The retinal pigment epithelium undergoes massive apoptosis during early differentiation and pigmentation of the optic cup

    PubMed Central

    Pequignot, M.O.; Provost, A.C.; Sallé, S.; Menasche, M.; Saule, S.; Jaïs, J-P.

    2011-01-01

    Purpose The aim of our work was to study apoptosis during the development of the retinal pigment epithelium (RPE) in mice between embryonic day (E) 10.5 and E12.5 and to examine a possible link between apoptosis and pigmentation. Methods We collected mouse embryos at E10.5, E11.5, and E12.5 and labeled apoptotic cells in 5-µm paraffin sections, using the terminal deoxynucleotidyl transferase dUTP nick end labeling technique. We counted the total number of cells and the number of apoptotic cells in the early developing RPE and calculated the percentage of apoptosis at each stage. Results In the C57BL/6J mouse, 17% of the RPE cells were apoptotic at E10.5 compared to 0.9% at E12.5. At E11.5, three-quarters of the RPE cells began to pigment, and apoptotic cells were located mostly in the nonpigmented part. In contrast, in the BALB/c mouse (tyrosinase-deficient) and pJ mouse (carrying mutations in the p gene) hypopigmented strains, the RPE contained significantly fewer apoptotic cells (7.5% and 10.1%, respectively) at E10.5 than controls. Subsequently at E11.5 and E12.5, the two hypopigmented strains displayed different apoptotic patterns; the BALB/c RPE had a similar percentage of apoptotic cells to controls (1.5% and 1.1%, respectively, for BALB/c versus 3.0% and 0.9%, respectively, for C57BL/6J), whereas the pJ RPE contained significantly more apoptosis (7.5% and 3.5%, respectively). Overall we observed differences in the evolution of the relative total number of RPE cells between the three strains. Conclusions Apoptosis is a main event during the first stages of normal RPE development, indicating an essential role during RPE differentiation. Moreover, the early apoptotic pattern and possibly the whole early development of the RPE is different between hypopigmented and pigmented strains, as well as between BALB/c and pJ mice. This suggests the existence of regulatory and developmental differences with a more complex origin than just differing pigmentation levels

  19. The retinal pigment epithelium undergoes massive apoptosis during early differentiation and pigmentation of the optic cup.

    PubMed

    Pequignot, M O; Provost, A C; Sallé, S; Menasche, M; Saule, S; Jaïs, J-P; Abitbol, M

    2011-04-20

    The aim of our work was to study apoptosis during the development of the retinal pigment epithelium (RPE) in mice between embryonic day (E) 10.5 and E12.5 and to examine a possible link between apoptosis and pigmentation. We collected mouse embryos at E10.5, E11.5, and E12.5 and labeled apoptotic cells in 5-µm paraffin sections, using the terminal deoxynucleotidyl transferase dUTP nick end labeling technique. We counted the total number of cells and the number of apoptotic cells in the early developing RPE and calculated the percentage of apoptosis at each stage. In the C57BL/6J mouse, 17% of the RPE cells were apoptotic at E10.5 compared to 0.9% at E12.5. At E11.5, three-quarters of the RPE cells began to pigment, and apoptotic cells were located mostly in the nonpigmented part. In contrast, in the BALB/c mouse (tyrosinase-deficient) and pJ mouse (carrying mutations in the p gene) hypopigmented strains, the RPE contained significantly fewer apoptotic cells (7.5% and 10.1%, respectively) at E10.5 than controls. Subsequently at E11.5 and E12.5, the two hypopigmented strains displayed different apoptotic patterns; the BALB/c RPE had a similar percentage of apoptotic cells to controls (1.5% and 1.1%, respectively, for BALB/c versus 3.0% and 0.9%, respectively, for C57BL/6J), whereas the pJ RPE contained significantly more apoptosis (7.5% and 3.5%, respectively). Overall we observed differences in the evolution of the relative total number of RPE cells between the three strains. Apoptosis is a main event during the first stages of normal RPE development, indicating an essential role during RPE differentiation. Moreover, the early apoptotic pattern and possibly the whole early development of the RPE is different between hypopigmented and pigmented strains, as well as between BALB/c and pJ mice. This suggests the existence of regulatory and developmental differences with a more complex origin than just differing pigmentation levels.

  20. Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury.

    PubMed

    Matylevitch, N P; Schuschereba, S T; Mata, J R; Gilligan, G R; Lawlor, D F; Goodwin, C W; Bowman, P D

    1998-08-01

    The respective roles of apoptosis and accidental cell death after thermal injury were evaluated in normal human epidermal keratinocytes. By coupling the LIVE/DEAD fluorescence viability assay with the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method and ultrastructural morphology, these two processes could be distinguished. Cells were grown on glass coverslips with a microgrid pattern so that the results of several staining procedures performed sequentially could be visualized in the same cells after heating at temperatures of up to 72 degrees C for 1 second. After exposure to temperatures of 58 to 59 degrees C, cells died predominantly by apoptosis; viable cells became TUNEL positive, indicating degradation of DNA. After exposure to temperatures of 60 to 66 degrees C, both TUNEL-positive viable cells and TUNEL-positive nonviable cells were observed, indicating that apoptosis and accidental cell death were occurring simultaneously. Cells died almost immediately after exposure to temperatures above 72 degrees C, presumably from heat fixation. The fluorescent mitochondrial probe MitoTracker Orange indicated that cells undergoing apoptosis became TUNEL positive before loss of mitochondrial function. Nucleosomal fragmentation of DNA analyzed by enzyme-linked immunosorbent assay and gel electrophoresis occurred after exposure to temperatures of 58 to 59 degrees C. The characteristic morphological findings of cells undergoing apoptosis, by transmission electron microscopy, included cellular shrinkage, cytoplasmic budding, and relatively intact mitochondria. Depending on temperature and time of exposure, normal human epidermal keratinocytes may die by apoptosis, accidental cell death, or heat fixation.

  1. Apoptosis-Dependent and Apoptosis-Independent Functions Bim in Prostate Cancer Cells

    DTIC Science & Technology

    2004-03-01

    AD_ Award Number: DAMD17-03-1-0146 TITLE: Apoptosis-Dependent and Apoptosis-Independent Functions of Bim in Prostate Cancer Cells PRINCIPAL...FUNDING NUMBERS Apoptosis-Dependent and Apoptosis-Independent Functions of DAMD17-03-1-0146 Bim in Prostate Cancer Cells 6. A UTHORs) Junwei Liu, M.D...extended cell survival have been implicated in prostate cancer (PCa) development and progression. We recently found that Bim , a BH3-only pro

  2. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    SciTech Connect

    Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun . E-mail: shun.wong@sw.ca

    2005-06-01

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessed by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.

  3. Apoptosis of beta cells in diabetes mellitus.

    PubMed

    Anuradha, Rachakatla; Saraswati, Mudigonda; Kumar, Kishore G; Rani, Surekha H

    2014-11-01

    Diabetes mellitus is a multifactorial metabolic disorder characterized by hyperglycemia. Apoptosis in beta cells has been observed in response to diverse stimuli, such as glucose, cytokines, free fatty acids, leptin, and sulfonylureas, leading to the activation of polyol, hexosamine, and diacylglycerol/protein kinase-C (DAG/PKC) pathways that mediate oxidative and nitrosative stress causing the release of different cytokines. Cytokines induce the expression of Fas and tumor necrosis factor-alpha (TNF-α) by activating the transcription factor, nuclear factor-κb, and signal transducer and activator of transcription 1 (STAT-1) in the β cells in the extrinsic pathway of apoptosis. Cytokines produced in beta cells also induce proapoptotic members of the intrinsic pathway of apoptosis. The genetic alterations in apoptosis signaling machinery and the pathogenesis of diabetes include Fas, FasL, Akt, caspases, calpain-10, and phosphatase and tensin homolog (Pten). The other gene products that are involved in diabetes are nitric oxide synthase-2 (NOS2), small ubiquitin-like modifier (SUMO), apolipoprotein CIII (ApoCIII), forkhead box protein O1 (FOXO1), and Kruppel-like zinc finger protein Gli-similar 3 (GLIS3). The gene products having antiapoptotic nature are Bcl-2 and Bcl-XL. Epigenetic mechanisms play an important role in type I and type II diabetes. Further studies on the apoptotic genes and gene products in diabetics may be helpful in pharmacogenomics and individualized treatment along with antioxidants targeting apoptosis in diabetes.

  4. Apoptosis in Drosophila: compensatory proliferation and undead cells.

    PubMed

    Martín, Francisco A; Peréz-Garijo, Ainhoa; Morata, Ginés

    2009-01-01

    Apoptosis (programmed cell death) is a conserved process in all animals, used to eliminate damaged or unwanted cells after stress events or during normal development to sculpt larval or adult structures. In Drosophila, it is known that stress events such as irradiation or heat shock give rise to high apoptotic levels which remove more than 50% of cells in imaginal discs. However, the surviving cells are able to restore normal size and pattern, indicating that they undergo additional proliferation. This compensatory proliferation is still poorly understood. One widely used method to study the properties of apoptotic cells is to keep them alive by expressing in them the baculoviral protein P35, which blocks the activity of the effector caspases. These "undead" cells acquire special features, such as the emission of the growth signals Dpp and Wg, changes in cellular morphology and induction of proliferation in neighbouring cells. Here, we review the various methods used in Drosophila to block apoptosis and its consequences, and focus on the generation and properties of undead cells in the wing imaginal disc. We describe their effects in epithelial architecture and growth in some detail, and discuss the possible relationship between undead cells and compensatory proliferation.

  5. Soy Metabolites, Isoflavones in Cell Growth and Apoptosis

    DTIC Science & Technology

    2000-07-01

    causes cell cycle arrest and induces apoptosis . To fully test our original hypothesis, we proposed three specific aims containing five tasks of which...435 breast cancer cells, regulates the expression of cell cycle and apoptosis -related genes, and induces apoptosis through a p53-independent pathway...These molecular alterations may be the molecular mechanism(s) by which genistein induces cell growth inhibition and apoptosis in breast cancer cells

  6. Simulating cell apoptosis induced sinus node dysfunction.

    PubMed

    Kharche, Sanjay; Beling, John; Biktasheva, Irina V; Zhang, Henggui; Biktashev, Vadim N

    2013-01-01

    Sinus node dysfunction (SND) is correlated to the pacemaker sinoatrial node (SAN) cell apoptosis. This study explores the effect of such a dysfunctional SAN on electrical propagation into neighboring atrial tissue. The Fenton Karma model was extended to simulate mouse SAN and atrial cell action potentials. The cell models were incorporated into a 2D model consisting of a central SAN region surrounded by atrial tissue. The intercellular gap junctional coupling, as quantified by the diffusion constant, was estimated to give conduction speeds as observed in mouse atrial tissue. The size of mouse SAN pacemaking region was estimated using the 2D model. In multiple simulations, the effects of an increasing proportion of apoptotic pacemaker cells on atrial tissue pacing were simulated and quantified. The SAN size that gave a basal mouse atrial cycle length (ACL) of 295 ms was found to be 0.6 mm in radius. At low pacemaker cell apoptosis proportion, there was a drastic increase of ACL. At modest increase in the number of apoptotic cells, bradycardia was observed. The incidence of sinus arrest was also found to be high. When the number of apoptotic cells were 10% of the total number of pacemaking cells, all pacemaking was arrested. Phenomenological models have been developed to study mouse atrial electrophysiology and confirm experimental findings. The results show the significance of cell apoptosis as a major mechanism of SND.

  7. CASPASE CONTROL: PROTAGONISTS OF CANCER CELL APOPTOSIS

    PubMed Central

    Fiandalo, M.V.; Kyprianou, N.

    2013-01-01

    Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”. PMID:23070001

  8. Cocaine induces apoptosis in cerebral vascular muscle cells: potential roles in strokes and brain damage.

    PubMed

    Su, Jialin; Li, Jianfeng; Li, Wenyan; Altura, Bella T; Altura, Burton M

    2003-12-15

    Cocaine abuse is known to induce different types of brain-microvascular damage and many adverse cerebrovascular effects, including cerebral vasculitis, intracranial hemorrhage, cerebral infarction and stroke. A major physiological event leading to these pathophysiological actions of cocaine could be apoptosis. Whether cocaine can cause brain-microvascular pathology and vascular toxicity by inducing apoptosis of cerebral vascular smooth muscle cells is not known. This study, using several different methods to discern apoptosis, was designed to investigate if primary cultured canine cerebral vascular smooth muscle cells can undergo apoptosis when treated with cocaine. After treatment with cocaine (10(-6)-10(-3) M) for 12-24 h, the death rates of cerebral vascular smooth muscle cells increased in a concentration-dependent manner compared with controls. Morphological analysis of cerebral vascular smooth muscle cells using confocal fluoresence microscopy showed that the percentage of apoptotic cerebral vascular smooth muscle cells increased after cocaine (10(-6)-10(-3) M) treatment in a concentration-dependent manner. TUNEL assays also showed positive results for cerebral vascular smooth muscle cells treated with cocaine. These results clearly demonstrate that cerebral vascular smooth muscle cells can undergo rapid apoptosis in response to cocaine in a concentration-dependent manner. Cocaine-induced apoptosis may thus play a major role in brain-microvascular damage, cerebral vascular toxicity and strokes.

  9. Measuring and Modeling Apoptosis in Single Cells

    PubMed Central

    Spencer, Sabrina L.; Sorger, Peter K.

    2011-01-01

    Cell death plays an essential role in the development of tissues and organisms, the etiology of disease, and the responses of cells to therapeutic drugs. Here we review progress made over the last decade in using mathematical models and quantitative, often single-cell, data to study apoptosis. We discuss the delay that follows exposure of cells to prodeath stimuli, control of mitochondrial outer membrane permeabilization, switch-like activation of effector caspases, and variability in the timing and probability of death from one cell to the next. Finally, we discuss challenges facing the fields of biochemical modeling and systems pharmacology. PMID:21414484

  10. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    PubMed

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  11. Exogenous thymosin beta4 prevents apoptosis in human intervertebral annulus cells in vitro.

    PubMed

    Tapp, H; Deepe, R; Ingram, J A; Yarmola, E G; Bubb, M R; Hanley, E N; Gruber, H E

    2009-12-01

    Loss of cells in the human disc due to programmed cell death (apoptosis) is a major factor in the aging and degenerating human intervertebral disc. Our objective here was to determine if thymosin beta(4) (TB4), a small, multifunctional 5 kDa protein with diverse activities, might block apoptosis in human annulus cells cultured in monolayer or three-dimensional (3D) culture. Apoptosis was induced in vitro using hydrogen peroxide or serum starvation. Annulus cells were processed for identification of apoptotic cells using the TUNEL method. The percentage of apoptotic cells was determined by cell counts. Annulus cells also were treated with TB4 for determination of proliferation, and proteoglycan production was assessed using cell titer and 1,2 dimethylmethylamine (DMB) assays and histological staining. A significant reduction in disc cell apoptosis occurred after TB4 treatment. The percentage of cells undergoing apoptosis decreased significantly in TB4 treated cells in both apoptosis induction designs. TB4 exposure did not alter proteoglycan production as assessed by either DMB measurement or histological staining. Our results indicate the need for further studies of the anti-apoptotic effect of TB4 and suggest that TB4 may have therapeutic application in future biological therapies for disc degeneration.

  12. Apoptosis as a mechanism of cytolysis of tumor cells by a pathogenic free-living amoeba.

    PubMed Central

    Alizadeh, H; Pidherney, M S; McCulley, J P; Niederkorn, J Y

    1994-01-01

    Previous studies have shown that trophozoites of the pathogenic free-living amoeba Acanthamoeba castellanii rapidly lysed a variety of tumor cells in vitro. Tumor cells undergoing parasite-mediated lysis displayed characteristic cell membrane blebbing reminiscent of apoptosis. The present investigation examined the role of apoptosis (programmed cell death) in Acanthamoeba-mediated tumor cell lysis. The results showed that more than 70% of tumor cell DNA was fragmented following exposure to Acanthamoeba cell extracts. By contrast, only 7% of untreated control cells underwent DNA fragmentation. DNA fragmentation increased significantly in a dose-dependent fashion following concentration of the parasite extract. Apoptosis was also confirmed by DNA ladder formation. Characteristic DNA ladders, consisting of multimers of approximately 180 to 200 bp, were produced by tumor cells exposed to Acanthamoeba cell extracts. The morphology of tumor cell lysis was examined by light and scanning electron microscopy. Tumor cells exposed to parasite extract displayed morphological features characteristic of apoptosis including cell shrinkage, cell membrane blebbing, formation of apoptotic bodies, and nuclear condensation. By contrast, similar effects were not found in tumor cells exposed to extract similarly prepared from normal mammalian cells (i.e., human keratocytes). The results suggest that at least one species of pathogenic free-living amoeba is able to lyse tumor cells by a process that culminates in apoptosis. Images PMID:8132336

  13. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability.

    PubMed

    Idziorek, T; Estaquier, J; De Bels, F; Ameisen, J C

    1995-09-25

    In the absence of cell permeabilization, the impermeant nuclear dye YOPRO-1 permits accurate analysis of apoptosis using cytofluorometry or fluorescent microscopy. Several immune cell populations were studied including dexamethasone-treated thymocytes, irradiated peripheral blood mononuclear cells and a growth factor-depleted tumor B cell line. Excellent correlation values were found with acridine orange using cytofluorometry and with eosin-hematoxylin using optical microscopy. Under fluorescent microscopy, YOPRO-1-fluorescent cells demonstrate the morphological features of cells undergoing apoptosis such as nuclear shrinkage and fragmentation. An important characteristic of the dye that differs from all other nuclear dyes previously used for the detection of apoptosis is that it does not label living cells. Cell sorting after flow cytofluorometry analysis confirmed that only the apoptotic cell population was labelled with YOPRO-1. Further studies showed that while incubation of living cells with Hoechst 33342 almost completely abrogated the capacity of T cells to proliferate in response to several stimuli, YOPRO-1 had no inhibitory effect. This new simple, rapid and reproducible use of the YOPRO-1 dye should prove useful in the analysis of apoptotic cells as well as for investigations of the functional properties of living cells in a culture containing apoptotic cells.

  14. Honey induces apoptosis in renal cell carcinoma

    PubMed Central

    Samarghandian, Saeed; Afshari, Jalil Tavakkol; Davoodi, Saiedeh

    2011-01-01

    Background: The fact that antioxidants have several preventative effects against different diseases, such as coronary diseases, inflammatory disorders, neurologic degeneration, aging, and cancer, has led to the search for food rich in antioxidants. Honey has been used as a traditional food and medical source since ancient times. However, recently many scientists have been concentrating on the antioxidant property of honey. By use of human renal cancer cell lines (ACHN), we investigated the antiproliferative activity, apoptosis, and the antitumor activity of honey. Materials and Methods: The cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum treated with different concentrations of honey for 3 consecutive days. Cell viability was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic cells were determined using Annexin-V-fluorescein isothiocyanate (FITC) by flow cytometry. Results: Honey decreased the cell viability in the malignant cells in a concentration- and time-dependent manner. The IC 50 values against the ACHN cell lines were determined as 1.7 ± 0.04% and 2.1 ± 0.03% μg/mL after 48 and 72 h, respectively. Honey induced apoptosis of the ACHN cells in a concentration-dependent manner, as determined by flow cytometry histogram of treated cells. Conclusion: It might be concluded that honey may cause cell death in the ACHN cells, in which apoptosis plays an important role. Most of the drugs used in the cancer treatment are apoptotic inducers, hence apoptotic nature of honey is considered vital. Therefore, it prompted us to investigate honey as a potential candidate for renal cancer treatment. PMID:21472079

  15. Differential Proteomic Analysis of Human Erythroblasts Undergoing Apoptosis Induced by Epo-Withdrawal

    PubMed Central

    Pellegrin, Stéphanie; Heesom, Kate J.; Satchwell, Timothy J.; Hawley, Bethan R.; Daniels, Geoff; van den Akker, Emile; Toye, Ashley M.

    2012-01-01

    The availability of Erythropoietin (Epo) is essential for the survival of erythroid progenitors. Here we study the effects of Epo removal on primary human erythroblasts grown from peripheral blood CD34+ cells. The erythroblasts died rapidly from apoptosis, even in the presence of SCF, and within 24 hours of Epo withdrawal 60% of the cells were Annexin V positive. Other classical hallmarks of apoptosis were also observed, including cytochrome c release into the cytosol, loss of mitochondrial membrane potential, Bax translocation to the mitochondria and caspase activation. We adopted a 2D DIGE approach to compare the proteomes of erythroblasts maintained for 12 hours in the presence or absence of Epo. Proteomic comparisons demonstrated significant and reproducible alterations in the abundance of proteins between the two growth conditions, with 18 and 31 proteins exhibiting altered abundance in presence or absence of Epo, respectively. We observed that Epo withdrawal induced the proteolysis of the multi-functional proteins Hsp90 alpha, Hsp90 beta, SET, 14-3-3 beta, 14-3-3 gamma, 14-3-3 epsilon, and RPSA, thereby targeting multiple signaling pathways and cellular processes simultaneously. We also observed that 14 proteins were differentially phosphorylated and confirmed the phosphorylation of the Hsp90 alpha and Hsp90 beta proteolytic fragments in apoptotic cells using Nano LC mass spectrometry. Our analysis of the global changes occurring in the proteome of primary human erythroblasts in response to Epo removal has increased the repertoire of proteins affected by Epo withdrawal and identified proteins whose aberrant regulation may contribute to ineffective erythropoiesis. PMID:22723854

  16. Differential proteomic analysis of human erythroblasts undergoing apoptosis induced by epo-withdrawal.

    PubMed

    Pellegrin, Stéphanie; Heesom, Kate J; Satchwell, Timothy J; Hawley, Bethan R; Daniels, Geoff; van den Akker, Emile; Toye, Ashley M

    2012-01-01

    The availability of Erythropoietin (Epo) is essential for the survival of erythroid progenitors. Here we study the effects of Epo removal on primary human erythroblasts grown from peripheral blood CD34(+) cells. The erythroblasts died rapidly from apoptosis, even in the presence of SCF, and within 24 hours of Epo withdrawal 60% of the cells were Annexin V positive. Other classical hallmarks of apoptosis were also observed, including cytochrome c release into the cytosol, loss of mitochondrial membrane potential, Bax translocation to the mitochondria and caspase activation. We adopted a 2D DIGE approach to compare the proteomes of erythroblasts maintained for 12 hours in the presence or absence of Epo. Proteomic comparisons demonstrated significant and reproducible alterations in the abundance of proteins between the two growth conditions, with 18 and 31 proteins exhibiting altered abundance in presence or absence of Epo, respectively. We observed that Epo withdrawal induced the proteolysis of the multi-functional proteins Hsp90 alpha, Hsp90 beta, SET, 14-3-3 beta, 14-3-3 gamma, 14-3-3 epsilon, and RPSA, thereby targeting multiple signaling pathways and cellular processes simultaneously. We also observed that 14 proteins were differentially phosphorylated and confirmed the phosphorylation of the Hsp90 alpha and Hsp90 beta proteolytic fragments in apoptotic cells using Nano LC mass spectrometry. Our analysis of the global changes occurring in the proteome of primary human erythroblasts in response to Epo removal has increased the repertoire of proteins affected by Epo withdrawal and identified proteins whose aberrant regulation may contribute to ineffective erythropoiesis.

  17. [Vascular smooth muscle cells from human umbilical artery undergo osteoblast differentiation and calcification in vitro].

    PubMed

    Guo, Yong Ping; Sun, Ming Shu; Qian, Jia Qi; Ni, Zhao Hui

    2008-04-01

    To research if the vascular smooth muscle cells (VSMCs) from human umbilical artery undergo osteoblast differentiation spontaneously in vitro. The growth curve of vascular smooth muscle cells from human umbilical artery was obtained by MTT method. The course of multicell nodule formation spontaneously by VSMCs was observed morphologically. The apoptosis of VSMCs in the nodules was detected by Hoechst 33258 and TUNEL methods respectively. The expression of alkaline phosphotase in the nodules was detected by immunohistochemical method. And the calcification was studied with transmission electron microscope and by alizarin red S respectively. We found that the umbilical artery smooth muscle cells confluenced after 7 days of passage and exhibited typical "hill and valley" pattern under light microscope. The cells grew into aggregation and formed nodules at the "hill" region with culture-time prolongation. After 4-5 weeks culture, these nodules built up and calcified spontaneously. We also found alkaline phosphotase expression and apoptosis of VSMCs in these nodules at the same time. We conclude that the vascular smooth muscle cells from human umbilical artery just like from aortic artery can undergo osteoblast differentiation spontaneously in vitro, and apoptosis participate this procedure probably.

  18. Cell metabolism: an essential link between cell growth and apoptosis

    PubMed Central

    Mason, Emily F.; Rathmell, Jeffrey C.

    2010-01-01

    Growth factor-stimulated or cancerous cells require sufficient nutrients to meet the metabolic demands of cell growth and division. If nutrients are insufficient, metabolic checkpoints are triggered that lead to cell cycle arrest and the activation of the intrinsic apoptotic cascade through a process dependent on the Bcl-2 family of proteins. Given the connections between metabolism and apoptosis, the notion of targeting metabolism to induce cell death in cancer cells has recently garnered much attention. However, the signaling pathways by which metabolic stresses induce apoptosis have not as of yet been fully elucidated. Thus, the best approach to this promising therapeutic avenue remains unclear. This review will discuss the intricate links between metabolism, growth, and intrinsic apoptosis and will consider ways in which manipulation of metabolism might be exploited to promote apoptotic cell death in cancer cells. PMID:20816705

  19. Sonoporation-Induced Apoptosis and Cell Cycle Arrest: Initial Findings

    NASA Astrophysics Data System (ADS)

    Zhong, Wenjing; Sit, Wai Hung; Wan, Jennifer M. F.; Yu, Alfred C. H.

    2011-09-01

    Sonoporation is known to be able to temporarily permeabilize cells, but during this process it may have traumatic impact on cell viability. In this work, we found that sonoporation may induce apoptosis and G2/M-phase cell cycle arrest in some cells hours after ultrasonic exposure in vitro. Methods: Suspensions of HL-60 leukemia cells were prepared (106 cells/ml), and a 1% v/v microbubble solution was added to induce sonoporation during ultrasound exposure. They were then placed 7 cm away from a 2.54 cm-diameter, 1 MHz unfocused ultrasound probe, and these samples were insonated for 1 min with ultrasound pulses (10% duty cycle, 1 kHz pulse repetition frequency). In this study, two levels of peak negative ultrasound pressure were used: 0.3 MPa and 0.5 MPa. After exposure, the cell suspensions were further incubated. They were harvested after 4 h, 8 h, 12 h and 24 h to analyze the cell-cycle distribution (sub-G1, G0/G1, S, G2/M) at these time points using propidium iodide staining and flow cytometry. Results: Some sonoporation-treated cells had undergone apoptosis by 4h, and the largest number of apoptotic cells (sub-G1 phase) was observed after 12h (0.3 MPa group: 25.0%; 0.5 MPa group: 27.2%). Also, after experiencing sonoporation, some viable cells were stopped in the G2/M phase without undergoing cytokinesis, and the maximum G2/M population rise was seen after 12h (0.3 MPa group: +12.2%; 0.5 MPa group: +14.7%). This was accompanied by decreases in the populations of G0/G1-phase and S-phase.

  20. [Apoptosis and thymocyte development (epithelial cells as inducers of thymocyte apoptosis)].

    PubMed

    Iarilin, A A; Bulanova, E G; Sharova, N I; Budagian, V M

    1998-01-01

    Apoptosis, together with proliferation, is a main factor of selection of the clones of developing T-lymphocytes: the clones not supported by positive selection are subject to apoptosis and apoptosis accounts for discarding of potentially autoaggressive clones, i.e., for negative selection in the thymus and peripheral lymphoid tissue. Realization of apoptosis at different stages of the development of T-lymphocytes depends to a varying extent on Fas, Bcl-2, p53, and other regulators. The dendritic cells are the main cell type, the contact with determines apoptosis of T-lymphocytes. A possible role of the epithelial cells was shown in few models (on murine cells) and was not practically studied. We obtained a line of epithelial cells of the human thymus cells HTSC, cocultivation with which induces apoptosis of immature thymocytes and blood T-cells activated by mitogens. Development of apoptosis is suppressed by inhibitors of protein and RNA synthesis, chelators Ca2+, ions Zn2+, and factors destroying the cytoskeleton components. In this model, interaction of pairs of molecules CD4-HLA class II and LFA-1-ICAM-1. When in contact with the HTSC cells, the thymocytes of mice mutant for Fas-receptor (line MRL.lpr) are subject to apoptosis, but when this receptor is present, it affects the development of apoptosis.

  1. Triggering of dendritic cell apoptosis by xanthohumol.

    PubMed

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  2. Hepatitis C Virus Infection of Cultured Human Hepatoma Cells Causes Apoptosis and Pyroptosis in Both Infected and Bystander Cells

    PubMed Central

    Kofahi, H. M.; Taylor, N. G. A.; Hirasawa, K.; Grant, M. D.; Russell, R. S.

    2016-01-01

    Individuals infected with hepatitis C virus (HCV) are at high risk of developing progressive liver disease, including cirrhosis and hepatocellular carcinoma (HCC). How HCV infection causes liver destruction has been of significant interest for many years, and apoptosis has been proposed as one operative mechanism. In this study, we employed a tissue culture-adapted strain of HCV (JFH1T) to test effects of HCV infection on induction of programmed cell death (PCD) in Huh-7.5 cells. We found that HCV infection reduced the proliferation rate and induced caspase-3-mediated apoptosis in the infected cell population. However, in addition to apoptosis, we also observed infected cells undergoing caspase-1-mediated pyroptosis, which was induced by NLRP3 inflammasome activation. By co-culturing HCV-infected Huh-7.5 cells with an HCV-non-permissive cell line, we also demonstrated induction of both apoptosis and pyroptosis in uninfected cells. Bystander apoptosis, but not bystander pyroptosis, required cell-cell contact between infected and bystander cells. In summary, these findings provide new information on mechanisms of cell death in response to HCV infection. The observation that both apoptosis and pyroptosis can be induced in bystander cells extends our understanding of HCV-induced pathogenesis in the liver. PMID:27974850

  3. Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells

    NASA Astrophysics Data System (ADS)

    Mulvey, Christine S.; Sherwood, Carly A.; Bigio, Irving J.

    2009-11-01

    Apoptosis-programmed cell death-is a cellular process exhibiting distinct biochemical and morphological changes. An understanding of the early morphological changes that a cell undergoes during apoptosis can provide the opportunity to monitor apoptosis in tissue, yielding diagnostic and prognostic information. There is avid interest regarding the involvement of apoptosis in cancer. The initial response of a tumor to successful cancer treatment is often massive apoptosis. Current apoptosis detection methods require cell culture disruption. Our aim is to develop a nondisruptive optical method to monitor apoptosis in living cells and tissues. This would allow for real-time evaluation of apoptotic progression of the same cell culture over time without alteration. Elastic scattering spectroscopy (ESS) is used to monitor changes in light-scattering properties of cells in vitro due to apoptotic morphology changes. We develop a simple instrument capable of wavelength-resolved ESS measurements from cell cultures in the backward direction. Using Mie theory, we also develop an algorithm that extracts the size distribution of scatterers in the sample. The instrument and algorithm are validated with microsphere suspensions. For cell studies, Chinese hamster ovary (CHO) cells are cultured to confluence on plates and are rendered apoptotic with staurosporine. Backscattering measurements are performed on pairs of treated and control samples at a sequence of times up to 6-h post-treatment. Initial results indicate that ESS is capable of discriminating between treated and control samples as early as 10- to 15-min post-treatment, much earlier than is sensed by standard assays for apoptosis. Extracted size distributions from treated and control samples show a decrease in Rayleigh and 150-nm scatterers, relative to control samples, with a corresponding increase in 200-nm particles. Work continues to correlate these size distributions with underlying morphology. To our knowledge, this

  4. Resistance to etoposide-induced apoptosis in a Burkitt's lymphoma cell line.

    PubMed

    Zhao, E G; Song, Q; Cross, S; Misko, I; Lees-Miller, S P; Lavin, M F

    1998-08-31

    Burkitt's lymphoma cells that vary in their phenotypic characteristics show significantly different degrees of susceptibility to radiation-induced apoptosis. Propensity to undergo apoptosis is reflected in the degradation of substrates such as DNA-dependent protein kinase but the status of bcl-2, c-myc and p53 has been uninformative. In this study, we have focused on 2 Epstein-Barr virus (EBV)-associated Burkitt's cell lines, one (WW2) susceptible and the other (BL29) resistant to etoposide-induced apoptosis. Differences in expression of BHRF1, an EBV gene that is homologous to the Bcl-2 proto-oncogene and known to inhibit apoptosis, or changes in apoptosis inhibitory proteins (IAPs), did not appear to account for the difference in susceptibility in the 2 cell lines. Cytoplasmic extracts from etoposide-treated WW2 cells caused apoptotic changes in nuclei isolated from either BL29 or WW2 cells, whereas extracts from BL29 cells failed to do so. In addition, extracts from etoposide-treated WW2 cells degraded the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an important indicator of apoptosis, but this protein was resistant to degradation by BL29 extracts. It appears likely that caspase 3 (CPP32) is involved in this degradation since it was activated only in the apoptosis susceptible cells and the pattern of cleavage of DNA-PKcs was similar to that reported previously with recombinant caspase 3. As observed previously, addition of caspase 3 to nuclei failed to induce morphological changes indicative of apoptosis, but addition of caspase 3 to nuclei in the presence of extract from the resistant cells led to apoptotic changes. We conclude that resistance to apoptosis in BL29 cells is due to a failure of etoposide to activate upstream effectors of caspase activity.

  5. Prevention of Immune Cell Apoptosis as Potential Therapeutic Strategy for Severe Infections

    PubMed Central

    Parrino, Janie; Hotchkiss, Richard S.

    2007-01-01

    Some labile cell types whose numbers are normally controlled through programmed cell death are subject to markedly increased destruction during some severe infections. Lymphocytes, in particular, undergo massive and apparently unregulated apoptosis in human patients and laboratory animals with sepsis, potentially playing a major role in the severe immunosuppression that characterizes the terminal phase of fatal illness. Extensive lymphocyte apoptosis has also occurred in humans and animals infected with several exotic agents, including Bacillus anthracis, the cause of anthrax; Yersinia pestis, the cause of plague; and Ebola virus. Prevention of lymphocyte apoptosis, through either genetic modification of the host or treatment with specific inhibitors, markedly improves survival in murine sepsis models. These findings suggest that interventions aimed at reducing the extent of immune cell apoptosis could improve outcomes for a variety of severe human infections, including those caused by emerging pathogens and bioterrorism agents. PMID:17479879

  6. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5).

    PubMed

    Li, Dong; Liu, Yu; Li, Hua; Peng, Jing-Jing; Tan, Yan; Zou, Qiang; Song, Xiao-Feng; Du, Min; Yang, Zheng-Hui; Tan, Yong; Zhou, Jin-Jun; Xu, Tao; Fu, Zeng-Qiang; Feng, Jian-Qiong; Cheng, Peng; chen, Tao; Wei, Dong; Su, Xiao-Mei; Liu, Huan-Yi; Qi, Zhong-Chun; Tang, Li-Jun; Wang, Tao; Guo, Xin; Hu, Yong-He; Zhang, Tao

    2015-01-02

    Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Contrast agents and renal cell apoptosis.

    PubMed

    Romano, Giulia; Briguori, Carlo; Quintavalle, Cristina; Zanca, Ciro; Rivera, Natalia V; Colombo, Antonio; Condorelli, Gerolama

    2008-10-01

    Contrast media (CM) induce a direct toxic effect on renal tubular cells. This toxic effect may have a role in the pathophysiology of contrast nephropathy. We evaluated (i) the cytotoxicity of CM [both low-osmolality (LOCM) and iso-osmolality (IOCM)], of iodine alone, and of an hyperosmolar solution (mannitol 8%) on human embryonic kidney (HEK 293), porcine proximal renal tubular (LLC-PK1), and canine Madin-Darby distal tubular renal (MDCK) cells; and (ii) the effectiveness of various antioxidant compounds [n-acetylcysteine (NAC), ascorbic acid and sodium bicarbonate] in preventing CM cytotoxicity. The cytotoxicity of CM was assessed at different time points, with different methods: cell viability, DNA laddering, flow cytometry, and caspase activation. Both LOCM and IOCM produced a concentration- and time-dependent increase in cell death as assessed by the different methods. On the contrary, iodine alone and hyperosmolar solution did not induce any significant cytotoxic effect. There was not any significant difference in the cytotoxic effect between LOCM and IOCM. Furthermore, both LOCM and IOCM caused a marked increase in caspase-3 and -9 activities and poly(ADP-ribose) fragmentation, while no effect on caspase-8/-10 was observed, thus indicating that the CM activated apoptosis mainly through the intrinsic pathway. Both CM induced an increase in protein expression levels of pro-apoptotic members of the Bcl2 family (Bim and Bad). NAC and ascorbic acid but not sodium bicarbonate had a dose-dependent protective effect on renal cells after 3 h incubation with high dose (200 mg iodine/mL) of both LOCM and IOCM. Both LOCM and IOCM induce a dose-dependent renal cell apoptosis. NAC and ascorbic acid but not sodium bicarbonate prevent this contrast-induced apoptosis.

  8. Determinism and divergence of apoptosis susceptibility in mammalian cells.

    PubMed

    Bhola, Patrick D; Simon, Sanford M

    2009-12-01

    Although the cellular decision to commit to apoptosis is important for organism homeostasis, there is considerable variability in the onset of apoptosis between cells, even in clonal populations. Using live single-cell imaging, we observed that the onset of apoptotic proteolytic activity was tightly synchronized between nearby cells. This synchrony was not a consequence of secreted factors and was not correlated to the cell cycle. The synchrony was only seen amongst related cells and was lost over successive generations. The times of apoptosis also diverged within a generation, but this was blocked by inhibiting protein synthesis before triggering apoptosis. These results suggest that the cell-cell variability of apoptosis times is due to the divergence of the molecular composition of the cell, and that the decision to commit to apoptosis at the time of drug addition is a deterministic decision.

  9. Cadmium increases human fetal germ cell apoptosis.

    PubMed

    Angenard, Gaëlle; Muczynski, Vincent; Coffigny, Hervé; Pairault, Catherine; Duquenne, Clotilde; Frydman, René; Habert, René; Rouiller-Fabre, Virginie; Livera, Gabriel

    2010-03-01

    Cadmium (Cd) is a common environmental pollutant and a major constituent of tobacco smoke. Adverse effects of this heavy metal on reproductive function have been identified in adults; however, no studies have examined its effects on human reproductive organs during development. Using our previously developed organ culture system, we investigated the effects of cadmium chloride on human gonads at the beginning of fetal life, a critical stage in the development of reproductive function. Human fetal gonads were recovered during the first trimester (711 weeks postconception) and cultured with or without Cd. We used different concentrations of Cd and compared results with those obtained with mouse fetal gonads at similar stages. Cd, at concentrations as low as 1 microM, significantly decreased the germ cell density in human fetal ovaries. This correlated with an increase in germ cell apoptosis, but there was no effect on proliferation. Similarly, in the human fetal testis, Cd (1 microM) reduced germ cell number without affecting testosterone secretion. In mouse fetal gonads, Cd increased only female germ cell apoptosis. This is the first experimental demonstration that Cd, at low concentrations, alters the survival of male and female germ cells in humans. Considering data demonstrating extensive human exposure, we believe that current environmental levels of Cd could be deleterious to early gametogenesis.

  10. Apoptosis-Dependent and Apoptosis-Independent Functions of Bim in Prostate Cancer Cells

    DTIC Science & Technology

    2005-03-01

    Independent Functions of Bim in Prostate Cancer Cells PRINCIPAL INVESTIGATOR: Dr. Dean Tang...SUBTITLE 5a. CONTRACT NUMBER Apoptosis-Dependent and Apoptosis-Independent Functions of Bim in Prostate Cancer Cells 5b. GRANT NUMBER DAMD17-03-1...Unlimited 13. SUPPLEMENTARY NOTES Original contains colored plates: ALL DTIC reproductions will be in black and white. 14. ABSTRACT

  11. Thiamine deficiency caused by thiamine antagonists triggers upregulation of apoptosis inducing factor gene expression and leads to caspase 3-mediated apoptosis in neuronally differentiated rat PC-12 cells.

    PubMed

    Chornyy, Sergiy; Parkhomenko, Julia; Chorna, Nataliya

    2007-01-01

    Recent evidence suggests that alterations in oxidative metabolism induced by thiamine deficiency lead to neuronal cell death. However, the molecular mechanisms underlying this process are still under extensive investigation. Here, we report that rat pheochromocytoma PC-12 cells differentiated in the presence of NGF into neurons undergo apoptosis due to thiamine deficiency caused by antagonists of thiamine - amprolium, pyrithiamine and oxythiamine. Confocal laser scanning fluorescence microscopy revealed that annexin V binds to PC-12 cells in presence of thiamine antagonists after 72 h incubation. Results also show that thiamine antagonists trigger upregulation of gene expression of mitochondrial-derived apoptosis inducing factor, DNA fragmentation, cleavage of caspase 3 and translocation of active product to the nucleus. We therefore propose that apoptosis induced by amprolium, pyrithiamine or oxythiamine occurs via the mitochondria-dependent caspase 3-mediated signaling pathway. In addition, our data indicate that pyrithiamine and oxythiamine are more potent inducers of apoptosis than amprolium.

  12. Antiphospholipid reactivity against cardiolipin metabolites occurring during endothelial cell apoptosis

    PubMed Central

    Alessandri, Cristiano; Sorice, Maurizio; Bombardieri, Michele; Conigliaro, Paola; Longo, Agostina; Garofalo, Tina; Manganelli, Valeria; Conti, Fabrizio; Esposti, Mauro Degli; Valesini, Guido

    2006-01-01

    We have recently shown that cardiolipin (CL) and its metabolites move from mitochondria to other cellular membranes during death receptor-mediated apoptosis. In this study, we investigate the immunoreactivity to CL derivatives occurring during endothelial apoptosis in patients with antiphospholipid syndrome (APS) and systemic lupus erythematosus (SLE). We compared the serum immunoreactivity to CL with that of its derivatives monolysocardiolipin (MCL), dilysocardiolipin (DCL), and hydrocardiolipin (HCL) by means of both enzyme-linked immunosorbent assay and thin-layer chromatography (TLC) immunostaining. In addition, we investigated the composition of phospholipid extracts from the plasma membrane of apoptotic endothelial cells and the binding of patients' sera to the surface of the same cells by using high-performance TLC and immunofluorescence analysis. The average reactivity to MCL was comparable with that of CL and significantly higher than that for DCL and HCL in patients studied, both in the presence or in the absence of beta2-glycoprotein I. Of relevance for the pathogenic role of these autoantibodies, immunoglobulin G from patients' sera showed an increased focal reactivity with the plasma membrane of endothelial cells undergoing apoptosis. Interestingly, the phospholipid analysis of these light membrane fractions showed an accumulation of both CL and MCL. Our results demonstrated that a critical number of acyl chains in CL derivatives is important for the binding of antiphospholipid antibodies and that MCL is an antigenic target with immunoreactivity comparable with CL in APS and SLE. Our finding also suggests a link between apoptotic perturbation of CL metabolism and the production of these antibodies. PMID:17150088

  13. Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis

    PubMed Central

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis

    2006-01-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-α). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-α was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-α antibodies; and (iii) the addition of exogenous TNF-α induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-α-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-α-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  14. Notochordal cell-derived conditioned medium protects human nucleus pulposus cells from stress-induced apoptosis.

    PubMed

    Mehrkens, Arne; Matta, Ajay; Karim, Muhammad Zia; Kim, Sarah; Fehlings, Michael G; Schaeren, Stefan; Mark Erwin, William

    2017-04-01

    Degenerative disc disease (DDD) remains without an effective therapy and presents a costly burden to society. Based upon prior reports concerning the effects of notochordal cell-conditioned medium (NCCM) on disc cells, we performed a proof of principle study to determine whether NCCM could reduce cytotoxic stress-induced apoptosis in human disc nucleus pulposus (NP) cells. This is an "in vitro" fundamental or basic science study. Nucleus pulpous cells derived from 15 patients undergoing spinal surgery were treated with interleukin (IL)-1β and Fas ligand or etoposide in the presence of NCCM. We determined pro- or antiapoptotic events using activated caspase assays and determined genomic regulation of apoptosis using polymerase chain reaction arrays validated using Western blotting methods. We interrogated cellular apoptotic regulation using JC-1 dye and flow cytometry and performed enzyme-linked immunosorbent assays to evaluate NP inflammatory cytokine secretion. Notochordal cell-conditioned medium inhibits cytotoxic stress-induced caspase-9 and -3/7 activities and maintains the mitochondrial membrane potential in human NP cells, thereby suppressing the intrinsic apoptotic pathway. Gene expression analysis revealed the X-linked inhibitor of apoptosis protein as a key player responsible for evading etoposide-induced apoptosis in the presence of NCCM, and we verified these data using Western blotting. Enzyme-linked immunosorbent assay results revealed distinct differences in IL-6 and IL-8 secretions by NP cells in response to etoposide in the presence of NCCM. Here we demonstrate for the first time that NCCM reduces cytotoxic stress-induced apoptosis in human NP cells. Soluble factors present in NCCM could be harnessed for the development of novel therapeutics for the treatment of DDD. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Monitoring drug induced apoptosis and treatment sensitivity in non-small cell lung carcinoma using dielectrophoresis.

    PubMed

    Taruvai Kalyana Kumar, Rajeshwari; Liu, Shanshan; Minna, John D; Prasad, Shalini

    2016-09-01

    Non-invasive real time methods for characterizing biomolecular events that contribute towards apoptotic kinetics would be of significant importance in the field of cancer biology. Effective drug-induced apoptosis is an important factor for establishing the relationship between cancer genetics and treatment sensitivity. The objective of this study was to develop a non-invasive technique to characterize cancer cells that are undergoing drug-induced apoptosis. We used dielectrophoresis to determine apoptotic cells as early as 2h post drug treatment as compared to 24h with standard flow cytometry method using non-small cell lung cancer (NSCLC) adenocarcinoma cell line (HCC1833) as a study model. Our studies have shown significant differences in apoptotic cells by chromatin condensation, formation of apoptotic bodies and exposure of phosphatidylserine (PS) on the extracellular surface when the cells where treated with a potent Bcl-2 family inhibitor drug (ABT-263). Time lapse dielectrophoretic studies were performed over 24h period after exposure to ABT-263 at clinically relevant concentrations. The dielectrophoretic studies were compared to Annexin-V FITC flow assay for the detection of PS in mid-stage apoptosis using flow cytometry. As a result of physical and biochemical changes, inherent dielectric properties of cells undergoing varying stages of apoptosis showed amplified changes in their cytoplasmic and membrane capacitance. In addition, zeta potential of these fixed isolated cells was measured to obtain direct correlation to biomolecular events. Copyright © 2016. Published by Elsevier B.V.

  16. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells.

    PubMed

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  17. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    PubMed Central

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  18. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    SciTech Connect

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  19. Active Akt and Functional p53 Modulate Apoptosis in Abelson Virus-Transformed Pre-B Cells

    PubMed Central

    Gong, Li; Unnikrishnan, Indira; Raghavan, Anuradha; Parmar, Kalindi; Rosenberg, Naomi

    2004-01-01

    Suppression of apoptosis is an important feature of the Abelson murine leukemia virus (Ab-MLV) transformation process. During multistep transformation, Ab-MLV-infected pre-B cells undergo p53-dependent apoptosis during the crisis phase of transformation. Even once cells are fully transformed, an active v-Abl protein tyrosine kinase is required to suppress apoptosis because cells transformed by temperature-sensitive (ts) kinase mutants undergo rapid apoptosis after a shift to the nonpermissive temperature. However, inactivation of the v-Abl protein by a temperature shift interrupts signals transmitted via multiple pathways, making it difficult to identify those that are critically important for the suppression of apoptosis. To begin to dissect these pathways, we tested the ability of an SH2 domain Ab-MLV mutant, P120/R273K, to rescue aspects of the ts phenotype of pre-B cells transformed by the conditional kinase domain mutant. The P120/R273K mutant suppressed apoptosis at the nonpermissive temperature, a phenotype correlated with its ability to activate Akt. Apoptosis also was suppressed at the nonpermissive temperature by constitutively active Akt and in p53-null pre-B cells transformed with the ts kinase domain mutant. These data indicate that an intact Src homology 2 (SH2) domain is not critical for apoptosis suppression and suggest that signals transmitted through Akt and p53 play an important role in the response. PMID:14747529

  20. Kaurene diterpene induces apoptosis in human leukemia cells partly through a caspase-8-dependent pathway.

    PubMed

    Kondoh, Masuo; Suzuki, Ikue; Sato, Masao; Nagashima, Fumihiro; Simizu, Siro; Harada, Motoki; Fujii, Makiko; Osada, Hiroyuki; Asakawa, Yoshinori; Watanabe, Yoshiteru

    2004-10-01

    Defects in apoptosis signaling pathways contribute to tumorigenesis and drug resistance, and these defects are often a cause of failure of chemotherapy. Thus, a major goal in chemotherapy is to find cytotoxic agents that restore the ability of tumor cells to undergo apoptosis. We previously found that an Ent-kaurene diterpene, Ent-11alpha-hydroxy-16-kauren-15-one (KD), induced apoptosis in human promyelocytic leukemia HL-60 cells. Here, we found that caspase-8, an apoptotic factor, is involved in KD-induced apoptosis. Although treatment of HL-60 cells with KD resulted in the activation of caspase-8 and -9, a caspase-8-specific inhibitor but not a caspase-9-specific inhibitor attenuated KD-induced apoptosis. Expression of a catalytically inactive caspase-8 partly attenuated KD-induced apoptosis. Treatment with KD led to a time-dependent cleavage of Bid, a substrate of caspase-8, as well as to the proteolytic processing of procaspase-8, indicating that KD treatment induces apoptosis through a caspase-8-dependent pathway. Moreover, overexpression of the drug resistance factor Bcl-2, which is frequently overexpressed in many tumors, failed to confer resistance to KD-induced cytotoxicity. Thus, KD may be a promising experimental cytotoxic agent that possibly points to new strategies to overcome a drug resistance.

  1. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  2. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    PubMed

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  3. Aspartame-induced apoptosis in PC12 cells.

    PubMed

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Periodontal Ligament Stem Cells Regulate Apoptosis of Neutrophils

    PubMed Central

    Wang, Qing; Ding, Gang; Xu, Xin

    2017-01-01

    Abstract Periodontal ligament stem cells (PDLSCs) are promising cell resource for the cell-based therapy for periodontitis and regeneration of bio-root. In this study, we investigated the effect of PDLSCs on neutrophil, a critical constituent of innate immunity, and the underlying mechanisms. The effect of PDLSCs on the proliferation and apoptosis of resting neutrophils and IL-8 activated neutrophils was tested under cell-cell contact culture and Transwell culture, with or without anti-IL-6 neutralizing antibody. We found that PDLSCs could promote the proliferation and reduce the apoptosis of neutrophils whether under cell-cell contact or Transwell culture. Anti-IL-6 antibody reduced PDLSCs-mediated inhibition of neutrophil apoptosis. IL-6 at the concentration of 10ng/ml and 20ng/ml could inhibit neutrophil apoptosis statistically. Collectively, PDLSCs could reduce the apoptosis of neutrophils via IL-6.

  5. Immunoregulatory mechanisms in Chagas disease: modulation of apoptosis in T-cell mediated immune responses.

    PubMed

    Chaves, Ana Thereza; de Assis Silva Gomes Estanislau, Juliana; Fiuza, Jacqueline Araújo; Carvalho, Andréa Teixeira; Ferreira, Karine Silvestre; Fares, Rafaelle Christine Gomes; Guimarães, Pedro Henrique Gazzinelli; de Souza Fagundes, Elaine Maria; Morato, Maria José; Fujiwara, Ricardo Toshio; da Costa Rocha, Manoel Otávio; Correa-Oliveira, Rodrigo

    2016-04-30

    Chronic Chagas disease presents different clinical manifestations ranging from asymptomatic (namely indeterminate) to severe cardiac and/or digestive. Previous results have shown that the immune response plays an important role, although no all mechanisms are understood. Immunoregulatory mechanisms such as apoptosis are important for the control of Chagas disease, possibly affecting the morbidity in chronic clinical forms. Apoptosis has been suggested to be an important mechanism of cellular response during T. cruzi infection. We aimed to further understand the putative role of apoptosis in Chagas disease and its relation to the clinical forms of the disease. Apoptosis of lymphocytes, under antigenic stimuli (soluble T. cruzi antigens - TcAg) where compared to that of non-stimulated cells. Apoptosis was evaluated using the expression of annexin and caspase 3(+) by T cells and the percentage of cells positive evaluated by flow cytometry. In addition activation and T cell markers were used for the identification of TCD4(+) and TCD8(+) subpopulations. The presence of intracellular and plasma cytokines were also evaluated. Analysis of the activation status of the peripheral blood cells showed that patients with Chagas disease presented higher levels of activation determined by the expression of activation markers, after TcAg stimulation. PCR array were used to evaluate the contribution of this mechanism in specific cell populations from patients with different clinical forms of human Chagas disease. Our results showed a reduced proliferative response associated a high expression of T CD4(+)CD62L(-) cells in CARD patients when compared with IND group and NI individuals. We also observed that both groups of patients presented a significant increase of CD4(+) and CD8(+) T cell subsets in undergoing apoptosis after in vitro stimulation with T. cruzi antigens. In CARD patients, both CD4(+) and CD8(+) T cells expressing TNF-α were highly susceptible to undergo apoptosis

  6. Management of sickle cell disease in patients undergoing cardiac surgery.

    PubMed

    Crawford, Todd C; Carter, Michael V; Patel, Rina K; Suarez-Pierre, Alejandro; Lin, Sophie Z; Magruder, Jonathan Trent; Grimm, Joshua C; Cameron, Duke E; Baumgartner, William A; Mandal, Kaushik

    2017-02-01

    Sickle cell disease is a life-limiting inherited hemoglobinopathy that poses inherent risk for surgical complications following cardiac operations. In this review, we discuss preoperative considerations, intraoperative decision-making, and postoperative strategies to optimize the care of a patient with sickle cell disease undergoing cardiac surgery. © 2017 Wiley Periodicals, Inc.

  7. Cytokines and Pancreatic β-Cell Apoptosis.

    PubMed

    Berchtold, L A; Prause, M; Størling, J; Mandrup-Poulsen, T

    Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.

  8. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    PubMed

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress.

