Sample records for cellular components molecular

  1. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  2. Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

    ERIC Educational Resources Information Center

    Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, IJsbrand M.

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or…

  3. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  4. NFAT Signaling and the Tumorigenic Microenvironment of the Prostate

    DTIC Science & Technology

    2017-12-01

    ABSTRACT Although the importance of microenvironment in prostate cancer is widely recognized, the molecular and cellular processes leading from genetic ...non-invasive clinical tests. Second, the illustration of the main cellular and molecular components in the tumorigenic microenvironment provides new...potential of NFATc1 as a novel biomarker for prostate cancer diagnosis/prognosis. We will take advantage of the cellular precision, genetic manipulability

  5. Cellular and Physiological Effects of Anthrax Exotoxin and Its Relevance to Disease

    PubMed Central

    Lowe, David E.; Glomski, Ian J.

    2012-01-01

    Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host. PMID:22919667

  6. In search of cellular control: signal transduction in context

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1998-01-01

    The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future.

  7. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease.

    PubMed

    Gadhave, Kundlik; Bolshette, Nityanand; Ahire, Ashutosh; Pardeshi, Rohit; Thakur, Krishan; Trandafir, Cristiana; Istrate, Alexandru; Ahmed, Sahabuddin; Lahkar, Mangala; Muresanu, Dafin F; Balea, Maria

    2016-07-01

    The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    ERIC Educational Resources Information Center

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  9. Pericentrin in cellular function and disease

    PubMed Central

    Delaval, Benedicte

    2010-01-01

    Pericentrin is an integral component of the centrosome that serves as a multifunctional scaffold for anchoring numerous proteins and protein complexes. Through these interactions, pericentrin contributes to a diversity of fundamental cellular processes. Recent studies link pericentrin to a growing list of human disorders. Studies on pericentrin at the cellular, molecular, and, more recently, organismal level, provide a platform for generating models to elucidate the etiology of these disorders. Although the complexity of phenotypes associated with pericentrin-mediated disorders is somewhat daunting, insights into the cellular basis of disease are beginning to come into focus. In this review, we focus on human conditions associated with loss or elevation of pericentrin and propose cellular and molecular models that might explain them. PMID:19951897

  10. Cellular automata with object-oriented features for parallel molecular network modeling.

    PubMed

    Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan

    2005-06-01

    Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.

  11. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    PubMed Central

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  12. At a glance: cellular biology for engineers.

    PubMed

    Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R

    2008-10-01

    Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.

  13. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    PubMed

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Programmable in vivo selection of arbitrary DNA sequences.

    PubMed

    Ben Yehezkel, Tuval; Biezuner, Tamir; Linshiz, Gregory; Mazor, Yair; Shapiro, Ehud

    2012-01-01

    The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.

  15. Anthrax Toxin

    DTIC Science & Technology

    1984-10-26

    focused initially on EF because it seemed possible that this component, like cholera toxin, might cause edema in skin through elevation of cellular cAMP...behavior differed from that seen in cells exposed to cholera toxin, where cellular cAMP levels remain elevated upon toxin removal. Studies in CHO cell...LF, the rat bioassay is not likely to be an appropriate system for studying the cellular and molecular mechanisms of action of LF. Therefore, a survey

  16. Molecular chaperones and photoreceptor function

    PubMed Central

    Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.

    2008-01-01

    Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186

  17. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  18. Preventing Food Allergies by Tricking Dendritic Cells

    USDA-ARS?s Scientific Manuscript database

    Food allergies are adverse responses to components (usually proteins) within the foods we eat, which result in a self-damaging response from our immune system. A myriad of cellular and molecular components are involved in the decision to tolerate or respond to foreign molecules that pass through the...

  19. Genetic anaylsis of a disease resistance gene from loblolly pine

    Treesearch

    Yinghua Huang; Nili Jin; Alex Diner; Chuck Tauer; Yan Zhang; John Damicone

    2003-01-01

    Rapid advances in molecular genetics provide great opportunities for studies of host defense mechanisms. Examination of plant responses to disease at the cellular and molecular level permits both discovery of changes in gene expression in the tissues attacked by pathogens, and identification of genetic components involved in the interaction between host and pathogens....

  20. Formalizing Knowledge in Multi-Scale Agent-Based Simulations

    PubMed Central

    Somogyi, Endre; Sluka, James P.; Glazier, James A.

    2017-01-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused. PMID:29338063

  1. Formalizing Knowledge in Multi-Scale Agent-Based Simulations.

    PubMed

    Somogyi, Endre; Sluka, James P; Glazier, James A

    2016-10-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.

  2. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans.

    PubMed

    Andrusiak, Matthew G; Jin, Yishi

    2016-04-08

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Molecular coordination of Staphylococcus aureus cell division

    PubMed Central

    Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon

    2018-01-01

    The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397

  4. Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

    PubMed Central

    Dahmani, Hassen-Reda; Schneeberger, Patricia

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or computer graphic images that closely resemble experimentally derived structures and are characterized by a low level of styling and simplification. This change brings about a new challenge for teachers: designing course instructions that allow students to interpret these images in a meaningful way. To determine how students deal with this change, we designed several image-based, in-course assessments. The images were highly relevant for the cell biology course but did not resemble any of the images in the teaching documents. We asked students to label the cellular components, describe their function, or both. What we learned from these tests is that realistic images, with a higher apparent level of complexity, do not deter students from investigating their meaning. When given a choice, the students do not necessarily choose the most simplified representation, and they were sensitive to functional indications embedded in realistic images. PMID:19723817

  5. Advances in the cellular and molecular biology of angiogenesis.

    PubMed

    Egginton, Stuart; Bicknell, Roy

    2011-12-01

    Capillaries have been recognized for over a century as one of the most important components in regulating tissue oxygen transport, and their formation or angiogenesis a pivotal element of tissue remodelling during development and adaptation. Clinical interest stems from observations that both excessive and inadequate vascular growth plays a major role in human diseases, and novel developments in treatments for cancer and eye disease increasingly rely on anti-angiogenic therapies. Although the discovery of VEGF (vascular endothelial growth factor) provided the first clue for specificity of signalling in endothelial cell activation, understanding the integrative response that drives angiogenesis requires a much broader perspective. The Advances in the Cellular and Molecular Biology of Angiogenesis meeting brought together researchers at the forefront of this rapidly moving field to provide an update on current understanding, and the most recent insights into molecular and cellular mechanisms of vascular growth. The plenary lecture highlighted the integrative nature of the angiogenic process, whereas invited contributions from basic and clinician scientists described fundamental mechanisms and disease-associated issues of blood vessel formation, grouped under a number of themes to aid discussion. These articles will appeal to academic, clinical and pharmaceutical scientists interested in the molecular and cellular basis of angiogenesis, their modulation or dysfunction in human diseases, and application of these findings towards translational medicine.

  6. Identifying the molecular basis of functions in the transcriptome of the social amoeba Dictyostelium discoideum.

    PubMed

    Whitney, T J; Gardner, D G; Mott, M L; Brandon, M

    2010-03-09

    The unusual life cycle of Dictyostelium discoideum, in which an extra-cellular stressor such as starvation induces the development of a multicellular fruiting body consisting of stalk cells and spores from a culture of identical amoebae, provides an excellent model for investigating the molecular control of differentiation and the transition from single- to multi-cellular life, a key transition in development. We utilized serial analysis of gene expression (SAGE), a molecular method that is unbiased by dependence on previously identified genes, to obtain a transcriptome from a high-density culture of amoebae, in order to examine the transition to multi-cellular development. The SAGE method provides relative expression levels, which allows us to rank order the expressed genes. We found that a large number of ribosomal proteins were expressed at high levels, while various components of the proteosome were expressed at low levels. The only identifiable transmembrane signaling system components expressed in amoebae are related to quorum sensing, and their expression levels were relatively low. The most highly expressed gene in the amoeba transcriptome, dutA untranslated RNA, is a molecule with unknown function that may serve as an inhibitor of translation. These results suggest that high-density amoebae have not initiated development, and they also suggest a mechanism by which the transition into the development program is controlled.

  7. An instructional design process based on expert knowledge for teaching students how mechanisms are explained.

    PubMed

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2016-06-01

    In biology and physiology courses, students face many difficulties when learning to explain mechanisms, a topic that is demanding due to the immense complexity and abstract nature of molecular and cellular mechanisms. To overcome these difficulties, we asked the following question: how does an instructor transform their understanding of biological mechanisms and other difficult-to-learn topics so that students can comprehend them? To address this question, we first reviewed a model of the components used by biologists to explain molecular and cellular mechanisms: the MACH model, with the components of methods (M), analogies (A), context (C), and how (H). Next, instructional materials were developed and the teaching activities were piloted with a physical MACH model. Students who used the MACH model to guide their explanations of mechanisms exhibited both improvements and some new difficulties. Third, a series of design-based research cycles was applied to bring the activities with an improved physical MACH model into biology and biochemistry courses. Finally, a useful rubric was developed to address prevalent student difficulties. Here, we present, for physiology and biology instructors, the knowledge and resources for explaining molecular and cellular mechanisms in undergraduate courses with an instructional design process aimed at realizing pedagogical content knowledge for teaching. Our four-stage process could be adapted to advance instruction with a range of models in the life sciences. Copyright © 2016 The American Physiological Society.

  8. An instructional design process based on expert knowledge for teaching students how mechanisms are explained

    PubMed Central

    Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    In biology and physiology courses, students face many difficulties when learning to explain mechanisms, a topic that is demanding due to the immense complexity and abstract nature of molecular and cellular mechanisms. To overcome these difficulties, we asked the following question: how does an instructor transform their understanding of biological mechanisms and other difficult-to-learn topics so that students can comprehend them? To address this question, we first reviewed a model of the components used by biologists to explain molecular and cellular mechanisms: the MACH model, with the components of methods (M), analogies (A), context (C), and how (H). Next, instructional materials were developed and the teaching activities were piloted with a physical MACH model. Students who used the MACH model to guide their explanations of mechanisms exhibited both improvements and some new difficulties. Third, a series of design-based research cycles was applied to bring the activities with an improved physical MACH model into biology and biochemistry courses. Finally, a useful rubric was developed to address prevalent student difficulties. Here, we present, for physiology and biology instructors, the knowledge and resources for explaining molecular and cellular mechanisms in undergraduate courses with an instructional design process aimed at realizing pedagogical content knowledge for teaching. Our four-stage process could be adapted to advance instruction with a range of models in the life sciences. PMID:27231262

  9. Molecular, genetic and stem cell-mediated therapeutic strategies for spinal muscular atrophy (SMA).

    PubMed

    Zanetta, Chiara; Riboldi, Giulietta; Nizzardo, Monica; Simone, Chiara; Faravelli, Irene; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-02-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease. It is the first genetic cause of infant mortality. It is caused by mutations in the survival motor neuron 1 (SMN1) gene, leading to the reduction of SMN protein. The most striking component is the loss of alpha motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment other than supportive care, although the past decade has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials. In this review, we would like to outline the most interesting therapeutic strategies that are currently developing, which are represented by molecular, gene and stem cell-mediated approaches for the treatment of SMA. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Autophagy in Measles Virus Infection.

    PubMed

    Rozières, Aurore; Viret, Christophe; Faure, Mathias

    2017-11-24

    Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1) or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2), which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy-measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  11. A model of how different biology experts explain molecular and cellular mechanisms.

    PubMed

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. © 2015 C. M. Trujillo et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Fundamental Characteristics of AAA+ Protein Family Structure and Function.

    PubMed

    Miller, Justin M; Enemark, Eric J

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.

  13. Biochemistry Instructors' Perceptions of Analogies and Their Classroom Use

    ERIC Educational Resources Information Center

    Orgill, MaryKay; Bussey, Thomas J.; Bodner, George M.

    2015-01-01

    Biochemistry education relies heavily on students' abilities to conceptualize abstract cellular and molecular processes, mechanisms, and components. From a constructivist standpoint, students build their understandings of these abstract processes by connecting, expanding, or revising their prior conceptions and experiences. As such, biochemistry…

  14. Drosophila Neuronal Injury Follows a Temporal Sequence of Cellular Events Leading to Degeneration at the Neuromuscular Junction

    PubMed Central

    Lincoln, Barron L.; Alabsi, Sahar H.; Frendo, Nicholas; Freund, Robert; Keller, Lani C.

    2015-01-01

    Neurodegenerative diseases affect millions of people worldwide, and as the global population ages, there is a critical need to improve our understanding of the molecular and cellular mechanisms that drive neurodegeneration. At the molecular level, neurodegeneration involves the activation of complex signaling pathways that drive the active destruction of neurons and their intracellular components. Here, we use an in vivo motor neuron injury assay to acutely induce neurodegeneration in order to follow the temporal order of events that occur following injury in Drosophila melanogaster. We find that sites of injury can be rapidly identified based on structural defects to the neuronal cytoskeleton that result in disrupted axonal transport. Additionally, the neuromuscular junction accumulates ubiquitinated proteins prior to the neurodegenerative events, occurring at 24 hours post injury. Our data provide insights into the early molecular events that occur during axonal and neuromuscular degeneration in a genetically tractable model organism. Importantly, the mechanisms that mediate neurodegeneration in flies are conserved in humans. Thus, these studies have implications for our understanding of the cellular and molecular events that occur in humans and will facilitate the identification of biomedically relevant targets for future treatments. PMID:26512206

  15. Cellular and Molecular Biology of Airway Mucins

    PubMed Central

    Lillehoj, Erik P.; Kato, Kosuke; Lu, Wenju; Kim, Kwang C.

    2017-01-01

    Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins. PMID:23445810

  16. [The connective tissues, from the origin of the concept to its "Maturation" to extracellular matrix. Application to ocular tissues. Contribution to the history of medical sciences].

    PubMed

    Labat-Robert, J; Robert, L; Pouliquen, Y

    2011-06-01

    The "Tissue" concept emerged apparently in the medical literature at about the French revolution, during the second half of the 18(th) century. It was found in the texts written by the physicians of Béarn and Montpellier, the Bordeu-s and also by the famous physician, Felix Vicq d'Azyr, the last attending physician of the queen Marie-Antoinette, "Bordeu et al. (1775) et Pouliquen (2009)". It was elaborated into a coherent doctrine somewhat later by Xavier Bichat, considered as the founder of modern pathological anatomy, Bichat. With the advent of histochemistry, from the beginning of the 20(th) century, several of the principal macromolecular components of connective tissues, collagens, elastin, "acid mucopolysaccharides" (later glycosaminoglycans and proteoglycans) and finally structural glycoproteins were characterized. These constituents of connective tissues were then designated as components of the extracellular matrix (ECM), closely associated to the cellular components of these tissues by adhesive (structural) glycoproteins as fibronectin, several others and cell receptors, "recognising" ECM-components as integrins, the elastin-receptor and others. This molecular arrangement fastens cells to the ECM-components they synthesize and mediates the exchange of informations between the cells to the ECM (inside-out) and also from the ECM-components to the cells (outside-in). This macromolecular arrangement is specific for each tissue as a result of the differentiation of their cellular components. It is also the basis and condition of the fulfillment of the specific functions of differentiated tissues. This is a short description of the passage of the "tissue" concept from its vague origin towards its precise identification at the cellular and molecular level up to the recognition of its functional importance and its establishment as an autonomous science. This can be considered as a new example of the importance of metaphors for the progress of science, Keller (1995). Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. Exploring Autophagy in Drosophila

    PubMed Central

    Juhász, Gábor

    2017-01-01

    Autophagy is a catabolic process in eukaryotic cells promoting bulk or selective degradation of cellular components within lysosomes. In recent decades, several model systems were utilized to dissect the molecular machinery of autophagy and to identify the impact of this cellular “self-eating” process on various physiological and pathological processes. Here we briefly discuss the advantages and limitations of using the fruit fly Drosophila melanogaster, a popular model in cell and developmental biology, to apprehend the main pathway of autophagy in a complete animal. PMID:28704946

  18. New Tools and New Biology: Recent Miniaturized Systems for Molecular and Cellular Biology

    PubMed Central

    Hamon, Morgan; Hong, Jong Wook

    2013-01-01

    Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology. PMID:24305843

  19. Fundamental Characteristics of AAA+ Protein Family Structure and Function

    PubMed Central

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410

  20. Molecular, metabolic, and genetic control: An introduction

    NASA Astrophysics Data System (ADS)

    Tyson, John J.; Mackey, Michael C.

    2001-03-01

    The living cell is a miniature, self-reproducing, biochemical machine. Like all machines, it has a power supply, a set of working components that carry out its necessary tasks, and control systems that ensure the proper coordination of these tasks. In this Special Issue, we focus on the molecular regulatory systems that control cell metabolism, gene expression, environmental responses, development, and reproduction. As for the control systems in human-engineered machines, these regulatory networks can be described by nonlinear dynamical equations, for example, ordinary differential equations, reaction-diffusion equations, stochastic differential equations, or cellular automata. The articles collected here illustrate (i) a range of theoretical problems presented by modern concepts of cellular regulation, (ii) some strategies for converting molecular mechanisms into dynamical systems, (iii) some useful mathematical tools for analyzing and simulating these systems, and (iv) the sort of results that derive from serious interplay between theory and experiment.

  1. Current concepts for the combined treatment modality of ionizing radiation with anticancer agents.

    PubMed

    Oehler, Christoph; Dickinson, Daniel J; Broggini-Tenzer, Angela; Hofstetter, Barbara; Hollenstein, Andreas; Riesterer, Oliver; Vuong, Van; Pruschy, Martin

    2007-01-01

    In current applied radiobiology, there exists a tremendous effort in basic and translational research to identify novel treatment modalities combining ionizing radiation with anticancer agents. This is mainly due to the highly improved molecular understanding of intrinsic radioresistance and the profiling of cellular stress responses to irradiation during recent years. Ionizing radiation not only damages DNA but also affects multiple cellular components that induce a multi-layered stress response. The treatment responses can be restricted to the individual cell level but might also be part of an intercellular stress communication network. Both DNA damage-induced signaling (which results in cell cycle arrest and induction of the DNA-repair machinery) and also ionizing radiation-induced signal transduction cascades, which are generated at cellular sites distant from and independent of DNA-damage, represent interesting targets for anticancer treatment modalities to sensitize for ionizing radiation. Due to the lack of molecular knowledge classic radiobiology assembled the cellular and tissue responses into four groups (4 R's of radiotherapy) which describe biological factors influencing the treatment response to fractionated radiotherapy. These classic 4 R's are Repair, Reassortment, Repopulation and Reoxygenation. With the tremendous progress in molecular oncology we now begin to understand theses factors on the molecular level. At the same time this classification may guide modern molecular radiobiologists to identify novel pharmaceuticals and antisignaling agents which can modulate the treatment response to irradiation. In this review we describe current approaches to sensitize tumor cells with novel anticancer agents along the lines of these 4 R's.

  2. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.

    2013-01-01

    Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029

  3. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A.

    PubMed

    King, Cason R; Zhang, Ali; Tessier, Tanner M; Gameiro, Steven F; Mymryk, Joe S

    2018-05-01

    As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected "hub" proteins to "hack" the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. Copyright © 2018 King et al.

  4. Cellular and molecular mechanisms of tooth root development

    PubMed Central

    Li, Jingyuan; Parada, Carolina

    2017-01-01

    ABSTRACT The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans. PMID:28143844

  5. Emerging role of Hippo signalling pathway in bladder cancer.

    PubMed

    Xia, Jianling; Zeng, Ming; Zhu, Hua; Chen, Xiangjian; Weng, Zhiliang; Li, Shi

    2018-01-01

    Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co-effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A

    PubMed Central

    King, Cason R.; Zhang, Ali; Tessier, Tanner M.; Gameiro, Steven F.

    2018-01-01

    ABSTRACT As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. PMID:29717008

  7. Bringing the physical sciences into your cell biology research

    PubMed Central

    Robinson, Douglas N.; Iglesias, Pablo A.

    2012-01-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences. PMID:23112230

  8. Bringing the physical sciences into your cell biology research.

    PubMed

    Robinson, Douglas N; Iglesias, Pablo A

    2012-11-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.

  9. Cellular angiofibroma with atypia or sarcomatous transformation: clinicopathologic analysis of 13 cases.

    PubMed

    Chen, Eleanor; Fletcher, Christopher D M

    2010-05-01

    Cellular angiofibroma is a mesenchymal neoplasm that is characterized by a bland spindle cell component, morphologically reminiscent of spindle cell lipoma, and thick-walled vessels. The tumor occurs equally in men and women and usually arises in the inguino-scrotal or vulvovaginal regions. An earlier study of 51 cases from our group showed that the tumor follows a benign course without any tendency for recurrence. In 1 case, an intralesional microscopic nodule of pleomorphic liposarcoma was observed. The biologic significance of atypia or sarcomatous transformation in cellular angiofibroma remains uncertain. In this study, we characterized clinicopathologic features in 13 cases of cellular angiofibroma with morphologic atypia or sarcomatous transformation. Thirteen cases with atypia or sarcomatous transformation among 154 usual cellular angiofibromas identified between 1993 and 2009 were retrieved from consultation files. There were 12 females and 1 male ranging in age from 39 to 71 years (median age, 46 y). Tumor size ranged from 1.2 to 7.5 cm. In 11 cases, the tumors occurred in the vulva. One case each occurred in the paratesticular and hip regions. Most tumors were located in subcutaneous tissue. There were 4 cases of cellular angiofibroma with atypia. Three showed severely atypical cells as scattered foci within the cellular angiofibroma. One case showed a discrete nodule of atypical cells. There were 9 cases of cellular angiofibroma with morphologic features of sarcomatous transformation. In each case, abrupt transition to a discrete sarcomatous component was seen. Of these 9 cases, the sarcomatous component in 2 cases showed features of pleomorphic liposarcoma with multivacuolated lipoblasts readily identified. Three of these 9 cases showed discrete nodule(s) closely resembling atypical lipomatous tumor within usual cellular angiofibroma. In the remaining 4 cases, the sarcomatous component was composed of pleomorphic spindle cells arranged in various patterns. By immunohistochemistry, atypical cells and sarcomatous areas showed either multifocal or more diffuse p16 expression compared with either scattered or negative expression in the conventional cellular angiofibroma. The 3 cases with atypical lipomatous tumor-like areas were negative for MDM-2 and CDK4. Follow-up information was available for 7 patients (range from 2 to 75 mo; median: 14 mo). Six patients did not develop recurrence or metastasis. One patient died of metastatic carcinoma of unknown primary site 27 months after the diagnosis of cellular angiofibroma with sarcomatous transformation. Cellular angiofibroma with atypia or morphologic sarcomatous transformation occurs predominantly in the subcutaneous tissue of the vulva and, as yet, shows no evident tendency to recur based on limited clinical follow-up available for 7 cases. The sarcomatous component can show variable features including atypical lipomatous tumor, pleomorphic liposarcoma, and pleomorphic sarcoma NOS. Overexpression of p16 in the atypical cells and sarcomatous component suggests a possible underlying molecular mechanism.

  10. What Do Biochemistry Students Pay Attention to in External Representations of Protein Translation? Tthe Case of the Shine-Dalgarno Sequence

    ERIC Educational Resources Information Center

    Bussey, Thomas J.; Orgill, MaryKay

    2015-01-01

    Biochemistry instructors often use external representations--ranging from static diagrams to dynamic animations and from simplistic, stylized illustrations to more complex, realistic presentations--to help their students visualize abstract cellular and molecular processes, mechanisms, and components. However, relatively little is known about how…

  11. Molecular responses of calreticulin genes to iron overload and bacterial challenge in channel catfish Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    Infection and inflammation are often accompanied by oxidative stress caused by the accumulation of reactive oxygen species which can be deleterious to the health of the host. Antioxidant defense mechanisms and components are crucial in limiting cellular and tissue-level damage and restoring homeosta...

  12. Molecular responses of calreticulin genes to iron overload and bacterial challenge in channel catfish (Ictalurus punctatus)

    USDA-ARS?s Scientific Manuscript database

    Infection and inflammation are often accompanied by oxidative stress caused by the accumulation of reactive oxygen species which can be deleterious to the health of the host. Antioxidant defense mechanisms and components are crucial in limiting cellular and tissue-level damage and restoring homeosta...

  13. A Kinesthetic Model Demonstrating Molecular Interactions Involved in Anterior-Posterior Pattern Formation in "Drosophila"

    ERIC Educational Resources Information Center

    Douglas, Kristin R.

    2008-01-01

    Prerequisites for the Developmental Biology course at Augustana College are introductory courses in zoology and cell biology. After introductory courses students appreciate the fact that proteins have three-dimensional structures; however, they often fail to recognize how protein interactions with other cellular components can lead to specific…

  14. Genetics of human hydrocephalus

    PubMed Central

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions. PMID:16773266

  15. [Laser microdissection for biology and medicine].

    PubMed

    Podgornyĭ, O V; Lazarev, V N; Govorun, V M

    2012-01-01

    For routine extraction of DNA, RNA, proteins and metabolites, small tissue pieces are placed into lysing solution. These tissue pieces in general contain different cell types. For this reason, lysate contains components of different cell types, which complicates the interpretation of molecular analysis results. The laser microdissection allows overcoming this trouble. The laser microdissection is a method to procure tissue samples contained defined cell subpopulations, individual cells and even subsellular components under direct microscopic visualization. Collected samples can be undergone to different downstream molecular assays: DNA analysis, RNA transcript profiling, cDNA library generation and gene expression analysis, proteomic analysis and metabolite profiling. The laser microdissection has wide applications in oncology (research and routine), cellular and molecular biology, biochemistry and forensics. This paper reviews the principles of different laser microdissection instruments, examples of laser microdissection application and problems of sample preparation for laser microdissection.

  16. High content cell-based assay for the inflammatory pathway

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  17. Light-dependent governance of cell shape dimensions in cyanobacteria.

    PubMed

    Montgomery, Beronda L

    2015-01-01

    The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.

  18. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  19. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  20. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    PubMed Central

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  1. Autophagy in protists

    PubMed Central

    Duszenko, Michael; Ginger, Michael L; Brennand, Ana; Gualdrón-López, Melisa; Colombo, Maria-Isabel; Coombs, Graham H; Coppens, Isabelle; Jayabalasingham, Bamini; Langsley, Gordon; de Castro, Solange Lisboa; Menna-Barreto, Rubem; Mottram, Jeremy C; Navarro, Miguel; Rigden, Daniel J; Romano, Patricia S; Stoka, Veronika; Turk, Boris

    2011-01-01

    Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles and defense against parasitic invaders. During the past 10–20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target. PMID:20962583

  2. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  3. Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.

    PubMed

    Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B

    2015-01-01

    Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    PubMed Central

    Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482

  5. Pomegranate extracts and cancer prevention: molecular and cellular activities.

    PubMed

    Syed, Deeba N; Chamcheu, Jean-Christopher; Adhami, Vaqar M; Mukhtar, Hasan

    2013-10-01

    There is increased appreciation by the scientific community that dietary phytochemicals can be potential weapons in the fight against cancer. Emerging data has provided new insights into the molecular and cellular framework needed to establish novel mechanism-based strategies for cancer prevention by selective bioactive food components. The unique chemical composition of the pomegranate fruit, rich in antioxidant tannins and flavonoids has drawn the attention of many investigators. Polyphenol rich fractions derived from the pomegranate fruit have been studied for their potential chemopreventive and/or cancer therapeutic effects in several animal models. Although data from in vitro and in vivo studies look convincing, well designed clinical trials in humans are needed to ascertain whether pomegranate can become part of our armamentarium against cancer. This review summarizes the available literature on the effects of pomegranate against various cancers.

  6. Pomegranate Extracts and Cancer Prevention: Molecular and Cellular Activities

    PubMed Central

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Adhami, Vaqar M.; Mukhtar, Hasan

    2014-01-01

    There is increased appreciation by the scientific community that dietary phytochemicals can be potential weapons in the fight against cancer. Emerging data has provided new insights into the molecular and cellular framework needed to establish novel mechanism-based strategies for cancer prevention by selective bioactive food components. The unique chemical composition of the pomegranate fruit, rich in antioxidant tannins and flavonoids has drawn the attention of many investigators. Polyphenol rich fractions derived from the pomegranate fruit have been studied for their potential chemopreventive and/or cancer therapeutic effects in several animal models. Although data from in vitro and in vivo studies look convincing, well designed clinical trials in humans are needed to ascertain whether pomegranate can become part of our armamentarium against cancer. This review summarizes the available literature on the effects of pomegranate against various cancers. PMID:23094914

  7. What Can Biochemistry Students Learn about Protein Translation? Using Variation Theory to Explore the Space of Learning Created by Some Common External Representations

    ERIC Educational Resources Information Center

    Bussey, Thomas J.

    2013-01-01

    Biochemistry education relies heavily on students' ability to visualize abstract cellular and molecular processes, mechanisms, and components. As such, biochemistry educators often turn to external representations to provide tangible, working models from which students' internal representations (mental models) can be constructed, evaluated, and…

  8. 77 FR 55852 - Center for Scientific Review Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... unwarranted invasion of personal privacy. Name of Committee: Molecular, Cellular and Developmental...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Synapses, Cytoskeleton and... . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular...

  9. Chemical analyses of fossil bone.

    PubMed

    Zheng, Wenxia; Schweitzer, Mary Higby

    2012-01-01

    The preservation of microstructures consistent with soft tissues, cells, and other biological components in demineralized fragments of dinosaur bone tens of millions of years old was unexpected, and counter to current hypotheses of tissue, cellular, and molecular degradation. Although the morphological similarity of these tissues to extant counterparts was unmistakable, after at least 80 million years exposed to geochemical influences, morphological similarity is insufficient to support an endogenous source. To test this hypothesis, and to characterize these materials at a molecular level, we applied multiple independent chemical, molecular, and microscopic analyses to identify the presence of original components produced by the extinct organisms. Microscopic techniques included field emission scanning electron microscopy, analytical transmission electron microscopy, transmitted light microscopy (LM), and fluorescence microscopy (FM). The chemical and molecular techniques include enzyme-linked immunosorbant assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis, western blot (immunoblot), and attenuated total reflectance infrared spectroscopy. In situ analyses performed directly on tissues included immunohistochemistry and time-of-flight secondary ion mass spectrometry. The details of sample preparation and methodology are described in detail herein.

  10. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    NASA Astrophysics Data System (ADS)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  11. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGES

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in biological tissues at ultraspatial resolutions.« less

  12. Cellular Plasticity-Targeted Therapy in Head and Neck Cancers.

    PubMed

    Shang, W; Zhang, Q; Huang, Y; Shanti, R; Alawi, F; Le, A; Jiang, C

    2018-06-01

    Head and neck cancer is one of the most frequent human malignancies worldwide, with a high rate of recurrence and metastasis. Head and neck squamous cell carcinoma (HNSCC) is cellularly and molecularly heterogeneous, with subsets of undifferentiated cancer cells exhibiting stem cell-like properties, called cancer stem cells (CSCs). Epithelial-mesenchymal transition, gene mutation, and epigenetic modification are associated with the formation of cellular plasticity of tumor cells in HNSCC, contributing to the acquisition of invasive, recurrent, and metastatic properties and therapeutic resistance. Tumor microenvironment (TME) plays a supportive role in the initiation, progression, and metastasis of head and neck cancer. Stromal fibroblasts, vasculature, immune cells, cytokines, and hypoxia constitute the main components of TME in HNSCC, which contributes not only to the acquisition of CSC properties but also to the recurrence and therapeutic resistance of the malignancies. In this review, we discuss the potential mechanisms underlying the development of cellular plasticity, especially the emergence of CSCs, in HNSCC. We also highlight recent studies implicating the complex interplays among TME components, plastic CSCs, tumorigenesis, recurrence, and therapeutic resistance of HNSCC. Finally, we summarize the treatment modalities of HNSCC and reinforce the novel concept of therapeutic targeting CSCs in HNSCC.

  13. Ovarian mucinous tumors arising from mature cystic teratomas--a molecular genetic approach for understanding the cellular origin.

    PubMed

    Fujii, Kaho; Yamashita, Yoriko; Yamamoto, Toshimichi; Takahashi, Koji; Hashimoto, Katsunori; Miyata, Tomoko; Kawai, Kumi; Kikkawa, Fumitaka; Toyokuni, Shinya; Nagasaka, Tetsuro

    2014-04-01

    Mucinous tumors of the ovary are frequently associated with mature cystic teratomas, and it has been speculated that the mucinous tumors arise from teratoma components. The cellular origins of mature cystic teratomas are believed to be post-meiotic ovarian germ cells, and the analysis of microsatellite markers such as short tandem repeats is suitable for determining the cellular origin of tumors. In this study, we analyzed 3 ovarian mature cystic teratomas, all of which were associated with simultaneous ovarian mucinous tumors within the same ovary. Two of the 3 mucinous tumors were intestinal-type and the other was endocervical type. A laser capture microdissection technique was used to separate the epithelial component of the mucinous tumor, the components of the mature cystic teratoma, and control ovarian somatic tissue. Using short tandem repeat analysis based on 6 markers (D20S480, D6S2439, D6S1056, D9S1118, D4S2639, and D17S1290), we could distinguish the germ cell (homozygous) or somatic (heterozygous) origin of a given component in each sample. The epithelial components of the intestinal-type mucinous tumors in cases 1 and 2 were homozygous, and the epithelial component in case 3 (endocervical type) was heterozygous. All teratomatous components were homozygous, and the control components were heterozygous. In addition, we analyzed 3 mature cystic teratomas without mucinous tumors, and all 3 were homozygous in the tumor component. Our data suggest that the origin of mucinous tumors in the ovary may differ among histological subtypes, and intestinal-type mucinous tumors may arise from mature cystic teratomas, although endocervical-type mucinous tumors may not. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.

    PubMed

    Hannan, Shabab B; Dräger, Nina M; Rasse, Tobias M; Voigt, Aaron; Jahn, Thomas R

    2016-04-01

    Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes including, but not limited to, phosphorylation, cytoskeleton organization, axonal transport, regulation of cellular proteostasis, transcription, RNA metabolism, cell cycle regulation, and apoptosis. We discuss the utility and application of invertebrate models in elucidating the cellular and molecular functions of novel and uncharacterized disease modifiers identified in large-scale screens as well as for investigating the function of genes identified as risk factors in genome-wide association studies from human patients in the post-genomic era. In this review, we combined and summarized several large-scale modifier screens performed in invertebrate models to identify modifiers of tau toxicity. A summary of the screens show that diverse cellular processes are implicated in the modification of tau toxicity. Kinases and phosphatases are the most predominant class of modifiers followed by components required for cellular proteostasis and axonal transport and cytoskeleton elements. © 2016 International Society for Neurochemistry.

  15. Interrogation of Cellular Innate Immunity by Diamond-Nanoneedle-Assisted Intracellular Molecular Fishing.

    PubMed

    Wang, Zixun; Yang, Yang; Xu, Zhen; Wang, Ying; Zhang, Wenjun; Shi, Peng

    2015-10-14

    Understanding intracellular signaling cascades and network is one of the core topics in modern biology. Novel tools based on nanotechnologies have enabled probing and analyzing intracellular signaling with unprecedented sensitivity and specificity. In this study, we developed a minimally invasive method for in situ probing specific signaling components of cellular innate immunity in living cells. The technique was based on diamond-nanoneedle arrays functionalized with aptamer-based molecular sensors, which were inserted into cytoplasmic domain using a centrifugation controlled process to capture molecular targets. Simultaneously, these diamond-nanoneedles also facilitated the delivery of double-strand DNAs (dsDNA90) into cells to activate the pathway involving the stimulator of interferon genes (STING). We showed that the nanoneedle-based biosensors can be successfully utilized to isolate transcriptional factor, NF-κB, from intracellular regions without damaging the cells, upon STING activation. By using a reversible protocol and repeated probing in living cells, we were able to examine the singling dynamics of NF-κB, which was quickly translocated from cytoplasm to nucleus region within ∼40 min of intracellular introduction of dsDNA90 for both A549 and neuron cells. These results demonstrated a novel and versatile tool for targeted in situ dissection of intracellular signaling, providing the potential to resolve new sights into various cellular processes.

  16. Molecular and Cellular Biology Animations: Development and Impact on Student Learning

    PubMed Central

    2005-01-01

    Educators often struggle when teaching cellular and molecular processes because typically they have only two-dimensional tools to teach something that plays out in four dimensions. Learning research has demonstrated that visualizing processes in three dimensions aids learning, and animations are effective visualization tools for novice learners and aid with long-term memory retention. The World Wide Web Instructional Committee at North Dakota State University has used these research results as an inspiration to develop a suite of high-quality animations of molecular and cellular processes. Currently, these animations represent transcription, translation, bacterial gene expression, messenger RNA (mRNA) processing, mRNA splicing, protein transport into an organelle, the electron transport chain, and the use of a biological gradient to drive adenosine triphosphate synthesis. These animations are integrated with an educational module that consists of First Look and Advanced Look components that feature captioned stills from the animation representing the key steps in the processes at varying levels of complexity. These animation-based educational modules are available via the World Wide Web at http://vcell.ndsu.edu/animations. An in-class research experiment demonstrated that student retention of content material was significantly better when students received a lecture coupled with the animations and then used the animation as an individual study activity. PMID:15917875

  17. Molecular insights into a dinoflagellate bloom

    PubMed Central

    Gong, Weida; Browne, Jamie; Hall, Nathan; Schruth, David; Paerl, Hans; Marchetti, Adrian

    2017-01-01

    In coastal waters worldwide, an increase in frequency and intensity of algal blooms has been attributed to eutrophication, with further increases predicted because of climate change. Yet, the cellular-level changes that occur in blooming algae remain largely unknown. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a eutrophied estuary. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of cellular membrane components. In addition, there is a prominence of highly expressed genes involved in the synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes, suggesting processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to elevated nutrient demands and to promote interactions with their surrounding bacterial consortia, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for bloom characterization and management efforts. PMID:27935592

  18. Investigation of apoptotic events at molecular level induced by SERS guided targeted theranostic nanoprobe

    NASA Astrophysics Data System (ADS)

    Narayanan, Nisha; Nair, Lakshmi V.; Karunakaran, Varsha; Joseph, Manu M.; Nair, Jyothi B.; N, Ramya A.; Jayasree, Ramapurath S.; Maiti, Kaustabh Kumar

    2016-06-01

    Herein, we have examined distinctive structural and functional variations of cellular components during apoptotic cell death induced by a targeted theranostic nanoprobe, MMP-SQ@GNR@LAH-DOX, which acted as a SERS ``on/off'' probe in the presence of a MMP protease and executed synergistic photothermal chemotherapy, as reflected by the SERS fingerprinting, corresponding to the phosphodiester backbone of DNA.Herein, we have examined distinctive structural and functional variations of cellular components during apoptotic cell death induced by a targeted theranostic nanoprobe, MMP-SQ@GNR@LAH-DOX, which acted as a SERS ``on/off'' probe in the presence of a MMP protease and executed synergistic photothermal chemotherapy, as reflected by the SERS fingerprinting, corresponding to the phosphodiester backbone of DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03385g

  19. Role of Complement on Broken Surfaces After Trauma.

    PubMed

    Huber-Lang, Markus; Ignatius, Anita; Brenner, Rolf E

    2015-01-01

    Activation of both the complement and coagulation cascade after trauma and subsequent local and systemic inflammatory response represent a major scientific and clinical problem. After severe tissue injury and bone fracture, exposure of innate immunity to damaged cells and molecular debris is considered a main trigger of the posttraumatic danger response. However, the effects of cellular fragments (e.g., histones) on complement activation remain enigmatic. Furthermore, direct effects of "broken" bone and cartilage surfaces on the fluid phase response of complement and its interaction with key cells of connective tissues are still unknown. Here, we summarize data suggesting direct and indirect complement activation by extracellular and cellular danger associated molecular patterns. In addition, key complement components and the corresponding receptors (such as C3aR, C5aR) have been detected on "exposed surfaces" of the damaged regions. On a cellular level, multiple effects of complement activation products on osteoblasts, osteoclasts, chondrocytes and mesenchymal stem cells have been found.In conclusion, the complement system may be activated by trauma-altered surfaces and is crucially involved in connective tissue healing and posttraumatic systemic inflammatory response.

  20. Virtual tissues in toxicology.

    PubMed

    Shah, Imran; Wambaugh, John

    2010-02-01

    New approaches are vital for efficiently evaluating human health risk of thousands of chemicals in commerce. In vitro models offer a high-throughput approach for assaying chemical-induced molecular and cellular changes; however, bridging these perturbations to in vivo effects across chemicals, dose, time, and species remains challenging. Technological advances in multiresolution imaging and multiscale simulation are making it feasible to reconstruct tissues in silico. In toxicology, these "virtual" tissues (VT) aim to predict histopathological outcomes from alterations of cellular phenotypes that are controlled by chemical-induced perturbations in molecular pathways. The behaviors of thousands of heterogeneous cells in tissues are simulated discretely using agent-based modeling (ABM), in which computational "agents" mimic cell interactions and cellular responses to the microenvironment. The behavior of agents is constrained by physical laws and biological rules derived from experimental evidence. VT extend compartmental physiologic models to simulate both acute insults as well as the chronic effects of low-dose exposure. Furthermore, agent behavior can encode the logic of signaling and genetic regulatory networks to evaluate the role of different pathways in chemical-induced injury. To extrapolate toxicity across species, chemicals, and doses, VT require four main components: (a) organization of prior knowledge on physiologic events to define the mechanistic rules for agent behavior, (b) knowledge on key chemical-induced molecular effects, including activation of stress sensors and changes in molecular pathways that alter the cellular phenotype, (c) multiresolution quantitative and qualitative analysis of histologic data to characterize and measure chemical-, dose-, and time-dependent physiologic events, and (d) multiscale, spatiotemporal simulation frameworks to effectively calibrate and evaluate VT using experimental data. This investigation presents the motivation, implementation, and application of VT with examples from hepatotoxicity and carcinogenesis.

  1. Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell

    PubMed Central

    Lim, Wendell A.; Lee, Connie M.; Tang, Chao

    2013-01-01

    A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks. PMID:23352241

  2. Probing the brain with molecular fMRI.

    PubMed

    Ghosh, Souparno; Harvey, Peter; Simon, Jacob C; Jasanoff, Alan

    2018-06-01

    One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Important cellular targets for antimicrobial photodynamic therapy.

    PubMed

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets.

  4. Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis.

    PubMed

    Faus, Isabel; Zabalza, Ana; Santiago, Julia; Nebauer, Sergio G; Royuela, Mercedes; Serrano, Ramon; Gadea, Jose

    2015-01-21

    The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate. These results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition.

  5. Molecular deconstruction, detection, and computational prediction of microenvironment-modulated cellular responses to cancer therapeutics

    PubMed Central

    LaBarge, Mark A; Parvin, Bahram; Lorens, James B

    2014-01-01

    The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments has revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes, and in a number of cases has revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. PMID:24582543

  6. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis

    PubMed Central

    Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan

    2011-01-01

    Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323

  7. Stem cell dynamics in the hair follicle niche

    PubMed Central

    Rompolas, Panteleimon; Greco, Valentina

    2014-01-01

    Hair follicles are skin appendages of the mammalian skin that have the ability to periodically and stereotypically regenerate in order to continuously produce new hair over our lifetime. The ability of the hair follicle to regenerate is due to the presence of stem cells that along with other cell populations and non-cellular components, including molecular signals and extracellular material, make up a niche microenvironment. Mounting evidence suggests that the niche is critical for regulating stem cell behavior and thus the process of regeneration. Here we review the literature concerning past and current studies that have utilized mouse genetic models, combined with other approaches to dissect the molecular and cellular composition of the hair follicle niche. We also discuss our current understanding of how stem cells operate within the niche during the process of tissue regeneration and the factors that regulate their behavior. PMID:24361866

  8. Search, capture and signal: games microtubules and centrosomes play.

    PubMed

    Schuyler, S C; Pellman, D

    2001-01-01

    Accurate distribution of the chromosomes in dividing cells requires coupling of cellular polarity cues with both the orientation of the mitotic spindle and cell cycle progression. Work in budding yeast has demonstrated that cytoplasmic dynein and the kinesin Kip3p define redundant pathways that ensure proper spindle orientation. Furthermore, it has been shown that the Kip3p pathway components Kar9p and Bim1p (Yeb1p) form a complex that provides a molecular link between cortical polarity cues and spindle microtubules. Recently, other studies indicated that the cortical localization of Kar9p depends upon actin cables and Myo2p, a type V myosin. In addition, a BUB2-dependent cell cycle checkpoint has been described that inhibits the mitotic exit network and cytokinesis until proper centrosome position is achieved. Combined, these studies provide molecular insight into how cells link cellular polarity, spindle position and cell cycle progression.

  9. Fracture healing: mechanisms and interventions

    PubMed Central

    Einhorn, Thomas A.; Gerstenfeld, Louis C.

    2015-01-01

    Fractures are the most common large-organ, traumatic injuries to humans. The repair of bone fractures is a postnatal regenerative process that recapitulates many of the ontological events of embryonic skeletal development. Although fracture repair usually restores the damaged skeletal organ to its pre-injury cellular composition, structure and biomechanical function, about 10% of fractures will not heal normally. This article reviews the developmental progression of fracture healing at the tissue, cellular and molecular levels. Innate and adaptive immune processes are discussed as a component of the injury response, as are environmental factors, such as the extent of injury to the bone and surrounding tissue, fixation and the contribution of vascular tissues. We also present strategies for fracture treatment that have been tested in animal models and in clinical trials or case series. The biophysical and biological basis of the molecular actions of various therapeutic approaches, including recombinant human bone morphogenetic proteins and parathyroid hormone therapy, are also discussed. PMID:25266456

  10. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  11. Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors.

    PubMed

    Lauria, Antonino; Ippolito, Mario; Almerico, Anna Maria

    2009-10-01

    Inhibiting a protein that regulates multiple signal transduction pathways in cancer cells is an attractive goal for cancer therapy. Heat shock protein 90 (Hsp90) is one of the most promising molecular targets for such an approach. In fact, Hsp90 is a ubiquitous molecular chaperone protein that is involved in folding, activating and assembling of many key mediators of signal transduction, cellular growth, differentiation, stress-response and apoptothic pathways. With the aim to analyze which molecular descriptors have the higher importance in the binding interactions of these classes, we first performed molecular docking experiments on the 187 Hsp90 inhibitors included in the BindingDB, a public database of measured binding affinities. Further, for each frozen conformation obtained from the docking, a set of 250 molecular descriptors was calculated, and the resulting Structure/Descriptors matrix was submitted to Principal Component Analysis. From the factor scores it emerged a good clusterization among similar compounds both in terms of structural class and activity spectrum, while examination of the loadings of the first two factors also allowed to study the classes of descriptors which mainly contribute to each one.

  12. Cellular and molecular actions of binary toxins possessing ADP-ribosyltransferase activity.

    PubMed

    Considine, R V; Simpson, L L

    1991-01-01

    Clostridial organisms produce a number of binary toxins. Thus far, three complete toxins (botulinum, perfringens and spiroforme) and one incomplete toxin (difficile) have been identified. In the case of complete toxins, there is a heavy chain component (Mr approximately 100,000) that binds to target cells and helps create a docking site for the light chain component (Mr approximately 50,000). The latter is an enzyme that possesses mono(ADP-ribosyl)transferase activity. The toxins appear to proceed through a three step sequence to exert their effects, including a binding step, an internalization step and an intracellular poisoning step. The substrate for the toxins is G-actin. By virtue of ADP-ribosylating monomeric actin, the toxins prevent polymerization as well as promoting depolymerization. The most characteristic cellular effect of the toxins is alteration of the cytoskeleton, which leads directly to changes in cellular morphology and indirectly to changes in cell function (e.g. release of chemical mediators). Binary toxins capable of modifying actin are likely to be useful tools in the study of cell biology.

  13. 77 FR 2738 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ..., Review Group; Clinical Molecular Imaging and Probe Development. Date: February 2-3, 2012. Time: 7 p.m. to..., Bethesda, MD 20892, (301) 435-1777, [email protected] . Name of Committee: Molecular, Cellular and...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology...

  14. Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing.

    PubMed

    Wedel, Sophia; Manola, Maria; Cavinato, Maria; Trougakos, Ioannis P; Jansen-Dürr, Pidder

    2018-05-19

    Organismal ageing is associated with increased chance of morbidity or mortality and it is driven by diverse molecular pathways that are affected by both environmental and genetic factors. The progression of ageing correlates with the gradual accumulation of stressors and damaged biomolecules due to the time-dependent decline of stress resistance and functional capacity, which eventually compromise cellular homeodynamics. As protein machines carry out the majority of cellular functions, proteome quality control is critical for cellular functionality and is carried out through the curating activity of the proteostasis network (PN). Key components of the PN are the two main degradation machineries, namely the ubiquitin-proteasome and autophagy-lysosome pathways along with several stress-responsive pathways, such as that of nuclear factor erythroid 2-related factor 2 (Nrf2), which mobilises cytoprotective genomic responses against oxidative and/or xenobiotic damage. Reportedly, genetic or dietary interventions that activate components of the PN delay ageing in evolutionarily diverse organisms. Natural products (extracts or pure compounds) represent an extraordinary inventory of highly diverse structural scaffolds that offer promising activities towards meeting the challenge of increasing healthspan and/or delaying ageing (e.g., spermidine, quercetin or sulforaphane). Herein, we review those natural compounds that have been found to activate proteostatic and/or anti-stress cellular responses and hence have the potential to delay cellular senescence and/or in vivo ageing.

  15. Mutations in the NHEJ Component XRCC4 Cause Primordial Dwarfism

    PubMed Central

    Murray, Jennie E.; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S.; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A.; Graham, Gail E.; Ranza, Emmanuelle; Blundell, Tom L.; Jackson, Andrew P.; Stewart, Grant S.; Bicknell, Louise S.

    2015-01-01

    Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. PMID:25728776

  16. 75 FR 3241 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neurodifferentiation..., (301) 435- 1178, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date...

  17. Effect of flour minor components on bubble growth in bread dough during proofing assessed by magnetic resonance imaging.

    PubMed

    Rouillé, J; Bonny, J-M; Della Valle, G; Devaux, M F; Renou, J P

    2005-05-18

    Fermentation of dough made from standard flour for French breadmaking was followed by nuclear magnetic resonance imaging at 9.4 T. The growth of bubbles (size > 117 microm) was observed for dough density between 0.8 and 0.22 g cm(-3). Cellular structure was assessed by digital image analysis, leading to the definition of fineness and rate of bubble growth. Influence of composition was studied through fractionation by extraction of soluble fractions (6% db), by defatting (< 1% db) and by puroindolines (Pin) addition (< or = 0.1%). Addition of the soluble fraction increased the dough specific volume and bubble growth rate but decreased fineness, whereas defatting and Pin addition only increased fineness. The role of molecular components of each fraction could be related to dough elongational properties. A final comparison with baking results confirmed that the crumb cellular structure was largely defined after fermentation.

  18. Does water stress promote the proteome-wide adjustment of intrinsically disordered proteins in plants?

    PubMed

    Zamora-Briseño, Jesús Alejandro; Reyes-Hernández, Sandi Julissa; Zapata, Luis Carlos Rodríguez

    2018-06-02

    Plant response to water stress involves the activation of mechanisms expected to help them cope with water scarcity. Among these mechanisms, proteome-wide adjustment is well known. This includes actions to save energy, protect cellular and molecular components, and maintain vital functions of the cell. Intrinsically disordered proteins, which are proteins without a rigid three-dimensional structure, are seen as emerging multifunctional cellular components of proteomes. They are highly abundant in eukaryotic proteomes, and numerous functions for these proteins have been proposed. Here, we discuss several reasons why the collection of intrinsically disordered proteins in a proteome (disordome) could be subjected to an active regulation during conditions of water scarcity in plants. We also discuss the potential misinterpretations of disordome content estimations made so far due to bias-prone data and the need for reliable analysis based on experimental data in order to acknowledge the plasticity nature of the disordome.

  19. Cellular MYCro economics: Balancing MYC function with MYC expression.

    PubMed

    Levens, David

    2013-11-01

    The expression levels of the MYC oncoprotein have long been recognized to be associated with the outputs of major cellular processes including proliferation, cell growth, apoptosis, differentiation, and metabolism. Therefore, to understand how MYC operates, it is important to define quantitatively the relationship between MYC input and expression output for its targets as well as the higher-order relationships between the expression levels of subnetwork components and the flow of information and materials through those networks. Two different views of MYC are considered, first as a molecular microeconomic manager orchestrating specific positive and negative responses at individual promoters in collaboration with other transcription and chromatin components, and second, as a macroeconomic czar imposing an overarching rule onto all active genes. In either case, c-myc promoter output requires multiple inputs and exploits diverse mechanisms to tune expression to the appropriate levels relative to the thresholds of expression that separate health and disease.

  20. [Archives of "comprehensive approach on asbestos-related diseases" supported by the "special coordination funds for promoting science and technology (H18-1-3-3-1)"-- overview of group research project, care and specimen registration, cellular characteristics of mesothelioma and immunological effects of asbestos].

    PubMed

    Otsuki, Takemi; Nakano, Takashi; Hasegawa, Seiki; Okada, Morihito; Tsujimura, Tohru; Sekido, Yoshitaka; Toyokuni, Shinya; Nishimoto, Hiroshi; Fukuoka, Kazuya; Tanaka, Fumihiro; Kumagai, Naoko; Maeda, Megumi; Nishimura, Yasumitsu

    2011-05-01

    The research project entitled "Comprehensive approach on asbestos-related diseases" supported by the "Special Coordination Funds for Promoting Science and Technology (H18-1-3-3-1)" began in 2006 and was completed at the end of the Japanese fiscal year of 2010. This project included four parts; (1) malignant mesothelioma (MM) cases and specimen registration, (2) development of procedures for the early diagnosis of MM, (3) commencement of clinical investigations including multimodal approaches, and (4) basic research comprising three components; (i) cellular and molecular characterization of mesothelioma cells, (ii) immunological effects of asbestos, and (iii) elucidation of asbestos-induced carcinogenesis using animal models. In this special issue of the Japanese Journal of Hygiene, we briefly introduce the achievements of our project. The second and third parts and the third component of the fourth part are described in other manuscripts written by Professors Fukuoka, Hasegawa, and Toyokuni. In this manuscript, we introduce a brief summary of the first part "MM cases and specimen registration", the first component of the fourth part "Cellular and molecular characterization of mesothelioma cells" and the second component of the fourth part "Immunological effects of asbestos". In addition, a previous special issue presented by the Study Group of Fibrous and Particulate Substances (SGFPS) (chaired by Professor Otsuki, Kawasaki Medical School, Japan) for the Japanese Society of Hygiene and published in Environmental Health and Preventive Medicine Volume 13, 2008, included reviews of the aforementioned first component of the fourth part of the project. Taken together, our project led medical investigations regarding asbestos and MM progress and contributed towards the care and examination of patients with asbestos-related diseases during these five years. Further investigations are required to facilitate the development of preventive measures and the cure of asbestos-related diseases, particularly in Japan, where asbestos-related diseases are predicted to increase in the next 10 to 20 years.

  1. Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry.

    PubMed

    Wang, Guanshi; Hauver, Jesse; Thomas, Zachary; Darst, Seth A; Pertsinidis, Alexandros

    2016-12-15

    Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves <2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ 70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Chemoreceptor That Detects Molecular Carbon Dioxide*

    PubMed Central

    Smith, Ewan St. John; Martinez-Velazquez, Luis; Ringstad, Niels

    2013-01-01

    Animals from diverse phyla possess neurons that are activated by the product of aerobic respiration, CO2. It has long been thought that such neurons primarily detect the CO2 metabolites protons and bicarbonate. We have determined the chemical tuning of isolated CO2 chemosensory BAG neurons of the nematode Caenorhabditis elegans. We show that BAG neurons are principally tuned to detect molecular CO2, although they can be activated by acid stimuli. One component of the BAG transduction pathway, the receptor-type guanylate cyclase GCY-9, suffices to confer cellular sensitivity to both molecular CO2 and acid, indicating that it is a bifunctional chemoreceptor. We speculate that in other animals, receptors similarly capable of detecting molecular CO2 might mediate effects of CO2 on neural circuits and behavior. PMID:24240097

  3. Modeling schizophrenia using hiPSC neurons

    PubMed Central

    Brennand, Kristen; Simone, Anthony; Jou, Jessica; Gelboin-Burkhart, Chelsea; Tran, Ngoc; Sangar, Sarah; Li, Yan; Mu, Yangling; Chen, Gong; Yu, Diana; McCarthy, Shane; Sebat, Jonathan; Gage, Fred H.

    2012-01-01

    SUMMARY Schizophrenia (SCZD) is a debilitating neurological disorder with a world-wide prevalence of 1%; there is a strong genetic component, with an estimated heritability of 80–85%1. Though postmortem studies have revealed reduced brain volume, cell size, spine density and abnormal neural distribution in the prefrontal cortex and hippocampus of SCZD brain tissue2 and neuropharmacological studies have implicated dopaminergic, glutamatergic and GABAergic activity in SCZD3, the cell types affected in SCZD and the molecular mechanisms underlying the disease state remain unclear. To elucidate the cellular and molecular defects of SCZD, we directly reprogrammed fibroblasts from SCZD patients into human induced pluripotent stem cells (hiPSCs) and subsequently differentiated these disorder-specific hiPSCs into neurons (SI Fig. 1). SCZD hiPSC neurons showed diminished neuronal connectivity in conjunction with decreased neurite number, PSD95-protein levels and glutamate receptor expression. Gene expression profiles of SCZD hiPSC neurons identified altered expression of many components of the cAMP and WNT signaling pathways. Key cellular and molecular elements of the SCZD phenotype were ameliorated following treatment of SCZD hiPSC neurons with the antipsychotic Loxapine. To date, hiPSC neuronal pathology has only been demonstrated in diseases characterized by both the loss of function of a single gene product and rapid disease progression in early childhood4–6. We now report hiPSC neuronal phenotypes and gene expression changes associated with SCZD, a complex genetic psychiatric disorder (SI Table 1). PMID:21490598

  4. Dedifferentiated liposarcoma of the deep (paralaryngeal) soft tissue: lessons learnt from a case with a partly deceptively benign appearing dedifferentiated component.

    PubMed

    Petersson, Fredrik; Murugasu, Euan

    2014-06-01

    We present a case (female, 61 years of age) of dedifferentiated liposarcoma of the deep, cervical (paralaryngeal) soft tissue with a significant myxoid component and characteristic immunohistochemical (strong and diffuse expression of p16, mdm2 and cdk4 in both the well differentiated liposarcomatous and dedifferentiated components) and molecular genetic findings (MDM2-gene amplification on fluorescence in situ hybridization). The myxoid component which was present in the well differentiated liposarcomatous component gave the tumor atypical radiological features. The case presented initial diagnostic difficulties, mainly because of the bland histomorphological appearance of the limited biopsy material from the sampled non-lipogenic, dedifferentiated component. The dedifferentiated part of the tumor turned out to harbor significant heterogeneity with regards to cellularity, cytomorphology and proliferative activity.

  5. 77 FR 31030 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Review Group; Cellular, Molecular and Integrative Reproduction Study Section. Date: June 21, 2012. Time...: Endocrinology, Metabolism, Nutrition and Reproductive Sciences Integrated Review Group; Molecular and Cellular..., Bethesda, MD 20892, 301-827- 7915, [email protected] . Name of Committee: Molecular, Cellular and...

  6. A Symphony of Regulations Centered on p63 to Control Development of Ectoderm-Derived Structures

    PubMed Central

    Guerrini, Luisa; Costanzo, Antonio; Merlo, Giorgio R.

    2011-01-01

    The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies. PMID:21716671

  7. Constraints on Fluctuations in Sparsely Characterized Biological Systems.

    PubMed

    Hilfinger, Andreas; Norman, Thomas M; Vinnicombe, Glenn; Paulsson, Johan

    2016-02-05

    Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.

  8. Constraints on Fluctuations in Sparsely Characterized Biological Systems

    NASA Astrophysics Data System (ADS)

    Hilfinger, Andreas; Norman, Thomas M.; Vinnicombe, Glenn; Paulsson, Johan

    2016-02-01

    Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.

  9. 75 FR 54641 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ...-435-2309, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: October 4-5, 2010. Time... 20892, (301) 435- 4433, [email protected] . Name of Committee: Molecular, Cellular and Developmental...

  10. Autophagy as a macrophage response to bacterial infection.

    PubMed

    Gong, Lan; Devenish, Rodney J; Prescott, Mark

    2012-09-01

    The macrophage is a key component of host defense mechanisms against pathogens. In addition to the phagocytosis of bacteria and secretion of proinflammatory mediators by macrophages, autophagy, a process involved in turnover of cellular material, is a recently identified component of the immune response to bacterial infection. Despite the bactericidal effect of autophagy, some species of intracellular bacteria are able to survive by using one or more strategies to avoid host autophagic attack. Here, we review the latest findings on the interactions between bacteria and autophagy in macrophages. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  11. Mechanism of Aromatic Hydrocarbon Induced Mammary Tumorigenesis

    DTIC Science & Technology

    1999-07-01

    the de-differentiation process of one form of cancer. These studies have been reported (Ashba and Traish, 1999; cf enclosed manuscript). SPECIFIC...be a multi-stage process . The progression of this disease is associated with cellular and molecular changes. Thus, initiation and progression may be...9,10,17-21). Whole aqueous extracts, decaffeinated extracts and purified components of tea have been found effective to varying degrees in the different

  12. Molecular deconstruction, detection, and computational prediction of microenvironment-modulated cellular responses to cancer therapeutics.

    PubMed

    Labarge, Mark A; Parvin, Bahram; Lorens, James B

    2014-04-01

    The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments have revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes and in a number of cases have revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus, introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 77 FR 30021 - Center for Scientific Review Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: June 14, 2012. Time: 8:00 a.m. to 7..., Bethesda, MD 20892, (301) 435- 4433, [email protected] . Name of Committee: Molecular, Cellular and...

  14. Network Medicine: From Cellular Networks to the Human Diseasome

    NASA Astrophysics Data System (ADS)

    Barabasi, Albert-Laszlo

    2014-03-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The tools of network science offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction not only enrich our understanding of complex systems, but are also essential to identify new disease genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases.

  15. Live CLEM imaging to analyze nuclear structures at high resolution.

    PubMed

    Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako

    2015-01-01

    Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.

  16. Mutations in the NHEJ component XRCC4 cause primordial dwarfism.

    PubMed

    Murray, Jennie E; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A; Graham, Gail E; Ranza, Emmanuelle; Blundell, Tom L; Jackson, Andrew P; Stewart, Grant S; Bicknell, Louise S

    2015-03-05

    Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Detection of hydroxyapatite in calcified cardiovascular tissues.

    PubMed

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Detection of Hydroxyapatite in Calcified Cardiovascular Tissues

    PubMed Central

    Lee, Jae Sam; Morrisett, Joel D.; Tung, Ching-Hsuan

    2012-01-01

    Objective The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. Methods A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Results Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Conclusion Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. PMID:22877867

  19. Translational research in pediatrics III: bronchoalveolar lavage.

    PubMed

    Radhakrishnan, Dhenuka; Yamashita, Cory; Gillio-Meina, Carolina; Fraser, Douglas D

    2014-07-01

    The role of flexible bronchoscopy and bronchoalveolar lavage (BAL) for the care of children with airway and pulmonary diseases is well established, with collected BAL fluid most often used clinically for microbiologic pathogen identification and cellular analyses. More recently, powerful analytic research methods have been used to investigate BAL samples to better understand the pathophysiological basis of pediatric respiratory disease. Investigations have focused on the cellular components contained in BAL fluid, such as macrophages, lymphocytes, neutrophils, eosinophils, and mast cells, as well as the noncellular components such as serum molecules, inflammatory proteins, and surfactant. Molecular techniques are frequently used to investigate BAL fluid for the presence of infectious pathologies and for cellular gene expression. Recent advances in proteomics allow identification of multiple protein expression patterns linked to specific respiratory diseases, whereas newer analytic techniques allow for investigations on surfactant quantification and function. These translational research studies on BAL fluid have aided our understanding of pulmonary inflammation and the injury/repair responses in children. We review the ethics and practices for the execution of BAL in children for translational research purposes, with an emphasis on the optimal handling and processing of BAL samples. Copyright © 2014 by the American Academy of Pediatrics.

  20. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte.

    PubMed

    Roth, Zvi

    2017-02-08

    Among the components of the female reproductive tract, the ovarian pool of follicles and their enclosed oocytes are highly sensitive to hyperthermia. Heat-induced alterations in small antral follicles can be expressed later as compromised maturation and developmental capacity of the ovulating oocyte. This review summarizes the most up-to-date information on the effects of heat stress on the oocyte with an emphasis on unclear points and open questions, some of which might involve new research directions, for instance, whether preantral follicles are heat resistant. The review focuses on the follicle-enclosed oocytes, provides new insights into the cellular and molecular responses of the oocyte to elevated temperature, points out the role of the follicle microenvironment, and discusses some mechanisms that might underlie oocyte impairment. Mechanisms include nuclear and cytoplasmic maturation, mitochondrial function, apoptotic pathways, and oxidative stress. Understanding the mechanism by which heat stress compromises fertility might enable development of new strategies to mitigate its effects.

  1. Cellular and Molecular Mechanisms of Anterior Chamber-Associated Immune Deviation (ACAID): What We Have Learned from Knockout Mice

    PubMed Central

    Vendomèle, Julie; Khebizi, Quentin; Fisson, Sylvain

    2017-01-01

    Anterior chamber-associated immune deviation (ACAID) is a well-known phenomenon that can occur after an antigen is introduced without any danger signal into the anterior chamber of a murine eye. It is reported to lead to an antigen-specific immune deviation throughout the body. Despite the relatively little evidence of this phenomenon in humans, it has been suggested as a potential prophylactic strategy in allograft rejections and in several autoimmune diseases. Cellular and molecular mechanisms of ACAID have been explored in different murine models mainly as proofs of concept, first by direct analyses of immune components in normal immunocompetent settings and by cell transfer experiments. Later, use of knockout (KO) mice has helped considerably to decipher ACAID mechanisms. However, several factors raise questions about the reliability and validity of studies using KO murine models. This mini-review summarizes results obtained with KO mice and discusses their advantages, their potential weaknesses, and their potential methods for further progress. PMID:29250068

  2. Machine Learning Helps Identify CHRONO as a Circadian Clock Component

    PubMed Central

    Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.

    2014-01-01

    Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000

  3. Molecular and cellular alterations in Down syndrome: toward the identification of targets for therapeutics.

    PubMed

    Créau, Nicole

    2012-01-01

    Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes.

  4. Endocannabinoid signalling and the deteriorating brain

    PubMed Central

    Di Marzo, Vincenzo; Stella, Nephi; Zimmer, Andreas

    2015-01-01

    Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls — and is affected by — normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics. PMID:25524120

  5. Odor Coding in the Maxillary Palp of the Malaria Vector Mosquito Anopheles gambiae

    PubMed Central

    Lu, Tan; Qiu, Yu Tong; Wang, Guirong; Kwon, Jae Young; Rutzler, Michael; Kwon, Hyung-Wook; Pitts, R. Jason; van Loon, Joop J.A.; Takken, Willem; Carlson, John R.; Zwiebel, Laurence J.

    2011-01-01

    Summary Background Many species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO2) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown. Results Here, we use molecular and physiological approaches coupled with systematic functional analyses to define the complete olfactory sensory map of the An. gambiae maxillary palp, an olfactory appendage that mediates the detection of these compounds. In doing so, we identify three olfactory receptor neurons (ORNs) that are organized in stereotyped triads within the maxillary-palp capitate-peg-sensillum population. One ORN is CO2-responsive and characterized by the coexpression of three receptors that confer CO2 responses, whereas the other ORNs express characteristic odorant receptors (AgORs) that are responsible for their in vivo olfactory responses. Conclusions Our results describe a complete and highly concordant map of both the molecular and cellular olfactory components on the maxillary palp of the adult female An. gambiae mosquito. These results also facilitate the understanding of how An. gambiae mosquitoes sense olfactory cues that might be exploited to compromise their ability to transmit malaria. PMID:17764944

  6. Changing partners at the dance

    PubMed Central

    Kallal, Lara E.; Biron, Christine A.

    2013-01-01

    Differential use of cellular and molecular components shapes immune responses, but understanding of how these are regulated to promote defense and health during infections is still incomplete. Examples include signaling from members of the Janus activated kinase-signal transducer and activator of transcription (JAK-STAT) cytokine family. Following receptor stimulation, individual JAK-STAT cytokines have preferences for particular key STAT molecules to lead to specific cellular responses. Certain of these cytokines, however, can conditionally activate alternative STATs as well as elicit pleiotropic and paradoxical effects. Studies examining basal and infection conditions are revealing intrinsic and induced cellular differences in various intracellular STAT concentrations to control the biological consequences of cytokine exposure. The system can be likened to changing partners at a dance based on competition and relative availability, and sets a framework for understanding the particular conditions promoting subset biological functions of cytokines as needed during evolving immune responses to infections. PMID:24058795

  7. Chemical Approaches to Control Gene Expression

    PubMed Central

    Gottesfeld, Joel M.; Turner, James M.; Dervan, Peter B.

    2000-01-01

    A current goal in molecular medicine is the development of new strategies to interfere with gene expression in living cells in the hope that novel therapies for human disease will result from these efforts. This review focuses on small-molecule or chemical approaches to manipulate gene expression by modulating either transcription of messenger RNA-coding genes or protein translation. The molecules under study include natural products, designed ligands, and compounds identified through functional screens of combinatorial libraries. The cellular targets for these molecules include DNA, messenger RNA, and the protein components of the transcription, RNA processing, and translational machinery. Studies with model systems have shown promise in the inhibition of both cellular and viral gene transcription and mRNA utilization. Moreover, strategies for both repression and activation of gene transcription have been described. These studies offer promise for treatment of diseases of pathogenic (viral, bacterial, etc.) and cellular origin (cancer, genetic diseases, etc.). PMID:11097426

  8. Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants.

    PubMed

    Nebenführ, Andreas; Dixit, Ram

    2018-04-29

    Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.

  9. Molecular Insights Into a Dinoflagellate Bloom Imply Bacterial Cultivation

    NASA Astrophysics Data System (ADS)

    Gong, W.; Hall, N.; Schruth, D.; Paerl, H. W.; Marchetti, A.

    2016-02-01

    In coastal waters, an increase in frequency and intensity of algal blooms worldwide has recently been observed primarily due to eutrophication, with further increases predicted as a consequence of climate change. In many marine habitats most impacted by human activities, efforts have been made to prevent conditions that promote harmful algal blooms, or HABs, although progress is limited, due in part to our current lack of understanding of the environmental and cellular processes that promote and propagate these blooms. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a highly eutrophied estuarine system. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of nucleic acids and cellular membrane components. In addition, there is a prominence of highly expressed genes involved in synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes that suggests processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to facilitate interactions with their surrounding bacterial consortium, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for HAB detection and remediation efforts.

  10. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities.

    PubMed

    Gajarsa, Jason J; Kloner, Robert A

    2011-01-01

    As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed "remodeling." This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin-angiotensin-aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.

  11. Minireview: Hey U(PS): Metabolic and Proteolytic Homeostasis Linked via AMPK and the Ubiquitin Proteasome System

    PubMed Central

    Ronnebaum, Sarah M.; Patterson, Cam

    2014-01-01

    One of the master regulators of both glucose and lipid cellular metabolism is 5′-AMP-activated protein kinase (AMPK). As a metabolic pivot that dynamically responds to shifts in nutrient availability and stress, AMPK dysregulation is implicated in the underlying molecular pathology of a variety of diseases, including cardiovascular diseases, diabetes, cancer, neurological diseases, and aging. Although the regulation of AMPK enzymatic activity by upstream kinases is an active area of research, less is known about regulation of AMPK protein stability and activity by components of the ubiquitin-proteasome system (UPS), the cellular machinery responsible for both the recognition and degradation of proteins. Furthermore, there is growing evidence that AMPK regulates overall proteasome activity and individual components of the UPS. This review serves to identify the current understanding of the interplay between AMPK and the UPS and to promote further exploration of the relationship between these regulators of energy use and amino acid availability within the cell. PMID:25099013

  12. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  13. The Multiple Roles of Exosomes in Metastasis

    PubMed Central

    WEIDLE, H. ULRICH; BIRZELE, FABIAN; KOLLMORGEN, GWEN; RÜGER, RÜDIGER

    2016-01-01

    Exosomes are important contributors to cell−cell communication and their role as diagnostic markers for cancer and the pathogenesis for cancer is under intensive investigation. Here, we focus on their role in metastasis-related processes. We discuss their impact regarding promotion of invasion and migration of tumor cells, conditioning of lymph nodes, generation of premetastatic niches and organotropism of metastasis. Furthermore, we highlight interactions of exosomes with bone marrow and stromal components such as fibroblasts, endothelial cells, myeloid- and other immune-related cells in the context of metastases. For all processes as described above, we outline molecular and cellular components for therapeutic intervention with metastatic processes. PMID:28031234

  14. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines.

    PubMed

    Custer, Thomas C; Walter, Nils G

    2017-07-01

    RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling. © 2016 The Protein Society.

  15. Control systems and coordination protocols of the secretory pathway.

    PubMed

    Luini, Alberto; Mavelli, Gabriella; Jung, Juan; Cancino, Jorge

    2014-01-01

    Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or "coordination protocols". These regulatory devices are of fundamental importance for optimal function; however, they are generally "hidden" at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less

  17. The Hippo component YAP localizes in the nucleus of human papilloma virus positive oropharyngeal squamous cell carcinoma.

    PubMed

    Alzahrani, Faisal; Clattenburg, Leanne; Muruganandan, Shanmugam; Bullock, Martin; MacIsaac, Kaitlyn; Wigerius, Michael; Williams, Blair A; Graham, M Elise R; Rigby, Matthew H; Trites, Jonathan R B; Taylor, S Mark; Sinal, Christopher J; Fawcett, James P; Hart, Robert D

    2017-02-22

    HPV infection causes cervical cancer, mediated in part by the degradation of Scribble via the HPV E6 oncoprotein. Recently, Scribble has been shown to be an important regulator of the Hippo signaling cascade. Deregulation of the Hippo pathway induces an abnormal cellular transformation, epithelial to mesenchymal transition, which promotes oncogenic progression. Given the recent rise in oropharyngeal HPV squamous cell carcinoma we sought to determine if Hippo signaling components are implicated in oropharyngeal squamous cell carcinoma. Molecular and cellular techniques including immunoprecipiations, Western blotting and immunocytochemistry were used to identify the key Hippo pathway effector Yes-Associated Protein (YAP)1. Oropharyngeal tissue was collected from CO 2 laser resections, and probed with YAP1 antibody in tumor and pre-malignant regions of HPV positive OPSCC tissue. This study reveals that the Scribble binding protein Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP) forms a complex with YAP. Further, the NOS1APa and NOS1APc isoforms show differential association with activated and non-activated YAP, and impact cellular proliferation. Consistent with deregulated Hippo signaling in OPSCC HPV tumors, we see a delocalization of Scribble and increased nuclear accumulation of YAP1 in an HPV-positive OPSCC. Our preliminary data indicates that NOS1AP isoforms differentially associate with YAP1, which, together with our previous findings, predicts that loss of YAP1 enhances cellular transformation. Moreover, YAP1 is highly accumulated in the nucleus of HPV-positive OPSCC, implying that Hippo signaling and possibly NOS1AP expression are de-regulated in OPSCC. Further studies will help determine if NOS1AP isoforms, Scribble and Hippo components will be useful biomarkers in OPSCC tumor biology.

  18. Deciphering the Functional Composition of Fusogenic Liposomes

    PubMed Central

    Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes

    2018-01-01

    Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187

  19. Molecular and Cellular Determinants of Malignant Transformation in Pulmonary Premalignancy

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0194 TITLE: Molecular and Cellular Determinants of Malignant Transformation in Pulmonary Premalignancy PRINCIPAL...2017 4. TITLE AND SUBTITLE Molecular and Cellular Determinants of Malignant Transformation in Pulmonary Premalignancy 5a. CONTRACT NUMBER 5b. GRANT...Sequenced Regions Figure 2. Intra- and inter-patient genetic heterogeneity of pulmonary lesions. A) Distribution of Jaccard indices comparing n.s

  20. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology.

    PubMed

    Zhan, Han-Xiang; Zhou, Bin; Cheng, Yu-Gang; Xu, Jian-Wei; Wang, Lei; Zhang, Guang-Yong; Hu, San-Yuan

    2017-04-28

    Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming.

    PubMed

    Robinson, J M; Henderson, W A

    2018-01-12

    We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.

  2. Tinnitus: pathology of synaptic plasticity at the cellular and system levels

    PubMed Central

    Guitton, Matthieu J.

    2012-01-01

    Despite being more and more common, and having a high impact on the quality of life of sufferers, tinnitus does not yet have a cure. This has been mostly the result of limited knowledge of the biological mechanisms underlying this adverse pathology. However, the last decade has witnessed tremendous progress in our understanding on the pathophysiology of tinnitus. Animal models have demonstrated that tinnitus is a pathology of neural plasticity, and has two main components: a molecular, peripheral component related to the initiation phase of tinnitus; and a system-level, central component-related to the long-term maintenance of tinnitus. Using the most recent experimental data and the molecular/system dichotomy as a framework, we describe here the biological basis of tinnitus. We then discuss these mechanisms from an evolutionary perspective, highlighting similarities with memory. Finally, we consider how these discoveries can translate into therapies, and we suggest operative strategies to design new and effective combined therapeutic solutions using both pharmacological (local and systemic) and behavioral tools (e.g., using tele-medicine and virtual reality settings). PMID:22408611

  3. From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery.

    PubMed

    Meimaridou, Eirini; Gooljar, Sakina B; Chapple, J Paul

    2009-01-01

    Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales--this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing.

  4. Bridging the gap between high-throughput genetic and transcriptional data reveals cellular pathways responding to alpha-synuclein toxicity

    PubMed Central

    Yeger-Lotem, Esti; Riva, Laura; Su, Linhui Julie; Gitler, Aaron D.; Cashikar, Anil; King, Oliver D.; Auluck, Pavan K.; Geddie, Melissa L.; Valastyan, Julie S.; Karger, David R.; Lindquist, Susan; Fraenkel, Ernest

    2009-01-01

    Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alpha-synuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways. PMID:19234470

  5. Molecular and Cellular Quantitative Microscopy: theoretical investigations, technological developments and applications to neurobiology

    NASA Astrophysics Data System (ADS)

    Esposito, Alessandro

    2006-05-01

    This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.

  6. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    PubMed

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Autophagy - An Emerging Anti-Aging Mechanism

    PubMed Central

    Gelino, Sara; Hansen, Malene

    2013-01-01

    Autophagy is a cytoplasmic catabolic process that protects the cell against stressful conditions. Damaged cellular components are funneled by autophagy into the lysosomes, where they are degraded and can be re-used as alternative building blocks for protein synthesis and cellular repair. In contrast, aging is the gradual failure over time of cellular repair mechanisms that leads to the accumulation of molecular and cellular damage and loss of function. The cell’s capacity for autophagic degradation also declines with age, and this in itself may contribute to the aging process. Studies in model organisms ranging from yeast to mice have shown that single-gene mutations can extend lifespan in an evolutionarily conserved fashion, and provide evidence that the aging process can be modulated. Interestingly, autophagy is induced in a seemingly beneficial manner by many of the same perturbations that extend lifespan, including mutations in key signaling pathways such as the insulin/IGF-1 and TOR pathways. Here, we review recent progress, primarily derived from genetic studies with model organisms, in understanding the role of autophagy in aging and age-related diseases. PMID:23750326

  8. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    PubMed

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma.

    PubMed

    Tan, Patrick; Yeoh, Khay-Guan

    2015-10-01

    Gastric cancer (GC) is globally the fifth most common cancer and third leading cause of cancer death. A complex disease arising from the interaction of environmental and host-associated factors, key contributors to GC's high mortality include its silent nature, late clinical presentation, and underlying biological and genetic heterogeneity. Achieving a detailed molecular understanding of the various genomic aberrations associated with GC will be critical to improving patient outcomes. The recent years has seen considerable progress in deciphering the genomic landscape of GC, identifying new molecular components such as ARID1A and RHOA, cellular pathways, and tissue populations associated with gastric malignancy and progression. The Cancer Genome Atlas (TCGA) project is a landmark in the molecular characterization of GC. Key challenges for the future will involve the translation of these molecular findings to clinical utility, by enabling novel strategies for early GC detection, and precision therapies for individual GC patients. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Nucleolar molecular signature of pluripotent stem cells.

    PubMed

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Jiang, Houbo; Hu, Zhixing; Ren, Yong; Feng, Jian; Prasad, Paras N

    2013-04-02

    Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells to the pluripotent state. Identification and quantitative characterization of changes in the molecular organization of the cell during the process of cellular reprogramming is valuable for stem cell research and advancement of its therapeutic applications. Here we employ quantitative Raman microspectroscopy and biomolecular component analysis (BCA) for a comparative analysis of the molecular composition of nucleoli in skin fibroblasts and iPSC derived from them. We report that the cultured fibroblasts obtained from different human subjects, share comparable concentrations of proteins, RNA, DNA, and lipids in the molecular composition of nucleoli. The nucleolar molecular environment is drastically changed in the corresponding iPSC. We measured that the transition from skin fibroblasts to iPSC is accompanied by a statistically significant increase in protein concentrations ~1.3-fold, RNA concentrations ~1.3-fold, and DNA concentrations ~1.4-fold, while no statistically significant difference was found for the lipid concentrations. The analysis of molecular vibrations associated with diverse aminoacids and protein conformations indicates that nucleoli of skin fibroblasts contain similar subsets of proteins, with prevalence of tyrosine. In iPSC, we observed a higher signal from tryptophan with an increase in the random coil and α helix protein conformations, indicating changes in the subset of nucleolar proteins during cell reprogramming. At the same time, the concentrations of major types of macromolecules and protein conformations in the nucleoli of iPSC and human embryonic stem cells (hESC) were found to be similar. We discuss these results in the context of nucleolar function and conclude that the nucleolar molecular content is correlated with the cellular differentiation status. The approach described here shows the potential for spectroscopically monitoring changes in macromolecular organization of the cell at different stages of reprogramming.