  9. HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes

    PubMed Central

    Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos

    2017-01-01

    Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium-infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite. PMID:28220125

  10. Comparison of S-nitrosoglutathione- and staurosporine-induced apoptosis in human neural cells.

    PubMed

    Sodja, Caroline; Ribecco-Lutkiewicz, Maria; Haukenfrers, Julie; Merchant, Fahar; Costain, Willard J; Bani-Yaghoub, Mahmud

    2014-12-01

    S-nitrosoglutathione (GSNO) is an endogenously produced S-nitrosylating compound that controls the function of various proteins. While a number of rodent cell lines have been used to study GSNO-induced apoptosis, the mechanisms of action remain to be evaluated in human cells and in parallel with other common apoptosis-inducing agents. In this study, we compared the pro-apoptotic effects of GSNO and staurosporine (STS) on human neural progenitors (NT2, hNP1) and neuroblasts (SH-SY5Y). We show that these cells exhibit comparable levels of susceptibility to GSNO- and STS-induced apoptotic cell death, as demonstrated by condensed nuclei and CASP3 activation. Mechanistic differences in apoptotic responses were observed as differential patterns of DNA fragmentation and levels of BAX, BCL-XL, CASP8, and p-ERK in response to GSNO and STS treatment. Mitochondrial membrane potential analysis revealed that NT2 and hNP1 cells, but not SH-SY5Y cells, undergo mitochondrial hyperpolarization in response to short-term exposure to STS prior to undergoing subsequent depolarization. This is the first study to report differences in apoptotic responses to GSNO and STS in 3 complementary human neural cell lines. Furthermore, these cells represent useful tools in cell pharmacological paradigms in which susceptibility to apoptosis-inducing agents needs to be assessed at different stages of neural cell fate commitment and differentiation.

  11. Tissue transglutaminase and apoptosis: sense and antisense transfection studies with human neuroblastoma cells.

    PubMed Central

    Melino, G; Annicchiarico-Petruzzelli, M; Piredda, L; Candi, E; Gentile, V; Davies, P J; Piacentini, M

    1994-01-01

    In this report, we show that the overexpression of tissue transglutaminase (tTG) in the human neuroblastoma cell line SK-N-BE(2) renders these neural crest-derived cells highly susceptible to death by apoptosis. Cells transfected with a full-length tTG cDNA, under the control of a constitutive promoter, show a drastic reduction in proliferative capacity paralleled by a large increase in cell death rate. The dying tTG-transfected cells exhibit both cytoplasmic and nuclear changes characteristic of cells undergoing apoptosis. The tTG-transfected cells express high Bcl-2 protein levels as well as phenotypic neural cell adhesion molecule markers (NCAM and neurofilaments) of cells differentiating along the neuronal pathway. In keeping with these findings, transfection of neuroblastoma cells with an expression vector containing segments of the human tTG cDNA in antisense orientation resulted in a pronounced decrease of both spontaneous and retinoic acid (RA)-induced apoptosis. We also present evidence that (i) the apoptotic program of these neuroectodermal cells is strictly regulated by RA and (ii) cell death by apoptosis in the human neuroblastoma SK-N-BE(2) cells preferentially occurs in the substrate-adherent phenotype. For the first time, we report here a direct effect of tTG in the phenotypic maturation toward apoptosis. These results indicate that the tTG-dependent irreversible cross-linking of intracellular protein represents an important biochemical event in the induction of the structural changes featuring cells dying by apoptosis. Images PMID:7935379

  12. Suppression of Apoptosis by Basement Membrane Requires three-dimensional Tissue Organization and Withdrawal from the Cell Cycle

    SciTech Connect

    Boudreau, N.; Werb, Z.; Bissell, M.J.

    1995-12-28

    The basement membrane (BM) extracellular matrix induces differentiation and suppresses apoptosis in mammary epithelial cells, whereas cells lacking BM lose their differentiated phenotype and undergo apoptosis. Addition of purified BM components, which are known to induce {beta}-casein expression, did not prevent apoptosis, indicating that a more complex BM was necessary. A comparison of culture conditions where apoptosis would or would not occur allowed us to relate inhibition of apoptosis to a complete withdrawal from the cell cycle, which was observed only when cells acquired a three-dimensional alveolar structure in response to BM. In the absence of this morphology, both the G1 cyclin kinase inhibitor p21/WAF-I and positive proliferative signals including c-myc and cyclin Dl were expressed and the retinoblastoma protein (Rb) continued to be hyperphosphorylated. When we overexpressed either c-myc in quiescent cells or p21 when cells were still cycling, apoptosis was induced. In the absence of three-dimensional alveolar structures, mammary epithelial cells secrete a number of factors including transforming growth factor a and tenascin, which when added exogenously to quiescent cells induced expression of c-myc and interleukin-{beta}1-converting enzyme (ICE) mRNA and led to apoptosis. These experiments demonstrate that a correct tissue architecture is crucial for long-range homeostasis, suppression of apoptosis, and maintenance of differentiated phenotype.

  13. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  14. Apoptosis in a Fas-resistant, T-cell receptor-sensitive human leukaemic T-cell clone.

    PubMed Central

    Delehanty, L L; Payne, J A; Farrow, S N; Brown, R; Champion, B R

    1997-01-01

    The Fas (CD95) antigen plays a key role in regulating T-cell activation and survival. We have generated a Fas-resistant subclone of the human T-cell leukaemia line, H9, which is still able to undergo apoptosis in response to T-cell receptor ligation. Molecular analyses revealed that resistance to Fas-mediated apoptosis was due to a heterozygous mutation in the death domain of the Fas gene which generates a stop codon, and thus encodes a truncated Fas molecule. Fas ligation was able to induce apoptosis in the presence of cycloheximide, indicating that the mutant Fas molecule retained some signalling capability, which is death-domain independent. These cells will provide a useful tool for dissecting the complexities of Fas signalling pathways. Images Figure 5 PMID:9155645

  15. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake.

    PubMed

    Devireddy, Laxminarayana R; Gazin, Claude; Zhu, Xiaochun; Green, Michael R

    2005-12-29

    The lipocalin mouse 24p3 has been implicated in diverse physiological processes, including apoptosis due to interleukin-3 (IL-3) deprivation and iron transport. Here we report cloning of the 24p3 cell-surface receptor (24p3R). Ectopic 24p3R expression confers on cells the ability to undergo either iron uptake or apoptosis, dependent upon the iron content of the ligand: Iron-loaded 24p3 increases intracellular iron concentration without promoting apoptosis; iron-lacking 24p3 decreases intracellular iron levels, which induces expression of the proapoptotic protein Bim, resulting in apoptosis. Intracellular iron delivery blocks Bim induction and suppresses apoptosis due to 24p3 addition or IL-3 deprivation. We find, unexpectedly, that the BCR-ABL oncoprotein activates expression of 24p3 and represses 24p3R expression, rendering BCR-ABL(+) cells refractory to secreted 24p3. By inhibiting BCR-ABL, imatinib induces 24p3R expression and, consequently, apoptosis. Our results reveal an unanticipated role for intracellular iron regulation in an apoptotic pathway relevant to BCR-ABL-induced myeloproliferative disease and its treatment.

  16. PKCeta expression contributes to the resistance of Hodgkin's lymphoma cell lines to apoptosis.

    PubMed

    Abu-Ghanem, Sara; Oberkovitz, Galia; Benharroch, Daniel; Gopas, Jacob; Livneh, Etta

    2007-09-01

    The Hodgkin-Reed-Sternberg (HRS) malignant cells in Hodgkin's lymphoma (HL) originate from germinal center B lymphocytes that did not undergo apoptosis. Protein Kinase C (PKC), a family of serine/threonine kinases, plays a crucial role in signal transduction modulating cell growth, differentiation and apoptosis. Here, we report the expression of PKC isoforms in two HL-derived cell lines, L428 and KMH2 and their correlation with drug resistance to CPT and doxorubicin. Among the PKC isoforms examined, only PKCeta and PKCbetaII were preferentially expressed in the drug resistant L428 cells. We have shown correlation between the response to apoptosis of L428 and KMH2 cells and PKCeta expression in these cell lines. In order to directly demonstrate a role for PKCeta in apoptosis, its expression was knocked-down by siRNA in the resistant L428 cells. Downregulation of PKCeta rendered L428 cells more sensitive to doxorubicin and CPT. Furthermore, PKCeta knocked-down cells showed increased PARP-1 cleavage, cytochrome c release and caspase 7 activation. It appears that PKCeta functions as an anti-apoptotic protein in HL-derived cell lines, and as we show here that it is also expressed in HRS of HL biopsies, it may have therapeutic relevance in HL. Thus, PKCeta could provide a new target aimed to reduce resistance to anti-cancer treatments of HL and other cancer patients.

  17. Induction of Apoptosis by Berberine in Hepatocellular Carcinoma HepG2 Cells via Downregulation of NF-κB.

    PubMed

    Li, Min; Zhang, Mao; Zhang, Zhi-Lang; Liu, Ning; Han, Xiao-Yu; Liu, Qin-Cheng; Deng, Wei-Jun; Liao, Cai-Xian

    2017-01-26

    Hepatocellular carcinoma (HCC) is highly resistant to traditional chemotherapeutic approaches, which causes difficulty in the development of effective drugs for the treatment of HCC. Berberine, a major ingredient of Rhizoma coptidis, is a natural alkaloid used in traditional Chinese medicine. Berberine exhibits potent antitumor activity against HCC due to its high efficiency and low toxicity. In the present study, we found that berberine sensitized HepG cells to NF-κB-mediated apoptosis. Berberine exhibited a significant antiproliferation effect on the HepG2 cells and promoted apoptosis. Both qRT-PCR and immunofluorescence staining revealed that berberine reduced the NF-κB p65 levels in HepG2 cells. Moreover, p65 overexpression rescued berberine-induced cell proliferation and prevented HepG2 cells from undergoing apoptosis. These results suggest that berberine inhibits the growth of HepG2 cells by promoting apoptosis through the NF-κB p65 pathway.

  18. Chromosome or chromatin condensation leads to meiosis or apoptosis in stationary yeast (Saccharomyces cerevisiae) cells.

    PubMed

    Yang, Hui; Ren, Qun; Zhang, Zhaojie

    2006-12-01

    When starved of essential nutrients, yeast cells cease mitotic division and enter an alternative state called the 'stationary phase'. In this paper, we report that stationary cells enter two major pathways: meiosis and apoptosis. Using transmission electron microscopy, five types of cell were identified in the stationary phase: (1) cells with chromosome condensed nuclei; (2) cells with normal, homogeneously stained nuclei; (3) sporulated cells; (4) apoptotic cells, in which chromatin, but not individual chromosomes, was condensed; and (5) dead cells, in which nuclei and cytoplasm were degraded. Further evidence using live cell imaging and mutation analysis suggested that cells with condensed chromosomes underwent meiosis, whereas chromatin condensed cells underwent apoptotic cell death. Cells with homogeneous nuclei are believed to be in the true resting state and undergo cell death when starvation continues. Chromosome or chromatin condensation may serve as a hallmark of life or death for stationary cells.

  19. Genes regulated in neurons undergoing transcription-dependent apoptosis belong to signaling pathways rather than the apoptotic machinery.

    PubMed

    Desagher, Solange; Severac, Dany; Lipkin, Alexey; Bernis, Cyril; Ritchie, William; Le Digarcher, Anne; Journot, Laurent

    2005-02-18

    Neuronal apoptosis has been shown to require de novo RNA/protein synthesis. However, very few genes whose expression is necessary for inducing apoptosis have been identified so far. To systematically identify such genes, we have used genome-scale, long oligonucleotide microarrays and characterized the gene expression profile of cerebellar granule neurons in the early phase of apoptosis elicited by KCl deprivation. We identified 368 significantly differentially expressed genes, including most of the genes previously reported to be transcriptionally regulated in this paradigm. In addition, we identified several hundreds of genes whose transcriptional regulation has never been associated with neuronal apoptosis. We used automated Gene Ontology annotation, analysis of promoter sequences, and statistical tools to characterize these regulations. Although differentially expressed genes included some components of the apoptotic machinery, this functional category was not significantly over-represented among regulated genes. On the other hand, categories related to signal transduction were the most significantly over-represented group. This indicates that the apoptotic machinery is mainly constitutive, whereas molecular pathways that lead to the activation of apoptotic components are transcriptionally regulated. In particular, we show for the first time that signaling pathways known to be involved in the control of neuronal survival are regulated at the transcriptional level and not only by post-translational mechanisms. Moreover, our approach provides insights into novel transcription factors and novel mechanisms, such as the unfolded protein response and cell adhesion, that may contribute to the induction of neuronal apoptosis.

  20. Induction of apoptosis in a carp leucocyte cell line infected with turbot (Scophthalmus maximus L.) rhabdovirus.

    PubMed

    Du, Changsheng; Zhang, Qiya; Li, Chunliang; Miao, Dali; Gui, Jianfang

    2004-05-01

    A rhabdovirus was observed from the diseased turbot (Scophthalmus maximus L.) with lethal syndrome. In this study, a carp leucocyte (CLC) cell line was used to investigate the infection process and cell death mechanism occurring during the virus infection. Strong cytopathogenic effect (CPE) and the morphological changes, such as extreme chromatin condensation, nucleus fragmentation, and apoptotic body formation, were observed under fluorescence microscopy after DAPI staining in the infected CLC cells. Transmission electron microscopy analysis showed cell shrinkage, plasma membrane blebbing, cytoplasm vacuolization, chromatin condensation, nuclear breakdown and formation of discrete apoptotic bodies. The bullet-shaped nucleocapsids were measured and ranged in size from 110 to 150 nm in length and 40 to 60 nm in diameter. And therefore the virus is called Scophthalmus maximus rhabdovirus (SMRV). Agarose gel electrophoresis analysis of the DNA extracted from infected cells showed typical DNA ladder in the course of SMRV infection. Flow cytometry analysis of SMRV infected CLC cells detected apoptotic peak in the virus infected CLC cells. Virus titre analysis and electron microscopic observation revealed that the virus replication fastigium was earlier than that of the apoptosis occurrence. No apoptosis was observed in the CLC infected with UV-inactivated SMRV. All these supported that SMRV infected CLC cells undergo apoptosis and the virus replication is necessary for apoptosis induction of CLC cells.

  1. p75NTR Mediates Neurotrophin-Induced Apoptosis of Vascular Smooth Muscle Cells

    PubMed Central

    Wang, Shiyang; Bray, Paula; McCaffrey, Timothy; March, Keith; Hempstead, Barbara L.; Kraemer, Rosemary

    2000-01-01

    The development of atherosclerotic lesions results from aberrant cell migration, proliferation, and extracellular matrix production. In advanced lesions, however, cellular apoptosis, leading to lesion remodeling, predominates. During lesion formation, the neurotrophins and the neurotrophin receptor tyrosine kinases, trks B and C, are induced and mediate smooth muscle cell migration. Here we demonstrate that a second neurotrophin receptor, p75NTR, is expressed by established human atherosclerotic lesions and late lesions that develop after balloon injury of the rat thoracic aorta. The p75NTR, a member of the tumor necrosis factor/FAS receptor family, can modulate trk receptor function as well as initiate cell death when expressed in cells of the nervous system that lack kinase-active trk receptors. p75NTR expression colocalizes to neointimal cells, which express smooth muscle cell α-actin and are expressed by cultured human endarterectomy-derived cells (HEDC). Areas of the plaque expressing p75NTR demonstrate increased TUNEL positivity, and HEDC undergo apoptosis in response to the neurotrophins. Finally, neurotrophins also induced apoptosis of a smooth muscle cell line genetically manipulated to express p75NTR, but lacking trk receptor expression. These studies identify the regulated expression of neurotrophins and p75NTR as an inducer of smooth muscle cell apoptosis in atherosclerotic lesions. PMID:11021829

  2. Original Research: Label-free detection for radiation-induced apoptosis in glioblastoma cells.

    PubMed

    Qi, Dandan; Feng, Jingwen; Yang, Chengwen; Jin, Changrong; Sa, Yu; Feng, Yuanming

    2016-10-01

    Current flow cytometry (FCM) requires fluorescent dyes labeling cells which make the procedure costly and time consuming. This manuscript reports a feasibility study of detecting the cell apoptosis with a label-free method in glioblastoma cells. A human glioma cell line M059K was exposed to 8 Gy dose of radiation, which enables the cells to undergo radiation-induced apoptosis. The rates of apoptosis were studied at different time points post-irradiation with two different methods: FCM in combination with Annexin V-FITC/PI staining and a newly developed technique named polarization diffraction imaging flow cytometry. Totally 1000 diffraction images were acquired for each sample and the gray level co-occurrence matrix (GLCM) algorithm was used in morphological characterization of the apoptotic cells. Among the feature parameters extracted from each image pair, we found that the two GLCM parameters of angular second moment (ASM) and sum entropy (SumEnt) exhibit high sensitivities and consistencies as the apoptotic rates (Pa) measured with FCM method. In addition, no significant difference exists between Pa and ASM_S, Pa and SumEnt_S, respectively (P > 0.05). These results demonstrated that the new label-free method can detect cell apoptosis effectively. Cells can be directly used in the subsequent biochemical experiments as the structure and function of cells and biomolecules are well-preserved with this new method.

  3. Apoptosis, oncosis, and necrosis. An overview of cell death.

    PubMed Central

    Majno, G.; Joris, I.

    1995-01-01

    The historical development of the cell death concept is reviewed, with special attention to the origin of the terms necrosis, coagulation necrosis, autolysis, physiological cell death, programmed cell death, chromatolysis (the first name of apoptosis in 1914), karyorhexis, karyolysis, and cell suicide, of which there are three forms: by lysosomes, by free radicals, and by a genetic mechanism (apoptosis). Some of the typical features of apoptosis are discussed, such as budding (as opposed to blebbing and zeiosis) and the inflammatory response. For cell death not by apoptosis the most satisfactory term is accidental cell death. Necrosis is commonly used but it is not appropriate, because it does not indicate a form of cell death but refers to changes secondary to cell death by any mechanism, including apoptosis. Abundant data are available on one form of accidental cell death, namely ischemic cell death, which can be considered an entity of its own, caused by failure of the ionic pumps of the plasma membrane. Because ischemic cell death (in known models) is accompanied by swelling, the name oncosis is proposed for this condition. The term oncosis (derived from ónkos, meaning swelling) was proposed in 1910 by von Reckling-hausen precisely to mean cell death with swelling. Oncosis leads to necrosis with karyolysis and stands in contrast to apoptosis, which leads to necrosis with karyorhexis and cell shrinkage. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7856735

  4. Apoptosis induced by propolis in human hepatocellular carcinoma cell line.

    PubMed

    Choi, Y H; Lee, W Y; Nam, S Y; Choi, K C; Park, Y E

    1999-07-01

    Propolis has been reported to exhibit a wide spectrum of activities including antibiotic, antiviral, anti-inflammatory, immunostimulatory and tumor carcinostatic properties. We showed propolis induced apoptosis in a human hepatoma cell line (SNU449) by FITC-Annexin V/PI staining. We also compared the apoptosis inducing effect between Korean and Commercial (Sigma # p-1010) propolis. There was no difference on apoptosis between them.

  5. Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis

    PubMed Central

    Lu, Xinpei; He, Guangyuan; Ostrikov, Kostya

    2014-01-01

    The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure. PMID:24971517

  6. Roles of p53 and caspases in the induction of cell cycle arrest and apoptosis by HIV-1 vpr.

    PubMed

    Shostak, L D; Ludlow, J; Fisk, J; Pursell, S; Rimel, B J; Nguyen, D; Rosenblatt, J D; Planelles, V

    1999-08-25

    The vpr gene from the human immunodeficiency virus type-1 (HIV-1) encodes a 14-kDa protein that prevents cell proliferation by causing a block in the G(2) phase of the cell cycle. This cellular function of vpr is conserved in evolution because other primate lentiviruses, including HIV-2, SIV(mac), and SIV(agm) encode related genes that also induce G(2) arrest. After G(2) arrest, cells expressing vpr undergo apoptosis. The signaling pathways that result in vpr-induced cell cycle arrest and apoptosis have yet to be determined. The p53 tumor suppressor protein is involved in signaling pathways leading to cell cycle arrest and apoptosis in a variety of cell types. In this work, we examine the potential role of p53 in mediating cell cycle block and/or apoptosis by HIV-1 vpr and demonstrate that both phenomena occur independently of the presence and function of p53. Caspases are common mediators of apoptosis. We examined the potential role of caspases in mediating vpr-induced apoptosis by treating vpr-expressing cells with Boc-D-FMK, a broad spectrum, irreversible inhibitor of the caspase family. Boc-D-FMK significantly reduced the numbers of apoptotic cells induced by vpr. Therefore, we conclude that vpr-induced apoptosis is effected via the activation of caspases. Copyright 1999 Academic Press.

  7. Morphological and cytochemical determination of cell death by apoptosis

    PubMed Central

    Sobel, Burton E.; Budd, Ralph C.

    2007-01-01

    Several modes of cell death are now recognized, including necrosis, apoptosis, and autophagy. Oftentimes the distinctions between these various modes may not be apparent, although the precise mode may be physiologically important. Accordingly, it is often desirable to be able to classify the mode of cell death. Apoptosis was originally defined by structural alterations in cells observable by transmitted light and electron microscopy. Today, a wide variety of imaging and cytochemical techniques are available for the investigation of apoptosis. This review will highlight many of these methods, and provide a critique on the advantages and disadvantages associated with them for the specific identification of apoptotic cells in culture and tissues. PMID:18000678

  8. Peroxynitrite induces apoptosis in canine cerebral vascular muscle cells: possible relation to neurodegenerative diseases and strokes.

    PubMed

    Li, Jianfeng; Su, Jialin; Li, Wenyan; Liu, Weimin; Altura, Bella T; Altura, Burton M

    2003-10-30

    Considerable evidence is accumulating to suggest that in vivo formation of free radicals in the brain, such as peroxynitrite (ONOO-), and programmed cell death (i.e. apoptosis) play important roles in neurodegeneration and stroke. However, it is not known whether ONOO- can induce apoptosis in cerebral vascular smooth muscle cells (CVSMCs). The present study was designed to determine whether or not canine CVSMCs undergo apoptosis following treatment with ONOO-. Direct exposure of canine CVSMCs to ONOO- induced apoptosis in a concentration-dependent manner, as confirmed by means of fluorescence staining, TdT-mediated dUTP nick-end labeling and comet assays. Peroxynitrite treatment resulted in an elevation of [Ca2+]i in the CVSMCs. Peroxynitrite-induced apoptosis may thus be brought about by activation of Ca2+-dependent endonucleases. Although the precise mechanisms by which peroxynitrite induces apoptosis need to be further investigated, the present findings could be used to suggest that ONOO- formation in the brain may play important roles in neurodegenerative processes and strokes via detrimental actions on cerebral microvessels and blood flow.

  9. Epithelial cell apoptosis facilitates Entamoeba histolytica infection in the gut.

    PubMed

    Becker, Stephen M; Cho, Kyou-Nam; Guo, Xiaoti; Fendig, Kirsten; Oosman, Mohammed N; Whitehead, Robert; Cohn, Steven M; Houpt, Eric R

    2010-03-01

    Entamoeba histolytica is the protozoan parasite that causes amebic colitis. The parasite triggers apoptosis on contact with host cells; however, the biological significance of this event during intestinal infection is unclear. We examined the role of apoptosis in a mouse model of intestinal amebiasis. Histopathology revealed that abundant epithelial cell apoptosis occurred in the vicinity of amoeba in histological specimens. Epithelial cell apoptosis occurred rapidly on co-culture with amoeba in vitro as measured by annexin positivity, DNA degradation, and mitochondrial dysfunction. Administration of the pan caspase inhibitor ZVAD decreased the rate and severity of amebic infection in CBA mice by all measures (cecal culture positivity, parasite enzyme-linked immunosorbent assay, and histological scores). Similarly, caspase 3 knockout mice on the resistant C57BL/6 background exhibited even lower cecal parasite antigen burden and culture positive rates than wild type mice. The permissive effect of apoptosis on infection could be tracked to the epithelium, in that transgenic mice that overexpressed Bcl-2 in epithelial cells were more resistant to infection as measured by cecal parasite enzyme-linked immunosorbent assay and histological scores. We concluded that epithelial cell apoptosis in the intestine facilitates amebic infection in this mouse model. The parasite's strategy for inducing apoptosis may point to key virulence factors, and therapeutic maneuvers to diminish epithelial apoptosis may be useful in amebic colitis.

  10. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis.

    PubMed

    Chung, H; Vilaysane, A; Lau, A; Stahl, M; Morampudi, V; Bondzi-Simpson, A; Platnich, J M; Bracey, N A; French, M-C; Beck, P L; Chun, J; Vallance, B A; Muruve, D A

    2016-08-01

    Nod-like receptor, pyrin containing 3 (NLRP3) is characterized primarily as a canonical caspase-1 activating inflammasome in macrophages. NLRP3 is also expressed in the epithelium of the kidney and gut; however, its function remains largely undefined. Primary mouse tubular epithelial cells (TEC) lacking Nlrp3 displayed reduced apoptosis downstream of the tumor necrosis factor (TNF) receptor and CD95. TECs were identified as type II apoptotic cells that activated caspase-8, tBid and mitochondrial apoptosis via caspase-9, responses that were reduced in Nlrp3-/- cells. The activation of caspase-8 during extrinsic apoptosis induced by TNFα/cycloheximide (TNFα/CHX) was dependent on adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and completely independent of caspase-1 or caspase-11. TECs and primary human proximal tubular epithelial cells (HPTC) did not activate a canonical inflammasome, caspase-1, or IL-1β secretion in response to TNFα/CHX or NLRP3-dependent triggers, such as ATP or nigericin. In cell fractionation studies and by confocal microscopy, NLRP3 colocalized with ASC and caspase-8 in speck-like complexes at the mitochondria during apoptosis. The formation of NLRP3/ASC/caspase-8 specks in response to TNFα/CHX was downstream of TNFR signaling and dependent on potassium efflux. Epithelial ASC specks were present in enteroids undergoing apoptosis and in the injured tubules of wild-type but not Nlrp3-/- or ASC-/- mice following ureteric unilateral obstruction in vivo. These data show that NLRP3 and ASC form a conserved non-canonical platform for caspase-8 activation, independent of the inflammasome that regulates apoptosis within epithelial cells.

  11. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway.

    PubMed

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Smirnova, Iva; Schnee, Tona; Zagzag, David

    2008-07-01

    Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.

  12. CHOP-independent apoptosis and pathway-selective induction of the UPR in developing plasma cells

    PubMed Central

    Masciarelli, Silvia; Fra, Anna M.; Pengo, Niccoló; Bertolotti, Milena; Cenci, Simone; Fagioli, Claudio; Ron, David; Hendershot, Linda M; Sitia, Roberto

    2010-01-01

    Upon antigen stimulation, B lymphocytes differentiate into antibody secreting cells (ASC), most of which undergo apoptosis after a few days of intense Ig production. Differentiation entails expansion of the endoplasmic reticulum (ER) and requires XBP1 but not other elements of the unfolded protein response, like Perk. Moreover, normal and malignant ASC are exquisitely sensitive to proteasome inhibitors, but the underlying mechanisms are poorly understood. Here we analyze the role of CHOP, a transcription factor mediating apoptosis in many cell types that experience high levels of ER stress. CHOP is transiently induced early upon B cell stimulation: covalent IgM aggregates form more readily and IgM secretion is slower in chop-/- cells. Despite these subtle changes, ASC differentiation and lifespan are normal in chop-/- mice. Unlike fibroblasts and other cell types, chop-/- ASC are equally or slightly more sensitive to proteasome inhibitors and ER stressors, implying tissue-specific roles for CHOP in differentiation and stress. PMID:20044139

  13. Cocaine induces apoptosis in primary cultured rat aortic vascular smooth muscle cells: possible relationship to aortic dissection, atherosclerosis, and hypertension.

    PubMed

    Su, Jialin; Li, Jianfeng; Li, Wenyan; Altura, Bella; Altura, Burton

    2004-01-01

    Cocaine abuse is known to induce many adverse cardiovascular effects, including hypertension, atherosclerosis, and aortic dissection. A major physiological event leading to these pathophysiological actions of cocaine could be apoptosis. This study was designed to investigate if primary cultured rat aortic vascular smooth muscle cells (VSMCs) can undergo apoptosis when treated with cocaine. After treatment with cocaine (10(-6) to 10(-4) M), morphological analysis of aortic VSMCs using confocal fluoresence microscopy showed that the percentage of apoptotic aortic VSMCs increased after cocaine (10(-6) to 10(-4) M) treatment for 12, 24, and 48 h. These results demonstrate that aortic VSMCs can undergo rapid apoptosis in response to cocaine in a concentration-dependent manner. Cocaine-induced apoptosis may thus play a major role in cocaine abuse-induced aortic dissection, atherosclerosis, and hypertension.

  14. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation.

    PubMed

    Apostolidis, Pani A; Lindsey, Stephan; Miller, William M; Papoutsakis, Eleftherios T

    2012-06-15

    During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects.

  15. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  16. Ponicidin Inhibits Monocytic Leukemia Cell Growth by Induction of Apoptosis

    PubMed Central

    Liu, Jia-Jun; Zhang, Yong; Guang, Wei-Bin; Yang, Hong-Zhi; Lin, Dong-Jun; Xiao, Ruo-Zhi

    2008-01-01

    In this study two monocytic leukemia cell lines, U937 and THP-1 cells, were used to investigate the anti-proliferation effects caused by ponicidin. Cell viability was measured by an MTT assay. Cell apoptosis was assessed by flow cytometry as well as DNA fragmentation analysis. Cell morphology was observed using an inverted microscope and Hoechst 33258 staining. RT-PCR and Western blot analysis were used to detect survivin as well as Bax and Bcl-2 expressions after the cells were treated with different concentrations of ponicidin. The results revealed that ponicidin could inhibit the growth of U937 and THP-1 cells significantly by induction of apoptosis. The suppression was in both time- and dose-dependent manner. Marked morphological changes of cell apoptosis were observed clearly after the cells were treated with ponicidin for 48∼72 h. RT-PCR and Western blot analysis demonstrated that both survivin and Bcl-2 expressions were down-regulated remarkably while Bax expression remained constant before and after apoptosis occurred. We therefore conclude that ponicidin has significant anti-proliferation effects by inducing apoptosis on leukemia cells in vitro, downregulation of survivin as well as Bcl-2 expressions may be the important apoptosis inducing mechanisms. The results suggest that ponicidin may serve as potential therapeutic agent for leukemia. PMID:19330074

  17. Apoptosis in HEp-2 cells infected with Ureaplasma diversum.

    PubMed

    Amorim, Aline Teixeira; Marques, Lucas Miranda; Santos, Angelita Maria Oliveira Gusmão; Martins, Hellen Braga; Barbosa, Maysa Santos; Rezende, Izadora Souza; Andrade, Ewerton Ferraz; Campos, Guilherme Barreto; Lobão, Tássia Neves; Cortez, Beatriz Araujo; Monezi, Telma Alvez; Machado-Santelli, Glaucia Maria; Timenetsky, Jorge

    2014-09-04

    Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.

  18. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells.

    PubMed

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis

  19. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells

    PubMed Central

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A.; Greenwood, Michael T.

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis

  20. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification.

    PubMed Central

    Gottlieb, R A; Nordberg, J; Skowronski, E; Babior, B M

    1996-01-01

    We have previously shown that in neutrophils deprived of granulocyte colony-stimulating factor, apoptosis is preceded by acidification and that the protection against apoptosis conferred on neutrophils by granulocyte colony-stimulating factor is dependent upon delay of this acidification. To test the hypothesis that acidification could be a general feature of apoptosis, we examined intracellular pH changes in another cell line. Jurkat cells, a T-lymphoblastoid line, were induced to undergo apoptosis with anti-Fas IgM, cycloheximide, or exposure to short-wavelength UV light. We found that acidification occurred in response to treatment with these agents and that acidification preceded DNA fragmentation. Jurkat cells were also found to possess an acid endonuclease that is active below pH 6.8, compatible with a possible role for this enzyme in chromatin digestion during apoptosis. Incubation of the cells with the bases imidazole or chloroquine during treatment with anti-Fas antibody or cycloheximide or after UV exposure decreased apoptosis as assessed by nuclear morphology and DNA content. The alkalinizing effect of imidazole and chloroquine was shown by the demonstration that the percentage of cells with an intracellular pH below 6.8 after treatment with anti-Fas antibody, cycloheximide, or UV was diminished in the presence of base as compared with similarly treated cells incubated in the absence of base. We conclude that acidification is an early event in programmed cell death and may be essential for genome destruction. Images Fig. 5 PMID:8570610

  1. [Essential oil from Artemisia lavandulaefolia induces apoptosis and necrosis of HeLa cells].

    PubMed

    Zhang, Lu-min; Lv, Xue-wei; Shao, Lin-xiang; Ma, Yan-fang; Cheng, Wen-zhao; Gao, Hai-tao

    2013-12-01

    To investigate the effects of Artemisia lavandulaefolia essential oil on apoptosis and necrosis of HeLa cells. Cell viability was assayed using MTT method. The morphological and structure alterations in HeLa cells were observed by microscopy. Furthermore, cell apoptosis was measured by DNA Ladder and flow cytometry. DNA damage was measured by comet assay, and the protein expression was examined by Western blot analysis. MTT assay displayed essential oil from Artemisia lavandulaefolia could inhibit the proliferation of HeLa cells in a dose-dependent manner. After treated with essential oil of Artemisia lavadulaefolia for 24 h, HeLa cells in 100 and 200 microg/mL experiment groups exhibited the typical morphology changes of undergoing apoptosis, such as cell shrinkage and nucleus chromatin condensed. However, the cells in the 400 microg/mL group showed the necrotic morphology changes including cytomembrane rupture and cytoplasm spillover. In addition, DNA Ladder could be demonstrated by DNA electrophoresis in each experiment group. Apoptosis peak was also evident in flow cytometry in each experiment group. After treating the HeLa cells with essential oil of Artemisia lavadulaefolia for 6 h, comet tail was detected by comet assay. Moreover, western blotting analysis showed that caspase-3 was activated and the cleavage of PARP was inactivated. Essential oil from Artemisia lavadulaefolia can inhibit the proliferation of HeLa cells in vitro. Low concentration of essential oil from Artemisia lavadulaefolia can induce apoptosis, whereas high concentration of the compounds result in necrosis of HeLa cells. And,the mechanism may be related to the caspase-3-mediated-PARP apoptotic signal pathway.

  2. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.

    PubMed

    Zheng, Xingnan; He, Kan; Zhang, Lin; Yu, Jian

    2013-05-01

    Oncogenic alterations in MET or anaplastic lymphoma kinase (ALK) have been identified in a variety of human cancers. Crizotinib (PF02341066) is a dual MET and ALK inhibitor and approved for the treatment of a subset of non-small cell lung carcinoma and in clinical development for other malignancies. Crizotinib can induce apoptosis in cancer cells, whereas the underlying mechanisms are not well understood. In this study, we found that crizotinib induces apoptosis in colon cancer cells through the BH3-only protein PUMA. In cells with wild-type p53, crizotinib induces rapid induction of PUMA and Bim accompanied by p53 stabilization and DNA damage response. The induction of PUMA and Bim is mediated largely by p53, and deficiency in PUMA or p53, but not Bim, blocks crizotinib-induced apoptosis. Interestingly, MET knockdown led to selective induction of PUMA, but not Bim or p53. Crizotinib also induced PUMA-dependent apoptosis in p53-deficient colon cancer cells and synergized with gefitinib or sorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and therapeutic responses to crizotinib in xenograft models. These results establish a critical role of PUMA in mediating apoptotic responses of colon cancer cells to crizotinib and suggest that mechanisms of oncogenic addiction to MET/ALK-mediated survival may be cell type-specific. These findings have important implications for future clinical development of crizotinib.

  3. A novel histone deacetylase inhibitor Chidamide induces apoptosis of human colon cancer cells

    SciTech Connect

    Liu, Lin; Chen, Baoan; Qin, Shukui; Li, Suyi; He, Xiangming; Qiu, Shaomin; Zhao, Wei; Zhao, Hong

    2010-02-05

    Many studies have demonstrated that histone deacetylase (HDAC) inhibitors induce various tumor cells to undergo apoptosis, and such inhibitors have been used in different clinical trials against different human cancers. In this study, we designed and synthesized a novel HDAC inhibitor, Chidamide. We showed that Chidamide was able to increase the acetylation levels of histone H3 and to inhibit the PI3K/Akt and MAPK/Ras signaling pathways, which resulted in arresting colon cancer cells at the G1 phase of the cell cycle and promoting apoptosis. As a result, the proliferation of colon cancer cells was suppressed in vitro. Our data support the potential application of Chidamide as an anticancer agent in treating colon cancer. Future studies are needed to demonstrate its in vivo efficacy.

  4. Effect of scopoletin on PC3 cell proliferation and apoptosis.

    PubMed

    Liu, X L; Zhang, L; Fu, X L; Chen, K; Qian, B C

    2001-10-01

    To investigate the effect of scopoletin on cell proliferation and apoptosis of PC3 cells. Cell growth curve, MTT assay, and acid phosphatase activity (ACP) were used to determine cell proliferation. Coomassie brilliant blue assay was used to measure the content of protein in cells. Light microscope, transmission electronmicroscope, and fluorescence microscope were used to observe scopoletin-induced morphological changes. Apoptosis rate and cell cycle distribution were determined by flow cytometry. The IC50 of scopoletin for inhibiting PC3, PAA, and Hela cell proliferation was (157 +/- 25), (154 +/- 51), and (294 +/- 100) mg/L, respectively. Scopoletin induced a marked time- and concentration-dependent inhibition of PC3 cell proliferation. Scopoletin reduced the protein content and decreased the ACP level in PC3 cells in a concentration-dependent manner. Cells treated by scopoletin showed typical morphologic changes of apoptosis by light microscope, fluorescence microscope, and transmission electronmicroscope. Apoptosis rate was 0.3 %, 2.1 %, 9.3 % and 35 % for scopoletin 0, 100, 200, and 400 mg/L, respectively, and cells in G2 phase decreased markedly after being treated with scopoletin. Scopoletin inhibited PC3 proliferation by inducing apoptosis of PC3 cells.

  5. Differential effects of polyphenols on proliferation and apoptosis in human myeloid and lymphoid leukemia cell lines.

    PubMed

    Mahbub, Amani A; Le Maitre, Christine L; Haywood-Small, Sarah L; McDougall, Gordon J; Cross, Neil A; Jordan-Mahy, Nicola

    2013-12-01

    Mortality rates for leukemia are high despite considerable improvements in treatment. Since polyphenols exert pro-apoptotic effects in solid tumors, our study investigated the effects of polyphenols in haematological malignancies. The effect of eight polyphenols (quercetin, chrysin, apigenin, emodin, aloe-emodin, rhein, cis-stilbene and trans-stilbene) were studied on cell proliferation, cell cycle and apoptosis in four lymphoid and four myeloid leukemic cells lines, together with normal haematopoietic control cells. Cellular proliferation was measured by CellTiter-Glo(®) luminescent assay; and cell cycle arrest was assessed using flow cytometry of propidium iodide stained cells. Apoptosis was investigated by caspase-3 activity assay using flow cytometry and apoptotic morphology was confirmed by Hoescht 33342 staining. Emodin, quercetin, and cis-stilbene were the most effective polyphenols at decreasing cell viability (IC50 values of 5-22 μM, 8-33 μM, and 25-85 μM respectively) and inducing apoptosis (AP50 values (the concentration which 50% of cells undergo apoptosis) of 2-27 μM, 19-50 μM, and 8-50 μM respectively). Generally, lymphoid cell lines were more sensitive to polyphenol treatment compared to myeloid cell lines, however the most resistant myeloid (KG-1a and K562) cell lines were still found to respond to emodin and quercetin treatment at low micromolar levels. Non-tumor cells were less sensitive to all polyphenols compared to the leukemia cells. These findings suggest that polyphenols have anti-tumor activity against leukemia cells with differential effects. Importantly, the differential sensitivity of emodin, quercetin, and cis-stilbene between leukemia and normal cells suggests that polyphenols are potential therapeutic agents for leukemia.

  6. Differential Effects of Polyphenols on Proliferation and Apoptosis in Human Myeloid and Lymphoid Leukemia Cell Lines

    PubMed Central

    Mahbub, Amani A; Le Maitre, Christine L.; Haywood-Small, Sarah L.; McDougall, Gordon J.; Cross, Neil A.; Jordan-Mahy, Nicola

    2013-01-01

    Background: Mortality rates for leukemia are high despite considerable improvements in treatment. Since polyphenols exert pro-apoptotic effects in solid tumors, our study investigated the effects of polyphenols in haematological malignancies. The effect of eight polyphenols (quercetin, chrysin, apigenin, emodin, aloe-emodin, rhein, cis-stilbene and trans-stilbene) were studied on cell proliferation, cell cycle and apoptosis in four lymphoid and four myeloid leukemic cells lines, together with normal haematopoietic control cells. Methods: Cellular proliferation was measured by CellTiter-Glo® luminescent assay; and cell cycle arrest was assessed using flow cytometry of propidium iodide stained cells. Apoptosis was investigated by caspase-3 activity assay using flow cytometry and apoptotic morphology was confirmed by Hoescht 33342 staining. Results: Emodin, quercetin, and cis-stilbene were the most effective polyphenols at decreasing cell viability (IC50 values of 5-22 µM, 8-33 µM, and 25-85 µM respectively) and inducing apoptosis (AP50 values (the concentration which 50% of cells undergo apoptosis) of 2-27 µM, 19-50 µM, and 8-50 µM respectively). Generally, lymphoid cell lines were more sensitive to polyphenol treatment compared to myeloid cell lines, however the most resistant myeloid (KG-1a and K562) cell lines were still found to respond to emodin and quercetin treatment at low micromolar levels. Non-tumor cells were less sensitive to all polyphenols compared to the leukemia cells. Conclusions: These findings suggest that polyphenols have anti-tumor activity against leukemia cells with differential effects. Importantly, the differential sensitivity of emodin, quercetin, and cis-stilbene between leukemia and normal cells suggests that polyphenols are potential therapeutic agents for leukemia. PMID:23796248

  7. Angiotensin II induces apoptosis in renal proximal tubular cells.

    PubMed

    Bhaskaran, Madhu; Reddy, Krishna; Radhakrishanan, Neetu; Franki, Nicholas; Ding, Guohua; Singhal, Pravin C

    2003-05-01

    ANG II has been demonstrated to play a role in the progression of tubulointerstial injury. We studied the direct effect of ANG II on apoptosis of cultured rat renal proximal tubular epithelial cells (RPTECs). ANG II promoted RPTEC apoptosis in a dose- and time-dependent manner. This effect of ANG II was attenuated by anti-transforming growth factor (TGF)-beta antibody. Moreover, TGF-beta triggered RPTEC apoptosis in a dose-dependent manner. ANG II also enhanced RPTEC expression of Fas and Fas ligand (FasL); furthermore, anti-FasL antibody attenuated ANG II-induced RPTEC apoptosis. In addition, ANG II increased RPTEC expression of Bax, a cell death protein. Both ANG II type 1 (AT(1)) and type 2 (AT(2)) receptor blockers inhibited ANG II-induced RPTEC apoptosis. SB-202190, an inhibitor of p38 MAPK phosphorylation, and caspase-3 inhibitor also attenuated ANG II-induced RPTEC apoptosis. ANG II enhanced RPTEC heme oxygenase (HO)-1 expression. Interestingly, pretreatment with hemin as well as curcumin (inducers of HO-1) inhibited the ANG II-induced tubular cell apoptosis; conversely, pretreatment with zinc protoporphyrin, an inhibitor of HO-1 expression, promoted the effect of ANG II. These results suggest that ANG II-induced apoptosis is mediated via both AT(1) and AT(2) receptors through the generation of TGF-beta, followed by the transcription of cell death genes such as Fas, FasL, and Bax. Modulation of tubular cell expression of HO-1 has an inverse relationship with the ANG II-induced tubular cell apoptosis.

  8. Satellite cell activation and apoptosis in skeletal muscle from severely burned children

    PubMed Central

    Fry, Christopher S.; Porter, Craig; Sidossis, Labros S.; Nieten, Christopher; Reidy, Paul T.; Hundeshagen, Gabriel; Mlcak, Ronald; Rasmussen, Blake B.; Lee, Jong O.; Suman, Oscar E.; Herndon, David N.

    2016-01-01

    Key points Severe burns result in profound skeletal muscle atrophy that hampers recovery.The activity of skeletal muscle stem cells, satellite cells, acutely following a severe burn is unknown and may contribute to the recovery of lean muscle.Severe burn injury induces skeletal muscle regeneration and myonuclear apoptosis.Satellite cells undergo concurrent apoptosis and activation acutely following a burn, with a net reduction in satellite cell content compared to healthy controls.The activation and apoptosis of satellite cells probably impacts the recovery of lean tissue following a severe burn, contributing to prolonged frailty in burn survivors. Abstract Severe burns result in profound skeletal muscle atrophy; persistent muscle loss and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma and we propose that an impaired muscle satellite cell response is key in the aetiology of burn‐induced cachexia. Muscle biopsies from the m. vastus lateralis were obtained from 12 male pediatric burn patients (>30% total body surface area burn) and 12 young, healthy male subjects. Satellite cell content, activation and apoptosis were determined via immunohistochemistry, as were muscle fibre regeneration and myonuclear apoptosis. Embryonic myosin heavy chain expression and central nucleation, indices of skeletal muscle regeneration, were elevated in burn patients (P < 0.05). Myonuclear apoptosis, quantified by TUNEL positive myonuclei and cleaved caspase‐3 positive myonuclei, was also elevated in burn patients (P < 0.05). Satellite cell content was reduced in burn patients, with approximately 20% of satellite cells positive for TUNEL staining, indicating DNA damage associated with apoptosis (P < 0.05). Additionally, a significant percentage of satellite cells in burn patients expressed Ki67, a marker for cellular proliferation (P < 0.05). Satellite cell activation was also

  9. Tubular cell apoptosis and cidofovir-induced acute renal failure.

    PubMed

    Ortiz, Alberto; Justo, Pilar; Sanz, Ana; Melero, Rosa; Caramelo, Carlos; Guerrero, Manuel Fernández; Strutz, Frank; Müller, Gerhard; Barat, Antonio; Egido, Jesus

    2005-01-01

    Cidofovir is an antiviral drug with activity against a wide array of DNA viruses including poxvirus. The therapeutic use of cidofovir is marred by a dose-limiting side effect, nephrotoxicity, leading to proximal tubular cell injury and acute renal failure. Treatment with cidofovir requires the routine use of prophylactic measures. A correct knowledge of the cellular and molecular mechanisms of cidofovir toxicity may lead to the development of alternative prophylactic strategies. We recently cared for a patient with irreversible acute renal failure due to cidofovir. Renal biopsy showed tubular cell apoptosis. Cidofovir induced apoptosis in primary cultures of human proximal tubular cells in a temporal (peak apoptosis at 7 days) and concentration (10-40 microg/ml) pattern consistent with that of clinical toxicity. Apoptosis was identified by the presence of hypodiploid cells, by the exposure of annexin V binding sites and by morphological features and was associated with the appearance of active caspase-3 fragments. Cell death was specific as it was also present in a human proximal tubular epithelial cell line (HK-2), but not in a human kidney fibroblast cell line, and was prevented by probenecid. An inhibitor of caspase-3 (DEVD) prevented cidofovir apoptosis. The survival factors present in serum, insulin-like growth factor-1 and hepatocyte growth factor, were also protective. The present data suggest that apoptosis induction is a mechanism contributing to cidofovir nephrotoxicity. The prophylactic administration of factors with survival activity for tubular epithelium should be further explored in cidofovir renal injury.

  10. Stress-induced apoptosis in Spodoptera frugiperda (Sf9) cells: baculovirus p35 mitigates eIF2 alpha phosphorylation.

    PubMed

    Aparna, Gunda; Bhuyan, Abani K; Sahdev, Sudhir; Hasnain, Seyed E; Kaufman, Randal J; Ramaiah, Kolluru V A

    2003-12-30

    Spodoptera frugiperda (Sf9) ovarian cells, natural hosts for baculovirus, are good model systems to study apoptosis and also heterologous gene expression. We report that uninfected Sf9 cells readily undergo apoptosis and show increased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) in the presence of agents such as UVB light, etoposide, high concentrations of cycloheximide, and EGTA. In contrast, tunicamycin, A23187, and low concentrations of cycloheximide promoted eIF2alpha phosphorylation in Sf9 cells but without apoptosis. These findings therefore suggest that increased eIF2alpha phosphorylation does not always necessarily lead to apoptosis, but it is a characteristic hallmark of stressed cells and also of cells undergoing apoptosis. Cell death induced by the above agents was abrogated by infection of Sf9 cells with wild-type (wt) AcNPV. In contrast, Sf9 cells when infected with vAcdelta35, a virus carrying deletion of the antiapoptotic p35 gene, showed increased apoptosis and enhanced eIF2alpha phosphorylation. Further, a recombinant wt virus vAcS51D expressing human S51D, a phosphomimetic form of eIF2alpha, induced apoptosis in UVB pretreated Sf9 cells. However, infection with vAcS51A expressing a nonphosphorylatable form (S51A) of human eIF2alpha partially reduced apoptosis. Consistent with these findings, it has been observed here that caspase activation has led to increased eIF2alpha phosphorylation, while caspase inhibition by z-VAD-fmk reduced eIF2alpha phosphorylation selectively in cells exposed to proapoptotic agents. These findings therefore suggest that the stress signaling pathway determines apoptosis, and caspase activation is a prerequisite for increased eIF2alpha phosphorylation in Sf9 cells undergoing apoptosis. The findings also reinforce the conclusion for the first time that the "pancaspase inhibitor" baculovirus p35 mitigates eIF2alpha phosphorylation.

  11. Plasmodium falciparum Malaria: reduction of endothelial cell apoptosis in vitro.

    PubMed

    Hemmer, Christoph Josef; Lehr, Hans Anton; Westphal, Kathi; Unverricht, Marcus; Kratzius, Manja; Reisinger, Emil Christian

    2005-03-01

    Organ failure in Plasmodium falciparum malaria is associated with neutrophil activation and endothelial damage. This study investigates whether neutrophil-induced endothelial damage involves apoptosis and whether it can be prevented by neutralization of neutrophil secretory products. Endothelial cells from human umbilical veins were coincubated with neutrophils from healthy donors and with sera from eight patients with P. falciparum malaria, three patients with P. vivax malaria, and three healthy controls. Endothelial apoptosis was demonstrated by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and annexin V staining. The rate of apoptosis of cells was markedly increased after incubation with patient serum compared to that with control serum. Apoptosis was most pronounced after incubation with sera from two patients with fatal cases of P. falciparum malaria, followed by sera of survivors with severe P. falciparum malaria and, finally, by sera of patients with mild P. falciparum and P. vivax malaria. Ascorbic acid, tocopherol, and ulinastatin reduced the apoptosis rate, but gabexate mesilate and pentoxifylline did not. Furthermore, in fatal P. falciparum malaria, apoptotic endothelial cells were identified in renal and pulmonary tissue by TUNEL staining. These findings show that apoptosis caused by neutrophil secretory products plays a major role in endothelial cell damage in malaria. The antioxidants ascorbic acid and tocopherol and the protease inhibitor ulinastatin can reduce malaria-associated endothelial apoptosis in vitro.

  12. Statins, Bcl-2, and apoptosis: cell death or cell protection?

    PubMed

    Wood, W Gibson; Igbavboa, Urule; Muller, Walter E; Eckert, Gunter P

    2013-10-01

    Statins have proven their effectiveness in the treatment of cardiovascular disease. This class of drugs has also attracted attention as a potential treatment for dissimilar diseases such as certain types of cancers and neurodegenerative diseases. What appears to be a contradiction is that, in the case of cancer, it has been suggested that statins increase apoptosis and alter levels of Bcl-2 family members (e.g., reduce Bcl-2 and increase Bax), whereas studies mainly using noncancerous cells report opposite effects. This review examined studies reporting on the effects of statins on Bcl-2 family members, apoptosis, cell death, and cell protection. Much, but not all, of the evidence supporting the pro-apoptotic effects of statins is based on data in cancer cell lines and the use of relatively high drug concentrations. Studies indicating an anti-apoptotic effect of statins are fewer in number and generally used much lower drug concentrations and normal cells. Those conclusions are not definitive, and certainly, there is a need for additional research to determine if statin repositioning is justified for noncardiovascular diseases.

  13. Hydrogen peroxide induces apoptosis in cerebral vascular smooth muscle cells: possible relation to neurodegenerative diseases and strokes.

    PubMed

    Li, Jianfeng; Li, Wenyan; Su, Jialin; Liu, Weimin; Altura, Bella T; Altura, Burton M

    2003-12-15

    Recently, reactive oxygen species (ROS) have been suggested as important mediators of brain damage in a number of disease states, including traumatic brain injury, neurodegenerative diseases and strokes. Apoptosis has been suggested to play an important role in neurodegenerative diseases, traumatic brain injury and strokes. The aim of this study was to determine whether or not cerebral vascular smooth muscle cells (CVSMCs) undergo apoptosis following treatment with hydrogen peroxide (H2O2). Herein, we demonstrate, for the first time, that H2O2 can induce apoptosis in a concentration-dependent manner in primary cultured CVSMCs, as measured by several morphological and biochemical criteria. H2O2-induced apoptosis may be initiated by stimulating Ca2+-dependent endonuclease activity. The present new data suggest that apoptosis in cerebral VSMCs, induced by ROS, such as H2O2, could play important roles in neruodegenerative processes, traumatic brain injury and strokes.

  14. Inhibition of apoptosis in human immunodeficiency virus-infected cells enhances virus production and facilitates persistent infection.

    PubMed Central

    Antoni, B A; Sabbatini, P; Rabson, A B; White, E

    1995-01-01

    Apoptosis is one of several mechanisms by which human immunodeficiency virus type 1 (HIV-1) exerts its cytopathic effects. CD4+ Jurkat T-cell lines overexpressing the adenovirus E1B 19K protein, a potent inhibitor of apoptosis, were used to examine the consequences of inhibition of apoptosis during acute and chronic HIV-1 infections. E1B 19K protein expression inhibited HIV-induced apoptosis, enhanced virus production, and established high levels of persistent viral infection. One E1B 19K-expressing line appeared to undergo HIV-induced death via a nonapoptotic mechanism, illustrating that HIV infection results in lymphocyte depletion through multiple pathways. Increased virus production associated with sustained cell viability suggests that therapeutic approaches involving inhibition of HIV-induced programmed cell death may be problematic. PMID:7884884

  15. Dendroaspis natriuretic peptide induces the apoptosis of cardiac muscle cells.

    PubMed

    Ha, Ki-Chan; Chae, Han-Jung; Piao, Cheng-Shi; Kim, Suhn-Hee; Kim, Hyung-Ryong; Chae, Soo-Wan

    2005-01-01

    Early heart failure is characterized by elevated plasma Dendroaspis natriuretic peptide-like immunoreactivity (DNP-LI). However, the direct effects of DNP on heart or the heart-associated cell system are not well known. Therefore, we investigated whether DNP induces the apoptosis of H9c2 cardiac muscle cells. H9c2 cardiac muscle cells and rat neonatal cardiomyocytes were treated with various concentrations of DNP. Cell viability and nuclear morphology change were determined by trypan blue staining and Hoechst 33258 staining, respectively. Caspase-3-like activity was measured using specific fluorogenic substrates. Pro-and antiapoptotic proteins were assayed by Western blotting. DNP induced the apoptosis of H9c2 cardiac muscle cells in a dose-dependent manner. Maximum effects occurred at 100 nM concentration of DNP, with a 7-8-fold increase in apoptotic cells, to reach a maximum apoptotic index of 17%. We also identified that H9c2 cardiac muscle cells expressed Natriuretic peptide reactor -A and -B, which respond to DNP to generate cGMP. The treatment with DNP also markedly reduced levels of Bcl-2, inhibitor of apoptosis protein-1, and inhibitor of apoptosis protein-2 and increased the level of Bax and cytochrome c release into cytoplasm and subsequent caspase-3 activation, which co-occurred with increased apoptosis. DNP-induced apoptosis was mediated by cyclic GMP, and this effect was mimicked by dibutylyl-cGMP (30 microM), a membrane permeable analog of cGMP. Furthermore, DNP-induced apoptosis was observed in rat neonatal cardiomyocytes. These results suggest that DNP induces the apoptosis of H9c2 cardiac muscle cells and of cardiomyocytes via cGMP and demonstrate that the operative mechanism includes the regulation of Bcl-2 family proteins.

  16. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins

    PubMed Central

    Xu, Xiao-Man; Zhang, Man-Li; Zhang, Yi; Zhao, Li

    2016-01-01

    In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC. PMID:27895730

  17. Apoptosis (programmed cell death) as an indicator of xenobiotic toxicity

    SciTech Connect

    Bond, G.P.

    1989-01-01

    Xenobiotics alter the frequency and pattern of apoptosis (programmed cell death). Preliminary studies identified the mouse liver, with normally low levels of apoptosis, as a preferable test system to the chicken embryo limb, with normally high levels of apoptosis. The major purposes of these investigations, using the apoptogen and necrogen 1,1-dichloroethylene (DCE), were to determine if increases in apoptosis, (1) could be quantified as a direct result of treatment, (2) were dose- and time-dependent, (3) were independent of necrosis, (4) were associated with mitosis in the control of cell numbers and (5) were limited to specific areas of the liver. To these ends, food-deprived female, CF-1 mice were administered DCE ip under varying experimental conditions. Increased apoptosis occurred in a dose- and time-dependent manner after treatment with 12.5, 40, and 125 mg/kg for 0.5, 1, 2, 4 and 8 hr. Peak effects were observed at 4 hr. Apoptosis occurred only in the midzonal/pericentral areas of the liver. At 12.5 mg/kg, there were no effects on biochemical (alanine transaminase) and morphological indices of necrosis, establishing apoptosis as a separate phenomenon from necrosis. Increased {sup 3}H-thymidine incorporation (DNA synthesis), mitosis and the percentage of octaploid hepatocytes occurred from 24-48 hr after treatment with the apoptotic but non-necrotic dose of 40 mg/kg. Apoptosis only occurred in the midzonal/pericentral areas of the liver after multiple doses with DCE, indicating the zonal selectivity of the response. In conclusion, apoptosis, a normally occurring homeostatic process associated with mitosis in the control of cell numbers, is affected by selected xenobiotics in a dose-dependent manner. Xenobiotic-induced apoptosis in the liver occurs at low doses of xenobiotics which cause no other effects on tissue structure or function.

  18. [Hair cell apoptosis and hearing loss of perilymphatic fistula].

    PubMed

    Chen, J; Lu, Y; Ren, J; Chen, Z; Xie, D

    1999-01-01

    To investigate the effect of hair cell apoptosis on hearing loss of perilymphatic fistula (PLF) in guinea pig. Twenty-five guinea pigs with light microscope and TdT mediated biotin dUTP nick-end labelling (TUNEL) techniques. The ECochG and ABR were measured and the data analyzed with statistics. 1. The apoptosis of hair cell was not revealed in 0-hour-group and 2-hour-group of PLF. Following the time of PLF was longer, the apoptosis of hair cell was more increased. The apoptosis of hair cell was demonsted in 1-day-group (1 case, 17%), 2-day-group (4 case, 67%) and 7-day-group (4 case, 80%); 2. The amplication of AP was reduced after operation induced PLF. The CAP of experimental ear was significantly higher than that of control ear (P < 0.01) in 1-day-group, 2-day-group and 7-day-group. 1. Apoptosis of hair cell was appeared in PLF; 2. The apoptosis of hair cell may be one of morphological evidence in hearing loss of PLF.

  19. Peroxynitrite induces apoptosis in rat aortic smooth muscle cells: possible relation to vascular diseases.

    PubMed

    Li, Jianfeng; Li, Wenyan; Su, Jialin; Liu, Weimin; Altura, Bella T; Altura, Burton M

    2004-03-01

    An emerging body of evidence is accumulating to suggest that in vivo formation of free radicals in the vasculature, such as peroxynitrite (ONOO-), and programmed cell death (i.e., apoptosis) play important roles in vascular diseases such as atherosclerosis, hypertension, and restenosis. The present study was designed to determine whether primary rat aortic smooth muscle cells (SMCs) undergo apoptosis following treatment with ONOO-. Direct exposure of primary rat aortic SMCs to ONOO--induced apoptosis in a concentration-dependent manner, as confirmed by means of quantitative fluorescence staining and TUNEL assays. ONOO--induced apoptosis in rat aortic SMCs appears to involve activation of Ca2+-dependent endonucleases. Although the precise mechanisms by which peroxynitrite induces apoptosis in rat aortic SMCs need to be further investigated, the present, preliminary findings could be used to suggest that ONOO- formation in the vasculature may play roles in the processes of vascular diseases, such as atherosclerosis, hypertension, and restenosis, via adverse actions on blood vessels.

  20. Cytoprotective effect of lithium against spontaneous and induced apoptosis of lymphoid cell line MOLT-4.

    PubMed

    Pietruczuk, K; Jóźwik, A; Ruckemann-Dziurdzińska, K; Bryl, E; Witkowski, J M

    2009-01-01

    Lithium (Li) is still useful in the treatment of bipolar disorder. Cellular mechanisms of Li action are not fully understood and include some cytoprotective properties. Data concerning Li effect on the apoptotic mechanisms in cells other than neurons are fragmentary and contradictory. We have investigated anti-apoptotic activity of Li in a lymphoid derived MOLT-4 cell line. Spontaneous and camptothecin-induced apoptosis was analyzed in cells treated with 0-20 mM Li carbonate. Early apoptosis was identified as significant mitochondrial depolarization (JC-1 staining). Later stages of apoptosis were estimated with annexin V binding and by the proportion of cells containing sub-G1 amounts of DNA (PI staining). We have observed a biphasic effect of Li on the proportion of spontaneously apoptotic cells;namely, low (therapeutic) concentrations of Li had a significant effect stabilizing the mitochondrial membrane polarization, while 10 and 20mM Li increased apoptosis. The latter could be seen both as mitochondrial depolarization as well as an increased proportion of sub-G1 cells, accompanied by reduced proportion of S phase cells. Li at concentrations above 2 mM had a significant, dose-dependent, anti-apoptotic effect on the cells undergoing camptothecin induced apoptosis. In conclusion, demonstrated cytoprotective effect of Li is at least partially related to stabilization of mitochondrial membrane potential and to the reduction of DNA damaging effects in proliferating cells; both may form part of the mechanism through which Li is useful in therapy of bipolar disorder, but may have more general consequences.

  1. Cell-Extrinsic TNF Collaborates with TRIF Signaling To Promote Yersinia-Induced Apoptosis.

    PubMed

    Peterson, Lance W; Philip, Naomi H; Dillon, Christopher P; Bertin, John; Gough, Peter J; Green, Douglas R; Brodsky, Igor E

    2016-11-15

    Innate immune responses that are crucial for control of infection are often targeted by microbial pathogens. Blockade of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ inhibits cytokine production by innate immune cells but also triggers cell death. This cell death requires RIPK1 kinase activity and caspase-8, which are engaged by TLR4 and the adaptor protein TRIF. Nevertheless, TLR4- and TRIF-deficient cells undergo significant apoptosis, implicating TLR4/TRIF-independent pathways in the death of Yersinia-infected cells. In this article, we report a key role for TNF/TNFR1 in Yersinia-induced cell death of murine macrophages, which occurs despite the blockade of NF-κB and MAPK signaling imposed by Yersinia on infected cells. Intriguingly, direct analysis of YopJ injection revealed a heterogeneous population of injection-high and injection-low cells, and demonstrated that TNF expression came from the injection-low population. Moreover, TNF production by this subpopulation was necessary for maximal apoptosis in the population of highly injected cells, and TNFR-deficient mice displayed enhanced susceptibility to Yersinia infection. These data demonstrate an important role for collaboration between TNF and pattern recognition receptor signals in promoting maximal apoptosis during bacterial infection, and demonstrate that heterogeneity in virulence factor injection and cellular responses play an important role in promoting anti-Yersinia immune defense. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Apoptosis: understanding programmed cell death for the CRNA.

    PubMed

    Bennetts, Paul S; Pierce, Janet D

    2010-06-01

    Apoptosis, or programmed cell death, is a physiologic mechanism employed by most multicellular organisms to maintain homeostasis of body tissues. In balance with the production of new cells by mitosis, apoptosis provides for the orderly destruction and removal of cells that are no longer needed by the organism. Apoptosis occurs by complex pathways involving multiple biochemical signals and processes. Dysfunctional apoptotic mechanisms are the pathologic basis for many human diseases, including common disorders of the heart, lungs, brain, and endocrine systems. Researchers have demonstrated in animal models that neurodegenerative changes after the administration of anesthetic drugs are related to apoptosis. Anesthesia drugs have been found to induce apoptosis, perhaps through the production of reactive oxygen species. Propofol is a drug used in anesthesia that has unique antioxidant qualities that may be beneficial. The purpose of this article is to review, for nurse anesthesia providers, current information about the process of apoptosis, the role of apoptosis in comorbid diseases, and the implications of the effects of anesthesia drugs on normal apoptotic mechanisms that need to be evaluated as potential sources of risk or benefit to surgical patients.

  3. Inhibition of host cell apoptosis by Eimeria bovis sporozoites.

    PubMed

    Lang, Mirjam; Kann, Michael; Zahner, Horst; Taubert, Anja; Hermosilla, Carlos

    2009-03-09

    Sophisticated evasion strategies of obligate intracellular parasites, in particular prevention of host cell apoptosis, are necessary to ensure successful replication. To study the ability of Eimeria bovis in this regard, in vitro experiments were performed applying bovine foetal gastrointestinal cells (BFGC), bovine umbilical vein endothelial cells (BUVEC) and African green monkey kidney cells (VERO) as host cells. BUVEC and BFGC allow maturation of sporozoites to macromeronts, in VERO cells sporozoites survive for weeks without showing further development. In highly infected BUVEC monolayers, infected cells survived until merozoite release whereas uninfected cells underwent apoptosis. Light microscopy and TUNEL assays performed 3-10 days p.i. showed that, within infected BFGC and VERO cell monolayers, uninfected cells underwent programmed cell death after application of various inducers of apoptosis, whereas infected cells survived. Incidentally, the anti-apoptotic efficacies in infected cells were independent of the drugs and the host cell type. We could not demonstrate significant differences between infected and uninfected cells after colchicin treatment in terms of translation of phosphatidylserines to the host cell surface, caspase 3 activity and cytochrome c release, probably since obtainable infection rates were too low. However, we could show by laser scanning confocal microscopy on single cell levels that the expression of the anti-apoptotic factors cellular Flice inhibitory protein (c-FLIP) and cellular inhibition of apoptosis protein 1 (c-IAP1) were enhanced in E. bovis infected cells after application of colchicin, in the latter case also in non-infected cells directly neighbouring infected ones. Our data show that E. bovis protects its host cell from apoptosis by increasing expression of c-IAP1 and c-FLIP.

  4. γ-Rays-generated ROS induce apoptosis via mitochondrial and cell cycle alteration in smooth muscle cells.

    PubMed

    Claro, Sandra; Oshiro, Maria Etsuko Miyamoto; Mortara, Renato Arruda; Paredes-Gamero, Edgar Julian; Pereira, Gustavo José Silva; Smaili, Soraya Soubhi; Ferreira, Alice Teixeira

    2014-10-01

    γ-rays (IR) cause an increase in intracellular calcium [Ca(2+)], alters contractility and triggers apoptosis via the activation of protein kinase C in intestinal guinea pig smooth muscle cells. The present study investigated the role of the mitochondria in these processes and characterized proteins involved in IR-induced apoptosis. Intestinal smooth muscle cells were exposed to 10-50 Gy from a (60)Co γ-source. Reactive oxygen species (ROS) levels were measured by colourimetry with a fluorescente probe. Protein expression was analyzed by immunoblotting and immunofluorescence. Apoptosis was inhibited by glutathione, possible by inhibiting the generation or scavenging ROS. Apoptosis was mediated by the mitochondria releasing cytochrome c leading to caspase 3 activation. IR increased the expression of the cyclins A, B2 and E and led to unbalanced cellular growth in an absorption dose-dependent manner. However, radiation did not induce alterations in the mitochondrial ultrastructure or in transmembrane electric potential. In contrast, IR increased the nuclear expression of cytoplasmic proteins and cyclins A and E. Smooth muscle cells subjected to IR undergo mitochondrial-mediated apoptosis that involves oncoproteins activation and preserves mitochondrial structure. IR also cause alterations in the expression and localization of both pro- and anti-apoptotic proteins.

  5. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells.

    PubMed

    Shuid, Ahmad Naqib; Safi, Nikoo; Haghani, Amin; Mehrbod, Parvaneh; Haron, Mohd Syamsul Reza; Tan, Sheau Wei; Omar, Abdul Rahman

    2015-11-01

    Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p < 0.05) followed by late apoptosis at 12 hpi (p < 0.05) and necrosis from 24 hpi (p < 0.05). Then, next generation sequencing was performed on 9 hpi and control uninfected cells by Illumina analyzer. An aggregate of 4546 genes (2229 down-regulated and 2317 up-regulated) from 17 cellular process, 11 molecular functions and 130 possible biological pathways were affected by FIPV. 131 genes from apoptosis cluster (80 down-regulated and 51 up-regulated) along with increase of apoptosis, p53, p38 MAPK, VEGF and chemokines/cytokines signaling pathways were probably involved in apoptosis process. Six of the de-regulated genes expression (RASSF1, BATF2, MAGEB16, PDCD5, TNFα and TRAF2) and TNFα protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.

  6. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines.

    PubMed

    Montazeri, Maryam; Sadeghizadeh, Majid; Pilehvar-Soltanahmadi, Yones; Zarghami, Faraz; Khodi, Samaneh; Mohaghegh, Mina; Sadeghzadeh, Hadi; Zarghami, Nosratollah

    2016-07-25

    The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment.

  7. Autophagy Regulates Colistin-Induced Apoptosis in PC-12 Cells

    PubMed Central

    Zhang, Ling; Zhao, Yonghao; Ding, Wenjian; Jiang, Guozheng; Lu, Ziyin; Li, Li; Wang, Jinli

    2015-01-01

    Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons. PMID:25645826

  8. Phellinus Linteus Extract Sensitizes Advanced Prostate Cancer Cells to Apoptosis in Athymic Nude Mice

    PubMed Central

    Tsuji, Takanori; Du, Wei; Nishioka, Takashi; Chen, Lihua; Yamamoto, Daisuke; Chen, Chang Yan

    2010-01-01

    Phellinus linteus (PL) mushroom possesses anti-tumor property. We previously reported that the treatment with PL caused cultured human prostate cancer cells to undergo apoptosis. To further studying the mechanisms of PL-mediated apoptosis, we performed xenograft assay, together with in vitro assays, to evaluate the effect of PL on the genesis and progression of the tumors formed from the inoculation of prostate cancer PC3 or DU145 cells. After the inoculation, nude mice were injected with PL every two days for 12 days. Although PL treatment did not prevent the formation of the inoculated tumors, the growth rate of the tumors after PL treatment was dramatically attenuated. We then tested the effect of PL on the tumors 12 days after the inoculation. After inoculated tumors reached a certain size, PL was administrated to the mice by subcutaneous injection. The histochemistry or immunochemistry analysis showed that apoptosis occurred with the activation of caspase 3 in the tumors formed by inoculating prostate cancer DU145 or PC3 cells. The data was in a good agreement with that from cultured cells. Thus, our in vivo study suggests that PL not only is able to attenuate tumor growth, but also to cause tumor regression by inducing apoptosis. PMID:20360989

  9. Phellinus linteus extract sensitizes advanced prostate cancer cells to apoptosis in athymic nude mice.

    PubMed

    Tsuji, Takanori; Du, Wei; Nishioka, Takashi; Chen, Lihua; Yamamoto, Daisuke; Chen, Chang Yan

    2010-03-31

    Phellinus linteus (PL) mushroom possesses anti-tumor property. We previously reported that the treatment with PL caused cultured human prostate cancer cells to undergo apoptosis. To further studying the mechanisms of PL-mediated apoptosis, we performed xenograft assay, together with in vitro assays, to evaluate the effect of PL on the genesis and progression of the tumors formed from the inoculation of prostate cancer PC3 or DU145 cells. After the inoculation, nude mice were injected with PL every two days for 12 days. Although PL treatment did not prevent the formation of the inoculated tumors, the growth rate of the tumors after PL treatment was dramatically attenuated. We then tested the effect of PL on the tumors 12 days after the inoculation. After inoculated tumors reached a certain size, PL was administrated to the mice by subcutaneous injection. The histochemistry or immunochemistry analysis showed that apoptosis occurred with the activation of caspase 3 in the tumors formed by inoculating prostate cancer DU145 or PC3 cells. The data was in a good agreement with that from cultured cells. Thus, our in vivo study suggests that PL not only is able to attenuate tumor growth, but also to cause tumor regression by inducing apoptosis.

  10. Agonist-mediated activation of STING induces apoptosis in malignant B cells

    PubMed Central

    Tang, Chih-Hang Anthony; Zundell, Joseph A.; Ranatunga, Sujeewa; Lin, Cindy; Nefedova, Yulia; Del Valle, Juan R.; Hu, Chih-Chi Andrew

    2016-01-01

    Endoplasmic reticulum (ER) stress responses through the IRE-1/XBP-1 pathway are required for the function of STING (TMEM173), an ER-resident transmembrane protein critical for cytoplasmic DNA sensing, interferon production and cancer control. Here we show that the IRE-1/XBP-1 pathway functions downstream of STING and that STING agonists selectively trigger mitochondria-mediated apoptosis in normal and malignant B cells. Upon stimulation, STING was degraded less efficiently in B cells, implying that prolonged activation of STING can lead to apoptosis. Transient activation of the IRE-1/XBP-1 pathway partially protected agonist-stimulated malignant B cells from undergoing apoptosis. In Eμ-TCL1 mice with chronic lymphocytic leukemia, injection of the STING agonist 3′3′-cGAMP induced apoptosis and tumor regression. Similarly efficacious effects were elicited by 3′3′-cGAMP injection in syngeneic or immunodeficient mice grafted with multiple myeloma. Thus, in addition to their established ability to boost anti-tumoral immune responses, STING agonists can also directly eradicate malignant B cells. PMID:26951929

  11. Evaluation of apoptosis induction in human peripheral blood mononuclear cells and synovial cells in patients with rheumatoid arthritis.

    PubMed

    Demian, Soheir R; Abo-Shousha, Seham A; Sultan, Hussein E; Zarka, Wael El

    2005-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory destructive disease involving the joint and characterized by T-lymphocyte accumulation within the synovial compartment. It is dominated by the presence of macrophages, plasma cells and synovial fibroblasts which are the main pathogenic factors leading to the destruction of bone and cartilage. The survival of these cells may be promoted by inadequate apoptosis leading to synovial hyperplasia. So, the aim of the present study was to evaluate the apoptosis levels before and after induction of apoptosis using anti-Fas mAb, both in peripheral blood (PB) and synovial fluid (SF) infiltrating mononuclear cells (MCs) of patients with RA. CD4+ T cell subsets and cell survival assays were also done to investigate correlations between these parameters. The study was conducted on 15 patients with RA, 10 individual volunteers as a control group and 10 patients with osteoarthritis (OA) as a control group for SF evaluations (have defective Fas expression on their cells). Results of this work revealed that in vitro induction of apoptosis by anti-Fas mAb resulted in increase of: percent (%) reduction of cell viability in PBMCs and SFMCs, % reduction of CD4+ T cell subsets and apoptotic cell % in all studied groups than before induction. The increase in the three parameters is only significant in SF of RA group compared to PB while it is non significant in OA group due to the defective Fas expression on OA cells. Our results also showed a significant positive correlation between CD4+ T cell and viability percentages before induction of apoptosis in SF of RA and between apoptosis levels and CD4+ T cell percentage after induction of apoptosis in the SF of RA group. In conclusion, activated T cells infiltrating SF of RA patients have functional Fas antigen which enable them to undergo in vitro apoptosis using anti-Fas mAb. The cytotoxicity of which is more specific to local lesion such as SF of RA patients suggesting that local

  12. Glomerular cell proliferation and apoptosis in uninephrectomized spontaneously hypertensive rats.

    PubMed

    Rodríguez-López, A M; Flores, O; Arévalo, M A; López-Novoa, J M

    1998-12-01

    We studied renal function, glomerular cell proliferation and apoptosis for three months after uninephrectomy (UNX) in young, male, spontaneously hypertensive rats (SHR). Apoptosis was assessed by in situ dUTP biotin nick-end labeling method (TUNEL) and by propidium iodide staining. Proliferation rate was determined by immunohistochemistry to proliferating cell nuclear antigen (PCNA). Glomerular bcl-2 expression was assessed by Northern blot analysis. Our results indicate a parallel increase in proliferation and in apoptotic rates in glomerular cells from the first to the second month after UNX. In the third month after UNX, PCNA-labeled cell number continues increasing, whereas TUNEL-labeled cells did not increase. Bcl-2 expression was negative in the first and second months and increased in the third month. Glomerular size and proteinuria increased progressively along the three months of follow-up. Our observations demonstrate a different profile of cell proliferation and apoptosis during the genesis of early glomerular damage in UNX-SHR.

  13. Early detection of apoptosis by staining of acid-treated apoptotic cells with FITC-labeled lectin from Narcissus pseudonarcissus.

    PubMed

    Heyder, Petra; Gaipl, Udo S; Beyer, Thomas D; Voll, Reinhard E; Kern, Peter M; Stach, Christian; Kalden, Joachim R; Herrmann, Martin

    2003-10-01

    Exposure of anionic phospholipids and modified carbohydrates are main parts of the apoptotic death program. Cells undergoing apoptosis can be identified by various methods, detecting surface changes or modifications of their organelles, respectively. We describe a method for the detection of early apoptosis by staining of cells with fluorescein isothiocyanate (FITC)-labeled lectin from Narcissus pseudonarcissus (NPn). Apoptosis in cells or in cell lines was induced by various stimuli. To detect apoptosis the cells were stained with FITC-labeled lectin of NPn. After a short-term acid treatment they were analyzed by flow cytometry. The instability of the cytoplasmic membrane against acid and the binding of NPn were very early features of apoptotic cell death. The NPn lectin staining procedure detected apoptosis with high sensitivity. The staining was stable for at least 12 h. The method described in this study is suitable for the detection of the very early phases of apoptosis. The NPn lectin staining after short-term acid treatment can, therefore, be added to the list of reliable tools for the research of cell death. Copyright 2003 Wiley-Liss, Inc.

  14. p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis during simulated ischemia.

    PubMed

    Meldrum, K K; Meldrum, D R; Hile, K L; Yerkes, E B; Ayala, A; Cain, M P; Rink, R C; Casale, A J; Kaefer, M A

    2001-08-01

    Ischemia causes renal tubular cell loss through apoptosis; however, the mechanisms of this process remain unclear. Using the renal tubular epithelial cell line LLC-PK(1), we developed a model of simulated ischemia (SI) to investigate the role of p38 MAPK (mitogen-activated protein kinase) in renal cell tumor necrosis factor-alpha (TNF-alpha) mRNA production, protein bioactivity, and apoptosis. Results demonstrate that 60 min of SI induced maximal TNF-alpha mRNA production and bioactivity. Furthermore, 60 min of ischemia induced renal tubular cell apoptosis at all substrate replacement time points examined, with peak apoptotic cell death occurring after either 24 or 48 h. p38 MAPK inhibition abolished TNF-alpha mRNA production and TNF-alpha bioactivity, and both p38 MAPK inhibition and TNF-alpha neutralization (anti-porcine TNF-alpha antibody) prevented apoptosis after 60 min of SI. These results constitute the initial demonstration that 1) renal tubular cells produce TNF-alpha mRNA and biologically active TNF-alpha and undergo apoptosis in response to SI, and 2) p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis after SI.

  15. [5-Aza-2'-deoxycytidine enhances differentiation and apoptosis induced by phenylbutyrate in Kasumi-1 cells].

    PubMed

    Hao, Chang-lai; Tang, Ke-jing; Chen, Sen; Xing, Hai-yan; Wang, Min; Wang, Jian-xiang

    2005-03-01

    To investigate whether phenylbutyrate (PB) combined with 5-aza-2'-deoxycytidine (5-Aza-CdR)could inhibit transcription repression and induce t(8;21) acute myelogenous leukemia (AML) Kasumi-1 cells to differentiate and undergo apoptosis. Kasumi-1 cells were treated with PB and 5-Aza-CdR at different concentrations in suspension culture. Cellular proliferation was determined by the MTT assay, expression of myeloid-specific differentiation antigen and cell cycles were analyzed by flow cytometry. Cell apoptosis were assessed using AnnexinV/PI staining and flow cytometry. Treatment of Kasumi-1 cells with PB caused a dose-dependent inhibition of proliferation, with an IC(50) of 2.3 mmol/L. When combined with 5-Aza-CdR, PB resulted in a greater growth inhibition with an IC(50) of 1.95 mmol/L. Treatment of Kasumi-1 cells with PB resulted in cell cycle arrest at G(0)/G(1), while combined treatment with PB and 5-Aza-CdR led to cell cycle arrest at G(2)/M. Expression of myeloid cell differentiation antigens CD11b and CD13 induced by PB was enhanced when Kasumi-1 cells were pretreated with low dose of 5-Aza-CdR. High, but not low, concentrations of 5-Aza-CdR could enhance early apoptosis of Kasumi-1 cells induced by PB. Phenylbuty rate, when combined with 5-Aza-CdR, inhibits AML cell in vitro proliferation and increases apoptosis in a synergistic fashion.

  16. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor

    PubMed Central

    2014-01-01

    Background Nasopharyngeal carcinoma (NPC) has a high incidence rate in Southern China. Although there are conventional therapies, the side effects and toxicities are not always tolerable for patients. Recently, the tumoricidal effect of ginsenosides on different cancer cells has been studied. This study aims to investigate the anti-cancer effect of ginsenosides on NPC cells and their underlying mechanism. Methods The cytotoxicity of ginsenosides on NPC cell line HK-1 was measured by MTT assay. Apoptosis was detected by propidium iodide staining followed by flow cytometry. A xenograft tumor model was established by injecting nude mice with HK-1 cells. The activation of caspases and apoptosis-inducing factor (AIF) were evaluated by Western blot analysis. Nuclear translocation of AIF was also studied by immunofluorescence staining. Mitochondrial membrane potential was measured by JC-1 dye using flow cytometry. Results Four ginsenosides, 20 (S)-Rh2, compound K (CK), panaxadiol (PD) and protopanaxadiol (PPD), induced apoptotic cell death in HK-1 cells in a concentration-dependent manner. CK inhibited HK-1 xenograft tumor growth most extensively and depleted mitochondrial membrane potential depolarization and induced translocation of AIF from cytoplasm to nucleus in HK-1 cells. In addition, depletion of AIF by siRNA abolished CK-induced HK-1 cell death. Conclusion Ginsenoside CK-induced apoptosis of HK-1 cells was mediated by the mitochondrial pathway and could significantly inhibit tumor growth in vivo. PMID:24690317

  17. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  18. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  19. Silicon phthalocyanine Pc 4 and red light causes apoptosis in HIV-infected cells.

    PubMed

    Ben-Hur, E; Oetjen, J; Horowitz, B

    1997-03-01

    The silicon phthalocyanine HOSiPcOSi(CH3)2(CH2)3 N(CH3)2 (Pc 4), is being studied as a photosensitizer for virus inactivation in red blood cell concentrates (RBCC). The RBCC spiked with cell-free human immunodeficiency virus (HIV) or with HIV actively replicating in the T-lymphocytic cell line CEM can be successfully inactivated (> or = 6 log10) when exposed to 2 microM Pc 4 and 90 J/cm2 red light (600-800 nm). Inactivation of > or = 6 log10 inducible HIV in the latently infected promonocytic cell line U1 occurred at 22.5 J/cm2 (H. Margolis-Nunno et al., Transfusion 36, 743-750, 1996). In order to understand the reason for the increased susceptibility of U1 to photosensitized inactivation we looked for induction of apoptosis by photodynamic treatment (PDT). Agarose gel electrophoresis was used to observe the appearance of a characteristic 180-200 base pair DNA ladder, which can indicate apoptosis. Using this assay it is shown that Pc 4 treatment induced apoptosis in U1 cells in a light dose-dependent manner, starting 30 min after light exposure. Using the ApopTag Plus kit (which attaches a fluorescent label to the 3'-OH ends of the degraded DNA) and flow cytometry, the percentage of cells undergoing apoptosis was quantitated. At 10.5 J/cm2, 3 h after light exposure, about 92.5% of the cells were apoptotic. Under these conditions 99% of the cells eventually die. The CEM cells similarly treated underwent apoptosis at slower kinetics and required higher light doses. Other cell lines latently infected with HIV (ACH-2 and OM 10.1) were as sensitive as U1 to HIV inactivation by Pc 4-PDT (H. Margolis-Nunno et al., Transfusion 36, 743-750, 1996) and underwent apoptosis at a similar kinetic. These results suggest that the enhanced inactivation of HIV in latently infected cells compared to CEM cells by Pc 4-PDT may be due, at least in part, to apoptosis in the former.

  20. Rotation in clinostat results in apoptosis of osteoblastic ROS 17/2.8 cells.

    PubMed

    Sarkar, D; Nagaya, T; Koga, K; Kambe, F; Nomura, Y; Seo, H

    2000-07-01

    Clinostat is an effective, ground-based tool which can be used to verify data from space flight, and to test hypotheses and experimental conditions for eventual space flights. Rotation in clinostat appears to mimic the microgravity environment by nulling the gravitational vector by continuous averaging. In the present study, we exposed osteoblast-like ROS 17/2.8 cells to a vector-averaged gravity environment in a clinostat and found that the cells undergo apoptotic death during the first 24 hr of clino-rotation. We suggest that apoptosis might be one of the mechanisms for reduced bone formation as observed in actual space flights.

  1. Purkinje cell apoptosis in arabian horses with cerebellar abiotrophy.

    PubMed

    Blanco, A; Moyano, R; Vivo, J; Flores-Acuña, R; Molina, A; Blanco, C; Monterde, J G

    2006-08-01

    Purkinje cerebellar cells were studied in three Arabian horses aged between 6 and 8 months with clinical disorders in their movements, tremors and ataxia; the occurrence of apoptosis in this cell population was investigated by the (terminal deoxynucleotidyl transferase biotin-dUTP nick-end labelling (TUNEL) method. Both optical and electron microscopical images showed a scant number of Purkinje cells, most of them with morphological features of apoptosis such as condensation of the nucleus and cytoplasm as well as segregation and fragmentation of the nucleus into apoptotic bodies. The TUNEL technique revealed a substantial number (65%) of positive immunoreactive Purkinje cells.

  2. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells.

    PubMed

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-07-15

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.

  3. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    PubMed Central

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-01-01

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite. PMID:25221599

  4. Apoptosis of human seminoma cells upon disruption of their microenvironment.

    PubMed Central

    Olie, R. A.; Boersma, A. W.; Dekker, M. C.; Nooter, K.; Looijenga, L. H.; Oosterhuis, J. W.

    1996-01-01

    One of the main obstacles encountered when trying to culture human seminoma (SE) cells in vitro is massive degeneration of the tumour cells. We investigated whether dissociation of tumour tissue, to obtain single-cell suspensions for in vitro culture, results in the onset of apoptosis. Using morphological analysis and in situ end labelling, less than 4% of apoptotic tumour cells were detected in intact tissue from 11 out of 14 SEs. In these 11 tumours, apoptosis-specific DNA ladders, indicative of internucleosomal double-strand DNA cleavage, were not detected on electrophoresis gels. In contrast, three SEs with over 12% of apoptotic tumour cells in the intact tissue and all analysed (pure) SE cell suspensions, obtained after mechanical dissociation of intact tumour tissue, showed DNA ladders. Flow cytometric analysis of end labelled SE suspensions showed DNA breaks in up to 85% of the tumour cells. As indicated by cell morphology and DNA degradation, SE cells appear to rapidly enter the apoptotic pathway upon mechanical disruption of their microenvironment. No expression of p53 and of the apoptosis-inhibitor bcl-2 was detectable in intact SE tissue or cell suspensions. Our data suggest that abrogation of apoptosis might be crucial to succeed in culturing human SE cells in vitro. Images Figure 1 Figure 2 Figure 4 PMID:8624259

  5. Allicin disrupts the cell's electrochemical potential and induces apoptosis in yeast.

    PubMed

    Gruhlke, Martin C H; Portz, Daniela; Stitz, Michael; Anwar, Awais; Schneider, Thomas; Jacob, Claus; Schlaich, Nikolaus L; Slusarenko, Alan J

    2010-12-15

    The volatile substance allicin gives crushed garlic (Allium sativum) its characteristic odor and is a pro-oxidant that undergoes thiol-disulfide exchange reactions with -SH groups in proteins and glutathione. The antimicrobial activity of allicin is suspected to be due to the oxidative inactivation of essential thiol-containing enzymes. We investigated the hypothesis that at threshold inhibitory levels allicin can shunt yeast cells into apoptosis by altering their overall redox status. Yeast cells were treated either with chemically synthesized, pure allicin or with allicin in garlic juice. Allicin-dependent cell oxidation was demonstrated with a redox-sensitive GFP construct and the shift in cellular electrochemical potential (E(hc)) from less than -215 to -181mV was calculated using the Nernst equation after the glutathione/glutathione disulfide couple (2GSH/GSSG) in the cell was quantified. Caspase activation occurred after allicin treatment, and yeast expressing a human antiapoptotic Bcl-XL construct was rendered more resistant to allicin. Also, a yeast apoptosis-inducing factor deletion mutant was more resistant to allicin than wild-type cells. We conclude that allicin in garlic juice can activate apoptosis in yeast cells through its oxidizing properties and that this presents an alternative cell-killing mechanism to the previously proposed specific oxidative inactivation of essential enzymes.

  6. Modified arabinoxylan rice bran (MGN-3/Biobran) sensitizes human T cell leukemia cells to death receptor (CD95)-induced apoptosis.

    PubMed

    Ghoneum, Mamdooh; Gollapudi, Sastry

    2003-11-10

    MGN-3, an arabinoxylan extracted from rice bran that is treated enzymatically with an extract from Shiitaki mushrooms, is an effective biological response modifier that increases NK cell activity, and potentiates the activity of conventional chemotherapeutic agents. In this study, we investigated the effect of MGN-3 on death receptor-induced apoptosis in the human leukemic HUT 78 cell line. HUT 78 cells were pre-treated with MGN-3, and then were incubated with the agonistic antibody against death receptor (Fas, CD95). Apoptosis was determined by the propidium iodide technique using FACScan. Activation of caspase 3, caspase 8, and caspase 9 was determined by flow cytometry. Mitochondrial membrane potential was measured with DIOC(6) dye using FACScan. Expression of CD95 and Bcl-2 were measured by flow cytometry. In a dose-dependent manner, MGN-3 enhanced anti-CD95 antibody-induced apoptosis. Increased cell death was correlated with increased depolarization of mitochondrial membrane potential and increased activation of caspase 3, caspase 8, and caspase 9. MGN-3 treatment had no effect on the level of expression of CD95, but it caused down regulation of Bcl-2 expression. These results suggest that MGN-3 increases the susceptibility of cancer cells to undergo apoptosis mediated by death ligands, which may be relevant for anti-cancer activities.

  7. Ultrasound imaging of apoptosis: high-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo

    PubMed Central

    Czarnota, G J; Kolios, M C; Abraham, J; Portnoy, M; Ottensmeyer, F P; Hunt, J W; Sherar, M D

    1999-01-01

    A new non-invasive method for monitoring apoptosis has been developed using high frequency (40 MHz) ultrasound imaging. Conventional ultrasound backscatter imaging techniques were used to observe apoptosis occurring in response to anticancer agents in cells in vitro, in tissues ex vivo and in live animals. The mechanism behind this ultrasonic detection was identified experimentally to be the subcellular nuclear changes, condensation followed by fragmentation, that cells undergo during apoptosis. These changes dramatically increase the high frequency ultrasound scattering efficiency of apoptotic cells over normal cells (25- to 50-fold change in intensity). The result is that areas of tissue undergoing apoptosis become much brighter in comparison to surrounding viable tissues. The results provide a framework for the possibility of using high frequency ultrasound imaging in the future to non-invasively monitor the effects of chemotherapeutic agents and other anticancer treatments in experimental animal systems and in patients. © 1999 Cancer Research Campaign PMID:10507779

  8. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis

    PubMed Central

    Shen, Jianxiao; Wang, Ling; Jiang, Na; Mou, Shan; Zhang, Minfang; Gu, Leyi; Shao, Xinghua; Wang, Qin; Qi, Chaojun; Li, Shu; Wang, Wanpeng; Che, Xiajing; Ni, Zhaohui

    2016-01-01

    Iodinated contrast media serves as a direct causative factor of acute kidney injury (AKI) and is involved in the progression of cellular dysfunction and apoptosis. Emerging evidence indicates that NLRP3 inflammasome triggers inflammation, apoptosis and tissue injury during AKI. Nevertheless, the underlying renoprotection mechanism of NLRP3 inflammasome against contrast-induced AKI (CI-AKI) was still uncertain. This study investigated the role of NLRP3 inflammasome in CI-AKI both in vitro and in vivo. In HK-2 cells and unilateral nephrectomy model, NLRP3 and NLRP3 inflammasome member ASC were significantly augmented with the treatment of contrast media. Moreover, genetic disruption of NLRP3 notably reversed contrast-induced expression of apoptosis related proteins and secretion of proinflammatory factors, similarly to the effects of ASC deletion. Consistent with above results, absence of NLRP3 in mice undergoing unilateral nephrectomy also protected against contrast media-induced renal cells phenotypic alteration and cell apoptosis via modulating expression level of apoptotic proteins. Collectively, we demonstrated that NLRP3 inflammasome mediated CI-AKI through modulating the apoptotic pathway, which provided a potential therapeutic target for the treatment of contrast media induced acute kidney injury. PMID:27721494

  9. Alpha1-antitrypsin protects beta-cells from apoptosis.

    PubMed

    Zhang, Bin; Lu, Yuanqing; Campbell-Thompson, Martha; Spencer, Terry; Wasserfall, Clive; Atkinson, Mark; Song, Sihong

    2007-05-01

    Beta-cell apoptosis appears to represent a key event in the pathogenesis of type 1 diabetes. Previous studies have demonstrated that administration of the serine proteinase inhibitor alpha1-antitrypsin (AAT) prevents type 1 diabetes development in NOD mice and prolongs islet allograft survival in rodents; yet the mechanisms underlying this therapeutic benefit remain largely unclear. Herein we describe novel findings indicating that AAT significantly reduces cytokine- and streptozotocin (STZ)-induced beta-cell apoptosis. Specifically, strong antiapoptotic activities for AAT (Prolastin, human) were observed when murine insulinoma cells (MIN6) were exposed to tumor necrosis factor-alpha. In a second model system involving STZ-induced beta-cell apoptosis, treatment of MIN6 cells with AAT similarly induced a significant increase in cellular viability and a reduction in apoptosis. Importantly, in both model systems, treatment with AAT completely abolished induced caspase-3 activity. In terms of its activities in vivo, treatment of C57BL/6 mice with AAT prevented STZ-induced diabetes and, in agreement with the in vitro analyses, supported the concept of a mechanism involving the disruption of beta-cell apoptosis. These results propose a novel biological function for this molecule and suggest it may represent an effective candidate for attempts seeking to prevent or reverse type 1 diabetes.

  10. Osteoblast cell death on methacrylate polymers involves apoptosis.

    PubMed

    Gough, J E; Downes, S

    2001-12-15

    The success of an implant depends on the implant-tissue interface. There are many causes of implant failure, one of which is tissue necrosis. The aim of this in vitro study was to determine whether cell death of primary human osteoblasts (implant site specific cells) occurred by apoptosis (a form of programmed cell death) on two methacrylate polymers. Cells were cultured on poly(ethyl methacrylate)/tetrahydrofurfuryl methacrylate and poly(methyl methacrylate in the form of 13-mm discs, in conditioned medium containing leachable monomer and in the presence of various concentrations of monomer itself in the culture medium. It was found that monomer and leached monomer caused apoptosis of human osteoblast cells in this system. Tetrahydrofurfuryl methacrylate monomer was found to be more toxic than currently used monomer methylmethacrylate. Preincubation of polymers in serum containing medium was found to increase the biocompatibility of the polymers. High levels of apoptosis occurred on polymer used directly after polymerization. Apoptosis levels were decreased after polymer was incubated at 60 degrees C overnight or for 3 days. Apoptosis therefore may occur in cells at the implant site in vivo.

  11. Exploiting poly(I:C) to induce cancer cell apoptosis.

    PubMed

    Bianchi, Francesca; Pretto, Samantha; Tagliabue, Elda; Balsari, Andrea; Sfondrini, Lucia

    2017-09-07

    TLR3 belong to the Toll-like receptors family, it is mainly expressed on immune cells where it senses pathogen-associated molecular patterns and initiates innate immune response. TLR3 agonist poly(I:C) was developed to mimic pathogens infection and boost immune system activation to promote anti-cancer therapy. Accordingly, TLR agonists were included in the National Cancer Institute list of immunotherapeutic agents with the highest potential to cure cancer. Besides well known effects on immune cells, poly(I:C) was also shown, in experimental models, to directly induce apoptosis in cancer cells expressing TLR3. This review presents the current knowledge on the mechanism of poly(I:C)-induced apoptosis in cancer cells. Experimental evidences on positive or negative regulators of TLR3-mediated apoptosis induced by poly(I:C) are reported and strategies are proposed to successfully promote this event in cancer cells. Cancer cells apoptosis is an additional arm offered by poly(I:C), besides activation of immune system, for the treatment of various type of cancer. A further dissection of TLR3 signaling would contribute to greater resolution of the critical steps that impede full exploitation of the poly(I:C)-induced apoptosis. Experimental evidences about negative regulator of poly(I:C)-induced apoptotic program should be considered in combinations with TLR3 agonists in clinical trials.

  12. Apoptotic cells subjected to cold/warming exposure disorganize apoptotic microtubule network and undergo secondary necrosis.

    PubMed

    Oropesa-Ávila, Manuel; Fernández-Vega, Alejandro; de la Mata, Mario; Garrido-Maraver, Juan; Cotán, David; Paz, Marina Villanueva; Pavón, Ana Delgado; Cordero, Mario D; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Lema, Rafael; Zaderenko, Ana Paula; Sánchez-Alcázar, José A

    2014-09-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.

  13. APOPTOSIS INDUCTION OF EPIFRIEDELINOL ON HUMAN CERVICAL CANCER CELL LINE.

    PubMed

    Yang, Jie; Fa, Jing; Li, Bingxing

    2017-01-01

    Present investigation evaluates the antitumor activity of epifriedelinol for the management of cervical cancer by inducing process of apoptosis. Human Cervical Cancer Cell Line, C33A and HeLa were selected for study and treated with epifriedelinol at a concentration of (50-1000 µg/ml). Cytotoxicity of epifriedelinol was estimated by MTT assay and induction of apoptosis was assessed by estimating the activity of caspase 3, 8 and 9 enzyme, apoptosis assay and translocation of cytochrome c. Moreover an expression of several proteins that plays role in the apoptosis process was estimated by western blot method. Result of the study suggested that treatment with epifriedelinol significantly decrease the viability count of cancerous cell in a dose perndent manner and also enhances the formation of oligonucleosome in both the cell lines. However activity of caspase enzymes and translocation of cytochrome c were enhanced after treatment with epifriedelinol. It was also observed that epifriedelinol treatment alters the ratio of pro-apoptotic to anti-apoptotic proteins and enhances the expressions of inhibitor of apoptosis proteins (IAP). Result of our study proves the anticancer activity of epifriedelinol in cervical cancer by inducing apoptosis as treatment with it enhances the production of oligonucleosomes, translocation of cytochrome c and activity caspase enzymes.

  14. A Translocated Bacterial Protein Protects Vascular Endothelial Cells from Apoptosis

    PubMed Central

    Schmid, Michael C; Scheidegger, Florine; Dehio, Michaela; Balmelle-Devaux, Nadège; Schulein, Ralf; Guye, Patrick; Chennakesava, Cuddapah S; Biedermann, Barbara; Dehio, Christoph

    2006-01-01

    The modulation of host cell apoptosis by bacterial pathogens is of critical importance for the outcome of the infection process. The capacity of Bartonella henselae and B. quintana to cause vascular tumor formation in immunocompromised patients is linked to the inhibition of vascular endothelial cell (EC) apoptosis. Here, we show that translocation of BepA, a type IV secretion (T4S) substrate, is necessary and sufficient to inhibit EC apoptosis. Ectopic expression in ECs allowed mapping of the anti-apoptotic activity of BepA to the Bep intracellular delivery domain, which, as part of the signal for T4S, is conserved in other T4S substrates. The anti-apoptotic activity appeared to be limited to BepA orthologs of B. henselae and B. quintana and correlated with (i) protein localization to the host cell plasma membrane, (ii) elevated levels of intracellular cyclic adenosine monophosphate (cAMP), and (iii) increased expression of cAMP-responsive genes. The pharmacological elevation of cAMP levels protected ECs from apoptosis, indicating that BepA mediates anti-apoptosis by heightening cAMP levels by a plasma membrane–associated mechanism. Finally, we demonstrate that BepA mediates protection of ECs against apoptosis triggered by cytotoxic T lymphocytes, suggesting a physiological context in which the anti-apoptotic activity of BepA contributes to tumor formation in the chronically infected vascular endothelium. PMID:17121462

  15. A rabbitpox virus serpin gene controls host range by inhibiting apoptosis in restrictive cells.

    PubMed Central

    Brooks, M A; Ali, A N; Turner, P C; Moyer, R W

    1995-01-01

    Poxviruses are unique among viruses in encoding members of the serine proteinase inhibitor (serpin) superfamily. Orthopoxviruses contain three serpins, designated SPI-1, SPI-2, and SPI-3. SPI-1 encodes a 40-kDa protein that is required for the replication of rabbitpox virus (RPV) in PK-15 or A549 cells in culture (A. N. Ali, P. C. Turner, M. A. Brooks, and R. W. Moyer, Virology 202:305-314, 1994). Examination of nonpermissive human A549 cells infected with an RPV mutant disrupted in the SPI-1 gene (RPV delta SPI-1) suggests there are no gross defects in protein or DNA synthesis. The proteolytic processing of late viral structural proteins, a feature of orthopoxvirus infections associated with the maturation of virus particles, also appears relatively normal. However, very few mature virus particles of any kind are produced compared with the level found in infections with wild-type RPV. Morphological examination of RPV delta SPI-1-infected A549 cells, together with an observed fragmentation of cellular DNA, suggests that the host range defect is associated with the onset of apoptosis. Apoptosis is seen only in RPV delta SPI-1 infection of nonpermissive (A549 or PK-15) cells and is absent in all wild-type RPV infections and RPV delta SPI-2 mutant infections examined to date. Although the SPI-1 gene is expressed early, before DNA replication, the triggering apoptotic event occurs late in the infection, as RPV delta SPI-1-infected A549 cells do not undergo apoptosis when infections are carried out in the presence of cytosine arabinoside. While the SPI-2 (crmA) gene, when transfected into cells, has been shown to inhibit apoptosis, our experiments provide the first indication that a poxvirus serpin protein can inhibit apoptosis during a poxvirus infection. PMID:7494278

  16. Delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis, by inducing DR5 and causing caspase-mediated HDAC3 cleavage

    PubMed Central

    Jeon, Hyelin; Sung, Gi-Jun; So, Youngsin; Kim, InKi; Son, JaeKyoung; Lee, Sang-wook; Yoon, Ho-Geun; Choi, Kyung-Chul

    2015-01-01

    TRAIL can induce apoptosis in some cancer cells and is an immune effector in the surveillance and elimination of developing tumors. Yes, some cancers are resistant to TRAIL. Delphinidin, a polyphenolic compound contained in brightly colored fruits and vegetables, has anti-inflammatory, anti-oxidant, and anti-tumorigenic activities. Here we showed that delphinidin sensitized TRAIL-resistant human prostate cancer cells to undergo apoptosis. Cells treated with delphinidin and TRAIL activated the extrinsic and intrinsic pathways of caspase activation. TRAIL-induced apoptosis in prostate cancer cells pretreated with delphinidin was dependent on death receptor 5 (DR5) and downstream cleavage of histone deacetylase 3 (HDAC3). In conclusion, delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis by inducing DR5, thus causing caspase-mediated HDAC3 cleavage. Our data reveal a potential way of chemoprevention of prostate cancer by enabling TRAIL-mediated apoptosis. PMID:25991668

  17. Isolates of the Enterobacter cloacae complex induce apoptosis of human intestinal epithelial cells.

    PubMed

    Krzymińska, Sylwia; Koczura, Ryszard; Mokracka, Joanna; Puton, Tomasz; Kaznowski, Adam

    2010-09-01

    Strains of the Enterobacter cloacae complex are becoming increasingly important human pathogen. The aim of the study was to identify, by sequencing the hsp60 gene, the species of clinical isolates phenotypically identified as E. cloacae and to examine them for virulence-associated properties: the ability of adhesion, invasion to HEp-2 cells and the induced apoptosis of infected epithelial cells. The majority of the strains were identified as Enterobacter hormaechei with E. hormaechei subsp. steigerwaltii being the most frequent subspecies. Other strains belonged to E. hormaechei subsp. oharae, E. cloacae cluster III, and E. cloacae cluster IV. The strains were examined for virulence-associated properties: the ability to adhesion and invasion to HEp-2 cells and the apoptosis induction of infected epithelial cells. All strains revealed adherence ability and most of them (71%) were invasive to epithelial cells. Analyses of cellular morphology and DNA fragmentation in the HEp-2 cells exhibited typical features of cells undergoing apoptosis. We observed morphological changes, including condensation of nuclear chromatin, formation of apoptotic bodies and blebbing of cell membrane. The lowest apoptotic index did not exceed 6%, whereas the highest reached 49% at 24h and 98% at 48 h after infection. Forty strains (73%) induced fragmentation of nuclear DNA and characteristic intranucleosomal pattern with the size of about 180-200 bp in DNA extracted from infected cells at 48 h after infection. The results indicated that the bacteria of the E. cloacae complex may adhere to and penetrate into epithelial cells and induce apoptosis, which could be an important mechanism contributing to the development diseases.

  18. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan).

    PubMed

    Abu Bakar, Mohd Fadzelly; Mohamad, Maryati; Rahmat, Asmah; Burr, Steven A; Fry, Jeffrey R

    2010-06-01

    An extract of Mangifera pajang kernel has been previously found to contain a high content of antioxidant phytochemicals. The present research was conducted to investigate the anticancer potential of this kernel extract. The results showed that the kernel crude extract induced cytotoxicity in MCF-7 (hormone-dependent breast cancer) cells and MDA-MB-231 (non-hormone dependent breast cancer) cells with IC50 values of 23 and 30.5 microg/ml, respectively. The kernel extract induced cell cycle arrest in MCF-7 cells at the sub-G1 (apoptosis) phase of the cell cycle in a time-dependent manner. For MDA-MB-231 cells, the kernel extract induced strong G2-M arrest in cell cycle progression at 24h, resulting in substantial sub-G1 (apoptosis) arrest after 48 and 72 h of incubation. Staining with Annexin V-FITC and propidium iodide revealed that this apoptosis occurred early in both cell types, 36 h for MCF-7 cells and 24 h for MDA-MB-231 cells, with 14.0% and 16.5% of the cells respectively undergoing apoptosis at these times. This apoptosis appeared to be dependent on caspase-2 and -3 in MCF-7 cells, and on caspase-2, -3 and -9 in MDA-MB-231 cells. These findings suggest that M. pajang kernel extract has potential as a potent cytotoxic agent against breast cancer cell lines.

  19. Cell deletion by apoptosis during regression of rat parotid sialadenosis.

    PubMed

    Chisholm, D M; Adi, M M; Ervine, I M; Ogden, G R

    1995-01-01

    Enlargement of the rat parotid salivary glands was induced by repeated administration of isoproterenol. Mean wet weights of the treated glands increased steadily to 240% of control values. Following withdrawal of the drug, quantitative histological techniques were used to investigate the balance between hypertrophy, hyperplasia and apoptosis. The volume occupied by acinar cells relative to the total gland volume together with cytoplasmic magnitude of nuclear area ratios as measures of hypertrophy increased during the early experimental period. Similarly, serous acinar cell mitotic counts increased, indicating that hyperplasia had occurred. Apoptosis was demonstrated at light microscopical level to be the main mechanism for cell deletion as the glands returned to normal size and weight. The results indicate that hypertrophy and hyperplasia of serous acinar cells contribute to isoproterenol-induced sialadenosis. The experimental animal model demonstrates that these proliferative changes are completed by 48 h and thereafter are balanced by apoptosis as the glands recover their normal size and weight.

  20. Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis.