  11. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis—Masters of Survival and Clonality?

    PubMed Central

    Pleyer, Lisa; Valent, Peter; Greil, Richard

    2016-01-01

    Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs. PMID:27355944

  12. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?

    PubMed

    Pleyer, Lisa; Valent, Peter; Greil, Richard

    2016-06-27

    Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the "reprogramming" of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.

  13. Computational Methods for Biomolecular Electrostatics

    PubMed Central

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  14. DEFINING THE CELLULAR AND MOLECULAR MECHANISMS OF TOXICANT ACTION IN THE TESTIS

    EPA Science Inventory

    A symposium was held at the 41st annual meeting of the Society of Toxicology with presentations that emphasized novel molecular and cellular pathways that modulate the response to testicular toxicants. The first two presentations described cellular alterations after exposure to t...

  15. Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution

    PubMed Central

    Fan, Wei; Wu, Xin; Ding, Baoyue; Gao, Jing; Cai, Zhen; Zhang, Wei; Yin, Dongfeng; Wang, Xiang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen

    2012-01-01

    Background Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers’ structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake. Methods This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers. Results Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to homogeneous distribution in the cytoplasm; those with a lower hydrophilic-lipophilic balance value prefer to localize in the nucleus. Conclusion This Pluronic-polyethyleneimine system may be worth exploring as components in the cationic copolymers as the DNA or small interfering RNA/microRNA delivery system in the near future. PMID:22403492

  16. Necroptosis: Mechanisms and Relevance to Disease

    PubMed Central

    Galluzzi, Lorenzo; Kepp, Oliver; Chan, Francis Ka-Ming; Kroemer, Guido

    2018-01-01

    Necroptosis is a form of regulated cell death that critically depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and generally manifests with morphological features of necrosis. The molecular mechanisms that underlie distinct instances of necroptosis have just begun to emerge. Nonetheless, it has already been shown that necroptosis contributes to cellular demise in various pathophysiological conditions, including viral infection, acute kidney injury, and cardiac ischemia/reperfusion. Moreover, human tumors appear to obtain an advantage from the downregulation of key components of the molecular machinery for necroptosis. Although such an advantage may stem from an increased resistance to adverse microenvironmental conditions, accumulating evidence indicates that necroptosis-deficient cancer cells are poorly immunogenic and hence escape natural and therapy-elicited immunosurveillance. Here, we discuss the molecular mechanisms and relevance to disease of necroptosis. PMID:27959630

  17. Molecular aspects of eye evolution and development: from the origin of retinal cells to the future of regenerative medicine.

    PubMed

    Ohuchi, Hideyo

    2013-01-01

    A central issue of evolutionary developmental biology is how the eye is diverged morphologically and functionally. However, the unifying mechanisms or schemes that govern eye diversification remain unsolved. In this review, I first introduce the concept of evolutionary developmental biology of the eye with a focus on photoreception, the fundamental property of retinal cells. Second, I summarize the early development of vertebrate eyes and the role of a homeobox gene, Lhx1, in subdivision of the retina into 2 domains, the neural retina and retinal pigmented epithelium of the optic primordium. The 2 retinal domains are essential components of the eye as they are found in such prototypic eyes as the extant planarian eye. Finally, I propose the presence of novel retinal cell subtypes with photosensory functions based on our recent work on atypical photopigments (opsins) in vertebrates. Since human diseases are attributable to the aberration of various types of cells due to alterations in gene expression, understanding the precise mechanisms of cellular diversification and unraveling the molecular profiles of cellular subtypes are essential to future regenerative medicine.

  18. Clinical, Cellular, and Molecular Aspects in the Pathophysiology of Rosacea

    PubMed Central

    Steinhoff, Martin; Buddenkotte, Jörg; Aubert, Jerome; Sulk, Mathias; Novak, Pawel; Schwab, Verena D.; Mess, Christian; Cevikbas, Ferda; Rivier, Michel; Carlavan, Isabelle; Déret, Sophie; Rosignoli, Carine; Metze, Dieter; Luger, Thomas A.; Voegel, Johannes J.

    2013-01-01

    Rosacea is a chronic inflammatory skin disease of unknown etiology. Although described centuries ago, the pathophysiology of this disease is still poorly understood. Epidemiological studies indicate a genetic component, but a rosacea gene has not been identified yet. Four subtypes and several variants of rosacea have been described. It is still unclear whether these subtypes represent a “developmental march” of different stages or are merely part of a syndrome that develops independently but overlaps clinically. Clinical and histopathological characteristics of rosacea make it a fascinating “human disease model” for learning about the connection between the cutaneous vascular, nervous, and immune systems. Innate immune mechanisms and dysregulation of the neurovascular system are involved in rosacea initiation and perpetuation, although the complex network of primary induction and secondary reaction of neuroimmune communication is still unclear. Later, rosacea may result in fibrotic facial changes, suggesting a strong connection between chronic inflammatory processes and skin fibrosis development. This review highlights recent molecular (gene array) and cellular findings and aims to integrate the different body defense mechanisms into a modern concept of rosacea pathophysiology. PMID:22076321

  19. In silico evidence for sequence-dependent nucleosome sliding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lequieu, Joshua; Schwartz, David C.; de Pablo, Juan J.

    Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nudeosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces andmore » the corresponding dynamics of nudeosome repositioning. The mechanism of nudeosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.« less

  20. Pathogenesis of leptospirosis: cellular and molecular aspects.

    PubMed

    Adler, Ben

    2014-08-27

    Leptospirosis is arguably the most widespread zoonosis; it is also a major cause of economic loss in production animals worldwide. At the level of the host animal or human, the progression of infection and the onset of disease are well documented. However, the mechanisms of pathogenesis at the cellular and molecular level remain poorly understood, mainly as a result of the lack of modern genetic tools for mutagenesis of pathogenic Leptospira spp. The recent development of transposon mutagenesis and the construction of a very small number of directed leptospiral mutants have identified a limited number of essential virulence factors. Perhaps surprisingly, many leptospiral proteins with characteristics consistent with a role in virulence have been shown to not be required for virulence in animal models, consistent with a high degree of functional redundancy in pathogenic Leptospira. A large number of putative adhesins has been reported in Leptospira, which interact with a range of host tissue components; however, almost none of these have been genetically confirmed as having an essential role in pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. 75 FR 994 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ..., Genomes, and Genetics Integrated Review Group; Molecular Genetics C Study Section. Date: February 4-5...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neural Oxidative Metabolism [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review...

  2. Learning and evolution in bacterial taxis: an operational amplifier circuit modeling the computational dynamics of the prokaryotic 'two component system' protein network.

    PubMed

    Di Paola, Vieri; Marijuán, Pedro C; Lahoz-Beltra, Rafael

    2004-01-01

    Adaptive behavior in unicellular organisms (i.e., bacteria) depends on highly organized networks of proteins governing purposefully the myriad of molecular processes occurring within the cellular system. For instance, bacteria are able to explore the environment within which they develop by utilizing the motility of their flagellar system as well as a sophisticated biochemical navigation system that samples the environmental conditions surrounding the cell, searching for nutrients or moving away from toxic substances or dangerous physical conditions. In this paper we discuss how proteins of the intervening signal transduction network could be modeled as artificial neurons, simulating the dynamical aspects of the bacterial taxis. The model is based on the assumption that, in some important aspects, proteins can be considered as processing elements or McCulloch-Pitts artificial neurons that transfer and process information from the bacterium's membrane surface to the flagellar motor. This simulation of bacterial taxis has been carried out on a hardware realization of a McCulloch-Pitts artificial neuron using an operational amplifier. Based on the behavior of the operational amplifier we produce a model of the interaction between CheY and FliM, elements of the prokaryotic two component system controlling chemotaxis, as well as a simulation of learning and evolution processes in bacterial taxis. On the one side, our simulation results indicate that, computationally, these protein 'switches' are similar to McCulloch-Pitts artificial neurons, suggesting a bridge between evolution and learning in dynamical systems at cellular and molecular levels and the evolutive hardware approach. On the other side, important protein 'tactilizing' properties are not tapped by the model, and this suggests further complexity steps to explore in the approach to biological molecular computing.

  3. Inflammation and regeneration in the dentin-pulp complex: a double-edged sword.

    PubMed

    Cooper, Paul R; Holder, Michelle J; Smith, Anthony J

    2014-04-01

    Dental tissue infection and disease result in acute and chronic activation of the innate immune response, which is mediated by molecular and cellular signaling. Different cell types within the dentin-pulp complex are able to detect invading bacteria at all stages of the infection. Indeed, at relatively early disease stages, odontoblasts will respond to bacterial components, and as the disease progresses, core pulpal cells including fibroblasts, stems cells, endothelial cells, and immune cells will become involved. Pattern recognition receptors, such as Toll-like receptors expressed on these cell types, are responsible for detecting bacterial components, and their ligand binding leads to the activation of the nuclear factor-kappa B and p38 mitogen-activated protein (MAP) kinase intracellular signaling cascades. Subsequent nuclear translocation of the transcription factor subunits from these pathways will lead to proinflammatory mediator expression, including increases in cytokines and chemokines, which trigger host cellular defense mechanisms. The complex molecular signaling will result in the recruitment of immune system cells targeted at combating the invading microbes; however, the trafficking and antibacterial activity of these cells can lead to collateral tissue damage. Recent evidence suggests that if inflammation is resolved relatively low levels of proinflammatory mediators may promote tissue repair, whereas if chronic inflammation ensues repair mechanisms become inhibited. Thus, the effects of mediators are temporal context dependent. Although containment and removal of the infection are keys to enable dental tissue repair, it is feasible that the development of anti-inflammatory and immunomodulatory approaches, based on molecular, epigenetic, and photobiomodulatory technologies, may also be beneficial for future endodontic treatments. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  4. Advances in magnetic tweezers for single molecule and cell biophysics.

    PubMed

    Kilinc, Devrim; Lee, Gil U

    2014-01-01

    Magnetic tweezers (MTW) enable highly accurate forces to be transduced to molecules to study mechanotransduction at the molecular or cellular level. We review recent MTW studies in single molecule and cell biophysics that demonstrate the flexibility of this technique. We also discuss technical advances in the method on several fronts, i.e., from novel approaches for the measurement of torque to multiplexed biophysical assays. Finally, we describe multi-component nanorods with enhanced optical and magnetic properties and discuss their potential as future MTW probes.

  5. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    PubMed

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  6. The role of the cell wall in fungal pathogenesis

    PubMed Central

    Arana, David M.; Prieto, Daniel; Román, Elvira; Nombela, César; Alonso‐Monge, Rebeca; Pla, Jesús

    2009-01-01

    Summary Fungal infections are a serious health problem. In recent years, basic research is focusing on the identification of fungal virulence factors as promising targets for the development of novel antifungals. The wall, as the most external cellular component, plays a crucial role in the interaction with host cells mediating processes such as adhesion or phagocytosis that are essential during infection. Specific components of the cell wall (called PAMPs) interact with specific receptors in the immune cell (called PRRs), triggering responses whose molecular mechanisms are being elucidated. We review here the main structural carbohydrate components of the fungal wall (glucan, mannan and chitin), how their biogenesis takes place in fungi and the specific receptors that they interact with. Different model fungal pathogens are chosen to illustrate the functional consequences of this interaction. Finally, the identification of the key components will have important consequences in the future and will allow better approaches to treat fungal infections. PMID:21261926

  7. 77 FR 33474 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Translational Integrated Review Group; Cancer Molecular Pathobiology Study Section. Date: June 25-26, 2012. Time... 7818, Bethesda, MD 20892, 301-435- 1198, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of...

  8. 75 FR 25273 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Genetics Integrated Review Group, Molecular Genetics C Study Section. Date: June 3-4, 2010. Time: 8 a.m. to... Committee: Oncology 1-Basic Translational Integrated Review Group, Cancer Molecular Pathobiology Study... Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Cellular and...

  9. Selective Destruction of Protein Function by Chromophore-Assisted Laser Inactivation

    NASA Astrophysics Data System (ADS)

    Jay, Daniel G.

    1988-08-01

    Chromophore-assisted laser inactivation of protein function has been achieved. After a protein binds a specific ligand or antibody conjugated with malachite green (C.I. 42000), it is selectively inactivated by laser irradiation at a wavelength of light absorbed by the dye but not significantly absorbed by cellular components. Ligand-bound proteins in solution and on the surfaces of cells can be denatured without other proteins in the same samples being affected. Chromophore-assisted laser inactivation can be used to study cell surface phenomena by inactivating the functions of single proteins on living cells, a molecular extension of cellular laser ablation. It has an advantage over genetics and the use of specific inhibitors in that the protein function of a single cell within the organism can be inactivated by focusing the laser beam.

  10. Time scale of diffusion in molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  11. Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness

    NASA Astrophysics Data System (ADS)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2018-03-01

    Explanation of exponential growth in self-reproduction is an important step toward elucidation of the origins of life because optimization of the growth potential across rounds of selection is necessary for Darwinian evolution. To produce another copy with approximately the same composition, the exponential growth rates for all components have to be equal. How such balanced growth is achieved, however, is not a trivial question, because this kind of growth requires orchestrated replication of the components in stochastic and nonlinear catalytic reactions. By considering a mutually catalyzing reaction in two- and three-dimensional lattices, as represented by a cellular automaton model, we show that self-reproduction with exponential growth is possible only when the replication and degradation of one molecular species is much slower than those of the others, i.e., when there is a minority molecule. Here, the synergetic effect of molecular discreteness and crowding is necessary to produce the exponential growth. Otherwise, the growth curves show superexponential growth because of nonlinearity of the catalytic reactions or subexponential growth due to replication inhibition by overcrowding of molecules. Our study emphasizes that the minority molecular species in a catalytic reaction network is necessary for exponential growth at the primitive stage of life.

  12. Molecular Analysis of Mixed Endometrioid and Serous Adenocarcinoma of the Endometrium

    PubMed Central

    Lawrenson, Kate; Pakzamir, Elham; Liu, Biao; Lee, Janet M.; Delgado, Melissa K.; Duncan, Kara; Gayther, Simon A.; Liu, Song; Roman, Lynda; Mhawech-Fauceglia, Paulette

    2015-01-01

    Background The molecular biology and cellular origins of mixed type endometrial carcinomas (MT-ECs) are poorly understood, and a Type II component of 10 percent or less may confer poorer prognoses. Methodology/Principal Findings We studied 10 cases of MT-EC (containing endometrioid and serous differentiation), 5 pure low-grade endometrioid adenocarcinoma (EAC) and 5 pure uterine serous carcinoma (USC). Endometrioid and serous components of the MT-ECs were macrodissected and the expression of 60 candidate genes compared between MT-EC, pure USC and pure EAC. We found that four genes were differentially expressed when MT-ECs were compared to pure low-grade EAC: CDKN2A (P = 0.006), H19 (P = 0.010), HOMER2 (P = 0.009) and TNNT1 (P = 0.006). Also while we found that even though MT-ECs closely resembled the molecular profiles of pure USCs, they also exhibit lower expression of PAX8 compared to all pure cases combined (P = 0.035). Conclusion Our data suggest that MT-EC exhibits the closest molecular and epidemiological similarities to pure USC and supports clinical observations that suggest patients with MT-EC should receive the same treatment as patients with pure serous carcinoma. Novel specific markers of MT-EC could be of diagnostic utility and could represent novel therapeutic targets in the future. PMID:26132201

  13. Discrete dynamic modeling of cellular signaling networks.

    PubMed

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  14. The successes and future prospects of the linear antisense RNA amplification methodology.

    PubMed

    Li, Jifen; Eberwine, James

    2018-05-01

    It has been over a quarter of a century since the introduction of the linear RNA amplification methodology known as antisense RNA (aRNA) amplification. Whereas most molecular biology techniques are rapidly replaced owing to the fast-moving nature of development in the field, the aRNA procedure has become a base that can be built upon through varied uses of the technology. The technique was originally developed to assess RNA populations from small amounts of starting material, including single cells, but over time its use has evolved to include the detection of various cellular entities such as proteins, RNA-binding-protein-associated cargoes, and genomic DNA. In this Perspective we detail the linear aRNA amplification procedure and its use in assessing various components of a cell's chemical phenotype. This procedure is particularly useful in efforts to multiplex the simultaneous detection of various cellular processes. These efforts are necessary to identify the quantitative chemical phenotype of cells that underlies cellular function.

  15. Where's the P in Plankton? Phosphorus Allocation to DNA across Diverse Marine Picoplankton

    NASA Astrophysics Data System (ADS)

    Raney, S. E.; Popendorf, K.; Duhamel, S.

    2016-02-01

    Phosphorus (P) is a critical nutrient for survival, particularly in oligotrophic environments such as the Sargasso Sea. Microbes require phosphorus to build and maintain cellular components, including DNA, RNA, and lipids. We expect variation across microbes in the fraction of cellular P allocated to each of these components. We hypothesized that a high but variable percentage of cellular P will be allocated towards DNA. Studying cellular P allocation can offer insight into the role of different microbes in phosphorus cycling in low-P regions like the Sargasso Sea. To assess allocation of P to DNA, we first tested the efficiency of different DNA extraction methods and then analyzed the amount of extracted DNA from different microbial groups. We performed DNA extractions using four different extraction kits and determined Promega Reliaprep Blood gDNA Miniprep System to be the most efficient. We extracted DNA from cultured picoplankton which are representative of the most abundant species in the Sargasso Sea: Synechococcus (WH8102), Prochlorococcus (MED4 and MIT9301), and heterotrophic bacteria (HTCC2516 and HTCC2601). We found that the percentage of P allocated towards DNA varies across microbial species and across strains within the same genera. Additionally, we estimated the relative number of copies of the genome per cell, and found that more copies of the genome per cell, not necessarily a larger genome size, may correlate with allocating a larger percentage of cellular P towards DNA. By understanding how phosphorus cycling works on the molecular level in different species of picoplankton, we can develop a greater understanding of the role of these picoplankton in phosphorus cycling as a whole in the Sargasso Sea.

  16. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    ERIC Educational Resources Information Center

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  17. 77 FR 52751 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Molecular Neuropharmacology and Signaling Study Section. Date: September 24-25, 2012. Time: 8 a.m... 7770, Bethesda, MD 20892, (301) 435- 0684, [email protected] . Name of Committee: Molecular, Cellular...

  18. MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems

    PubMed Central

    Abby, Sophie S.; Néron, Bertrand; Ménager, Hervé; Touchon, Marie; Rocha, Eduardo P. C.

    2014-01-01

    Motivation Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose. Results Macromolecular System Finder (MacSyFinder) provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway) including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM) protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate “Cas-finder” using publicly available protein profiles. Availability and Implementation MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher). It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The “Cas-finder” (models and HMM profiles) is distributed as a compressed tarball archive as Supporting Information. PMID:25330359

  19. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    NASA Astrophysics Data System (ADS)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of these two sets of states. Mapping genome-scale protein binding data using pseudoinverse projection onto patterns of RNA expression data that had been extracted by SVD and GSVD, a novel correlation between DNA replication initiation and RNA transcription during the cell cycle in yeast, that might be due to a previously unknown mechanism of regulation, is predicted. (1) Alter & Golub, Proc. Natl. Acad. Sci. USA 101, 16577 (2004). (2) Alter, Golub, Brown & Botstein, Miami Nat. Biotechnol. Winter Symp. 2004 (www.med.miami.edu/mnbws/alter-.pdf)

  20. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques

    PubMed Central

    Patrizio, Angela; Specht, Christian G.

    2016-01-01

    Abstract. The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891

  1. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques.

    PubMed

    Patrizio, Angela; Specht, Christian G

    2016-10-01

    The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.

  2. A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin

    PubMed Central

    Ernst, Katharina; Liebscher, Markus; Mathea, Sebastian; Granzhan, Anton; Schmid, Johannes; Popoff, Michel R.; Ihmels, Heiko; Barth, Holger; Schiene-Fischer, Cordelia

    2016-01-01

    Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins. PMID:26839186

  3. Hydrogen gas inhalation protects against cutaneous ischaemia/reperfusion injury in a mouse model of pressure ulcer.

    PubMed

    Fang, Wei; Wang, Guizhen; Tang, Luyan; Su, Huilin; Chen, Huyan; Liao, Wanqing; Xu, Jinhua

    2018-06-19

    Pressure ulcer formation depends on various factors among which repetitive ischaemia/reperfusion(I/R) injury plays a vital role. Molecular hydrogen (H 2 ) was reported to have protective effects on I/R injuries of various internal organs. In this study, we investigated the effects of H 2 inhalation on pressure ulcer and the underlying mechanisms. H 2 inhalation significantly reduced wound area, 8-oxo-dG level (oxidative DNA damage) and cell apoptosis rates in skin lesions. H 2 remarkably decreased ROS accumulation and enhanced antioxidant enzymes activities by up-regulating expression of Nrf2 and its downstream components in wound tissue and/or H 2 O 2 -treated endothelia. Meanwhile, H 2 inhibited the overexpression of MCP-1, E-selectin, P-selectin and ICAM-1 in oxidant-induced endothelia and reduced inflammatory cells infiltration and proinflammatory cytokines (TNF-α, IL-1, IL-6 and IL-8) production in the wound. Furthermore, H 2 promoted the expression of pro-healing factors (IL-22, TGF-β, VEGF and IGF1) and inhibited the production of MMP9 in wound tissue in parallel with acceleration of cutaneous collagen synthesis. Taken together, these data indicated that H 2 inhalation suppressed the formation of pressure ulcer in a mouse model. Molecular hydrogen has potentials as a novel and alternative therapy for severe pressure ulcer. The therapeutic effects of molecular hydrogen might be related to its antioxidant, anti-inflammatory, pro-healing actions. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Kuru

    MedlinePlus

    ... The NINDS funds research to better understand the genetic, molecular, and cellular mechanisms that underlie the TSE diseases. ... The NINDS funds research to better understand the genetic, molecular, and cellular mechanisms that underlie the TSE diseases. ...

  5. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain.

    PubMed

    Santoro, Antonietta; Spinelli, Chiara Carmela; Martucciello, Stefania; Nori, Stefania Lucia; Capunzo, Mario; Puca, Annibale Alessandro; Ciaglia, Elena

    2018-03-01

    Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases. ©2018 Society for Leukocyte Biology.

  6. Comparison of the adolescent and adult mouse prefrontal cortex proteome

    PubMed Central

    Small, Amanda T.; Spanos, Marina; Burrus, Brainard M.

    2017-01-01

    Adolescence is a developmental period characterized by unique behavioral phenotypes (increased novelty seeking, risk taking, sociability and impulsivity) and increased risk for destructive behaviors, impaired decision making and psychiatric illness. Adaptive and maladaptive adolescent traits have been associated with development of the medial prefrontal cortex (mPFC), a brain region that mediates regulatory control of behavior. However, the molecular changes that underlie brain development and behavioral vulnerability have not been fully characterized. Using high-throughput 2D DIGE spot profiling with identification by MALDI-TOF mass spectrometry, we identified 62 spots in the PFC that exhibited age-dependent differences in expression. Identified proteins were associated with diverse cellular functions, including intracellular signaling, synaptic plasticity, cellular organization and metabolism. Separate Western blot analyses confirmed age-related changes in DPYSL2, DNM1, STXBP1 and CFL1 in the mPFC and expanded these findings to the dorsal striatum, nucleus accumbens, motor cortex, amygdala and ventral tegmental area. Ingenuity Pathway Analysis (IPA) identified functional interaction networks enriched with proteins identified in the proteomics screen, linking age-related alterations in protein expression to cellular assembly and development, cell signaling and behavior, and psychiatric illness. These results provide insight into potential molecular components of adolescent cortical development, implicating structural processes that begin during embryonic development as well as plastic adaptations in signaling that may work in concert to bring the cortex, and other brain regions, into maturity. PMID:28570644

  7. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease

    PubMed Central

    Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.

    2016-01-01

    Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  9. Iron Homeostasis in Peripheral Nervous System, Still a Black Box?

    PubMed Central

    Taveggia, Carla

    2014-01-01

    Abstract Significance: Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. Recent Advances: During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. Critical Issues: However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. Future Directions: To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood–nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies. Antioxid. Redox Signal. 21, 634–648. PMID:24409826

  10. 78 FR 57169 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ..., Molecular and Integrative Reproduction Study Section. Date: October 9, 2013. Time: 8:00 a.m. to 5:00 p.m...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neurogenesis and Cell Fate [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review...

  11. Seth M. Noone | NREL

    Science.gov Websites

    Education M.S., Biomedical Basic Science, Department of Biochemistry and Molecular Genetics, University of Interaction with Histones H3 and H4," Molecular and Cellular Biology (2013) "The Lysine 48 and Cerevisiae," Molecular and Cellular Biology (2007) View all NREL Publications for Seth M. Noone

  12. 75 FR 25275 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ...; Molecular Genetics B Study Section. Date: June 1-2, 2010. Time: 8 a.m. to 5 p.m. Agenda: To review and...-435- 1180, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date...

  13. Abdominal aortic aneurysms: an autoimmune disease?

    PubMed

    Jagadesham, Vamshi P; Scott, D Julian A; Carding, Simon R

    2008-12-01

    Abdominal aortic aneurysms (AAAs) are a multifactorial degenerative vascular disorder. One of the defining features of the pathophysiology of aneurysmal disease is inflammation. Recent developments in vascular and molecular cell biology have increased our knowledge on the role of the adaptive and innate immune systems in the initiation and propagation of the inflammatory response in aortic tissue. AAAs share many features of autoimmune disease, including genetic predisposition, organ specificity and chronic inflammation. Here, this evidence is used to propose that the chronic inflammation observed in AAAs is a consequence of a dysregulated autoimmune response against autologous components of the aortic wall that persists inappropriately. Identification of the molecular and cellular targets involved in AAA formation will allow the development of therapeutic agents for the treatment of AAA.

  14. The neurogenetic frontier--lessons from misbehaving zebrafish.

    PubMed

    Burgess, Harold A; Granato, Michael

    2008-11-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.

  15. The neurogenetic frontier—lessons from misbehaving zebrafish

    PubMed Central

    Granato, Michael

    2008-01-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206

  16. Molecular response of canola to salt stress: insights on tolerance mechanisms.

    PubMed

    Shokri-Gharelo, Reza; Noparvar, Pouya Motie

    2018-01-01

    Canola ( Brassica napus L. ) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as 'salt-tolerant', plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.

  17. Immune Ecosystem of Virus-Infected Host Tissues.

    PubMed

    Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long

    2018-05-06

    Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.

  18. Cellular and Molecular Mechanisms of REM Sleep Homeostatic Drive: A Plausible Component for Behavioral Plasticity

    PubMed Central

    Datta, Subimal; Oliver, Michael D.

    2017-01-01

    Homeostatic regulation of REM sleep drive, as measured by an increase in the number of REM sleep transitions, plays a key role in neuronal and behavioral plasticity (i.e., learning and memory). Deficits in REM sleep homeostatic drive (RSHD) are implicated in the development of many neuropsychiatric disorders. Yet, the cellular and molecular mechanisms underlying this RSHD remain to be incomplete. To further our understanding of this mechanism, the current study was performed on freely moving rats to test a hypothesis that a positive interaction between extracellular-signal-regulated kinase 1 and 2 (ERK1/2) activity and brain-derived neurotrophic factor (BDNF) signaling in the pedunculopontine tegmentum (PPT) is a causal factor for the development of RSHD. Behavioral results of this study demonstrated that a short period (<90 min) of selective REM sleep restriction (RSR) exhibited a strong RSHD. Molecular analyses revealed that this increased RSHD increased phosphorylation and activation of ERK1/2 and BDNF expression in the PPT. Additionally, pharmacological results demonstrated that the application of the ERK1/2 activation inhibitor U0126 into the PPT prevented RSHD and suppressed BDNF expression in the PPT. These results, for the first time, suggest that the positive interaction between ERK1/2 and BDNF in the PPT is a casual factor for the development of RSHD. These findings provide a novel direction in understanding how RSHD-associated specific molecular changes can facilitate neuronal plasticity and memory processing. PMID:28959190

  19. Ayahuasca and cancer treatment.

    PubMed

    Schenberg, Eduardo E

    2013-01-01

    Comprehensively review the evidence regarding the use of ayahuasca, an Amerindian medicine traditionally used to treat many different illnesses and diseases, to treat some types of cancer. An in-depth review of the literature was conducted using PubMed, books, institutional magazines, conferences and online texts in nonprofessional sources regarding the biomedical knowledge about ayahuasca in general with a specific focus in its possible relations to the treatment of cancer. At least nine case reports regarding the use of ayahuasca in the treatment of prostate, brain, ovarian, uterine, stomach, breast, and colon cancers were found. Several of these were considered improvements, one case was considered worse, and one case was rated as difficult to evaluate. A theoretical model is presented which explains these effects at the cellular, molecular, and psychosocial levels. Particular attention is given to ayahuasca's pharmacological effects through the activity of N,N-dimethyltryptamine at intracellular sigma-1 receptors. The effects of other components of ayahuasca, such as harmine, tetrahydroharmine, and harmaline, are also considered. The proposed model, based on the molecular and cellular biology of ayahuasca's known active components and the available clinical reports, suggests that these accounts may have consistent biological underpinnings. Further study of ayahuasca's possible antitumor effects is important because cancer patients continue to seek out this traditional medicine. Consequently, based on the social and anthropological observations of the use of this brew, suggestions are provided for further research into the safety and efficacy of ayahuasca as a possible medicinal aid in the treatment of cancer.

  20. Dedifferentiated Liposarcoma Masquerading as Rhabdomyosarcoma.

    PubMed

    Kobayashi, Anna; Hirose, Takanori; Kudo, Eiji; Kawashita, Youichiro; Yagi, Toshiyuki

    We present a rare case of retroperitoneal dedifferentiated liposarcoma (DDLPS) masquerading as rhabdomyosarcoma. The patient was a 74-year-old man, complaining a loss of appetite. Abdominal computed tomography revealed a retroperitoneal mass, 10 cm in diameter, between the liver and the right adrenal gland. The tumor was resected and histologically diagnosed as conventional DDLPS, in which dedifferentiated component was highly cellular and composed of pleomorphic anaplastic cells. After 3 years, the tumor recurred in the right retroperitoneal space. The recurrent tumor consisted of 2 components: lipogenic and nonlipogenic. The latter differ from the dedifferentiated component of the primary tumor. The tumor cells were small, round to ovoid cells with monomorphous, round, hyperchromatic nuclei, and scant cytoplasm. Interestingly, they were diffusely positive for myogenin and desmin. To rule out the possibility of the second primary, we performed fluorescence in situ hybridization to detect FOXO1 rearrangement. We failed to demonstrate splits of the probes. In contrast, high-level amplification of MDM2 was detected by dual-color in situ hybridization. Given the morphologic and molecular findings, the neoplasm was identified as a peculiar DDLPS mimicking rhabdomyosarcoma. Retroperitoneal rhabdomyosarcoma-like tumors of adults, therefore, should be distinguished carefully from DDLPS. It could be challenging when lipogenic component was absent, but in situ molecular analyses can be helpful.

  1. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Judith

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genomemore » organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.« less

  2. Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training

    PubMed Central

    Zhang, Ying

    2018-01-01

    High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training. PMID:29849885

  3. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    PubMed

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Structure and function of archaeal prefoldin, a co-chaperone of group II chaperonin.

    PubMed

    Ohtaki, Akashi; Noguchi, Keiichi; Yohda, Masafumi

    2010-01-01

    Molecular chaperones are key cellular components involved in the maintenance of protein homeostasis and other unrelated functions. Prefoldin is a chaperone that acts as a co-factor of group II chaperonins in eukaryotes and archaea. It assists proper folding of protein by capturing nonnative proteins and delivering it to the group II chaperonin. Eukaryotic prefoldin is a multiple subunit complex composed of six different polypeptide chains. Archaeal prefoldin, on the other hand, is a heterohexameric complex composed of two alpha and four beta subunits, and forms a double beta barrel assembly with six long coiled coils protruding from it like a jellyfish with six tentacles. Based on the structural information of the archaeal prefoldin, substrate recognition and prefoldin-chaperonin binding mechanisms have been investigated. In this paper, we review a series of studies on the molecular mechanisms of archaeal PFD function. Particular emphasis will be placed on the molecular structures revealed by X-ray crystallography and molecular dynamics induced by binding to nonnative protein substrates.

  5. Modeling biochemical pathways in the gene ontology

    DOE PAGES

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; ...

    2016-09-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less

  6. Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program

    ERIC Educational Resources Information Center

    O'Connor, Kim C.

    2005-01-01

    There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…

  7. 76 FR 26736 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... due to the timing limitations imposed by the review and funding cycle. Name of Committee: Molecular....gov . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Cellular and Molecular Biology of Glia Study Section. Date: June 2-3, 2011. Time: 8 a.m. to 4 p.m. Agenda...

  8. 78 FR 59361 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Review Group; Molecular Genetics A Study Section. Date: October 21-22, 2013. Time: 8:30 a.m. to 1:30 p.m...-435- 0681, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: October 21, 2013. Time...

  9. Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals.

    PubMed

    Kulski, Jerzy K; Kenworthy, William; Bellgard, Matthew; Taplin, Ross; Okamoto, Koichi; Oka, Akira; Mabuchi, Tomotaka; Ozawa, Akira; Tamiya, Gen; Inoko, Hidetoshi

    2005-12-01

    Gene expression profiling was performed on biopsies of affected and unaffected psoriatic skin and normal skin from seven Japanese patients to obtain insights into the pathways that control this disease. HUG95A Affymetrix DNA chips that contained oligonucleotide arrays of approximately 12,000 well-characterized human genes were used in the study. The statistical analysis of the Affymetrix data, based on the ranking of the Student t-test statistic, revealed a complex regulation of molecular stress and immune gene responses. The majority of the 266 induced genes in affected and unaffected psoriatic skin were involved with interferon mediation, immunity, cell adhesion, cytoskeleton restructuring, protein trafficking and degradation, RNA regulation and degradation, signalling transduction, apoptosis and atypical epidermal cellular proliferation and differentiation. The disturbances in the normal protein degradation equilibrium of skin were reflected by the significant increase in the gene expression of various protease inhibitors and proteinases, including the induced components of the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway that is involved with peptide processing and presentation to T cells. Some of the up-regulated genes, such as TGM1, IVL, FABP5, CSTA and SPRR, are well-known psoriatic markers involved in atypical epidermal cellular organization and differentiation. In the comparison between the affected and unaffected psoriatic skin, the transcription factor JUNB was found at the top of the statistical rankings for the up-regulated genes in affected skin, suggesting that it has an important but as yet undefined role in psoriasis. Our gene expression data and analysis suggest that psoriasis is a chronic interferon- and T-cell-mediated immune disease of the skin where the imbalance in epidermal cellular structure, growth and differentiation arises from the molecular antiviral stress signals initiating inappropriate immune responses.

  10. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology.

    PubMed

    Rajagopal, Vijay; Holmes, William R; Lee, Peter Vee Sin

    2018-03-01

    Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models. © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  11. Computational modeling of single‐cell mechanics and cytoskeletal mechanobiology

    PubMed Central

    Holmes, William R.; Lee, Peter Vee Sin

    2017-01-01

    Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state‐of‐the‐art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed‐forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: 1Models of Systems Properties and Processes > Mechanistic Models2Physiology > Mammalian Physiology in Health and Disease3Models of Systems Properties and Processes > Cellular Models PMID:29195023

  12. Molecular and cellular heterogeneity: the hallmark of glioblastoma.

    PubMed

    Aum, Diane J; Kim, David H; Beaumont, Thomas L; Leuthardt, Eric C; Dunn, Gavin P; Kim, Albert H

    2014-12-01

    There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed "glioblastoma cancer stem cells" or "tumor-initiating cells" has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.

  13. Shc and the mechanotransduction of cellular anchorage and metastasis.

    PubMed

    Terada, Lance S

    2017-02-17

    Tissue cells continually monitor anchorage conditions by gauging the physical properties of their underlying matrix and surrounding environment. The Rho and Ras GTPases are essential components of these mechanosensory pathways. These molecular switches control both cytoskeletal as well as cell fate responses to anchorage conditions and are thus critical to our understanding of how cells respond to their physical environment and, by extension, how malignant cells gainsay these regulatory pathways. Recent studies indicate that 2 proteins produced by the SHC1 gene, thought for the most part to functionally oppose each other, collaborate in their ability to respond to mechanical force by initiating respective Rho and Ras signals. In this review, we focus on the coupling of Shc and GTPases in the cellular response to mechanical anchorage signals, with emphasis on its relevance for cancer.

  14. Histone chaperones: an escort network regulating histone traffic.

    PubMed

    De Koning, Leanne; Corpet, Armelle; Haber, James E; Almouzni, Geneviève

    2007-11-01

    In eukaryotes, DNA is organized into chromatin in a dynamic manner that enables it to be accessed for processes such as transcription and repair. Histones, the chief protein component of chromatin, must be assembled, replaced or exchanged to preserve or change this organization according to cellular needs. Histone chaperones are key actors during histone metabolism. Here we classify known histone chaperones and discuss how they build a network to escort histone proteins. Molecular interactions with histones and their potential specificity or redundancy are also discussed in light of chaperone structural properties. The multiplicity of histone chaperone partners, including histone modifiers, nucleosome remodelers and cell-cycle regulators, is relevant to their coordination with key cellular processes. Given the current interest in chromatin as a source of epigenetic marks, we address the potential contributions of histone chaperones to epigenetic memory and genome stability.

  15. Analysis of PAMP-Triggered ROS Burst in Plant Immunity.

    PubMed

    Sang, Yuying; Macho, Alberto P

    2017-01-01

    The plant perception of pathogen-associated molecular patterns triggers a plethora of cellular immune responses. One of these responses is a rapid and transient burst of reactive oxygen species (ROS) mediated by plasma membrane-localized NADPH oxidases. The ROS burst requires a functional receptor complex and the contribution of several additional regulatory components. In laboratory conditions, the ROS burst can be detected a few minutes after the treatment with an immunogenic microbial elicitor. For these reasons, the elicitor-triggered ROS burst has been often exploited as readout to probe the contribution of plant components to early immune responses. Here, we describe a detailed protocol for the measurement of elicitor-triggered ROS burst in a simple, fast, and easy manner.

  16. Identification of a new protein in the centrosome-like "atractophore" of Trichomonas vaginalis.

    PubMed

    Bricheux, Geneviève; Coffe, Gérard; Brugerolle, Guy

    2007-06-01

    The human parasite Trichomonas vaginalis has specific structural bodies, atractophores, associated at one end to the kinetosomes and at the other to the spindle during division. A monoclonal antibody specific for a component of this structure was obtained. It recognizes a protein with a predicted molecular mass of 477 kDa. Sequence analysis of this protein shows that P477 belongs to the family of large coiled-coil proteins, sharing a highly versatile protein folding motif adaptable to many biological functions. P477-might act as an anchor to localize cellular activities and components to the golgi centrosomal region. It may represent a new class of structural proteins, since similar proteins were found in many protozoans.

  17. Kinetic Monte Carlo Method for Rule-based Modeling of Biochemical Networks

    PubMed Central

    Yang, Jin; Monine, Michael I.; Faeder, James R.; Hlavacek, William S.