    PubMed

    Huang, Xuan; Halicka, H Dorota; Traganos, Frank; Tanaka, Toshiki; Kurose, Akira; Darzynkiewicz, Zbigniew

    2005-08-01

    Reviewed are the methods aimed to detect DNA damage in individual cells, estimate its extent and relate it to cell cycle phase and induction of apoptosis. They include the assays that reveal DNA fragmentation during apoptosis, as well as DNA damage induced by genotoxic agents. DNA fragmentation that occurs in the course of apoptosis is detected by selective extraction of degraded DNA. DNA in chromatin of apoptotic cells shows also increased propensity to undergo denaturation. The most common assay of DNA fragmentation relies on labelling DNA strand breaks with fluorochrome-tagged deoxynucleotides. The induction of double-strand DNA breaks (DSBs) by genotoxic agents provides a signal for histone H2AX phosphorylation on Ser139; the phosphorylated H2AX is named gammaH2AX. Also, ATM-kinase is activated through its autophosphorylation on Ser1981. Immunocytochemical detection of gammaH2AX and/or ATM-Ser1981(P) are sensitive probes to reveal induction of DSBs. When used concurrently with analysis of cellular DNA content and caspase-3 activation, they allow one to correlate the extent of DNA damage with the cell cycle phase and with activation of the apoptotic pathway. The presented data reveal cell cycle phase-specific patterns of H2AX phosphorylation and ATM autophosphorylation in response to induction of DSBs by ionizing radiation, topoisomerase I and II inhibitors and carcinogens. Detection of DNA damage in tumour cells during radio- or chemotherapy may provide an early marker predictive of response to treatment.

  1. Honokiol-induced apoptosis and autophagy in glioblastoma multiforme cells.

    PubMed

    Chang, Ken-Hu; Yan, Ming-DE; Yao, Chih-Jung; Lin, Pei-Chun; Lai, Gi-Ming

    2013-11-01

    Honokiol, a hydroxylated biphenyl compound isolated from the Chinese herb Magnolia officinalis, has been reported to have anticancer activities in a variety of cancer cell lines. The present study aimed to evaluate the anticancer effect and possible molecular mechanisms of honokiol in a glioblastoma multiforme (GBM) cell line. The anticancer activities of honokiol were investigated in the DBTRG-05MG GBM cell line. The effect of honokiol on cell growth was determined using a sulforhodamine B assay. Flow cytometry and immunoblotting were used to measure honokiol-induced apoptosis (programmed cell death type I) and autophagy (programmed cell death type II). Honokiol was observed to reduce DBTRG-05MG cell viability in a dose-dependent manner. At a dose of 50 μM, honokiol markedly decreased the expression of Rb protein and led to the cleavage of poly(ADP-ribose) polymerase and Bcl-xL to promote apoptosis in the cancer cells. In addition, markers of autophagy, including Beclin-1 and LC3-II, were also significantly increased. In addition to apoptosis, honokiol was also able to induce autophagy in the DBTRG-05MG cells. The mechanisms that are responsible for the correlation between honokiol-induced apoptosis and autophagy require further investigation. Such efforts may provide a potential strategy for improving the clinical outcome of GBM treatment.

  2. Stimulation of CD40 in human bladder carcinoma cells inhibits anti-Fas/APO-1 (CD95)-induced apoptosis.

    PubMed

    Jakobson, E; Jönsson, G; Björck, P; Paulie, S

    1998-09-11

    CD40 and the CD95 (Fas/APO-1 antigen) are both members of the tumor necrosis factor receptor family. Whereas CD40 mediates a strong growth stimulatory signal in B cells, engagement of the CD95 receptor leads to growth inhibition and induction of apoptosis. As it has been reported that CD40 activation may rescue B cells from undergoing apoptosis, we were interested to see whether it had a similar effect in other cells expressing the CD40 receptor. We used epithelial tumor cells from the urinary bladder, a cell type that frequently expresses CD40 but for which no clear function of the molecule has been assigned. We found that the ligation of CD95 with the antibody anti-APO-1 induced apoptosis in most of the cell lines tested. Stimulation of CD40 with antibodies or a soluble construct of the CD40 ligand was shown to protect cells from apoptosis, as demonstrated by their ability to suppress the growth inhibition exerted by the anti-APO-1 antibody. Our results show that CD40 stimulation make cells less vulnerable to apoptosis induced via CD95 and suggest that CD40 expression on epithelial tumors may be associated with cell survival.

  3. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    PubMed

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  4. Can mesenchymal cells undergo collective cell migration? The case of the neural crest.

    PubMed

    Theveneau, Eric; Mayor, Roberto

    2011-01-01

    Cell migration is critical for proper development of the embryo and is also used by many cell types to perform their physiological function. For instance, cell migration is essential for immune cells to monitor the body and for epithelial cells to heal a wound whereas, in cancer cells, acquisition of migratory capabilities is a critical step towards malignancy. Migratory cells are often categorized into two groups: mesenchymal cells, produced by an epithelium-to-mesenchyme transition, that undergo solitary migration and epithelial-like cells which migrate collectively. However, on some occasions, mesenchymal cells may travel in large, dense groups and exhibit key features of collectively migrating cells such as coordination and cooperation. Here, using data published on Neural Crest cells, a highly invasive mesenchymal cell population that extensively migrate throughout the embryo, we explore the idea that other mesenchymal cells, including cancer cells, might be able to undergo collective cell migration under certain conditions and discuss how they could do so.

  5. Retinal endothelial cell apoptosis stimulates recruitment of endothelial progenitor cells.

    PubMed

    Bhatwadekar, Ashay D; Glenn, Josephine V; Curtis, Tim M; Grant, Maria B; Stitt, Alan W; Gardiner, Tom A

    2009-10-01

    Bone marrow-derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05-0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-alpha when compared to control medium; SDF-1 remained unchanged. The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment.

  6. A Minimal Model of Signaling Network Elucidates Cell-to-Cell Stochastic Variability in Apoptosis

    PubMed Central

    Raychaudhuri, Subhadip

    2010-01-01

    Background Signaling networks are designed to sense an environmental stimulus and adapt to it. We propose and study a minimal model of signaling network that can sense and respond to external stimuli of varying strength in an adaptive manner. The structure of this minimal network is derived based on some simple assumptions on its differential response to external stimuli. Methodology We employ stochastic differential equations and probability distributions obtained from stochastic simulations to characterize differential signaling response in our minimal network model. Gillespie's stochastic simulation algorithm (SSA) is used in this study. Conclusions/Significance We show that the proposed minimal signaling network displays two distinct types of response as the strength of the stimulus is decreased. The signaling network has a deterministic part that undergoes rapid activation by a strong stimulus in which case cell-to-cell fluctuations can be ignored. As the strength of the stimulus decreases, the stochastic part of the network begins dominating the signaling response where slow activation is observed with characteristic large cell-to-cell stochastic variability. Interestingly, this proposed stochastic signaling network can capture some of the essential signaling behaviors of a complex apoptotic cell death signaling network that has been studied through experiments and large-scale computer simulations. Thus we claim that the proposed signaling network is an appropriate minimal model of apoptosis signaling. Elucidating the fundamental design principles of complex cellular signaling pathways such as apoptosis signaling remains a challenging task. We demonstrate how our proposed minimal model can help elucidate the effect of a specific apoptotic inhibitor Bcl-2 on apoptotic signaling in a cell-type independent manner. We also discuss the implications of our study in elucidating the adaptive strategy of cell death signaling pathways. PMID:20711445

  7. A minimal model of signaling network elucidates cell-to-cell stochastic variability in apoptosis.

    PubMed

    Raychaudhuri, Subhadip

    2010-08-11

    Signaling networks are designed to sense an environmental stimulus and adapt to it. We propose and study a minimal model of signaling network that can sense and respond to external stimuli of varying strength in an adaptive manner. The structure of this minimal network is derived based on some simple assumptions on its differential response to external stimuli. We employ stochastic differential equations and probability distributions obtained from stochastic simulations to characterize differential signaling response in our minimal network model. Gillespie's stochastic simulation algorithm (SSA) is used in this study. We show that the proposed minimal signaling network displays two distinct types of response as the strength of the stimulus is decreased. The signaling network has a deterministic part that undergoes rapid activation by a strong stimulus in which case cell-to-cell fluctuations can be ignored. As the strength of the stimulus decreases, the stochastic part of the network begins dominating the signaling response where slow activation is observed with characteristic large cell-to-cell stochastic variability. Interestingly, this proposed stochastic signaling network can capture some of the essential signaling behaviors of a complex apoptotic cell death signaling network that has been studied through experiments and large-scale computer simulations. Thus we claim that the proposed signaling network is an appropriate minimal model of apoptosis signaling. Elucidating the fundamental design principles of complex cellular signaling pathways such as apoptosis signaling remains a challenging task. We demonstrate how our proposed minimal model can help elucidate the effect of a specific apoptotic inhibitor Bcl-2 on apoptotic signaling in a cell-type independent manner. We also discuss the implications of our study in elucidating the adaptive strategy of cell death signaling pathways.

  8. Taxol produced from endophytic fungi induces apoptosis in human breast, cervical and ovarian cancer cells.

    PubMed

    Wang, Xin; Wang, Chao; Sun, Yu-Ting; Sun, Chuan-Zhen; Zhang, Yue; Wang, Xiao-Hua; Zhao, Kai

    2015-01-01

    Currently, taxol is mainly extracted from the bark of yews; however, this method can not meet its increasing demand on the market because yews grow very slowly and are a rare and endangered species belonging to first- level conservation plants. Recently, increasing efforts have been made to develop alternative means of taxol production; microbe fermentation would be a very promising method to increase the production scale of taxol. To determine the activities of the taxol extracted from endophytic fungus N. sylviforme HDFS4-26 in inhibiting the growth and causing the apoptosis of cancer cells, on comparison with the taxol extracted from the bark of yew, we used cellular morphology, cell counting kit (CCK-8) assay, staining (HO33258/PI and Giemsa), DNA agarose gel electrophoresis and flow cytometry (FCM) analyses to determine the apoptosis status of breast cancer MCF-7 cells, cervical cancer HeLa cells and ovarian cancer HO8910 cells. Our results showed that the fungal taxol inhibited the growth of MCF-7, HeLa and HO8910 cells in a dose-and time-dependent manner. IC50 values of fungal taxol for HeLa, MCF-7 and HO8910 cells were 0.1-1.0 μg/ml, 0.001-0.01 μg/ml and 0.01- 0.1 μg/ml, respectively. The fungal taxol induced these tumor cells to undergo apoptosis with typical apoptotic characteristics, including morphological changes for chromatin condensation, chromatin crescent formation, nucleus fragmentation, apoptotic body formation and G2/M cell cycle arrest. The fungal taxol at the 0.01-1.0 μg/ ml had significant effects of inducing apoptosis between 24-48 h, which was the same as that of taxol extracted from yews. This study offers important information and a new resource for the production of an important anticancer drug by endofungus fermentation.

  9. Inhibition of heat-induced apoptosis in rat small intestine and IEC-6 cells through the AKT signaling pathway.

    PubMed

    Gao, Zhimin; Liu, Fenghua; Yin, Peng; Wan, Changrong; He, Shasha; Liu, Xiaoxi; Zhao, Hong; Liu, Tao; Xu, Jianqin; Guo, Shining

    2013-12-02

    As the world warms up, heat stress is becoming a major cause of economic loss in the livestock industry. Long-time exposure of animals to hyperthermia causes extensive cell apoptosis, which is harmful to them. AKT and AKT-related serine-threonine kinases are known to be involved in signaling cascades that regulate cell survival, but the mechanism remains elusive. In the present study, we demonstrate that phosphoinositide 3-kinase (PI3K) /AKT signal pathway provides protection against apoptosis induced by heat stress to ascertain the key point for treatment. Under heat stress, rats showed increased shedding of intestinal epithelial cells. These rats also had elevated levels of serum cortisol and improved expression of heat shock proteins (Hsp27, Hsp70 and Hsp90) in response to heat stress. Apoptosis analysis by TUNEL assay revealed a higher number of villi epithelial cells that were undergoing apoptosis in heat-treated rats than in the normal control. This is supported by gene expression analysis, which showed an increased ratio of Bax/Bcl-2 (p < 0.05), an important indicator of apoptosis. During heat-induced apoptosis, more AKTs were activated, showing increased phosphorylation. An increase of BAD phosphorylation, which is an inhibitory modification, ensued. In rat IEC-6 cell line, a significant higher level of AKT phosphorylation was observed at 2 h after heat exposure. This coincided with a marked reduction of apoptosis. Together, these results suggest that heat stress caused damages to rat jejunum and induced apoptosis to a greater degree. HSPs and pro-survival factors were involved in response to heat stress. Among them, AKT played a key role in inhibiting heat-induced apoptosis.

  10. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    PubMed

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection

  11. Telomere loss in somatic cells of Drosophila causes cell cycle arrest and apoptosis.

    PubMed Central

    Ahmad, K; Golic, K G

    1999-01-01

    Checkpoint mechanisms that respond to DNA damage in the mitotic cell cycle are necessary to maintain the fidelity of chromosome transmission. These mechanisms must be able to distinguish the normal telomeres of linear chromosomes from double-strand break damage. However, on several occasions, Drosophila chromosomes that lack their normal telomeric DNA have been recovered, raising the issue of whether Drosophila is able to distinguish telomeric termini from nontelomeric breaks. We used site-specific recombination on a dispensable chromosome to induce the formation of a dicentric chromosome and an acentric, telomere-bearing, chromosome fragment in somatic cells of Drosophila melanogaster. The acentric fragment is lost when cells divide and the dicentric breaks, transmitting a chromosome that has lost a telomere to each daughter cell. In the eye imaginal disc, cells with a newly broken chromosome initially experience mitotic arrest and then undergo apoptosis when cells are induced to divide as the eye differentiates. Therefore, Drosophila cells can detect and respond to a single broken chromosome. It follows that transmissible chromosomes lacking normal telomeric DNA nonetheless must possess functional telomeres. We conclude that Drosophila telomeres can be established and maintained by a mechanism that does not rely on the terminal DNA sequence. PMID:10049921

  12. Radiation-induced strain differences in mouse alveolar inflammatory cell apoptosis.

    PubMed

    O'Brien, Thomas J; Létuvé, Séverine; Haston, Christina K

    2005-01-01

    Whole-thorax irradiation results in the development of the diffuse inflammatory response alveolitis in C3H/HeJ (C3H) mice and a milder alveolitis with fibrosis in C57BL/6J (B6) mice. In this study, we investigate if this mouse strain difference in response to radiation is due to differences in lung inflammatory cell apoptosis. Mice of the C3H and B6 strains were given a radiation dose of 18 Gy to the thorax and the animals were sacrificed at 11 or 18 weeks following exposure or when they were moribund. Active caspase-3 staining was used to identify apoptotic cells in the alveolar space of histological lung sections from the mice. The apoptotic index of B6 mice was greater than that of C3H mice at 11 weeks postirradiation (17.8% of airspace cells vs. 7.8%, p = 0.028) and in mice sacrificed because of illness (27.3% vs. 14.4%, p = 0.036). No C3H mice survived to the later time point. The inflammatory cells undergoing apoptosis in the mouse lungs were morphologically consistent with alveolar macrophages. We conclude that a difference in inflammatory cell apoptosis may contribute to the disparate pulmonary radiation response of these mouse strains.

  13. Perfluorooctane sulfonate induces apoptosis in N9 microglial cell line.

    PubMed

    Zhang, Ling; Li, Yuan-yuan; Zeng, Huai-cai; Li, Miao; Wan, Yan-Jian; Schluesener, Hermann J; Zhang, Zhi-yuan; Xu, Shun-qing

    2011-03-01

    Perfluorooctane sulfonate (PFOS) is an environmental persistent acid found at low levels in human, wildlife, and environmental media samples. To study the apoptosis effects of PFOS on microglia, murine N9 cell line was used as a model in current research. The results showed that PFOS could reduce the cell viability significantly, and the cellular apoptosis induced by PFOS was closely accompanied with dissipation of mitochondria membrane potential, upregulation messenger RNAs (mRNAs) of p53, Bax, caspase 9, and caspase 3, and decreased expression of Bcl-2 mRNA. These results suggested that PFOS could disturb homeostasis of N9 cells, impact mitochondria, and affect gene expression of apoptotic regulators, all of which resulted in a start-up of apoptosis.

  14. Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis.

    PubMed Central

    Gottlieb, R A; Dosanjh, A

    1996-01-01

    We have shown elsewhere that acidification is an early event in apoptosis, preceding DNA cleavage. Cells expressing the most common mutation (delF508) of the cystic fibrosis transmembrane regulator (CFTR) exhibit a higher resting intracellular pH and are unable to secrete chloride and bicarbonate in response to cAMP. We hypothesized that defective acidification in cells expressing delF508 CFTR would interfere with the acidification that accompanies apoptosis, which in turn, would prevent endonuclease activation and cleavage of DNA. We therefore determined whether the function of the CFTR would affect the process of apoptosis in mouse mammary epithelial C127 cells stably transfected with the wild-type CFTR (C127/wt) or the delF508 mutation of the CFTR (C127/508). C127 cells possessed an acid endonuclease capable of DNA degradation at low pH. Sixteen hours after treatment with cycloheximide, C127/wt cells underwent cytoplasmic acidification. In contrast, C127/508 cells failed to demonstrate acidification. Furthermore, the C127/508 cells did not show nuclear condensation or DNA fragmentation detected by in situ nick-end labeling after treatment with cycloheximide or etoposide, in contrast to the characteristic features of apoptosis demonstrated by the C127/wt cells. Measurement of cell viability indicated a preservation of cell viability in C127/508 cells but not in C127/wt cells. That this resistance to the induction of apoptosis depended upon the loss of CFTR activity is shown by the finding that inhibition of the CFTR with diphenylamine carboxylate in C127/wt cells conferred similar protection. These findings suggest a role for the CFTR in acidification during the initiation of apoptosis in epithelial cells and imply that a failure to undergo programmed cell death could contribute to the pathogenesis of cystic fibrosis. Images Fig. 1 Fig. 2 Fig. 3 PMID:8622979

  15. Bisphenol A-induced apoptosis of cultured rat Sertoli cells.

    PubMed

    Iida, Hiroshi; Maehara, Kazue; Doiguchi, Masamichi; Mōri, Takayuki; Yamada, Fumio

    2003-01-01

    Bisphenol A (BPA) was examined for its effects on cultured Sertoli cells established from 18-day-old rat testes. We demonstrated that exposure of cultured Sertoli cells to BPA decreased the cell viability in a dose- and a time-dependent manner and that exposure to BPA brought about morphologic changes of the cells, such as membrane blebs, cell rounding, cytoskeletal collapse, and chromatin condensation or fragmentation, all of which conform to the morphologic criteria for apoptosis. Immunocytochemistry showed that active caspase-3, a major execution caspase, was expressed in round Sertoli cells positively labeled by the TUNEL method. Co-localization of active caspase-3 and aggregated actin fragments was also observed in the round Sertoli cells. Theses results suggest that BPA induces cell death of Sertoli cells by promoting apoptosis. Apoptosis-inducing cell death was observed in cells exposed to 150-200 microM BPA, while BPA at <100 microM had only slight cytotoxic effects on the cells.

  16. Daxx Upregulation within the Cytoplasm of Reovirus-Infected Cells Is Mediated by Interferon and Contributes to Apoptosis

    PubMed Central

    Dionne, Kalen R.; Zhuang, Yonghua; Leser, J. Smith; Tyler, Kenneth L.

    2013-01-01

    Reovirus infection is a well-characterized experimental system for the study of viral pathogenesis and antiviral immunity within the central nervous system (CNS). We have previously shown that c-Jun N-terminal kinase (JNK) and the Fas death receptor each play a role in neuronal apoptosis occurring in reovirus-infected brains. Death-associated protein 6 (Daxx) is a cellular protein that mechanistically links Fas signaling to JNK signaling in several models of apoptosis. In the present study, we demonstrate that Daxx is upregulated in reovirus-infected brain tissue through a type I interferon-mediated mechanism. Daxx upregulation is limited to brain regions that undergo reovirus-induced apoptosis and occurs in the cytoplasm and nucleus of neurons. Cytoplasmic Daxx is present in Fas-expressing cells during reovirus encephalitis, suggesting a role for Daxx in Fas-mediated apoptosis following reovirus infection. Further, in vitro expression of a dominant negative form of Daxx (DN-Daxx), which binds to Fas but which does not transmit downstream signaling, inhibits apoptosis of reovirus-infected cells. In contrast, in vitro depletion of Daxx results in increased expression of caspase 3 and apoptosis, suggesting that Daxx plays an antiapoptotic role in the nucleus. Overall, these data imply a regulatory role for Daxx in reovirus-induced apoptosis, depending on its location in the nucleus or cytoplasm. PMID:23302889

  17. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  18. Taurine prevents ultraviolet B induced apoptosis in retinal ganglion cells.

    PubMed

    Dayang, Wu; Dongbo, Pang

    2017-06-07

    Compatible osmolytes accumulation is an active resistance response in retina under ultraviolet radiation and hypertonicity conditions. The purpose of this research is to investigate the protective role of taurine on retina under ultraviolet B radiation. Osmolytes transporters was measured by quantitative realtime PCR. Osmolytes uptake was estimated by radioimmunoassay. Cell viability was caculated by MTT assay. Cell apoptosis was measured by flow cytometry analysis. Hypertonicity accelerated osmolytes uptake into retinal ganglion cells including taurine, betaine and myoinositol. Ultraviolet B radiation increased osmolytes transporter expression and osmolytes uptake. In addition, osmolyte taurine remarkably prevented ultraviolet B radiation induced cell apoptosis in retinal ganglion cells. The effect of compatible osmolyte taurine on cell survival rate may play an important role in cell resistance and adaption to UVB exposure.

  19. Apoptosis of ATII cells in mice induced by phosgene.

    PubMed

    Li, Wen-li; Hai, Chun-xu; Liang, Xin; Zhang, Xiao-di; Chen, Hong-li; Qin, Xu-jun; Liu, Riu; He, Wei; Wang, Peng; Li, Bo

    2006-01-01

    Phosgene inhalation can induced pulmonary edema formation. The purpose of this study was to investigate cell of apoptosis in pulmonary edema mice induced by phosgene. Fifty-two BALB/c mice were random divided into a negative group and a positive group with 26 mice in each. Mice were exposed for 5 min to air and phosgene in the negative group and in the positive one, respectively. The dose of phosgene was 539 ppm. After 4 h of exposure, all mice were anesthetized. Lungs were analyzed for lung wet/dry weight ratio and pathological alternation. The method of isolation and culture of alveolar type II cells (ATII cells) was established to observe their apoptosis by electron microscope and flow cytometry. Apoptosis of lung cells was observed by DNA gel electrophoresis and TUNEL. The lung wet/dry weight ratio was significantly higher in the positive group (6.42 +/- 1.00) than in the negative group (4.25 +/- 0.47, p < 0.05). A large amount of fluid effusion was observed in the alveolus of mice induced by phosgene. Alveolar type II cells were identified by tannic acid staining and electron microscope. The apoptotic signs in alveolar type II cells, alveolar type I cells, eosinophils, macrophages, symphocytes, and ciliated cells were viewed under electron microscope in positive group. The ratio of apoptosis cells (40.26 +/- 7.74) in positive was higher than that (1.58 +/- 1.01, p < 0.001) in the negative group by flow cytometry. DNA ladder alternation was seen through DNA gel electrophoresis. Apoptosis of epithelia and vascular endothelia in lung were found by TUNEL. These results indicate that there is success in establishing a model of pulmonary edema and method of isolation and culture of AT II cells in BALB/c mice. Phosgene can induce apoptosis of cells in the lungs of BALB/c mice, and this indicates that pulmonary edema is related to apoptosis of lung cells in mice, induced by phosgene.

  20. Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells

    SciTech Connect

    Srivastava, Janmejai K.; Gupta, Sanjay . E-mail: sanjay.gupta@case.edu

    2006-07-28

    One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation in all three prostate cancer cell lines. The IC{sub 5} values after 24 h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 {mu}g/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 {mu}g/ml. In cell cycle analysis, TRF (10-40 {mu}g/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.

  1. Interferons as Inducers of Apoptosis in Malignant Cells

    PubMed Central

    Kotredes, Kevin P.

    2013-01-01

    Discovered as antiviral cytokines, interferons (IFNs) are now also recognized for their capacity to inhibit the growth of malignant cells via activation of programmed cell death, better known as apoptosis. In this review, we will cover recent advances made in this field, as it pertains to the various proposed mechanisms of IFN-induced apoptosis and the characterization of IFN-responsive genes not previously known to have apoptotic function. Also mentioned here is a description of the activation and crosstalk of survival signaling pathways as a mode of IFN resistance that remains a persistent clinical adversary to overcome and the future of IFNs as antitumor agents. PMID:23570382

  2. Ferulic acid promoting apoptosis in human osteosarcoma cell lines

    PubMed Central

    Zhang, Xu-dong; Wu, Qiang; Yang, Shu-hua

    2017-01-01

    Objective: To explore the promoting apoptosis and antitumor activities of ferulic acid (FA) in human osteosarcoma and its potential mechanism. Methods: The SaOS-2 and MG63 osteosarcoma cell lines were opted to experiment and these cells were, respectively, cultured with various concentrations of FA (0 μM, 10 μM, 20 μM, 40 μM) for 72 hours at 37°C. The viabilities of the FA treated cells were monitored by MTT. Apoptosis cells were evaluated using annexin V/PI by flow cytometry. Apoptosis proteins caspase-3, procaspase-3, Bcl-2 and Bax were detected by western blot. Expressions of apoptotic genes Bcl-2 and Bax were quantified by qPCR. Results: The cell viabilities were critically declined in the concentration-dependent manner in FA groups (P < 0.01). The apoptosis cells were increased proportionately with the concentration of FA (P < 0.05). The procaspase-3 protein contents, and Bcl-2 mRNA and protein contents were significantly decreased while caspase-3 protein contents, and Bax mRNA and protein contents were concomitantly increased in the concentration-dependent manner in FA groups (P < 0.05). The response to FA by the SaOS-2 osteosarcoma cell was similar with the MG63 osteosarcoma cell (P > 0.05). Conclusion: Ferulic acid could significantly descend osteosarcoma cell viability through the promoting apoptosis pathway in which FA activates both caspase-3 and Bax and inactivates Bcl-2. PMID:28367185

  3. Dracorhodin perchlorate induces the apoptosis of glioma cells.

    PubMed

    Chen, Xin; Luo, Junjie; Meng, Linghu; Pan, Taifeng; Zhao, Binjie; Tang, Zhen-Gang; Dai, Yongjian

    2016-04-01

    Dracorhodin perchlorate (Dp), a synthetic analogue of the antimicrobial anthocyanin red pigment, has recently been shown to induce apoptotic cell death in various types of cancer cells. Yet, the inhibitory effect of Dp on human glioma cells remains uninvestigated. Therefore, in the present study, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to detect cell viability and cell cycle progression in glioma U87MG and T98G cells, respectively. Annexin V-FITC/propidium iodide double staining and JC-1 staining were separately applied to determine cellular apoptosis and mitochondrial membrane potential damage in the cells. The expression levels of associated proteins involved in cell cycle progression and apoptosis were measured by western blotting. The activities of caspase‑9/-3 were determined by Caspase-Glo-9/3 assay. The results indicated that Dp treatment significantly inhibited cell proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at the G1/S phase in the U87MG and T98G cells via the upregulation of p53 and p21 protein expression, and simultaneous downregulation of Cdc25A, Cdc2 and P-Cdc2 protein expression. Additionally, Dp treatment led to the loss of cellular mitochondrial membrane potential, and the release of cytochrome c, and strongly induced the occurence of apoptosis. Increased expression levels of Bim and Bax protein and the downregulated expression of Bcl-2 protein were observed. Caspase-9/-3 were activated and their activities were elevated after Dp treatment. These findings indicate that Dp inhibits cell proliferation, induces cell cycle arrest and apoptosis in glioma cells, and is a possible candidate for glioma treatment.

  4. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    PubMed Central

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  5. Proteasomal regulation of caspase-8 in cancer cell apoptosis.

    PubMed

    Fiandalo, Michael V; Schwarze, Steven R; Kyprianou, Natasha

    2013-06-01

    Previous studies demonstrated that proteasome inhibition sensitizes TRAIL resistant prostate cancer cells to TRAIL-mediated apoptosis via stabilization of the active p18 subunit of caspase-8. The present study investigated the impact of proteasome inhibition on caspase-8 stability, ubiquitination, trafficking, and activation in cancer cells. Using caspase-8 deficient neuroblastoma (NB7) cells for reconstituting non-cleavable mutant forms of caspase-8, we demonstrated that the non-cleavable forms of caspase-8 are capable of inducing apoptosis comparably to wild-type caspase-8, in response to proteasome inhibitor and GST-TRAIL. Moreover in the LNCaP human prostate cancer cells, caspase-8 polyubiquitination occurs after TRAIL stimulation and caspase-8 processing. Subcellular fractionation analysis revealed caspase-8 activity in both cytosol and plasma membrane fractions in both NB7 reconstituted caspase-8 cell lines, as well the LNCaP prostate cancer cells. The present results suggest that caspase-8 stabilization through proteasome inhibition leads to reactivation of the extrinsic pathway of apoptosis and identify E3 ligase mediating caspase-8 polyubiquitination, as a novel molecular target. Inhibition of this E3 ligase in combination with TRAIL towards restoring apoptosis signaling activation may have potential therapeutic significance in resistant tumors.

  6. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis

    PubMed Central

    Liu, Weifeng; Wang, Xinshuai; Sun, Junjun; Yang, Yanhui; Li, Wensheng; Song, Junxin

    2017-01-01

    Pancreatic cancer is an aggressive malignancy and is unresponsive to conventional chemotherapies. Parthenolide, a sesquiterpene lactone isolated from feverfew, has exhibited potent anticancer effects against various cancers. The purpose of this report was to investigate the effect and underlying mechanism of parthenolide in human pancreatic cancer Panc-1 and BxPC3 cells. The results demonstrated that parthenolide suppressed the growth and induced apoptosis of Panc-1 and BxPC3 pancreatic cancer cells with the half maximal inhibitory concentration (IC50) ranging between 7 and 9 μM after 24 h of treatment. Significant autophagy was induced by parthenolide treatment in pancreatic cancer cells. Parthenolide treatment concentration-dependently increased the percentage of autophagic cells and significantly increased the expression levels of p62/SQSTM1, Beclin 1, and LC3II in Panc-1 cells. Punctate LC3II staining confirmed autophagy. Furthermore, inhibiting autophagy by chloroquine, 3-methyladenine, or LC3II siRNA significantly blocked parthenolide-induced apoptosis, suggesting that parthenolide induced apoptosis through autophagy in this study. In conclusion, these studies established that parthenolide inhibits pancreatic cell growth by autophagy-mediated apoptosis. Data of the present study suggest that parthenolide can serve as a potential chemotherapeutic agent for pancreatic cancer. PMID:28176967

  7. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis.

    PubMed

    Liu, Weifeng; Wang, Xinshuai; Sun, Junjun; Yang, Yanhui; Li, Wensheng; Song, Junxin

    2017-01-01

    Pancreatic cancer is an aggressive malignancy and is unresponsive to conventional chemotherapies. Parthenolide, a sesquiterpene lactone isolated from feverfew, has exhibited potent anticancer effects against various cancers. The purpose of this report was to investigate the effect and underlying mechanism of parthenolide in human pancreatic cancer Panc-1 and BxPC3 cells. The results demonstrated that parthenolide suppressed the growth and induced apoptosis of Panc-1 and BxPC3 pancreatic cancer cells with the half maximal inhibitory concentration (IC50) ranging between 7 and 9 μM after 24 h of treatment. Significant autophagy was induced by parthenolide treatment in pancreatic cancer cells. Parthenolide treatment concentration-dependently increased the percentage of autophagic cells and significantly increased the expression levels of p62/SQSTM1, Beclin 1, and LC3II in Panc-1 cells. Punctate LC3II staining confirmed autophagy. Furthermore, inhibiting autophagy by chloroquine, 3-methyladenine, or LC3II siRNA significantly blocked parthenolide-induced apoptosis, suggesting that parthenolide induced apoptosis through autophagy in this study. In conclusion, these studies established that parthenolide inhibits pancreatic cell growth by autophagy-mediated apoptosis. Data of the present study suggest that parthenolide can serve as a potential chemotherapeutic agent for pancreatic cancer.

  8. A mechanism of cell apoptosis by light irradiation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan; Wang, Fang

    2006-02-01

    Light irradiation can modulate various biological processes. For instance, low-power laser irradiation (LPLI) can induce cell proliferation and differentiation. It has been used to treat diseases of regeneration limitation and to promote wound healing. The biological mechanism of light irradiation remains unclear. Our previous studies have shown that low fluence LPLI induced the proliferation of human lung adenocarcinoma cells (ASTC-a-1) through PKC channel, while high fluence LPLI induced caspase-3 activation and cell apoptosis. The mechanisms of the initiation and regulation of apoptosis are complex and diverse. There are two main pathways to initiate and regulate cell apoptosis, one is the death receptor pathway (receptor/caspase-8/caspase-3), and the other is the mitochondria pathway (mitochondria/ caspase-9/caspase-3). Using fluorescent imaging techniques, we observed a temporal sequence of events during apoptosis induced by high fluence LPLI and PDT. Both the high fluence LPLI and PDT triggers mitochondrial ROS production resulting in dissipation of ΔΨ m and activation of caspase-3. Our results also show the two treatments do not activate caspase-8. These results suggest that caspase-3 activation induced by high fluence LPLI or PDT is initiated directly from mitochondria ROS generation and dissipation of ΔΨ m, and independent of the cell death pathway involving caspase-8 activation. Because the progression of the apoptosis induced by high fluence LPLI is the same as that of PDT, we concluded that light is absorbed directly either by endogenous porphyrins or by the cytochromes in mitochondrion, resulting in initial ROS generation. During light irradiation induced apoptosis, apoptotic signals are initiated from mitochondrial ROS production due to photosensitization.

  9. Manganese induced apoptosis in haematopoietic cells of Nephrops norvegicus (L.).

    PubMed

    Oweson, Carolina A M; Baden, Susanne P; Hernroth, Bodil E

    2006-05-10

    Manganese (Mn) is highly abundant as MnO2 in marine sediments. During hypoxia in bottom waters, the reduced bioavailable fraction of manganese, Mn2+, increases. Thereby, Norway lobster, Nephrops norvegicus, can experience concentrations up to 1000 times normoxic levels. A previous study has shown that exposure to a realistic concentration of 20 mg l(-1) of Mn for 10 days reduced the number of circulating haemocytes in N. norvegicus significantly. Here we aimed to investigate if apoptosis contributes to the Mn-induced haemocytopenia, with the overall hypothesis that Mn induces apoptosis in a time and concentration dependent manner. N. norvegicus were exposed to Mn (0, 5, 10 and 20 mg l(-1)) for 5 and 10 days. After 5 days of exposure the total haemocyte counts were not affected. However, after 10 days there was a gradual decrease in cell numbers, reaching a reduction by 44% when the animals were exposed to 20 mg Mn l(-1). Apoptosis in cells, released from the haematopoietic tissue, was investigated by using TUNEL assay, which detects specific DNA strand breaks. The fraction of apoptotic cells gradually increased from 2.5% in un-exposed lobsters to 15% in those exposed to 20 mg l(-1) but there was no difference related to the exposure time. A gradual increase of apoptosis was further confirmed by electrophoretic DNA-ladder formation, however to a lower extent in lobsters exposed during 5 days. Cell viability, determined by metabolic activity and cell membrane integrity, was not reduced, indicating that apoptosis rather than necrosis caused reduced number of haemocytes. It was concluded that apoptosis seemed to increase already after 5 days of 5 mg l(-1) of Mn-exposure, although exposure for 10 days was required before it was reflected in the haemocyte numbers. Reduced numbers of haemocytes may increase the prevalence for infections in N. norvegicus in their natural habitat.

  10. Massage for Children Undergoing Hematopoietic Cell Transplantation: A Qualitative Report

    PubMed Central

    Ackerman, Sara L.; Lown, E. Anne; Dvorak, Christopher C.; Dunn, Elizabeth A.; Abrams, Donald I.; Horn, Biljana N.; Degelman, Marcia; Cowan, Morton J.; Mehling, Wolf E.

    2012-01-01

    Background. No in-depth qualitative research exists about the effects of therapeutic massage with children hospitalized to undergo hematopoietic cell transplantation (HCT). The objective of this study is to describe parent caregivers' experience of the effects of massage/acupressure for their children undergoing HCT. Methods. We conducted a qualitative analysis of open-ended interviews with 15 parents of children in the intervention arm of a massage/acupressure trial. Children received both practitioner and parent-provided massage/acupressure. Results. Parents reported that their child experienced relief from pain and nausea, relaxation, and greater ease falling asleep. They also reported increased caregiver competence and closeness with their child as a result of learning and performing massage/acupressure. Parents supported a semistandardized massage protocol. Conclusion. Massage/acupressure may support symptom relief and promote relaxation and sleep among pediatric HCT patients if administered with attention to individual patients' needs and hospital routines and may relieve stress among parents, improve caregiver competence, and enhance the sense of connection between parent and child. PMID:22474526

  11. DNA damage, apoptosis and langerhans cells--Activators of UV-induced immune tolerance.

    PubMed

    Timares, Laura; Katiyar, Santosh K; Elmets, Craig A

    2008-01-01

    Solar UVR is highly mutagenic but is only partially absorbed by the outer stratum corneum of the epidermis. UVR can penetrate into the deeper layers of the epidermis, depending on melanin content, where it induces DNA damage and apoptosis in epidermal cells, including those in the germinative basal layer. The cellular decision to initiate either cellular repair or undergo apoptosis has evolved to balance the acute need to maintain skin barrier function with the long-term risk of retaining precancerous cells. Langerhans cells (LCs) are positioned suprabasally, where they may sense UV damage directly, or indirectly through recognition of apoptotic vesicles and soluble mediators derived from surrounding keratinocytes. Apoptotic vesicles will contain UV-induced altered proteins that may be presented to the immune system as foreign. The observation that UVR induces immune tolerance to skin-associated antigens suggests that this photodamage response has evolved to preserve the skin barrier by protecting it from autoimmune attack. LC involvement in this process is not clear and controversial. We will highlight some basic concepts of photobiology and review recent advances pertaining to UV-induced DNA damage, apoptosis regulation, novel immunomodulatory mechanisms and the role of LCs in generating antigen-specific regulatory T cells.

  12. Apoptosis by Direct Current Treatment in Tumor Cells and Tissues

    NASA Astrophysics Data System (ADS)

    Kim, Hongbae; Sim, Sungbo; Ahn, Saeyoung

    2003-10-01

    Electric field induces cell fusion, electroporation on biological cells, including apoptosis. Apoptosis is expressed in a series of natural enzymatic reactions for the natural elimination of unhealthy, genetically damaged, or otherwise aberrant cells that are not needed or not advantageous to the well-being of the organism. Its markers involve cell shrinkage, activation of intracellular caspase proteases, externalization of phosphatidylserine at the plasma membrane, and fragmentation of DNA. Direct electric fields using direct current have been exploited recently to investigate its effects on tumor cells and tissues, but the mechanism of direct electric fields has not been exhibited clearly other than by electroosmosis or pH changes. Direct electric field induces apoptosis in tumor cells cultured and tumor tissues as indicated by cell shrinkage, DNA fragmentation and tumor suppression. In our experiment that direct electric field was applied to tumor tissues via two needle electrodes inserted into tumor tissue 5mm at distance in parallel, pH changes resulted from electrochemical reaction, exhibiting about pH 9.0, 1.83, 2.0 in the vicinity of cathodic and anodic electrode, and at their mid-point, respectively. DNA fragmentation of tumor tissues destructed by direct electric field was analyzed by Tunel assay by ApopTag technology. As a result of this analysis, it showed that apoptosis in tumor tissue destructed was increased up to 59.1normal(control) tissues, showing 41.1, 31.1cathodic tissues. In vitro cell survival was exhibited that it was decreased with enhancing electric current intensity in the same condition of electrical charge 5C having different time applied. We will show results of apoptosis analyzed by flow cytometry in vitro.

  13. Apoptosis of Epithelial Cells and Macrophages due to Nonpigmented Serratia marcescens Strains

    PubMed Central

    Krzymińska, Sylwia; Ochocka, Katarzyna; Kaznowski, Adam

    2012-01-01

    Serratia marcescens strains are opportunistic pathogens that are increasingly recognized as a cause of severe nosocomial infections. In this study we observed interactions between nonpigmented strains with human epithelial and macrophage-like cells. The strains revealed hemolytic activity only after the contact of the cells with erythrocytes. The contact of the bacteria with the host cells was also essential to their cytotoxicity. Moreover, all strains revealed adherence ability and were invasive to epithelial cells. Analyses of cellular morphology and DNA fragmentation of the HEp-2 and J774 cells exhibited typical features of cells undergoing apoptosis. We observed morphological changes, including condensation of nuclear chromatin and formation of membrane-bound apoptotic bodies. The lowest apoptotic index in HEp-2 cells did not exceed 25%, whereas the highest reached 59% at 24 h and 72% at 48 h after infection. Most of the strains (60%) induced fragmentation of nuclear DNA. The process depended on the activation of caspases, and was completely blocked by the pan-caspase inhibitor z-VAD-fmk. This study provided new insights into the mechanisms of nonpigmented S. marcescens pathogenesis. The results revealed that the strains produce cell-contact toxins that facilitate bacterial invasion, induce hemolysis, cytotoxicity, and apoptosis of host cells. PMID:22649305

  14. Apoptosis Process in Mouse Leydig Cells during Postnatal Development

    NASA Astrophysics Data System (ADS)

    Salles Faria, Maria José; Simões, Zilá Paulino; Luz; Orive Lunardi, Laurelucia; Hartfelder, Klaus

    2003-02-01

    The development of Leydig cells in mammals has been widely described as a biphasic pattern with two temporally mature Leydig cell populations, fetal stage followed by the adult generation beginning at puberty. In the present study, mouse Leydig cells were examined for apoptosis during postnatal testis development using electron microscopy and in situ DNA fragmentation by terminal deoxynucleotidyl transferase staining (TdT). Both the morphological study and the DNA fragmentation analysis showed that cellular death by apoptosis did not occur in Leydig cells during the neonatal, prepubertal, puberty, and adult periods. From these results, we suggest that the remaining fetal Leydig cells in the neonatal testis are associated with the involution or degeneration processes. In contrast, in the prepubertal and puberty stages, fragmentation of apoptotic DNA was detected in germ cells present in some seminiferous tubules.

  15. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    PubMed

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  16. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer.

    PubMed

    Dillon, Christopher P; Green, Douglas R

    2016-01-01

    Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.

  17. Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces β-Cell Apoptosis and Impairs β-Cell Mass

    PubMed Central

    Schulthess, Fabienne T.; Katz, Sophie; Ardestani, Amin; Kawahira, Hiroshi; Georgia, Senta; Bosco, Domenico; Bhushan, Anil; Maedler, Kathrin

    2009-01-01

    Background Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF. Methodology/Principal Findings Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated. Conclusions/Significance Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival. PMID:19197367

  18. Multi-parametric imaging of cell heterogeneity in apoptosis analysis.

    PubMed

    Vorobjev, Ivan A; Barteneva, Natasha S

    2017-01-01

    Apoptosis is a multistep process of programmed cell death where different morphological and molecular events occur simultaneously and/or consequently. Recent progress in programmed cell death analysis uncovered large heterogeneity in response of individual cells to the apoptotic stimuli. Analysis of the complex and dynamic process of apoptosis requires a capacity to quantitate multiparametric data obtained from multicolor labeling and/or fluorescent reporters of live cells in conjunction with morphological analysis. Modern methods of multiparametric apoptosis study include but are not limited to fluorescent microscopy, flow cytometry and imaging flow cytometry. In the current review we discuss the image-based evaluation of apoptosis on the single-cell and population level by imaging flow cytometry in parallel with other techniques. The advantage of imaging flow cytometry is its ability to interrogate multiparametric morphometric and fluorescence quantitative data in statistically robust manner. Here we describe the current status and future perspectives of this emerging field, as well as some challenges and limitations. We also highlight a number of assays and multicolor labeling probes, utilizing both microscopy and different variants of imaging cytometry, including commonly based assays and novel developments in the field. Copyright © 2016. Published by Elsevier Inc.

  19. Butyrate-Induced Apoptosis in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2001-09-01

    butyrate-induced apoptosis was independent of cell cycle phase. 14. SUBJECT TERMS 15. NUMBER OF PAGES prostate cancer, histone deacetylase inhibitors, bone...of cells plated) HDI histone deacetylase inhibitor SBHA suberoylbishydroxamate PKC protein kinase C activator SDS-PAGE SDS polyacrylamide gel...cancer cell lines 1. Summary of goals and findings Histone deacetylase inhibitors (HDI) such as butyrate and suberoylbishydroxamate (SBHA) have

  20. Rapid on-chip apoptosis assay on human carcinoma cells based on annexin-V/quantum dot probes.

    PubMed

    Montón, Helena; Medina-Sánchez, Mariana; Soler, Joan Antoni; Chałupniak, Andrzej; Nogués, Carme; Merkoçi, Arben

    2017-03-18

    Despite all the efforts made over years to study the cancer expression and the metastasis event, there is not a clear understanding of its origins and effective treatment. Therefore, more specialized and rapid techniques are required for studying cell behaviour under different drug-based treatments. Here we present a quantum dot signalling-based cell assay carried out in a segmental microfluidic device that allows studying the effect of anti-cancer drugs in cultured cell lines by monitoring phosphatidylserine translocation that occurs in early apoptosis. The developed platform combines the automatic generation of a drug gradient concentration, allowing exposure of cancer cells to different doses, and the immunolabeling of the apoptotic cells using quantum dot reporters. Thereby a complete cell-based assay for efficient drug screening is performed showing a clear correlation between drug dose and amount of cells undergoing apoptosis.

  1. Nuclear patterns of human breast cancer cells during apoptosis: characterisation by fractal dimension and co-occurrence matrix statistics.

    PubMed

    Losa, Gabriele A; Castelli, Christian

    2005-11-01

    An analytical strategy combining fractal geometry and grey-level co-occurrence matrix (GLCM) statistics was devised to investigate ultrastructural changes in oestrogen-insensitive SK-BR3 human breast cancer cells undergoing apoptosis in vitro. Apoptosis was induced by 1 microM calcimycin (A23187 Ca(2+) ionophore) and assessed by measuring conventional cellular parameters during the culture period. SK-BR3 cells entered the early stage of apoptosis within 24 h of treatment with calcimycin, which induced detectable changes in nuclear components, as documented by increased values of most GLCM parameters and by the general reduction of the fractal dimensions. In these affected cells, morphonuclear traits were accompanied by the reduction of distinct gangliosides and loss of unidentifiable glycolipid molecules at the cell surface. All these changes were shown to be involved in apoptosis before the detection of conventional markers, which were only measurable during the active phases of apoptotic cell death. In overtly apoptotic cells treated with 1 microM calcimycin for 72 h, most nuclear components underwent dramatic ultrastructural changes, including marginalisation and condensation of chromatin, as reflected in a significant reduction of their fractal dimensions. Hence, both fractal and GLCM analyses confirm that the morphological reorganisation of nuclei, attributable to a loss of structural complexity, occurs early in apoptosis.

  2. Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells.

    PubMed

    Canu, Nadia; Tufi, Roberta; Serafino, Anna Lucia; Amadoro, Giuseppina; Ciotti, Maria Teresa; Calissano, Pietro

    2005-03-01

    Apoptotic and autophagic cell death have been implicated, on the basis of morphological and biochemical criteria, in neuronal loss occurring in neurodegenerative diseases and it has been shown that they may overlap. We have studied the relationship between apoptosis and autophagic cell death in cerebellar granule cells (CGCs) undergoing apoptosis following serum and potassium deprivation. We found that apoptosis is accompanied by an early and marked proliferation of autophagosomal-lysosomal compartments as detected by electron microscopy and immunofluorescence analysis. Autophagy is blocked by hrIGF-1 and forskolin, two well-known inhibitors of CGC apoptosis, as well as by adenovirus-mediated overexpression of Bcl-2. 3-Methyladenine (3-MA) an inhibitor of autophagy, not only arrests this event but it also blocks apoptosis. The neuroprotective effect of 3-MA is accompanied by block of cytochrome c (cyt c) release in the cytosol and by inhibition of caspase-3 activation which, in turn, appears to be mediated by cathepsin B, as CA074-Me, a selective inhibitor of this enzyme, fully blocks the processing of pro-caspase-3. Immunofluorescence analysis demonstrated that cathepsin B, normally confined inside the lysosomal-endosomal compartment, is released during apoptosis into the cytosol where this enzyme may act as an execution protease. Collectively, these observations indicate that autophagy precedes and is causally connected with the subsequent onset of programmed death.

  3. Cell adhesion and apoptosis in ovarian stromal hyperplasia and hyperthecosis.

    PubMed

    Sharabidze, N; Burkadze, G; Sabakhtarashvili, M

    2006-02-01

    The aim of our study was to investigate cell adhesion and apoptosis in ovarian stromal hyperplasia and hyperthecosis in reproductive women with and without polycystic ovarian disease. We have studied 104 patients with a histological diagnosis of ovarian stromal hyperthecosis and stromal hyperplasia. Paraffin sections were stained by hematoxylin-eosin, von Gieson and immunohistochemistry for Bcl-2 (anti-apoptotic protein) and E-cadherin (cell adhesion marker). We assessed the number of Bcl-2-positive and E-cadherin-positive cells. The patients were divided into 4 groups: group 1-33 patients with polycystic ovarian disease and coexistent stromal hyperthecosis, group 2-28 patients with polycystic ovarian disease and coexistent stromal hyperplasia, group 3-24 patients with ovarian stromal hyperthecosis, group 4-19 patients with ovarian stromal hyperplasia. Our results suggest that in ovarian stromal hyperthecosis and stromal hyperplasia coexistent with polycystic ovarian disease, E-cadherin-positivity in internal and external theca cells, and granulosa cells is associated with Bcl-2 expression. Therefore, ovarian cells expressing Bcl-2 and maintaining E-cadherin-positivity may be the viable cells that escape the apoptotic process. In ovarian stromal hyperthecosis without polycystic ovarian disease, luteinized stromal cells are potentially resistant to apoptosis as they are positive for Bcl-2. In ovarian stromal hyperplasia without polycystic ovarian disease, hyperplastic stromal cells are potentially susceptible to apoptosis as they are negative for Bcl-2. E-cadherin is negative both in stromal hyperthecosis and hyperplasia suggesting that E-cadherin expression in ovary is limited to granulosa and theca cells only. Described characteristics of cell adhesion and apoptosis may play a role in pathogenesis of ovarian stromal hyperthecosis and stromal hyperplasia with and without polycystic ovarian disease.

  4. Increased apoptosis susceptibility in mesangial cells from spontaneously hypertensive rats.

    PubMed

    Rodríguez-López, A M; Flores, O; Martínez-Salgado, C; Eleno, N; López-Novoa, J M; Arévalo, M

    2000-01-01

    We have examined the susceptibility to apoptosis in mesangial cells from spontaneously hypertensive rats (SHR) or from normotensive rats (WKY) and the possible involvement of nitric oxide in this process. Mesangial cells monolayers from either SHR or normal rats were incubated for 12 h in medium with or without fetal calf serum (FCS) and with or without thapsigargin (Tg, 10(-6) M). A series of cultures from rats of both groups was treated with N(G)-nitro-l-arginine methyl ester (l-NAME, 10(-4) M). We assessed apoptosis by propidium iodide staining, by TUNEL nitrite production (Griess reaction), by inducible nitric oxide synthase (iNOS) and Bcl-2 and Bax by Western blot. Incubated with a FCS-free medium, cells from SHR showed a significantly higher apoptotic rate (10.7 +/- 2.0) than with 10% FCS (10% FCS, 4.7 +/- 0.3), while WKY cells did not show this increment (10% FCS, 4.7 +/- 0.3; 0% FCS, 5.9 +/- 0. 3). Apoptosis in cells from WKY increased when incubated with thapsigargin in FCS-free medium (0% FCS+ Tg, 17.7 +/- 2.9%) and increased even more in SHR cells (0% FCS+ Tg, 19.7 +/- 2.9%). Treatment with l-NAME decreased thapsigargin-induced apoptosis in both SHR (8.2 +/- 2.4%) and WKY cells (9.3 +/- 2.4%). An increase in nitrite production and iNOS expression was detected in groups in which the apoptosis rate was elevated. A high rate of apoptosis was also associated with a decrease in the Bcl-2/Bax ratio. Our results indicate that in SHR cells, short-term serum deprivation and the increase in intracellular free calcium concentration with thapsigargin are able to enhance the apoptosis rate in primary cultures and that the expression of iNOS, and hence NO production, is involved in this effect. Copyright 2000 Academic Press.

  5. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  6. Inhibitor of Apoptosis Protein-1 Regulates Tumor Necrosis Factor-Mediated Destruction of Intestinal Epithelial Cells.

    PubMed

    Grabinger, Thomas; Bode, Konstantin J; Demgenski, Janine; Seitz, Carina; Delgado, M Eugenia; Kostadinova, Feodora; Reinhold, Cindy; Etemadi, Nima; Wilhelm, Sabine; Schweinlin, Matthias; Hänggi, Kay; Knop, Janin; Hauck, Christof; Walles, Heike; Silke, John; Wajant, Harald; Nachbur, Ueli; W Wei-Lynn, Wong; Brunner, Thomas

    2017-03-01

    Tumor necrosis factor (TNF) is a cytokine that promotes inflammation and contributes to pathogenesis of inflammatory bowel diseases. Unlike other cells and tissues, intestinal epithelial cells undergo rapid cell death upon exposure to TNF, by unclear mechanisms. We investigated the roles of inhibitor of apoptosis proteins (IAPs) in the regulation of TNF-induced cell death in the intestinal epithelium of mice and intestinal organoids. RNA from cell lines and tissues was analyzed by quantitative polymerase chain reaction, protein levels were analyzed by immunoblot assays. BIRC2 (also called cIAP1) was expressed upon induction from lentiviral vectors in young adult mouse colon (YAMC) cells. YAMC cells, the mouse colon carcinoma cell line MC38, the mouse macrophage cell line RAW 264.7, or mouse and human organoids were incubated with second mitochondrial activator of caspases (Smac)-mimetic compound LCL161 or recombinant TNF-like weak inducer of apoptosis (TNFSF12) along with TNF, and cell death was quantified. C57BL/6 mice with disruption of Xiap, Birc2 (encodes cIAP1), Birc3 (encodes cIAP2), Tnfrsf1a, or Tnfrsf1b (Tnfrsf1a and b encode TNF receptors) were injected with TNF or saline (control); liver and intestinal tissues were collected and analyzed for apoptosis induction by cleaved caspase 3 immunohistochemistry. We also measured levels of TNF and alanine aminotransferase in serum from mice. YAMC cells, and mouse and human intestinal organoids, died rapidly in response to TNF. YAMC and intestinal crypts expressed lower levels of XIAP, cIAP1, cIAP2, and cFLIP than liver tissue. Smac-mimetics reduced levels of cIAP1 and XIAP in MC38 and YAMC cells, and Smac-mimetics and TNF-related weak inducer of apoptosis increased TNF-induced cell death in YAMC cells and organoids-most likely by sequestering and degrading cIAP1. Injection of TNF greatly increased levels of cell death in intestinal tissue of cIAP1-null mice, compared with wild-type C57BL/6 mice, cIAP2-null mice, or

  7. Multifaceted role of prohibitin in cell survival and apoptosis.

    PubMed

    Peng, Ya-Ting; Chen, Ping; Ouyang, Ruo-Yun; Song, Lei

    2015-09-01

    Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.

  8. Nimbolide induces apoptosis in human nasopharyngeal cancer cells.

    PubMed

    Chien, Su-Yu; Hsu, Ching-Hui; Lin, Chia-Chieh; Chuang, Yi-Ching; Lo, Yu-Sheng; Hsi, Yi-Ting; Hsieh, Ming-Ju; Chen, Mu-Kuan

    2017-08-01

    Nasopharyngeal carcinoma (NPC), a tumor arising from epithelial cells that cover the surface and line the nasopharynx, is a rare malignancy worldwide but is prevalent in certain geographical areas, such as Southern Asia (Taiwan, Hong Kong, Singapore, Malaysia, and Southern China) and North Africa. Despite advances in diagnostic techniques and improvements in treatment modalities, the prognosis of NPC remains poor. Therefore, an effective chemotherapy regimen that enhances tumor sensitivity to chemotherapeutics is urgently required. Nimbolide, derived from Azadirachta indica, has a wide range of beneficial effects, including anti-inflammatory and anticancer properties. The present study evaluated the antitumor activity of nimbolide in NPC cells and its underlying mechanisms. Our results revealed that the treatment of HONE-1 cells with nimbolide potently inhibited cell viability. Moreover, nimbolide led to cell cycle arrest, which subsequently activated caspase-3, -8, and -9 and poly (ADP-ribose) polymerase to induce cell apoptosis. Moreover, nimbolide induced Bik, Bax, and t-Bid expression in HONE-1 cells. The results indicated that nimbolide induces apoptosis through the modulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Nimbolide induces apoptosis in human NPC cells and is a potential chemopreventive agent against NPC proliferation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2085-2092, 2017. © 2017 Wiley Periodicals, Inc.

  9. Mechanisms of strain-mediated mesenchymal stem cell apoptosis.

    PubMed

    Kearney, E M; Prendergast, P J; Campbell, V A

    2008-12-01

    Mechanical conditioning of mesenchymal stem cells (MSCs) has been adopted widely as a biophysical signal to aid tissue engineering applications. The replication of in vivo mechanical signaling has been used in in vitro environments to regulate cell differentiation, and extracellular matrix synthesis, so that both the chemical and mechanical properties of the tissue-engineered construct are compatible with the implant site. While research in these areas contributes to tissue engineering, the effects of mechanical strain on MSC apoptosis remain poorly defined. To evaluate the effects of uniaxial cyclic tensile strain on MSC apoptosis and to investigate mechanotransduction associated with strain-mediated cell death, MSCs seeded on a 2D silicone membrane were stimulated by a range of strain magnitudes for 3 days. Mechanotransduction was investigated using the stretch-activated cation channel blocker gadolinium chloride, the L-type voltage-activated calcium channel blocker nicardipine, the c-jun NH(2)-terminal kinase (JNK) blocker D-JNK inhibitor 1, and the calpain inhibitor MDL 28170. Apoptosis was assessed through DNA fragmentation using the terminal deoxynucleotidyl transferase mediated-UTP-end nick labeling method. Results demonstrated that tensile strains of 7.5% or greater induce apoptosis in MSCs. L-type voltage-activated calcium channels coupled mechanical stress to activation of calpain and JNK, which lead to apoptosis through DNA fragmentation. The definition of the in vitro boundary conditions for tensile strain and MSCs along with a proposed mechanism for apoptosis induced by mechanical events positively contributes to the development of MSC biology, bioreactor design for tissue engineering, and development of computational methods for mechanobiology.

  10. Apoptosis, stem cells, and tissue regeneration.

    PubMed

    Bergmann, Andreas; Steller, Hermann

    2010-10-26

    Most metazoans have at least some ability to regenerate damaged cells and tissues, although the regenerative capacity varies depending on the species, organ, or developmental stage. Cell replacement and regeneration occur in two contexts: renewal of spent cells during tissue homeostasis (homeostatic growth), and in response to external injury, wounding, or amputation (epimorphic regeneration). Model organisms that display remarkable regenerative capacity include amphibians, planarians, Hydra, and the vertebrate liver. In addition, several mammalian organs--including the skin, gut, kidney, muscle, and even the human nervous system--have some ability to replace spent or damaged cells. Although the regenerative response is complex, it typically involves the induction of new cell proliferation through formation of a blastema, followed by cell specification, differentiation, and patterning. Stem cells and undifferentiated progenitor cells play an important role in both tissue homeostasis and tissue regeneration. Stem cells are typically quiescent or passing slowly through the cell cycle in adult tissues, but they can be activated in response to cell loss and wounding. A series of studies, mostly performed in Drosophila as well as in Hydra, Xenopus, and mouse, has revealed an unexpected role of apoptotic caspases in the production of mitogenic signals that stimulate the proliferation of stem and progenitor cells to aid in tissue regeneration. This Review summarizes some of the key findings and discusses links to stem cell biology and cancer.

  11. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway.

    PubMed

    Chen, Jiun-Han; Hsiao, George; Lee, An-Rong; Wu, Chin-Chen; Yen, Mao-Hsiung

    2004-04-01

    Andrographolide (Andro), an active component isolated from the Chinese official herbal Andrographis paniculata, which has been reported to prevent oxygen radical production and thus prevent inflammatory diseases. In this study, we investigated the molecular mechanisms and signaling pathways by which Andro protects human umbilical vein endothelial cells (HUVECs) from growth factor (GF) deprivation-induced apoptosis. Results demonstrated that HUVECs undergo apoptosis after 18 hr of GF deprivation but that this cell death was suppressed by the addition of Andro in a concentration-dependent manner (1-100 microM). Andro suppresses the mitochondrial pathway of apoptosis by inhibiting release of cytochrome c into the cytoplasm and dissipation of mitochondrial potential (Deltapsi(m)), as a consequence, prevented caspase-3 and -9 activation. Treatment of endothelial cells with Andro-induced activation of the protein kinase Akt, an anti-apoptotic signal, and phosphorylation of BAD, a down-stream target of Akt. Suppression of Akt activity by wortmannin, by LY-294002 and by using a dominant negative Akt mutant abolished the anti-apoptotic effect of Andro. In contrast, the ERK1/2 activities were not affected by Andro. The ERK1/2 inhibitor, PD98059 failed to antagonize the protective effect of Andro. In conclusion, Andro exerts its anti-apoptotic potential via activation of the Akt-BAD pathway in HUVECs and thus may represent a candidate of therapeutic agent for atherosclerosis.

  12. DNA polymerase eta undergoes alternative splicing, protects against UV sensitivity and apoptosis, and suppresses Mre11-dependent recombination.

    PubMed

    Thakur, M; Wernick, M; Collins, C; Limoli, C L; Crowley, E; Cleaver, J E

    2001-11-01

    Polymerase eta (pol eta) is a low-fidelity DNA polymerase that is the product of the gene, POLH, associated with the human XP variant disorder in which there is an extremely high level of solar-induced skin carcinogenesis. The complete human genomic sequence spans about 40 kb containing 10 coding exons and a cDNA of 2.14 kb; exon I is untranslated and is 6 kb upstream from the first coding exon. Using bacterial artificial chromosomes (BACs), the gene was mapped to human chromosome band 6p21 and mouse band 17D. The gene is expressed in most tissues, except for very low or undetectable levels in peripheral lymphocytes, fetal spleen, and adult muscle; exon II, however, is frequently spliced out in normal cells and in almost half the transcripts in the testis and fetal liver. Expression of POLH in a multicopy episomal vector proved nonviable, suggesting that overexpression is toxic. Expression from chromosomally integrated linear copies using either an EF1-alpha or CMV promoter was functional, resulting in cell lines with low or high levels of pol eta protein, respectively. Point mutations in the center of the gene and in a C-terminal cysteine and deletion of exon II resulted in inactivation, but addition of a terminal 3 amino acid C-terminal tag, or an N- or C-terminal green fluorescent protein, had no effect on function. A low level of expression of pol eta eliminated hMre11 recombination and partially restored UV survival, but did not prevent UV-induced apoptosis, which required higher levels of expression. Polymerase eta is therefore involved in S-phase checkpoint and signal transduction pathways that lead to arrest in S, apoptosis, and recombination. In normal cells, the predominant mechanism of replication of UV damage involves pol eta-dependent bypass, and Mre11-dependent recombination that acts is a secondary, backup mechanism when cells are severely depleted of pol eta. Copyright 2001 Wiley-Liss, Inc.

  13. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    PubMed Central

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  14. Study of acetylcholinesterase activity and apoptosis in SH-SY5Y cells and mice exposed to ethanol.

    PubMed

    Sun, Wenjun; Chen, Liangjing; Zheng, Wei; Wei, Xiaoan; Wu, Wenqi; Duysen, Ellen G; Jiang, Wei

    2017-06-01

    Ethanol is one of the most commonly abused psychotropic substances with deleterious effects on the central nervous system. Ethanol exposure during development results in the loss of neurons in brain regions and when exposed to ethanol cultured cells undergo apoptosis. To date no information is available on whether abnormally high AChE activity is characteristic of apoptosis in animals exposed to ethanol. The aims of the present study were to determine whether induction of AChE activity is associated with ethanol-induced apoptosis and to explore the mechanism of enhanced AChE activity induced by ethanol. For this purpose, in vitro and in vivo experiments were performed. AChE activity was quantified by spectrophotometry and apoptosis by flow cytometer in SH-SY5Y cells exposed to ethanol. The results showed that cells treated with 500mM ethanol for 24h had a 9-fold increase in apoptotic cells and a 6-fold increase in AChE activity compared with controls. Mice exposed acutely to 200μl of 20% ethanol daily on days 1-4 had elevated AChE activity in plasma on days 3-7. On day 4, plasma AChE activity was 2.4-fold higher than pretreatment activity. More apoptotic cells were found in the brains of treated mice compared to controls. Cells in brain sections that were positive in the TUNEL assay stained for AChE activity. In conclusion, AChE activity and apoptosis were induced in SH-SY5Y cells and mice treated with ethanol, which may indicate that increased AChE may related to apoptosis induced by ethanol. Unusually high AChE activity may be an effect marker of exposure to ethanol. The relationship between AChE and apoptosis might represent a novel mechanism of ethanol-associated neuronal injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Bisphosphonates induce apoptosis in human breast cancer cell lines

    PubMed Central

    Senaratne, S G; Pirianov, G; Mansi, J L; Arnett, T R; Colston, K W

    2000-01-01

    Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility that bisphosphonates may have a direct effect on breast cancer cells. We have investigated the in vitro effects of bisphosphonates zoledronate, pamidronate, clodronate and EB 1053 on growth, viability and induction of apoptosis in three human breast cancer cell lines (MDA-MB-231, Hs 578T and MCF-7). Cell growth was monitored by crystal violet dye assay, and cell viability was quantitated by MTS dye reduction. Induction of apoptosis was determined by identification of morphological features of apoptosis using time-lapse videomicroscopy, identifying morphological changes in nucleis using Hoechst staining, quantitation of DNA fragmentation, level of expression of bcl-2 and bax proteins and identification of the proteolytic cleavage of Poly (ADP)-ribose polymerase (PARP). All four bisphosphonates significantly reduced cell viability in all three cell lines. Zoledronate was the most potent bisphosphonate with IC50values of 15, 20 and 3 μM respectively in MDA-MB-231, MCF-7 and Hs 578T cells. Corresponding values for pamidronate were 40, 35 and 25 μM, whereas clodronate and EB 1053 were more than two orders of magnitude less potent. An increase in the proportion of cells having morphological features characteristic of apoptosis, characteristic apoptotic changes in the nucleus, time-dependent increase in the percentage of fragmented chromosomal DNA, down-regulation in bcl-2 protein and proteolytic cleavage of PARP, all indicate that bisphosphonates have direct anti-tumour effects on human breast cancer cells. © 2000 Cancer Research Campaign PMID:10780527

  16. Telecommunication system for children undergoing stem cell transplantation.

    PubMed

    Higuchi, Kazumi; Nakazawa, Yozo; Sakata, Nobuhiro; Takizawa, Masaomi; Ohso, Keiko; Tanaka, Miyuki; Yanagisawa, Ryu; Koike, Kenichi

    2011-12-01

    Isolation in a germ-free unit is a stressful experience for pediatric patients undergoing hematopoietic stem cell transplantation (HSCT). To reduce the psychological distress of such children, a Web-based telecommunications system was developed. The authors developed a telecommunication system that linked a laminar air flow (LAF) room that had a high efficiency particulate air filter with the hospital school/patients' homes via the Internet. Fifteen children isolated in the LAF room for allogeneic HSCT were enrolled in this study. The present study evaluated whether the system was feasible for the patients during the acute phase of HSCT. In 10 patients, the proportion of days when they telecommunicated with teachers and/or other patients in the hospital school was 64.6 ± 32.3%. The telecommunication with the hospital school facilitated the continuation of school study under teachers' guidance, reducing the problem of lost schooling. In 13 patients, the proportion of days when they telecommunicated with their homes was 68.0 ± 34.8%. Ten of them frequently telecommunicated with their family members (especially siblings), and three patients called out to their pets at home. The incidence of telecommunication on the days when the patients had HSCT-related symptoms including vomiting did not differ from that of telecommunication on the days when no symptoms were evident. A telecommunication system linked to a hospital school and/or the patients' homes is feasible for children undergoing HSCT, and may improve their health-related quality of life. A larger, prospective study is required to evaluate whether the telecommunication system can reduce HSCT-associated psychological and psychiatric symptoms. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  17. Amphiregulin impairs apoptosis-stimulating protein 2 of p53 overexpression-induced apoptosis in hepatoma cells.

    PubMed

    Liu, Kai; Lin, Dongdong; Ouyang, Yabo; Pang, Lijun; Guo, Xianghua; Wang, Shanshan; Zang, Yunjin; Chen, Dexi

    2017-03-01

    Overexpression of apoptosis-stimulating protein 2 of p53 (ASPP2) induces apoptotic cell death in hepatoma cells (e.g. HepG2 cells) by enhancing the transactivation activity of p53, but long-term ASPP2 overexpression fails to induce more apoptosis since activation of the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway impairs the pro-apoptotic role of ASPP2. In this study, in recombinant adenovirus-ASPP2-infected HepG2 cells, ASPP2 overexpression induces amphiregulin expression in a p53-dependent manner. Although amphiregulin initially contributes to ASPP2-induced apoptosis, it eventually impairs the pro-apoptotic function of ASPP2 by activating the epidermal growth factor/epidermal growth factor receptor/SOS1 pathway, leading to apoptosis resistance. Moreover, blocking soluble amphiregulin with a neutralizing antibody also significantly increased apoptotic cell death of HepG2 cells due to treatment with methyl methanesulfonate, cisplatin, or a recombinant p53 adenovirus, suggesting that the function of amphiregulin involved in inhibiting apoptosis may be a common mechanism by which hepatoma cells escape from stimulus-induced apoptosis. Thus, our data elucidate an apoptosis-evasion mechanism in hepatocellular carcinoma and have potential implications for hepatocellular carcinoma therapy.

  18. p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells.

    PubMed

    Cheng, A; Chan, S L; Milhavet, O; Wang, S; Mattson, M P

    2001-11-16

    Neural progenitor cells (NPC) can proliferate, differentiate into neurons or glial cells, or undergo a form of programmed cell death called apoptosis. Although death of NPC occurs during development of the nervous system and in the adult, the underlying mechanisms are unknown. Here we show that nitric oxide (NO) can induce death of C17.2 NPC by a mechanism requiring activation of p38 MAP kinase, poly(ADP-ribose) polymerase, and caspase-3. Nitric oxide causes release of cytochrome c from mitochondria, and Bcl-2 protects the neural progenitor cells against nitric oxide-induced death, consistent with a pivotal role for mitochondrial changes in controlling the cell death process. Inhibition of p38 MAP kinase by SB203580 abolished NO-induced cell death, cytochrome c release, and activation of caspase-3, indicating that p38 activation serves as an upstream mediator in the cell death process. The anti-apoptotic protein Bcl-2 protected NPC against nitric oxide-induced apoptosis and suppressed activation of p38 MAP kinase. The ability of nitric oxide to trigger death of NPC by a mechanism involving p38 MAP kinase suggests that this diffusible gas may regulate NPC fate in physiological and pathological settings in which NO is produced.

  19. Erythropoietin inhibits apoptosis induced by photodynamic therapy in ovarian cancer cells.

    PubMed

    Solár, Peter; Koval, Ján; Mikes, Jaromír; Kleban, Ján; Solárová, Zuzana; Lazúr, Ján; Hodorová, Ingrid; Fedorocko, Peter; Sytkowski, Arthur J

    2008-08-01

    Recombinant human erythropoietin is widely used to treat anemia associated with cancer and with the myelosuppressive effects of chemotherapy, particularly platinum-based regimens. Erythropoietin is the principal regulator of erythroid cell proliferation, differentiation, and apoptosis. Recently, the antiapoptotic and proliferative effects of erythropoietin on nonhematopoietic cells were also established. We now show the effect of erythropoietin treatment on the response of A2780 and SKOV3 ovarian carcinoma cell lines to photodynamic therapy (PDT) using hypericin. SKOV3 exhibited an increased resistance to hypericin when cells were treated with erythropoietin. This resistance was reversed by treatment of SKOV3 cells with the specific Janus kinase 2 kinase inhibitor AG490 or the tyrosine kinase inhibitor genistein. These results support a role for the specific erythropoietin-induced Janus kinase 2/STAT signal transduction pathway in PDT resistance. Evidence of erythropoietin signaling was obtained by the demonstration of Akt phosphorylation in both A2780 and SKOV3 cells. Erythropoietin-treated SKOV3 cells exhibited decreased apoptosis induced by hypericin, an effect that was blocked by the phosphoinositide 3-kinase/Akt inhibitor wortmannin. These results may have important implications for ovarian cancer patients undergoing PDT and receiving erythropoietin.

  20. The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis.

    PubMed

    Boivin, Dominique; Gendron, Sébastien; Beaulieu, Edith; Gingras, Denis; Béliveau, Richard

    2002-08-01

    Neovastat (AE-941), a naturally occurring multifunctional antiangiogenic agent, has been shown to inhibit key components of the angiogenic process, including matrix metalloproteinases and vascular endothelial growth factor-mediated signaling events. In this study, we report the presence of a proapoptotic activity within this compound. Neovastat treatment of bovine aortic endothelial cells caused cell death with characteristics of apoptosis, including chromatin condensation and DNA fragmentation. Neovastat markedly induced caspase-3, caspase-8, and caspase-9 activities, at similar levels to those measured in cells treated with tumor necrosis factor-alpha. Activation of caspases by Neovastat appears to be essential for its proapoptotic effects because all apoptotic features were blocked by zVAD-fmk, a broad-spectrum caspase inhibitor. The activation of caspases was correlated with the cleavage of the nuclear substrate poly(ADP-ribose) polymerase, and by a concomitant release of cytochrome c from mitochondria to the cytoplasm. Neovastat-induced apoptosis appears to be specific to endothelial cells because treatment of other cell types such as U-87, COS-7, NIH-3T3, and SW1353 did not result in increased caspase-3 activity. These results demonstrate that Neovastat contains a proapoptotic factor that specifically induces the activation of caspases in endothelial cells and the resulting apoptosis of these cells.

  1. Induction of apoptosis by opium in some tumor cell lines.

    PubMed

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  2. Targeting SLUG sensitizes leukemia cells to ADR-induced apoptosis.

    PubMed

    Wei, Chang-Rong; Liu, Jun; Yu, Xiao-Jun

    2015-01-01

    Slug is an E-cadherin repressor and a suppressor of PUMA (p53 upregulated modulator of apoptosis) and it has recently been demonstrated that Slug plays an important role in controlling apoptosis. In this study, we examined whether Slug's ability to silence expression suppresses the growth of leukemia HL-60 cells and/or sensitizes leukemia HL-60 cells to adriamycin (ADR) through induction of apoptosis. SLUG siRNA was transfected into the HL-60 and HL-60(ADR) cell lines (an adriamycin resistant cell line). The stably SLUG siRNA transfected HL-60 and HL-60(ADR) cells was transiently transfected with PUMA siRNA. The mRNA and protein expression of SLUG and PUMA were determined by Quantitative real-time RT-PCR and Western blot assay. The effects of SLUG siRNA alone or combined with ADR or PUMA siRNA on growth and apoptosis in HL-60 and HL-60(ADR) cells was detected by MTT, ELISA and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. The results showed that SLUG was less expressed in the HL-60 cells, and high expressed in the HL-60(ADR) cells. Obvious down-regulation of SLUG mRNA and protein levels and up-regulation of PUMA mRNA and protein levels after SLUG siRNA transfection was showed in the HL-60(ADR) cells. Treatment with ADR induced SLUG mRNA and protein in the HL-60 cells. Significant positive correlation was observed between basal SLUG mRNA and protein and ADR sensitivity. SLUG gene silencing by SLUG siRNA transfection inhibited growth and induced apoptosis, and increased ADR killing of the HL-60 and HL-60(ADR) cell lines. After the SLUG siRNA transfected HL-60 and HL-60(ADR) cells was transiently transfected with PUMA siRNA, did not increase ADR killing of the HL-60 and HL-60(ADR) cell lines. SLUG level positively correlated with sensitivity to ADR. SLUG siRNA could effectively reduce SLUG expression and induce PUMA expression and restore the drug sensitivity of resistant leukemic cells to conventional chemotherapeutic agents.

  3. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    PubMed Central

    Pomares, Helena; Palmeri, Claudia M; Iglesias-Serret, Daniel; Moncunill-Massaguer, Cristina; Saura-Esteller, José; Núñez-Vázquez, Sonia; Gamundi, Enric; Arnan, Montserrat; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; González-Barca, Eva M

    2016-01-01

    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML. PMID:27542247

  4. Facile and quantitative electrochemical detection of yeast cell apoptosis

    NASA Astrophysics Data System (ADS)

    Yue, Qiulin; Xiong, Shiquan; Cai, Dongqing; Wu, Zhengyan; Zhang, Xin

    2014-03-01

    An electrochemical method based on square wave anodic stripping voltammetry (SWASV) was developed to detect the apoptosis of yeast cells conveniently and quantitatively through the high affinity between Cu2+ and phosphatidylserine (PS) translocated from the inner to the outer plasma membrane of the apoptotic cells. The combination of negatively charged PS and Cu2+ could decrease the electrochemical response of Cu2+ on the electrode. The results showed that the apoptotic rates of cells could be detected quantitatively through the variations of peak currents of Cu2+ by SWASV, and agreed well with those obtained through traditional flow cytometry detection. This work thus may provide a novel, simple, immediate and accurate detection method for cell apoptosis.

  5. Mitochondrial mediated thimerosal-induced apoptosis in a human neuroblastoma cell line (SK-N-SH).

    PubMed

    Humphrey, Michelle L; Cole, Marsha P; Pendergrass, James C; Kiningham, Kinsley K

    2005-06-01

    Environmental exposure to mercurials continues to be a public health issue due to their deleterious effects on immune, renal and neurological function. Recently the safety of thimerosal, an ethyl mercury-containing preservative used in vaccines, has been questioned due to exposure of infants during immunization. Mercurials have been reported to cause apoptosis in cultured neurons; however, the signaling pathways resulting in cell death have not been well characterized. Therefore, the objective of this study was to identify the mode of cell death in an in vitro model of thimerosal-induced neurotoxicity, and more specifically, to elucidate signaling pathways which might serve as pharmacological targets. Within 2 h of thimerosal exposure (5 microM) to the human neuroblastoma cell line, SK-N-SH, morphological changes, including membrane alterations and cell shrinkage, were observed. Cell viability, assessed by measurement of lactate dehydrogenase (LDH) activity in the medium, as well as the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, showed a time- and concentration-dependent decrease in cell survival upon thimerosal exposure. In cells treated for 24 h with thimerosal, fluorescence microscopy indicated cells undergoing both apoptosis and oncosis/necrosis. To identify the apoptotic pathway associated with thimerosal-mediated cell death, we first evaluated the mitochondrial cascade, as both inorganic and organic mercurials have been reported to accumulate in the organelle. Cytochrome c was shown to leak from the mitochondria, followed by caspase 9 cleavage within 8 h of treatment. In addition, poly(ADP-ribose) polymerase (PARP) was cleaved to form a 85 kDa fragment following maximal caspase 3 activation at 24 h. Taken together these findings suggest deleterious effects on the cytoarchitecture by thimerosal and initiation of mitochondrial-mediated apoptosis.

  6. Tocilizumab unmasks a stage-dependent interleukin-6 component in statin-induced apoptosis of metastatic melanoma cells

    PubMed Central

    Minichsdorfer, Christoph; Wasinger, Christine; Sieczkowski, Evelyn; Atil, Bihter

    2015-01-01

    The interleukin (IL)-6 inhibits the growth of early-stage melanoma cells, but not metastatic cells. Metastatic melanoma cells are susceptible to statin-induced apoptosis, but this is not clear for early-stage melanoma cells. This study aimed to investigate the IL-6 susceptibility of melanoma cells from different stages in the presence of simvastatin to overcome loss of growth arrest. ELISA was used to detect secreted IL-6 in human melanoma cells. The effects of IL-6 were measured by western blots for STAT3 and Bcl-2 family proteins. Apoptosis and proliferation were measured by caspase 3 activity, Annexin V staining, cell cycle analysis, and a wound-healing assay. Human metastatic melanoma cells A375 and 518A2 secrete high amounts of IL-6, in contrast to early-stage WM35 cells. Canonical IL-6 signaling is intact in these cells, documented by transient phosphorylation of STAT3. Although WM35 cells are highly resistant to simvastatin-induced apoptosis, coadministration with IL-6 enhanced the susceptibility to undergo apoptosis. This proapoptotic effect of IL-6 might be explained by a downregulation of Bcl-XL, observed only in WM35 cells. Furthermore, the IL-6 receptor blocking antibody tocilizumab was coadministered and unmasked an IL-6-sensitive proportion in the simvastatin-induced caspase 3 activity of metastatic melanoma cells. These results confirm that simvastatin facilitates apoptosis in combination with IL-6. Although endogenous IL-6 secretion is sufficient in metastatic melanoma cells, exogenously added IL-6 is needed for WM35 cells. This effect may explain the failure of simvastatin to reduce melanoma incidence in clinical trials and meta-analyses. PMID:26020489

  7. Apoptosis of bovine granulosa cells: Intracellular pathways and differentiation.

    PubMed

    Carou, M C; Cruzans, P R; Maruri, A; Farina, M G; Fiorito, C D; Olea, G; Lombardo, D M

    2017-06-01

    Follicular atresia in granulosa and theca cells occurs by apoptosis through weak hormonal stimulation. We have previously proposed an in vitro model to study this process by inducing apoptosis in BGC-1, a bovine granulosa cell line, and in primary cultures from ovaries with or without corpus luteum (CPGB+ and CPGB-, respectively), with different doses of gonadotropin releasing hormone (GnRH) analogs (leuprolide acetate (LA) as agonist and antide as antagonist). BGC-1 represent immature granulosa cells, whereas CPGB represent different degrees of luteinization. Our aim was to evaluate the intracellular pathways involved in the GnRH regulation of apoptosis in BGC-1. Treatment with LA 100nM but not with antide led to an increase in BAX over BCL-2 expression, showing antagonism of antide. All treatments inhibited phospholipase-D (PLD) activity compared to control, implying agonist behavior of antide. Progesterone in vitro production and 3β-hydroxysteroid dehydrogenase (3β-HSD) expression revealed different degrees of luteinization: BGC-1 were immature, whereas CPGB+ were less differentiated than CPGB-. We concluded that LA-induced apoptosis in BGC-1 occurs by activation of the mitochondrial pathway and by inhibition of PLD activity and that antide might work both as an antagonist of the intrinsic pathway and as an agonist of the extrinsic protection pathway by inhibiting PLD activity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Calreticulin is a fine tuning molecule in epibrassinolide-induced apoptosis through activating endoplasmic reticulum stress in colon cancer cells.

    PubMed

    Obakan-Yerlikaya, Pinar; Arisan, Elif Damla; Coker-Gurkan, Ajda; Adacan, Kaan; Ozbey, Utku; Somuncu, Berna; Baran, Didem; Palavan-Unsal, Narcin

    2017-06-01

    Epibrassinolide (EBR), a member of brassinostreoids plant hormones with cell proliferation promoting role in plants, is a natural polyhydroxysteroid with structural similarity to steroid hormones of vertebrates. EBR has antiproliferative and apoptosis-inducing effect in various cancer cells. Although EBR has been shown to affect survival and mitochondria-mediated apoptosis pathways in a p53-independent manner, the exact molecular targets of EBR are still under investigation. Our recent SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) data showed that the most significantly altered protein after EBR treatment was calreticulin (CALR). CALR, a chaperone localized in endoplasmic reticulum (ER) lumen, plays role in protein folding and buffering Ca(2+) ions. The alteration of CALR may cause ER stress and unfolded protein response correspondingly the induction of apoptosis. Unfolded proteins are conducted to 26S proteasomal degradation following ubiquitination. Our study revealed that EBR treatment caused ER stress and UPR by altering CALR expression causing caspase-dependent apoptosis in HCT 116, HT29, DLD-1, and SW480 colon cancer cells. Furthermore, 48 h EBR treatment did not caused UPR in Fetal Human Colon cells (FHC) and Mouse Embryonic Fibroblast cells (MEF). In addition our findings showed that HCT 116 colon cancer cells lacking Bax and Puma expression still undergo UPR and related apoptosis. CALR silencing and rapamycin co-treatment prevented EBR-induced UPR and apoptosis, whereas 26S proteasome inhibition further increased the effect of EBR in colon cancer cells. All these findings showed that EBR is an ER stress and apoptotic inducer in colon cancer cells without affecting non-malignant cells. © 2017 Wiley Periodicals, Inc.

  9. [Quercetin induces the apoptosis of human PC-3 cells].

    PubMed

    Zhu, Qing-Yi; Hu, Rui; Liu, Li; Yuan, Lin; Huang, Wei-Zhou; Ma, Long; Gu, Xiao-Jian

    2011-09-01

    To study the effect of quercetin on the apoptosis of human PC-3 cells. Human PC-3 cells were cultured in vitro and then treated with quercetin at the concentrations of 50, 100, 150, 200 and 250 micromol/L. The inhibition rate of quercetin on the PC-3 cells was detected by MTT, the apoptosis of the cells determined by flow cytometry, and the changes of the cellular ultramicrostructure observed by transmission electron microscopy. Quercetin markedly inhibited the proliferation of PC-3 cells in vitro in a time- and dose-dependent manner. Its inhibition rates were (3.01 +/- 1.32)%, (4.84 +/- 1.73)%, (20.35 +/- 1.30)%, (16.78 +/- 1.89)% and (27.25 +/- 4.01)% at 24 hours, and (10.18 +/- 1.16)%, (6.22 +/- 0.04)%, (24.29 +/- 4.19)%, (22.4 +/- 4.26)% and (41.42 +/- 5.43)% at 48 hours in the 50, 100, 150, 200 and 250 micromol/L groups, respectively, with statistical significance at the concentration of > 150 micromol/L (P < 0.05). Flow cytometry showed that the apoptosis of PC-3 cells was increased with the elevated concentration and prolonged time of Quercetin treatment, (19.10 +/- 0.28)% and (26.55 +/- 0.78)% at 24 hours, and (27.65 +/- 1.06)% and (38.30 +/- 5.96)% at 48 hours in the 150 and 200 micromol/L groups, respectively (P < 0.05). Typical changes in the morphology of the cells were observed under the transmission electron microscope. Quercetin can inhibit the proliferation and induce the apoptosis of human PC-3 cells, but its action mechanism remains to be further investigated.

  10. Mitotic Arrest-Associated Apoptosis Induced by Sodium Arsenite in A375 Melanoma Cells Is BUBR1-Dependent

    PubMed Central

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2009-01-01

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr161 phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic’s chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity. PMID:18501396

  11. Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent

    SciTech Connect

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2008-08-15

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr{sup 161} phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic's chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity.

  12. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells.

    PubMed

    Yang, Shida; Zhu, Zhiyong; Zhang, Xiaobing; Zhang, Ning; Yao, Zhicheng

    2017-01-24

    Idelalisib, a PI3K inhibitor, specifically targeting p110δ, has been approved for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. However, the mechanisms of action of idelalisib in colon cancer cells are not well understood. We investigated how idelalisib suppresses colon cancer cells growth and potentiates effects of other chemotherapeutic drugs. In this study, we found that idelalisib treatment induces PUMA in colon cancer cells irrespective of p53 status through the p65 pathway following AKT inhibition and glycogen synthase kinase 3β (GSK3β) activation. PUMA is necessary for idelalisib-induced apoptosis in colon cancer cells. Idelalisib also synergized with 5-FU or regorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and antitumor effect of idelalisib in xenograft model. These results demonstrate a critical role of PUMA in mediating the anticancer effects of idelalisib in colon cancer cells and suggest that PUMA induction can be used as an indicator of idelalisib sensitivity, and also have important implications for it clinical applications.

  13. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells

    PubMed Central

    Yang, Shida; Zhu, Zhiyong; Zhang, Xiaobing; Zhang, Ning; Yao, Zhicheng

    2017-01-01

    Idelalisib, a PI3K inhibitor, specifically targeting p110δ, has been approved for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. However, the mechanisms of action of idelalisib in colon cancer cells are not well understood. We investigated how idelalisib suppresses colon cancer cells growth and potentiates effects of other chemotherapeutic drugs. In this study, we found that idelalisib treatment induces PUMA in colon cancer cells irrespective of p53 status through the p65 pathway following AKT inhibition and glycogen synthase kinase 3β (GSK3β) activation. PUMA is necessary for idelalisib-induced apoptosis in colon cancer cells. Idelalisib also synergized with 5-FU or regorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and antitumor effect of idelalisib in xenograft model. These results demonstrate a critical role of PUMA in mediating the anticancer effects of idelalisib in colon cancer cells and suggest that PUMA induction can be used as an indicator of idelalisib sensitivity, and also have important implications for it clinical applications. PMID:28008149

  14. Stem cells are resistant to TRAIL receptor-mediated apoptosis.

    PubMed

    Szegezdi, Eva; O'Reilly, Aoife; Davy, Yeung; Vawda, Reaz; Taylor, Deanna L; Murphy, Mary; Samali, Afshin; Mehmet, Huseyin

    2009-01-01

    New therapeutic approaches aim to eradicate tumours by expression of tumouricidal proteins in the tumour stroma. One such anti-neoplastic protein is tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) because it induces apoptosis in cancerous cells, but not in non-transformed cells. Stem cells can migrate to, survive and proliferate in tumours. We examined the suitability of bone marrow-derived adult mesenchymal stem cells (bmMSC), foetal-MSC and umbilical cord matrix stem cells (Wharton's Jelly MSCs) as TRAIL-delivery vehicles. Although all MSC types expressed DR4 and/or DR5, none of them were sensitive to TRAIL-induced apoptosis. Selective activation of DR4 or DR5 with agonistic antibodies or DR5-selective TRAIL-mutant (D269H/E195R) revealed that the TRAIL receptors are inactive in MSCs. In fMSC DR5 was not fully inactivated, its activity however was minimal in comparison to the colon carcinoma cell, Colo205. The intracellular components of the TRAIL-apoptotic pathway, such as pro-caspase-8 and -9 were also expressed at very low; almost undetectable levels in all three MSC types. In conclusion, the MSC species examined are resistant to TRAIL and thus can be suitable tools for TRAIL delivery to tumours.

  15. Stem cells are resistant to TRAIL receptor-mediated apoptosis

    PubMed Central

    Szegezdi, Eva; O’Reilly, Aoife; Davy, Yeung; Vawda, Reaz; Taylor, Deanna L; Murphy, Mary; Samali, Afshin; Mehmet, Huseyin

    2009-01-01

    New therapeutic approaches aim to eradicate tumours by expression of tumouricidal proteins in the tumour stroma. One such anti-neoplastic protein is tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) because it induces apoptosis in cancerous cells, but not in non-transformed cells. Stem cells can migrate to, survive and proliferate in tumours. We examined the suitability of bone marrow-derived adult mesenchymal stem cells (bmMSC), foetal-MSC and umbilical cord matrix stem cells (Wharton’s Jelly MSCs) as TRAIL-delivery vehicles. Although all MSC types expressed DR4 and/or DR5, none of them were sensitive to TRAIL-induced apoptosis. Selective activation of DR4 or DR5 with agonistic antibodies or DR5-selective TRAIL-mutant (D269H/E195R) revealed that the TRAIL receptors are inactive in MSCs. In fMSC DR5 was not fully inactivated, its activity however was minimal in comparison to the colon carcinoma cell, Colo205. The intracellular components of the TRAIL-apoptotic pathway, such as pro-caspase-8 and -9 were also expressed at very low; almost undetectable levels in all three MSC types. In conclusion, the MSC species examined are resistant to TRAIL and thus can be suitable tools for TRAIL delivery to tumours. PMID:19604313

  16. Prepubertal male rats with high rates of germ-cell apoptosis present exacerbated rates of germ-cell apoptosis after serotonin depletion.

    PubMed

    Méndez Palacios, Néstor; Escobar, María Elena Ayala; Mendoza, Maximino Méndez; Crispín, Rubén Huerta; Andrade, Octavio Guerrero; Melández, Javier Hernández; Martínez, Andrés Aragón

    2016-04-01

    Male germ-cell apoptosis occurs naturally and can be increased by exposure to drugs and toxic chemicals. Individuals may have different rates of apoptosis and are likely to also exhibit differential sensitivity to outside influences. Previously, we reported that p-chloroamphetamine (pCA), a substance that inhibits serotonin synthesis, induced germ-cell apoptosis in prepubertal male rats. Here, we identified prepubertal rats with naturally high or low rates of germ-cell apoptosis and evaluated gene expression in both groups. Bax and Shbg mRNA levels were higher in rats with high rates of germ-cell apoptosis. Rats were then treated with pCA and the neuro-hormonal response and gene expression were evaluated. Treatment with pCA induced a reduction in serotonin concentrations but levels of sex hormones and gonadotrophins were not changed. Rats with initially high rates of germ-cell apoptosis had even higher rates of germ-cell apoptosis after treatment with pCA. In rats with high rates of germ-cell apoptosis Bax mRNA expression remained high after treatment with pCA. On the basis of category, an inverse relationship between mRNA expression of Bax and Bcl2, Bax and AR and Bax and Hsd3b2 was found. Here we provide evidence that innate levels of germ-cell apoptosis could be explained by the level of mRNA expression of genes involved with apoptosis and spermatogenesis.

  17. Red blood cell transfusion for people undergoing hip fracture surgery.

    PubMed

    Brunskill, Susan J; Millette, Sarah L; Shokoohi, Ali; Pulford, E C; Doree, Carolyn; Murphy, Michael F; Stanworth, Simon

    2015-04-21

    The incidence of hip fracture is increasing and it is more common with increasing age. Surgery is used for almost all hip fractures. Blood loss occurs as a consequence of both the fracture and the surgery and thus red blood cell transfusion is frequently used. However, red blood cell transfusion is not without risks. Therefore, it is important to identify the evidence for the effective and safe use of red blood cell transfusion in people with hip fracture. To assess the effects (benefits and harms) of red blood cell transfusion in people undergoing surgery for hip fracture. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register (31 October 2014), the Cochrane Central Register of Controlled Trials (The Cochrane Library, 2014, Issue 10), MEDLINE (January 1946 to 20 November 2014), EMBASE (January 1974 to 20 November 2014), CINAHL (January 1982 to 20 November 2014), British Nursing Index Database (January 1992 to 20 November 2014), the Systematic Review Initiative's Transfusion Evidence Library, PubMed for e-publications, various other databases and ongoing trial registers. Randomised controlled trials comparing red blood cell transfusion versus no transfusion or an alternative to transfusion, different transfusion protocols or different transfusion thresholds in people undergoing surgery for hip fracture. Three review authors independently assessed each study's risk of bias and extracted data using a study-specific form. We pooled data where there was homogeneity in the trial comparisons and the timing of outcome measurement. We used GRADE criteria to assess the quality (low, moderate or high) of the evidence for each outcome. We included six trials (2722 participants): all compared two thresholds for red blood cell transfusion: a 'liberal' strategy to maintain a haemoglobin concentration of usually 10 g/dL versus a more 'restrictive' strategy based on symptoms of anaemia or a lower haemoglobin concentration, usually 8 g/dL. The exact

  18. A Ribonuclease Isolated from Wild Ganoderma Lucidum Suppressed Autophagy and Triggered Apoptosis in Colorectal Cancer Cells

    PubMed Central

    Dan, Xiuli; Liu, Wenlong; Wong, Jack H.; Ng, Tzi B.

    2016-01-01

    The mushroom Ganoderma lucidum (G. lucidum) has been consumed in China as a medicine for promoting health and longevity for thousands of years. Due to its paramount and multiple pharmaceutical effects, G. lucidum has received considerable attention from researchers and its chemical constituents as well as their respective functions were gradually unveiled by using modern research methods. Herein, we reported the isolation of a protein (Ganoderma lucidum ribonuclease, GLR) with anti-colorectal cancer activities from G. lucidum. This protein is a 17.4-kDa RNA degrading enzyme (ribonuclease) and was purified by using liquid chromatography procedures. GLR manifested potent anti-proliferative and anti-colony formation activities on HT29 and HCT116 colorectal cancer cells by inducing cell cycle arrest in G1 phase through the regulation of cyclin D1 and P53 expression. GLR was demonstrated to induce cell apoptosis in HCT116 cells by activating unfolded protein response and caspase-9 regulated pathways. Besides, the ability to undergo autophagy which is a stress adaption mechanism to cope with metabolic crisis was significantly suppressed by GLR treatment in HCT116 cells. The activation of apoptosis in GLR-treated HT29 cells was, however, independent of caspase-9 and the suppression of autophagy was also relatively minor. Thus the apoptosis of HT29 cells triggered by GLR was much milder than that in HCT116 cells. Our findings show that the RNase from G. lucidum may be one of the bioactive components that contribute to the anti-colorectal cancer activity of G. lucidum. PMID:27504094

  19. A Ribonuclease Isolated from Wild Ganoderma Lucidum Suppressed Autophagy and Triggered Apoptosis in Colorectal Cancer Cells.

    PubMed

    Dan, Xiuli; Liu, Wenlong; Wong, Jack H; Ng, Tzi B

    2016-01-01

    The mushroom Ganoderma lucidum (G. lucidum) has been consumed in China as a medicine for promoting health and longevity for thousands of years. Due to its paramount and multiple pharmaceutical effects, G. lucidum has received considerable attention from researchers and its chemical constituents as well as their respective functions were gradually unveiled by using modern research methods. Herein, we reported the isolation of a protein (Ganoderma lucidum ribonuclease, GLR) with anti-colorectal cancer activities from G. lucidum. This protein is a 17.4-kDa RNA degrading enzyme (ribonuclease) and was purified by using liquid chromatography procedures. GLR manifested potent anti-proliferative and anti-colony formation activities on HT29 and HCT116 colorectal cancer cells by inducing cell cycle arrest in G1 phase through the regulation of cyclin D1 and P53 expression. GLR was demonstrated to induce cell apoptosis in HCT116 cells by activating unfolded protein response and caspase-9 regulated pathways. Besides, the ability to undergo autophagy which is a stress adaption mechanism to cope with metabolic crisis was significantly suppressed by GLR treatment in HCT116 cells. The activation of apoptosis in GLR-treated HT29 cells was, however, independent of caspase-9 and the suppression of autophagy was also relatively minor. Thus the apoptosis of HT29 cells triggered by GLR was much milder than that in HCT116 cells. Our findings show that the RNase from G. lucidum may be one of the bioactive components that contribute to the anti-colorectal cancer activity of G. lucidum.

  20. Apoptosis as the focus of an authentic research experience in a cell physiology laboratory.

    PubMed

    Byrd, Shere K

    2016-06-01

    Curriculum-embedded independent research is a high-impact teaching practice that has been shown to increase student engagement and learning. This article describes a multiweek laboratory project for an upper-division undergraduate cell physiology laboratory using apoptosis via the mitochondrial pathway as the overarching theme. Students did literature research on apoptotic agents that acted via the mitochondrial pathway. Compounds ranged from natural products such as curcumin to synthetic compounds such as etoposide. Groups of two to three students planned a series of experiments using one of three cultured cell lines that required them to 1) learn to culture cells; 2) determine treatment conditions, including apoptotic agent solubility and concentration ranges that had been reported in the literature; 3) choose two methods to validate/quantify apoptotic capacity of the reagent; and 4) attempt to "rescue" cells from undergoing apoptosis using one of several available compounds/methods. In essence, given some reagent and equipment constraints, students designed an independent experiment to highlight the effects of different apoptotic agents on cells in culture. Students presented their experimental designs as in a laboratory group meeting and their final findings as a classroom "symposium." This exercise can be adapted to many different types of laboratories with greater or lesser equipment and instrumentation constraints, incorporates several core cell physiology methods, and encourages key experimental design and critical thinking components of independent research.

  1. The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

    PubMed Central

    Lee, Chang-Hoon; Lee, Kyoung-Hee; Jang, An-Hee

    2017-01-01

    Background Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions. PMID:28119751

  2. PERK-mediated Autophagy in Osteosarcoma Cells Resists ER Stress-induced Cell Apoptosis

    PubMed Central

    Ji, Guang-rong; Yu, Nai-chun; Xue, Xiang; Li, Zong-guang

    2015-01-01

    Osteosarcoma is a bone cancer that develops commonly in children and adolescents. However, osteosarcoma treatments often fail by the development of chemoresistance to apoptosis, and the molecular mechanisms remain unclear. In this study, we propose that autophagy is responsible for osteosarcomatous resistance to apoptosis. We implicate PERK-mediated autophagy as a significant contributor to apoptosis resistance due to ER stress in osteosarcoma cells. By immunostainings and western blots, we identified that PERK activated osteosarcomatous autophagy via inhibiting mTORC1 pathway, thereby preventing cell apoptosis. While using RNAi, we knocked down PERK and found that autophagy was suppressed, result in osteosarcomatous apoptosis. Our results identify a novel role of PERK-mediated autophagy as a significant mechanism for osteosarcoma cell survival. These results will help to understand the mechanism of chemoresistance in osteosarcoma cells, and indicate a novel target for improving osteosarcoma therapy. PMID:26078722

  3. PERK-mediated Autophagy in Osteosarcoma Cells Resists ER Stress-induced Cell Apoptosis.

    PubMed

    Ji, Guang-rong; Yu, Nai-chun; Xue, Xiang; Li, Zong-guang

    2015-01-01

    Osteosarcoma is a bone cancer that develops commonly in children and adolescents. However, osteosarcoma treatments often fail by the development of chemoresistance to apoptosis, and the molecular mechanisms remain unclear. In this study, we propose that autophagy is responsible for osteosarcomatous resistance to apoptosis. We implicate PERK-mediated autophagy as a significant contributor to apoptosis resistance due to ER stress in osteosarcoma cells. By immunostainings and western blots, we identified that PERK activated osteosarcomatous autophagy via inhibiting mTORC1 pathway, thereby preventing cell apoptosis. While using RNAi, we knocked down PERK and found that autophagy was suppressed, result in osteosarcomatous apoptosis. Our results identify a novel role of PERK-mediated autophagy as a significant mechanism for osteosarcoma cell survival. These results will help to understand the mechanism of chemoresistance in osteosarcoma cells, and indicate a novel target for improving osteosarcoma therapy.

  4. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    PubMed

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency.

  5. Poliovirus protease 3C(pro) kills cells by apoptosis.

    PubMed

    Barco, A; Feduchi, E; Carrasco, L

    2000-01-20

    The tetracycline-based Tet-Off expression system has been used to analyze the effects of poliovirus protease 3C(pro) on human cells. Stable HeLa cell clones that express this poliovirus protease under the control of an inducible, tightly regulated promoter were obtained. Tetracycline removal induces synthesis of 3C protease, followed by drastic morphological alterations and cellular death. Degradation of cellular DNA in nucleosomes and generation of apoptotic bodies are observed from the second day after 3C(pro) induction. The cleavage of poly(ADP-ribose) polymerase, an enzyme involved in DNA repair, occurs after induction of 3C(pro), indicating caspase activation by this poliovirus protease. The 3C(pro)-induced apoptosis is blocked by the caspase inhibitor z-VAD-fmk. Our findings suggest that the protease 3C is responsible for triggering apoptosis in poliovirus-infected cells by a mechanism that involves caspase activation. Copyright 2000 Academic Press.

  6. Endogenous interleukin 18 regulates testicular germ cell apoptosis during endotoxemia.

    PubMed

    Inoue, Taketo; Aoyama-Ishikawa, Michiko; Kamoshida, Shingo; Nishino, Satoshi; Sasano, Maki; Oka, Nobuki; Yamashita, Hayato; Kai, Motoki; Nakao, Atsunori; Kotani, Joji; Usami, Makoto

    2015-08-01

    Orchitis (testicular swelling) often occurs during systemic inflammatory conditions, such as sepsis. Interleukin 18 (IL18) is a proinflammatory cytokine and is an apoptotic mediator during endotoxemia, but the role of IL18 in response to inflammation in the testes was unclear. WT and IL18 knockout (KO) mice were injected lipopolysaccharide (LPS) to induce endotoxemia and examined 12 and 48  h after LPS administration to model the acute and recovery phases of endotoxemia. Caspase activation was assessed using immunohistochemistry. Protein and mRNA expression were examined by western blot and quantitative real-time RT-PCR respectively. During the acute phase of endotoxemia, apoptosis (as indicated by caspase-3 cleavage) was increased in WT mice but not in IL18 KO mice. The death receptor-mediated and mitochondrial-mediated apoptotic pathways were both activated in the WT mice but not in the KO mice. During the recovery phase of endotoxemia, apoptosis was observed in the IL18 KO mice but not in the WT mice. Activation of the death-receptor mediated apoptotic pathway could be seen in the IL18 KO mice but not the WT mice. These results suggested that endogenous IL18 induces germ cell apoptosis via death receptor mediated- and mitochondrial-mediated pathways during the acute phase of endotoxemia and suppresses germ cell apoptosis via death-receptor mediated pathways during recovery from endotoxemia. Taken together, IL18 could be a new therapeutic target to prevent orchitis during endotoxemia.

  7. Induction of apoptosis and expression of cell cycle regulatory proteins in response to a phytosphingosine derivative in HaCaT human keratinocyte cells.

    PubMed

    Kim, Hye Jung; Kim, Ho Jin; Lim, Sung Cil; Kim, Sang Hoon; Kim, Tae-Yoon

    2003-12-31

    Ceramide, a compound derived from sphingomyelin, a sphingolipid precursor, affects cell functions such as growth, differentiation, cell division and apoptosis. We have shown that the phytosphingosine derivative, tetra-acetyl phytosphingosine (TAPS), inhibits the growth of HaCaT cells mainly by inducing apoptosis. In this study, we investigated its effect on the cell cycle and on cell cycle regulatory proteins. We showed by flow cytometry and staining for BrdU and phosphorylated histone H3 that the cells accumulated in S phase and arrested in G2 phase and did not divide before undergoing apoptosis. The level of the pro-apoptotic regulator Bax peaked after 6 h and then returned to normal, whereas the level of the anti-apoptotic regulator Bcl-xL, which is presumably induced in order to inhibit apoptosis, started to increase at 6 h, and remained high for 24 h. Phosphorylation of Cdc2 on Tyr-15 greatly increased while p21 rose to a plateau at 8 h. Levels of p53 and Mad2 proteins were unchanged. Our observations suggest that TAPS induces apoptosis of the HaCaT cells at least in part via transient G2 arrest.

  8. Active Depletion of Host Cell Inhibitor-of-Apoptosis Proteins Triggers Apoptosis upon Baculovirus DNA Replication▿

    PubMed Central

    Vandergaast, Rianna; Schultz, Kimberly L. W.; Cerio, Rebecca J.; Friesen, Paul D.