    2009-01-01

    We present a kinetic Monte Carlo method for simulating chemical transformations specified by reaction rules, which can be viewed as generators of chemical reactions, or equivalently, definitions of reaction classes. A rule identifies the molecular components involved in a transformation, how these components change, conditions that affect whether a transformation occurs, and a rate law. The computational cost of the method, unlike conventional simulation approaches, is independent of the number of possible reactions, which need not be specified in advance or explicitly generated in a simulation. To demonstrate the method, we apply it to study the kinetics of multivalent ligand-receptor interactions. We expect the method will be useful for studying cellular signaling systems and other physical systems involving aggregation phenomena. PMID:18851068

  18. Evolutionary layering and the limits to cellular perfection

    PubMed Central

    Lynch, Michael

    2012-01-01

    Although observations from biochemistry and cell biology seemingly illustrate hundreds of examples of exquisite molecular adaptations, the fact that experimental manipulation can often result in improvements in cellular infrastructure raises the question as to what ultimately limits the level of molecular perfection achievable by natural selection. Here, it is argued that random genetic drift can impose a strong barrier to the advancement of molecular refinements by adaptive processes. Moreover, although substantial improvements in fitness may sometimes be accomplished via the emergence of novel cellular features that improve on previously established mechanisms, such advances are expected to often be transient, with overall fitness eventually returning to the level before incorporation of the genetic novelty. As a consequence of such changes, increased molecular/cellular complexity can arise by Darwinian processes, while yielding no long-term increase in adaptation and imposing increased energetic and mutational costs. PMID:23115338

  19. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    PubMed Central

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  20. Systems-Level Analysis of Innate Immunity

    PubMed Central

    Zak, Daniel E.; Tam, Vincent C.; Aderem, Alan

    2014-01-01

    Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology. PMID:24655298

  1. Abiotic and Biotic Stressors Causing Equivalent Mortality Induce Highly Variable Transcriptional Responses in the Soybean Aphid

    PubMed Central

    Enders, Laramy S.; Bickel, Ryan D.; Brisson, Jennifer A.; Heng-Moss, Tiffany M.; Siegfried, Blair D.; Zera, Anthony J.; Miller, Nicholas J.

    2014-01-01

    Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids. PMID:25538100

  2. Report on the Current Inventory of the Toolbox for Plant Cell Wall Analysis: Proteinaceous and Small Molecular Probes

    PubMed Central

    Rydahl, Maja G.; Hansen, Aleksander R.; Kračun, Stjepan K.; Mravec, Jozef

    2018-01-01

    Plant cell walls are highly complex structures composed of diverse classes of polysaccharides, proteoglycans, and polyphenolics, which have numerous roles throughout the life of a plant. Significant research efforts aim to understand the biology of this cellular organelle and to facilitate cell-wall-based industrial applications. To accomplish this, researchers need to be provided with a variety of sensitive and specific detection methods for separate cell wall components, and their various molecular characteristics in vitro as well as in situ. Cell wall component-directed molecular detection probes (in short: cell wall probes, CWPs) are an essential asset to the plant glycobiology toolbox. To date, a relatively large set of CWPs has been produced—mainly consisting of monoclonal antibodies, carbohydrate-binding modules, synthetic antibodies produced by phage display, and small molecular probes. In this review, we summarize the state-of-the-art knowledge about these CWPs; their classification and their advantages and disadvantages in different applications. In particular, we elaborate on the recent advances in non-conventional approaches to the generation of novel CWPs, and identify the remaining gaps in terms of target recognition. This report also highlights the addition of new “compartments” to the probing toolbox, which is filled with novel chemical biology tools, such as metabolic labeling reagents and oligosaccharide conjugates. In the end, we also forecast future developments in this dynamic field. PMID:29774041

  3. Calcitonin gene related family peptides: importance in normal placental and fetal development.

    PubMed

    Yallampalli, Chandra; Chauhan, Madhu; Endsley, Janice; Sathishkumar, Kunju

    2014-01-01

    Synchronized molecular and cellular events occur between the uterus and the implanting embryo to facilitate successful pregnancy outcome. Nevertheless, the molecular signaling network that coordinates strategies for successful decidualization, placentation and fetal growth are not well understood. The discovery of calcitonin/calcitonin gene-related peptides (CT/CGRP) highlighted new signaling mediators in various physiological processes, including reproduction. It is known that CGRP family peptides including CGRP, adrenomedulin and intermedin play regulatory functions during implantation, trophoblast proliferation and invasion, and fetal organogenesis. In addition, all the CGRP family peptides and their receptor components are found to be expressed in decidual, placental and fetal tissues. Additionally, plasma levels of peptides of the CGRP family were found to fluctuate during normal gestation and to induce placental cellular differentiation, proliferation, and critical hormone signaling. Moreover, aberrant signaling of these CGRP family peptides during gestation has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the CGRP family peptides in these critical processes is explored and discussed.

  4. Effect of the Addition of a Labile Gelatin Component on the Degradation and Solute Release Kinetics of a Stable PEG Hydrogel

    PubMed Central

    Waldeck, H.; Kao, W. J.

    2013-01-01

    Characterization of the degradation mechanisms and resulting products of biodegradable materials is critical in understanding the behavior of the material including solute transport and biological response. Previous mathematical analyses of a semi-interpenetrating network (sIPN) containing both labile gelatin and a stable cross-linked poly(ethylene glycol) (PEG) network found that diffusion-based models alone were unable to explain the release kinetics of solutes from the system. In this study, degradation of the sIPN and its effect on solute release and swelling kinetics were investigated. The kinetics of the primary mode of degradation, gelatin dissolution, was dependent on temperature, preparation methods, PEGdA and gelatin concentration, and the weight ratio between the gelatin and PEG. The gelatin dissolution rate positively correlated with both matrix swelling and the release kinetics of high-molecular-weight model compound, FITC-dextran. Coupled with previous in vitro studies, the kinetics of sIPN degradation provided insights into the time-dependent changes in cellular response including adhesion and protein expression. These results provide a facile guide in material formulation to control the delivery of high-molecular-weight compounds with concomitant modulation of cellular behavior. PMID:21801489

  5. Three-dimensional structures of unligated uridine phosphorylase from Yersinia pseudotuberculosis at 1.4 Å resolution and its complex with an antibacterial drug

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Gabdulkhakov, A. G.; Dontsova, M. V.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2015-07-01

    Uridine phosphorylases play an essential role in the cellular metabolism of some antibacterial agents. Acute infectious diseases (bubonic plague, yersiniosis, pseudotuberculosis, etc., caused by bacteria of the genus Yersinia) are treated using both sulfanilamide medicines and antibiotics, including trimethoprim. The action of an antibiotic on a bacterial cell is determined primarily by the character of its interactions with cellular components, including those which are not targets (for example, with pyrimidine phosphorylases). This type of interaction should be taken into account in designing drugs. The three-dimensional structure of uridine phosphorylase from the bacterium Yersinia pseudotuberculosis ( YptUPh) with the free active site was determined for the first time by X-ray crystallography and refined at 1.40 Å resolution (DPI = 0.062 Å; ID PDB: 4OF4). The structure of the complex of YptUPh with the bacteriostatic drug trimethoprim was studied by molecular docking and molecular dynamics methods. The trimethoprim molecule was shown to be buffered by the enzyme YptUPh, resulting in a decrease in the efficiency of the treatment of infectious diseases caused by bacteria of the genus Yersinia with trimethoprim.

  6. Visualizing Viral Protein Structures in Cells Using Genetic Probes for Correlated Light and Electron Microscopy

    PubMed Central

    Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.

    2015-01-01

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760

  7. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    PubMed

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.

    PubMed

    Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael

    2013-11-15

    In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2017-01-01

    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or growth of new cells. Indeed, even within living cells, highly polymeric cell compounds are constantly replaced and renewed. This is especially important for assessing C fluxes in soil and the contribution of C from microbial residues to soil organic matter.

  10. Insights into Atherosclerosis Using Nanotechnology

    PubMed Central

    Linton, MacRae F.; Fazio, Sergio; Haselton, Frederick R.

    2010-01-01

    A developing forefront in vascular disease research is the application of nanotechnology, the engineering of devices at the molecular scale, for diagnostic and therapeutic applications in atherosclerosis. Promising research in this field over the past decade has resulted in the preclinical validation of nanoscale devices that target cellular and molecular components of the atherosclerotic plaque, including one of its prominent cell types, the macrophage. Nanoscale contrast agents targeting constituents of plaque biology have been adapted for application in multiple imaging modalities, leading toward more detailed diagnostic readouts, whereas nanoscale drug delivery devices can be tailored for site-specific therapeutic activity. This review highlights recent progress in utilizing nanotechnology for the clinical management of atherosclerosis, drawing upon recent preclinical studies relevant to diagnosis and treatment of the plaque and promising future applications. PMID:20425261

  11. Control of root growth and development by reactive oxygen species.

    PubMed

    Tsukagoshi, Hironaka

    2016-02-01

    Reactive oxygen species (ROS) are relatively simple molecules that exist within cells growing in aerobic conditions. ROS were originally associated with oxidative stress and seen as highly reactive molecules that are injurious to many cell components. More recently, however, the function of ROS as signal molecules in many plant cellular processes has become more evident. One of the most important functions of ROS is their role as a plant growth regulator. For example, ROS are key molecules in regulating plant root development, and as such, are comparable to plant hormones. In this review, the molecular mechanisms of ROS that are mainly associated with plant root growth are discussed. The molecular links between root growth regulation by ROS and other signals will also be briefly discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices.

    PubMed

    Linko, Veikko; Ora, Ari; Kostiainen, Mauri A

    2015-10-01

    DNA molecules can be assembled into custom predesigned shapes via hybridization of sequence-complementary domains. The folded structures have high spatial addressability and a tremendous potential to serve as platforms and active components in a plethora of bionanotechnological applications. DNA is a truly programmable material, and its nanoscale engineering thus opens up numerous attractive possibilities to develop novel methods for therapeutics. The tailored molecular devices could be used in targeting cells and triggering the cellular actions in the biological environment. In this review we focus on the DNA-based assemblies - primarily DNA origami nanostructures - that could perform complex tasks in cells and serve as smart drug-delivery vehicles in, for example, cancer therapy, prodrug medication, and enzyme replacement therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mechanical regulation of cardiac development

    PubMed Central

    Lindsey, Stephanie E.; Butcher, Jonathan T.; Yalcin, Huseyin C.

    2014-01-01

    Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development. PMID:25191277

  14. How pathogens use linear motifs to perturb host cell networks.

    PubMed

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Assembly of Multi-tRNA Synthetase Complex via Heterotetrameric Glutathione Transferase-homology Domains.

    PubMed

    Cho, Ha Yeon; Maeng, Seo Jin; Cho, Hyo Je; Choi, Yoon Seo; Chung, Jeong Min; Lee, Sangmin; Kim, Hoi Kyoung; Kim, Jong Hyun; Eom, Chi-Yong; Kim, Yeon-Gil; Guo, Min; Jung, Hyun Suk; Kang, Beom Sik; Kim, Sunghoon

    2015-12-04

    Many multicomponent protein complexes mediating diverse cellular processes are assembled through scaffolds with specialized protein interaction modules. The multi-tRNA synthetase complex (MSC), consisting of nine different aminoacyl-tRNA synthetases and three non-enzymatic factors (AIMP1-3), serves as a hub for many signaling pathways in addition to its role in protein synthesis. However, the assembly process and structural arrangement of the MSC components are not well understood. Here we show the heterotetrameric complex structure of the glutathione transferase (GST) domains shared among the four MSC components, methionyl-tRNA synthetase (MRS), glutaminyl-prolyl-tRNA synthetase (EPRS), AIMP2 and AIMP3. The MRS-AIMP3 and EPRS-AIMP2 using interface 1 are bridged via interface 2 of AIMP3 and EPRS to generate a unique linear complex of MRS-AIMP3:EPRS-AIMP2 at the molar ratio of (1:1):(1:1). Interestingly, the affinity at interface 2 of AIMP3:EPRS can be varied depending on the occupancy of interface 1, suggesting the dynamic nature of the linear GST tetramer. The four components are optimally arranged for maximal accommodation of additional domains and proteins. These characteristics suggest the GST tetramer as a unique and dynamic structural platform from which the MSC components are assembled. Considering prevalence of the GST-like domains, this tetramer can also provide a tool for the communication of the MSC with other GST-containing cellular factors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. CELLULAR, BIOCHEMICAL, AND MOLECULAR TECHNIQUES IN DEVELOPMENTAL TOXICOLOGY

    EPA Science Inventory

    Cellular, molecular and biochemical approaches vastly expand the possibilities for revealing the underlying mechanisms of developmental toxicity. The increasing interest in embryonic development as a model system for the study of gene expression has resulted in a cornucopia of i...

  17. 77 FR 57571 - Center For Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ...: Genes, Genomes, and Genetics Integrated Review Group; Genomics, Computational Biology and Technology... Reproductive Sciences Integrated Review Group; Cellular, Molecular and Integrative Reproduction Study Section...: Immunology Integrated Review Group; Cellular and Molecular Immunology--B Study Section. [[Page 57572

  18. 76 FR 2399 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Neurotransporters, Receptors...- 1198. [email protected] . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group.... (301) 435-1045. [email protected] . Name of Committee: Molecular, Cellular and Developmental...

  19. The Virtual Cell Animation Collection: Tools for Teaching Molecular and Cellular Biology

    PubMed Central

    Reindl, Katie M.; White, Alan R.; Johnson, Christina; Vender, Bradley; Slator, Brian M.; McClean, Phillip

    2015-01-01

    A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom. PMID:25856580

  20. A closed-loop multi-level model of glucose homeostasis

    PubMed Central

    Uluseker, Cansu; Simoni, Giulia; Dauriz, Marco; Matone, Alice

    2018-01-01

    Background The pathophysiologic processes underlying the regulation of glucose homeostasis are considerably complex at both cellular and systemic level. A comprehensive and structured specification for the several layers of abstraction of glucose metabolism is often elusive, an issue currently solvable with the hierarchical description provided by multi-level models. In this study we propose a multi-level closed-loop model of whole-body glucose homeostasis, coupled with the molecular specifications of the insulin signaling cascade in adipocytes, under the experimental conditions of normal glucose regulation and type 2 diabetes. Methodology/Principal findings The ordinary differential equations of the model, describing the dynamics of glucose and key regulatory hormones and their reciprocal interactions among gut, liver, muscle and adipose tissue, were designed for being embedded in a modular, hierarchical structure. The closed-loop model structure allowed self-sustained simulations to represent an ideal in silico subject that adjusts its own metabolism to the fasting and feeding states, depending on the hormonal context and invariant to circadian fluctuations. The cellular level of the model provided a seamless dynamic description of the molecular mechanisms downstream the insulin receptor in the adipocytes by accounting for variations in the surrounding metabolic context. Conclusions/Significance The combination of a multi-level and closed-loop modeling approach provided a fair dynamic description of the core determinants of glucose homeostasis at both cellular and systemic scales. This model architecture is intrinsically open to incorporate supplementary layers of specifications describing further individual components influencing glucose metabolism. PMID:29420588

  1. A comparative cellular and molecular biology of longevity database.

    PubMed

    Stuart, Jeffrey A; Liang, Ping; Luo, Xuemei; Page, Melissa M; Gallagher, Emily J; Christoff, Casey A; Robb, Ellen L

    2013-10-01

    Discovering key cellular and molecular traits that promote longevity is a major goal of aging and longevity research. One experimental strategy is to determine which traits have been selected during the evolution of longevity in naturally long-lived animal species. This comparative approach has been applied to lifespan research for nearly four decades, yielding hundreds of datasets describing aspects of cell and molecular biology hypothesized to relate to animal longevity. Here, we introduce a Comparative Cellular and Molecular Biology of Longevity Database, available at ( http://genomics.brocku.ca/ccmbl/ ), as a compendium of comparative cell and molecular data presented in the context of longevity. This open access database will facilitate the meta-analysis of amalgamated datasets using standardized maximum lifespan (MLSP) data (from AnAge). The first edition contains over 800 data records describing experimental measurements of cellular stress resistance, reactive oxygen species metabolism, membrane composition, protein homeostasis, and genome homeostasis as they relate to vertebrate species MLSP. The purpose of this review is to introduce the database and briefly demonstrate its use in the meta-analysis of combined datasets.

  2. Distinct molecular targets including SLO-1 and gap junctions are engaged across a continuum of ethanol concentrations in Caenorhabditis elegans

    PubMed Central

    Dillon, James; Andrianakis, Ioannis; Mould, Richard; Ient, Ben; Liu, Wei; James, Christopher; O'Connor, Vincent; Holden-Dye, Lindy

    2013-01-01

    Ethanol (alcohol) interacts with diverse molecular effectors across a range of concentrations in the brain, eliciting intoxication through to sedation. Invertebrate models including the nematode worm Caenorhabditis elegans have been deployed for molecular genetic studies to inform on key components of these alcohol signaling pathways. C. elegans studies have typically employed external dosing with high (>250 mM) ethanol concentrations: A careful analysis of responses to low concentrations is lacking. Using the C. elegans pharyngeal system as a paradigm, we report a previously uncharacterized continuum of cellular and behavioral responses to ethanol from low (10 mM) to high (300 mM) concentrations. The complexity of these responses indicates that the pleiotropic action of ethanol observed in mammalian brain is conserved in this invertebrate model. We investigated two candidate ethanol effectors, the calcium-activated K+ channel SLO-1 and gap junctions, and show that they contribute to, but are not sole determinants of, the low- and high-concentration effects, respectively. Notably, this study shows cellular and whole organismal behavioral responses to ethanol in C. elegans that directly equate to intoxicating through to supralethal blood alcohol concentrations in humans and provides an important benchmark for interpretation of paradigms that seek to inform on human alcohol use disorders.—Dillon, J., Andrianakis, I., Mould, R., Ient, B., Liu, W., James, C., O'Connor, V., Holden-Dye, L. Distinct molecular targets including SLO-1 and gap junctions are engaged across a continuum of ethanol concentrations in Caenorhabditis elegans. PMID:23882127

  3. Chronic stress induces brain region specific alterations of molecular rhythms in mice that correlate with depression-like behavior

    PubMed Central

    Logan, Ryan W.; Edgar, Nicole; Gillman, Andrea G.; Hoffman, Daniel; Zhu, Xiyu; McClung, Colleen A.

    2015-01-01

    Background Emerging evidence implicates circadian abnormalities as a component of the pathophysiology of major depressive disorder (MDD). The suprachiasmatic nucleus (SCN) of the hypothalamus coordinates rhythms throughout the brain and body. On a cellular level, rhythms are generated by transcriptional, translational, and post-translational feedback loops of core circadian genes and proteins. In patients with MDD, recent evidence suggests reduced amplitude of molecular rhythms in extra-SCN brain regions. We investigated whether unpredictable chronic mild stress (UCMS), an animal model that induces a depression-like physiological and behavioral phenotype, induces circadian disruptions similar to those seen with MDD. Methods Activity and temperature rhythms were recorded in C57BL/6J mice before, during, and after exposure to UCMS, and brain tissue explants were collected from Period2 luciferase (Per2::luc) mice following UCMS to assess cellular rhythmicity. Results UCMS significantly decreased circadian amplitude of activity and body temperature in mice, similar to findings in MDD patients and these changes directly correlate with depression-related behavior. While amplitude of molecular rhythms in the SCN was decreased following UCMS, surprisingly, rhythms in the nucleus accumbens were amplified with no changes seen in the prefrontal cortex or amygdala. These molecular rhythm changes in the SCN and the nucleus accumbens (NAc) also directly correlated with mood-related behavior. Conclusions These studies find that circadian rhythm abnormalities directly correlate with depression-related behavior following UCMS and suggest a desynchronization of rhythms in the brain with an independent enhancement of rhythms in the NAc. PMID:25771506

  4. Caveolins and caveolae in ocular physiology and pathophysiology.

    PubMed

    Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H

    2017-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Epstein-Barr virus/complement fragment C3d receptor (CR2) reacts with p53, a cellular antioncogene-encoded membrane phosphoprotein: detection by polyclonal anti-idiotypic anti-CR2 antibodies.

    PubMed Central

    Barel, M; Fiandino, A; Lyamani, F; Frade, R

    1989-01-01

    Epstein-Barr virus and the C3d fragment of the third component of complement are specific extracellular ligands for complement receptor type 2 (CR2). However, intracellular proteins that react specifically with CR2 and are involved in post-membrane signals remain unknown. We recently prepared polyclonal anti-idiotypic anti-CR2 antibodies (Ab2) by using the highly purified CR2 molecule as original immunogen. We showed that Ab2 contained anti-idiotypic specificities that mimicked extracellular domains of CR2 and detected two distinct binding sites on CR2 for its specific extracellular ligands, Epstein-Barr virus and C3d. We postulated that Ab2 might also contain specificities that could mimic intracellular domains of CR2. Here we report that Ab2, which did not react with Raji B-lymphoma cell surface components, detected specifically, among all components solubilized from Raji cell membranes, a single intracellular membrane protein of apparent molecular mass of 53 kDa. This protein was identified as the p53 cellular antioncogene-encoded membrane phosphoprotein by analyzing its antigenic properties with Pab1801, a monoclonal anti-p53 antibody, and by comparing its biochemical properties with those of p53. Additionally, solubilized and purified CR2 bound to solubilized p53 immobilized on Pab1801-Sepharose. p53, like CR2, was localized only in purified plasma membranes and nuclei of Raji cells. These data suggest strongly that p53, a cellular antioncogene-encoded phosphoprotein, reacted specifically with CR2 in Raji membranes. This interaction may represent one of the important steps through which CR2 could be involved in human B-lymphocyte proliferation and transformation. Images PMID:2557614

  6. Caveolins and caveolae in ocular physiology and pathophysiology

    PubMed Central

    Gu, Xiaowu; Reagan, Alaina M.; McClellan, Mark E.; Elliott, Michael H.

    2016-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., “lipid rafts”) have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signalling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. PMID:27664379

  7. Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection

    PubMed Central

    Swart, A. Leoni; Harrison, Christopher F.; Eichinger, Ludwig; Steinert, Michael; Hilbi, Hubert

    2018-01-01

    Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of “effector” proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors. PMID:29552544

  8. Connexins, pannexins and their channels in fibroproliferative diseases

    PubMed Central

    Willebrords, Joost; Da Silva, Tereza Cristina; Maes, Michaël; Pereira, Isabel Veloso Alves; Crespo-Yanguas, Sara; Hernandez-Blazquez, Francisco Javier; Dagli, Maria Lúcia Zaidan; Vinken, Mathieu

    2017-01-01

    Cellular and molecular mechanisms of wound healing, tissue repair and fibrogenesis are established in different organs and are essential for the maintenance of function and tissue integrity after cell injury. These mechanisms are also involved in a plethora of fibroproliferative diseases or organ-specific fibrotic disorders, all of which are associated with the excessive deposition of extracellular matrix components. Fibroblasts, which are key cells in tissue repair and fibrogenesis, rely on communicative cellular networks to ensure efficient control of these processes and to prevent abnormal accumulation of extracellular matrix into the tissue. Despite the significant impact on human health, and thus the epidemiologic relevance, there is still no effective treatment for most fibrosis-related diseases. This paper provides an overview of current concepts and mechanisms involved in the participation of cellular communication via connexin-based pores as well as pannexin-based channels in the processes of tissue repair and fibrogenesis in chronic diseases. Understanding these mechanisms may contribute to the development of new therapeutic strategies to clinically manage fibroproliferative diseases and organ-specific fibrotic disorders. PMID:26914707

  9. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy.

    PubMed

    Misra, Santosh K; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-07-11

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C(3)-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C(3)-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C(3) with phospholipid was used to generate C(3)-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.

  10. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    PubMed Central

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-01-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies. PMID:27405011

  11. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    NASA Astrophysics Data System (ADS)

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-07-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.

  12. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response.

    PubMed

    Zhang, Lu; Wang, Kui; Lei, Yunlong; Li, Qifu; Nice, Edouard Collins; Huang, Canhua

    2015-12-01

    Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective

    PubMed Central

    van Heeswijk, Wally C.; Westerhoff, Hans V.

    2013-01-01

    SUMMARY We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now. PMID:24296575

  14. 76 FR 27070 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date: June 13-14, 2011. Time... Committee: Population Sciences and Epidemiology Integrated Review Group; Epidemiology of Cancer Study...

  15. The roles of cellular and molecular components of a hematoma at early stage of bone healing.

    PubMed

    Shiu, Hoi Ting; Leung, Ping Chung; Ko, Chun Hay

    2018-04-01

    Bone healing is a complex repair process that commences with the formation of a blood clot at the injured bone, termed hematoma. It has evidenced that a lack of a stable hematoma causes delayed bone healing or non-union. The hematoma at the injured bone constitutes the early healing microenvironment. It appears to dictate healing pathways that ends in a regenerative bone. However, the hematoma is often clinically removed from the damaged site. Conversely, blood-derived products have been used in bone tissue engineering for treating critical sized defects, including fibrin gels and platelet-rich plasma. A second generation of platelet concentrate that is based on leukocyte and fibrin content has also been developed and introduced in market. Conflicting effect of these products in bone repair are reported. We propose that the bone healing response becomes dysregulated if the blood response and subsequent formation and properties of a hematoma are altered. This review focuses on the central structural, cellular, and molecular components of a fracture hematoma, with a major emphasis on their roles in regulating bone healing mechanism, and their interactions with mesenchymal stem cells. New angles towards a better understanding of these factors and relevant mechanisms involved at the beginning of bone healing may help to clarify limited or adverse effects of blood-derived products on bone repair. We emphasize that the recreation of an early hematoma niche with critical compositions might emerge as a viable therapeutic strategy for enhanced skeletal tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Ayahuasca and cancer treatment

    PubMed Central

    2013-01-01

    Objectives: Comprehensively review the evidence regarding the use of ayahuasca, an Amerindian medicine traditionally used to treat many different illnesses and diseases, to treat some types of cancer. Methods: An in-depth review of the literature was conducted using PubMed, books, institutional magazines, conferences and online texts in nonprofessional sources regarding the biomedical knowledge about ayahuasca in general with a specific focus in its possible relations to the treatment of cancer. Results: At least nine case reports regarding the use of ayahuasca in the treatment of prostate, brain, ovarian, uterine, stomach, breast, and colon cancers were found. Several of these were considered improvements, one case was considered worse, and one case was rated as difficult to evaluate. A theoretical model is presented which explains these effects at the cellular, molecular, and psychosocial levels. Particular attention is given to ayahuasca’s pharmacological effects through the activity of N,N-dimethyltryptamine at intracellular sigma-1 receptors. The effects of other components of ayahuasca, such as harmine, tetrahydroharmine, and harmaline, are also considered. Conclusion: The proposed model, based on the molecular and cellular biology of ayahuasca’s known active components and the available clinical reports, suggests that these accounts may have consistent biological underpinnings. Further study of ayahuasca’s possible antitumor effects is important because cancer patients continue to seek out this traditional medicine. Consequently, based on the social and anthropological observations of the use of this brew, suggestions are provided for further research into the safety and efficacy of ayahuasca as a possible medicinal aid in the treatment of cancer. PMID:26770688

  17. On the Cellular and Molecular Mechanisms of Drug-Induced Gingival Overgrowth

    PubMed Central

    Ramírez-Rámiz, Albert; Brunet-LLobet, Lluís; Lahor-Soler, Eduard; Miranda-Rius, Jaume

    2017-01-01

    Introduction: Gingival overgrowth has been linked to multiple factors such as adverse drug effects, inflammation, neoplastic processes, and hereditary gingival fibromatosis. Drug-induced gingival overgrowth is a well-established adverse event. In early stages, this gingival enlargement is usually located in the area of the interdental papilla. Histologically, there is an increase in the different components of the extracellular matrix. Objective: The aim of this manuscript is to describe and analyze the different cellular and molecular agents involved in the pathogenesis of Drug-induced gingival overgrowth. Method: A literature search of the MEDLINE/PubMed database was conducted to identify the mechanisms involved in the process of drug-induced gingival overgrowth, with the assistance of a research librarian. We present several causal hypotheses and discuss the advances in the understanding of the mechanisms that trigger this gingival alteration. Results: In vitro studies have revealed phenotypic cellular changes in keratinocytes and fibroblasts and an increase of the extracellular matrix with collagen and glycosaminoglycans. Drug-induced gingival overgrowth confirms the key role of collagenase and integrins, membrane receptors present in the fibroblasts, due to their involvement in the catabolism of collagen. The three drug categories implicated: calcineuron inhibitors (immunosuppressant drugs), calcium channel blocking agents and anticonvulsant drugs appear to present a multifactorial pathogenesis with a common molecular action: the blockage of the cell membrane in the Ca2+/Na+ ion flow. The alteration of the uptake of cellular folic acid, which depends on the regulated channels of active cationic transport and on passive diffusion, results in a dysfunctional degradation of the connective tissue. Certain intermediate molecules such as cytokines and prostaglandins play a role in this pathological mechanism. The concomitant inflammatory factor encourages the appearance of fibroblasts, which leads to gingival fibrosis. Susceptibility to gingival overgrowth in some fibroblast subpopulations is due to phenotypic variability and genetic polymorphism, as shown by the increase in the synthesis of molecules related to the response of the gingival tissue to inducing drugs. The authors present a diagram depicting various mechanisms involved in the pathogenesis of drug-induced gingival overgrowth. Conclusion: Individual predisposition, tissue inflammation, and molecular changes in response to the inducing drug favor the clinical manifestation of gingival overgrowth. PMID:28868093

  18. Building New Bridges between In Vitro and In Vivo in Early Drug Discovery: Where Molecular Modeling Meets Systems Biology.

    PubMed

    Pearlstein, Robert A; McKay, Daniel J J; Hornak, Viktor; Dickson, Callum; Golosov, Andrei; Harrison, Tyler; Velez-Vega, Camilo; Duca, José

    2017-01-01

    Cellular drug targets exist within networked function-generating systems whose constituent molecular species undergo dynamic interdependent non-equilibrium state transitions in response to specific perturbations (i.e.. inputs). Cellular phenotypic behaviors are manifested through the integrated behaviors of such networks. However, in vitro data are frequently measured and/or interpreted with empirical equilibrium or steady state models (e.g. Hill, Michaelis-Menten, Briggs-Haldane) relevant to isolated target populations. We propose that cells act as analog computers, "solving" sets of coupled "molecular differential equations" (i.e. represented by populations of interacting species)via "integration" of the dynamic state probability distributions among those populations. Disconnects between biochemical and functional/phenotypic assays (cellular/in vivo) may arise with targetcontaining systems that operate far from equilibrium, and/or when coupled contributions (including target-cognate partner binding and drug pharmacokinetics) are neglected in the analysis of biochemical results. The transformation of drug discovery from a trial-and-error endeavor to one based on reliable design criteria depends on improved understanding of the dynamic mechanisms powering cellular function/dysfunction at the systems level. Here, we address the general mechanisms of molecular and cellular function and pharmacological modulation thereof. We outline a first principles theory on the mechanisms by which free energy is stored and transduced into biological function, and by which biological function is modulated by drug-target binding. We propose that cellular function depends on dynamic counter-balanced molecular systems necessitated by the exponential behavior of molecular state transitions under non-equilibrium conditions, including positive versus negative mass action kinetics and solute-induced perturbations to the hydrogen bonds of solvating water versus kT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Targeted Disruption of Orchestration between Stroma and Tumor Cells in Pancreatic Cancer: Molecular Basis and Therapeutic Implications

    PubMed Central

    Kong, Xiangyu; Li, Lei; Li, Zhaoshen; Xie, Keping

    2012-01-01

    Pancreatic cancer is one of the most lethal malignancies, with a prominent desmoplastic reaction as the defining hallmark of the disease. The past several decades have seen dramatic progress in understanding of pancreatic cancer pathogenesis, including the identification of precursor lesions, sequential transformation from normal pancreas to invasive pancreatic cancer and corresponding signature genetic events, and the biological impact of those alterations on malignant behaviors. However, the current therapeutic strategies for epithelial tumor cells, which have exhibited potent antitumor activity in cell culture and animal models, have failed to have significant effects in the clinic. The desmoplastic stroma surrounding pancreatic cancer cells, which accounts for about 90% of a tumor’s mass, clearly is not a passive scaffold for cancer cells but an active contributor to carcinogenesis. Improved understanding of the dynamic interaction between cancer cells and their stroma will be important to designing new, effective therapeutic strategies for pancreatic cancer. This review focuses on the origination of stromal molecular and cellular components in pancreatic tumors, their biological effects on pancreatic cancer cells, and the orchestration between these two components. PMID:22749856

  20. Effects of coarse-graining on fluctuations in gene expression

    NASA Astrophysics Data System (ADS)

    Pedraza, Juan; Paulsson, Johan

    2008-03-01

    Many cellular components are present in such low numbers per cell that random births and deaths of individual molecules can cause significant `noise' in concentrations. But biochemical events do not necessarily occur in steps of individual molecules. Some processes are greatly randomized when synthesis or degradation occurs in large bursts of many molecules in a short time interval. Conversely, each birth or death of a macromolecule could involve several small steps, creating a memory between individual events. Here we present generalized theory for stochastic gene expression, formulating the variance in protein abundance in terms of the randomness of the individual events, and discuss the effective coarse-graining of the molecular hardware. We show that common molecular mechanisms produce gestation and senescence periods that can reduce noise without changing average abundances, lifetimes, or any concentration-dependent control loops. We also show that single-cell experimental methods that are now commonplace in cell biology do not discriminate between qualitatively different stochastic principles, but that this in turn makes them better suited for identifying which components introduce fluctuations.

  1. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system.

    PubMed

    Isogai, Tadamoto; Danuser, Gaudenz

    2018-05-26

    Cell migration is driven by propulsive forces derived from polymerizing actin that pushes and extends the plasma membrane. The underlying actin network is constantly undergoing adaptation to new mechano-chemical environments and intracellular conditions. As such, mechanisms that regulate actin dynamics inherently contain multiple feedback loops and redundant pathways. Given the highly adaptable nature of such a system, studies that use only perturbation experiments (e.g. knockdowns, overexpression, pharmacological activation/inhibition, etc.) are challenged by the nonlinearity and redundancy of the pathway. In these pathway configurations, perturbation experiments at best describe the function(s) of a molecular component in an adapting (e.g. acutely drug-treated) or fully adapted (e.g. permanent gene silenced) cell system, where the targeted component now resides in a non-native equilibrium. Here, we propose how quantitative live-cell imaging and analysis of constitutive fluctuations of molecular activities can overcome these limitations. We highlight emerging actin filament barbed-end biology as a prime example of a complex, nonlinear molecular process that requires a fluctuation analytic approach, especially in an unperturbed cellular system, to decipher functional interactions of barbed-end regulators, actin polymerization and membrane protrusion.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  2. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.

    PubMed

    Keating, Elisa; Martel, Fátima

    2018-01-01

    In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect-an aerobic lactatogenesis- characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.

  3. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective

    PubMed Central

    Kimura, Tomoki; Kambe, Taiho

    2016-01-01

    Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives. PMID:26959009

  4. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: implications for disease pathogenesis and treatment

    PubMed Central

    ten Hacken, Elisa; Burger, Jan A.

    2015-01-01

    Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. PMID:26193078

  5. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  6. Viral Disease Networks?

    NASA Astrophysics Data System (ADS)

    Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo

    2010-03-01

    Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.

  7. Regulation of the mammalian heat shock factor 1.

    PubMed

    Dayalan Naidu, Sharadha; Dinkova-Kostova, Albena T

    2017-06-01

    Living organisms are endowed with the capability to tackle various forms of cellular stress due to the presence of molecular chaperone machinery complexes that are ubiquitous throughout the cell. During conditions of proteotoxic stress, the transcription factor heat shock factor 1 (HSF1) mediates the elevation of heat shock proteins, which are crucial components of the chaperone complex machinery and function to ameliorate protein misfolding and aggregation and restore protein homeostasis. In addition, HSF1 orchestrates a versatile transcriptional programme that includes genes involved in repair and clearance of damaged macromolecules and maintenance of cell structure and metabolism, and provides protection against a broad range of cellular stress mediators, beyond heat shock. Here, we discuss the structure and function of the mammalian HSF1 and its regulation by post-translational modifications (phosphorylation, sumoylation and acetylation), proteasomal degradation, and small-molecule activators and inhibitors. © 2017 Federation of European Biochemical Societies.

  8. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways.

    PubMed

    Azad, Gajendra Kumar; Tomar, Raghuvir S

    2014-08-01

    Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.

  9. Redox Aspects of Chaperones in Cardiac Function

    PubMed Central

    Penna, Claudia; Sorge, Matteo; Femminò, Saveria; Pagliaro, Pasquale; Brancaccio, Mara

    2018-01-01

    Molecular chaperones are stress proteins that allow the correct folding or unfolding as well as the assembly or disassembly of macromolecular cellular components. Changes in expression and post-translational modifications of chaperones have been linked to a number of age- and stress-related diseases including cancer, neurodegeneration, and cardiovascular diseases. Redox sensible post-translational modifications, such as S-nitrosylation, glutathionylation and phosphorylation of chaperone proteins have been reported. Redox-dependent regulation of chaperones is likely to be a phenomenon involved in metabolic processes and may represent an adaptive response to several stress conditions, especially within mitochondria, where it impacts cellular bioenergetics. These post-translational modifications might underlie the mechanisms leading to cardioprotection by conditioning maneuvers as well as to ischemia/reperfusion injury. In this review, we discuss this topic and focus on two important aspects of redox-regulated chaperones, namely redox regulation of mitochondrial chaperone function and cardiac protection against ischemia/reperfusion injury. PMID:29615920

  10. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    PubMed Central

    Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-01-01

    Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications. PMID:25410636

  11. Avanti lipid tools: connecting lipids, technology, and cell biology.

    PubMed

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  12. First step in developing SWNT nano-sensor for C17.2 neural stem cells

    NASA Astrophysics Data System (ADS)

    Ignatova, Tetyana; Pirbhai, Massooma; Chandrasekar, Swetha; Rotkin, Slava V.; Jedlicka, Sabrina

    Nanomaterials are widely used for biomedical applications and diagnostics, including as drug and gene delivery agents, imaging objects, and biosensors. As single-wall carbon nanotubes (SWNTs) possess a size similar to intracellular components, including fibrillar proteins and some organelles, the potential for use in a wide variety of intracellular applications is significant. However, implementation of an SWNT based nano-sensor is difficult due to lack of understanding of SWNT-cell interaction on both the cellular and molecular level. In this study, C17.2 neural stem cells have been tested after uptake of SWNTs wrapped with ssDNA over a wide variety of time periods, allowing for broad localization of SWNTs inside of the cells over long time periods. The localization data is being used to develop a predictive model of how, upon uptake of SWNT, the cytoskeleton and other cellular structures of the adherent cells is perturbed.

  13. Inflammation--a lifelong companion. Attempt at a non-analytical holistic view.

    PubMed

    Ferencík, M; Stvrtinová, V; Hulín, I; Novák, M

    2007-01-01

    Inflammation is a key component of the immune system. It has important functions in both defense and pathophysiological events maintaining the dynamic homeostasis of a host organism including its tissues, organs and individual cells. On the cellular level it is controlled by more than 400 currently known genes. Their polymorphisms and environmental conditions give rise to different genotypes in human population. Pro-inflammatory genotype, which dominates in the present population, may be advantageous in childhood but not in elderly people because it is characterized by an increased vulnerability to, and intensity of, inflammatory reactions. These reactions may be the possible reasons of chronic inflammatory diseases, especially in old age. Better understanding of complex molecular and cellular inflammatory mechanisms is indispensable for detailed knowledge of pathogenesis of many diseases, their prevention and directed drug therapy. Here we summarize the basic current knowledge on these mechanisms.

  14. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    PubMed

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  15. 75 FR 26970 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ...-496-8551, [email protected] . Name of Committee: Molecular, Cellular and Developmental...: Oncology 1--Basic Translational Integrated Review Group, Cancer Genetics Study Section. Date: June 3-4... 20892, (301) 435-1154, [email protected] . Name of Committee: Molecular, Cellular and Developmental...

  16. 75 FR 57475 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date: October 14-15, 2010...; Collaborative: Behavioral Genetics and Epidemiology Linked Applications. Date: October 20-21, 2010. Time: 8:30 a...

  17. Optimized Mouse Models for Liver Fibrosis.

    PubMed

    Kim, Yong Ook; Popov, Yury; Schuppan, Detlef

    2017-01-01

    Fibrosis is the excessive accumulation of extracellular matrix components due to chronic injury, with collagens as predominant structural components. Liver fibrosis can progress to cirrhosis, which is characterized by a severe distortion of the delicate hepatic vascular architecture, the shunting of the blood supply away from hepatocytes and the resultant functional liver failure. Cirrhosis is associated with a highly increased morbidity and mortality and represents the major hard endpoint in clinical studies of chronic liver diseases. Moreover, cirrhosis is a strong cofactor of primary liver cancer. In vivo models are indispensable tools to study the cellular and molecular mechanisms of liver fibrosis and to develop specific antifibrotic therapies towards clinical translation. Here, we provide a detailed description of select optimized mouse models of liver fibrosis and state-of-the-art fibrosis readouts.

  18. Nuclear autophagy: An evolutionarily conserved mechanism of nuclear degradation in the cytoplasm.

    PubMed

    Luo, Majing; Zhao, Xueya; Song, Ying; Cheng, Hanhua; Zhou, Rongjia

    2016-11-01

    Macroautophagy/autophagy is a catabolic process that is essential for cellular homeostasis. Studies on autophagic degradation of cytoplasmic components have generated interest in nuclear autophagy. Although its mechanisms and roles have remained elusive, tremendous progress has been made toward understanding nuclear autophagy. Nuclear autophagy is evolutionarily conserved in eukaryotes that may target various nuclear components through a series of processes, including nuclear sensing, nuclear export, autophagic substrate encapsulation and autophagic degradation in the cytoplasm. However, the molecular processes and regulatory mechanisms involved in nuclear autophagy remain largely unknown. Numerous studies have highlighted the importance of nuclear autophagy in physiological and pathological processes such as cancer. This review focuses on current advances in nuclear autophagy and provides a summary of its research history and landmark discoveries to offer new perspectives.