    2011-01-01

    Apoptosis is an important antivirus defense by virtue of its impact on virus multiplication and pathogenesis. To define molecular mechanisms by which viruses are detected and the apoptotic response is initiated, we examined the antiviral role of host inhibitor-of-apoptosis (IAP) proteins in insect cells. We report here that the principal IAPs, DIAP1 and SfIAP, of the model insects Drosophila melanogaster and Spodoptera frugiperda, respectively, are rapidly depleted and thereby inactivated upon infection with the apoptosis-inducing baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Virus-induced loss of these host IAPs triggered caspase activation and apoptotic death. Elevation of IAP levels by ectopic expression repressed caspase activation. Loss of host IAP in both species was triggered by AcMNPV DNA replication. By using selected inhibitors, we found that virus-induced IAP depletion was mediated in part by the proteasome but not by caspase cleavage. Consistent with this conclusion, mutagenic disruption of the SfIAP RING motif, which acts as an E3 ubiquitin ligase, stabilized SfIAP during infection. Importantly, SfIAP was also stabilized upon the removal of its 99-residue N-terminal leader, which serves as a critical determinant of IAP turnover. These data indicated that a host pathway initiated by virus DNA replication and acting through instability motifs embedded within IAP triggers IAP depletion and thereby causes apoptosis. Taken together, the results of our study suggest that host modulation of cellular IAP levels is a conserved mechanism by which insects mount an apoptotic antiviral response. Thus, host IAPs may function as critical sentinels of virus invasion in insects. PMID:21653668

  9. TUCAN/CARDINAL/CARD8 and apoptosis resistance in non-small cell lung cancer cells

    PubMed Central

    Checinska, Agnieszka; Giaccone, Giuseppe; Hoogeland, Bas SJ; Ferreira, Carlos G; Rodriguez, Jose A; Kruyt, Frank AE

    2006-01-01

    Background Activation of caspase-9 in response to treatment with cytotoxic drugs is inhibited in NSCLC cells, which may contribute to the clinical resistance to chemotherapy shown in this type of tumor. The aim of the present study was to investigate the mechanism of caspase-9 inhibition, with a focus on a possible role of TUCAN as caspase-9 inhibitor and a determinant of chemosensitivity in NSCLC cells. Methods Caspase-9 processing and activation were investigated by Western blot and by measuring the cleavage of the fluorogenic substrate LEHD-AFC. Proteins interaction assays, and RNA interference in combination with cell viability and apoptosis assays were used to investigate the involvement of TUCAN in inhibition of caspase-9 and chemosensitivity NSCLC. Results Analysis of the components of the caspase-9 activation pathway in a panel of NSCLC and SCLC cells revealed no intrinsic defects. In fact, exogenously added cytochrome c and dATP triggered procaspase-9 cleavage and activation in lung cancer cell lysates, suggesting the presence of an inhibitor. The reported inhibitor of caspase-9, TUCAN, was exclusively expressed in NSCLC cells. However, interactions between TUCAN and procaspase-9 could not be demonstrated by any of the assays used. Furthermore, RNA interference-mediated down-regulation of TUCAN did not restore cisplatin-induced caspase-9 activation or affect cisplatin sensitivity in NSCLC cells. Conclusion These results indicate that procaspase-9 is functional and can undergo activation and full processing in lung cancer cell extracts in the presence of additional cytochrome c/dATP. However, the inhibitory protein TUCAN does not play a role in inhibition of procaspase-9 and in determining the sensitivity to cisplatin in NSCLC. PMID:16796750

  10. Induction of apoptosis in glioma cells requires cell-to-cell contact with human umbilical cord blood stem cells.

    PubMed

    Gondi, Christopher S; Gogineni, Venkateswara R; Chetty, Chandramu; Dasari, Venkata R; Gorantla, Bharathi; Gujrati, Meena; Dinh, Dzung H; Rao, Jasti S

    2010-05-01

    We have previously demonstrated the multipotent nature of human umbilical cord blood stem cells (hUCB). In this study, we have attempted to show the use of hUCB in glioma therapy. We used hUCB enriched in CD44 and CD133 cells for our studies and observed that glioma cells co-cultured with hUCB undergo apoptosis. To prove the role of cell-to-cell contact in the induction of apoptotic events, we used a modified 0.22 microm Boyden's chamber where the upper surface was used to culture glioma cells (SNB19 or U87) or xenografts (4910 or 5310) and the lower surface to culture hUCB. TUNEL assay was carried out to determine the degree of apoptotic induction and we observed that glioma or xenograft cells co-cultured with hUCB had a higher number of TUNEL-positive characteristics (63+/-6%) compared to the controls. Further, we co-cultured glioma cells labeled with lipophilic green fluorescent dye and hUCB labeled with lipophilic red fluorescent dye. FACS analysis of cells collected from the upper and lower surfaces revealed that glioma cells had taken up red fluorescent dye from the stem cells (70+/-3%) when compared to glioma cells co-cultured with fibroblast cells (15+/-4%). The apoptotic events in the glioma and xenograft cells co-cultured with hUCB were also confirmed by Western blot analysis for the cleavage of PARP and activation of caspase 8. In addition, elevated levels of CHK-2 levels and downregulation of MAP2K1 were observed in glioma cells co-cultured with hUCB indicating the DNA damage and decrease in cell survival. Nude mice, intracranially implanted with luciferase-expressing U87 cells followed by implantation of hUCB or human fibroblast cells showed retardation of intracranial tumors in hUCB-implanted mice. Taken together, these results demonstrate that hUCB have therapeutic potential with possible clinical implications.

  11. Changes in gap junction organization and decreased coupling during induced apoptosis in lens epithelial and NIH-3T3 cells.

    PubMed

    Theiss, Carsten; Mazur, Antonina; Meller, Karl; Mannherz, Hans Georg

    2007-01-01

    We demonstrate that global induction of apoptosis in primary bovine lens epithelial (LEC) or fibroblastic mouse NIH-3T3 cells by staurosporine, puromycin, cycloheximide, or etoposide is accompanied by a decrease in coupling by gap junctions. Cell coupling as tested by neurobiotin spreading was maintained when the LEC or NIH-3T3 cells were pre-incubated with the pan-caspase inhibitor zVAD or the caspase-3 inhibiting tetrapeptide DEVD. Immunohistochemistry using anti-connexin-43 antibodies showed a reduction of plasma membrane integrated connexin-43 in both cell lines when undergoing apoptosis. Western blotting indicated degradation of connexin-43 that was inhibited by zVAD or DEVD. Cell coupling at single cell level was tested by direct microinjecting into LEC apoptosis-inducing agents of low molecular mass like staurosporine, etoposide and puromycin or the high molecular mass proteins caspase-3 and -8 in activated state. Microinjection of puromycin or etoposide induced apoptotic morphological changes of only the injected cell within 90 or 180 min, but did not affect adjacent cells. In contrast, microinjection of staurosporine led to a rapid induction of apoptosis of the injected and a number of adjacent cells suggesting spreading of staurosporine most probably through gap junction pores held open by dephosphorylation of connexin-43 as verified by immunoblotting and staining using a phospho-serine368-specific anti-connexin-43 antibody. Microinjection of active caspase-8 led after 3 h to morphological apoptotic alterations of only the injected cell, but did not inhibit spreading of co-injected neurobiotin to neighboring cells during the first hour. In contrast, microinjection of active caspase-3-induced apoptosis only of the injected cell after 60 min and rapidly and completely suppressed coupling to neighboring cells.

  12. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy

    PubMed Central

    Ma, Dan-Dan; Yang, Wan-Xi

    2016-01-01

    Engineered nanoparticles (ENPs) have been widely applied in industry, commodities, biology and medicine recently. The potential for many related threats to human health has been highlighted. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs such as brain, liver, lung, testes, etc, and cause toxic effects. Many references have studied ENP effects on the cells of different organs with related cell apoptosis noted. Understanding such pathways towards ENP induced apoptosis may aid in the design of effective cancer targeting ENP drugs. Such ENPs can either have a direct effect towards cancer cell apoptosis or can be used as drug delivery agents. Characteristics of ENPs, such as sizes, shape, forms, charges and surface modifications are all seen to play a role in determining their toxicity in target cells. Specific modifications of such characteristics can be applied to reduce ENP bioactivity and thus alleviate unwanted cytotoxicity, without affecting the intended function. This provides an opportunity to design ENPs with minimum toxicity to non-targeted cells. PMID:27056889

  13. Intracellular GTP level determines cell's fate toward differentiation and apoptosis

    SciTech Connect

    Meshkini, Azadeh; Yazdanparast, Razieh Nouri, Kazem

    2011-06-15

    Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKC{alpha} and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis. - Graphical abstract: Display Omitted

  14. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    PubMed

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  15. EZH2 mediates ATO-induced apoptosis in acute myeloid leukemia cell lines through the Wnt signaling pathway.

    PubMed

    Zhang, Hao; Gu, Huizi; Li, Limei; Ren, Yuan; Zhang, Lijun

    2016-05-01

    In this study, we examined the mechanisms associated with EZH2 mediation of apoptosis and chemoresistance to arsenic trioxide (ATO) in acute myeloid leukemia (AML) cell lines through the Wnt/β-catenin signaling pathway. The induction of spontaneous apoptosis observed in multiple EZH2-silenced leukemic cell lines was assessed by flow cytometry, and levels of Wnt/β-catenin-related expression were determined by western blot analysis. In comparison with AML control cells, EZH2-knockdown cells exhibited increased apoptosis and significant downregulation of β-catenin expression, as well as decreases in GSK-3β phosphorylation and β-catenin activation (p < 0.05 for all measurements). Additionally, EZH2 knockdown sensitized AML cells to induced cell death following administration of chemotherapeutic ATO. Our results suggested that EZH2 in leukemic cell lines might inhibit ATO-induced apoptosis and that EZH2 may be a potential therapeutic target in AML patients undergoing ATO treatment. Our findings provide new insights into the role of ATO and EZH2 in regulating AML progression.

  16. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis.

    PubMed

    Liu, Gang; Beri, Rohinee; Mueller, Amanda; Kamp, David W

    2010-11-05

    Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required.

  17. Cell-free DNA induced apoptosis of granulosa cells by oxidative stress.

    PubMed

    Guan, Yichun; Zhang, Wenjuan; Wang, Xingling; Cai, Pengfei; Jia, Qi; Zhao, Wenjie

    2017-10-01

    Cell-free DNA is a DNA fragment that is produced by cell apoptosis which can affect the micro-environment of cell apoptosis. The levels of Cell-free DNA have been associated with successful rate of in vitro fertilization-embryo transfer (IVF-ET) and embryonic development. Our aim is to determine the relationship between cell-free DNA and embryo quality. The mechanisms of cell-free DNA in granulose and the apoptosis will be determined also. The study enrolled patients who were undergone IVF for the first time and grouped the patients as pregnant (n=130) and non-pregnant (n=59). The relationship was determined by statistical analysis between the levels of cell-free DNA in the follicular fluid and clinical data of IVF patients. Flow cytometry was done to detect the rate of granulosa cell apoptosis and intracellular reactive oxygen species (ROS) level. Western blotting and fluorescent quantitative PCR detected the apoptosis-related gene expressions. Clinical data statistics showed that cell-free DNA levels were positively correlated with granulosa cell apoptosis and negatively correlated with embryo quality and pregnancy rates. High levels of cell-free DNA lead to increased ROS in granulosa cells and activated caspase through Fas/FasL that induced apoptosis. High levels of cell-free DNA triggers granulosa cell apoptosis and influences oocyte maturation embryo development and pregnancy rates in IVF treatments. Cell-free DNA can be as a secondary criteria and predictive marker for the quality control of IVF embryo. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Identification and characterisation of human apoptosis inducing proteins using cell-based transfection microarrays and expression analysis

    PubMed Central

    Palmer, Ella L; Miller, Andrew D; Freeman, Tom C

    2006-01-01

    Background Cell-based microarrays were first described by Ziauddin and Sabatini in 2001 as a powerful new approach for performing high throughput screens of gene function. An important application of cell-based microarrays is in screening for proteins that modulate gene networks. To this end, cells are grown over the surface of arrays of RNAi or expression reagents. Cells growing in the immediate vicinity of the arrayed reagents are transfected and the arrays can then be scanned for cells showing localised changes in function. Here we describe the construction of a large-scale microarray using expression plasmids containing human genes, its use in screening for genes that induce apoptosis when over-expressed and the characterisation of a number of these genes by following the transcriptional response of cell cultures during their induction of apoptosis. Results High-density cell-based arrays were successfully fabricated using 1,959 un-tagged open reading frames (ORFs) taken from the Mammalian Gene Collection (MGC) in mammalian expression vectors. The arrays were then used to screen for genes inducing apoptosis in Human Embryonic Kidney (HEK293T) cells. Using this approach, 10 genes were clearly identified and confirmed to induce apoptosis. Some of these genes have previously been linked to apoptosis, others not. The mechanism of action of three of the 10 genes were then characterised further by following the transcriptional events associated with apoptosis induction using expression profiling microarrays. This data demonstrates a clear pro-apoptotic transcriptional response in cells undergoing apoptosis and also suggests the use of common apoptotic pathways regardless of the nature of the over-expressed protein triggering cell death. Conclusion This study reports the design and use of the first truly large-scale cell-based microarrays for over-expression studies. Ten genes were confirmed to induce apoptosis, some of which were not previously known to possess this

  19. Atherogenic Lipids and Lipoproteins Trigger CD36-TLR2-Dependent Apoptosis in Macrophages Undergoing Endoplasmic Reticulum Stress

    PubMed Central

    Seimon, Tracie A.; Nadolski, Marissa J.; Liao, Xianghai; Magallon, Jorge; Nguyen, Matthew; Feric, Nicole T.; Koschinsky, Marlys L.; Harkewicz, Richard; Witztum, Joseph L.; Tsimikas, Sotirios; Golenbock, Douglas; Moore, Kathryn J.; Tabas, Ira

    2010-01-01

    SUMMARY Macrophage apoptosis in advanced atheromata, a key process in plaque necrosis, involves the combination of ER stress with other pro-apoptotic stimuli. We show here that oxidized phospholipids, oxidized LDL, saturated fatty acids (SFAs), and lipoprotein(a) trigger apoptosis in ER-stressed macrophages through a mechanism requiring both CD36 and toll-like receptor 2 (TLR2). In vivo, macrophage apoptosis was induced in SFA-fed, ER-stressed wild-type but not Cd36−/− or Tlr2−/− mice. For atherosclerosis, we combined TLR2 deficiency with that of TLR4, which can also promote apoptosis in ER-stressed macrophages. Advanced lesions of fat-fed Ldlr−/− mice transplanted with Tlr4−/−Tlr2−/− bone marrow were markedly protected from macrophage apoptosis and plaque necrosis compared with WT → Ldlr−/− lesions. These findings provide insight into how atherogenic lipoproteins trigger macrophage apoptosis in the setting of ER stress and how TLR activation might promote macrophage apoptosis and plaque necrosis in advanced atherosclerosis. PMID:21035758

  20. Cell-cycle involvement in autophagy and apoptosis in yeast.

    PubMed

    Azzopardi, Maria; Farrugia, Gianluca; Balzan, Rena

    2017-01-01

    Regulation of the cell cycle and apoptosis are two eukaryotic processes required to ensure maintenance of genomic integrity, especially in response to DNA damage. The ease with which yeast, amongst other eukaryotes, can switch from cellular proliferation to cell death may be the result of a common set of biochemical factors which play dual roles depending on the cell's physiological state. A wide variety of homologues are shared between different yeasts and metazoans and this conservation confirms their importance. This review gives an overview of key molecular players involved in yeast cell-cycle regulation, and those involved in mechanisms which are induced by cell-cycle dysregulation. One such mechanism is autophagy which, depending on the severity and type of DNA damage, may either contribute to the cell's survival or death. Cell-cycle dysregulation due to checkpoint deficiency leads to mitotic catastrophe which in turn leads to programmed cell death. Molecular players implicated in the yeast apoptotic pathway were shown to play important roles in the cell cycle. These include the metacaspase Yca1p, the caspase-like protein Esp1p, the cohesin subunit Mcd1p, as well as the inhibitor of apoptosis protein Bir1p. The roles of these molecular players are discussed. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis.

    PubMed

    Küenzi, Peter; Schneider, Pascal; Dobbelaere, Dirk A E

    2003-08-01

    Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.

  2. Mitochondrial protein 18 (MTP18) plays a pro-apoptotic role in chemotherapy-induced gastric cancer cell apoptosis

    PubMed Central

    Aung, Lynn H.H.; Li, Ruibei; Prabhakar, Bellur S.; Maker, Ajay V.; Li, Peifeng

    2017-01-01

    One of the severe limitations of chemotherapy is the development of drug resistance. However, the mechanisms underlying chemotherapy resistance remain to be elucidated. Mitochondrial mediated apoptosis is a form of cell death induced by chemotherapy. Several chemotherapeutic agents have been shown to induce mitochondrial fission, and finally activate the apoptosis cascade in various cancer cells. Here, we report that the mitochondrial membrane protein 18 (MTP18) induced mitochondrial fragmentation in gastric cancer cells under doxorubicin (DOX) exposure. Upon over-expression of MTP18, a sub-cytotoxic dose of DOX could sensitize a significant number of cells to undergo mitochondrial fission and subsequent apoptosis. These findings suggest that MTP18 can enhance the sensitivity of gastric cancer cells to DOX. Mechanistically, we found that MTP18 enriched dynamic-related protein 1 (DRP1) accumulation in mitochondria and it was responsible for mediating DOX-induced signaling required for mitochondrial fission. Intriguingly, MTP18 expression was downregulated during DOX treatment. Thus, down-regulation of MTP18 expression could be one of the resistance factors interfering with DOX-induced apoptosis in gastric cancer cells. PMID:28915614

  3. A Small Molecule Inhibitor Selectively Induces Apoptosis in Cells Transformed by High Risk Human Papilloma Viruses

    PubMed Central

    Lee, Min S.; Qi, Huilin; Chaniewski, Susan; Zheng, Xiaofan; Farr, Glen A.; Esposito, Kim; Harden, David; Lei, Ming; Schweizer, Liang; Friborg, Jacques; Agler, Michele; McPhee, Fiona; Gentles, Robert; Beno, Brett R.; Chupak, Lou; Mason, Stephen

    2016-01-01

    A phenotypic high-throughput cell culture screen was performed to identify compounds that prevented proliferation of the human Papilloma virus type 16 (HPV-16) transformed cell line Ca Ski. A series of quinoxaline compounds exemplified by Compound 1 was identified. Testing against a panel of cell lines demonstrated that Compound 1 selectively inhibited replication of all HPV-16, HPV-18, and HPV-31 transformed cell lines tested with 50% Inhibitory Concentration (IC50) values of 2 to 8 μM relative to IC50 values of 28 to 73 μM in HPV-negative cell lines. Treatment with Compound 1 resulted in a cascade of multiple apoptotic events, including selective activation of effector caspases 3 and 7, fragmentation of cellular DNA, and PARP (poly(ADP-ribose) polymerase) cleavage in HPV-positive cells relative to HPV-negative cells. Unregulated proliferation of HPV transformed cells is dependent on the viral oncogenes, E6 and E7. Treatment with Compound 1 resulted in a decrease in HPV E7 protein in Ca Ski cells. However, the timing of this reduction relative to other effects of compound treatment suggests that this was a consequence, rather than a cause, of the apoptotic cascade. Likewise, compound treatment resulted in no obvious effects on the E6- and E7- mediated down regulation of p53 and Rb, or their downstream effectors, p21 or PCNA. Further investigation of apoptotic signals induced by Compound 1 revealed cleavage of Caspase-8 in HPV-positive cells as early as 2 hours post-treatment, suggesting the compound initiates apoptosis through the extrinsic, death receptor-mediated, pathway of cell death. These studies provide proof of concept that cells transformed by oncogenic Papillomaviruses can be selectively induced to undergo apoptosis by compound treatment. PMID:27280728

  4. Cadmium overkill: autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium.

    PubMed

    Messner, Barbara; Türkcan, Adrian; Ploner, Christian; Laufer, Günther; Bernhard, David

    2016-04-01

    Apoptosis, necrosis, or autophagy-it is the mode of cell demise that defines the response of surrounding cells and organs. In case of one of the most toxic substances known to date, cadmium (Cd), and despite a large number of studies, the mode of cell death induced is still unclear. As there exists conflicting data as to which cell death mode is induced by Cd both across various cell types and within a single one, we chose to analyse Cd-induced cell death in primary human endothelial cells by investigating all possibilities that a cell faces in undergoing cell death. Our results indicate that Cd-induced death signalling starts with the causation of DNA damage and a cytosolic calcium flux. These two events lead to an apoptosis signalling-related mitochondrial membrane depolarisation and a classical DNA damage response. Simultaneously, autophagy signalling such as ER stress and phagosome formation is initiated. Importantly, we also observed lysosomal membrane permeabilization. It is the integration of all signals that results in DNA degradation and a disruption of the plasma membrane. Our data thus suggest that Cd causes the activation of multiple death signals in parallel. The genotype (for example, p53 positive or negative) as well as other factors may determine the initiation and rate of individual death signals. Differences in the signal mix and speed may explain the differing results recorded as to the Cd-induced mode of cell death thus far. In human endothelial cells it is the sum of most if not all of these signals that determine the mode of Cd-induced cell death: programmed necrosis.

  5. Marijuana smoke and Delta(9)-tetrahydrocannabinol promote necrotic cell death but inhibit Fas-mediated apoptosis.

    PubMed

    Sarafian, T A; Tashkin, D P; Roth, M D

    2001-08-01

    Marijuana smoke shares many components in common with tobacco smoke except for the presence of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the psychotropic compound found only in Cannibis sativa. Delta(9)-THC has been shown to potentiate smoke-induced oxidative stress and necrotic cell death. In the present study, our objective was to determine the effects of Delta(9)-THC on the balance between Fas-induced apoptosis and necrosis in A549 lung tumor cells. We found that Fas-induced activation of caspase-3 was inhibited by whole smoke from both tobacco and marijuana cigarettes. Gas-phase smoke, which generates high levels of intracellular reactive oxygen species, had no effect on caspase-3 activity. However, particulate-phase smoke (tar) was a potent inhibitor of Fas-induced caspase-3 activity, with marijuana tar being more potent than either tobacco or placebo marijuana tar (lacking Delta(9)-THC). Delta(9)-THC also inhibited Fas-induced caspase-3 activity in A549 cells. In contrast, no inhibition was observed when Delta(9)-THC was incubated with activated caspase-3 enzyme, suggesting that Delta(9)-THC acts on the cell pathway(s) leading to caspase-3 activation and not directly on enzyme function. Flow cytometry was used to measure the percentage of cells undergoing apoptosis (staining for annexin V) versus necrosis (staining for propidium iodide) and confirmed that both marijuana tar extract and synthetic Delta(9)-THC inhibit Fas-induced apoptosis while promoting necrosis. These observations suggest that the Delta(9)-THC contained in marijuana smoke disrupts elements of the apoptotic pathway, thereby shifting the balance between apoptotic and necrotic cell death. This shift may affect both the carcinogenic and immunologic consequences of marijuana smoke exposure.

  6. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    PubMed

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  7. Apoptosis Repressor With Caspase Recruitment Domain Ameliorates Amyloid-Induced β-Cell Apoptosis and JNK Pathway Activation.

    PubMed

    Templin, Andrew T; Samarasekera, Tanya; Meier, Daniel T; Hogan, Meghan F; Mellati, Mahnaz; Crow, Michael T; Kitsis, Richard N; Zraika, Sakeneh; Hull, Rebecca L; Kahn, Steven E

    2017-10-01

    Islet amyloid is present in more than 90% of individuals with type 2 diabetes, where it contributes to β-cell apoptosis and insufficient insulin secretion. Apoptosis repressor with caspase recruitment domain (ARC) binds and inactivates components of the intrinsic and extrinsic apoptosis pathways and was recently found to be expressed in islet β-cells. Using a human islet amyloid polypeptide transgenic mouse model of islet amyloidosis, we show ARC knockdown increases amyloid-induced β-cell apoptosis and loss, while ARC overexpression decreases amyloid-induced apoptosis, thus preserving β-cells. These effects occurred in the absence of changes in islet amyloid deposition, indicating ARC acts downstream of amyloid formation. Because islet amyloid increases c-Jun N-terminal kinase (JNK) pathway activation, we investigated whether ARC affects JNK signaling in amyloid-forming islets. We found ARC knockdown enhances JNK pathway activation, whereas ARC overexpression reduces JNK, c-Jun phosphorylation, and c-Jun target gene expression (Jun and Tnf). Immunoprecipitation of ARC from mouse islet lysates showed ARC binds JNK, suggesting interaction between JNK and ARC decreases amyloid-induced JNK phosphorylation and downstream signaling. These data indicate that ARC overexpression diminishes amyloid-induced JNK pathway activation and apoptosis in the β-cell, a strategy that may reduce β-cell loss in type 2 diabetes. © 2017 by the American Diabetes Association.

  8. Apoptosis and Vocal Fold Disease: Clinically Relevant Implications of Epithelial Cell Death

    ERIC Educational Resources Information Center

    Novaleski, Carolyn K.; Carter, Bruce D.; Sivasankar, M. Preeti; Ridner, Sheila H.; Dietrich, Mary S.; Rousseau, Bernard

    2017-01-01

    Purpose: Vocal fold diseases affecting the epithelium have a detrimental impact on vocal function. This review article provides an overview of apoptosis, the most commonly studied type of programmed cell death. Because apoptosis can damage epithelial cells, this article examines the implications of apoptosis on diseases affecting the vocal fold…

  9. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    PubMed

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-04-23

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  10. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM.

  11. Additive Protection by Antioxidant and Apoptosis-Inhibiting Effects on Mosquito Cells with Dengue 2 Virus Infection

    PubMed Central

    Chen, Tien-Huang; Lo, Yin-Ping; Yang, Chao-Fu; Chen, Wei-June

    2012-01-01

    Cytopathic effects (CPEs) in mosquito cells are generally trivial compared to those that occur in mammalian cells, which usually end up undergoing apoptosis during dengue virus (DENV) infection. However, oxidative stress was detected in both types of infected cells. Despite this, the survival of mosquito cells benefits from the upregulation of genes related to antioxidant defense, such as glutathione S transferase (GST). A second defense system, i.e., consisting of antiapoptotic effects, was also shown to play a role in protecting mosquito cells against DENV infection. This system is regulated by an inhibitor of apoptosis (IAP) that is an upstream regulator of caspases-9 and -3. DENV-infected C6/36 cells with double knockdown of GST and the IAP showed a synergistic effect on activation of these two caspases, causing a higher rate of apoptosis (>20%) than those with knockdown of each single gene (∼10%). It seems that the IAP acts as a second line of defense with an additional effect on the survival of mosquito cells with DENV infection. Compared to mammalian cells, residual hydrogen peroxide in DENV-infected C6/36 cells may signal for upregulation of the IAP. This novel finding sheds light on virus/cell interactions and their coevolution that may elucidate how mosquitoes can be a vector of DENV and probably most other arboviruses in nature. PMID:22530071

  12. Pharmacological induction of cell surface GRP78 contributes to apoptosis in triple negative breast cancer cells

    PubMed Central

    Hardy, Britta

    2014-01-01

    Breast cancer tumor with triple-negative receptors (estrogen, progesterone and Her 2, receptors) is the most aggressive and deadly subtype, with high rates of disease recurrence and poor survival. Here, we show that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells. GRP78 is a major regulator of the stress induced unfolded protein response pathway and CHOP/GADD153 is a pro-apoptotic transcription factor associated exclusively with stress induced apoptosis. The blocking of cell surface GRP78 by anti-GRP78 antibody prevented apoptosis, suggesting that induction of cell surface GRP78 by doxorubicin and tunicamycin is required for apoptosis. A better understanding of stress induction of apoptotic signaling in triple negative breast cancer cells may help to define new therapeutic strategies. PMID:25360516

  13. Parenchymal injury in remnant-kidney model may be linked to apoptosis of renal cells mediated by nitric oxide.

    PubMed

    Hruby, Zbigniew; Rosinski, Maciej; Tyran, Bronislaw

    2008-01-01

    The importance of apoptotic cell death in the pathogenesis of progressive renal sclerosis has been well established. While activity of vasorelaxant nitric oxide is conceivable in the remnant hyperfiltrating kidney and nitric oxide has been reported to cause apoptosis, we postulated that this mechanism of cell death may be operating in progressive renal fibrosis. The intensity of apoptosis in glomerular and tubular cells was assessed (light microscopy, TUNEL method) in the remnant-kidney model of progressive renal fibrosis in rats undergoing 5/6 nephrectomy. Numbers of apoptotic cells were correlated with expression of mRNA for inducible nitric oxide synthase (iNOS; RT-PCR in situ), generation of nitrite in renal tissue, an index of glomerulosclerosis, proteinuria and creatinine clearance. A control group of 5/6 nephrectomized rats received an iNOS inhibitor, L-NAME, in drinking water during the 4 weeks after nephrectomy. Number of apoptotic cells gradually increased in experimental rats both in glomeruli and tubules, until termination of the study 3 months after 5/6 nephrectomy. At 3 months postinduction, the intensity of tubular cell apoptosis was significantly correlated with creatinine clearance (p<0.05), while glomerular cell apoptosis was correlated with the index of glomerulosclerosis, also at 3 months (p<0.0025). Along with the apoptosis, the levels of iNOS mRNA for, and generation of, nitrite in renal tissue had risen until termination of the study. The generation of nitrites correlated with the number of apoptotic glomerular cells (p<0.025). Treatment with the iNOS inhibitor resulted in a significant reduction in number of apoptotic cells (p<0.01). Apoptotic depletion of renal tubular and glomerular cells linked to activity of iNOS may contribute to progression of chronic kidney tissue injury in the 5/6 nephrectomy model.

  14. Elevated calcium in preneoplastic cells activates NF-kappa B and confers resistance to apoptosis.

    PubMed

    Petranka, J; Wright, G; Forbes, R A; Murphy, E

    2001-10-05

    Early preneoplastic cells (sup+) exhibit increased susceptibility to apoptosis, which is lost in late stage preneoplastic cells (sup-). Sup+ cells, which undergo apoptosis when cultured in low serum, show little or no DNA binding activity to nuclear factor (NF)-kappa B either in 10% or 0.2% serum. In contrast sup- cells, which are resistant to apoptosis in low serum, show a sustained constitutive activation of NF-kappa B. The constitutive activation of NF-kappa B observed in sup- cells is not due to loss of I kappa B alpha. We considered that the activation of NF-kappa B in sup- cells might be secondary to an increase in cytosolic Ca(2+), since sup- cells have a cytosolic Ca(2+) level that is double that in sup+ cells. In support of a role for Ca(2+), lowering cytosolic Ca(2+) in sup- cells by addition of the cell-permeable Ca(2+) chelator 1,2 bis(O-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) reduced cytosolic Ca(2+) by approximately 31% relative to untreated sup- cells, concomitant with a 65% reduction in NF-kappa B DNA binding activity and a reduction in I kappa B kinase (IKK) activity. In sup- cells in low serum, addition of BAPTA-AM also resulted in a significant ( approximately 50%) increase in caspase-3 activity. Raising extracellular Ca(2+) in sup+ cells resulted in a slight activation of I kappa B kinase and in enhanced NF-kappa B DNA binding activity. Using proteasome and calpain inhibitors, we determined that the basal activity of NF-kappa B in sup- cells is largely proteasome-independent, but sensitive to calpain inhibitors. Taken together these data suggest that the elevated Ca(2+) in sup- cells causes a modest activation of IKK, which likely contributes to the enhanced basal activation of NF-kappa B in sup- cells; however, the predominant effect of Ca(2+) appears to be mediated by Ca(2+)-enhanced degradation by calpain.

  15. 188Rhenium-induced cell death and apoptosis in a panel of tumor cell lines

    NASA Astrophysics Data System (ADS)

    Antoccia, Antonio; Banzato, Alessandra; Bello, Michele; Bollini, Dante; De Notaristefani, Francesco; Giron, Cecilia; Mazzi, Ulderico; Alafort, Laura Melendez; Moschini, Giuliano; Nadali, Anna; Navarria, Francesco; Perrotta, Andrea; Rosato, Antonio; Tanzarella, Caterina; Uzunov, Nikolay

    2007-02-01

    Assessment of "in vitro" tumor growth inhibition and radiobiological effects, such as apoptosis, have been evaluated in human neoplastic cells of different histotypes (H460 lung cancer cells, U87 glioblastoma, LnCaP prostate tumor cells) treated using solutions of 188Rhenium-perrhenate. The MTT assay, which measures mitochondrial metabolism in the entire cell culture is a recognized test for cytotoxicity and was used in cells exposed 48-72 h to specific activities ranged from 37 to 148 GBq/l. Whereas H460 and LnCaP were particularly sensitive to treatment, U87 glioblastoma cells behaved as radioresistant ones. However, evaluation of 188Re-induced apoptosis indicated that this kind of cell death contributed only marginally to the reduction in cell viability of H460 and LNCaP lines, suggesting the existence of protective mechanisms against apoptosis. In this respect, the membrane receptor, CD44, whose expression is dysregulated in most malignant cell types has proven to alter the response of cancer cells to apoptotic stimuli, including ionizing radiation. Cell samples decorated with a FITC-labelled CD44 antibody indicated, that in H460 and U87 cells the CD44(+) correlated well with an apoptosis-resistant response. Conversely, LnCap cells proven as CD44(-) did not display however sensitivity to radio-induced apoptosis.

  16. Hormonal regulation of physiological cell turnover and apoptosis

    PubMed Central

    Medh, Rheem D.; Thompson, E. Brad

    2009-01-01

    Physiological cell turnover plays an important role in maintaining normal tissue function and architecture. This is achieved by the dynamic balance of cellular regeneration and elimination, occurring periodically in tissues such as the uterus and mammary gland, or at constant rates in tissues such as the gastrointestinal tract and adipose tissue. Apoptosis has been identified as the prevalent mode of physiological cell loss in most tissues. Cell turnover is precisely regulated by the interplay of various endocrine and paracrine factors, which modulate tissue and cell-specific responses on proliferation and apoptosis, either directly, or by altering expression and function of key cell proliferative and/or death genes. Although recent studies have provided significant information on specific tissue systems, a clearly defined pathway that mediates cell turnover has not yet emerged for any tissue. Several similarities exist among the various tissues with regard to the intermediates that regulate tissue homeostasis, enabling a better understanding of the general mechanisms involved in the process. Here we review the mechanisms by which hormonal and cytokine factors mediate cell turnover in various tissues, emphasizing common themes and tissue-specific differences. PMID:10928284

  17. PDT-induced apoptosis in arterial smooth muscles cells

    NASA Astrophysics Data System (ADS)

    Nyamekye, Isaac; Renick, R.; Gilbert, C.; McEwan, Jean R.; Evan, G.; Bishop, Christopher C. R.; Bown, Stephen G.

    1995-03-01

    PDT kills smooth muscle cells (SMC) in vivo and thus prevents intimal hyperplasia after angioplasty. It causes little inflammation and structural integrity of the artery is not compromised. We have studied the process of the SMC death in vitro. Cultured rat SMC (cell line sv40 ATCC) were sensitized with aluminum disulphonated phthalocyanine (AlS2Pc), and then irradiated with 675 nm laser light (2.5 J/cm2). Controls were studied using only sensitizer or laser for treatment. The cells were incubated and the dying process observed with a time lapse video and microscope system. PDT caused a characteristic pattern of death. Cells lost contact with neighbors, shrank, and showed hyperactivity and membrane ruffling. The cells imploded into active and condensed membrane bound vesicles which were terminally reduced to residual bodies. These are the morphological changes of apoptosis. The control cells which were given AlS2Pc alone or laser alone showed no death. PDT induced cultured arterial SMC death by apoptosis rather than necrosis. An apoptotic mechanism of cell death in vivo would explain the relative lack of inflammation and local tissue destruction in the face of massive death.

  18. PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2.

    PubMed

    Chakraborti, Soumyananda; Chakraborty, Samik; Saha, Shilpi; Manna, Argha; Banerjee, Shruti; Adhikary, Arghya; Sarwar, Shamila; Hazra, Tapas K; Das, Tanya; Chakrabarti, Pinak

    2017-02-01

    We find that PEG functionalized ZnO nanoparticles (NP) have anticancer properties primarily because of ROS generation. Detailed investigation revealed two consequences depending on the level of ROS - either DNA damage repair or apoptosis - in a time-dependent manner. At early hours of treatment, NP promote NEIL2-mediated DNA repair process to counteract low ROS-induced DNA damage. However, at late hours these NP produce high level of ROS that inhibits DNA repair process, thereby directing the cell towards apoptosis. Mechanistically at low ROS conditions, transcription factor Sp1 binds to the NEIL2 promoter and facilitates its transcription for triggering a 'fight-back mechanism' thereby resisting cancer cell apoptosis. In contrast, as ROS increase during later hours, Sp1 undergoes oxidative degradation that decreases its availability for binding to the promoter thereby down-regulating NEIL2 and impairing the repair mechanism. Under such conditions, the cells strategically switch to the p53-dependent apoptosis.

  19. [Apoptosis of pulmonary epithelial cells and endothelial cells in mice exposed to phosgene].

    PubMed

    Li, Wen-li; Hai, Chun-xu; Yang, Chen; Li, Bo; Liu, Rui; Zhang, Xiao-di

    2005-08-01

    To study apoptosis of pulmonary epithelial cells and endothelial cells in mice with pulmonary edema induced by phosgene exposure. Thirty-two mice were divided into normal group and phosgene group with 16 mice in each group. The mice in phosgene group were exposed to phosgene (11.9 mg/L) for 5 min and those in the control group to air. Four hours after exposure, alveolar type II cells were isolated and cultured to observe their apoptosis by electron microscope and flow cytometry. The lung tissues were also taken for DNA gel electrophoresis and TUNEL assay. Apoptotic bodies were observed in alveolar type II cells under electron microscope in phosgene group, which had higher cell apoptosis rate than the control group [(40.26+/-7.74)% vs (1.58+/-1.01)%, P<0.001] as determined by flow cytometry. Ladder-like DNA fragmentation pattern was observed in DNA gel electrophoresis in phosgene group with apoptosis of the pulmonary epithelial and endothelial cells observed by TUNEL. Phosgene can induce pulmonary epithelial and endothelial cell apoptosis in mice, suggesting that the mechanism of phosgene-induced pulmonary edema involves apoptosis of the lung cells.

  20. Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Ambe, Chenwi M; Ray, Satyajit; Kim, Bo-Kyu; Koizumi, Tomotake; Wiegand, Gordon W; Hari, Danielle; Mullinax, John E; Jaiswal, Kshama R; Garfield, Susan H; Stojadinovic, Alexander; Rudloff, Udo; Thorgeirsson, Snorri S; Avital, Itzhak

    2013-01-01

    Stem-like cancer cells contribute to cancer initiation and maintenance. Stem cells can self-renew by asymmetric cell division (ACD). ACD with non-random chromosomal cosegregation (ACD-NRCC) is one possible self-renewal mechanism. There is a paucity of evidence supporting ACD-NRCC in human cancer. Our aim was to investigate ACD-NRCC and its potential interactions with the cancer niche (microenvironment) in gastrointestinal cancers. We used DNA double and single labeling approaches with FACS to isolate live cells undergoing ACD-NRCC. Gastrointestinal cancers contain rare subpopulations of cells capable of ACD-NRCC. ACD-NRCC was detected preferentially in subpopulations of cells previously suggested to be stem-like/tumor-initiating cancer cells. ACD-NRCC was independent of cell-to-cell contact, and was regulated by the cancer niche in a heat-sensitive paracrine fashion. Wnt pathway genes and proteins are differentially expressed in cells undergoing ACD-NRCC vs. symmetric cell division. Blocking the Wnt pathway with IWP2 (WNT antagonist) or siRNA-TCF4 resulted in suppression of ACD-NRCC. However, using a Wnt-agonist did not increase the relative proportion of cells undergoing ACD-NRCC. Gastrointestinal cancers contain subpopulations of cells capable of ACD-NRCC. Here we show for the first time that ACD-NRCC can be regulated by the Wnt pathway, and by the cancer niche in a paracrine fashion. However, whether ACD-NRCC is exclusively associated with stem-like cancer cells remains to be determined. Further study of these findings might generate novel insights into stem cell and cancer biology. Targeting the mechanism of ACD-NRCC might engender novel approaches for cancer therapy.

  1. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    SciTech Connect

    Ota, Kimiko; Nakamura, Jiro; Li, Weiguo; Kozakae, Mika; Watarai, Atsuko; Nakamura, Nobuhisa; Yasuda, Yutaka; Nakashima, Eirtaro; Naruse, Keiko; Watabe, Kazuhiko; Kato, Koichi; Oiso, Yutaka; Hamada, Yoji . E-mail: yhama@med.nagoya-u.ac.jp

    2007-05-25

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS.

  2. Role of E-cadherin in the induction of apoptosis of HPV16-positive CaSki cervical cancer cells during multicellular tumor spheroid formation.

    PubMed

    Haga, Takeshi; Uchide, Noboru; Tugizov, Sharof; Palefsky, Joel M

    2008-01-01

    Multicellular tumor spheroids (MCTS) are three dimensional cell culture systems induced by suspension culture. MCTS are widely used in cancer research because of their similarity to solid tumors. CaSki cells are derived from a metastatic cervical cancer containing human papillomavirus 16 (HPV16). Cell death of CaSki cells in MCTS has been previously reported, and our model is used to better characterize the mechanisms of cell death of HPV16-positive keratinocytes. In this study, we found that apoptosis of CaSki cells was induced by suspension culture along with the formation of MCTS after 24 h of incubation. In suspended CaSki cells, monoclonal antibodies blocking E-cadherin function inhibited MCTS formation and suppressed suspension-induced apoptosis in a dose-dependent manner. Western blot for E-cadherin detected upregulation of the authentic 120 kDa band from MCTS of CaSki cells as well as a shorter 100 kDa band. Addition of EGF, whose receptor is known to form a complex with E-cadherin, abrogated apoptosis of suspended CaSki cells in a dose-dependent manner. These findings suggest that E-cadherin-dependent cell-cell contact, directly or indirectly, mediates the signal to undergo apoptosis of CaSki cells during MCTS formation, and thus provides new information on the role of E-cadherin in cervical cancer cell apoptosis.

  3. Inhibition of proliferation and differentiation and promotion of apoptosis by cyclin L2 in mouse embryonic carcinoma P19 cells

    SciTech Connect

    Zhuo, Lili; Gong, Jie; Yang, Rong; Sheng, Yanhui; Zhou, Lei; Kong, Xiangqing; Cao, Kejiang

    2009-12-18

    Cyclin L2 (CCNL2) is a novel member of the cyclin gene family. In a previous study, we demonstrated that CCNL2 expression was upregulated in ventricular septum tissues from patients with ventricular septal defect compared to healthy controls. In the present study, we established a stable CCNL2-overexpressing P19 cell line that can differentiate to myocardial cells when treated with 1% dimethyl sulfoxide (DMSO). Our data showed that stable CCNL2-overexpressing P19 cells were less differentiated after treatment with 1% DMSO and that expression of myocardial cell differentiation-related genes (such as cardiac actin, GATA4, Mef2C, Nkx2.5, and BNP) were reduced compared to vector-only transfected P19. Moreover, P19 cells overexpressing the CCNL2 gene had a reduced growth rate and a remarkably decreased S phase. We also found that these cells underwent apoptosis, as detected by two different apoptosis assays. The anti-apoptotic Bcl-2 protein was also downregulated in these cells. In addition, real-time PCR analysis revealed that expression of Wnt and {beta}-catenin was suppressed and GSK3{beta} was induced in the CCNL2-overexpressing P19 cells. These data suggest that overexpression of CCNL2 inhibited proliferation and differentiation of mouse embryonic carcinoma P19 cells and induced them to undergo apoptosis, possibly through the Wnt signal transduction pathway.

  4. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line

    PubMed Central

    Lin, Jing-Pin; Yang, Jai-Sing; Lee, Jau-Hong; Hsieh, Wen-Tsong; Chung, Jing-Gung

    2006-01-01

    AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action. METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub-G1 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting. RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-G0 cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-G0 cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis. CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis. PMID:16440412

  5. Analogs of farnesylcysteine induce apoptosis in HL-60 cells.

    PubMed

    Pérez-Sala, D; Gilbert, B A; Rando, R R; Cañada, F J

    1998-04-24

    S-Farnesyl-thioacetic acid (FTA), a competitive inhibitor of isoprenylated protein methyltransferase, potently suppressed the growth of HL-60 cells and induced apoptosis, as evidenced by the development of increased annexin-V binding, decreased binding of DNA dyes and internucleosomal DNA degradation. FTA did not impair the membrane association of ras proteins, conversely, it brought about a decrease in the proportion of ras present in the cytosolic fraction. Farnesylated molecules which are weak inhibitors of the methyltransferase also induced DNA laddering and reduced the proportion of cytosolic ras. These findings suggest that neither inhibition of isoprenylated protein methylation nor impairment of ras membrane association are essential for apoptosis induced by farnesylcysteine analogs.

  6. Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines.

    PubMed

    Nakagawa, Yoshihito; Akao, Yukihiro; Morikawa, Hiroshi; Hirata, Ichiro; Katsu, Kenichi; Naoe, Tomoki; Ohishi, Nobuko; Yagi, Kunio

    2002-03-29

    Exposure of three colon cancer cell lines, SW480, DLD-1, and COLO201, to arsenic trioxide in the medium induced a marked concentration-dependent suppression of cell growth. The intracellular contents of reduced glutathione (GSH) in these cell lines tended to be inversely correlated with the sensitivity of the cells to arsenic trioxide. Among the cell lines, SW480 cells underwent apoptosis at the low arsenic trioxide concentration of 2 microM, which was prevented by pretreatment of the cells with N-acetylcysteine and was enhanced by buthionine sulfoximine. The production of reactive oxygen intermediates which were examined by 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA), increased with time after treatment with arsenic trioxide. The apoptosis was executed by the activation of caspase 3, which was shown by Western blot, enzymatic activity, and apoptosis inhibition assay. The mitochondrial membrane potential of adherent apoptotic SW480 cells and the cells from intermediate layer separated by density gradient centrifugation, both of which showed the active form of caspase 3 by Western blot analysis, was not lost. The overexpression of Bcl-2 protein in SW480 cells could not prevent the apoptosis induced by the treatment with arsenic trioxide. All these findings indicate that arsenic trioxide-induced apoptosis in SW480 cells is executed by the activation of caspase 3 without mediating by mitochondria under the overproduction of reactive oxygen species.

  7. Liver Fibrosis and Protection Mechanisms Action of Medicinal Plants Targeting Apoptosis of Hepatocytes and Hepatic Stellate Cells

    PubMed Central

    Moreno-Cuevas, Jorge E.; González-Garza, Maria Teresa; Rodríguez-Montalvo, Carlos; Cruz-Vega, Delia Elva

    2014-01-01

    Following chronic liver injury, hepatocytes undergo apoptosis leading to activation of hepatic stellate cells (HSC). Consequently, activated HSC proliferate and produce excessive extracellular matrix, responsible for the scar formation. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Treatment strategies should take into account the versatility of its pathogenesis and act on all the cell lines involved to reduce liver fibrosis. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. This review will describe the role of hepatocytes and HSC in the pathogenesis of liver fibrosis and detail the mechanisms of modulation of apoptosis of both cell lines by twelve known hepatoprotective plants in order to reduce liver fibrosis. PMID:25505905

  8. Association between SET expression and glioblastoma cell apoptosis and proliferation.

    PubMed

    He, Kunyan; Shi, Lihong; Jiang, Tingting; Li, Qiang; Chen, Yao; Meng, Chuan

    2016-10-01

    Glioblastoma multiforme (GBM) was one of the first cancer types systematically studied at a genomic and transcriptomic level due to its high incidence and aggressivity; however, the detailed mechanism remains unclear, even though it is known that numerous cytokines are involved in the occurrence and development of GBM. The present study aimed to determine whether the SET gene has a role in human glioblastoma carcinogenesis. A total of 32 samples, including 18 cases of glioma, 2 cases of meningioma and 12 normal brain tissue samples, were detected using the streptavidin-peroxidase method through immunohistochemistry. To reduce SET gene expression in U251 and U87MG cell lines, the RNA interference technique was used and transfection with small interfering (si)RNA of the SET gene was performed. Cell apoptosis was detected by flow cytometry, cell migration was examined by Transwell migration assay and cell proliferation was determined by Cell Counting Kit-8. SET, Bcl-2, Bax and caspase-3 mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Positive protein expression of SET was observed in the cell nucleus, with the expression level of SET significantly higher in glioma tissues compared with normal brain tissue (P=0.001). Elevated expression of SET was significantly associated with gender (P=0.002), tumors classified as World Health Organization grade II (P=0.031), III (P=0.003) or IV (P=0.001), and moderately (P=0.031) or poorly differentiated (P=0.001) tumors. Compared with the negative and non-treatment (blank) control cells, SET gene expression was significantly inhibited (P=0.006 and P<0.001), cell apoptosis was significantly increased (P=0.001 and P<0.001), cell proliferation was significantly inhibited (P=0.002 and P=0.015), and cell migration was significantly decreased (P=0.001 and P=0.001) in siRNA-transfected U87MG(-SET) and U251(-SET) cells, respectively. In

  9. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    SciTech Connect

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  10. Increased apoptosis and secretion of tryptase by mast cells in infantile haemangioma treated with propranolol.

    PubMed

    Steel, Ryan; Day, Darren

    2014-10-01

    Propranolol is increasingly used to treat problematic infantile haemangioma (IH), although its molecular mechanisms remain unclear. A key feature of propranolol therapy is the decreased deposition of fibrofatty residuum compared with spontaneously involuting IH. This study investigated the molecular consequences of propranolol treatment for IH in vivo.Immunohistochemical and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining was performed on five age matched patients with proliferative IH. Two patients (A and B) were undergoing propranolol treatment at the time of surgical resection.Propranolol treatment increased apoptosis, and induced mast cells to degranulate and secrete tryptase into the interstitium. The microvessels of patient A were immature [weak von Willibrand Factor (vWF), and strong osteoprotegerin (OPG) staining], comparable to untreated proliferative IH, while those of patient B were mature (strong vWF staining, and no OPG staining). The perivascular CD90 mesenchymal stem cell population was preserved in both propranolol treated patients.Using rarely obtained biopsies from IH patients treated with propranolol, we show increased apoptosis by propranolol for the first time in vivo. We also suggest that mast cells, through secreted proteases, may contribute to the decreased fibrofatty residuum seen with propranolol treatment.

  11. Apoptosis and calcification of vascular endothelial cell under hyperhomocysteinemia.

    PubMed

    Fang, Kuaifa; Chen, Zhujun; Liu, Meng; Peng, Jian; Wu, Pingsheng

    2015-01-01

    In recent years, it is found that increase in Hcy level in blood can directly or indirectly cause vascular endothelial cell injury and induce vascular calcification. However, the mechanism of vascular endothelial cell injury and vascular calcification has not been studied thoroughly. This paper carried out experiment for research aiming at discussing the effect and action mechanism of Hhcy on endothelial cells and vascular calcification. Firstly, human umbilical vein endothelial cells (HUVECs) were cultured and then intervened by Hcy of different concentrations (0, 0.01, 0.1, 1.0, 3.0, 5.0 mmol/L) and at different action time (3, 6, 12, 24 h). Then apoptosis rate and reactive oxygen were detected by flow cytometry. At the same time, the model for the culture of rat vascular calcification was set up and induced into Hhcy so as to detect the total plasma Hcy level and judge vascular calcification degree. The results showed that with the increase in Hcy concentration and extension of action period, the apoptosis rate and generation of reactive oxygen of HUVECs all significantly increased, and the differences were all statistically significant (P < 0.01). In animal calcification model, mass of black particle deposition was seen after Von Kossa staining of rat vessels in calcification group. Compared with the control group, the vascular calcium content, alkaline phosphatase activity and osteocalcin content in calcification group all increased (P < 0.01). The content of plasma lipid conjugated olefine from highest to lowest wasas follows: calcification plus homoetheionin, homoetheionin, and calcification group. There was no significant difference between the calcification group and control group. All these findings suggested that Hcy could induce the apoptosis of endothelial cells and its effect degree depended on its concentration and action period; Hhcy could promote the calcification of blood vessels, and its mechanism might relate with the strengthening of

  12. Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix

    SciTech Connect

    Boudreau, Nancy; Sympson, C. J.; Werb, Zena; Bissell, Mina J.

    1994-12-01

    Apoptosis (programmed cell death) plays a major role in development and tissue regeneration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. Apoptosis was induced by antibodies to beta 1 integrins or by overexpression of stromelysin-1, which degrades ECM. Expression of interleukin-1 beta converting enzyme (ICE) correlated with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin-dependent negative regulation of ICE expression.

  13. Potentiation by nitric oxide of cyclosporin A and FK506-induced apoptosis in renal proximal tubule cells.

    PubMed

    Hortelano, S; Castilla, M; Torres, A M; Tejedor, A; Boscá, L

    2000-12-01

    Proximal tubular epithelial cells (PTEC) exhibit a high sensitivity to undergo apoptosis in response to proinflammatory stimuli and immunosuppressors and participate in the onset of several renal diseases. This study examined the expression of inducible nitric oxide (NO) synthase after challenge of PTEC with bacterial cell wall molecules and inflammatory cytokines and analyzed the pathways that lead to apoptosis in these cells by measuring changes in the mitochondrial transmembrane potential and caspase activation. The data show that the apoptotic effects of proinflammatory stimuli mainly were due to the expression of inducible NO synthase. Cyclosporin A and FK506 inhibited partially NO synthesis. However, both NO and immunosuppressors induced apoptosis, probably through a common mechanism that involved the irreversible opening of the mitochondrial permeability transition pore. Activation of caspases 3 and 7 was observed in cells treated with high doses of NO and with moderate concentrations of immunosuppressors. The conclusion is that the cooperation between NO and immunosuppressors that induce apoptosis in PTEC might contribute to the renal toxicity observed in the course of immunosuppressive therapy.

  14. N-Desmethyldauricine Induces Autophagic Cell Death in Apoptosis-Defective Cells via Ca(2+) Mobilization.

    PubMed

    Law, Betty Y K; Mok, Simon W F; Chen, Juan; Michelangeli, Francesco; Jiang, Zhi-Hong; Han, Yu; Qu, Yuan Q; Qiu, Alena C L; Xu, Su-Wei; Xue, Wei-Wei; Yao, Xiao-Jun; Gao, Jia Y; Javed, Masood-Ul-Hassan; Coghi, Paolo; Liu, Liang; Wong, Vincent K W

    2017-01-01

    Resistance of cancer cells to chemotherapy remains a significant problem in oncology. Mechanisms regulating programmed cell death, including apoptosis, autophagy or necrosis, in the treatment of cancers have been extensively investigated over the last few decades. Autophagy is now emerging as an important pathway in regulating cell death or survival in cancer therapy. Recent studies demonstrated variety of natural small-molecules could induce autophagic cell death in apoptosis-resistant cancer cells, therefore, discovery of novel autophagic enhancers from natural products could be a promising strategy for treatment of chemotherapy-resistant cancer. By computational virtual docking analysis, biochemical assays, and advanced live-cell imaging techniques, we have identified N-desmethyldauricine (LP-4), isolated from rhizoma of Menispermum dauricum DC as a novel inducer of autophagy. LP-4 was shown to induce autophagy via the Ulk-1-PERK and Ca(2+)/Calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPK-mTOR signaling cascades, via mobilizing calcium release through inhibition of SERCA, and importantly, lead to autophagic cell death in a panel of cancer cells, apoptosis-defective and apoptosis-resistant cells. Taken together, this study provides detailed insights into the cytotoxic mechanism of a novel autophagic compound that targeting the apoptosis resistant cancer cells, and new implication on drug discovery from natural products for drug resistant cancer therapy.

  15. Centchroman induces redox-dependent apoptosis and cell-cycle arrest in human endometrial cancer cells.

    PubMed

    Shyam, Hari; Singh, Neetu; Kaushik, Shweta; Sharma, Ramesh; Balapure, Anil K

    2017-04-01

    Centchroman (CC) or Ormeloxifene has been shown to induce apoptosis and cell cycle arrest in various types of cancer cells. This has, however, not been addressed for endometrial cancer cells where its (CC) mechanism of action remains unclear. This study focuses on the basis of antineoplasticity of CC by blocking the targets involved in the cell cycle, survival and apoptosis in endometrial cancer cells. Ishikawa Human Endometrial Cancer Cells were cultured under estrogen deprived medium, exposed to CC and analyzed for proliferation and apoptosis. Additionally, we also analyzed oxidative stress induced by CC. Cell viability studies confirmed the IC50 of CC in Ishikawa cells to be 20 µM after 48 h treatment. CC arrests the cells in G0/G1 phase through cyclin D1 and cyclin E mediated pathways. Phosphatidylserine externalization, nuclear morphology changes, DNA fragmentation, PARP cleavage, and alteration of Bcl-2 family protein expression clearly suggest ongoing apoptosis in the CC treated cells. Activation of caspase 3 & 9, up-regulation of AIF and inhibition of apoptosis by z-VAD-fmk clearly explains the participation of the intrinsic pathway of programmed cell death. Further, the increase of ROS, loss of MMP, inhibition of antioxidant (MnSOD, Cu/Zn-SOD and GST) and inhibition of apoptosis with L-NAC suggests CC induced oxidative stress leading to apoptosis via mitochondria mediated pathway. Therefore, CC could be a potential therapeutic agent for the treatment of Endometrial Cancer adjunct to its utility as a contraceptive and an anti-breast cancer agent.

  16. Mink Cell Focus-Forming Murine Leukemia Virus Killing of Mink Cells Involves Apoptosis and Superinfection

    PubMed Central

    Yoshimura, Fayth K.; Wang, Tao; Nanua, Suparna

    2001-01-01

    Induction of apoptosis by different types of pathogenic retroviruses is an important step in disease development. We have observed that infection of thymic lymphocytes by the mink cell focus-forming murine leukemia virus (MCF MLV) during the preleukemic period resulted in an enhancement of apoptosis of these cells. To further study the ability of MCF MLVs to induce apoptosis and the role of this process in viral pathogenesis, we have developed an in vitro system of virus-induced apoptosis. MCF13 MLV infection of mink epithelial cells resulted in the production of cytopathic foci. In contrast, infection of mink cells with the 4070A amphotropic MLV did not produce any cytopathic effects. Staining of MCF13 MLV-infected cells with propidium iodide and annexin V-fluorescein isothiocyanate indicated that virus-induced cell death was due to apoptosis. At 6 days postinfection, the percentage of apoptotic MCF13 MLV-infected cells was 27% compared with 2 to 3% for mock- or amphotropic MLV-infected cells, representing a 9- to 14-fold difference. Assays for caspase-3 activation confirmed the detection by flow cytometry of apoptosis of MCF13 MLV-infected cells. Large amounts of unintegrated linear viral DNA were detectable by Southern blot analysis during the acute phase of infection, which indicated that MCF13 MLV is able to superinfect mink cells. Unintegrated viral DNA of only the linear form was detectable in thymic lymphocytes isolated from MCF13 MLV-inoculated mice during the preleukemic period. These results indicated that the ability of MCF13 MLV to induce apoptosis is correlated with its ability to superinfect cells and that this occurs as an early step in thymic lymphoma development. PMID:11390602

  17. Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Lin, Ching-Yen; Chen, Yih-Yuan; Chen, Ping-Tzu; Tseng, Ya-Shih

    2016-01-01

    Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation. PMID:27385117

  18. Noninvasive Imaging of Natural Killer Cell-Mediated Apoptosis in a Mouse Tumor Model.

    PubMed

    Singh, Thoudam Debraj; Lee, Jaetae; Jeon, Yong Hyun

    2016-01-01

    Natural killer (NK) cells are cytotoxic lymphocytes that induce apoptosis in cancer cells infected with viruses and bacteria through a caspase-3-dependent pathway. Effective NK cell-based immunotherapy requires highly sensitive imaging tools for in vivo monitoring of the dynamic events involved in apoptosis. Here, we describe a noninvasive bioluminescence imaging approach to determine the antitumor effects of NK cell-based therapy by serial imaging of caspase-3-dependent apoptosis in a mouse model of human glioma.

  19. Saving cells from ultrasound-induced apoptosis: quantification of cell death and uptake following sonication and effects of targeted calcium chelation

    PubMed Central

    Hutcheson, J.D.; Schlicher, R.K.; Hicks, H.K.; Prausnitz, M.R.

    2010-01-01

    Applications of ultrasound for non-invasive drug and gene delivery have been limited by associated cell death due to sonication. In this study, we sought to quantify the distribution of cellular bioeffects caused by low-frequency ultrasound (24 kHz) and test the hypothesis that Ca2+ chelation after sonication can shift this distribution by saving cells from death by apoptosis. Using flow cytometry, we quantitatively categorized sonicated cells among four populations: (1) cells that appear largely unaffected, (2) cells reversibly permeabilized, (3) cells rendered nonviable during sonication and (4) cells that appear to be viable shortly after sonication, but later undergo apoptosis and die. By monitoring cells for 6 h after ultrasound exposure, we found that up to 15% of intact cells fell into this final category. Those apoptotic cells initially had the highest levels of uptake of a marker compound, calcein; also had highly elevated levels of intracellular Ca2+; and contained an estimated plasma membrane wound radius of 100 – 300 nm. Finally, we showed that chelation of intracellular Ca2+ after sonication reduced apoptosis by up to 44%, thereby providing a strategy to save cells. We conclude that cells can be saved from ultrasound-induced death by appropriate selection of ultrasound conditions and Ca2+ chelation after sonication. PMID:20447754

  20. Loss of Drosophila pseudouridine synthase triggers apoptosis-induced proliferation and promotes cell-nonautonomous EMT.

    PubMed

    Vicidomini, R; Di Giovanni, A; Petrizzo, A; Iannucci, L F; Benvenuto, G; Nagel, A C; Preiss, A; Furia, M

    2015-03-26

    Many developing tissues display regenerative capability that allows them to compensate cell loss and preserve tissue homeostasis. Because of their remarkable regenerative capability, Drosophila wing discs are extensively used for the study of regenerative phenomena. We thus used the developing wing to investigate the role played in tissue homeostasis by the evolutionarily conserved eukaryotic H/ACA small nucleolar ribonucleoprotein pseudouridine synthase. Here we show that localized depletion of this enzyme can act as an endogenous stimulus capable of triggering apoptosis-induced proliferation, and that context-dependent effects are elicited in different sub-populations of the silenced cells. In fact, some cells undergo apoptosis, whereas those surrounding the apoptotic foci, although identically depleted, overproliferate. This overproliferation correlates with ectopic induction of the Wg and JAK-STAT (Janus kinase-signal transducer and activator of transcription) mitogenic pathways. Expression of a p35 transgene, which blocks the complete execution of the death program and generates the so-called 'undead cells', amplifies the proliferative response. Pseudouridine synthase depletion also causes loss of apicobasal polarity, disruption of adherens cell junctions and ectopic induction of JNK (c-Jun N-terminal kinase) and Mmp1 (matrix metalloproteinase-1) activity, leading to a significant epithelial reorganization. Unexpectedly, cell-nonautonomous effects, such as epithelial mesenchymal transition in the contiguous unsilenced squamous epithelium, are also promoted. Collectively, these data point out that cell-cell communication and long-range signaling can take a relevant role in the response to pseudouridine synthase decline. Considering that all the affected pathways are highly conserved throughout evolution, it is plausible that the response to pseudouridine synthase depletion has been widely preserved. On this account, our results can add new light on the still

  1. Identification of a novel cyclin required for the intrinsic apoptosis pathway in lymphoid cells.

    PubMed

    Roig, M B; Roset, R; Ortet, L; Balsiger, N A; Anfosso, A; Cabellos, L; Garrido, M; Alameda, F; Brady, H J M; Gil-Gómez, G

    2009-02-01

    We have identified an early step common to pathways activated by different forms of intrinsic apoptosis stimuli. It requires de novo synthesis of a novel cyclin, cyclin O, that forms active complexes primarily with Cdk2 upon apoptosis induction in lymphoid cells. Cyclin O expression precedes glucocorticoid and gamma-radiation-induced apoptosis in vivo in mouse thymus and spleen, and its overexpression induces caspase-dependent apoptosis in cultured cells. Knocking down the endogenous expression of cyclin O by shRNA leads to the inhibition of glucocorticoid and DNA damage-induced apoptosis due to a failure in the activation of apical caspases while leaving CD95 death receptor-mediated apoptosis intact. Our data demonstrate that apoptosis induction in lymphoid cells is one of the physiological roles of cyclin O and it does not act by perturbing a normal cellular process such as the cell cycle, the DNA damage checkpoints or transcriptional response to glucocorticoids.

  2. Ethanol inhibits retinal and CNS differentiation due to failure of cell cycle exit via an apoptosis-independent pathway.

    PubMed

    Chung, Hsin-Yu; Chang, Chin-Teng; Young, Huay-Win; Hu, Shing P; Tzou, Wen-Shyong; Hu, Chin-Hwa

    2013-01-01

    Alcohol exposure during embryogenesis results in a variety of developmental disorders. Here, we demonstrate that continuous exposure to 1.5% ethanol causes substantial apoptosis and abrogated retinal and CNS development in zebrafish embryos. Chronic exposure to ethanol for 24h before hatching also induces apoptosis and retinal disorder. After the 2-day post-fertilization (dpf) stage, chronic exposure to ethanol continued to induce apoptosis, but did not block retinal differentiation. Although continuous ethanol exposure induces substantial accumulation of reactive oxygen species (ROS) and increases p53 expression, depletion of p53 did not eliminate ethanol-induced apoptosis. On the other hand, sequestering ROS with the antioxidant reagent N-acetylcysteine (NAC) successfully inhibited ethanol-associated apoptosis, suggesting that the ethanol-induced cell death primarily results from ROS accumulation. Continuous ethanol treatment of embryos reduced expression of the mature neural and photoreceptor markers elavl3/huC, rho, and crx; in addition, expression of the neural and retinal progenitor markers ascl1b and pax6b was maintained at the undifferentiated stage, indicating that retinal and CNS neural progenitor cells failed to undergo further differentiation. Moreover, ethanol treatment enhanced BrdU incorporation, histone H3 phosphorylation, and pcna expression in neural progenitor cells, thereby maintaining a high rate of proliferation. Ethanol treatment also resulted in sustained transcription of ccnd1/cyclin D1 and ccne/cyclin E throughout development in neural progenitor cells, without an appropriate increase of cdkn1b/p27 and cdkn1c/p57 expression, suggesting that these cells failed to exit from the cell cycle. Although NAC was able to mitigate ethanol-mediated apoptosis, it was unable to ameliorate the defects in visual and CNS neural differentiation, suggesting that abrogated neural development in ethanol-exposed embryos is unlikely to arise from excessive

  3. Apoptosis during embryonic tissue remodeling is accompanied by cell senescence

    PubMed Central

    Lorda-Diez, Carlos I.; Garcia-Riart, Beatriz; Montero, Juan A.; Rodriguez-León, Joaquín; Garcia-Porrero, Juan A; Hurle, Juan M.

    2015-01-01

    This study re-examined the dying process in the interdigital tissue during the formation of free digits in the developing limbs. We demonstrated that the interdigital dying process was associated with cell senescence, as deduced by induction of β-gal activity, mitotic arrest, and transcriptional up-regulation of p21 together with many components of the senescence-associated secretory phenotype. We also found overlapping domains of expression of members of the Btg/Tob gene family of antiproliferative factors in the regressing interdigits. Notably, Btg2 was up-regulated during interdigit remodeling in species with free digits but not in the webbed foot of the duck. We also demonstrate that oxidative stress promoted the expression of Btg2, and that FGF2 and IGF1 which are survival signals for embryonic limb mesenchyme inhibited Btg2 expression. Btg2 overexpression in vivo and in vitro induced all the observed changes during interdigit regression, including oxidative stress, arrest of cell cycle progression, transcriptional regulation of senescence markers, and caspase-mediated apoptosis. Consistent with the central role of p21 on cell senescence, the transcriptional effects induced by overexpression of Btg2 are attenuated by silencing p21. Our findings indicate that cell senescence and apoptosis are complementary processes in the regression of embryonic tissues and share common regulatory signals. PMID:26568417

  4. Aloe-emodin-induced apoptosis in human gastric carcinoma cells.

    PubMed

    Chen, Sheng-Hsuan; Lin, Kai-Yuan; Chang, Chun-Chao; Fang, Chia-Lang; Lin, Chih-Ping

    2007-11-01

    The purpose of this study was to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two distinct human gastric carcinoma cell lines, AGS and NCI-N87. We demonstrate that aloe-emodin induced cell death in a dose- and time-dependent manner. Noteworthy is that the AGS cells were generally more sensitive than the NCI-N87 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by the activation of caspase-3, leading to nuclear shrinkage and apoptosis. In addition, exposure to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These preclinical studies suggest that aloe-emodin represents a suitable and novel chemotherapeutic drug candidate for the treatment of human gastric carcinoma.

  5. CD39 modulates endothelial cell activation and apoptosis.

    PubMed Central

    Goepfert, C.; Imai, M.; Brouard, S.; Csizmadia, E.; Kaczmarek, E.; Robson, S. C.

    2000-01-01

    BACKGROUND: CD39 is the dominant vascular nucleoside triphosphate diphosphohydrolase (NTPDase) that exerts major effects on platelet reactivity by the regulated hydrolysis of extracellular adenine nucleotides. The effects of NTPDases on endothelial cell (EC) activation and apoptosis remain unexplored. MATERIAL AND METHODS: Recombinant replication-deficient adenoviruses were constructed with human CD39 cDNA (rAdCD39) or the bacterial beta-galactosidase (rAdbetagal). RESULTS: Intact human umbilical vein EC cultures infected with rAdCD39 had substantial and stable increases in NTPDase biochemical activity (14.50 +/- 3.50 Pi nmole/well/min), when contrasted with noninfected cells (0.95 +/- 0.002) and rAdbetagal infected cells (1.01 +/- 0.02; p<0.005). Increased NTPDase activity efficiently inhibited immediate type 2Y purinergic receptor (P2Y)-mediated EC activation responses viz. von Willebrand factor secretion in response to extracellular ATP. In addition, CD39 up-regulation blocked ATP-induced translocation of the transcription nuclear factor (NF)-kappaB to the cell nucleus, and abrogated transcription of mRNA encoding E-selectin, and consequent protein synthesis. CD39 also decreased the extent of apoptosis triggered by putative type-2X purinergic (P2X7) receptors in response to high concentrations of extracellular ATP in vitro. CONCLUSION: These properties of CD39 indicate primary vascular protective effects with potential therapeutic applications. PMID:10997340

  6. Cell deletion by apoptosis during regression of renal hyperplasia.

    PubMed Central

    Ledda-Columbano, G. M.; Columbano, A.; Coni, P.; Faa, G.; Pani, P.

    1989-01-01

    Regression of renal hyperplasia after withdrawal of the mitogenic stimulus induced by a single injection of lead nitrate was studied in male Wistar rats. Lead nitrate administration (10 mumol/100 g body weight) resulted in a ninefold increase in the incorporation of labeled thymidine into renal DNA and in an enhancement in the mitotic index; these changes were accompanied by an increase in the organ weight and DNA content that reached a maximum at 2 days. Regression of the renal hyperplasia was observed as early as 3 days after treatment and was completed within 2 weeks. Although lytic necrosis was not responsible for cell loss, the elimination of the excess renal cells took the form of apoptosis. This distinctive mode of cell death, which has been implicated in the involution of hyperplasia in other tissues and organs, was characterized by the occurrence of intracellular and extracellular membrane-bounded eosinophilic globules that often contained nuclear fragments. It affected mainly cells of the proximal tubules, and it was not detected once the kidney had regressed to its original mass. These results support the hypothesis that apoptosis is involved in the regulation of organ size. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2552812

  7. AMPK Regulation of Cell Growth, Apoptosis, Autophagy, and Bioenergetics.

    PubMed

    Paz, Marina Villanueva; Cotán, David; Maraver, Juan Garrido; Oropesa-Ávila, Manuel; de la Mata, Mario; Pavón, Ana Delgado; de Lavera, Isabel; Gómez, Elizabet Alcocer; Córdoba, Mónica Álvarez; Alcázar, José A Sánchez

    2016-01-01

    In eukaryotic cells, AMP-activated protein kinase (AMPK) generally promotes catabolic pathways that produce ATP and at the same time inhibits anabolic pathways involved in different processes that consume ATP. As an energy sensor, AMPK is involved in the main cellular functions implicated in cell fate, such as cell growth and autophagy.Recently, AMPK has been connected with apoptosis regulation, although the molecular mechanism by which AMPK induces and/or inhibits cell death is not clear.This chapter reviews the essential role of AMPK in signaling pathways that respond to cellular stress and damage, highlighting the complex and reciprocal regulation between AMPK and their targets and effectors. The therapeutic implications of the role of AMPK in different pathologies such as diabetes, cancer, or mitochondrial dysfunctions are still controversial, and it is necessary to further investigate the molecular mechanisms underlying AMPK activation.

  8. Caspase-10 Is the Key Initiator Caspase Involved in Tributyltin-Mediated Apoptosis in Human Immune Cells

    PubMed Central

    Krug, Harald F.

    2012-01-01

    Tributyltin (TBT) is one of the most toxic compounds produced by man and distributed in the environment. A multitude of toxic activities have been described, for example, immunotoxic, neurotoxic, and endocrine disruptive effects. Moreover, it has been shown for many cell types that they undergo apoptosis after treatment with TBT and the cell death of immune cells could be the molecular background of its immunotoxic effect. As low as 200 nM up to 1 μM of TBT induces all signs of apoptosis in Jurkat T cells within 1 to 24 hrs of treatment. When compared to Fas-ligand control stimulation, the same sequence of events occurs: membrane blebbing, phosphatidylserine externalisation, the activation of the “death-inducing signalling complex,” and the following sequence of cleavage processes. In genetically modified caspase-8-deficient Jurkat cells, the apoptotic effects are only slightly reduced, whereas, in FADD-negative Jurkat cells, the TBT effect is significantly diminished. We could show that caspase-10 is recruited by the TRAIL-R2 receptor and apoptosis is totally prevented when caspase-10 is specifically inhibited in all three cell lines. PMID:22287961

  9. Aeromonas spp. induce apoptosis of epithelial cells through an oxidant-dependent activation of the mitochondrial pathway.

    PubMed

    Krzyminska, Sylwia; Tanska, Anna; Kaznowski, Adam

    2011-07-01

    We investigated interactions of Aeromonas caviae, Aeromonas veronii biotype sobria and Aeromonas hydrophila strains, isolated from faecal specimens of humans with gastroenteritis, with HT29 intestinal epithelial cells. All strains were found to be cytotoxic to the cells. Bacterial infection caused generation of reactive oxygen species (ROS) and nitric oxide radical (NO(·)). The maximal levels of ROS and NO(·) were 14 and 35 times, respectively, greater in cells infected with Aeromonas spp. than in those incubated with non-pathogenic Escherichia coli. The cells incubated with cytolytic enterotoxin isolated from A. veronii biotype sobria induced the highest level of ROS and caused the highest cytotoxicity. We observed that increased accumulation of intracellular ROS leads to a loss of mitochondrial membrane potential (ΔΨ(m)). Analyses of cellular morphology and DNA fragmentation revealed characteristic features of cells undergoing apoptosis. The process was dependent on the activation of caspases, and was completely blocked by the pan-caspase inhibitor z-VAD-fmk. Treatment of infected HT29 cells with three distinct antioxidants prevented intracellular ROS production, mitochondrial damage and apoptosis. The Pearson linear test revealed positive correlations between apoptotic index at 24 h and percentage cytotoxicity, ROS production, NO(·) production and loss of ΔΨ(m). This study has provided new insights into the mechanisms contributing to the development of Aeromonas-associated gastroenteritis. The results indicate that bacteria-induced apoptosis of epithelial cells results from mitochondrial depolarization due to oxidative stress.

  10. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  11. Sodium caffeate induces endothelial cell apoptosis and inhibits VEGF expression in cancer cells.

    PubMed

    Xu, Feng; Ou-Yang, Zhi-Gang; Zhang, Sheng-Hua; Song, Dan-Qing; Shao, Rong-Guang; Zhen, Yong-Su

    2006-06-01

    To investigate the induction of endothelial cell apoptosis and the suppression of VEGF expression in cancer cells by sodium caffeate (SCA). Apoptosis of transformed human umbilical vein endothelial cells (ECV304 cell line) was detected by flow cytometry, DNA electrophoresis assay and morphological assessment. Western blotting analysis was applied for determination of VEGF expression in cancer cells. Substrate degradation by type IV collagenase was measured by zymography. ELISA was used to detect the binding of type IV collagenase with relevant monoclonal antibody. SCA induced ECV304 cell apoptosis in a time- and dose-dependent manner. After treatment with 100 and 250 microg X mL(-1) of SCA for 48 h, DNA laddering appeared. SCA treated cells showed strong blue fluorescence and distinct changes of nuclear morphology, such as pyknosis and the occurrence of apoptotic bodies. VEGF expression in hepatoma HepG-2 cells and prostate carcinoma DU145 cells was reduced after SCA treatment. The degradation activity of type IV collagenase including MMP-2 and MMP-9 secreted by giant cell pulmonary carcinoma PG cells was inhibited by SCA in a dose-dependent manner. SCA also reduced the binding of mAb 3D6, a relevant monoclonal antibody, to type IV collagenase. SCA can induce endothelial cell apoptosis and inhibit VEGF expression as well as type IV collagenase activity in cancer cells. SCA might be active in modulating tumor angiogenesis and the microenvironment.

  12. Abnormal expression levels of BMP15/Smad1 are associated with granulosa cell apoptosis in patients with polycystic ovary syndrome.

    PubMed

    Cui, Xiangrong; Jing, Xuan; Wu, Xueqing; Bi, Xingyu; Liu, Junfen; Long, Zhijing; Zhang, Xiuping; Zhang, Dongdong; Jia, Hongxiang; Su, Dan; Huo, Kai

    2017-09-28

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects reproductive dysfunction and metabolism in women of childbearing age. An increasing number of studies have suggested that the bone morphogenetic protein 15 (BMP15) signalling pathway serves an important role in the pathogenesis of PCOS; however, the full mechanism remains unknown. The present study revealed that intrinsic follicular dysplasia may be associated with regulation disorders of ovarian granulosa cell apoptosis. Compared with the control group, body mass index, luteinising hormone and testosterone levels were significantly increased (P<0.05). The percentage of S phase cells was significantly higher, cells in G2/M phase cells was significantly lower, and cells undergoing apoptosis was significantly higher in the PCOS group compared with the control group (P<0.05). The expression levels of B‑cell lymphoma 2 was significantly decreased in granulosa cells of PCOS group, whereas the expression of caspase‑3 was higher than the control group (P<0.05). The rate of apoptosis of granulosa cells was measured by a terminal deoxynucleotide transferase dUTP nick‑end labelling assay. The relative mRNA expression levels of BMP receptor 2 and SMAD1 were significantly decreased in granulosa cells in the PCOS group compared with the control (P<0.05). In addition, the expression of BMP15 in follicular fluid and Smad1 in granulosa cells was significantly decreased in the PCOS group compared with the control (P<0.05). The data suggested that the BMP15/Smad1 signalling pathway may be involved in granulosa cell apoptosis, and may be a target for clinical treatment for PCOS.

  13. Somatostatin protects photoreceptor cells against high glucose–induced apoptosis

    PubMed Central

    Mazzeo, Aurora; Cazzoni, Daniele; Beltramo, Elena; Hernández, Cristina; Porta, Massimo; Simó, Rafael; Valverde, Ángela M.

    2016-01-01

    Purpose Many cellular and molecular studies in experimental animals and early retinal function tests in patients with diabetic retinopathy (DR) have shown that retinal neurodegeneration is an early event in the pathogenesis of the disease. Somatostatin (SST) is one of the most important neuroprotective factors synthesized by the retina: SST levels are decreased in parallel to retinal neurodegeneration in early stages of DR. In this study, we characterized the induction of apoptosis (programmed cell death) in a 661W photoreceptor-like cell line cultured under high glucose (HG) conditions and the effect of SST. Methods A 661W photoreceptor-like cell line and retinal explants from 10-week-old male C57BL/6 mice were cultured under HG conditions and treated with SST. Results Hyperglycemia significantly reduced the cellular viability by increasing the percentage of apoptotic cells, and this effect was ameliorated by SST (p˂0.05). Activation of caspase-8 by hyperglycemia was found in the 661W cells and retinal explants and decreased in the presence of SST (p˂0.05). Moreover, we detected activation of calpain-2 associated with hyperglycemia-induced cell death, as well as increased protein tyrosine phosphatase 1B (PTP1B) protein levels; both had a pattern of cleavage that was absent in the presence of SST (p˂0.05). Treatment of the 661W cells and retinal explants with SST for 24 h increased the phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR; tyrosine 1165/1166) and protein kinase B (Akt; serine 473), suggesting this survival signaling is activated in the neuroretina by SST (p˂0.05). Conclusions This study has provided new mechanistic insights first into the involvement of calpain-2 and PTP1B in the loss of cell survival and increased caspase-8-dependent apoptosis induced by hyperglycemia in photoreceptor cells and second, on the protective effect of SST against apoptosis by the enhancement of IGF-IR-mediated Akt phosphorylation. PMID:28050125

  14. Somatostatin protects photoreceptor cells against high glucose-induced apoptosis.

    PubMed

    Arroba, Ana I; Mazzeo, Aurora; Cazzoni, Daniele; Beltramo, Elena; Hernández, Cristina; Porta, Massimo; Simó, Rafael; Valverde, Ángela M

    2016-01-01

    Many cellular and molecular studies in experimental animals and early retinal function tests in patients with diabetic retinopathy (DR) have shown that retinal neurodegeneration is an early event in the pathogenesis of the disease. Somatostatin (SST) is one of the most important neuroprotective factors synthesized by the retina: SST levels are decreased in parallel to retinal neurodegeneration in early stages of DR. In this study, we characterized the induction of apoptosis (programmed cell death) in a 661W photoreceptor-like cell line cultured under high glucose (HG) conditions and the effect of SST. A 661W photoreceptor-like cell line and retinal explants from 10-week-old male C57BL/6 mice were cultured under HG conditions and treated with SST. Hyperglycemia significantly reduced the cellular viability by increasing the percentage of apoptotic cells, and this effect was ameliorated by SST (p˂0.05). Activation of caspase-8 by hyperglycemia was found in the 661W cells and retinal explants and decreased in the presence of SST (p˂0.05). Moreover, we detected activation of calpain-2 associated with hyperglycemia-induced cell death, as well as increased protein tyrosine phosphatase 1B (PTP1B) protein levels; both had a pattern of cleavage that was absent in the presence of SST (p˂0.05). Treatment of the 661W cells and retinal explants with SST for 24 h increased the phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR; tyrosine 1165/1166) and protein kinase B (Akt; serine 473), suggesting this survival signaling is activated in the neuroretina by SST (p˂0.05). This study has provided new mechanistic insights first into the involvement of calpain-2 and PTP1B in the loss of cell survival and increased caspase-8-dependent apoptosis induced by hyperglycemia in photoreceptor cells and second, on the protective effect of SST against apoptosis by the enhancement of IGF-IR-mediated Akt phosphorylation.

  15. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest.

    PubMed

    Zhang, Yusong; Zhuang, Zhixiang; Meng, Qinghui; Jiao, Yang; Xu, Jiaying; Fan, Saijun

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer.

  16. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest

    PubMed Central

    ZHANG, YUSONG; ZHUANG, ZHIXIANG; MENG, QINGHUI; JIAO, YANG; XU, JIAYING; FAN, SAIJUN

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer. PMID:24348867

  17. Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells.

    PubMed

    Tang, Ruoping; Faussat, Anne-Marie; Majdak, Patricia; Marzac, Christophe; Dubrulle, Sabine; Marjanovic, Zora; Legrand, Ollivier; Marie, Jean-Pierre

    2006-03-01

    Semisynthetic homoharringtonine (ssHHT) is now being evaluated in phase II clinical trials for the treatment of chronic myelogenous leukemia and acute myelogenous leukemia patients. Here, we examined the mechanism of the apoptosis induced by ssHHT in myeloid leukemia cells. First, we have shown that ssHHT induces apoptosis in HL60 and HL60/MRP cell lines in a time- and dose-dependent manner, and independently of the expression of Bax. The decrease of mitochondrial membrane potential and the release of cytochrome c were observed in the apoptotic cells induced by ssHHT. To unveil the relationship between ssHHT and the mitochondrial disruption, we have shown that ssHHT decreased myeloid cell leukemia-1 (Mcl-1) expression and induced Bcl-2 cleavage in HL60 and HL60/MRP cell lines. The Bcl-2 cleavage could be inhibited by the Z-VAD.fmk caspase inhibitor. However, Mcl-1 turnover was very rapid and occurred before caspase activation. The Mcl-1 turnover was only induced by ssHHT and cycloheximide, but not by daunorubicin and cytosine arabinoside, and could be restored by proteasome inhibitors. Second, we confirmed that ssHHT rapidly induced massive apoptosis in acute myelogenous leukemia patient cells. We have also confirmed the release of cytochrome c and a rapid turnover of Mcl-1 in these patient cells, taking place only in apoptotic cells induced by ssHHT but not in cells undergoing spontaneous apoptosis. Finally, we have shown that ssHHT inhibits protein synthesis in both cell line and patient cells. We suggest that the inhibition of protein synthesis and resulting Mcl-1 turnover play a key role in the apoptosis induced by ssHHT. Our results encourage further clinical trials for the use of ssHHT in acute myelogenous leukemia.

  18. Loss of Drosophila pseudouridine synthase triggers apoptosis-induced proliferation and promotes cell-nonautonomous EMT

    PubMed Central

    Vicidomini, R; Di Giovanni, A; Petrizzo, A; Iannucci, L F; Benvenuto, G; Nagel, A C; Preiss, A; Furia, M

    2015-01-01

    Many developing tissues display regenerative capability that allows them to compensate cell loss and preserve tissue homeostasis. Because of their remarkable regenerative capability, Drosophila wing discs are extensively used for the study of regenerative phenomena. We thus used the developing wing to investigate the role played in tissue homeostasis by the evolutionarily conserved eukaryotic H/ACA small nucleolar ribonucleoprotein pseudouridine synthase. Here we show that localized depletion of this enzyme can act as an endogenous stimulus capable of triggering apoptosis-induced proliferation, and that context-dependent effects are elicited in different sub-populations of the silenced cells. In fact, some cells undergo apoptosis, whereas those surrounding the apoptotic foci, although identically depleted, overproliferate. This overproliferation correlates with ectopic induction of the Wg and JAK-STAT (Janus kinase-signal transducer and activator of transcription) mitogenic pathways. Expression of a p35 transgene, which blocks the complete execution of the death program and generates the so-called ‘undead cells', amplifies the proliferative response. Pseudouridine synthase depletion also causes loss of apicobasal polarity, disruption of adherens cell junctions and ectopic induction of JNK (c-Jun N-terminal kinase) and Mmp1 (matrix metalloproteinase-1) activity, leading to a significant epithelial reorganization. Unexpectedly, cell-nonautonomous effects, such as epithelial mesenchymal transition in the contiguous unsilenced squamous epithelium, are also promoted. Collectively, these data point out that cell–cell communication and long-range signaling can take a relevant role in the response to pseudouridine synthase decline. Considering that all the affected pathways are highly conserved throughout evolution, it is plausible that the response to pseudouridine synthase depletion has been widely preserved. On this account, our results can add new light on the

  19. CD95-mediated apoptosis in Burkitt's lymphoma B-cells is associated with Pim-1 down-regulation.

    PubMed

    Matou-Nasri, Sabine; Rabhan, Zaki; Al-Baijan, Haya; Al-Eidi, Hamad; Yahya, Wesam Bin; Al Abdulrahman, Abdelkareem; Almobadel, Nasser; Alsubeai, Mona; Al Ghamdi, Saleh; Alaskar, Ahmed; AlBalwi, Mohammed; Alzahrani, Mohsen; Alabdulkareem, Ibrahim

    2017-01-01

    B-cells of the high-grade non-Hodgkin lymphoma Burkitt's lymphoma (BL) overexpress survival oncoproteins, including the proviral integration site for Moloney murine leukaemia virus kinase (Pim)-1, and become apoptosis resistant. Activated death receptor CD95 after ligation with anti-CD95 monoclonal antibody (mAb) resulted in the regression of BL via induction of apoptosis, suggesting a decrease of survival protein expression. Here, CD95-mediated apoptotic pathways in BL B-cell lines (Raji and Daudi) following treatment with anti-CD95 mAb was investigated with the cause-and-effects on pim-1 gene expression, in comparison with leukemic cell line (K562) used as CD95-negative cells. Immunohistochemical staining for CD95 and Pim-1 was performed, and the effects of anti-CD95 mAb on apoptotic signalling using western blotting, on caspase activity and cell survival of BL B-cell and leukemic cell lines were determined. We showed that Raji cells expressed more CD95 receptors than Daudi cells. Half of each population underwent apoptosis accompanied by decreased cell viability after anti-CD95 mAb treatment. Distinct extrinsic and intrinsic CD95-mediated apoptotic pathways in Raji and Daudi cells were revealed by high caspase activity and mitochondrial outer membrane permeabilization, respectively. We observed decreased Pim-1 transcript and protein expression levels with increased heat-shock protein (Hsp)70 and decreased Hsp90 expression in anti-CD95 mAb-treated cells. Throughout the study, K562 cells did not undergo apoptosis upon anti-CD95 mAb treatment. Pim-1 knockdown following to stable transfection with plasmid vectors induced apoptosis and decreased viability of BL and K562 cells. Therefore, CD95-mediated apoptosis induces Pim-1 down-regulation in BL B-cells, but Pim-1 down-regulation cannot fully eradicate BL and leukaemia. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  1. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs.

    PubMed

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-11-26

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity.

  2. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    PubMed Central

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity. PMID:26703569

  3. Cell apoptosis, autophagy and necroptosis in osteosarcoma treatment

    PubMed Central

    Li, Dongqi; Li, Huiling; Ren, Mingyan; Liao, Yedan; Yu, Shunling; Chen, Yanjin; Yang, Yihao; Zhang, Ya

    2016-01-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents. Although combined therapy including surgery and multi-agent chemotherapy have resulted in great improvements in the overall survival of patients, chemoresistance remains an obstacle for the treatment of osteosarcoma. Molecular targets or effective agents that are actively involved in cell death including apoptosis, autophagy and necroptosis have been studied. We summarized how these agents (novel compounds, miRNAs, or proteins) regulate apoptotic, autophagic and necroptotic pathways; and discussed the current knowledge on the role of these new agents in chemotherapy resistance in osteosarcoma. PMID:27007056

  4. Regulatory RNA Key Player in p53-Mediated Apoptosis in Embryonic Stem Cells | Center for Cancer Research

    Cancer.gov

    Embryonic stem cells (ESCs) must maintain the integrity of their genomes or risk passing potentially deleterious mutations on to numerous tissues. Thus, ESCs have a unique genome surveillance system and easily undergo apoptosis or differentiation when DNA damage is detected. The protein p53 is known to promote differentiation in mouse ESCs (mESCs), but its role in DNA damage-induced apoptosis (DIA) is unclear. p53 may have a pro-apoptotic function since it can regulate apoptotic genes in embryonal cells. Given that ESCs have a distinct transcriptional program, Jing Huang, Ph.D., of CCR’s Laboratory of Cancer Biology and Genetics, and his colleagues wondered whether p53 might regulate DIA in ESCs by utilizing the ESC-specific expression program.

  5. Smooth Muscle Cells Isolated from Thoracic Aortic Aneurysms Exhibit Increased Genomic Damage, but Similar Tendency for Apoptosis

    PubMed Central

    Serhatli, Muge; Kacar, Omer; Adiguzel, Zelal; Tuncer, Altug; Hayran, Mutlu; Baysal, Kemal

    2012-01-01

    Aortic aneurysms (AA) are characterized by structural deterioration leading to progressive dilation. During the development of AA, two key structural changes are pronounced, one being degradation of extracellular matrix and the other loss of smooth muscle cells (SMCs) through apoptosis. Reactive oxygen species (ROS) are produced above physiological levels in dilated (aneurismal) part of the aorta compared to the nondilated part and they are known to be associated with both the extracellular matrix degradation and the loss of SMCs. In this study, we hypothesized that aneurismal SMCs are more prone to apoptosis and that at least some cells undergo apoptosis due to elevated ROS in the aortic wall. To test this hypothesis, we first isolated SMCs from thoracic aneurismal tissue and compared their apoptotic tendency with normal SMCs in response to H2O2, oxidized sterol, or UV treatment. Exposed cells exhibited morphological changes characteristic of apoptosis, such as cell shrinkage, membrane blebbing, chromatin condensation, and DNA fragmentation. Terminal deoxynucleotidyl transferased UTP nick end labeling (TUNEL) further confirmed the fragmentation of nuclear DNA in these cells. Vascular SMCs were analyzed for their micronuclei (MN) and binucleate (BN) frequency as indicators of genomic abnormality. These data were then compared to patient parameters, including age, gender, hypertension, or aortic diameter for existing correlations. While the tendency for apoptosis was not significantly different compared to normal cells, both the %MN and %BN were higher in aneurismal SMCs. The data suggest that there is increased DNA damage in TAA samples, which might play a pivotal role in disease development. PMID:22871164

  6. Vascular smooth muscle cell apoptosis induced by "supercooling" and rewarming.

    PubMed

    Yiu, Wai-ki; Cheng, Stephen W K; Sumpio, Bauer E

    2006-12-01

    The underlying mechanisms for the reduction in restenosis caused by cryoplasty for peripheral atherosclerotic lesions are not well understood. Because vascular smooth muscle cells (SMCs) are known to play a critical role in restenosis and neointimal hyperplasia, the aim of this study was to determine SMC survival under conditions of "supercooling" and/or rewarming. Bovine aortic SMCs were supercooled to -10 degrees C for 0, 60, or 120 seconds with a custom-designed conduction cooling stage and then rewarmed to 37 degrees C in an incubator for 0, 12, or 24 hours. A terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was used to measure the degree of apoptosis. Activation of Akt (ie, protein kinase B), a key signal protein involved in cell survival, was assessed by Western blot analysis. An increase in apoptotic SMCs was observed with increasing supercooling and rewarming time. Akt was significantly activated at only the most severe condition (120 seconds of supercooling and 24 hours of rewarming), which showed a 2.03-fold increase compared with the group without rewarming. The data suggest that SMC apoptosis occurs with supercooling and rewarming. Protective cell survival mechanisms were activated only late in the rewarming phase. This may partially explain the long-term patency observed with cryoplasty of atherosclerotic peripheral lesions.

  7. Mechanisms of cyclic AMP/protein kinase A- and glucocorticoid-mediated apoptosis using S49 lymphoma cells as a model system

    PubMed Central

    Keshwani, Malik M.; Kanter, Joan R.; Ma, Yuliang; Wilderman, Andrea; Darshi, Manjula; Insel, Paul A.; Taylor, Susan S.

    2015-01-01

    Cyclic AMP/protein kinase A (cAMP/PKA) and glucocorticoids promote the death of many cell types, including cells of hematopoietic origin. In wild-type (WT) S49 T-lymphoma cells, signaling by cAMP and glucocorticoids converges on the induction of the proapoptotic B-cell lymphoma-family protein Bim to produce mitochondria-dependent apoptosis. Kin–, a clonal variant of WT S49 cells, lacks PKA catalytic (PKA-Cα) activity and is resistant to cAMP-mediated apoptosis. Using sorbitol density gradient fractionation, we show here that in kin– S49 cells PKA-Cα is not only depleted but the residual PKA-Cα mislocalizes to heavier cell fractions and is not phosphorylated at two conserved residues (Ser338 or Thr197). In WT S49 cells, PKA-regulatory subunit I (RI) and Bim coimmunoprecipitate upon treatment with cAMP analogs and forskolin (which increases endogenous cAMP concentrations). By contrast, in kin– cells, expression of PKA-RIα and Bim is prominently decreased, and increases in cAMP do not increase Bim expression. Even so, kin– cells undergo apoptosis in response to treatment with the glucocorticoid dexamethasone (Dex). In WT cells, glucorticoid-mediated apoptosis involves an increase in Bim, but in kin– cells, Dex-promoted cell death appears to occur by a caspase 3-independent apoptosis-inducing factor pathway. Thus, although cAMP/PKA-Cα and PKA-R1α/Bim mediate apoptotic cell death in WT S49 cells, kin– cells resist this response because of lower levels of PKA-Cα and PKA-RIα subunits as well as Bim. The findings for Dex-promoted apoptosis imply that these lymphoma cells have adapted to selective pressure that promotes cell death by altering canonical signaling pathways. PMID:26417071

  8. Combining CAR T cells and the Bcl-2 family apoptosis inhibitor ABT-737 for treating B-cell malignancy.

    PubMed

    Karlsson, H; Karlsson, S C H; Lindqvist, A C; Fransson, M; Paul-Wetterberg, G; Nilsson, B; Essand, M; Nilsson, K; Frisk, P; Jernberg-Wiklund, H; Loskog, A; Loskog, S I A

    2013-07-01

    B-cell malignancies upregulate the B-cell lymphoma 2 (Bcl-2) family inhibitors of the intrinsic apoptosis pathway, making them therapy resistant. However, small-molecule inhibitors of Bcl-2 family members such as ABT-737 restore a functional apoptosis pathway in cancer cells, and its oral analog ABT-263 (Navitoclax) has entered clinical trials. Gene engineered chimeric antigen receptor (CAR) T cells also show promise in B-cell malignancy, and as they induce apoptosis via the extrinsic pathway, we hypothesized that small-molecule inhibitors of the Bcl-2 family may potentiate the efficacy of CAR T cells by engaging both apoptosis pathways. CAR T cells targeting CD19 were generated from healthy donors as well as from pre-B-ALL (precursor-B acute lymphoblastic leukemia) patients and tested together with ABT-737 to evaluate apoptosis induction in five B-cell tumor cell lines. The CAR T cells were effective even if the cell lines exhibited different apoptosis resistance profiles, as shown by analyzing the expression of apoptosis inhibitors by PCR and western blot. When combining T-cell and ABT-737 therapy simultaneously, or with ABT-737 as a presensitizer, tumor cell apoptosis was significantly increased. In conclusion, the apoptosis inducer ABT-737 enhanced the efficacy of CAR T cells and could be an interesting drug candidate to potentiate T-cell therapy.

  9. Hrk/DP5 contributes to the apoptosis of select neuronal populations but is dispensable for haematopoietic cell apoptosis.

    PubMed

    Coultas, Leigh; Terzano, Susanna; Thomas, Tim; Voss, Anne; Reid, Kate; Stanley, Edouard G; Scott, Clare L; Bouillet, Philippe; Bartlett, Perry; Ham, Jonathan; Adams, Jerry M; Strasser, Andreas

    2007-06-15

    The pro-apoptotic BH3-only members of the Bcl2 family, crucial initiators of cell death, are activated by a diverse array of developmental cues or experimentally applied stress stimuli. We have investigated, through gene targeting in mice, the biological roles for the BH3-only family member HRK (also known as DP5) in apoptosis regulation. Hrk gene expression was found to be restricted to cells and tissues of the central and peripheral nervous systems. Sensory neurons from mice lacking Hrk were less sensitive to apoptosis induced by nerve growth factor (NGF) withdrawal, consistent with the induction of Hrk following NGF deprivation. By contrast, cerebellar granule neurons that upregulate Hrk upon transfer to low-K+ medium underwent apoptosis normally under these conditions in the absence of Hrk. Furthermore, loss of Hrk was not sufficient to rescue the neuronal degeneration in lurcher mutant mice. Despite previous reports, no evidence was found for Hrk expression or induction in growth-factor-dependent haematopoietic cell lines following withdrawal of their requisite cytokine, and haematopoietic progenitors lacking HRK died normally in response to cytokine deprivation. These results demonstrate that HRK contributes to apoptosis signalling elicited by trophic factor withdrawal in certain neuronal populations but is dispensable for apoptosis of haematopoietic cells.

  10. Hrk/DP5 contributes to the apoptosis of select neuronal populations but is dispensable for haematopoietic cell apoptosis

    PubMed Central

    Coultas, Leigh; Terzano, Susanna; Thomas, Tim; Voss, Anne; Reid, Kate; Stanley, Edouard G.; Scott, Clare L.; Bouillet, Philippe; Bartlett, Perry; Ham, Jonathan; Adams, Jerry M.; Strasser, Andreas

    2009-01-01

    Summary The pro-apoptotic BH3-only members of the Bcl2 family, crucial initiators of cell death, are activated by a diverse array of developmental cues or experimentally applied stress stimuli. We have investigated, through gene targeting in mice, the biological roles for the BH3-only family member HRK (also known as DP5) in apoptosis regulation. Hrk gene expression was found to be restricted to cells and tissues of the central and peripheral nervous systems. Sensory neurons from mice lacking Hrk were less sensitive to apoptosis induced by nerve growth factor (NGF) withdrawal, consistent with the induction of Hrk following NGF deprivation. By contrast, cerebellar granule neurons that upregulate Hrk upon transfer to low-K+ medium underwent apoptosis normally under these conditions in the absence of Hrk. Furthermore, loss of Hrk was not sufficient to rescue the neuronal degeneration in lurcher mutant mice. Despite previous reports, no evidence was found for Hrk expression or induction in growth-factor-dependent haematopoietic cell lines following withdrawal of their requisite cytokine, and haematopoietic progenitors lacking HRK died normally in response to cytokine deprivation. These results demonstrate that HRK contributes to apoptosis signalling elicited by trophic factor withdrawal in certain neuronal populations but is dispensable for apoptosis of haematopoietic cells. PMID:17535852

  11. Involvement of the Up-regulated FoxO1 Expression in Follicular Granulosa Cell Apoptosis Induced by Oxidative Stress*

    PubMed Central

    Shen, Ming; Lin, Fei; Zhang, Jiaqing; Tang, Yiting; Chen, Wei-Kang; Liu, Honglin

    2012-01-01

    Follicular atresia is common in female mammalian ovaries, where most follicles undergo degeneration at any stage of growth and development. Oxidative stress gives rise to triggering granulosa cell apoptosis, which has been suggested as a major cause of follicular atresia. However, the underlying mechanism by which the oxidative stress induces follicular atresia remains unclear. FoxO transcription factors are known as critical mediators in the regulation of oxidative stress and apoptosis. In this study, the involvement of FoxO1 in oxidative stress-induced apoptosis of mouse follicular granulosa cells (MGCs) was investigated in vivo and in vitro. It was observed that increased apoptotic signals correlated with elevated expression of FoxO1 in MGCs when mice were treated with the oxidant. Correspondingly, the expressions of FoxO1 target genes, such as proapoptotic genes and antioxidative genes, were also up-regulated. In primary cultured MGCs, treatment with H2O2 led to FoxO1 nuclear translocation. Further studies with overexpression and knockdown of FoxO1 demonstrated the critical role of FoxO1 in the induction of MGC apoptosis by oxidative stress. Finally, inactivation of FoxO1 by insulin treatment confirmed that FoxO1 induced by oxidative stress played a pivotal role in up-regulating the expression of downstream apoptosis-related genes in MGCs. Our results suggest that up-regulation of FoxO1 by oxidative stress leads to apoptosis of granulosa cells, which eventually results in follicular atresia in mice. PMID:22669940

  12. Taraxerol Induces Cell Apoptosis through A Mitochondria-Mediated Pathway in HeLa Cells.

    PubMed

    Yaoi, Xiangyang; Lu, Binyu; Lü, Chaotian; Bai, Qin; Yan, Dazhong; Xu, Hui

    2017-10-01

    Taraxerol acetate has potent anti-cancer effects via the induction of apoptosis, autophagy, cell cycle arrest, and inhibition of cell migration. However, whether taraxerol induced apoptosis and its underlying mechanisms of action is not clear. In the present study, we assess the effects of taraxerol on the mitochondrial apoptotic pathway and determine the release of cytochrome c to the cytosol and activation of caspases. In this experimental study, we mainly investigated the effect of taraxerol on HeLa cells. We tested cell viability by the MTT assay and morphologic changes, analyzed apoptosis by DAPI staining and flow cytometry. We also determined reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) using a Microplate Reader. In addition, the apoptotic proteins were tested by Western blot. Taraxerol enhanced ROS levels and attenuated the MMP (Δψm) in HeLa cells. Taraxerol induced apoptosis mainly via the mitochondrial pathway including the release of cytochrome c to the cytosol and activation of caspases 9 and 3, and anti-poly (ADPribose) polymerase (PARP). Taraxerol could induce the down-regulation of the anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax. It suppressed the PI3K/ Akt signaling pathway. These results demonstrated that taraxerol induced cell apoptosis through a mitochondria-mediated pathway in HeLa cells. Thus, taraxerol might be a potential anticervical cancer candidate.

  13. Isoalantolactone inhibits UM-SCC-10A cell growth via cell cycle arrest and apoptosis induction.

    PubMed

    Wu, Minjun; Zhang, Hua; Hu, Jiehua; Weng, Zhiyong; Li, Chenyuan; Li, Hong; Zhao, Yan; Mei, Xifan; Ren, Fu; Li, Lihua

    2013-01-01

    Isoalantolactone is a sesquiterpene lactone compound isolated from the roots of Inula helenium L. Previous studies have demonstrated that isoalantolactone possesses antifungal, anti-bacterial, anti-helminthic and anti-proliferative properties in a variety of cells, but there are no studies concerning its effects on head and neck squamous cell carcinoma (HNSCC). In the present study, an MTT assay demonstrated that isoalantolactone has anti-proliferative activity against the HNSCC cell line (UM-SCC-10A). Immunostaining identified that this compound induced UM-SCC-10A cell apoptosis but not necrosis. To explain the molecular mechanisms underlying its effects, flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of cyclin D. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to up-regulation of pro-apoptotic protein expression (Bax), down-regulation of anti-apoptotic protein expression (Bcl-2), mitochondrial release of cytochrome c (Cyto c), reduction of mitochondrial membrane potential (MMP) and activation of caspase-3 (Casp-3). Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Together, our findings suggest that isoalantolactone induced caspase-dependent apoptosis via a mitochondrial pathway and was associated with cell cycle arrest in the G1 phase in UM-SCC-10A cells. Therefore, isoalantolactone may become a potential drug for treating HNSCC.

  14. Mitochondrial DNA damage induces apoptosis in senescent cells

    PubMed Central

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells. PMID:23868060

  15. Mitochondrial DNA damage induces apoptosis in senescent cells.

    PubMed

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-07-18

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV-HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.

  16. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells.

    PubMed

    Yan, Keqiang; Zhang, Cheng; Feng, Jinbo; Hou, Lifang; Yan, Lei; Zhou, Zunlin; Liu, Zhaoxu; Liu, Cheng; Fan, Yidon; Zheng, Baozhong; Xu, Zhonghua

    2011-07-01

    Bladder cancer is the ninth most common type of cancer, and its surgery is always followed by chemotherapy to prevent recurrence. Berberine is non-toxic to normal cells but has anti-cancer effects in many cancer cell lines. This study was aimed to determine whether berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87 and T24 bladder cancer cell line. The superficial bladder cancer cell line BIU-87 and invasive T24 bladder cancer cells were treated with different concentrations of berberine. MTT assay was used to determine the effects of berberine on the viability of these cells. The cell cycle arrest was detected through propidium iodide (PI) staining. The induction of apoptosis was determined through Annexin V-conjugated Alexa Fluor 488 (Alexa488) staining. Berberine inhibited the viability of BIU-87 and T24 cells in a dose- and time-dependent manner. It also promoted cell cycle arrest at G0/G1 in a dose-dependent manner and induced apoptosis. We observed that H-Ras and c-fos mRNA and protein expressionswere dose-dependently and time-dependently decreased by berberine treatment. Also, we investigated the cleaved caspase-3 and caspase-9 protein expressions increased in a dose-dependent manner. Berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87, bladder cancer cell line and T24, invasive bladder cancer cell line. Berberine can inhibit the oncogentic H-Ras and c-fos in T24 cells, and can induce the activation of the caspase-3 and caspase-9 apoptosis. Therefore, berberine has the potential to be a novel chemotherapy drug to treat the bladder cancer by suppressing tumor growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    SciTech Connect

    Qian, Qinyi; Zhou, Hao; Chen, Yan; Shen, Chenglong; He, Songbing; Zhao, Hua; Wang, Liang; Wan, Daiwei; Gu, Wen

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  18. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  19. Downregulation of Mcl-1 through inhibition of translation contributes to benzyl isothiocyanate-induced cell cycle arrest and apoptosis in human leukemia cells.

    PubMed

    Zhou, T; Li, G; Cao, B; Liu, L; Cheng, Q; Kong, H; Shan, C; Huang, X; Chen, J; Gao, N

    2013-02-28

    Benzyl isothiocyanate (BITC) is one of the compounds of ITCs' family that has attracted a great deal of interest because of its ability to exhibit anticancer activity. In this study, we investigated the effects of BITC on cell cycle arrest and apoptosis in human leukemia cell lines, primary leukemia cells, and nude mice Jurkat xenograft. Exposure of Jurkat cells to BITC resulted in dose- and time-dependent increase in apoptosis, caspase activation, cytochrome c release, nuclear apoptosis-inducing factor (AIF) accumulation, Bcl2-associated X protein (Bax) translocation, and myeloid cell leukemia-1 (Mcl-1) downregulation. Treatment with these cells also resulted in cell cycle arrest at the G2/M phase. The G2/M-arrested cells are more sensitive to undergoing Mcl-1 downregulation and apoptosis mediated by BITC. BITC downregulates Mcl-1 expression through inhibition of translation, rather than through a transcriptional, post-translational, or caspase-dependent mechanism. Dephosphorylation of eukaryotic initiation factor 4G could contribute to the inhibition of Mcl-1 translation mediated by BITC. Furthermore, ectopic expression of Mcl-1 substantially attenuates BITC-mediated lethality in these cells, whereas knockdown of Mcl-1 through small interfering RNA significantly enhances BITC-mediated lethality. Finally, administration of BITC markedly inhibited tumor growth and induced apoptosis in Jurkat xenograft model in association with the downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Mcl-1 potentiate BITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of Jurkat xenograft model.