  19. Hybrid biosynthetic gene therapy vector development and dual engineering capacity.

    PubMed

    Jones, Charles H; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P; Pfeifer, Blaine A

    2014-08-26

    Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.

  20. [The Functional Role of Exosomes in Cancer Biology and Their Potential as Biomarkers and Therapeutic Targets of Cancer].

    PubMed

    Naito, Yutaka; Yoshioka, Yusuke; Ochiya, Takahiro

    2015-06-01

    Intercellular communication plays an important role in the regulation of various cellular events. In particular, cancer cells and the surrounding cells communicate with each other, and this intercellular communication triggers cancer initiation and progression through the secretion of molecules, including growth factors and cytokines. Recent advances in cancer biology have indicated that small membrane vesicles, termed exosomes, also serve as regulatory agents in intercellular communications. Exosomes contain functional cellular components, including proteins and microRNAs (miRNAs), and they transfer these components to recipient cells. This exosome-mediated intercellular communication leads to increased growth, invasion, and metastasis of cancer. Thus, researchers regard exosomes as important cues to understanding the molecular mechanisms of cancer biology. Indeed, several lines of evidence have demonstrated that exosomes can explain multiple aspects of cancer biology. In addition, increasing evidence suggests that exosomes and their specific molecules are also attractive for use as biomarkers and therapeutic targets in cancer. Recent reports showed the efficacy of a novel diagnosis by detecting component molecules of cancer-derived exosomes, including miRNAs and membrane proteins. Furthermore, clinical trials that test the application of exosomes for cancer therapy have already been reported. From these points of view, we will summarize experimental data that support the role of exosomes in cancer progression and the potential of exosomes for use in novel diagnostic and therapeutic approaches for cancer.

  1. Factors associated with success of image-guided tumour biopsies: Results from a prospective molecular triage study (MOSCATO-01).

    PubMed

    Tacher, Vania; Le Deley, Marie-Cécile; Hollebecque, Antoine; Deschamps, Frederic; Vielh, Philippe; Hakime, Antoine; Ileana, Ecaterina; Abedi-Ardekani, Behnoush; Charpy, Cécile; Massard, Christophe; Rosellini, Silvia; Gajda, Dorota; Celebic, Aljosa; Ferté, Charles; Ngo-Camus, Maud; Gouissem, Siham; Koubi-Pick, Valérie; Andre, Fabrice; Vassal, Gilles; Deandreis, Désirée; Lacroix, Ludovic; Soria, Jean-Charles; De Baère, Thierry

    2016-05-01

    MOSCATO-01 is a molecular triage trial based on on-purpose tumour biopsies to perform molecular portraits. We aimed at identifying factors associated with high tumour cellularity. Tumour cellularity (percentage of tumour cells in samples defined at pathology) was evaluated according to patient characteristics, target lesion characteristics, operators' experience and biopsy approach. Among 460 patients enrolled between November, 2011 and March, 2014, 334 patients (73%) had an image-guided needle biopsy of the primary tumour (N = 38) or a metastatic lesion (N = 296). Biopsies were performed on liver (N = 127), lung (N = 72), lymph nodes (N = 71), bone (N = 11), or another tumour site (N = 53). Eighteen patients (5%) experienced a complication: pneumothorax in 10 patients treated medically, and haemorrhage in 8, requiring embolisation in 3 cases. Median tumour cellularity was 50% (interquartile range, 30-70%). The molecular analysis was successful in 291/334 cases (87%). On-going chemotherapy, tumour origin (primary versus metastatic), lesion size, tumour growth rate, presence of necrosis on imaging, standardised uptake value, and needle size were not statistically associated with cellularity. Compared to liver or lung biopsies, cellularity was significantly lower in bone and higher in other sites (P < 0.0001). Cellularity significantly increased with the number of collected samples (P < 0.0001) and was higher in contrast-enhanced ultrasound-guided biopsies (P < 0.02). In paired samples, cellularity in central samples was lower than in peripheral samples in 85, equal in 68 and higher in 89 of the cases. Image-guided biopsy is feasible and safe in cancer patients for molecular screening. Imaging modality, multiple sampling of the lesion, and the organ chosen for biopsy were associated with higher tumour cellularity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 75 FR 51280 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... Special Emphasis Panel; Member Conflict: Cellular and Molecular Aspects of Neurodevelopment. Date... Group; Cellular and Molecular Immunology--A Study Section. Date: September 30-October 1, 2010. Time: [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333...

  3. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    PubMed

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Single cell analysis of innate cytokine responses to pattern recognition receptor stimulation in children across four continents

    PubMed Central

    Smolen, Kinga K; Cai, Bing; Fortuno, Edgardo S; Gelinas, Laura; Larsen, Martin; Speert, David P; Chamekh, Mustapha; Kollmann, Tobias R

    2014-01-01

    Innate immunity instructs adaptive immunity, and suppression of innate immunity is associated with increased risk for infection. We had previously shown that whole blood cellular components from a cohort of South African children secreted significantly lower levels of most cytokines following stimulation of pattern recognition receptors (PRR) as compared to whole blood from cohorts of Ecuadorian, Belgian, or Canadian children. To begin dissecting the responsible molecular mechanisms, we now set out to identify the relevant cellular source of these differences. Across the four cohorts represented in our study, we identified significant variation in the cellular composition of whole blood; however, significant reduction of the intracellular cytokine production on the single cell level was only detected in South African childrens’ monocytes, cDC, and pDC. We also uncovered a marked reduction in polyfunctionality for each of these cellular compartments in South African children as compared to children from other continents. Together our data identify differences in cell composition as well as profoundly lower functional responses of innate cells in our cohort of South African children. A possible link between altered innate immunity and increased risk for infection or lower response to vaccines in South African infants needs to be explored. PMID:25135829

  5. Proteomics in biomanufacturing control: Protein dynamics of CHO-K1 cells and conditioned media during apoptosis and necrosis.

    PubMed

    Albrecht, Simone; Kaisermayer, Christian; Gallagher, Clair; Farrell, Amy; Lindeberg, Anna; Bones, Jonathan

    2018-06-01

    Cell viability has a critical impact on product quantity and quality during the biomanufacturing of therapeutic proteins. An advanced understanding of changes in the cellular and conditioned media proteomes upon cell stress and death is therefore needed for improved bioprocess control. Here, a high pH/low pH reversed phase data independent 2D-LC-MS E discovery proteomics platform was applied to study the cellular and conditioned media proteomes of CHO-K1 apoptosis and necrosis models where cell death was induced by staurosporine exposure or aeration shear in a benchtop bioreactor, respectively. Functional classification of gene ontology terms related to molecular functions, biological processes, and cellular components revealed both cell death independent and specific features. In addition, label free quantitation using the Hi3 approach resulted in a comprehensive shortlist of 23 potential cell viability marker proteins with highest abundance and a significant increase in the conditioned media upon induction of cell death, including proteins related to cellular stress response, signal mediation, cytoskeletal organization, cell differentiation, cell interaction as well as metabolic and proteolytic enzymes which are interesting candidates for translating into targeted analysis platforms for monitoring bioprocessing response and increasing process control. © 2018 Wiley Periodicals, Inc.

  6. Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates.

    PubMed

    Zhang, Lili; Zhang, Zesheng; Jasa, John; Li, Dongli; Cleveland, Robin O; Negahban, Mehrdad; Jérusalem, Antoine

    2017-08-16

    The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as "mechanical catalysts" to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.

  7. Heterogeneity of Metazoan Cells and Beyond: To Integrative Analysis of Cellular Populations at Single-Cell Level.

    PubMed

    Barteneva, Natasha S; Vorobjev, Ivan A

    2018-01-01

    In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.

  8. Multi-scale continuum modeling of biological processes: from molecular electro-diffusion to sub-cellular signaling transduction

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Kekenes-Huskey, P.; Hake, J. E.; Holst, M. J.; McCammon, J. A.; Michailova, A. P.

    2012-01-01

    This paper presents a brief review of multi-scale modeling at the molecular to cellular scale, with new results for heart muscle cells. A finite element-based simulation package (SMOL) was used to investigate the signaling transduction at molecular and sub-cellular scales (http://mccammon.ucsd.edu/smol/, http://FETK.org) by numerical solution of the time-dependent Smoluchowski equations and a reaction-diffusion system. At the molecular scale, SMOL has yielded experimentally validated estimates of the diffusion-limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using crystallographic structural data. The predicted rate constants exhibit increasingly delayed steady-state times, with increasing ionic strength, and demonstrate the role of an enzyme's electrostatic potential in influencing ligand binding. At the sub-cellular scale, an extension of SMOL solves a nonlinear, reaction-diffusion system describing Ca2+ ligand buffering and diffusion in experimentally derived rodent ventricular myocyte geometries. Results reveal the important role of mobile and stationary Ca2+ buffers, including Ca2+ indicator dye. We found that alterations in Ca2+-binding and dissociation rates of troponin C (TnC) and total TnC concentration modulate sub-cellular Ca2+ signals. The model predicts that reduced off-rate in the whole troponin complex (TnC, TnI, TnT) versus reconstructed thin filaments (Tn, Tm, actin) alters cytosolic Ca2+ dynamics under control conditions or in disease-linked TnC mutations. The ultimate goal of these studies is to develop scalable methods and theories for the integration of molecular-scale information into simulations of cellular-scale systems.

  9. Autophagy in immunity and inflammation

    PubMed Central

    Levine, Beth; Mizushima, Noboru; Virgin, Herbert W.

    2011-01-01

    Autophagy is an essential, homeostatic process by which cells break down their own components. Perhaps the most primordial function of this lysosomal degradation pathway is adaptation to nutrient deprivation. However, in complex multicellular organisms, the core molecular machinery of autophagy — the ‘autophagy proteins’ — orchestrates diverse aspects of cellular and organismal responses to other dangerous stimuli such as infection. Recent developments reveal a crucial role for the autophagy pathway and proteins in immunity and inflammation. They balance the beneficial and detrimental effects of immunity and inflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases. PMID:21248839

  10. The 'right' size in nanobiotechnology.

    PubMed

    Whitesides, George M

    2003-10-01

    The biological and physical sciences share a common interest in small structures (the definition of 'small' depends on the application, but can range from 1 nm to 1 mm). A vigorous trade across the borders of these areas of science is developing around new materials and tools (largely from the physical sciences) and new phenomena (largely from the biological sciences). The physical sciences offer tools for synthesis and fabrication of devices for measuring the characteristics of cells and sub-cellular components, and of materials useful in cell and molecular biology; biology offers a window into the most sophisticated collection of functional nanostructures that exists.

  11. Therapeutic strategies for allergic diseases

    NASA Astrophysics Data System (ADS)

    Barnes, Peter J.

    1999-11-01

    Many drugs are now in development for the treatment of atopic diseases, including asthma, allergic rhinitis and atopic dermatitis. These treatments are based on improvements in existing therapies or on a better understanding of the cellular and molecular mechanisms involved in atopic diseases. Although most attention has been focused on asthma, treatments that inhibit the atopic disease process would have application to all atopic diseases, as they often coincide. Most of the many new therapies in development are aimed at inhibiting components of the allergic inflammatory response, but in the future there are real possibilities for the development of preventative and even curative treatments.

  12. The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments

    PubMed Central

    2013-01-01

    Background The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience. Description Recently, the GO-CCO was enriched in content and links to the Biological Process and Molecular Function branches of GO as well as to other ontologies. This was achieved in several ways. We carried out an amalgamation of SAO terms with GO-CCO ones; as a result, nearly 100 new neuroscience-related terms were added to the GO. The GO-CCO also contains relationships to GO Biological Process and Molecular Function terms, as well as connecting to external ontologies such as the Cell Ontology (CL). Terms representing protein complexes in the Protein Ontology (PRO) reference GO-CCO terms for their species-generic counterparts. GO-CCO terms can also be used to search a variety of databases. Conclusions In this publication we provide an overview of the GO-CCO, its overall design, and some recent extensions that make use of additional spatial information. One of the most recent developments of the GO-CCO was the merging in of the SAO, resulting in a single unified ontology designed to serve the needs of GO annotators as well as the specific needs of the neuroscience community. PMID:24093723

  13. The autophagy interaction network of the aging model Podospora anserina.

    PubMed

    Philipp, Oliver; Hamann, Andrea; Osiewacz, Heinz D; Koch, Ina

    2017-03-27

    Autophagy is a conserved molecular pathway involved in the degradation and recycling of cellular components. It is active either as response to starvation or molecular damage. Evidence is emerging that autophagy plays a key role in the degradation of damaged cellular components and thereby affects aging and lifespan control. In earlier studies, it was found that autophagy in the aging model Podospora anserina acts as a longevity assurance mechanism. However, only little is known about the individual components controlling autophagy in this aging model. Here, we report a biochemical and bioinformatics study to detect the protein-protein interaction (PPI) network of P. anserina combining experimental and theoretical methods. We constructed the PPI network of autophagy in P. anserina based on the corresponding networks of yeast and human. We integrated PaATG8 interaction partners identified in an own yeast two-hybrid analysis using ATG8 of P. anserina as bait. Additionally, we included age-dependent transcriptome data. The resulting network consists of 89 proteins involved in 186 interactions. We applied bioinformatics approaches to analyze the network topology and to prove that the network is not random, but exhibits biologically meaningful properties. We identified hub proteins which play an essential role in the network as well as seven putative sub-pathways, and interactions which are likely to be evolutionary conserved amongst species. We confirmed that autophagy-associated genes are significantly often up-regulated and co-expressed during aging of P. anserina. With the present study, we provide a comprehensive biological network of the autophagy pathway in P. anserina comprising PPI and gene expression data. It is based on computational prediction as well as experimental data. We identified sub-pathways, important hub proteins, and evolutionary conserved interactions. The network clearly illustrates the relation of autophagy to aging processes and enables further specific studies to understand autophagy and aging in P. anserina as well as in other systems.

  14. T Lymphocyte Activation Threshold is Increased in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Adams, Charley L.; Gonzalez, M.; Sams, C. F.

    2000-01-01

    There have been substantial advances in molecular and cellular biology that have provided new insight into the biochemical and genetic basis of lymphocyte recognition, activation and expression of distinct functional phenotypes. It has now become evident that for both T and B cells, stimuli delivered through their receptors can result in either clonal expansion or apoptosis. In the case of T cells, clonal expansion of helper cells is accompanied by differentiation into two major functional subsets which regulate the immune response. The pathways between the membrane and the nucleus and their molecular components are an area of very active investigation. This meeting will draw together scientists working on diverse aspects of this problem, including receptor ligand interactions, intracellular pathways that transmit receptor mediated signals and the effect of such signal transduction pathways on gene regulation. The aim of this meeting is to integrate the information from these various experimental approaches into a new synthesis and molecular explanation of T cell activation, differentiation and death.

  15. Genomancy: predicting tumour response to cancer therapy based on the oracle of genetics.

    PubMed

    Williams, P D; Lee, J K; Theodorescu, D

    2009-01-01

    Cells are complex systems that regulate a multitude of biologic pathways involving a diverse array of molecules. Cancer can develop when these pathways become deregulated as a result of mutations in the genes coding for these proteins or of epigenetic changes that affect gene expression, or both1,2. The diversity and interconnectedness of these pathways and their molecular components implies that a variety of mutations may lead to tumorigenic cellular deregulation3-6. This variety, combined with the requirement to overcome multiple anticancer defence mechanisms7, contributes to the heterogeneous nature of cancer. Consequently, tumours with similar histology may vary in their underlying molecular circuitry8-10, with resultant differences in biologic behaviour, manifested in proliferation rate, invasiveness, metastatic potential, and unfortunately, response to cytotoxic therapy. Thus, cancer can be thought of as a family of related tumour subtypes, highlighting the need for individualized prediction both of disease progression and of treatment response, based on the molecular characteristics of the tumour.

  16. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway.

    PubMed

    Algret, Romain; Fernandez-Martinez, Javier; Shi, Yi; Kim, Seung Joong; Pellarin, Riccardo; Cimermancic, Peter; Cochet, Emilie; Sali, Andrej; Chait, Brian T; Rout, Michael P; Dokudovskaya, Svetlana

    2014-11-01

    The TORC1 signaling pathway plays a major role in the control of cell growth and response to stress. Here we demonstrate that the SEA complex physically interacts with TORC1 and is an important regulator of its activity. During nitrogen starvation, deletions of SEA complex components lead to Tor1 kinase delocalization, defects in autophagy, and vacuolar fragmentation. TORC1 inactivation, via nitrogen deprivation or rapamycin treatment, changes cellular levels of SEA complex members. We used affinity purification and chemical cross-linking to generate the data for an integrative structure modeling approach, which produced a well-defined molecular architecture of the SEA complex and showed that the SEA complex comprises two regions that are structurally and functionally distinct. The SEA complex emerges as a platform that can coordinate both structural and enzymatic activities necessary for the effective functioning of the TORC1 pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Circadian Rhythms in Fear Conditioning: An Overview of Behavioral, Brain System, and Molecular Interactions

    PubMed Central

    Stork, Oliver

    2017-01-01

    The formation of fear memories is a powerful and highly evolutionary conserved mechanism that serves the behavioral adaptation to environmental threats. Accordingly, classical fear conditioning paradigms have been employed to investigate fundamental molecular processes of memory formation. Evidence suggests that a circadian regulation mechanism allows for a timestamping of such fear memories and controlling memory salience during both their acquisition and their modification after retrieval. These mechanisms include an expression of molecular clocks in neurons of the amygdala, hippocampus, and medial prefrontal cortex and their tight interaction with the intracellular signaling pathways that mediate neural plasticity and information storage. The cellular activities are coordinated across different brain regions and neural circuits through the release of glucocorticoids and neuromodulators such as acetylcholine, which integrate circadian and memory-related activation. Disturbance of this interplay by circadian phase shifts or traumatic experience appears to be an important factor in the development of stress-related psychopathology, considering these circadian components are of critical importance for optimizing therapeutic approaches to these disorders. PMID:28698810

  18. Cytoscape: a software environment for integrated models of biomolecular interaction networks.

    PubMed

    Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey

    2003-11-01

    Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

  19. Remote control of molecular motors using light-activated gearshifting

    NASA Astrophysics Data System (ADS)

    Bryant, Zev

    2013-03-01

    Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in vivo and provide sophisticated components for directed nanoscale transport in vitro. We previously constructed myosin motors that respond to a change in [Ca++] by reversing their direction of motion along the polarized actin filament. To expand the potential applications of controllable molecular motors, we have now developed myosins that shift gears in response to blue light illumination. Light is a versatile control signal that can be readily modulated in time and space, and is generally orthogonal to cellular signaling. Using structure-guided protein engineering, we have incorporated LOV photoreceptor domains into the lever arms of chimeric myosins, resulting in motors that robustly speed up, slow down, or switch directions upon illumination. These genetically encoded motors should be directly deployable inside living cells. Our successful designs include constructs based on two different myosin classes, and we show that optical velocity control can be implemented in motors that move at microns/sec speeds, enabling practical biological and bioengineering applications.

  20. Molecular and Cellular Biology Animations: Development and Impact on Student Learning

    ERIC Educational Resources Information Center

    McClean, Phillip; Johnson, Christina; Rogers, Roxanne; Daniels, Lisa; Reber, John; Slator, Brian M.; Terpstra, Jeff; White, Alan

    2005-01-01

    Educators often struggle when teaching cellular and molecular processes because typically they have only two-dimensional tools to teach something that plays out in four dimensions. Learning research has demonstrated that visualizing processes in three dimensions aids learning, and animations are effective visualization tools for novice learners…

  1. IN VITRO CARDIAC CELLULAR AND MOLECULAR EFFECTS OF AIR POLLUTION PARTICLE CONSTITUENTS

    EPA Science Inventory

    In Vitro Cardiac Cellular and Molecular Effects of Air Pollution Particle Constituents
    Travis L. Knuckles1, Richard Jaskot2, Judy Richards2, and Kevin L. Dreher2. 1North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606, 2USEPA, Research Triangle Pa...

  2. 76 FR 57066 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review, Group, Cellular and Molecular Biology of Glia Study Section. Date: October 14, 2011. Time: 8 a.m. to 7... Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research, 93.306, 93.333...

  3. 78 FR 72902 - Center For Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... Panel Member Conflict: Molecular and Cellular Neurodegeneration. Date: January 6, 2014. Time: 1:00 p.m... for Scientific Review Special Emphasis Panel, Member Conflict: Molecular and Cellular Neurodevelopment....306, Comparative Medicine; 93.333, Clinical Research; 93.306, 93.333, 93.337, 93.393-93.396, 93.837-93...

  4. The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca2+ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca2+ Entry.

    PubMed

    Malli, Roland; Graier, Wolfgang F

    2017-01-01

    In most cell types, the depletion of internal Ca 2+ stores triggers the activation of Ca 2+ entry. This crucial phenomenon is known since the 1980s and referred to as store-operated Ca 2+ entry (SOCE). With the discoveries of the stromal-interacting molecules (STIMs) and the Ca 2+ -permeable Orai channels as the long-awaited molecular constituents of SOCE, the role of mitochondria in controlling the activity of this particular Ca 2+ entry pathway is kind of buried in oblivion. However, the capability of mitochondria to locally sequester Ca 2+ at sites of Ca 2+ release and entry was initially supposed to rule SOCE by facilitating the Ca 2+ depletion of the endoplasmic reticulum and removing entering Ca 2+ from the Ca 2+ -inhibitable channels, respectively. Moreover, the central role of these organelles in controlling the cellular energy metabolism has been linked to the activity of SOCE. Nevertheless, the exact molecular mechanisms by which mitochondria actually determine SOCE are still pretty obscure. In this essay we describe the complexity of the mitochondrial Ca 2+ uptake machinery and its regulation, molecular components, and properties, which open new ways for scrutinizing the contribution of mitochondria to SOCE. Moreover, data concerning the variability of the morphology and cellular distribution of mitochondria as putative determinants of SOCE activation, maintenance, and termination are summarized.

  5. Human Prostate Cancer Hallmarks Map

    PubMed Central

    Datta, Dipamoy; Aftabuddin, Md.; Gupta, Dinesh Kumar; Raha, Sanghamitra; Sen, Prosenjit

    2016-01-01

    Human prostate cancer is a complex heterogeneous disease that mainly affects elder male population of the western world with a high rate of mortality. Acquisitions of diverse sets of hallmark capabilities along with an aberrant functioning of androgen receptor signaling are the central driving forces behind prostatic tumorigenesis and its transition into metastatic castration resistant disease. These hallmark capabilities arise due to an intense orchestration of several crucial factors, including deregulation of vital cell physiological processes, inactivation of tumor suppressive activity and disruption of prostate gland specific cellular homeostasis. The molecular complexity and redundancy of oncoproteins signaling in prostate cancer demands for concurrent inhibition of multiple hallmark associated pathways. By an extensive manual curation of the published biomedical literature, we have developed Human Prostate Cancer Hallmarks Map (HPCHM), an onco-functional atlas of human prostate cancer associated signaling and events. It explores molecular architecture of prostate cancer signaling at various levels, namely key protein components, molecular connectivity map, oncogenic signaling pathway map, pathway based functional connectivity map etc. Here, we briefly represent the systems level understanding of the molecular mechanisms associated with prostate tumorigenesis by considering each and individual molecular and cell biological events of this disease process. PMID:27476486

  6. Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia

    PubMed Central

    Do, Kim Q.; Cuenod, Michel; Hensch, Takao K.

    2015-01-01

    Schizophrenia is a neurodevelopmental disorder reflecting a convergence of genetic risk and early life stress. The slow progression to first psychotic episode represents both a window of vulnerability as well as opportunity for therapeutic intervention. Here, we consider recent neurobiological insight into the cellular and molecular components of developmental critical periods and their vulnerability to redox dysregulation. In particular, the consistent loss of parvalbumin-positive interneuron (PVI) function and their surrounding perineuronal nets (PNNs) as well as myelination in patient brains is consistent with a delayed or extended period of circuit instability. This linkage to critical period triggers (PVI) and brakes (PNN, myelin) implicates mistimed trajectories of brain development in mental illness. Strategically introduced antioxidant treatment or later reinforcement of molecular brakes may then offer a novel prophylactic psychiatry. PMID:26032508

  7. Molecular Basis for Group B β -hemolytic Streptococcal Disease

    NASA Astrophysics Data System (ADS)

    Hellerqvist, Carl G.; Sundell, Hakan; Gettins, Peter

    1987-01-01

    Group B β -hemolytic Streptococcus (GBS) is a major pathogen affecting newborns. We have investigated the molecular mechanism underlying the respiratory distress induced in sheep after intravenous injection of a toxin produced by this organism. The pathophysiological response is characterized by pulmonary hypertension, followed by granulocytopenia and increased pulmonary vascular permeability to protein. 31P NMR studies of GBS toxin and model components before and after reductive alkaline hydrolysis demonstrated that phosphodiester residues are an integral part of the GBS toxin. Reductive alkaline treatment cleaves phosphate esters from secondary and primary alcohols and renders GBS toxin nontoxic in the sheep model and inactive as a mediator of elastase release in vitro from isolated human granulocytes. We propose that the interaction of cellular receptors with mannosyl phosphodiester groups plays an essential role in the pathophysiological response to GBS toxin.

  8. Systems Approaches to Cancer Biology.

    PubMed

    Archer, Tenley C; Fertig, Elana J; Gosline, Sara J C; Hafner, Marc; Hughes, Shannon K; Joughin, Brian A; Meyer, Aaron S; Piccolo, Stephen R; Shajahan-Haq, Ayesha N

    2016-12-01

    Cancer systems biology aims to understand cancer as an integrated system of genes, proteins, networks, and interactions rather than an entity of isolated molecular and cellular components. The inaugural Systems Approaches to Cancer Biology Conference, cosponsored by the Association of Early Career Cancer Systems Biologists and the National Cancer Institute of the NIH, focused on the interdisciplinary field of cancer systems biology and the challenging cancer questions that are best addressed through the combination of experimental and computational analyses. Attendees found that elucidating the many molecular features of cancer inevitably reveals new forms of complexity and concluded that ensuring the reproducibility and impact of cancer systems biology studies will require widespread method and data sharing and, ultimately, the translation of important findings to the clinic. Cancer Res; 76(23); 6774-7. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  10. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  11. Oxidation-Specific Epitopes are Danger Associated Molecular Patterns Recognized by Pattern Recognition Receptors of Innate Immunity

    PubMed Central

    Miller, Yury I.; Choi, Soo-Ho; Wiesner, Philipp; Fang, Longhou; Harkewicz, Richard; Hartvigsen, Karsten; Boullier, Agnès; Gonen, Ayelet; Diehl, Cody J.; Que, Xuchu; Montano, Erica; Shaw, Peter X.; Tsimikas, Sotirios; Binder, Christoph J.; Witztum, Joseph L.

    2010-01-01

    Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating “oxidation-specific” epitopes. In this review, we will discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of “pattern recognition receptors” (PRRs). By analogy with microbial “pathogen associated molecular patterns” (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent “danger (or damage) associated molecular patterns” (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Further, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provided a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and CRP recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy. PMID:21252151

  12. Gene Expression Profiles in Rice Developing Ovules Provided Evidence for the Role of Sporophytic Tissue in Female Gametophyte Development.

    PubMed

    Wu, Ya; Yang, Liyu; Cao, Aqin; Wang, Jianbo

    2015-01-01

    The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more understanding of the molecular events associated with the ovule development, we used RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes were identified from the four developmental stages of the ovule, respectively. We identified a number of differently expressed genes (DEGs) from three adjacent stage comparisons, which may play crucial roles in ovule development. The DEGs were then conducted functional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Genes related to cellular component biogenesis, membrane-bounded organelles and reproductive regulation were identified to be highly expressed during the ovule development. Different expression levels of auxin-related and cytokinin-related genes were also identified at various stages, providing evidence for the role of sporophytic ovule tissue in female gametophyte development from the aspect of gene expression. Generally, an overall transcriptome analysis for rice ovule development has been conducted. These results increased our knowledge of the complex molecular and cellular events that occur during the development of rice ovule and provided foundation for further studies on rice ovule development.

  13. From basics to clinical: a comprehensive review on spinal cord injury.

    PubMed

    Silva, Nuno A; Sousa, Nuno; Reis, Rui L; Salgado, António J

    2014-03-01

    Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Mechanism of freeze-thaw injury and recovery: A cool retrospective and warming up to new ideas.

    PubMed

    Arora, Rajeev

    2018-05-01

    Understanding cellular mechanism(s) of freeze-thaw injury (FTI) is key to the efforts for improving plant freeze-tolerance by cultural methods or molecular/genetic approaches. However, not much work has been done in the last 25+ years to advance our understanding of the nature and cellular loci of FTI. Currently, two FTI lesions are predominantly implicated: 1) structural and functional perturbations in plasma membrane; 2) ROS-induced oxidative damage. While both have stood the test of time, many questions remain unresolved and other potentially significant lesions need to be investigated. Additionally, molecular mechanism of post-thaw recovery (PTR), a critical component of frost-survival, has not been well investigated. Mechanistic understanding of repair after reversible injury could expand the options for strategies to improve frost-hardiness. In this review, without claiming to be exhaustive, I have attempted to synthesize major discoveries from last several decades on the mechanisms of FTI and the relatively little research conducted thus far on PTR mechanisms. It is followed by proposing of hypotheses for mechanism(s) for irreversible FTI or PTR involving cytosolic calcium and ROS signaling. Perspective is presented on some unresolved questions and research on new ideas to fill the knowledge gaps and advance the field. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Comparative transcriptional profiling of tildipirosin-resistant and sensitive Haemophilus parasuis.

    PubMed

    Lei, Zhixin; Fu, Shulin; Yang, Bing; Liu, Qianying; Ahmed, Saeed; Xu, Lei; Xiong, Jincheng; Cao, Jiyue; Qiu, Yinsheng

    2017-08-08

    Numerous studies have been conducted to examine the molecular mechanism of Haemophilus parasuis resistance to antibiotic, but rarely to tildipirosin. In the current study, transcriptional profiling was applied to analyse the variation in gene expression of JS0135 and tildipirosin-resistant JS32. The growth curves showed that JS32 had a higher growth rate but fewer bacteria than JS0135. The cell membranes of JS32 and a resistant clinical isolate (HB32) were observed to be smoother than those of JS0135. From the comparative gene expression profile 349 up- and 113 downregulated genes were observed, covering 37 GO and 63 KEGG pathways which are involved in biological processes (11), cellular components (17), molecular function (9), cellular processes (1), environmental information processing (4), genetic information processing (9) and metabolism (49) affected in JS32. In addition, the relative overexpression of genes of the metabolism pathway (HAPS_RS09315, HAPS_RS09320), ribosomes (HAPS_RS07815) and ABC transporters (HAPS_RS10945) was detected, particularly the metabolism pathway, and verified with RT-qPCR. Collectively, the gene expression profile in connection with tildipirosin resistance factors revealed unique and highly resistant determinants of H. parasuis to macrolides that warrant further attention due to the significant threat of bacterial resistance.

  16. Molecular and cellular targets affected by green tea extracts in vascular cells

    USDA-ARS?s Scientific Manuscript database

    Consumption of green or black tea has been associated with a lower risk for the development of cardiovascular diseases, but despite many studies, a firm connection has not been delineated. Several molecular and cellular mechanisms may play a role in the preventive activity of tea. As reviewed here, ...

  17. The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2

    USDA-ARS?s Scientific Manuscript database

    talpid2 is an avian autosomal recessive mutant with a myriad of congenital malformations, including polydactyly and facial clefting. Although phenotypically similar to talpid3, talpid2 has a distinct facial phenotype and an unknown cellular, molecular and genetic basis. We set out to determine the e...

  18. Vascular biology: cellular and molecular profiling.

    PubMed

    Baird, Alison E; Wright, Violet L

    2006-02-01

    Our understanding of the mechanisms underlying cerebrovascular atherosclerosis has improved in recent years, but significant gaps remain. New insights into the vascular biological processes that result in ischemic stroke may come from cellular and molecular profiling studies of the peripheral blood. In recent cellular profiling studies, increased levels of a proinflammatory T-cell subset (CD4 (+)CD28 (-)) have been associated with stroke recurrence and death. Expansion of this T-cell subset may occur after ischemic stroke and be a pathogenic mechanism leading to recurrent stroke and death. Increases in certain phenotypes of endothelial cell microparticles have been found in stroke patients relative to controls, possibly indicating a state of increased vascular risk. Molecular profiling approaches include gene expression profiling and proteomic methods that permit large-scale analyses of the transcriptome and the proteome, respectively. Ultimately panels of genes and proteins may be identified that are predictive of stroke risk. Cellular and molecular profiling studies of the peripheral blood and of atherosclerotic plaques may also pave the way for the development of therapeutic agents for primary and secondary stroke prevention.

  19. A Molecular atlas of Xenopus respiratory system development.

    PubMed

    Rankin, Scott A; Thi Tran, Hong; Wlizla, Marcin; Mancini, Pamela; Shifley, Emily T; Bloor, Sean D; Han, Lu; Vleminckx, Kris; Wert, Susan E; Zorn, Aaron M

    2015-01-01

    Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/β-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development. © 2014 Wiley Periodicals, Inc.

  20. Microscopy and bioinformatic analyses of lipid metabolism implicate a sporophytic signaling network supporting pollen development in Arabidopsis.

    PubMed

    Wang, Yixing; Wu, Hong; Yang, Ming

    2008-07-01

    The Arabidopsis sporophytic tapetum undergoes a programmed degeneration process to secrete lipid and other materials to support pollen development. However, the molecular mechanism regulating the degeneration process is unknown. To gain insight into this molecular mechanism, we first determined that the most critical period for tapetal secretion to support pollen development is from the vacuolate microspore stage to the early binucleate pollen stage. We then analyzed the expression of enzymes responsible for lipid biosynthesis and degradation with available in-silico data. The genes for these enzymes that are expressed in the stamen but not in the concurrent uninucleate microspore and binucleate pollen are of particular interest, as they presumably hold the clues to unique molecular processes in the sporophytic tissues compared to the gametophytic tissue. No gene for lipid biosynthesis but a single gene encoding a patatin-like protein likely for lipid mobilization was identified based on the selection criterion. A search for genes co-expressed with this gene identified additional genes encoding typical signal transduction components such as a leucine-rich repeat receptor kinase, an extra-large G-protein, other protein kinases, and transcription factors. In addition, proteases, cell wall degradation enzymes, and other proteins were also identified. These proteins thus may be components of a signaling network leading to degradation of a broad range of cellular components. Since a broad range of degradation activities is expected to occur only in the tapetal degeneration process at this stage in the stamen, it is further hypothesized that the signaling network acts in the tapetal degeneration process.

  1. Nandrolone decanoate interferes with testosterone biosynthesis altering blood-testis barrier components.

    PubMed

    Barone, Rosario; Pitruzzella, Alessandro; Marino Gammazza, Antonella; Rappa, Francesca; Salerno, Monica; Barone, Fulvio; Sangiorgi, Claudia; D'Amico, Daniela; Locorotondo, Nicola; Di Gaudio, Francesca; Cipolloni, Luigi; Di Felice, Valentina; Schiavone, Stefania; Rapisarda, Venerando; Sani, Gabriele; Tambo, Amos; Cappello, Francesco; Turillazzi, Emanuela; Pomara, Cristoforo

    2017-08-01

    The aim of this study was to investigate whether nandrolone decanoate (ND) use affects testosterone production and testicular morphology in a model of trained and sedentary mice. A group of mice underwent endurance training while another set led a sedentary lifestyle and were freely mobile within cages. All experimental groups were treated with either ND or peanut oil at different doses for 6 weeks. Testosterone serum levels were measured via liquid chromatography-mass spectrometry. Western blot analysis and quantitative real-time PCR were utilized to determine gene and protein expression levels of the primary enzymes implicated in testosterone biosynthesis and gene expression levels of the blood-testis barrier (BTB) components. Immunohistochemistry and immunofluorescence were conducted for testicular morphological evaluation. The study demonstrated that moderate to high doses of ND induced a diminished serum testosterone level and altered the expression level of the key steroidogenic enzymes involved in testosterone biosynthesis. At the morphological level, ND induced degradation of the BTB by targeting the tight junction protein-1 (TJP1). ND stimulation deregulated metalloproteinase-9, metalloproteinase-2 (MMP-2) and the tissue inhibitor of MMP-2. Moreover, ND administration resulted in a mislocalization of mucin-1. In conclusion, ND abuse induces a decline in testosterone production that is unable to regulate the internalization and redistribution of TJP1 and may induce the deregulation of other BTB constituents via the inhibition of MMP-2. ND may well be considered as both a potential inducer of male infertility and a potential risk factor to a low endogenous bioavailable testosterone. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Deconstructing and constructing innate immune functions using molecular sensors and actuators

    NASA Astrophysics Data System (ADS)

    Coutinho, Kester; Inoue, Takanari

    2016-05-01

    White blood cells such as neutrophils and macrophages are made competent for chemotaxis and phagocytosis -- the dynamic cellular behaviors that are hallmarks of their innate immune functions -- by the reorganization of complex biological circuits during differentiation. Conventional loss-of-function approaches have revealed that more than 100 genes participate in these cellular functions, and we have begun to understand the intricate signaling circuits that are built up from these gene products. We now appreciate: (1) that these circuits come in a variety of flavors -- so that we can make a distinction between genetic circuits, metabolic circuits and signaling circuits; and (2) that they are usually so complex that the assumption of multiple feedback loops, as well as that of crosstalk between seemingly independent pathways, is now routine. It has not escaped our notice, however, that just as physicists and electrical engineers have long been able to disentangle complex electric circuits simply by repetitive cycles of probing and measuring electric currents using a voltmeter, we might similarly be able to dissect these intricate biological circuits by incorporating equivalent approaches in the fields of cell biology and bioengineering. Existing techniques in biology for probing individual circuit components are unfortunately lacking, so that the overarching goal of drawing an exact circuit diagram for the whole cell -- complete with kinetic parameters for connections between individual circuit components -- is not yet in near sight. My laboratory and others have thus begun the development of a new series of molecular tools that can measurably investigate the circuit connectivity inside living cells, as if we were doing so on a silicon board. In these proceedings, I will introduce some of these techniques, provide examples of their implementation, and offer a perspective on directions moving forward.

  3. Deoxycholic acid promotes development of gastroesophageal reflux disease and Barrett's oesophagus by modulating integrin-αv trafficking.

    PubMed

    Prichard, David O; Byrne, Anne Marie; Murphy, James O; Reynolds, John V; O'Sullivan, Jacintha; Feighery, Ronan; Doyle, Brendan; Eldin, Osama Sharaf; Finn, Stephen P; Maguire, Aoife; Duff, Deirdre; Kelleher, Dermot P; Long, Aideen

    2017-12-01

    The fundamental mechanisms underlying erosive oesophagitis and subsequent development of Barrett's oesophagus (BO) are poorly understood. Here, we investigated the contribution of specific components of the gastric refluxate on adhesion molecules involved in epithelial barrier maintenance. Cell line models of squamous epithelium (HET-1A) and BO (QH) were used to examine the effects of bile acids on cell adhesion to extracellular matrix proteins (Collagen, laminin, vitronectin, fibronectin) and expression of integrin ligands (α 3 , α 4, α 5 , α 6 and α ν ). Experimental findings were validated in human explant oesophageal biopsies, a rat model of gastroesophageal reflux disease (GORD) and in patient tissue microarrays. The bile acid deoxycholic acid (DCA) specifically reduced adhesion of HET-1A cells to vitronectin and reduced cell-surface expression of integrin-α ν via effects on endocytic recycling processes. Increased expression of integrin-α v was observed in ulcerated tissue in a rat model of GORD and in oesophagitis and Barrett's intestinal metaplasia patient tissue compared to normal squamous epithelium. Increased expression of integrin-α ν was observed in QH BO cells compared to HET-1A cells. QH cells were resistant to DCA-mediated loss of adhesion and reduction in cell-surface expression of integrin-α ν . We demonstrated that a specific component of the gastric refluxate, DCA, affects the epithelial barrier through modulation of integrin α ν expression, providing a novel mechanism for bile acid-mediated erosion of oesophageal squamous epithelium and promotion of BO. Strategies aimed at preventing bile acid-mediated erosion should be considered in the clinical management of patients with GORD. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Naringin in Ganshuang Granule suppresses activation of hepatic stellate cells for anti-fibrosis effect by inhibition of mammalian target of rapamycin.

    PubMed

    Shi, Hongbo; Shi, Honglin; Ren, Feng; Chen, Dexi; Chen, Yu; Duan, Zhongping

    2017-03-01

    A previous study has demonstrated that Ganshuang granule (GSG) plays an anti-fibrotic role partially by deactivation of hepatic stellate cells (HSCs). In HSCs activation, mammalian target of rapamycin (mTOR)-autophagy plays an important role. We attempted to investigate the role of mTOR-autophagy in anti-fibrotic effect of GSG. The cirrhotic mouse model was prepared to demonstrate the anti-fibrosis effect of GSG. High performance liquid chromatography (HPLC) analyses were used to identify the active component of GSG. The primary mouse HSCs were isolated and naringin was added into activated HSCs to observe its anti-fibrotic effect. 3-methyladenine (3-MA) and Insulin-like growth factor-1 (IGF-1) was added, respectively, into fully activated HSCs to explore the role of autophagy and mTOR. GSG played an anti-fibrotic role through deactivation of HSCs in cirrhotic mouse model. The concentration of naringin was highest in GSG by HPLC analyses and naringin markedly suppressed HSCs activation in vitro, which suggested that naringin was the main active component of GSG. The deactivation of HSCs caused by naringin was not because of the autophagic activation but mTOR inhibition, which was supported by the following evidence: first, naringin induced autophagic activation, but when autophagy was blocked by 3-MA, deactivation of HSCs was not attenuated or reversed. Second, naringin inhibited mTOR pathway, meanwhile when mTOR was activated by IGF-1, deactivation of HSCs was reversed. In conclusion, we have demonstrated naringin in GSG suppressed activation of HSCs for anti-fibrosis effect by inhibition of mTOR, indicating a potential therapeutic application for liver cirrhosis. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Proteome analysis of excretory-secretory proteins of Entamoeba histolytica HM1:IMSS via LC-ESI-MS/MS and LC-MALDI-TOF/TOF.

    PubMed

    Ujang, Jorim Anak; Kwan, Soon Hong; Ismail, Mohd Nazri; Lim, Boon Huat; Noordin, Rahmah; Othman, Nurulhasanah

    2016-01-01

    Excretory-secretory (ES) proteins of E. histolytica are thought to play important roles in the host invasion, metabolism, and defence. Elucidation of the types and functions of E. histolytica ES proteins can further our understanding of the disease pathogenesis. Thus, the aim of this study is to use proteomics approach to better understand the complex ES proteins of the protozoa. E. histolytica ES proteins were prepared by culturing the trophozoites in protein-free medium. The ES proteins were identified using two mass spectrometry tools, namely, LC-ESI-MS/MS and LC-MALDI-TOF/TOF. The identified proteins were then classified according to their biological processes, molecular functions, and cellular components using the Panther classification system (PantherDB). A complementary list of 219 proteins was identified; this comprised 201 proteins detected by LC-ESI-MS/MS and 107 proteins by LC-MALDI-TOF/TOF. Of the 219 proteins, 89 were identified by both mass-spectrometry systems, while 112 and 18 proteins were detected exclusively by LC-ESI-MS/MS and LC-MALDI-TOF/TOF respectively. Biological protein functional analysis using PantherDB showed that 27% of the proteins were involved in metabolic processes. Using molecular functional and cellular component analyses, 35% of the proteins were found to be involved in catalytic activity, and 21% were associated with the cell parts. This study showed that complementary use of LC-ESI-MS/MS and LC-MALDI-TOF/TOF has improved the identification of ES proteins. The results have increased our understanding of the types of proteins excreted/secreted by the amoeba and provided further evidence of the involvement of ES proteins in intestinal colonisation and evasion of the host immune system, as well as in encystation and excystation of the parasite.

  6. Effect of the dietary inclusion of soybean components on the innate immune system in zebrafish.

    PubMed

    Fuentes-Appelgren, Pamela; Opazo, Rafael; Barros, Luis; Feijoó, Carmen G; Urzúa, Victoria; Romero, Jaime

    2014-02-01

    Some components of plant-based meals, such as saponins and vegetal proteins, have been proposed as inducers of intestinal inflammation in some fish. However, the molecular and cellular bases for this phenomenon have not been reported. In this work, zebrafish were used as a model to evaluate the effects of individual soybean meal components, such as saponins and soy proteins. Zebrafish larvae fed a fish meal feed containing soy components were assessed according to low and high inclusion levels. The granulocytes associated with the digestive tract and the induction of genes related to the immune system were quantitated as markers of the effects of the dietary components. A significant increase in the number of granulocytes was observed after feeding fish diets containing high saponin or soy protein contents. These dietary components also induced the expression of genes related to the innate immune system, including myeloid-specific peroxidase, as well as the complement protein and cytokines. These results reveal the influence of dietary components on the stimulation of the immune system. These observations could be significant to understanding the contributions of saponin and soy protein to the onset of enteritis in aqua-cultured fish, and this knowledge may aid in defining the role of the innate immune system in other inflammatory diseases involving dietary components in mammals.

  7. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation

    PubMed Central

    Chen, Ke; Gao, Ye; Mih, Nathan; O’Brien, Edward J.; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Maintenance of a properly folded proteome is critical for bacterial survival at notably different growth temperatures. Understanding the molecular basis of thermoadaptation has progressed in two main directions, the sequence and structural basis of protein thermostability and the mechanistic principles of protein quality control assisted by chaperones. Yet we do not fully understand how structural integrity of the entire proteome is maintained under stress and how it affects cellular fitness. To address this challenge, we reconstruct a genome-scale protein-folding network for Escherichia coli and formulate a computational model, FoldME, that provides statistical descriptions of multiscale cellular response consistent with many datasets. FoldME simulations show (i) that the chaperones act as a system when they respond to unfolding stress rather than achieving efficient folding of any single component of the proteome, (ii) how the proteome is globally balanced between chaperones for folding and the complex machinery synthesizing the proteins in response to perturbation, (iii) how this balancing determines growth rate dependence on temperature and is achieved through nonspecific regulation, and (iv) how thermal instability of the individual protein affects the overall functional state of the proteome. Overall, these results expand our view of cellular regulation, from targeted specific control mechanisms to global regulation through a web of nonspecific competing interactions that modulate the optimal reallocation of cellular resources. The methodology developed in this study enables genome-scale integration of environment-dependent protein properties and a proteome-wide study of cellular stress responses. PMID:29073085

  8. Challenges in structural approaches to cell modeling

    PubMed Central

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A.

    2016-01-01

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. PMID:27255863

  9. Evaluation of Toxic Effects of Aeration and Trichloroethylene Oxidation on Methanotrophic Bacteria Grown with Different Nitrogen Sources

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1999-01-01

    In this study we evaluated specific and nonspecific toxic effects of aeration and trichloroethylene (TCE) oxidation on methanotrophic bacteria grown with different nitrogen sources (nitrate, ammonia, and molecular nitrogen). The specific toxic effects, exerted directly on soluble methane monooxygenase (sMMO), were evaluated by comparing changes in methane uptake rates and naphthalene oxidation rates following aeration and/or TCE oxidation. Nonspecific toxic effects, defined as general cellular damage, were examined by using a combination of epifluorescent cellular stains to measure viable cell numbers based on respiratory activity and measuring formate oxidation activities following aeration and TCE transformation. Our results suggest that aeration damages predominantly sMMO rather than other general cellular components, whereas TCE oxidation exerts a broad range of toxic effects that damage both specific and nonspecific cellular functions. TCE oxidation caused sMMO-catalyzed activity and respiratory activity to decrease linearly with the amount of substrate degraded. Severe TCE oxidation toxicity resulted in total cessation of the methane, naphthalene, and formate oxidation activities and a 95% decrease in the respiratory activity of methanotrophs. The failure of cells to recover even after 7 days of incubation with methane suggests that cellular recovery following severe TCE product toxicity is not always possible. Our evidence suggests that generation of greater amounts of sMMO per cell due to nitrogen fixation may be responsible for enhanced TCE oxidation activities of nitrogen-fixing methanotrophs rather than enzymatic protection mechanisms associated with the nitrogenase enzymes. PMID:9925614

  10. Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses

    PubMed Central

    Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.

    2014-01-01

    Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122:1261–1270; http://dx.doi.org/10.1289/ehp.1408244 PMID:25117432

  11. XML Encoding of Features Describing Rule-Based Modeling of Reaction Networks with Multi-Component Molecular Complexes

    PubMed Central

    Blinov, Michael L.; Moraru, Ion I.

    2011-01-01

    Multi-state molecules and multi-component complexes are commonly involved in cellular signaling. Accounting for molecules that have multiple potential states, such as a protein that may be phosphorylated on multiple residues, and molecules that combine to form heterogeneous complexes located among multiple compartments, generates an effect of combinatorial complexity. Models involving relatively few signaling molecules can include thousands of distinct chemical species. Several software tools (StochSim, BioNetGen) are already available to deal with combinatorial complexity. Such tools need information standards if models are to be shared, jointly evaluated and developed. Here we discuss XML conventions that can be adopted for modeling biochemical reaction networks described by user-specified reaction rules. These could form a basis for possible future extensions of the Systems Biology Markup Language (SBML). PMID:21464833

  12. Identification and High-Resolution Imaging of α-Tocopherol from Human Cells to Whole Animals by TOF-SIMS Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bruinen, Anne L.; Fisher, Gregory L.; Balez, Rachelle; van der Sar, Astrid M.; Ooi, Lezanne; Heeren, Ron M. A.

    2018-06-01

    A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. [Figure not available: see fulltext.

  13. Cellular and physiological mechanisms underlying blood flow regulation in the retina choroid in health disease

    PubMed Central

    Kur, Joanna; Newman, Eric A.; Chan-Ling, Tailoi

    2012-01-01

    We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimer's disease. We close by discussing issues that remain to be explored. PMID:22580107

  14. Spatiotemporal endothelial cell - pericyte association in tumors as shown by high resolution 4D intravital imaging.

    PubMed

    Seynhaeve, Ann L B; Oostinga, Douwe; van Haperen, Rien; Eilken, Hanna M; Adams, Susanne; Adams, Ralf H; Ten Hagen, Timo L M

    2018-06-25

    Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell - pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells.

  15. The targeting of plant cellular systems by injected type III effector proteins.

    PubMed

    Lewis, Jennifer D; Guttman, David S; Desveaux, Darrell

    2009-12-01

    The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.

  16. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race.

    PubMed

    Ramesh, Shunmugiah V; Sahu, Pranav P; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R

    2017-09-15

    Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.

  17. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race

    PubMed Central

    Ramesh, Shunmugiah V.; Sahu, Pranav P.; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R.

    2017-01-01

    Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant’s defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions. PMID:28914771

  18. The Evolution of Two-Component Signal Transduction Systems

    PubMed Central

    Capra, Emily J.; Laub, Michael T.

    2014-01-01

    To exist in a wide range of environmental niches, bacteria must sense and respond to a myriad of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically comprised of a histidine kinase that receives the input stimuli and a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights. PMID:22746333

  19. Cellular and molecular basis of decision-making

    PubMed Central

    Yapici, Nilay; Zimmer, Manuel; Domingos, Ana I

    2014-01-01

    People think they are in control of their own decisions: what to eat or drink, whom to marry or pick a fight with, where to live, what to buy. Behavioural economists and neurophysiologists have long studied decision-making behaviours. However, these behaviours have only recently been studied through the light of molecular genetics. Here, we review recent research in mice, Drosophila melanogaster and Caenorhabditis elegans, that analyses the molecular and cellular mechanisms underlying decision-making. These studies interrogate decision-making about food, sexual behaviour, aggression or foraging strategies, and add molecular and cell biology understanding onto the consilience of brain and decision. PMID:25239948

  20. An integrated overview of spatiotemporal organization and regulation in mitosis in terms of the proteins in the functional supercomplexes.

    PubMed

    Zheng, Yueyuan; Guo, Junjie; Li, Xu; Xie, Yubin; Hou, Mingming; Fu, Xuyang; Dai, Shengkun; Diao, Rucheng; Miao, Yanyan; Ren, Jian

    2014-01-01

    Eukaryotic cells may divide via the critical cellular process of cell division/mitosis, resulting in two daughter cells with the same genetic information. A large number of dedicated proteins are involved in this process and spatiotemporally assembled into three distinct super-complex structures/organelles, including the centrosome/spindle pole body, kinetochore/centromere and cleavage furrow/midbody/bud neck, so as to precisely modulate the cell division/mitosis events of chromosome alignment, chromosome segregation and cytokinesis in an orderly fashion. In recent years, many efforts have been made to identify the protein components and architecture of these subcellular organelles, aiming to uncover the organelle assembly pathways, determine the molecular mechanisms underlying the organelle functions, and thereby provide new therapeutic strategies for a variety of diseases. However, the organelles are highly dynamic structures, making it difficult to identify the entire components. Here, we review the current knowledge of the identified protein components governing the organization and functioning of organelles, especially in human and yeast cells, and discuss the multi-localized protein components mediating the communication between organelles during cell division.

  1. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2012-05-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  2. Coordinating Center: Molecular and Cellular Findings of Screen-Detected Lesions | Division of Cancer Prevention

    Cancer.gov

    The Molecular and Cellular Characterization of Screen‐Detected Lesions ‐ Coordinating Center and Data Management Group will provide support for the participating studies responding to RFA CA14‐10. The coordinating center supports three main domains: network coordination, statistical support and computational analysis and protocol development and database support. Support for

  3. The Need for Novel Informatics Tools for Integrating and Planning Research in Molecular and Cellular Cognition

    ERIC Educational Resources Information Center

    Silva, Alcino J.; Müller, Klaus-Robert

    2015-01-01

    The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field, researchers routinely use approaches and information from a variety of areas in neuroscience and other…

  4. Molecular and Cellular Mechanisms Elucidating Neurocognitive Basis of Functional Impairments Associated with Intellectual Disability in Down Syndrome

    ERIC Educational Resources Information Center

    Rachidi, Mohammed; Lopes, Carmela

    2010-01-01

    Down syndrome, the most common genetic cause of intellectual disability, is associated with brain disorders due to chromosome 21 gene overdosage. Molecular and cellular mechanisms involved in the neuromorphological alterations and cognitive impairments are reported herein in a global model. Recent advances in Down syndrome research have lead to…

  5. CELLULAR AND MOLECULAR MECHANISMS OF ACTION OF LINURON: AN ANTIANDROGENIC HERBICIDE THAT PRODUCES REPRODUCTIVE MALFORMATIONS IN MALE RATS

    EPA Science Inventory

    Title: CELLULAR AND MOLECULAR MECHANISMS OF ACTION OF LINURON: AN ANTIANDROGENIC HERBICIDE THAT PRODUCES REPRODUCTIVE MALFORMATIONS IN MALE RATS. C Lambright1, J Ostby, K Bobseine, V Wilson, AK Hotchkiss2, PC Mann3 and LE Gray Jr1.

    Antiandrogenic chemicals alter sex d...

  6. Cellular Strategies of Protein Quality Control

    PubMed Central

    Chen, Bryan; Retzlaff, Marco; Roos, Thomas; Frydman, Judith

    2011-01-01

    Eukaryotic cells must contend with a continuous stream of misfolded proteins that compromise the cellular protein homeostasis balance and jeopardize cell viability. An elaborate network of molecular chaperones and protein degradation factors continually monitor and maintain the integrity of the proteome. Cellular protein quality control relies on three distinct yet interconnected strategies whereby misfolded proteins can either be refolded, degraded, or delivered to distinct quality control compartments that sequester potentially harmful misfolded species. Molecular chaperones play a critical role in determining the fate of misfolded proteins in the cell. Here, we discuss the spatial and temporal organization of cellular quality control strategies and their implications for human diseases linked to protein misfolding and aggregation. PMID:21746797

  7. Cellular Homeostasis and Aging.

    PubMed

    Hartl, F Ulrich

    2016-06-02

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans.

  8. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora

    NASA Astrophysics Data System (ADS)

    Li, Bin; Bhandari, Dhaka Ram; Römpp, Andreas; Spengler, Bernhard

    2016-10-01

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) at 10 μm pixel size was performed to unravel the spatio-chemical distribution of major secondary metabolites in the root of Paeonia lactiflora. The spatial distributions of two major classes of bioactive components, gallotannins and monoterpene glucosides, were investigated and visualized at the cellular level in tissue sections of P. lactiflora roots. Accordingly, other primary and secondary metabolites were imaged, including amino acids, carbohydrates, lipids and monoterpenes, indicating the capability of untargeted localization of metabolites by using high-resolution MSI platform. The employed AP-SMALDI MSI system provides significant technological advancement in the visualization of individual molecular species at the cellular level. In contrast to previous histochemical studies of tannins using unspecific staining reagents, individual gallotannin species were accurately localized and unequivocally discriminated from other phenolic components in the root tissues. High-quality ion images were obtained, providing significant clues for understanding the biosynthetic pathway of gallotannins and monoterpene glucosides and possibly helping to decipher the role of tannins in xylem cells differentiation and in the defence mechanisms of plants, as well as to investigate the interrelationship between tannins and lignins.

  9. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora.

    PubMed

    Li, Bin; Bhandari, Dhaka Ram; Römpp, Andreas; Spengler, Bernhard

    2016-10-31

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) at 10 μm pixel size was performed to unravel the spatio-chemical distribution of major secondary metabolites in the root of Paeonia lactiflora. The spatial distributions of two major classes of bioactive components, gallotannins and monoterpene glucosides, were investigated and visualized at the cellular level in tissue sections of P. lactiflora roots. Accordingly, other primary and secondary metabolites were imaged, including amino acids, carbohydrates, lipids and monoterpenes, indicating the capability of untargeted localization of metabolites by using high-resolution MSI platform. The employed AP-SMALDI MSI system provides significant technological advancement in the visualization of individual molecular species at the cellular level. In contrast to previous histochemical studies of tannins using unspecific staining reagents, individual gallotannin species were accurately localized and unequivocally discriminated from other phenolic components in the root tissues. High-quality ion images were obtained, providing significant clues for understanding the biosynthetic pathway of gallotannins and monoterpene glucosides and possibly helping to decipher the role of tannins in xylem cells differentiation and in the defence mechanisms of plants, as well as to investigate the interrelationship between tannins and lignins.

  10. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    PubMed

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C L; Tanaka, Yuetsu; Xia, Zongping

    2016-04-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  11. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains

    PubMed Central

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C. L.; Tanaka, Yuetsu; Xia, Zongping

    2016-01-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation. PMID:27082114

  12. Dynamic transcription profiles of “Qinguan” apple (Malus × domestica) leaves in response to Marssonina coronaria inoculation

    PubMed Central

    Xu, Jianhua; Li, Miaomiao; Jiao, Peng; Tao, Hongxia; Wei, Ningning; Ma, Fengwang; Zhang, Junke

    2015-01-01

    Marssonina apple blotch, caused by the fungus Marssonina coronaria, is one of the most destructive apple diseases in China and East Asia. A better understanding of the plant's response to fungi during pathogenesis is urgently needed to improve plant resistance and to breed resistant cultivars. To address this, the transcriptomes of “Qinguan” (a cultivar with high resistance to M. coronaria) apple leaves were sequenced at 12, 24, 48, and 72 h post-inoculation (hpi) with Marssonina coronaria. The comparative results showed that a total of 1956 genes were differentially expressed between the inoculated and control samples at the 4 time points. Gene ontology (GO) term enrichment analysis of differentially expressed genes (DEGs) revealed changes in cellular component, secondary metabolism including chalcone isomerase activity, phytoalexin biosynthetic process, anthocyanin-containing compound biosynthetic process, lignin biosynthetic process, positive regulation of flavonoid biosynthetic process; and molecular functions or biological processes related to the defense response, biotic stimulus response, wounding response and fungus response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs were significantly enriched in flavonoid biosynthesis, vitamin B6 metabolism, phenylpropanoid biosynthesis, and the stilbenoid, diarylheptanoid and gingerol biosynthesis pathways. Furthermore, the importance of changes in cellular components and partial polyphenol compounds when encountering M. coronaria are discussed. PMID:26528306

  13. Oxygen-sensitive potassium channels in chemoreceptor cell physiology: making a virtue of necessity.

    PubMed

    Gonzalez, Constancio; Vaquero, Luis M; López-López, José Ramón; Pérez-García, M Teresa

    2009-10-01

    The characterization of the molecular mechanisms involved in low-oxygen chemotransduction has been an active field of research since the first description of an oxygen-sensitive K(+) channel in rabbit carotid body (CB) chemoreceptor cells. As a result, a large number of components of the transduction cascade, from O(2) sensors to O(2)-sensitive ion channels, have been found. Although the endpoints of the process are analogous, the heterogeneity of the elements involved in the different chemoreceptor tissues precludes a unifying theory of hypoxic signaling, and it has been a source of controversy. However, when these molecular constituents of the hypoxic cascade are brought back to their physiological context, it becomes clear that the diversity of mechanisms is necessary to build up an integrated cellular response that demands the concerted action of several O(2) sensors and several effectors.

  14. The soft mechanical signature of glial scars in the central nervous system

    NASA Astrophysics Data System (ADS)

    Moeendarbary, Emad; Weber, Isabell P.; Sheridan, Graham K.; Koser, David E.; Soleman, Sara; Haenzi, Barbara; Bradbury, Elizabeth J.; Fawcett, James; Franze, Kristian

    2017-03-01

    Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.

  15. Structural insights into the rhabdovirus transcription/replication complex.

    PubMed

    Ivanov, Ivan; Yabukarski, Filip; Ruigrok, Rob W H; Jamin, Marc

    2011-12-01

    The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Disease networks. Uncovering disease-disease relationships through the incomplete interactome.

    PubMed

    Menche, Jörg; Sharma, Amitabh; Kitsak, Maksim; Ghiassian, Susan Dina; Vidal, Marc; Loscalzo, Joseph; Barabási, Albert-László

    2015-02-20

    According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes. Copyright © 2015, American Association for the Advancement of Science.

  17. Epigenetic regulation of female puberty.

    PubMed

    Lomniczi, Alejandro; Wright, Hollis; Ojeda, Sergio R

    2015-01-01

    Substantial progress has been made in recent years toward deciphering the molecular and genetic underpinnings of the pubertal process. The availability of powerful new methods to interrogate the human genome has led to the identification of genes that are essential for puberty to occur. Evidence has also emerged suggesting that the initiation of puberty requires the coordinated activity of gene sets organized into functional networks. At a cellular level, it is currently thought that loss of transsynaptic inhibition, accompanied by an increase in excitatory inputs, results in the pubertal activation of GnRH release. This concept notwithstanding, a mechanism of epigenetic repression targeting genes required for the pubertal activation of GnRH neurons was recently identified as a core component of the molecular machinery underlying the central restraint of puberty. In this chapter we will discuss the potential contribution of various mechanisms of epigenetic regulation to the hypothalamic control of female puberty. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Toward RNA nanoparticle vaccines: synergizing RNA and inorganic nanoparticles to achieve immunopotentiation.

    PubMed

    DeLong, Robert K; Curtis, Chandler B

    2017-03-01

    Traditionally, vaccines have been composed of live attenuated or killed microorganisms. Alternatively, individual protein subunits or other molecular components of the microorganism can serve as the antigen and trigger an antibody response by the immune system. The immune system is a coordinated molecular and cellular response that works in concert to check the spread of infection. In the past decade, there has been much progress on DNA vaccines. DNA vaccination includes using the coding segments of a viral or bacterial genome to generate an immune response. However, the potential advantage of combining an RNA molecule with inorganic nanoparticle delivery should be considered, with the goal to achieve immuno-synergy between the two and to overcome some of the current limitations of DNA vaccines and traditional vaccines. WIREs Nanomed Nanobiotechnol 2017, 9:e1415. doi: 10.1002/wnan.1415 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  19. Neuronal control of energy homeostasis

    PubMed Central

    Gao, Qian; Horvath, Tamas L.

    2013-01-01

    Neuronal control of body energy homeostasis is the key mechanism by which animals and humans regulate their long-term energy balance. Various hypothalamic neuronal circuits (which include the hypothalamic melanocortin, midbrain dopamine reward and caudal brainstem autonomic feeding systems) control energy intake and expenditure to maintain body weight within a narrow range for long periods of a life span. Numerous peripheral metabolic hormones and nutrients target these structures providing feedback signals that modify the default “settings” of neuronal activity to accomplish this balance. A number of molecular genetic tools for manipulating individual components of brain energy homeostatic machineries, in combination with anatomical, electrophysiological, pharmacological and behavioral techniques, have been developed, which provide a means for elucidating the complex molecular and cellular mechanisms of feeding behavior and metabolism. This review will highlight some of these advancements and focus on the neuronal circuitries of energy homeostasis. PMID:18061579

  20. Of mice and men: molecular genetics of congenital heart disease.

    PubMed

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-04-01

    Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.

  1. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies.

    PubMed

    Pedrini, Nicolás

    2018-06-01

    Entomopathogenic fungi of the order Hypocreales infect their insect hosts mainly by penetrating through the cuticle and colonize them by proliferating throughout the body cavity. In order to ensure a successful infection, fungi first produce a variety of degrading enzymes that help to breach the insect cuticle, and then secrete toxic secondary metabolites that facilitate fungal invasion of the hemolymph. In response, insect hosts activate their innate immune system by triggering both cellular and humoral immune reactions. As fungi are exposed to stress in both cuticle and hemolymph, several mechanisms are activated not only to deal with this situation but also to mimic host epitopes and evade the insect's immune response. In this review, several components involved in the molecular interaction between insects and fungal pathogens are described including chemical, metabolomics, and dual transcriptomics approaches; with emphasis in the involvement of cuticle surface components in (pre-) infection processes, and fungal secondary metabolite (non-ribosomally synthesized peptides and polyketides) analysis. Some of the mechanisms involved in such interaction are also discussed. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. New look inside human breast ducts with Raman imaging. Raman candidates as diagnostic markers for breast cancer prognosis: Mammaglobin, palmitic acid and sphingomyelin.

    PubMed

    Abramczyk, Halina; Brozek-Pluska, Beata

    2016-02-25

    Looking inside the human body fascinated mankind for thousands of years. Current diagnostic and therapy methods are often limited by inadequate sensitivity, specificity and spatial resolution. Raman imaging may bring revolution in monitoring of disease and treatment. The main advantage of Raman imaging is that it gives spatial information about various chemical constituents in defined cellular organelles in contrast to conventional methods (liquid chromatography/mass spectrometry, NMR, HPLC) that rely on bulk or fractionated analyses of extracted components. We demonstrated how Raman imaging can drive the progress on breast cancer just unimaginable a few years ago. We looked inside human breast ducts answering fundamental questions about location and distribution of various biochemical components inside the lumen, epithelial cells of the duct and the stroma around the duct during cancer development. We have identified Raman candidates as diagnostic markers for breast cancer prognosis: carotenoids, mammaglobin, palmitic acid and sphingomyelin as key molecular targets in ductal breast cancer in situ, and propose the molecular mechanisms linking oncogenes with lipid programming. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils.

    PubMed

    Özek, Gulmira; Schepetkin, Igor A; Utegenova, Gulzhakhan A; Kirpotina, Liliya N; Andrei, Spencer R; Özek, Temel; Başer, Kemal Hüsnü Can; Abidkulova, Karime T; Kushnarenko, Svetlana V; Khlebnikov, Andrei I; Damron, Derek S; Quinn, Mark T

    2017-06-01

    Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were ( E )-propenyl sec -butyl disulfide (15.7-39.4%) and ( Z )-propenyl sec -butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca 2+ ] i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca 2+ ] i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca 2+ influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be ( Z )-propenyl sec -butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs. © Society for Leukocyte Biology.

  4. Jahn-Teller effect in molecular electronics: quantum cellular automata

    NASA Astrophysics Data System (ADS)

    Tsukerblat, B.; Palii, A.; Clemente-Juan, J. M.; Coronado, E.

    2017-05-01

    The article summarizes the main results of application of the theory of the Jahn-Teller (JT) and pseudo JT effects to the description of molecular quantum dot cellular automata (QCA), a new paradigm of quantum computing. The following issues are discussed: 1) QCA as a new paradigm of quantum computing, principles and advantages; 2) molecular implementation of QCA; 3) role of the JT effect in charge trapping, encoding of binary information in the quantum cell and non-linear cell-cell response; 4) spin-switching in molecular QCA based on mixed-valence cell; 5) intervalence optical absorption in tetrameric molecular mixed-valence cell through the symmetry assisted approach to the multimode/multilevel JT and pseudo JT problems.

  5. Discrete diffusion models to study the effects of Mg2+ concentration on the PhoPQ signal transduction system

    PubMed Central

    2010-01-01

    Background The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the “in silico” stochastic event based modeling approach to find the molecular dynamics of the system. Results In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Conclusions Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics. PMID:21143785

  6. Discrete diffusion models to study the effects of Mg2+ concentration on the PhoPQ signal transduction system.

    PubMed

    Ghosh, Preetam; Ghosh, Samik; Basu, Kalyan; Das, Sajal K; Zhang, Chaoyang

    2010-12-01

    The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the "in silico" stochastic event based modeling approach to find the molecular dynamics of the system. In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics.

  7. MIDG-Emerging grid technologies for multi-site preclinical molecular imaging research communities.

    PubMed

    Lee, Jasper; Documet, Jorge; Liu, Brent; Park, Ryan; Tank, Archana; Huang, H K

    2011-03-01

    Molecular imaging is the visualization and identification of specific molecules in anatomy for insight into metabolic pathways, tissue consistency, and tracing of solute transport mechanisms. This paper presents the Molecular Imaging Data Grid (MIDG) which utilizes emerging grid technologies in preclinical molecular imaging to facilitate data sharing and discovery between preclinical molecular imaging facilities and their collaborating investigator institutions to expedite translational sciences research. Grid-enabled archiving, management, and distribution of animal-model imaging datasets help preclinical investigators to monitor, access and share their imaging data remotely, and promote preclinical imaging facilities to share published imaging datasets as resources for new investigators. The system architecture of the Molecular Imaging Data Grid is described in a four layer diagram. A data model for preclinical molecular imaging datasets is also presented based on imaging modalities currently used in a molecular imaging center. The MIDG system components and connectivity are presented. And finally, the workflow steps for grid-based archiving, management, and retrieval of preclincial molecular imaging data are described. Initial performance tests of the Molecular Imaging Data Grid system have been conducted at the USC IPILab using dedicated VMware servers. System connectivity, evaluated datasets, and preliminary results are presented. The results show the system's feasibility, limitations, direction of future research. Translational and interdisciplinary research in medicine is increasingly interested in cellular and molecular biology activity at the preclinical levels, utilizing molecular imaging methods on animal models. The task of integrated archiving, management, and distribution of these preclinical molecular imaging datasets at preclinical molecular imaging facilities is challenging due to disparate imaging systems and multiple off-site investigators. A Molecular Imaging Data Grid design, implementation, and initial evaluation is presented to demonstrate the secure and novel data grid solution for sharing preclinical molecular imaging data across the wide-area-network (WAN).

  8. Molecular Profiling of Malignant Pleural Effusion in Metastatic Non-Small-Cell Lung Carcinoma. The Effect of Preanalytical Factors.

    PubMed

    Carter, Jamal; Miller, James Adam; Feller-Kopman, David; Ettinger, David; Sidransky, David; Maleki, Zahra

    2017-07-01

    Non-small-cell lung cancer (NSCLC)-associated malignant pleural effusions (MPEs) are sometimes the only available specimens for molecular analysis. This study evaluates diagnostic yield of NSCLC-associated MPE, its adequacy for molecular profiling and the potential influence of MPE volume/cellularity on the analytic sensitivity of our assays. Molecular results of 50 NSCLC-associated MPE cases during a 5-year period were evaluated. Molecular profiling was performed on cell blocks and consisted of fluorescent in situ hybridization (FISH) for ALK gene rearrangements and the following sequencing platforms: Sanger sequencing (for EGFR) and high-throughput pyrosequencing (for KRAS and BRAF) during the first 4 years of the study period, and targeted next-generation sequencing performed thereafter. A total of 50 NSCLC-associated MPE cases were identified where molecular testing was requested. Of these, 17 cases were excluded: 14 cases (28%) due to inadequate tumor cellularity and 3 cases due to unavailability of the slides to review. A total of 27 out of 50 MPE cases (54%) underwent at least EGFR and KRAS sequencing and FISH for ALK rearrangement. Of the 27 cases with molecular testing results available, a genetic abnormality was detected in 16 cases (59%). The most common genetic aberrations identified involved EGFR ( 9 ) and KRAS ( 7 ). Six cases had ALK FISH only, of which one showed rearrangement. MPE volume was not associated with overall cellularity or tumor cellularity (P = 0.360). Molecular profiling of MPE is a viable alternative to testing solid tissue in NSCLC. This study shows successful detection of genetic aberrations in 59% of samples with minimal risk of false negative.

  9. Exploring Genetic, Genomic, and Phenotypic Data at the Rat Genome Database

    PubMed Central

    Laulederkind, Stanley J. F.; Hayman, G. Thomas; Wang, Shur-Jen; Lowry, Timothy F.; Nigam, Rajni; Petri, Victoria; Smith, Jennifer R.; Dwinell, Melinda R.; Jacob, Howard J.; Shimoyama, Mary

    2013-01-01

    The laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have relevance to human physiology and disease. The Rat Genome Database (RGD, http://rgd.mcw.edu) is a model organism database that provides access to a wide variety of curated rat data including disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components for genes, quantitative trait loci, and strains. We present an overview of the database followed by specific examples that can be used to gain experience in employing RGD to explore the wealth of functional data available for the rat. PMID:23255149

  10. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  11. Trans-plasma membrane electron transport in mammals: functional significance in health and disease.

    PubMed

    Del Principe, Domenico; Avigliano, Luciana; Savini, Isabella; Catani, Maria Valeria

    2011-06-01

    Trans-plasma membrane electron transport (t-PMET) has been established since the 1960s, but it has only been subject to more intensive research in the last decade. The discovery and characterization at the molecular level of its novel components has increased our understanding of how t-PMET regulates distinct cellular functions. This review will give an update on t-PMET, with particular emphasis on how its malfunction relates to some diseases, such as cancer, abnormal cell death, cardiovascular diseases, aging, obesity, neurodegenerative diseases, pulmonary fibrosis, asthma, and genetically linked pathologies. Understanding these relationships may provide novel therapeutic approaches for pathologies associated with unbalanced redox state.

  12. Molecular and cellular insights into Zika virus-related neuropathies.

    PubMed

    Zhou, Kai; Wang, Long; Yu, Di; Huang, Hesuyuan; Ji, Hong; Mo, Xuming

    2017-06-01

    Zika virus (ZIKV), a relatively elusive Aedes mosquito-transmitted flavivirus, had been brought into spotlight until recent widespread outbreaks accompanied by unexpectedly severe clinical neuropathies, including fetal microcephaly and Guillain-Barré syndrome (GBS) in the adult. In this review, we focus on the underlying cellular and molecular mechanisms by which vertically transmitted microorganisms reach the fetus and trigger neuropathies.

  13. Axon Regeneration in C. elegans

    PubMed Central

    Hammarlund, Marc; Jin, Yishi

    2014-01-01

    Single axon transection by laser surgery has made C. elegans a new model for axon regeneration. Multiple conserved molecular signaling modules have been discovered through powerful genetic screening. in vivo imaging with single cell and axon resolution has revealed unprecedented cellular dynamics in regenerating axons. Information from C. elegans has greatly expanded our knowledge of the molecular and cellular mechanisms of axon regeneration. PMID:24794753

  14. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment.

    PubMed

    Rangel-Castilla, Leonardo; Russin, Jonathan J; Martinez-Del-Campo, Eduardo; Soriano-Baron, Hector; Spetzler, Robert F; Nakaji, Peter

    2014-09-01

    Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.

  15. Effects of 5-Fluorouracil on Morphology, Cell Cycle, Proliferation, Apoptosis, Autophagy and ROS Production in Endothelial Cells and Cardiomyocytes

    PubMed Central

    Focaccetti, Chiara; Bruno, Antonino; Magnani, Elena; Bartolini, Desirée; Principi, Elisa; Dallaglio, Katiuscia; Bucci, Eraldo O.; Finzi, Giovanna; Sessa, Fausto; Noonan, Douglas M.; Albini, Adriana

    2015-01-01

    Antimetabolites are a class of effective anticancer drugs interfering in essential biochemical processes. 5-Fluorouracil (5-FU) and its prodrug Capecitabine are widely used in the treatment of several solid tumors (gastro-intestinal, gynecological, head and neck, breast carcinomas). Therapy with fluoropyrimidines is associated with a wide range of adverse effects, including diarrhea, dehydration, abdominal pain, nausea, stomatitis, and hand-foot syndrome. Among the 5-FU side effects, increasing attention is given to cardiovascular toxicities induced at different levels and intensities. Since the mechanisms related to 5-FU-induced cardiotoxicity are still unclear, we examined the effects of 5-FU on primary cell cultures of human cardiomyocytes and endothelial cells, which represent two key components of the cardiovascular system. We analyzed at the cellular and molecular level 5-FU effects on cell proliferation, cell cycle, survival and induction of apoptosis, in an experimental cardioncology approach. We observed autophagic features at the ultrastructural and molecular levels, in particular in 5-FU exposed cardiomyocytes. Reactive oxygen species (ROS) elevation characterized the endothelial response. These responses were prevented by a ROS scavenger. We found induction of a senescent phenotype on both cell types treated with 5-FU. In vivo, in a xenograft model of colon cancer, we showed that 5-FU treatment induced ultrastructural changes in the endothelium of various organs. Taken together, our data suggest that 5-FU can affect, both at the cellular and molecular levels, two key cell types of the cardiovascular system, potentially explaining some manifestations of 5-FU-induced cardiovascular toxicity. PMID:25671635

  16. Interdisciplinary Education to Integrate Pathology and Epidemiology: Towards Molecular and Population-Level Health Science

    PubMed Central

    Ogino, Shuji; King, Emily E.; Beck, Andrew H.; Sherman, Mark E.; Milner, Danny A.; Giovannucci, Edward

    2012-01-01

    In recent decades, epidemiology, public health, and medical sciences have been increasingly compartmentalized into narrower disciplines. The authors recognize the value of integration of divergent scientific fields in order to create new methods, concepts, paradigms, and knowledge. Herein they describe the recent emergence of molecular pathological epidemiology (MPE), which represents an integration of population and molecular biologic science to gain insights into the etiologies, pathogenesis, evolution, and outcomes of complex multifactorial diseases. Most human diseases, including common cancers (such as breast, lung, prostate, and colorectal cancers, leukemia, and lymphoma) and other chronic diseases (such as diabetes mellitus, cardiovascular diseases, hypertension, autoimmune diseases, psychiatric diseases, and some infectious diseases), are caused by alterations in the genome, epigenome, transcriptome, proteome, metabolome, microbiome, and interactome of all of the above components. In this era of personalized medicine and personalized prevention, we need integrated science (such as MPE) which can decipher diseases at the molecular, genetic, cellular, and population levels simultaneously. The authors believe that convergence and integration of multiple disciplines should be commonplace in research and education. We need to be open-minded and flexible in designing integrated education curricula and training programs for future students, clinicians, practitioners, and investigators. PMID:22935517

  17. Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications

    PubMed Central

    Castillo, Jonathan; Stueve, Theresa R.; Marconett, Crystal N.

    2017-01-01

    Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far. PMID:29113413

  18. Reverse Engineering Cellular Networks with Information Theoretic Methods

    PubMed Central

    Villaverde, Alejandro F.; Ross, John; Banga, Julio R.

    2013-01-01

    Building mathematical models of cellular networks lies at the core of systems biology. It involves, among other tasks, the reconstruction of the structure of interactions between molecular components, which is known as network inference or reverse engineering. Information theory can help in the goal of extracting as much information as possible from the available data. A large number of methods founded on these concepts have been proposed in the literature, not only in biology journals, but in a wide range of areas. Their critical comparison is difficult due to the different focuses and the adoption of different terminologies. Here we attempt to review some of the existing information theoretic methodologies for network inference, and clarify their differences. While some of these methods have achieved notable success, many challenges remain, among which we can mention dealing with incomplete measurements, noisy data, counterintuitive behaviour emerging from nonlinear relations or feedback loops, and computational burden of dealing with large data sets. PMID:24709703

  19. Integrative systems control approach for reactivating Kaposi's sarcoma-associated herpesvirus (KSHV) with combinatory drugs

    PubMed Central

    Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming

    2009-01-01

    Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators. PMID:19851479

  20. Integrative systems control approach for reactivating Kaposi's sarcoma-associated herpesvirus (KSHV) with combinatory drugs.

    PubMed

    Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming

    2009-01-01

    Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.