  20. Sodium cantharidinate induces HepG2 cell apoptosis through LC3 autophagy pathway.

    PubMed

    Tao, Ran; Sun, Wen-Yi; Yu, De-Hai; Qiu, Wei; Yan, Wei-Qun; Ding, Yan-Hua; Wang, Guang-Yi; Li, Hai-Jun

    2017-08-01

    The function of sodium cantharidinate on inducing hepatocellular carcinoma cell apoptosis was investigated for the first time. Sodium cantharidinate inhibits HepG2 cell growth mainly by LC3 autophagy pathway. MTT results show that sodium cantharidinate effectively inhibits the proliferation of HepG2 cells in a dose- and time-dependent manner and induce cell apoptosis by caspase-3 activity. The further western blotting and FACS detection show that sodium cantharidinate initiates HepG2 cell autophagy program by LC3 pathway. Autophagy-specific inhibitor 3-MA reduce sodium cantharidinate-induced caspase-3 activity and HepG2 cell apoptosis. Silence of the LC3 gene in HepG2 cell lines also reduce sodium cantharidinate-induced cell apoptosis. Collectively, our data indicate that sodium cantharidinate induces HepG2 cell apoptosis through LC3 autophagy pathway. Sodium cantharidinate has potential for development as a new drug for treatment of human HCC.

  1. GD3, an overexpressed tumor-derived ganglioside, mediates the apoptosis of activated but not resting T cells.

    PubMed

    Sa, Gaurisankar; Das, Tanya; Moon, Christina; Hilston, Cynthia M; Rayman, Patricia A; Rini, Brian I; Tannenbaum, Charles S; Finke, James H

    2009-04-01

    We previously elucidated an important role for gangliosides in renal cell carcinoma-mediated T lymphocyte apoptosis, although the mechanism by which they mediated lymphocyte death remained unclear. Here, we show that when added in purified form, GD3 is internalized by activated T cells, initiating a series of proapoptotic events, including the induction of reactive oxygen species (ROS), an enhancement of p53 and Bax accumulation, an increase in mitochondrial permeability, cytochrome c release, and the activation of caspase-9. GD3-induced apoptosis of activated T cells was dose dependent and inhibitable by pretreating the lymphocytes with N-acetylcysteine, cyclosporin A, or bongkrekic acid, emphasizing the essential role of ROS and mitochondrial permeability to the process. Ganglioside-induced T-cell killing was associated with the caspase-dependent degradation of nuclear factor-kappaB-inducible, antiapoptotic proteins, including RelA; this suggests that their loss is initiated only after the cascade is activated and that their disappearance amplifies but not triggers GD3 susceptibility. Resting T cells did not internalize appreciable levels of GD3 and did not undergo any of the proapoptotic changes that characterize activated T lymphocytes exposed to the ganglioside. RelA overexpression endows Jurkat cells with resistance to GD3-mediated apoptosis, verifying the role of the intact transcription factor in mediating protection from the ganglioside.

  2. Daxx plays a novel role in T cell survival but is dispensable in Fas-induced apoptosis

    PubMed Central

    Dowling, John P.; Curcione, Christine; Kurup, Drishya; Zhang, Jianke

    2017-01-01

    Daxx was originally isolated as a Fas-binding protein. However, the in vivo function of Daxx in Fas-induced apoptosis has remained enigmatic. Fas plays an important role in homeostasis in the immune system. Fas gene mutations lead to autoimmune-lymphoproliferation (lpr) diseases characterized by hyperplasia of secondary lymphoid organs. It is well established that the FADD adaptor binds to Fas, and recruits/activates caspase 8. However, additional proteins including Daxx have also been indicated to associate with Fas. It was proposed that Daxx mediates a parallel apoptotic pathway that is independent of FADD and caspase 8, but signals through ASK1-mediated apoptotic pathway. However, because the deletion of Daxx leads to embryonic lethality, the in vivo function of Daxx has not been properly analyzed. In the current study, analysis was performed using a conditional mutant mouse in which Daxx was deleted specifically in T cells. The data show that Daxx-/- T cells were able to undergo normal Fas-induced apoptosis. While containing normal thymocyte populations, the T cell-specific Daxx-/- mice have a reduced peripheral T cell pool. Importantly, Daxx-deficient T cells displayed increased death responses upon activation through TCR stimulation. These results unequivocally demonstrated that Daxx does not mediate Fas-induced apoptosis, but rather that it plays a critical role in survival responses in primary mature T cells. PMID:28301594

  3. Expression and regulation of prostate apoptosis response-4 (Par-4) in human glioma stem cells in drug-induced apoptosis.

    PubMed

    Jagtap, Jayashree C; Dawood, Parveen; Shah, Reecha D; Chandrika, Goparaju; Natesh, Kumar; Shiras, Anjali; Hegde, Amba S; Ranade, Deepak; Shastry, Padma

    2014-01-01

    Gliomas are the most common and aggressive of brain tumors in adults. Cancer stem cells (CSC) contribute to chemoresistance in many solid tumors including gliomas. The function of prostate apoptosis response-4 (Par-4) as a pro-apoptotic protein is well documented in many cancers; however, its role in CSC remains obscure. In this study, we aimed to explore the role of Par-4 in drug-induced cytotoxicity using human glioma stem cell line--HNGC-2 and primary culture (G1) derived from high grade glioma. We show that among the panel of drugs- lomustine, carmustine, UCN-01, oxaliplatin, temozolomide and tamoxifen (TAM) screened, only TAM induced cell death and up-regulated Par-4 levels significantly. TAM-induced apoptosis was confirmed by PARP cleavage, Annexin V and propidium iodide staining and caspase-3 activity. Knock down of Par-4 by siRNA inhibited cell death by TAM, suggesting the role of Par-4 in induction of apoptosis. We also demonstrate that the mechanism involves break down of mitochondrial membrane potential, down regulation of Bcl-2 and reduced activation of Akt and ERK 42/44. Secretory Par-4 and GRP-78 were significantly expressed in HNGC-2 cells on exposure to TAM and specific antibodies to these molecules inhibited cell death suggesting that extrinsic Par-4 is important in TAM-induced apoptosis. Interestingly, TAM decreased the expression of neural stem cell markers--Nestin, Bmi1, Vimentin, Sox2, and Musashi in HNGC-2 cell line and G1 cells implicating its potential as a stemness inhibiting drug. Based on these data and our findings that enhanced levels of Par-4 sensitize the resistant glioma stem cells to drug-induced apoptosis, we propose that Par-4 may be explored for evaluating anti-tumor agents in CSC.

  4. A radiation-induced acute apoptosis involving TP53 and BAX precedes the delayed apoptosis and neoplastic transformation of CGL1 human hybrid cells.

    PubMed

    Mendonca, Marc S; Mayhugh, Brendan M; McDowell, Berry; Chin-Sinex, Helen; Smith, Martin L; Dynlacht, Joseph R; Spandau, Dan F; Lewis, Davina A

    2005-06-01

    Exposing CGL1 (HeLa x fibroblast) hybrid cells to 7 Gy of X rays results in the onset of a delayed apoptosis in the progeny of the cells 10 to 12 cell divisions postirradiation that correlates with the emergence of neoplastically transformed foci. The delayed apoptosis begins around day 8 postirradiation and lasts for 11 days. We now demonstrate that the delayed apoptosis is also characterized by the appearance of approximately 50-kb apoptotic DNA fragments and caspase 3 activation postirradiation. In addition, we confirm that stabilization of TP53 and transactivation of pro-apoptosis BAX also occurs during the delayed apoptosis and show that anti-apoptosis BCL-X(L) is down-regulated. To test whether the delayed apoptosis was due to a nonfunctional acute TP53 damage response in CGL1 cells, studies of acute apoptosis were completed. After irradiation, CGL1 cells underwent an acute wave of apoptosis that involves TP53 stabilization, transactivation of BAX gene expression, and a rapid caspase activation that ends by 96 h postirradiation. In addition, the acute onset of apoptosis correlates with transactivation of a standard wild-type TP53-responsive reporter (pG13-CAT) in CGL1 cells after radiation exposure. We propose that the onset of the delayed apoptosis is not the result of a nonfunctional acute TP53 damage response pathway but rather is a consequence of X-ray-induced genomic instability arising in the distant progeny of the irradiated cells.

  5. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment.

  6. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    PubMed Central

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  7. Activation of the IFN-inducible enzyme RNase L causes apoptosis of animal cells.

    PubMed

    Díaz-Guerra, M; Rivas, C; Esteban, M

    1997-09-29

    The interferon (IFN)-induced enzyme RNase L produced by a recombinant vaccinia virus (VV) causes death of mammalian cells with morphological and biochemical characteristics of apoptosis. Coexpression of 2-5A-synthetase enhances apoptosis induced by RNase L Activation of endogenous RNase L by infection with a VV ts mutant (ts22) or with wild-type virus in the presence of the antipoxvirus drug isatin-beta-thiosemicarbazone, a treatment known to significantly increase the amount of double-stranded RNA late during infection, also causes pronounced apoptosis of infected cells. The effects observed with recombinant virus-derived RNase L or with the endogenous enzyme are specific, since apoptosis also occurs in cells derived from mice lacking the IFN-induced protein kinase (PKR). The apoptosis antagonist Bcl-2 prevents induction of cell death by RNase L activation. Apoptosis of mammalian cells by RNase L activation could be a mechanism mediating anticellular actions of IFN.

  8. Betulin induces reactive oxygen species-dependent apoptosis in human gastric cancer SGC7901 cells.

    PubMed

    Li, Yang; Liu, Xiaokang; Jiang, Dan; Lin, Yingjia; Wang, Yushi; Li, Qing; Liu, Linlin; Jin, Ying-Hua

    2016-09-01

    Betulin, an abundant natural compound, significantly inhibited the cell viability of advanced human gastric cancer SGC7901 cells. Mechanism study demonstrated that betulin induced apoptosis through mitochondrial Bax and Bak accumulation-mediated intrinsic apoptosis pathway. Downregulation of the anti-apoptosis proteins Bcl-2 and XIAP was involved during betulin-induced cell apoptosis. Reactive oxygen species (ROS) was generated in cells after betulin treatment in a time- and dose-dependent manner. Addition of antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated betulin-induced ROS generation as well as Bcl-2 and XIAP downregulation. The mitochondrial accumulation of Bax and Bak, as well as caspase activity, was also remarkably inhibited by NAC treatment, indicating that ROS are important signaling intermediates that lead to betulin-induced apoptosis by modulating multiple apoptosis-regulating proteins in SGC7901 cells.

  9. Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-α and retinoids

    PubMed Central

    Brodowicz, T; Wiltschke, C; Kandioler-Eckersberger, D; Grunt, T W; Rudas, M; Schneider, S M; Hejna, M; Budinsky, A; Zielinski, C C

    1999-01-01

    Uncontrolled proliferation and a defect of apoptosis constitute crucial elements in the development and progression of tumours. Among many other biological response modifiers known to influence these mechanisms, the efficacy of retinoids and interferons in the treatment of various malignant entities is currently matter of discussion. In the present study, we have investigated the effects of 9-cis-retinoic acid (9cRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (tRA) and interferon-α on proliferation and apoptosis of human soft tissue sarcoma (STS) cell lines HTB-82 (rhabdomyosarcoma), HTB-91 (fibrosarcoma), HTB-92 (liposarcoma), HTB-93 (synovial sarcoma) and HTB-94 (chondrosarcoma) in relation to p53 genotype as well as p53 expression. HTB-91, HTB-92 and HTB-94 STS cells exhibited mutant p53, whereas wild-type p53 was found in HTB-93 STS cells, and a normal p53 status in HTB-82 STS cells, carrying a silent point mutation only. Interferon-α, irrespective of p53 status, inhibited the proliferation of all five cell lines dose- and time-dependently. Similarly, 9cRA, 13cRA and tRA decreased the proliferation of HTB-82 and HTB-93 STS cells, whereas the proliferation of p53-mutated HTB-91, HTB-92 and HTB-94 STS cells remained unchanged. Furthermore, only 9cRA and tRA were capable of inducing apoptosis in HTB-82 and HTB-93 STS cells, whereas HTB-91, HTB-92 and HTB-94 STS cells did not undergo apoptosis under the influence of 9cRA or tRA. Retinoic acid receptor (RAR)-α and RAR-β mRNA were not detectable by Northern blot analysis in the five STS cell lines, whereas mRNA for the universal retinoic acid receptor, RAR-γ, was expressed in all STS cell lines indicating that retinoid resistance was not associated with a lack of RAR expression. Apoptosis was not induced by interferon-α or 13cRA in any of the five STS cell lines tested. Our results indicate that within the panel of tested STS cell lines, inhibition of proliferation and induction of apoptosis result

  10. RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells

    PubMed Central

    ZHU, LIANG; ZHU, BIN; YANG, LUOYAN; ZHAO, XIAOKUN; JIANG, HONHYI; MA, FANG

    2014-01-01

    Apoptosis in prostate cancer (PCa) induced by ionizing radiation (IR) is believed to play a critical role in radioresistance. Bcl-xl, an important member of the anti-apoptotic Bcl-2 family, has critical roles in tumor progression and development. The aim of the present study was to investigate the association of Bcl-xl expression and radiosensitivity from murine PCa RM-1 cells. An adenovirus-mediated RNA interference technique was employed to inhibit the expression of the RelB gene. RelB proteins were detected upon irradiation following transfection with small interfering (si)RelB, as shown by western blot analysis. The radiosensitivity of the RM-1 cells was determined by clonogenic assays. The apoptosis of the RM-1 cells were detected by flow cytometry assay, then quantitative polymerase chain reaction assays were performed to determine the expression level of Bcl-xl mRNA in the RM-1 cells. Radiation treatment increased the RelB protein levels from the cytosol and nucleus in the RM-1 cells. The protein expression levels of RelB in the pLentilox-sh-RelB-transfected RM-1 cells were significantly lower than in the negative interference group following radiation treatment. The percentage of cells undergoing apoptosis in the siRelB-RM-1 group was significantly higher than that in the control group following radiation treatment. Finally, a positive link between Bcl-xl expression and RelB activity was established in the RM-1 cells. Inhibition of RelB correlates with a decrease in expression of Bcl-xl. In conclusion, adenovirus-mediated siRNA targeting RelB inhibits Bcl-xl expression, enhances radiosensitivity and regulates the irradiation-induced apoptosis of the murine PCa RM-1 cell line. PMID:24839547

  11. Effects of anaesthesia on proliferation, invasion and apoptosis of LoVo colon cancer cells in vitro.

    PubMed

    Xu, Y J; Li, S Y; Cheng, Q; Chen, W K; Wang, S L; Ren, Y; Miao, C H

    2016-02-01

    Tumour cell proliferation, invasion and apoptosis are crucial steps in tumour metastasis. We evaluated the effect of serum from patients undergoing colon cancer surgery receiving thoracic epidural and propofol anaesthesia on colon cancer cell biology. Patients were randomly assigned to receive propofol anaesthesia with a concomitant thoracic epidural (PEA, n = 20) or sevoflurane anaesthesia with opioid analgesia (SGA, n = 20). Venous blood was obtained before induction of anaesthesia and 24 hours postoperatively. The LoVo colon cancer cells were cultured with patient serum from both groups and the effects on proliferation, invasion and apoptosis were measured. Twenty-four hours after surgery, the absorbance value of LoVo cells at 10% serum concentration from PEA was decreased when compared with SGA (0.302 (0.026) vs 0.391 (0.066), p = 0.005). The inhibitory rate of LoVo cells at 10% serum concentration from PEA was higher than that from SGA (p = 0.004) 24 h after surgery. The number of invasive LoVo cells at 10% serum concentration from PEA was reduced when compared with SGA (44 (4) vs 62 (4), p < 0.001). Exposure of LoVo cells to postoperative serum from patients receiving PEA led to a higher luminescence ratio (apoptosis) than those receiving SGA (0.36 (0.04) vs 0.27 (0.05), p < 0.001). Serum from patients receiving PEA for colon cancer surgery inhibited proliferation and invasion of LoVo cells and induced apoptosis in vitro more than that from patients receiving SGA. Anaesthetic technique might influence the serum milieu in a way that affects cancer cell biology and, thereby, tumour metastastasis. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  12. Nucleotide excision repair deficiency increases levels of acrolein-derived cyclic DNA adduct and sensitizes cells to apoptosis induced by docosahexaenoic acid and acrolein.

    PubMed

    Pan, Jishen; Sinclair, Elizabeth; Xuan, Zhuoli; Dyba, Marcin; Fu, Ying; Sen, Supti; Berry, Deborah; Creswell, Karen; Hu, Jiaxi; Roy, Rabindra; Chung, Fung-Lung

    2016-07-01

    The acrolein derived cyclic 1,N(2)-propanodeoxyguanosine adduct (Acr-dG), formed primarily from ω-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) under oxidative conditions, while proven to be mutagenic, is potentially involved in DHA-induced apoptosis. The latter may contribute to the chemopreventive effects of DHA. Previous studies have shown that the levels of Acr-dG are correlated with apoptosis induction in HT29 cells treated with DHA. Because Acr-dG is shown to be repaired by the nucleotide excision repair (NER) pathway, to further investigate the role of Acr-dG in apoptosis, in this study, NER-deficient XPA and its isogenic NER-proficient XAN1 cells were treated with DHA. The Acr-dG levels and apoptosis were sharply increased in XPA cells, but not in XAN1 cells when treated with 125μM of DHA. Because DHA can induce formation of various DNA damage, to specifically investigate the role of Acr-dG in apoptosis induction, we treated XPA knockdown HCT116+ch3 cells with acrolein. The levels of both Acr-dG and apoptosis induction increased significantly in the XPA knockdown cells. These results clearly demonstrate that NER deficiency induces higher levels of Acr-dG in cells treated with DHA or acrolein and sensitizes cells to undergo apoptosis in a correlative manner. Collectively, these results support that Acr-dG, a ubiquitously formed mutagenic oxidative DNA adduct, plays a role in DHA-induced apoptosis and suggest that it could serve as a biomarker for the cancer preventive effects of DHA. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Multiparameter Characterization Confirms Apoptosis as the Primary Cause of Reduced Self-renewal Capacity in Cultured Human Fetal Neural Stem Cells.

    PubMed

    Guan, Yunqian; Li, Xiaobo; Zou, Haiqiang; Yan, Xiaoming; Zhao, Chunsong; Wang, Jiayin; Chen, Ling; Zhang, Y Alex

    2016-01-01

    Human fetal striatum-derived neural stem cells (hfsNSCs) are important in regenerative medicine; however, their ability to self-renew diminishes quickly following passages in culture. Typically when hfsNSC-derived neurospheres are dissociated by accutase, more than 90% of the cells survive, but only 6-8% of the cells are able to form secondary neurospheres. Our hypothesis is that the hfsNSCs that are unable to form new neurospheres become apoptotic. Because the NSC apoptosis process has never been characterized in detail, we characterized hfsNSC apoptosis using multiparameter analysis and determined that the majority of hfsNSCs undergo apoptosis after passaging, which leads to a reduction in self-renewal. The replacement of trituration with vortexing decreases apoptosis, increases self-renewal, and does not affect NSC differentiation. When we used live cell staining with Annexin V, Hoechst 33342, and PI together, the apoptotic index was in agreement with what could be obtained using fixed-cell staining methods, including TUNEL and activated caspase-3 immunocytochemistry. NSC apoptosis could be divided into 9 stage types based on our live cell assay. Several types during early and late stages had similar staining profiles that could be further discriminated based on cell size. Apoptosis largely contributes to the low self-renewal of neurospheres, and replacing trituration with vortexing aided in alleviating NSC apoptosis. Multiparameter analysis is required for the identification of NSC apoptosis, particularly when live cell staining is used. © 2016 The Author(s) Published by S. Karger AG, Basel.

  14. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells.

    PubMed

    Ma, Li-Li; Wang, Da-Wei; Yu, Xu-Dong; Zhou, Yan-Ling

    2016-07-01

    Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells

    SciTech Connect

    Geel, Tessa M.; Meiss, Gregor; Gun, Bernardina T. van der; Kroesen, Bart Jan; Leij, Lou F. de; Zaremba, Mindaugas; Silanskas, Arunas; Kokkinidis, Michael; Ruiters, Marcel H.; McLaughlin, Pamela M.; Rots, Marianne G.

    2009-09-10

    TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18{sup Registered-Sign }:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.

  16. Casein kinase II inhibition induces apoptosis in pancreatic cancer cells.

    PubMed

    Hamacher, Rainer; Saur, Dieter; Fritsch, Ralph; Reichert, Maximilian; Schmid, Roland M; Schneider, Günter

    2007-09-01

    Pancreatic cancer is one of the most common causes of cancer death in western civilization. The five-year survival rate is below 1% and of the 10% of patients with resectable disease only around one-fifth survives 5 years. Survival rates have not changed much during the last 20 years, demonstrating the inefficacy of current available therapies. To improve the prognosis of pancreatic cancer, there is the need to develop effective non-surgical treatment for this disease. The protein kinase casein kinase II (CK2) is a ubiquitously expressed serine-threonine kinase and its activity is enhanced in all human tumors examined so far. The contribution of CK2 to the tumor maintenance of pancreatic cancer has not been investigated. To investigate the function of CK2 in pancreatic cancer cells we used the CK2 specific inhibitors 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole and Apigenin. Furthermore, we interfered with CK2 expression using CK2 specific siRNAs. Interfering with CK2 function led to a reduction of pancreatic cancer cell viability, which was due to caspase-dependent apoptosis. The induction of apoptosis correlated with a reduced NF-kappaB-dependent transcriptional activity. This study validates CK2 as a molecular drug target in a preclinical in vitro model of pancreatic cancer.

  17. Sulphamoylated 2-Methoxyestradiol Analogues Induce Apoptosis in Adenocarcinoma Cell Lines

    PubMed Central

    Visagie, Michelle; Theron, Anne; Mqoco, Thandi; Vieira, Warren; Prudent, Renaud; Martinez, Anne; Lafanechère, Laurence; Joubert, Annie

    2013-01-01

    2-Methoxyestradiol (2ME2) is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1–25 μM) was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues. PMID:24039728

  18. Inhibition of γ-secretase by retinoic acid chalcone (RAC) induces G2/M arrest and triggers apoptosis in renal cell carcinoma

    PubMed Central

    Li, Qing-Chun; Li, Hong-Jun; Liu, Shi; Liang, Yun; Wang, Xue; Cui, Lei

    2015-01-01

    The present study was devised to investigate the effect of RAC on inhibition of cell proliferation and apoptosis of renal carcinoma cells. MTT assay and flow cytometry analysis were used to determine cell proliferation and apoptosis along with cell cycle examination. Western blot analysis and immunohistochemistry were used for the detection of expression levels of Notch1 and Jagged1 in renal cell carcinoma (RCC) and normal kidney tissues. The results revealed a significant inhibition of cell proliferation, G2/M phase cell cycle arrest and cell apoptosis at 30 μM concentration of RAC after 72 h. In ACHN and 769-P cells, the population in G2/M phase was increased to 45.27, and 54.23% respectively on treatment with 30 μM RAC for 72 h. In 769-P and ACHN renal carcinoma cells treatment with 30 μM RAC caused 69.71 and 59.27% of the cells to undergo apoptosis compared to 5.23 and 4.93% respectively in control cells. The positive staining rates of Notch1 and Jagged1 in renal carcinoma tissues were 95.3 and 93.0% compared to normal kidney tissues 36.4 and 42.4% respectively. Treatment of renal carcinoma tissues caused a significant decrease in staining rates of Notch1 and Jagged1 after 96 h. Thus RAC can be a potent agent in the treatment of renal cell carcinoma. PMID:26045747

  19. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells

    PubMed Central

    Lorenzo, Daniela; Duarte, Alejandra; Mundiñano, Juliana; Berguer, Paula; Nepomnaschy, Irene; Piazzon, Isabel

    2016-01-01

    B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed. PMID:27603942

  20. Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo.

    PubMed

    Jarauta, Vidal; Jaime, Paula; Gonzalo, Oscar; de Miguel, Diego; Ramírez-Labrada, Ariel; Martínez-Lostao, Luis; Anel, Alberto; Pardo, Julián; Marzo, Isabel; Naval, Javier

    2016-11-01

    The proteasome inhibitor bortezomib is now the cornerstone of combination therapy of multiple myeloma (MM). Carfilzomib, a second-generation inhibitor, has shown a substantial benefit vs bortezomib in combination regimes. Here we have analyzed in detail the mechanism of cell death induced by carfilzomib and its crosstalk with autophagy and applied the results to the in vivo treatment of MM in a mouse model. Carfilzomib induced apoptosis essentially by the intrinsic pathway, through the up-regulation of Puma and Noxa proteins followed by the interaction of Puma, Noxa and Bim with Bax and of Noxa with Bak. Carfilzomib also produces an increase in the formation of autophagosomes but, as apoptosis progresses, autophagy is disrupted, probably owing to Beclin 1 and p62 inactivation. Cotreatment with chloroquine, which blocks autophagy, strongly potentiated apoptosis in vitro and in vivo. Accordingly, combination therapy with carfilzomib plus chloroquine was highly effective in the treatment of MM in a mouse xenograft model. Chloroquine also enhanced carfilzomib-induced calreticulin exposure in MM cells undergoing apoptosis, increasing the immunogenic ability of carfilzomib. These results support design of trials combining carfilzomib with chloroquine to improve MM therapy.

  1. Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage.

    PubMed

    Knizhnik, Anna V; Roos, Wynand P; Nikolova, Teodora; Quiros, Steve; Tomaszowski, Karl-Heinz; Christmann, Markus; Kaina, Bernd

    2013-01-01

    Apoptosis, autophagy, necrosis and cellular senescence are key responses of cells that were exposed to genotoxicants. The types of DNA damage triggering these responses and their interrelationship are largely unknown. Here we studied these responses in glioma cells treated with the methylating agent temozolomide (TMZ), which is a first-line chemotherapeutic for this malignancy. We show that upon TMZ treatment cells undergo autophagy, senescence and apoptosis in a specific time-dependent manner. Necrosis was only marginally induced. All these effects were completely abrogated in isogenic glioma cells expressing O(6)-methylguanine-DNA methyltransferase (MGMT), indicating that a single type of DNA lesion, O(6)-methylguanine (O(6)MeG), is able to trigger all these responses. Studies with mismatch repair mutants and MSH6, Rad51 and ATM knockdowns revealed that autophagy induced by O(6)MeG requires mismatch repair and ATM, and is counteracted by homologous recombination. We further show that autophagy, which precedes apoptosis, is a survival mechanism as its inhibition greatly ameliorated the level of apoptosis following TMZ at therapeutically relevant doses (<100 µM). Cellular senescence increases with post-exposure time and, similar to autophagy, precedes apoptosis. If autophagy was abrogated, TMZ-induced senescence was reduced. Therefore, we propose that autophagy triggered by O(6)MeG adducts is a survival mechanism that stimulates cells to undergo senescence rather than apoptosis. Overall, the data revealed that a specific DNA adduct, O(6)MeG, has the capability of triggering autophagy, senescence and apoptosis and that the decision between survival and death is determined by the balance of players involved. The data also suggests that inhibition of autophagy may ameliorate the therapeutic outcome of TMZ-based cancer therapy.

  2. Baculovirus p35 increases pancreatic {beta}-cell resistance to apoptosis

    SciTech Connect

    Hollander, Kenneth; Bar-Chen, Michal; Efrat, Shimon . E-mail: sefrat@post.tau.ac.il

    2005-07-01

    {beta}-cells die by apoptosis in type 1 diabetes as a result of autoimmune attack mediated by cytokines, and in type 2 diabetes by various perpetrators including human islet amyloid polypeptide (hIAPP). The cascade of apoptotic events induced by cytokines and hIAPP is mediated through caspases and reactive oxygen species. The baculovirus p35 protein is a potent anti-apoptotic agent shown to be effective in a variety of species and able to inhibit a number of apoptotic pathways. Here, we aimed at determining the protective potential of p35 in {beta}-cells exposed to cytokines and hIAPP, as well as the effects of p35 on {beta}-cell function. The p35 gene was introduced into {beta}TC-tet cells, a differentiated murine {beta}-cell line capable of undergoing inducible growth-arrest. Both proliferating and growth-arrested cells expressing p35 manifested increased resistance to cytokines and hIAPP, compared with control cells, as judged by cell viability, DNA fragmentation, and caspase-3 activity assays. p35 was significantly more protective in growth-arrested, compared with proliferating, cells. No significant differences were observed in proliferation and insulin content between cells expressing p35 and control cells. In contrast, p35 manifested a perturbing effect on glucose-induced insulin secretion. These findings suggest that p35 could be incorporated as part of a multi-pronged approach of immunoprotective strategies to provide protection from recurring autoimmunity for transplanted {beta}-cells, as well as in preventive gene therapy in type 1 diabetes. p35 may also be protective from {beta}-cell damage caused by hIAPP in type 2 diabetes.

  3. Gravisensing, apoptosis, and drug recovery in Taxus cell suspensions

    NASA Technical Reports Server (NTRS)

    Durzan, D. J.

    1999-01-01

    Haploid and diploid cell suspensions of Taxus spp. were examined for their adaptive plasticity in response to simulated microgravity, unit gravity, and hypergravity. Cell suspensions produced the taxane, paclitaxel, (TAXOL (R)), which is useful for the treatment of various cancers. Amyloplasts contributed to taxane ring biosynthesis and to drug release at the cell wall. Drug-producing cells reacted as gravisensing osmotic tensiometers. In stressed cells, amyloplasts docked and fused in clusters to sites on the plasmalemma before taxane discharge into the culture medium. In simulated microgravity and compared to all other treatments, taxane production was reduced nearly 100-fold. The percent paclitaxel of total taxanes remained 3-to 6-fold greater, and biomass doubled. When p53-independent programmed cell death was induced, taxanes were released into the culture medium as free molecules (soluble and insoluble) or bound to membranes, nuclear fragments, xylan residues, and other particulate materials. Unit gravity and especially hypergravity promoted xylogenesis and significant drug overproduction. A model relating families of >touch = (TCH), taxane early response (TER), nuclear cycling, and apoptosis-regulating genes to gravisensing, cell wall modifications, and to taxane recovery accounted for most but not all of the observations.

  4. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    SciTech Connect

    L'Hote, Corine G.M. . E-mail: Corine.LHote@cancer.org.uk; Knowles, Margaret A.

    2005-04-01

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer.

  5. Gravisensing, apoptosis, and drug recovery in Taxus cell suspensions

    NASA Technical Reports Server (NTRS)

    Durzan, D. J.

    1999-01-01

    Haploid and diploid cell suspensions of Taxus spp. were examined for their adaptive plasticity in response to simulated microgravity, unit gravity, and hypergravity. Cell suspensions produced the taxane, paclitaxel, (TAXOL (R)), which is useful for the treatment of various cancers. Amyloplasts contributed to taxane ring biosynthesis and to drug release at the cell wall. Drug-producing cells reacted as gravisensing osmotic tensiometers. In stressed cells, amyloplasts docked and fused in clusters to sites on the plasmalemma before taxane discharge into the culture medium. In simulated microgravity and compared to all other treatments, taxane production was reduced nearly 100-fold. The percent paclitaxel of total taxanes remained 3-to 6-fold greater, and biomass doubled. When p53-independent programmed cell death was induced, taxanes were released into the culture medium as free molecules (soluble and insoluble) or bound to membranes, nuclear fragments, xylan residues, and other particulate materials. Unit gravity and especially hypergravity promoted xylogenesis and significant drug overproduction. A model relating families of >touch = (TCH), taxane early response (TER), nuclear cycling, and apoptosis-regulating genes to gravisensing, cell wall modifications, and to taxane recovery accounted for most but not all of the observations.

  6. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells.

    PubMed

    Iwashita, K; Kobori, M; Yamaki, K; Tsushida, T

    2000-09-01

    We investigated the growth inhibitory activity of several flavonoids, including apigenin, luteolin, kaempherol, quercetin, butein, isoliquiritigenin, naringenin, genistein, and daizein against B16 mouse melanoma 4A5 cells. Isoliquiritigenin and butein, belonging to the chalcone group, markedly suppressed the growth of B16 melanoma cells and induced cell death. The other flavonoids tested showed little growth inhibitory activity and scarcely caused cell death. In cells treated with isoliquiritigenin or butein, condensation of nuclei and fragmentation of nuclear DNA, which are typical phenomena of apoptosis, were observed by Hoechst 33258 staining and by agarose gel electrophoresis of DNA. Flowcytometric analysis showed that isoliquiritigenin and butein increased the proportion of hypodiploid cells in the population of B16 melanoma cells. These results demonstrate that isoliquiritigenin and butein inhibit cell proliferation and induce apoptosis in B16 melanoma cells. Extracellular glucose decreased the proportion of hypodiploid cells that appeared as a result of isoliquiritigenin treatment. p53 was not detected in cells treated with either of these chalcones, however, protein of the Bcl-2 family were detected. The level of expression of Bax in cells treated with either of these chalcones was markedly elevated and the level of Bcl-XL decreased slightly. Isoliquiritigenin did not affect Bcl-2 expression, but butein down-regulated Bcl-2 expression. From these results, it seems that the pathway by which the chalcones induce apoptosis may be independent of p53 and dependent on proteins of the Bcl-2 family. It was supposed that isoliquiritigenin induces apoptosis in B16 cells by a mechanism involving inhibition of glucose transmembrane transport and promotion of Bax expression. On the other hand, it was suggested that butein induces apoptosis via down-regulation of Bcl-2 expression and promotion of Bax expression. This mechanism differs from the isoliquiritigenin induction

  7. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  8. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    PubMed Central

    Yang, Chun-ming; Ji, Shan; Li, Yan; Fu, Li-ye; Jiang, Tao; Meng, Fan-dong

    2017-01-01

    β-Catenin (CTNNB1 gene coding protein) is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC) cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC. PMID:28260916

  9. Apigenin affects leptin/leptin receptor pathway and induces cell apoptosis in lung adenocarcinoma cell line.

    PubMed

    Bruno, Andreina; Siena, Liboria; Gerbino, Stefania; Ferraro, Maria; Chanez, Pascal; Giammanco, Marco; Gjomarkaj, Mark; Pace, Elisabetta

    2011-09-01

    Apigenin, a common edible plant flavonoid, is a well characterised antioxidant. The adipokine leptin exerts proliferative and anti-apoptotic activities in a variety of cell types. In cancer cells, apigenin may induce a pro-apoptotic pathway whereas leptin has an anti-apoptotic role. The purpose of the study is to investigate the role of apigenin and of leptin/leptin receptor pathway on proliferation and on apoptosis in lung adenocarcinoma. Immunocytochemistry, flow cytometry and RT-q-RT PCR, were used to investigate the expression and modulation of leptin receptors on the lung adenocarcinoma cell line A549 in presence or absence of apigenin and of leptin, alone or combined. Clonogenic test to evaluate cell proliferation was assessed. Exogenous leptin binding to its receptors by flow cytometry, reactive oxygen species (ROS) by dichlorofluorescein diacetate analysis, cell death by ethidium bromide and apoptosis by annexin V analysis were assessed. Apoptosis was assessed also in presence of lung adenocarcinoma pleural fluids (PF) (n=6). A549 express leptin/leptin receptor pathway and its expression is upregulated by apigenin. Apigenin alone or combined with leptin significantly decreases cell proliferation and significantly increases the spontaneous release of ROS, with augmented cell death and apoptosis, this latter also in the presence of lung adenocarcinoma PF. Leptin alone significantly increases cell proliferation and significantly decreases cell death. These results strongly suggest the potential utility of the flavonoid apigenin in the complementary therapeutic approach of patients with lung adenocarcinoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells.

    PubMed

    Cecchinato, Valentina; Chiaramonte, Raffaella; Nizzardo, Monica; Cristofaro, Brunella; Basile, Andrea; Sherbet, Gajanan V; Comi, Paola

    2007-12-03

    Resveratrol (RES) is a natural occurring phytoalexin that has been shown to have chemopreventive activity. Resveratrol acts both by suppressing cell proliferation and inducing apoptosis in a variety of cancer cell lines. In this study, we show that RES induces apoptosis in MOLT-4 acute lymphoblastic leukaemia cells by modulating three different pathways that regulate cells survival and cell death. We show for the first time that RES inhibits the survival signalling pathways Notch and their down stream effector and modulates the operation of interacting signalling systems. It induces an increase in the levels of the pro-apoptotic proteins p53, its effector p21waf and Bax. We also show that RES inhibits the PI3K/Akt pathway and activates Gsk-3beta. The data presented here demonstrate unequivocally that RES induces apoptosis by inhibiting the Notch pathway and markedly influencing the operation of the interacting apoptosis pathways mediated by p53 and PI3K/Akt. These data support findings from other laboratories that have suggested the use of RES as a chemopreventive agent. Here, we have identified potential signalling pathways influenced by RES and this could lead to the identification of the targets of RES-induced apoptosis and growth control.

  11. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

    PubMed Central

    Chen, Junxiong; Wang, Chenliang; Lan, Wenjian; Huang, Chunying; Lin, Mengmeng; Wang, Zhongyang; Liang, Wanling; Iwamoto, Aikichi; Yang, Xiangling; Liu, Huanliang

    2015-01-01

    The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX) and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases. PMID:26445050

  12. Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells.

    PubMed

    Nonomura, Keiko; Yamaguchi, Yoshifumi; Hamachi, Misato; Koike, Masato; Uchiyama, Yasuo; Nakazato, Kenichi; Mochizuki, Atsushi; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Yoshida, Hiroki; Kuida, Keisuke; Miura, Masayuki

    2013-12-23

    Apoptotic cells are observed in the early developing brain. Apoptosis deficiency is proposed to cause brain overgrowth, but here we show that brain malformations in apoptosis-deficient mutants are due to insufficient brain ventricle expansion as a result of uncompleted cranial neural tube closure. Apoptosis eliminates Fgf8-expressing cells in the anterior neural ridge (ANR), which acts as an organizing center of the forebrain by producing FGF8 morphogen. Deficiency of apoptosis leads to the accumulation of undead and nonproliferative cells in the ventral part of the ANR. The undead cells in apoptosis-deficient mutants express Fgf8 continuously, which perturbs gene expression in the ventral forebrain. Thus, apoptosis within a specific subdomain of the ANR is required for correct temporal elimination of an FGF8-producing region within a limited developmental time window, thereby ensuring proper forebrain development. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Wnt/β-catenin signaling suppresses DUX4 expression and prevents apoptosis of FSHD muscle cells

    PubMed Central

    Block, Gregory J.; Narayanan, Divya; Amell, Amanda M.; Petek, Lisa M.; Davidson, Kathryn C.; Bird, Thomas D.; Tawil, Rabi; Moon, Randall T.; Miller, Daniel G.

    2013-01-01

    Facioscapulohumeral muscular dystrophy is a dominantly inherited myopathy associated with chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4. DUX4 is encoded within each unit of the D4Z4 array where it is normally transcriptionally silenced and packaged as constitutive heterochromatin. Truncation of the array to less than 11 D4Z4 units (FSHD1) or mutations in SMCHD1 (FSHD2) results in chromatin relaxation and a small percentage of cultured myoblasts from these individuals exhibit infrequent bursts of DUX4 expression. There are no cellular or animal models to determine the trigger of the DUX4 producing transcriptional bursts and there has been a failure to date to detect the protein in significant numbers of cells from FSHD-affected individuals. Here, we demonstrate for the first time that myotubes generated from FSHD patients express sufficient amounts of DUX4 to undergo DUX4-dependent apoptosis. We show that activation of the Wnt/β-catenin signaling pathway suppresses DUX4 transcription in FSHD1 and FSHD2 myotubes and can rescue DUX4-mediated myotube apoptosis. In addition, reduction of mRNA transcripts from Wnt pathway genes β-catenin, Wnt3A and Wnt9B results in DUX4 activation. We propose that Wnt/β-catenin signaling is important for transcriptional repression of DUX4 and identify a novel group of therapeutic targets for the treatment of FSHD. PMID:23821646

  14. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    PubMed

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  15. Simple chemicals can induce maturation and apoptosis of dendritic cells

    PubMed Central

    Manome, H; Aiba, S; Tagami, H

    1999-01-01

    As is well known in the case of Langerhans cells, dendritic cells (DCs) play a crucial role in the initiation of immunity to simple chemicals such as noted in the contact hypersensitivity. Because DCs are scattered in non‐lymphoid organs as immature cells, they must be activated to initiate primary antigen‐specific immune reactions. Therefore, we hypothesized that some simple chemicals must affect the function of DCs. In this paper, we first demonstrated that human monocyte‐derived DCs responded to such simple chemicals as 2,4‐dinitrochlorobenzene (DNCB), 2,4,6‐trinitrochlorobenzene (TNCB), 2,4‐dinitrofluorobenzene (DNFB), NiCl2, MnCl2, CoCl2, SnCl2, and CdSO4 by augmenting their expression of CD86 or human leucocyte antigen‐DR (HLA‐DR), down‐regulating c‐Fms expression or increasing their production of tumour necrosis factor‐α (TNF‐α). In addition, the DCs stimulated with the chemicals demonstrated increased allogeneic T‐cell stimulatory function. Next, we found that, among these chemicals, only NiCl2 and CoCl2 induced apoptosis in them. Finally, we examined the effects of these chemicals on CD86 expression by three different macrophage subsets and DCs induced from the cultures of human peripheral blood monocytes in the presence of macrophage colony‐stimulating factor (M‐CSF), M‐CSF + interleukin‐4 (IL‐4), granulocyte–macrophage colony‐stimulating factor (GM‐CSF), and GM‐CSF + IL‐4, respectively. Among them, only DCs dramatically augmented their expression of CD86. These observations have revealed unique characteristics of DCs, which convert chemical stimuli to augmentation of their antigen presenting function, although their responses to different chemicals were not necessarily uniform in the phenotypic changes, cytokine production or in the induction of apoptosis. PMID:10594678

  16. miR-22 promotes apoptosis of osteosarcoma cells via inducing cell cycle arrest.

    PubMed

    Gai, Pengzhou; Sun, Hongliang; Wang, Guangda; Xu, Qiang; Qi, Xiaojun; Zhang, Zuofu; Jiang, Lei

    2017-04-01

    To study the effects of miR-22 on the proliferation and the apoptosis of osteosarcoma MG-63 cell line and to explore the potential molecular mechanism that miR-22 regulates this biological process. Quantitive real-time polymerase chain reaction (RT-qPCR) was performed to explore the miRNA level of miR-22. The MG-63 cell line was infected with miR-22 mimics for establishment of miR-22 overexpression. Non-infected cells were in blank group and cells infected with empty vector were served as negative control (NC group). MTT assay was conducted to measure cell viability. The cell cycle and apoptosis were explored using flow cytometry and the apoptosis-related markers were detected by western blotting. RT-qPCR results revealed that the miR-22 miRNA level in the MG-63 cells was significantly lower than that in osteoblasts (P<0.05). MTT assay showed that the MG-63 cells infected with miR-22 mimics exhibited markedly decreased proliferation ability compared with blank and empty vector (NC) groups. Next, we found that overexpression of miR-22 remarkably increased the apoptosis of the MG-63 cells, evidenced from the flow cytometry results and elevated Bax and reduced Bcl-2. Furthermore, results revealed that percentage of the cells at G0/G1 phase in miR-22 mimic group (66.75±3.67%) was significantly higher than blank (52.9±2.58%) and NC (50.5±2.45%) groups. miR-22 attenuated the proliferation and induced the apoptosis of the MG-63 cells via promoting G0/G1 cell cycle arrest. Thus, miR-22 may have the potential to be a novel therapeutic in treatment of osteosarcoma.

  17. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    PubMed Central

    Ehrhardt, H; Wachter, F; Grunert, M; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease. PMID:23744361

  18. Uncoupling of PUMA Expression and Apoptosis Contributes to Functional Heterogeneity in Renal Cell Carcinoma - Prognostic and Translational Implications.

    PubMed

    Zhou, Xiaoguang; Li, Jielin; Marx, Christina; Tolstov, Yanis; Rauch, Geraldine; Herpel, Esther; Macher-Goeppinger, Stephan; Roth, Wilfried; Grüllich, Carsten; Pahernik, Sascha; Hohenfellner, Markus; Duensing, Stefan

    2015-12-01

    Renal cell carcinoma (RCC) is characterized by a profound disruption of proapoptotic signaling networks leading to chemo- and radioresistance. A key mediator of DNA damage-induced apoptosis is the BH3-only protein PUMA. Given its central role in proapoptotic signaling, we analyzed a series of more than 600 precision-annotated primary RCC specimens for PUMA protein expression. We found a reduced expression of PUMA in 22.6% of RCCs analyzed. Unexpectedly, however, PUMA deficiency was not associated with more aggressive tumor characteristic as expected. Instead, a reduced PUMA expression was associated with a lower TNM stage, lower histopathologic grade, and more favorable cancer-specific patient survival. A direct correlation in a separate patient cohort revealed a profound disconnection between PUMA expression and apoptosis as exemplified by the fact that the tumor with the highest level of apoptotic cells was PUMA deficient. In a series of in vitro studies, we corroborated these results and discovered the highest propensity to undergo apoptosis in an RCC cell line with virtually undetectable PUMA expression. At the same time, PUMA expression was not necessarily associated with stronger apoptosis induction, which underscores the striking functional heterogeneity of PUMA expression and apoptosis in RCC. Collectively, our findings suggest that PUMA-independent mechanisms of cell death exist and may play an important role in suppressing malignant progression. They underscore the functional heterogeneity of RCCs and suggest that PUMA expression alone may not be a suitable predictive biomarker. A better understanding of alternative proapoptotic pathways, however, may help to design novel therapeutic strategies for patients with advanced RCC.

  19. [The experimental study of lipo-sodium morrhuate promoting apoptosis of ECV-304 cells].

    PubMed

    Yang, Zhuang-qun; Lan, Hai-long; Tu, Jun-bo; Song, Yong; Zhang, Tie-liang; Xing, Zhe

    2007-03-01

    To evaluate the effect of lipo-sodium morrhuate on ECV-304 cell line. The effect lipo-sodium morrhuate was evaluated by toxicology trial (MTT), electron microscope, DNA electrophoresis and flow cytometer. The toxicology results showed, that the number of vital cells in lipo-sodium morrhuate group decreased slowly. The electron microscope exhibited apoptosis in the lipo-sodium morrhuate group. And there were typical DNA ladder in DNA electrophoresis and typical apoptosis peak in flow cytometer. The apoptosis rate was 22.23%. Unlike the normal preparation of sodium morrhuate, lipo-sodium morrhuate could induce apoptosis of ECV-304 cell line.

  20. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    PubMed

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  1. A New Function for LAT and CD8 During CD8-Mediated Apoptosis that is Independent of T Cell Receptor Signal Transduction

    PubMed Central

    Clarke, Raedun L; Thiemann, Sandra; Refaeli, Yosef; Werlen, Guy; Potter, Terry A

    2011-01-01

    The majority (>95%) of thymocytes undergo apoptosis during selection in the thymus. Several mechanisms have been proposed to explain how apoptosis of thymocytes that are not positively selected occurs, however it is unknown whether thymocytes die purely by “neglect” or whether signaling through a cell surface receptor initiates an apoptotic pathway. We have previously demonstrated that on double positive (DP) thymocytes the ligation of CD8 in the absence of TCR engagement results in apoptosis and have postulated this is a mechanism to remove thymocytes that have failed positive selection. On mature single positive (SP) T cells CD8 acts as a co-receptor to augment signaling through the T cell receptor (TCR) that is dependent on the phosphorylation of the adaptor protein, Linker for Activation of T cells (LAT). Here we show that during CD8-mediated apoptosis of DP thymocytes there is an increase in the association of CD8 with LAT and an increase in LAT tyrosine phosphorylation. Decreasing LAT expression and mutation of tyrosine residues of LAT reduced apoptosis upon crosslinking of CD8. Our results identify novel functions for both CD8 and LAT that are independent of TCR signal transduction and suggest a mechanism for signal transduction leading to apoptosis upon CD8 crosslinking. PMID:19449311

  2. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis

    PubMed Central

    WANG, YONG-GANG; ZHAN, YI-PING; PAN, SHU-YI; WANG, HAI-DONG; ZHANG, DUN-XIAO; GAO, KAI; QI, XUE-LING; YU, CHUN-JIANG

    2015-01-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells. PMID:26170997

  3. Cyclovirobuxine D Inhibits Cell Proliferation and Induces Mitochondria-Mediated Apoptosis in Human Gastric Cancer Cells.

    PubMed

    Wu, Jie; Tan, Zhujun; Chen, Jian; Dong, Cheng

    2015-11-19

    Gastric cancer is one of the most common malignant cancers, with high death rates, poor prognosis and limited treatment methods. Cyclovirobuxine D (CVB-D) is the main active component of the traditional Chinese medicine Buxus microphylla. In the present study, we test the effects of CVB-D on gastric cancer cells and the underlying mechanisms of action. CVB-D reduced cell viability and colony formation ability of MGC-803 and MKN28 cells in a time- and concentration-dependent manner. Flow cytometry showed that cell cycle of CVB-D treated cells was arrested at the S-phase. CVB-D also induced apoptosis in MGC-803 and MKN28 cells, especially early stage apoptosis. Furthermore, mitochondria membrane potential (Δψm) was reduced and apoptosis-related proteins, cleaved Caspase-3 and Bax/Bcl-2, were up-regulated in CVB-D-treated MGC-803 and MKN28 cells. Taken together, our studies found that CVB-D plays important roles in inhibition of gastric tumorigenesis via arresting cell cycle and inducing mitochondria-mediated apoptosis, suggesting the potential application of CVB-D in gastric cancer therapy.

  4. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells.

    PubMed

    Catalano, Maria G; Fortunati, Nicoletta; Pugliese, Mariateresa; Costantino, Lucia; Poli, Roberta; Bosco, Ornella; Boccuzzi, Giuseppe

    2005-03-01

    Poorly differentiated thyroid carcinoma is an aggressive human cancer that is resistant to conventional therapy. Histone deacetylase inhibitors are a promising class of drugs, acting as antiproliferative agents by promoting differentiation, as well as inducing apoptosis and cell cycle arrest. Valproic acid (VPA), a class I selective histone deacetylase inhibitor widely used as an anticonvulsant, promotes differentiation in poorly differentiated thyroid cancer cells by inducing Na(+)/I(-) symporter and increasing iodine uptake. Here, we show that it is also highly effective at suppressing growth in poorly differentiated thyroid cancer cell lines (N-PA and BHT-101). Apoptosis induction and cell cycle arrest are the underlying mechanisms of VPA's effect on cell growth. It induces apoptosis by activating the intrinsic pathway; caspases 3 and 9 are activated but not caspase 8. Cell cycle is selectively arrested in G(1) and is associated with the increased expression of p21 and the reduced expression of cyclin A. Both apoptosis and cell cycle arrest are induced by treatment with 1 mm VPA, a dose that promotes cell redifferentiation and that is slightly above the serum concentration reached in patients treated for epilepsy. These multifaceted properties make VPA of clinical interest as a new approach to treating poorly differentiated thyroid cancer.

  5. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis.

    PubMed

    Wang, Yong-Gang; Zhan, Yi-Ping; Pan, Shu-Yi; Wang, Hai-Dong; Zhang, Dun-Xiao; Gao, Kai; Qi, Xue-Ling; Yu, Chun-Jiang

    2015-07-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.

  6. [Peculiarities of urinary bladder cancer tumor cells apoptosis response on neoadjuvant chemotherapy].

    PubMed

    Iatsyna, A I; Stakhovskiĭ, É A; Sheremet, Ia A; Spivak, S I; Stakhovskiĭ, A É; Gavriliuk, O N; Vitruk, Iu V; Emets, A I; Blium, Ia B

    2011-01-01

    Induced apoptosis in urinary bladder cancer tumor cells of patients was studied using TUNEL reaction. It was shown that increase in induced apoptosis value had a definite correlation between corresponding features of tumor reaction as a response on Gemcitabine-Cisplatin neoadjuvant chemotherapy application. It was found that evaluation of induced apoptosis in urinary bladder cancer tumor cells using TUNEL method allows forecasting the effectiveness of chemotherapy on the cellular level in patients with this type of cancer.

  7. Quantification of choline concentration following liver cell apoptosis using 1H magnetic resonance spectroscopy.

    PubMed

    Shen, Zhi-Wei; Cao, Zhen; You, Ke-Zeng; Yang, Zhong-Xian; Xiao, Ye-Yu; Cheng, Xiao-Fang; Chen, Yao-Wen; Wu, Ren-Hua

    2012-03-14

    To evaluate the feasibility of quantifying liver choline concentrations in both normal and apoptotic rabbit livers in vivo, using 1H magnetic resonance spectroscopy (1H-MRS). 1H-MRS was performed in 18 rabbits using a 1.5T GE MR system with an eight-channel head/neck receiving coil. Fifteen rabbits were injected with sodium selenite at a dose of 10 μmol/kg to induce the liver cell apoptosis. Point-resolved spectroscopy sequence-localized spectra were obtained from 10 livers once before and once 24 h after sodium selenite injection in vivo. T1 and T2 relaxation time of water and choline was measured separately in the livers of three healthy rabbits and three selenite-treated rabbits. Hematoxylin and eosin and dUTP-biotin nick end labeling (TUNEL) staining was used to detect and confirm apoptosis. Choline peak areas were measured relative to unsuppressed water using LCModel. Relaxation attenuation was corrected using the average of T1 and T2 relaxation time. The choline concentration was quantified using a formula, which was tested by a phantom with a known concentration. Apoptosis of hepatic cells was confirmed by TUNEL assay. In phantom experiment, the choline concentration (3.01 mmol/L), measured by 1H-MRS, was in good agreement with the actual concentration (3 mmol/L). The average T1 and T2 relaxation time of choline was 612 ± 15 ms and 74 ± 4 ms in the control group and 670 ± 27 ms and 78 ± 5 ms in apoptotic livers in vivo, respectively. Choline was quantified in 10 rabbits, once before and once after the injection with sodium selenite. The choline concentration decreased from 14.5 ± 7.57 mmol/L before sodium selenite injection to 10.8 ± 6.58 mmol/L (mean ± SD, n = 10) after treatment (Z = -2.395, P < 0.05, two-sample paired Wilcoxon test). 1H-MRS can be used to quantify liver choline in vivo using unsuppressed water as an internal reference. Decreased liver choline concentrations are found in sodium selenite-treated rabbits undergoing liver cell

  8. Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer.

    PubMed

    Ruiz-González, Rubén; Acedo, Pilar; Sánchez-García, David; Nonell, Santi; Cañete, Magdalena; Stockert, Juan Carlos; Villanueva, Angeles

    2013-05-01

    In the present study we analyze the photobiological properties of 2,7,12-tris(α-pyridinio-p-tolyl)-17-(p-(methoxymethyl)phenyl) porphycene (Py3MeO-TBPo) in Hela cells, in order to assess its potential as a new photosensitizer for photodynamic therapy of cultured tumor cells. Using 0.5 μM Py3MeO-TBPo, flow cytometry studies demonstrated an increase of intracellular