  1. The CAMSAP3-ACF7 Complex Couples Noncentrosomal Microtubules with Actin Filaments to Coordinate Their Dynamics.

    PubMed

    Ning, Wenxiu; Yu, Yanan; Xu, Honglin; Liu, Xiaofei; Wang, Daiwei; Wang, Jing; Wang, Yingchun; Meng, Wenxiang

    2016-10-10

    For adaptation to complex cellular functions, dynamic cytoskeletal networks are required. There are two major components of the cytoskeleton, microtubules and actin filaments, which form an intricate network maintaining an exquisite cooperation to build the physical basis for their cellular function. However, little is known about the molecular mechanism underlying their synergism. Here, we show that in Caco2 epithelial cells, noncentrosomal microtubules crosstalk with F-actin through their minus ends and contribute to the regulation of focal adhesion size and cell migration. We demonstrate that ACF7, a member of the spectraplakin family of cytoskeletal crosslinking proteins, interacts with Nezha (also called CAMSAP3) at the minus ends of noncentrosomal microtubules and anchors them to actin filaments. Those noncentrosomal microtubules cooperate with actin filaments through retrograde flow to keep their length and orientation perpendicular to the cell edge as well as regulate focal adhesion size and cell migration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules.

    PubMed

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I; Vestergaard, Christian L; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A

    2015-08-04

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using 'harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.

  3. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    PubMed Central

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.

    2015-01-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load. PMID:26239258

  4. Molecular Mechanism of Arenavirus Assembly and Budding

    PubMed Central

    Urata, Shuzo; Yasuda, Jiro

    2012-01-01

    Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2. PMID:23202453

  5. Cylindrical cellular geometry ensures fidelity of division site placement in fission yeast.

    PubMed

    Mishra, Mithilesh; Huang, Yinyi; Srivastava, Pragya; Srinivasan, Ramanujam; Sevugan, Mayalagu; Shlomovitz, Roie; Gov, Nir; Rao, Madan; Balasubramanian, Mohan

    2012-08-15

    Successful cytokinesis requires proper assembly of the contractile actomyosin ring, its stable positioning on the cell surface and proper constriction. Over the years, many of the key molecular components and regulators of the assembly and positioning of the actomyosin ring have been elucidated. Here we show that cell geometry and mechanics play a crucial role in the stable positioning and uniform constriction of the contractile ring. Contractile rings that assemble in locally spherical regions of cells are unstable and slip towards the poles. By contrast, actomyosin rings that assemble on locally cylindrical portions of the cell under the same conditions do not slip, but uniformly constrict the cell surface. The stability of the rings and the dynamics of ring slippage can be described by a simple mechanical model. Using fluorescence imaging, we verify some of the quantitative predictions of the model. Our study reveals an intimate interplay between geometry and actomyosin dynamics, which are likely to apply in a variety of cellular contexts.

  6. Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline.

    PubMed

    Lane, Darius J R; Richardson, Des R

    2014-08-15

    How is cellular iron (Fe) uptake and efflux regulated in mammalian cells? In this issue of the Biochemical Journal, Yanatori et al. report for the first time that a member of the emerging PCBP [poly(rC)-binding protein] Fe-chaperone family, PCBP2, physically interacts with the major Fe importer DMT1 (divalent metal transporter 1) and the Fe exporter FPN1 (ferroportin 1). In both cases, the interaction of the Fe transporter with PCBP2 is Fe-dependent. Interestingly, another PCBP Fe-chaperone, PCBP1, does not appear to bind to DMT1. Strikingly, the PCBP2-DMT1 interaction is required for DMT1-dependent cellular Fe uptake, suggesting that, in addition to functioning as an intracellular Fe chaperone, PCBP2 may be a molecular 'gate- keeper' for transmembrane Fe transport. These new data hint at the possibility that PCBP2 may be a component of a yet-to-be-described Fe-transport metabolon that engages in Fe channelling to and from Fe transporters and intracellular sites.

  7. Physicochemical properties and membrane biofouling of extra-cellular polysaccharide produced by a Micrococcus luteus strain.

    PubMed

    Feng, Lei; Li, Xiufen; Song, Ping; Du, Guocheng; Chen, Jian

    2014-07-01

    The physicochemical properties of the extra-cellular polysaccharide (EPS) produced by a Micrococcus luteus strain, a dominating strain isolated from membrane biofouling layer, were determined in this study. The EPS isolated from this strain was measured to have an average molecular weight of 63,540 Da and some typical polysaccharide absorption peaks in Fourier transform infrared spectrum. Monosaccharide components of the EPS contained rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose in a molar ratio of 0.2074:0.0454:0.0262:0.0446:1.7942:1.2086:0.4578. Pseudo plastic properties were also observed for the EPS through the rheological measurement. The EPS was further characterized for its behavior to cause membrane flux decline. The results showed that both flux declines for polyvinylidenefluoride (PVDF) and polypropylene membranes became more severe as EPS feed concentration increased. A higher irreversible fouling for the PVDF membrane suggested that the EPS had the larger fouling potential to this microfiltration membrane.

  8. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning.

    PubMed

    Vitiello, Giuseppe

    2015-04-01

    The problem of the transition from the molecular and cellular level to the macroscopic level of observed assemblies of myriads of neurons is the subject addressed in this report. The great amount of detailed information available at molecular and cellular level seems not sufficient to account for the high effectiveness and reliability observed in the brain macroscopic functioning. It is suggested that the dissipative many-body model and thermodynamics might offer the dynamical frame underlying the rich phenomenology observed at microscopic and macroscopic level and help in the understanding on how to fill the gap between the bio-molecular and cellular level and the one of brain macroscopic functioning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    PubMed

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  10. Molecular Determinants and Dynamics of Hepatitis C Virus Secretion

    PubMed Central

    Coller, Kelly E.; Heaton, Nicholas S.; Berger, Kristi L.; Cooper, Jacob D.; Saunders, Jessica L.; Randall, Glenn

    2012-01-01

    The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells. PMID:22241992

  11. Creating Age Asymmetry: Consequences of Inheriting Damaged Goods in Mammalian Cells.

    PubMed

    Moore, Darcie L; Jessberger, Sebastian

    2017-01-01

    Accumulating evidence suggests that mammalian cells asymmetrically segregate cellular components ranging from genomic DNA to organelles and damaged proteins during cell division. Asymmetric inheritance upon mammalian cell division may be specifically important to ensure cellular fitness and propagate cellular potency to individual progeny, for example in the context of somatic stem cell division. We review here recent advances in the field and discuss potential effects and underlying mechanisms that mediate asymmetric segregation of cellular components during mammalian cell division. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.

  13. Molecular Mechanisms of Neurodegenerative Diseases Induced by Human Retroviruses: A Review

    PubMed Central

    Irish, Bryan P.; Khan, Zafar K.; Jain, Pooja; Nonnemacher, Michael R.; Pirrone, Vanessa; Rahman, Saifur; Rajagopalan, Nirmala; Suchitra, Joyce B.; Mostoller, Kate; Wigdahl, Brian

    2010-01-01

    Problem statement Infection with retroviruses such as human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type 1 (HTLV-1) have been shown to lead to neurodegenerative diseases such as HIV-associated dementia (HAD) or neuroAIDS and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), respectively. Approach HIV-1-induced neurologic disease is associated with an influx of HIV-infected monocytic cells across the blood-brain barrier. Following neuroinvasion, HIV-1 and viral proteins, in addition to cellular mediators released from infected and uninfected cells participate in astrocytic and neuronal dysregulation, leading to mild to severe neurocognitive disorders. Results The molecular architecture of viral regulatory components including the Long Terminal Repeat (LTR), genes encoding the viral proteins Tat, Vpr and Nef as well as the envelope gene encoding gp120 and gp41 have been implicated in ‘indirect’ mechanisms of neuronal injury, mechanisms which are likely responsible for the majority of CNS damage induced by HIV-1 infection. The neuropathogenesis of HAM/TSP is linked, in part, with both intra-and extracellular effectors functions of the viral transactivator protein Tax and likely other viral proteins. Tax is traditionally known to localize in the nucleus of infected cells serving as a regulator of both viral and cellular gene expression. Conclusion/Recommendations However, recent evidence has suggested that Tax may also accumulate in the cytoplasm and be released from the infected cell through regulated cellular secretion processes. Once in the extracellular environment, Tax may cause functional alterations in cells of the peripheral blood, lymphoid organs and the central nervous system. These extracellular biological activities of Tax are likely very relevant to the neuropathogenesis of HTLV-1 and represent attractive targets for therapeutic intervention. PMID:20352020

  14. Protein structure in context: The molecular landscape of angiogenesis

    PubMed Central

    Span, Elise A.; Goodsell, David S.; Ramchandran, Ramani; Franzen, Margaret; Herman, Timothy; Sem, Daniel S.

    2014-01-01

    A team of students, educators, and researchers has developed new materials to teach cell signaling within its cellular context. Two non-traditional modalities are employed: physical models, to explore the atomic details of several of the proteins in the angiogenesis signaling cascade, and illustrations of the proteins in their cellular environment, to give an intuitive understanding of the cellular context of the pathway. The experiences of the team underscore the utility of these types of materials as an effective mode for fostering students’ understanding of the molecular world, and the scientific method used to define it. PMID:23868376

  15. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity.

    PubMed

    Park, Chang-Jin; Seo, Young-Su

    2015-12-01

    As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

  16. Evolution of early embryogenesis in rhabditid nematodes

    PubMed Central

    Brauchle, Michael; Kiontke, Karin; MacMenamin, Philip; Fitch, David H. A.; Piano, Fabio

    2009-01-01

    The cell biological events that guide early embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C. elegans. We found 40 cell-biological characters that captured the phenotypic differences between these species. By tracing the evolutionary changes on a molecular phylogeny, we found that these characters evolved multiple times and independently of one another. Strikingly, all these phenotypes are mimicked by single-gene RNAi experiments in C. elegans. We use these comparisons to hypothesize the molecular mechanisms underlying the evolutionary changes. For example, we predict that a cell polarity module was altered during the evolution of the Protorhabditis group and show that PAR-1, a kinase localized asymmetrically in C. elegans early embryos, is symmetrically localized in the one-cell stage of Protorhabditis group species. Our genome-wide approach identifies candidate molecules—and thereby modules—associated with evolutionary changes in cell-biological phenotypes. PMID:19643102

  17. Molecular Genetics of Supernumerary Tooth Formation

    PubMed Central

    Wang, Xiu-Ping; Fan, Jiabing

    2011-01-01

    Summary Despite advances in the knowledge of tooth morphogenesis and differentiation, relatively little is known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. A small number of supernumerary teeth may be a common developmental dental anomaly, while multiple supernumerary teeth usually have a genetic component and they are sometimes thought to represent a partial third dentition in humans. Mice, which are commonly used for studying tooth development, only exhibit one dentition, with very few mouse models exhibiting supernumerary teeth similar to those in humans. Inactivation of Apc or forced activation of Wnt/β(catenin signalling results in multiple supernumerary tooth formation in both humans and in mice, but the key genes in these pathways are not very clear. Analysis of other model systems with continuous tooth replacement or secondary tooth formation, such as fish, snake, lizard, and ferret, is providing insights into the molecular and cellular mechanisms underlying succesional tooth development, and will assist in the studies on supernumerary tooth formation in humans. This information, together with the advances in stem cell biology and tissue engineering, will pave ways for the tooth regeneration and tooth bioengineering. PMID:21309064

  18. Optimality Principles in the Regulation of Metabolic Networks

    PubMed Central

    Berkhout, Jan; Bruggeman, Frank J.; Teusink, Bas

    2012-01-01

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide. PMID:24957646

  19. Recent Developments in Molecular Brain Imaging of Neuropsychiatric Disorders.

    PubMed

    Slifstein, Mark; Abi-Dargham, Anissa

    2017-01-01

    Molecular imaging with PET or SPECT has been an important research tool in psychiatry for as long as these modalities have been available. Here, we discuss two areas of neuroimaging relevant to current psychiatry research. The first is the use of imaging to study neurotransmission. We discuss the use of pharmacologic probes to induce changes in levels of neurotransmitters that can be inferred through their effects on outcome measures of imaging experiments, from their historical origins focusing on dopamine transmission through recent developments involving serotonin, GABA, and glutamate. Next, we examine imaging of neuroinflammation in the context of psychiatry. Imaging markers of neuroinflammation have been studied extensively in other areas of brain research, but they have more recently attracted interest in psychiatry research, based on accumulating evidence that there may be an inflammatory component to some psychiatric conditions. Furthermore, new probes are under development that would allow unprecedented insights into cellular processes. In summary, molecular imaging would continue to offer great potential as a unique tool to further our understanding of brain function in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Optimality principles in the regulation of metabolic networks.

    PubMed

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  1. Basal body assembly in ciliates: the power of numbers

    PubMed Central

    Pearson, Chad G.; Winey, Mark

    2009-01-01

    Centrioles perform the dual functions of organizing both centrosomes and cilia. The biogenesis of nascent centrioles is an essential cellular event that is tightly coupled to the cell cycle so that each cell contains only two or four centrioles at any given point in the cell cycle. The assembly of centrioles and their analogs, basal bodies, is well characterized at the ultrastructural level whereby structural modules are built into a functional organelle. Genetic studies in model organisms combined with proteomic, bioinformatic, and identifying ciliary disease gene orthologs have revealed a wealth of molecules requiring further analysis to determine their roles in centriole duplication, assembly, and function. Nonetheless, at this stage our understanding of how molecular components interact to build new centrioles and basal bodies is limited. The ciliates, Tetrahymena and Paramecium, historically have been the subject of cytological and genetic study of basal bodies. Recent advances in the ciliate genetic and molecular toolkit have placed these model organisms in a favorable position to study the molecular mechanisms of centriole and basal body assembly. PMID:19192246

  2. Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease

    PubMed Central

    Zhou, Fan; Katirai, Foad

    2011-01-01

    Abstract Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases. Antioxid. Redox Signal. 15, 1043–1083. PMID:21294649

  3. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display

    PubMed Central

    Desvaux, Mickaël; Candela, Thomas; Serror, Pascale

    2018-01-01

    The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed. PMID:29491848

  4. Challenges in structural approaches to cell modeling.

    PubMed

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A

    2016-07-31

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The brain as a system of nested but partially overlapping networks. Heuristic relevance of the model for brain physiology and pathology.

    PubMed

    Agnati, L F; Guidolin, D; Fuxe, K

    2007-01-01

    A new model of the brain organization is proposed. The model is based on the assumption that a global molecular network enmeshes the entire central nervous system. Thus, brain extra-cellular and intra-cellular molecular networks are proposed to communicate at the level of special plasma membrane regions (e.g., the lipid rafts) where horizontal molecular networks can represent input/output regions allowing the cell to have informational exchanges with the extracellular environment. Furthermore, some "pervasive signals" such as field potentials, pressure waves and thermal gradients that affect large parts of the brain cellular and molecular networks are discussed. Finally, at least two learning paradigms are analyzed taking into account the possible role of Volume Transmission: the so-called model of "temporal difference learning" and the "Turing B-unorganised machine". The relevance of this new view of brain organization for a deeper understanding of some neurophysiological and neuropathological aspects of its function is briefly discussed.

  6. Molecular basis of alcoholism.

    PubMed

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy. © 2014 Elsevier B.V. All rights reserved.

  7. In vivo gene manipulation reveals the impact of stress-responsive MAPK pathways on tumor progression

    PubMed Central

    Kamiyama, Miki; Naguro, Isao; Ichijo, Hidenori

    2015-01-01

    It has been widely accepted that tumor cells and normal stromal cells in the host environment coordinately modulate tumor progression. Mitogen-activated protein kinase pathways are the representative stress-responsive cascades that exert proper cellular responses to divergent environmental stimuli. Genetically engineered mouse models and chemically induced tumorigenesis models have revealed that components of the MAPK pathway not only regulate the behavior of tumor cells themselves but also that of surrounding normal stromal cells in the host environment during cancer pathogenesis. The individual functions of MAPK pathway components in tumor initiation and progression vary depending on the stimuli and the stromal cell types involved in tumor progression, in addition to the molecular isoforms of the components and the origins of the tumor. Recent studies have indicated that MAPK pathway components synergize with environmental factors (e.g. tobacco smoke and diet) to affect tumor initiation and progression. Moreover, some components play distinct roles in the course of tumor progression, such as before and after the establishment of tumors. Hence, a comprehensive understanding of the multifaceted functions of MAPK pathway components in tumor initiation and progression is essential for the improvement of cancer therapy. In this review, we focus on the reports that utilized knockout, conditional knockout, and transgenic mice of MAPK pathway components to investigate the effects of MAPK pathway components on tumor initiation and progression in the host environment. PMID:25880821

  8. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM

    PubMed Central

    Bi, P.; Kuang, S.

    2012-01-01

    Stem cell niche plays a critical role in regulating the behavior and function of adult stem cells that underlie tissue growth, maintenance, and regeneration. In the skeletal muscle, stem cells, called satellite cells, contribute to postnatal muscle growth and hypertrophy, and thus, meat production in agricultural animals. Satellite cells are located adjacent to mature muscle fibers underneath a sheath of basal lamina. Microenvironmental signals from extracellular matrix mediated by the basal lamina and from the host myofiber both impinge on satellite cells to regulate their activity. Furthermore, several types of muscle interstitial cells, including intramuscular preadipocytes and connective tissue fibroblasts, have recently been shown to interact with satellite cells and actively regulate the growth and regeneration of postnatal skeletal muscles. From this regard, interstitial adipogenic cells are not only important for marbling and meat quality, but also represent an additional cellular component of the satellite cell niche. At the molecular level, these interstitial cells may interact with satellite cells through cell surface ligands, such as delta-like 1 homolog (Dlk1) protein whose overexpression is thought to be responsible for muscle hypertrophy in callipyge sheep. In fact, extracellular Dlk1 protein has been shown to promote the myogenic differentiation of satellite cells. Understanding the cellular and molecular mechanisms within the stem cell niche that regulate satellite cell differentiation and maintain muscle homeostasis may lead to promising approaches to optimizing muscle growth and composition, thus improving meat production and quality. PMID:22100594

  9. Chemical kinetic mechanistic models to investigate cancer biology and impact cancer medicine.

    PubMed

    Stites, Edward C

    2013-04-01

    Traditional experimental biology has provided a mechanistic understanding of cancer in which the malignancy develops through the acquisition of mutations that disrupt cellular processes. Several drugs developed to target such mutations have now demonstrated clinical value. These advances are unequivocal testaments to the value of traditional cellular and molecular biology. However, several features of cancer may limit the pace of progress that can be made with established experimental approaches alone. The mutated genes (and resultant mutant proteins) function within large biochemical networks. Biochemical networks typically have a large number of component molecules and are characterized by a large number of quantitative properties. Responses to a stimulus or perturbation are typically nonlinear and can display qualitative changes that depend upon the specific values of variable system properties. Features such as these can complicate the interpretation of experimental data and the formulation of logical hypotheses that drive further research. Mathematical models based upon the molecular reactions that define these networks combined with computational studies have the potential to deal with these obstacles and to enable currently available information to be more completely utilized. Many of the pressing problems in cancer biology and cancer medicine may benefit from a mathematical treatment. As work in this area advances, one can envision a future where such models may meaningfully contribute to the clinical management of cancer patients.

  10. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies

    PubMed Central

    van Kesteren, C F M G; Gremmels, H; de Witte, L D; Hol, E M; Van Gool, A R; Falkai, P G; Kahn, R S; Sommer, I E C

    2017-01-01

    Although the precise pathogenesis of schizophrenia is unknown, genetic, biomarker and imaging studies suggest involvement of the immune system. In this study, we performed a systematic review and meta-analysis of studies investigating factors related to the immune system in postmortem brains of schizophrenia patients and healthy controls. Forty-one studies were included, reporting on 783 patients and 762 controls. We divided these studies into those investigating histological alterations of cellular composition and those assessing molecular parameters; meta-analyses were performed on both categories. Our pooled estimate on cellular level showed a significant increase in the density of microglia (P=0.0028) in the brains of schizophrenia patients compared with controls, albeit with substantial heterogeneity between studies. Meta-regression on brain regions demonstrated this increase was most consistently observed in the temporal cortex. Densities of macroglia (astrocytes and oligodendrocytes) did not differ significantly between schizophrenia patients and healthy controls. The results of postmortem histology are paralleled on the molecular level, where we observed an overall increase in expression of proinflammatory genes on transcript and protein level (P=0.0052) in patients, while anti-inflammatory gene expression levels were not different between schizophrenia and controls. The results of this meta-analysis strengthen the hypothesis that components of the immune system are involved in the pathogenesis of schizophrenia. PMID:28350400

  11. Complex formation and vectorization of a phosphorothioate oligonucleotide with an amphipathic leucine- and lysine-rich peptide: study at molecular and cellular levels.

    PubMed

    Boukhalfa-Heniche, Fatima-Zohra; Hernández, Belén; Gaillard, Stéphane; Coïc, Yves-Marie; Huynh-Dinh, Tam; Lecouvey, Marc; Seksek, Olivier; Ghomi, Mahmoud

    2004-04-15

    Optical spectroscopic techniques such as CD, Raman scattering, and fluorescence imaging allowed us to analyze the complex formation and vectorization of a single-stranded 20-mer phosphorothioate oligodeoxynucleotide with a 15-mer amphipathic peptide at molecular and cellular levels. Different solvent mixtures (methanol and water) and molecular ratios of peptide/oligodeoxynucleotide complexes were tested in order to overcome the problems related to solubility. Optimal conditions for both spectroscopic and cellular experiments were obtained with the molecular ratio peptide/oligodeoxynucleotide equal to 21:4, corresponding to a 7:5 ratio for their respective +/- charge ratio. At the molecular level, CD and Raman spectra were consistent with a alpha-helix conformation of the peptide in water or in a methanol-water mixture. The presence of methanol increased considerably the solubility of the peptide without altering its alpha-helix conformation, as evidenced by CD and Raman spectroscopies. UV absorption melting profile of the oligodeoxynucleotide gave rise to a flat melting profile, corresponding to its random structure in solution. Raman spectra of oligodeoxynucleotide/peptide complexes could only be studied in methanol/water mixture solutions. Drastic changes observed in Raman spectra have undoubtedly shown: (a) the perturbation occurred in the peptide secondary structure, and (b) possible interaction between the lysine residues of the peptide and the oligodeoxynucleotide. At the cellular level, the complex was prepared in a mixture of 10% methanol and 90% cell medium. Cellular uptake in optimal conditions for the oligodeoxynucleotide delivery with low cytotoxicity was controlled by fluorescence imaging allowing to specifically locate the compacted oligonucleotide labeled with fluorescein at its 5'-terminus with the peptide into human glioma cells after 1 h of incubation at 37 degrees C. Copyright 2004 Wiley Periodicals, Inc.

  12. Analysis of metastasis associated signal regulatory network in colorectal cancer.

    PubMed

    Qi, Lu; Ding, Yanqing

    2018-06-18

    Metastasis is a key factor that affects the survival and prognosis of colorectal cancer patients. To elucidate molecular mechanism associated with the metastasis of colorectal cancer, genes related to the metastasis time of colorectal cancer were screened. Then, a network was constructed with this genes. Data was obtained from colorectal cancer expression profile. Molecular mechanism elucidated the time of tumor metastasis and the expression of genes related to colorectal cancer. We found that metastasis-promoting and metastasis-inhibiting networks included protein hubs of high connectivity. These protein hubs were components of organelles. Some ribosomal proteins promoted the metastasis of colorectal cancer. In some components of organelles, such as proteasomes, mitochondrial ribosome, ATP synthase, and splicing factors, the metastasis of colorectal cancer was inhibited by some sections of these organelles. After performing survival analysis of proteins in organelles, joint survival curve of proteins was constructed in ribosomal network. This joint survival curve showed metastasis was promoted in patients with colorectal cancer (P = 0.0022939). Joint survival curve of proteins was plotted against proteasomes (P = 7 e-07), mitochondrial ribosome (P = 0.0001157), ATP synthase (P = 0.0001936), and splicing factors (P = 1.35e-05). These curves indicate that metastasis of colorectal cancer can be inhibited. After analyzing proteins that bind with organelle components, we also found that some proteins were associated with the time of colorectal cancer metastasis. Hence, different cellular components play different roles in the metastasis of colorectal cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Mass fingerprinting of the venom and transcriptome of venom gland of scorpion Centruroides tecomanus.

    PubMed

    Valdez-Velázquez, Laura L; Quintero-Hernández, Verónica; Romero-Gutiérrez, Maria Teresa; Coronas, Fredy I V; Possani, Lourival D

    2013-01-01

    Centruroides tecomanus is a Mexican scorpion endemic of the State of Colima, that causes human fatalities. This communication describes a proteome analysis obtained from milked venom and a transcriptome analysis from a cDNA library constructed from two pairs of venom glands of this scorpion. High perfomance liquid chromatography separation of soluble venom produced 80 fractions, from which at least 104 individual components were identified by mass spectrometry analysis, showing to contain molecular masses from 259 to 44,392 Da. Most of these components are within the expected molecular masses for Na(+)- and K(+)-channel specific toxic peptides, supporting the clinical findings of intoxication, when humans are stung by this scorpion. From the cDNA library 162 clones were randomly chosen, from which 130 sequences of good quality were identified and were clustered in 28 contigs containing, each, two or more expressed sequence tags (EST) and 49 singlets with only one EST. Deduced amino acid sequence analysis from 53% of the total ESTs showed that 81% (24 sequences) are similar to known toxic peptides that affect Na(+)-channel activity, and 19% (7 unique sequences) are similar to K(+)-channel especific toxins. Out of the 31 sequences, at least 8 peptides were confirmed by direct Edman degradation, using components isolated directly from the venom. The remaining 19%, 4%, 4%, 15% and 5% of the ESTs correspond respectively to proteins involved in cellular processes, antimicrobial peptides, venom components, proteins without defined function and sequences without similarity in databases. Among the cloned genes are those similar to metalloproteinases.

  14. Reduction of In-Stent Restenosis Risk on Nickel-Free Stainless Steel by Regulating Cell Apoptosis and Cell Cycle

    PubMed Central

    Li, Liming; Pan, Shuang; Zhou, Xiaohang; Meng, Xin; Han, Xiaoxi; Ren, Yibin; Yang, Ke; Guan, Yifu

    2013-01-01

    High nitrogen nickel-free austenitic stainless steel (HNNF SS) is one of the biomaterials developed recently for circumventing the in-stent restenosis (ISR) in coronary stent applications. To understand the ISR-resistance mechanism, we have conducted a comparative study of cellular and molecular responses of human umbilical vein endothelial cells (HUVECs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel) which is the stent material used currently. CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profile of HUVECs exposed to HNNF SS and 316L SS, respectively. Flow cytometry analysis revealed that 316L SS could activate the cellular apoptosis more efficiently and initiate an earlier entry into the S-phase of cell cycle than HNNF SS. At the molecular level, qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were overexpressed on 316L SS. Further examination indicated that nickel released from 316L SS triggered the cell apoptosis via Fas-Caspase8-Caspase3 exogenous pathway. These molecular mechanisms of HUVECs present a good model for elucidating the observed cellular responses. The findings in this study furnish valuable information for understanding the mechanism of ISR-resistance on the cellular and molecular basis as well as for developing new biomedical materials for stent applications. PMID:23638002

  15. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    PubMed

    Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan

    2015-12-01

    Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.

  16. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder

    PubMed Central

    Soeiro-de-Souza, M. G.; Dias, V. V.; Figueira, M. L.; Forlenza, O. V.; Gattaz, W. F.; Zarate, C. A.; Machado-Vieira, R.

    2014-01-01

    Objective Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. Methods We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were ‘brain-derived neurotrophic factor,’ ‘Bcl-2,’ ‘mitogen-activated protein kinases,’ ‘neuroprotection,’ ‘calcium,’ ‘bipolar disorder,’ ‘mania,’ and ‘depression.’ Results The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Conclusion Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. PMID:22676371

  17. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder.

    PubMed

    Soeiro-de-Souza, M G; Dias, V V; Figueira, M L; Forlenza, O V; Gattaz, W F; Zarate, C A; Machado-Vieira, R

    2012-11-01

    Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were 'brain-derived neurotrophic factor,''Bcl-2,''mitogen-activated protein kinases,''neuroprotection,''calcium,''bipolar disorder,''mania,' and 'depression.' The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder. © 2012 John Wiley & Sons A/S.

  18. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    PubMed

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug research and development.

  19. Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach.

    PubMed

    Yu, Peiqiang; Doiron, Kevin; Liu, Dasen

    2008-05-14

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein alpha-helix and beta-sheet, but lower in the others (beta-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.

  20. Endogenous Pyrogen Physiology.

    ERIC Educational Resources Information Center

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  1. Combination therapeutics in complex diseases.

    PubMed

    He, Bing; Lu, Cheng; Zheng, Guang; He, Xiaojuan; Wang, Maolin; Chen, Gao; Zhang, Ge; Lu, Aiping

    2016-12-01

    The biological redundancies in molecular networks of complex diseases limit the efficacy of many single drug therapies. Combination therapeutics, as a common therapeutic method, involve pharmacological intervention using several drugs that interact with multiple targets in the molecular networks of diseases and may achieve better efficacy and/or less toxicity than monotherapy in practice. The development of combination therapeutics is complicated by several critical issues, including identifying multiple targets, targeting strategies and the drug combination. This review summarizes the current achievements in combination therapeutics, with a particular emphasis on the efforts to develop combination therapeutics for complex diseases. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics

    PubMed Central

    Barrère, Florence; van Blitterswijk, Clemens A; de Groot, Klaas

    2006-01-01

    Calcium phosphate bioceramics are widely used in orthopedic and dental applications and porous scaffolds made of them are serious candidates in the field of bone tissue engineering. They have superior properties for the stimulation of bone formation and bone bonding, both related to the specific interactions of their surface with the extracellular fluids and cells, ie, ionic exchanges, superficial molecular rearrangement and cellular activity. PMID:17717972

  3. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection

    PubMed Central

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung. PMID:28912729

  4. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    PubMed

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  5. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-01-01

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins. PMID:28800062

  6. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  7. Proteomics at the center of nutrigenomics: comprehensive molecular understanding of dietary health effects.

    PubMed

    Kussmann, Martin; Affolter, Michael

    2009-01-01

    Apart from the air we breathe, food is the only physical matter we take into our body during our life. Nutrition exhibits therefore the most important life-long environmental impact on human health. Food components interact with our body at system, organ, cellular, and molecular levels. These dietary components come in complex mixtures, in which not only the presence and concentrations of a single compound but also interactions of multiple compounds determine ingredient bioavailability and bioefficacy. Modern nutritional and health research focuses on promoting health, preventing or delaying the onset of disease, and optimizing performance. Deciphering the molecular interplay between food and health requires therefore holistic approaches because nutritional improvement of certain health aspects must not be compromised by deterioration of others. In other words, in nutrition, we have to get everything right. Proteomics is a central platform in nutrigenomics that describes how our genome expresses itself as a response to diet. Nutrigenetics deals with our genetic predisposition and susceptibility toward diet and helps stratify subject cohorts and discern responders from non-responders. Epigenetics represent DNA sequence-unrelated biochemical modifications of DNA itself and DNA-binding proteins and appears to provide a format for life-long or even transgeneration imprinting of metabolism. Proteomics in nutrition can identify and quantify bioactive proteins and peptides and addresses questions of nutritional bioefficacy. In this review, we focus on these latter aspects, update the reader on technologic developments, and review major applications.

  8. CellNetVis: a web tool for visualization of biological networks using force-directed layout constrained by cellular components.

    PubMed

    Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane

    2017-09-13

    The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.

  9. The underlying pathway structure of biochemical reaction networks

    PubMed Central

    Schilling, Christophe H.; Palsson, Bernhard O.

    1998-01-01

    Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712

  10. Assessing the impact of case sensitivity and term information gain on biomedical concept recognition.

    PubMed

    Groza, Tudor; Verspoor, Karin

    2015-01-01

    Concept recognition (CR) is a foundational task in the biomedical domain. It supports the important process of transforming unstructured resources into structured knowledge. To date, several CR approaches have been proposed, most of which focus on a particular set of biomedical ontologies. Their underlying mechanisms vary from shallow natural language processing and dictionary lookup to specialized machine learning modules. However, no prior approach considers the case sensitivity characteristics and the term distribution of the underlying ontology on the CR process. This article proposes a framework that models the CR process as an information retrieval task in which both case sensitivity and the information gain associated with tokens in lexical representations (e.g., term labels, synonyms) are central components of a strategy for generating term variants. The case sensitivity of a given ontology is assessed based on the distribution of so-called case sensitive tokens in its terms, while information gain is modelled using a combination of divergence from randomness and mutual information. An extensive evaluation has been carried out using the CRAFT corpus. Experimental results show that case sensitivity awareness leads to an increase of up to 0.07 F1 against a non-case sensitive baseline on the Protein Ontology and GO Cellular Component. Similarly, the use of information gain leads to an increase of up to 0.06 F1 against a standard baseline in the case of GO Biological Process and Molecular Function and GO Cellular Component. Overall, subject to the underlying token distribution, these methods lead to valid complementary strategies for augmenting term label sets to improve concept recognition.

  11. Investigation of biochemical property changes in activation-induced CD 8 + T cell apoptosis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Young Ju; Ahn, Hyung Joon; Lee, Gi-Ja; Jung, Gyeong Bok; Lee, Gihyun; Kim, Dohyun; Shin, Jae-Ho; Jin, Kyung-Hyun; Park, Hun-Kuk

    2015-07-01

    The study was to investigate the changes in biochemical properties of activated mature CD8+ T cells related to apoptosis at a molecular level. We confirmed the activation and apoptosis of CD8+ T cells by fluorescence-activated cell sorting and atomic force microscopy and then performed Raman spectral measurements on activated mature CD8+ T cells and cellular deoxyribose nucleic acid (DNA). In the activated mature CD8+ T cells, there were increases in protein spectra at 1002 and 1234 cm-1. In particular, to assess the apoptosis-related DNA spectral signatures, we investigated the spectra of the cellular DNA isolated from resting and activated mature CD8+ T cells. Raman spectra at 765 to 786 cm-1 and 1053 to 1087 cm-1 were decreased in activated mature DNA. In addition, we analyzed Raman spectrum using the multivariate statistical method including principal component analysis. Raman spectra of activated mature DNA are especially well-discriminated from those of resting DNA. Our findings regarding the biochemical and structural changes associated with apoptosis in activated mature T cells and cellular DNA according to Raman spectroscopy provide important insights into allospecific immune responses generated after organ transplantation, and may be useful for therapeutic manipulation of the immune response.

  12. Can mechanics control pattern formation in plants?

    PubMed

    Dumais, Jacques

    2007-02-01

    Development of the plant body entails many pattern forming events at scales ranging from the cellular level to the whole plant. Recent evidence suggests that mechanical forces play a role in establishing some of these patterns. The development of cellular configurations in glandular trichomes and the rippling of leaf surfaces are discussed in depth to illustrate how intricate patterns can emerge from simple and well-established molecular and cellular processes. The ability of plants to sense and transduce mechanical signals suggests that complex interactions between mechanics and chemistry are possible during plant development. The inclusion of mechanics alongside traditional molecular controls offers a more comprehensive view of developmental processes.

  13. Human systems immunology: hypothesis-based modeling and unbiased data-driven approaches.

    PubMed

    Arazi, Arnon; Pendergraft, William F; Ribeiro, Ruy M; Perelson, Alan S; Hacohen, Nir

    2013-10-31

    Systems immunology is an emerging paradigm that aims at a more systematic and quantitative understanding of the immune system. Two major approaches have been utilized to date in this field: unbiased data-driven modeling to comprehensively identify molecular and cellular components of a system and their interactions; and hypothesis-based quantitative modeling to understand the operating principles of a system by extracting a minimal set of variables and rules underlying them. In this review, we describe applications of the two approaches to the study of viral infections and autoimmune diseases in humans, and discuss possible ways by which these two approaches can synergize when applied to human immunology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. High resolution IVEM tomography of biological specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedat, J.W.; Agard, D.A.

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significantmore » new insights into biological function.« less

  15. Towards a minimally invasive sampling tool for high resolution tissue analytical mapping

    NASA Astrophysics Data System (ADS)

    Gottardi, R.

    2015-09-01

    Multiple spatial mapping techniques of biological tissues have been proposed over the years, but all present limitations either in terms of resolution, analytical capacity or invasiveness. Ren et al (2015 Nanotechnology 26 284001) propose in their most recent work the use of a picosecond infrared laser (PIRL) under conditions of ultrafast desorption by impulsive vibrational excitation (DIVE) to extract small amounts of cellular and molecular components, conserving their viability, structure and activity. The PIRL DIVE technique would then work as a nanobiopsy with minimal damage to the surrounding tissues, which could potentially be applied for high resolution local structural characterization of tissues in health and disease with the spatial limit determined by the laser focus.

  16. Navigating the network: signaling cross-talk in hematopoietic cells

    PubMed Central

    Fraser, Iain D C; Germain, Ronald N

    2009-01-01

    Recent studies in hematopoietic cells have led to a growing appreciation of the diverse modes of molecular and functional cross-talk between canonical signaling pathways. However, these intersections represent only the tip of the iceberg. Emerging global analytical methods are providing an even richer and more complete picture of the many components that measurably interact in a network manner to produce cellular responses. Here we highlight the pieces in this Focus, emphasize the limitations of the present canonical pathway paradigm, and discuss the value of a systems biology approach using more global, quantitative experimental design and data analysis strategies. Lastly, we urge caution about overly facile interpretation of genome- and proteome-level studies. PMID:19295628

  17. Systems biology approach to bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potentialmore » for making bioremediation breakthroughs and illuminating the ‘black box’.« less

  18. Cutaneous immunology: basics and new concepts.

    PubMed

    Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran

    2016-01-01

    As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.

  19. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication

    PubMed Central

    Ou, Horng D.; May, Andrew P.

    2010-01-01

    One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures. PMID:21061422

  20. Metadata Standard and Data Exchange Specifications to Describe, Model, and Integrate Complex and Diverse High-Throughput Screening Data from the Library of Integrated Network-based Cellular Signatures (LINCS).

    PubMed

    Vempati, Uma D; Chung, Caty; Mader, Chris; Koleti, Amar; Datar, Nakul; Vidović, Dušica; Wrobel, David; Erickson, Sean; Muhlich, Jeremy L; Berriz, Gabriel; Benes, Cyril H; Subramanian, Aravind; Pillai, Ajay; Shamu, Caroline E; Schürer, Stephan C

    2014-06-01

    The National Institutes of Health Library of Integrated Network-based Cellular Signatures (LINCS) program is generating extensive multidimensional data sets, including biochemical, genome-wide transcriptional, and phenotypic cellular response signatures to a variety of small-molecule and genetic perturbations with the goal of creating a sustainable, widely applicable, and readily accessible systems biology knowledge resource. Integration and analysis of diverse LINCS data sets depend on the availability of sufficient metadata to describe the assays and screening results and on their syntactic, structural, and semantic consistency. Here we report metadata specifications for the most important molecular and cellular components and recommend them for adoption beyond the LINCS project. We focus on the minimum required information to model LINCS assays and results based on a number of use cases, and we recommend controlled terminologies and ontologies to annotate assays with syntactic consistency and semantic integrity. We also report specifications for a simple annotation format (SAF) to describe assays and screening results based on our metadata specifications with explicit controlled vocabularies. SAF specifically serves to programmatically access and exchange LINCS data as a prerequisite for a distributed information management infrastructure. We applied the metadata specifications to annotate large numbers of LINCS cell lines, proteins, and small molecules. The resources generated and presented here are freely available. © 2014 Society for Laboratory Automation and Screening.

  1. Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation.

    PubMed

    Keisari, Yona

    2017-01-01

    Tumor ablation by thermal, chemical and radiological sources has received substantial attention for the treatment of many localized malignancies. The primary goal of most ablation procedures is to eradicate all viable malignant cells within a designated target volume through the application of energy or chemicals. Methods such as radiotherapy, chemical and biological ablation, photodynamic therapy, cryoablation, high-temperature ablation (radiofrequency, microwave, laser, and ultrasound), and electric-based ablation have been developed for focal malignancies. In recent years a large volume of data emerged on the effect of in situ tumor destruction (ablation) on inflammatory and immune components resulting in systemic anti-tumor reactions. It is evident that in situ tumor ablation can involve tumor antigen release, cross presentation and the release of DAMPS and make the tumor its own cellular vaccine. Tumor tissue destruction by in situ ablation may stimulate antigen-specific cellular immunity engendered by an inflammatory milieu. Dendritic cells (DCs) attracted to this microenvironment, will undergo maturation after internalizing cellular debris containing tumor antigens and will be exposed to damage associated molecular pattern (DAMP). Mature DCs can mediate antigen-specific cellular immunity via presentation of processed antigens to T cells. The immunomodulatory properties, exhibited by in situ ablation could portend a future collaboration with immunotherapeutic measures. In this review are summarized and discuss the preclinical and clinical studies pertinent to the phenomena of stimulation of specific anti-tumor immunity by various ablation modalities and the immunology related measures used to boost this response.

  2. Innate immunity of fish (overview).

    PubMed

    Magnadóttir, Bergljót

    2006-02-01

    The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.

  3. Etiologic Field Effect: Reappraisal of the Field Effect Concept in Cancer Predisposition and Progression

    PubMed Central

    Lochhead, Paul; Chan, Andrew T; Nishihara, Reiko; Fuchs, Charles S; Beck, Andrew H; Giovannucci, Edward; Ogino, Shuji

    2014-01-01

    The term “field effect” (also known as field defect, field cancerization, or field carcinogenesis) has been used to describe a field of cellular and molecular alteration, which predisposes to the development of neoplasms within that territory. We explore an expanded, integrative concept, “etiologic field effect”, which asserts that various etiologic factors (the exposome including dietary, lifestyle, environmental, microbial, hormonal, and genetic factors) and their interactions (the interactome) contribute to a tissue microenvironmental milieu that constitutes a “field of susceptibility” to neoplasia initiation, evolution, and progression. Importantly, etiological fields predate the acquisition of molecular aberrations commonly considered to indicate presence of filed effect. Inspired by molecular pathological epidemiology (MPE) research, which examines the influence of etiologic factors on cellular and molecular alterations during disease course, an etiologically-focused approach to field effect can: 1) broaden the horizons of our inquiry into cancer susceptibility and progression at molecular, cellular, and environmental levels, during all stages of tumor evolution; 2) embrace host-environment-tumor interactions (including gene-environment interactions) occurring in the tumor microenvironment; and, 3) help explain intriguing observations, such as shared molecular features between bilateral primary breast carcinomas, and between synchronous colorectal cancers, where similar molecular changes are absent from intervening normal colon. MPE research has identified a number of endogenous and environmental exposures which can influence not only molecular signatures in the genome, epigenome, transcriptome, proteome, metabolome and interactome, but also host immunity and tumor behavior. We anticipate that future technological advances will allow the development of in vivo biosensors capable of detecting and quantifying “etiologic field effect” as abnormal network pathology patterns of cellular and microenvironmental responses to endogenous and exogenous exposures. Through an “etiologic field effect” paradigm, and holistic systems pathology (systems biology) approaches to cancer biology, we can improve personalized prevention and treatment strategies for precision medicine. PMID:24925058

  4. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    NASA Astrophysics Data System (ADS)

    Delbarre-Ladrat, Christine; Sinquin, Corinne; Lebellenger, Lou; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2014-10-01

    Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bio-active compounds should also be proposed for a sustainable industry.

  6. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    PubMed

    Delbarre-Ladrat, Christine; Sinquin, Corinne; Lebellenger, Lou; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2014-01-01

    Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bioactive compounds should also be proposed for a sustainable industry.

  7. Semi-Automated Curation Allows Causal Network Model Building for the Quantification of Age-Dependent Plaque Progression in ApoE-/- Mouse.

    PubMed

    Szostak, Justyna; Martin, Florian; Talikka, Marja; Peitsch, Manuel C; Hoeng, Julia

    2016-01-01

    The cellular and molecular mechanisms behind the process of atherosclerotic plaque destabilization are complex, and molecular data from aortic plaques are difficult to interpret. Biological network models may overcome these difficulties and precisely quantify the molecular mechanisms impacted during disease progression. The atherosclerosis plaque destabilization biological network model was constructed with the semiautomated curation pipeline, BELIEF. Cellular and molecular mechanisms promoting plaque destabilization or rupture were captured in the network model. Public transcriptomic data sets were used to demonstrate the specificity of the network model and to capture the different mechanisms that were impacted in ApoE -/- mouse aorta at 6 and 32 weeks. We concluded that network models combined with the network perturbation amplitude algorithm provide a sensitive, quantitative method to follow disease progression at the molecular level. This approach can be used to investigate and quantify molecular mechanisms during plaque progression.

  8. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants.

    PubMed

    Marty-Roix, Robyn; Vladimer, Gregory I; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D; Chee, Jonathan D; Wang, Shixia; Lu, Shan; Lien, Egil

    2016-01-15

    Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia.

    PubMed

    Carreau, Aude; El Hafny-Rahbi, Bouchra; Matejuk, Agata; Grillon, Catherine; Kieda, Claudine

    2011-06-01

    Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  10. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies.

    PubMed

    Marie, Pierre J

    2015-04-01

    Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

  11. Cellular and Molecular Mechanisms of Sexual Differentiation in the Mammalian Nervous System

    PubMed Central

    Forger, Nancy G.; Strahan, J. Alex; Castillo-Ruiz, Alexandra

    2016-01-01

    Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to rethink often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970

  12. Ciona intestinalis notochord as a new model to investigate the cellular and molecular mechanisms of tubulogenesis.

    PubMed

    Denker, Elsa; Jiang, Di

    2012-05-01

    Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Motifs, modules and games in bacteria.

    PubMed

    Wolf, Denise M; Arkin, Adam P

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.

  14. In silico method for modelling metabolism and gene product expression at genome scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerman, Joshua A.; Hyduke, Daniel R.; Latif, Haythem

    2012-07-03

    Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome andmore » transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.« less

  15. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    PubMed Central

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed. PMID:24574961

  16. Motifs, modules and games in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Denise M.; Arkin, Adam P.

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment.more » Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.« less

  17. Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior.

    PubMed

    Pérez-Domínguez, Martha; Tovar-Y-Romo, Luis B; Zepeda, Angélica

    2018-01-26

    The dentate gyrus of the hippocampus is a plastic structure where adult neurogenesis constitutively occurs. Cell components of the neurogenic niche are source of paracrine as well as membrane-bound factors such as Notch, Bone Morphogenetic Proteins, Wnts, Sonic Hedgehog, cytokines, and growth factors that regulate adult hippocampal neurogenesis and cell fate decision. The integration and coordinated action of multiple extrinsic and intrinsic cues drive a continuous decision process: if adult neural stem cells remain quiescent or proliferate, if they take a neuronal or a glial lineage, and if new cells proliferate, undergo apoptotic death, or survive. The proper balance in the molecular milieu of this neurogenic niche leads to the production of neurons in a higher rate as that of astrocytes. But this rate changes in face of microenvironment modifications as those driven by physical exercise or with neuroinflammation. In this work, we first review the cellular and molecular components of the subgranular zone, focusing on the molecules, active signaling pathways and genetic programs that maintain quiescence, induce proliferation, or promote differentiation. We then summarize the evidence regarding the role of neuroinflammation and physical exercise in the modulation of adult hippocampal neurogenesis with emphasis on the activation of progression from adult neural stem cells to lineage-committed progenitors to their progeny mainly in murine models.

  18. Pre-mRNA splicing in cancer: the relevance in oncogenesis, treatment and drug resistance.

    PubMed

    Wojtuszkiewicz, Anna; Assaraf, Yehuda G; Maas, Marielle J P; Kaspers, Gertjan J L; Jansen, Gerrit; Cloos, Jacqueline

    2015-05-01

    Aberrant pre-mRNA splicing in cancer is emerging as an important determinant of oncogenesis, response to treatment and anticancer drug resistance. At the same time, the spliceosome has become a target for a novel class of pre-clinical chemotherapeutics with a potential future application in cancer treatment. Taken together, these findings offer novel opportunities for the enhancement of the efficacy of cancer therapy. This review presents a comprehensive overview of the molecular mechanisms involved in splicing and current developments regarding splicing aberrations in relation to several aspects of cancer formation and therapy. Identified mutations in the various components of the spliceosome and their implications for cancer prognosis are delineated. Moreover, the contribution of abnormal splicing patterns as well as deregulated splicing factors to chemoresistance is discussed, along with novel splicing-based therapeutic approaches. Significant progress has been made in deciphering the role of splicing factors in cancer including carcinogenesis and drug resistance. Splicing-based prognostic tools as well as therapeutic options hold great potential towards improvements in cancer therapy. However, gaining more in-depth molecular insight into the consequences of mutations in various components of the splicing machinery as well as of cellular effects of spliceosome inhibition is a prerequisite to establish the role of splicing in tumor progression and treatment options, respectively.

  19. Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton-Valentine leukocidin.

    PubMed

    Tromp, Angelino T; Van Gent, Michiel; Abrial, Pauline; Martin, Amandine; Jansen, Joris P; De Haas, Carla J C; Van Kessel, Kok P M; Bardoel, Bart W; Kruse, Elisabeth; Bourdonnay, Emilie; Boettcher, Michael; McManus, Michael T; Day, Christopher J; Jennings, Michael P; Lina, Gérard; Vandenesch, François; Van Strijp, Jos A G; Jan Lebbink, Robert; Haas, Pieter-Jan A; Henry, Thomas; Spaan, András N

    2018-05-07

    The staphylococcal bi-component leukocidins Panton-Valentine leukocidin (PVL) and γ-haemolysin CB (HlgCB) target human phagocytes. Binding of the toxins' S-components to human complement C5a receptor 1 (C5aR1) contributes to cellular tropism and human specificity of PVL and HlgCB. To investigate the role of both leukocidins during infection, we developed a human C5aR1 knock-in (hC5aR1 KI ) mouse model. HlgCB, but unexpectedly not PVL, contributed to increased bacterial loads in tissues of hC5aR1 KI mice. Compared to humans, murine hC5aR1 KI neutrophils showed a reduced sensitivity to PVL, which was mediated by the toxin's F-component LukF-PV. By performing a genome-wide CRISPR-Cas9 screen, we identified CD45 as a receptor for LukF-PV. The human-specific interaction between LukF-PV and CD45 provides a molecular explanation for resistance of hC5aR1 KI mouse neutrophils to PVL and probably contributes to the lack of a PVL-mediated phenotype during infection in these mice. This study demonstrates an unsuspected role of the F-component in driving the sensitivity of human phagocytes to PVL.

  20. Novel guanidine-containing molecular transporters based on lactose scaffolds: lipophilicity effect on the intracellular organellar selectivity.

    PubMed

    Biswas, Goutam; Jeon, Ock-Youm; Lee, Woo Sirl; Kim, Dong-Chan; Kim, Kyong-Tai; Lee, Suho; Chang, Sunghoe; Chung, Sung-Kee

    2008-01-01

    We have synthesized two lactose-based molecular transporters, each containing seven guanidine residues attached to the lactose scaffold through omega-aminocarboxylate linker chains of two different lengths, and have examined their cellular uptakes and intracellular and organellar localizations in HeLa cells, as well as their tissue distributions in mice. Both molecular transporters showed higher cellular uptake efficiencies than Arg8, and wide tissue distributions including the brain. Mitochondrial localization is of special interest because of its potential relevance to "mitochondrial diseases". Interestingly, it has been found that the intracellular localization sites of the G7 molecular transporters-namely either mitochondria or lysosomes and endocytic vesicles-are largely determined by the linker chain lengths, or their associated lipophilicities.

  1. Rhabdomyosarcomas: an overview on the experimental animal models.

    PubMed

    Zanola, Alessandra; Rossi, Stefania; Faggi, Fiorella; Monti, Eugenio; Fanzani, Alessandro

    2012-07-01

    Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radiations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models to point out the molecular determinants cooperating with RMS development and progression. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  2. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.

    PubMed

    Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno

    2010-08-01

    In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent alpha also determines the resolution of differences in diffusion times between two components in addition to photophysical parameters well-known for normal motion in dilute solution. The resolution limit between two different kinds of single molecule species is also analyzed under translational anomalous motion with broken ergodicity. We apply our theoretical predictions of diffusion times and lower limits for the time resolution of two components to fluorescence images in human prostate cancer cells transfected with GFP-Ago2 and GFP-Ago1. In order to mimic heterogeneous behavior in crowded environments of living cells, we need to introduce so-called continuous time random walks (CTRW). CTRWs were originally performed on regular lattice. This purely stochastic molecule behavior leads to subdiffusive motion with broken ergodicity in our simulations. For the first time, we are able to quantitatively differentiate between anomalous motion without broken ergodicity and anomalous motion with broken ergodicity in time-dependent fluorescence microscopy data sets of living cells. Since the experimental conditions to measure a selfsame molecule over an extended period of time, at which biology is taken place, in living cells or even in dilute solution are very restrictive, we need to perform the time average over a subpopulation of different single molecules of the same kind. For time averages over subpopulations of single molecules, the temporal auto- and crosscorrelation functions are first found. Knowing the crowding parameter alpha for the cell type and cellular compartment type, respectively, the heterogeneous parameter gamma can be obtained from the measurements in the presence of the interacting reaction partner, e.g. ligand, with the same alpha value. The product alpha x gamma = gamma is not a simple fitting parameter in the temporal auto- and two-color crosscorrelation functions because it is related to the proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in cellular systems.We have already derived an analytical solution gamma for in the special case of gamma = 3/2. In the case of two-color crosscorrelation or/and two-color fluorescence imaging (co-localization experiments), the second component is also a two-color species gr, for example a different molecular complex with an additional ligand. Here, we first show that plausible biological mechanisms from FCS/ FCCS and fluorescence imaging in living cells are highly questionable without proper quantitative physical models of subdiffusive motion and temporal randomness. At best, such quantitative FCS/ FCCS and fluorescence imaging data are difficult to interpret under crowding and heterogeneous conditions. It is challenging to translate proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in living cells and their cellular compartments like the nucleus into biological models of the cell biological process under study testable by single-molecule approaches. Otherwise, quantitative FCS/FCCS and fluorescence imaging measurements in living cells are not well described and cannot be interpreted in a meaningful way.

  3. MOLECULAR DIAGNOSTICS - ANOTHER PIECE IN THE ENVIRONMENTAL PUZZLE

    EPA Science Inventory

    Molecular biology offers sensitive and expedient tools for the detection of exposure to environmental stressors. Molecular approaches provide the means for detection of the "first cellular event(s)" in response to environmental changes-specifically, immediate changes in gene expr...

  4. High-throughput microscopy must re-invent the microscope rather than speed up its functions

    PubMed Central

    Oheim, M

    2007-01-01

    Knowledge gained from the revolutions in genomics and proteomics has helped to identify many of the key molecules involved in cellular signalling. Researchers, both in academia and in the pharmaceutical industry, now screen, at a sub-cellular level, where and when these proteins interact. Fluorescence imaging and molecular labelling combine to provide a powerful tool for real-time functional biochemistry with molecular resolution. However, they traditionally have been work-intensive, required trained personnel, and suffered from low through-put due to sample preparation, loading and handling. The need for speeding up microscopy is apparent from the tremendous complexity of cellular signalling pathways, the inherent biological variability, as well as the possibility that the same molecule plays different roles in different sub-cellular compartments. Research institutes and companies have teamed up to develop imaging cytometers of ever-increasing complexity. However, to truly go high-speed, sub-cellular imaging must free itself from the rigid framework of current microscopes. PMID:17603553

  5. Terminal addition in a cellular world.

    PubMed

    Torday, J S; Miller, William B

    2018-07-01

    Recent advances in our understanding of evolutionary development permit a reframed appraisal of Terminal Addition as a continuous historical process of cellular-environmental complementarity. Within this frame of reference, evolutionary terminal additions can be identified as environmental induction of episodic adjustments to cell-cell signaling patterns that yield the cellular-molecular pathways that lead to differing developmental forms. Phenotypes derive, thereby, through cellular mutualistic/competitive niche constructions in reciprocating responsiveness to environmental stresses and epigenetic impacts. In such terms, Terminal Addition flows according to a logic of cellular needs confronting environmental challenges over space-time. A reconciliation of evolutionary development and Terminal Addition can be achieved through a combined focus on cell-cell signaling, molecular phylogenies and a broader understanding of epigenetic phenomena among eukaryotic organisms. When understood in this manner, Terminal Addition has an important role in evolutionary development, and chronic disease might be considered as a form of 'reverse evolution' of the self-same processes. Copyright © 2017. Published by Elsevier Ltd.

  6. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    PubMed

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement.

    PubMed

    Jiang, Hanlun; Sheong, Fu Kit; Zhu, Lizhe; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2015-07-01

    Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.

  8. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling.

    PubMed

    Yuan, Yinyin; Failmezger, Henrik; Rueda, Oscar M; Ali, H Raza; Gräf, Stefan; Chin, Suet-Feung; Schwarz, Roland F; Curtis, Christina; Dunning, Mark J; Bardwell, Helen; Johnson, Nicola; Doyle, Sarah; Turashvili, Gulisa; Provenzano, Elena; Aparicio, Sam; Caldas, Carlos; Markowetz, Florian

    2012-10-24

    Solid tumors are heterogeneous tissues composed of a mixture of cancer and normal cells, which complicates the interpretation of their molecular profiles. Furthermore, tissue architecture is generally not reflected in molecular assays, rendering this rich information underused. To address these challenges, we developed a computational approach based on standard hematoxylin and eosin-stained tissue sections and demonstrated its power in a discovery and validation cohort of 323 and 241 breast tumors, respectively. To deconvolute cellular heterogeneity and detect subtle genomic aberrations, we introduced an algorithm based on tumor cellularity to increase the comparability of copy number profiles between samples. We next devised a predictor for survival in estrogen receptor-negative breast cancer that integrated both image-based and gene expression analyses and significantly outperformed classifiers that use single data types, such as microarray expression signatures. Image processing also allowed us to describe and validate an independent prognostic factor based on quantitative analysis of spatial patterns between stromal cells, which are not detectable by molecular assays. Our quantitative, image-based method could benefit any large-scale cancer study by refining and complementing molecular assays of tumor samples.

  9. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property.

    PubMed

    Zhang, Xiao; Ren, Juan; Wang, Jingren; Li, Shixie; Zou, Qingze; Gao, Nan

    2018-08-01

    Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals. © 2017 Wiley Periodicals, Inc.

  10. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However,more » the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.« less

  11. Real-time Molecular Study of Bystander Effects of Low dose Low LET radiation Using Living Cell Imaging and Nanoparticale Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, Mohan; Xu, Nancy R; Mohan, Sumathy

    2013-06-03

    In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used tomore » track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10 cGy on coverslips will be examined for (a) low LET radiation-induced alterations of cellular function and its physiological relevance in real time; and (b) radiation damage triggered bystander effect on the neighboring unirradiated cells. First, to determine the low LET radiation induced alteration of cellular function we will examine: (i) the real time transformation of single membrane transporters in single living cells; (ii) the pump efficiency of membrane efflux pump of live cells in real time at the molecular level; (iii) the kinetics of single-ligand receptor interaction on single live cell surface (Figure C); and (iv) alteration in chromosome replication in living cell. Second, to study the radiation triggered bystander responses, we will examine one of the key signaling pathway i.e. TNF- alpha/NF-kappa B mediated signaling. TNF-alpha specific nano particle sensors (green) will be developed to detect the releasing dynamics, transport mechanisms and ligand-receptor binding on live cell surface in real time. A second sensor (blue) will be developed to simultaneously monitor the track of NF-kB inside the cell. The proposed nano-particle optics approach would complement our DOE funded study on biochemical mechanisms of TNF-alpha- NF-kappa B-mediated bystander effect.« less

  12. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules.

    PubMed

    Schweitzer, Mary Higby; Zheng, Wenxia; Cleland, Timothy P; Bern, Marshall

    2013-01-01

    The discovery of soft, transparent microstructures in dinosaur bone consistent in morphology with osteocytes was controversial. We hypothesize that, if original, these microstructures will have molecular features in common with extant osteocytes. We present immunological and mass spectrometry evidence for preservation of proteins comprising extant osteocytes (Actin, Tubulin, PHEX, Histone H4) in osteocytes recovered from two non-avian dinosaurs. Furthermore, antibodies to DNA show localized binding to these microstructures, which also react positively with DNA intercalating stains propidium iodide (PI) and 4',6'-diamidino-2-phenylindole dihydrochloride (DAPI). Each antibody binds dinosaur cells in patterns similar to extant cells. These data are the first to support preservation of multiple proteins and to present multiple lines of evidence for material consistent with DNA in dinosaurs, supporting the hypothesis that these structures were part of the once living animals. We propose mechanisms for preservation of cells and component molecules, and discuss implications for dinosaurian cellular biology. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease.

    PubMed

    Sullivan, E Madison; Pennington, Edward Ross; Green, William D; Beck, Melinda A; Brown, David A; Shaikh, Saame Raza

    2018-05-01

    Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.

  14. Structural and Dynamic Insights into the Mechanism of Allosteric Signal Transmission in ERK2-Mediated MKP3 Activation.

    PubMed

    Lu, Chang; Liu, Xin; Zhang, Chen-Song; Gong, Haipeng; Wu, Jia-Wei; Wang, Zhi-Xin

    2017-11-21

    The mitogen-activated protein kinases (MAPKs) are key components of cellular signal transduction pathways, which are down-regulated by the MAPK phosphatases (MKPs). Catalytic activity of the MKPs is controlled both by their ability to recognize selective MAPKs and by allosteric activation upon binding to MAPK substrates. Here, we use a combination of experimental and computational techniques to elucidate the molecular mechanism for the ERK2-induced MKP3 activation. Mutational and kinetic study shows that the 334 FNFM 337 motif in the MKP3 catalytic domain is essential for MKP3-mediated ERK2 inactivation and is responsible for ERK2-mediated MKP3 activation. The long-term molecular dynamics (MD) simulations further reveal a complete dynamic process in which the catalytic domain of MKP3 gradually changes to a conformation that resembles an active MKP catalytic domain over the time scale of the simulation, providing a direct time-dependent observation of allosteric signal transmission in ERK2-induced MKP3 activation.

  15. Potential-based dynamical reweighting for Markov state models of protein dynamics.

    PubMed

    Weber, Jeffrey K; Pande, Vijay S

    2015-06-09

    As simulators attempt to replicate the dynamics of large cellular components in silico, problems related to sampling slow, glassy degrees of freedom in molecular systems will be amplified manyfold. It is tempting to augment simulation techniques with external biases to overcome such barriers with ease; biased simulations, however, offer little utility unless equilibrium properties of interest (both kinetic and thermodynamic) can be recovered from the data generated. In this Article, we present a general scheme that harnesses the power of Markov state models (MSMs) to extract equilibrium kinetic properties from molecular dynamics trajectories collected on biased potential energy surfaces. We first validate our reweighting protocol on a simple two-well potential, and we proceed to test our method on potential-biased simulations of the Trp-cage miniprotein. In both cases, we find that equilibrium populations, time scales, and dynamical processes are reliably reproduced as compared to gold standard, unbiased data sets. We go on to discuss the limitations of our dynamical reweighting approach, and we suggest auspicious target systems for further application.

  16. Coenzyme Q10 deficiencies in neuromuscular diseases.

    PubMed

    Artuch, Rafael; Salviati, Leonardo; Jackson, Sandra; Hirano, Michio; Navas, Plácido

    2009-01-01

    Coenzyme Q (CoQ) is an essential component of the respiratory chain but also participates in other mitochondrial functions such as regulation of the transition pore and uncoupling proteins. Furthermore, this compound is a specific substrate for enzymes of the fatty acids beta-oxidation pathway and pyrimidine nucleotide biosynthesis. Furthermore, CoQ is an antioxidant that acts in all cellular membranes and lipoproteins. A complex of at least ten nuclear (COQ) genes encoded proteins synthesizes CoQ but its regulation is unknown. Since 1989, a growing number of patients with multisystemic mitochondrial disorders and neuromuscular disorders showing deficiencies of CoQ have been identified. CoQ deficiency caused by mutation(s) in any of the COQ genes is designated primary deficiency. Other patients have displayed other genetic defects independent on the CoQ biosynthesis pathway, and are considered to have secondary deficiencies. This review updates the clinical and molecular aspects of both types of CoQ deficiencies and proposes new approaches to understanding their molecular bases.

  17. Resolving phylogenetic incongruence to articulate homology and phenotypic evolution: a case study from Nematoda

    PubMed Central

    Ragsdale, Erik J.; Baldwin, James G.

    2010-01-01

    Modern morphology-based systematics, including questions of incongruence with molecular data, emphasizes analysis over similarity criteria to assess homology. Yet detailed examination of a few key characters, using new tools and processes such as computerized, three-dimensional ultrastructural reconstruction of cell complexes, can resolve apparent incongruence by re-examining primary homologies. In nematodes of Tylenchomorpha, a parasitic feeding phenotype is thus reconciled with immediate free-living outgroups. Closer inspection of morphology reveals phenotypes congruent with molecular-based phylogeny and points to a new locus of homology in mouthparts. In nematode models, the study of individually homologous cells reveals a conserved modality of evolution among dissimilar feeding apparati adapted to divergent lifestyles. Conservatism of cellular components, consistent with that of other body systems, allows meaningful comparative morphology in difficult groups of microscopic organisms. The advent of phylogenomics is synergistic with morphology in systematics, providing an honest test of homology in the evolution of phenotype. PMID:20106846

  18. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.

    PubMed

    Magie, Craig R; Martindale, Mark Q

    2008-06-01

    Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.

  19. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  20. Evolutionary Specialization of Tactile Perception in Vertebrates.

    PubMed

    Schneider, Eve R; Gracheva, Elena O; Bagriantsev, Slav N

    2016-05-01

    Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  1. Understanding the cellular and molecular mechanisms of dominant and recessive inheritance in genetics course.

    PubMed

    Wanjin, Xing; Morigen, Morigen

    2015-01-01

    In Mendellian genetics, the dominance and recessiveness are used to describe the functional relationship between two alleles of one gene in a heterozygote. The allele which constitutes a phenotypical character over the other is named dominant and the one functionally masked is called recessive. The definitions thereby led to the creation of Mendel's laws on segregation and independent assortment and subsequent classic genetics. The discrimination of dominance and recessiveness originally is a requirement for Mendel's logical reasoning, but now it should be explained by cellular and molecular principles in the modern genetics. To answer the question raised by students of how the dominance and recessiveness are controlled, we reviewed the recent articles and tried to summarize the cellular and molecular basis of dominant and recessive inheritance. Clearly, understanding the essences of dominant and recessive inheritance requires us to know the dissimilarity of the alleles and their products (RNA and/or proteins), and the way of their function in cells. The alleles spatio-temporally play different roles on offering cells, tissues or organs with discernible phenotypes, namely dominant or recessive. Here, we discuss the changes of allele dominance and recessiveness at the cellular and molecular levels based on the variation of gene structure, gene regulation, function and types of gene products, in order to make students understand gene mutation and function more comprehensively and concretely.

  2. Augmenting Microarray Data with Literature-Based Knowledge to Enhance Gene Regulatory Network Inference

    PubMed Central

    Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C.

    2014-01-01

    Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology. PMID:24921649

  3. Augmenting microarray data with literature-based knowledge to enhance gene regulatory network inference.

    PubMed

    Chen, Guocai; Cairelli, Michael J; Kilicoglu, Halil; Shin, Dongwook; Rindflesch, Thomas C

    2014-06-01

    Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various computational models rely on random gene selection to infer such networks from microarray data. While incorporation of prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query the literature and a microarray set containing gene expression changes in these cells over several time points. Our model demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene interactions extracted from the literature in the form of semantic relations with microarray analysis in generating contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding the complex interactions involved in cellular behavior and molecular physiology.

  4. 78 FR 26378 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ..., Genomes, and Genetics Integrated Review Group; Prokaryotic Cell and Molecular Biology Study Section. Date..., Kidney and Urological Systems Integrated Review Group; Clinical, Integrative and Molecular... Respiratory Sciences Integrated Review Group; Lung Cellular, Molecular, and Immunobiology Study Section. Date...

  5. 75 FR 54893 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... 7850, Bethesda, MD 20892. 301-435-3009. [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Molecular Neuropharmacology and Signaling... . Name of Committee: Emerging Technologies and Training Neurosciences Integrated Review Group, Molecular...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fucharoen, S.; Rowley, P.T.; Paul, N.W.

    This book contains papers divided among the following sections: molecular biology and pathogenesis; pathophysiology - molecular and cellular; clinical manifestations and hematologic changes; cardiopulmonary defects and platelet function; hormones and minerals; and infection and immunology.

  7. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells.

    PubMed

    Kim, Jayoung; Sunshine, Joel C; Green, Jordan J

    2014-01-15

    Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.

  8. Assessment of cellularity, genomic DNA yields, and technical platforms for BRAF mutational testing in thyroid fine-needle aspirate samples.

    PubMed

    Dyhdalo, Kathryn; Macnamara, Stephen; Brainard, Jennifer; Underwood, Dawn; Tubbs, Raymond; Yang, Bin

    2014-02-01

    BRAF mutation V600E (substitution Val600Glu) is a molecular signature for papillary thyroid carcinoma (PTC). Testing for BRAF mutation is clinically useful in providing prognostic prediction and facilitating accurate diagnosis of PTC in thyroid fine-needle aspirate (FNA) samples. This study assessed the correlation of cellularity with DNA yield and compared 2 technical platforms with different sensitivities in detection of BRAF mutation in cytologic specimens. Cellularity was evaluated based on groups of 10+ cells on a ThinPrep slide: 1+ (1-5 groups), 2+ (6-10 groups), 3+ (11-20 groups), and 4+ (> 20 groups). Genomic DNA was extracted from residual materials of thyroid FNAs after cytologic diagnosis. Approximately 49% of thyroid FNA samples had low cellularity (1-2+). DNA yield is proportionate with increased cellularity and increased nearly 4-fold from 1+ to 4+ cellularity in cytologic samples. When applied to BRAF mutational assay, using a cutoff of 6 groups of follicular cells with 10+ cells per group, 96.7% of cases yielded enough DNA for at least one testing for BRAF mutation. Five specimens (11.6%) with lower cellularity did not yield sufficient DNA for duplicate testing. Comparison of Sanger sequencing to allele-specific polymerase chain reaction methods shows the latter confers better sensitivity in detection of BRAF mutation, especially in limited cytologic specimens with a lower percentage of malignant cells. This study demonstrates that by using 6 groups of 10+ follicular cells as a cutoff, nearly 97% of thyroid FNA samples contain enough DNA for BRAF mutational assay. Careful selection of a molecular testing system with high sensitivity facilitates the successful conduction of molecular testing in limited cytologic specimens. Cancer (Cancer Cytopathol) 2014;122:114-22 © 2013 American Cancer Society. © 2013 American Cancer Society.

  9. Microwave components for cellular portable radiotelephone

    NASA Astrophysics Data System (ADS)

    Muraguchi, Masahiro; Aikawa, Masayoshi

    1995-09-01

    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  10. Community of protein complexes impacts disease association

    PubMed Central

    Wang, Qianghu; Liu, Weisha; Ning, Shangwei; Ye, Jingrun; Huang, Teng; Li, Yan; Wang, Peng; Shi, Hongbo; Li, Xia

    2012-01-01

    One important challenge in the post-genomic era is uncovering the relationships among distinct pathophenotypes by using molecular signatures. Given the complex functional interdependencies between cellular components, a disease is seldom the consequence of a defect in a single gene product, instead reflecting the perturbations of a group of closely related gene products that carry out specific functions together. Therefore, it is meaningful to explore how the community of protein complexes impacts disease associations. Here, by integrating a large amount of information from protein complexes and the cellular basis of diseases, we built a human disease network in which two diseases are linked if they share common disease-related protein complex. A systemic analysis revealed that linked disease pairs exhibit higher comorbidity than those that have no links, and that the stronger association two diseases have based on protein complexes, the higher comorbidity they are prone to display. Moreover, more connected diseases tend to be malignant, which have high prevalence. We provide novel disease associations that cannot be identified through previous analysis. These findings will potentially provide biologists and clinicians new insights into the etiology, classification and treatment of diseases. PMID:22549411

  11. Raman and SERS microspectroscopy on living cells: a promising tool toward cellular drug response and medical diagnosis

    NASA Astrophysics Data System (ADS)

    Beljebbar, Abdelilah; Sockalingum, Ganesh D.; Morjani, Hamid; Manfait, Michel

    1999-04-01

    Raman spectroscopy has been sued to differentiate between sensitive and MDR-resistant cells using Raman spectral imaging with a 632.8 nm excitation wavelength. The comparison between two spectral images allowed to quantify the differences between sensitive and resistant cell lines in term of proteins, lipids when MDR phenotype is expressed. SER spectroscopy has become a powerful and non-invasive probe for investigating the molecular and cellular interaction of drugs with their targets. The comparison between these models allow to elucidate the biological effect of the drugs. The development of new types of SERS- active substrates has extended the applicability of this technique to medical diagnosis. Two kinds of SERS active substrates, characterized as 'bio-compatible' systems, can be used for investigation on single living cells: colloid suspensions and microelectrodes and island films. This methodology is used for the study of cell membrane components in interaction with the SERS substrates with the aim to understand the resistance mechanism. The constitution of a data bank will allow the follow-up of cancer and future monitoring of therapeutic intervention.

  12. Towards molecular medicine: a case for a biological periodic table.

    PubMed

    Gawad, Charles

    2005-01-01

    The recently amplified pace of development in the technologies to study both normal and aberrant cellular physiology has allowed for a transition from the traditional reductionist approaches to global interrogations of human biology. This transformation has created the anticipation that we will soon more effectively treat or contain most types of diseases through a 'systems-based' approach to understanding and correcting the underlying etiology of these processes. However, to accomplish these goals, we must first have a more comprehensive understanding of all the elements involved in human cellular physiology, as well as why and how they interact. With the vast number of biological components that have and are being discovered, creating methods with modern computational techniques to better organize biological elements is the next requisite step in this process. This article aims to articulate the importance of the organization of chemical elements into a periodic table had on the conversion of chemistry into a quantitative, translatable science, as well as how we can apply the lessons learned in that transition to the current transformation taking place in biology.

  13. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling

    PubMed Central

    Ariotti, Nicholas; Fernández-Rojo, Manuel A.; Zhou, Yong; Hill, Michelle M.; Rodkey, Travis L.; Inder, Kerry L.; Tanner, Lukas B.; Wenk, Markus R.

    2014-01-01

    The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization. PMID:24567358

  14. Papain-induced experimental pulmonary emphysema in male and female mice.

    PubMed

    Machado, Mariana Nascimento; Figueirôa, Silviane Fernandes da Silva; Mazzoli-Rocha, Flavia; Valença, Samuel dos Santos; Zin, Walter Araújo

    2014-08-15

    In papain-induced models of emphysema, despite the existing extensive description of the cellular and molecular aspects therein involved, sexual hormones may play a complex and still not fully understood role. Hence, we aimed at exploring the putative gender-related differences in lung mechanics, histology and oxidative stress in papain-exposed mice. Thirty adult BALB/c mice received intratracheally either saline (50 μL) or papain (10 U/50 μL saline) once a week for 2 weeks. In males papain increased lung resistive and viscoelastic/inhomogeneous pressures, static elastance, and viscoelastic component of elastance, while females showed higher static elastance and resistive pressure only. Both genders presented similar higher parenchymal cellularity and mean alveolar diameter, and less collagen-elastic fiber content and body weight gain than their respective controls. Increased functional residual capacity was more prominent in males. Female papain-treated mice were more susceptible to oxidative stress. Thus, male and female papain-exposed mice respond differently, which should be carefully considered to avoid confounding results. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Morphological and functional aspects of progenitors perturbed in cortical malformations

    PubMed Central

    Bizzotto, Sara; Francis, Fiona

    2015-01-01

    In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area. PMID:25729350

  16. Potential mechanisms of hepatitis B virus induced liver injury

    PubMed Central

    Suhail, Mohd; Abdel-Hafiz, Hany; Ali, Ashraf; Fatima, Kaneez; Damanhouri, Ghazi A; Azhar, Esam; Chaudhary, Adeel GA; Qadri, Ishtiaq

    2014-01-01

    Chronic active hepatitis (CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma. The histological end points of CAH are chronic inflammation, fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers. The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis, inflammation and cytokine production and liver scaring (fibrosis). The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components. The viral and cellular factors that contribute to liver injury are discussed in this article. Liver injury caused by the viral infection affects many cellular processes such as cell signaling, apoptosis, transcription, DNA repair which in turn induce radical effects on cell survival, growth, transformation and maintenance. The consequence of such perturbations is resulted in the alteration of bile secretion, gluconeogenesis, glycolysis, detoxification and metabolism of carbohydrates, proteins, fat and balance of nutrients. The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury. PMID:25253946

  17. Watching cellular machinery in action, one molecule at a time.

    PubMed

    Monachino, Enrico; Spenkelink, Lisanne M; van Oijen, Antoine M

    2017-01-02

    Single-molecule manipulation and imaging techniques have become important elements of the biologist's toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components. © 2017 Monachino et al.

  18. Coexistence of Phases in a Protein Heterodimer

    PubMed Central

    Krokhotin, Andrey; Liwo, Adam; Niemi, Antti J.; Scheraga, Harold A.

    2012-01-01

    A heterodimer consisting of two or more different kinds of proteins can display an enormous number of distinct molecular architectures. The conformational entropy is an essential ingredient in the Helmholtz free energy and, consequently, these heterodimers can have a very complex phase structure. Here, it is proposed that there is a state of proteins, in which the different components of a heterodimer exist in different phases. For this purpose, the structures in the protein data bank (PDB) have been analyzed, with radius of gyration as the order parameter. Two major classes of heterodimers with their protein components coexisting in different phases have been identified. An example is the PDB structure 3DXC. This is a transcriptionally active dimer. One of the components is an isoform of the intra-cellular domain of the Alzheimer-disease related amyloid precursor protein (AICD), and the other is a nuclear multidomain adaptor protein in the Fe65 family. It is concluded from the radius of gyration that neither of the two components in this dimer is in its own collapsed phase, corresponding to a biologically active protein. The UNRES energy function has been utilized to confirm that, if the two components are separated from each other, each of them collapses. The results presented in this work show that heterodimers whose protein components coexist in different phases, can have intriguing physical properties with potentially important biological consequences. PMID:22830730

  19. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present

    PubMed Central

    Schweitzer, Mary Higby; Wittmeyer, Jennifer L; Horner, John R

    2006-01-01

    Soft tissues and cell-like microstructures derived from skeletal elements of a well-preserved Tyrannosaurus rex (MOR 1125) were represented by four components in fragments of demineralized cortical and/or medullary bone: flexible and fibrous bone matrix; transparent, hollow and pliable blood vessels; intravascular material, including in some cases, structures morphologically reminiscent of vertebrate red blood cells; and osteocytes with intracellular contents and flexible filipodia. The present study attempts to trace the occurrence of these four components in bone from specimens spanning multiple geological time periods and varied depositional environments. At least three of the four components persist in some skeletal elements of specimens dating to the Campanian. Fibrous bone matrix is more altered over time in morphology and less likely to persist than vessels and/or osteocytes. Vessels vary greatly in preservation, even within the same specimen, with some regions retaining pliability and other regions almost crystalline. Osteocytes also vary, with some retaining long filipodia and transparency, while others present with short and stubby filipodia and deeply pigmented nuclei, or are pigmented throughout with no nucleus visible. Alternative hypotheses are considered to explain the origin/source of observed materials. Finally, a two-part mechanism, involving first cross-linking of molecular components and subsequent mineralization, is proposed to explain the surprising presence of still-soft elements in fossil bone. These results suggest that present models of fossilization processes may be incomplete and that soft tissue elements may be more commonly preserved, even in older specimens, than previously thought. Additionally, in many cases, osteocytes with defined nuclei are preserved, and may represent an important source for informative molecular data. PMID:17148248

  20. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present.

    PubMed

    Schweitzer, Mary Higby; Wittmeyer, Jennifer L; Horner, John R

    2007-01-22

    Soft tissues and cell-like microstructures derived from skeletal elements of a well-preserved Tyrannosaurus rex (MOR 1125) were represented by four components in fragments of demineralized cortical and/or medullary bone: flexible and fibrous bone matrix; transparent, hollow and pliable blood vessels; intravascular material, including in some cases, structures morphologically reminiscent of vertebrate red blood cells; and osteocytes with intracellular contents and flexible filipodia. The present study attempts to trace the occurrence of these four components in bone from specimens spanning multiple geological time periods and varied depositional environments. At least three of the four components persist in some skeletal elements of specimens dating to the Campanian. Fibrous bone matrix is more altered over time in morphology and less likely to persist than vessels and/or osteocytes. Vessels vary greatly in preservation, even within the same specimen, with some regions retaining pliability and other regions almost crystalline. Osteocytes also vary, with some retaining long filipodia and transparency, while others present with short and stubby filipodia and deeply pigmented nuclei, or are pigmented throughout with no nucleus visible. Alternative hypotheses are considered to explain the origin/source of observed materials. Finally, a two-part mechanism, involving first cross-linking of molecular components and subsequent mineralization, is proposed to explain the surprising presence of still-soft elements in fossil bone. These results suggest that present models of fossilization processes may be incomplete and that soft tissue elements may be more commonly preserved, even in older specimens, than previously thought. Additionally, in many cases, osteocytes with defined nuclei are preserved, and may represent an important source for informative molecular data.

Top