Overexpression of amyloid precursor protein increases copper content in HEK293 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suazo, Miriam; Hodar, Christian; Morgan, Carlos
2009-05-15
Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to bothmore » Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.« less
NASA Technical Reports Server (NTRS)
Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.
1999-01-01
The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.
Holland, Jason P; Giansiracusa, Jeffrey H; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R
2009-04-07
The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [(60/62/64)Cu(II)ATSM] and [(60/62/64)Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO(2)-dependent in vitro cellular uptake and retention of [(64)Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k(1) = 9.8 +/- 0.59 x 10(-4) s(-1) and k(2) = 2.9 +/- 0.17 x 10(-3) s(-1)), intracellular reduction (k(3) = 5.2 +/- 0.31 x 10(-2) s(-1)), reoxidation (k(4) = 2.2 +/- 0.13 mol(-1) dm(3) s(-1)) and proton-mediated ligand dissociation (k(5) = 9.0 +/- 0.54 x 10(-5) s(-1)). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the structure of the ligand and the results confirm that the proposed reduction step in the mechanism of hypoxia selectivity is likely to be mediated by NADH-dependent enzymes. Further understanding of the mechanism of hypoxia selectivity may facilitate the development of new imaging and radiotherapeutic agents with increased specificity for tumour hypoxia.
NASA Astrophysics Data System (ADS)
Holland, Jason P.; Giansiracusa, Jeffrey H.; Bell, Stephen G.; Wong, Luet-Lok; Dilworth, Jonathan R.
2009-04-01
The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [60/62/64Cu(II)ATSM] and [60/62/64Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO2-dependent in vitro cellular uptake and retention of [64Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k1 = 9.8 ± 0.59 × 10-4 s-1 and k2 = 2.9 ± 0.17 × 10-3 s-1), intracellular reduction (k3 = 5.2 ± 0.31 × 10-2 s-1), reoxidation (k4 = 2.2 ± 0.13 mol-1 dm3 s-1) and proton-mediated ligand dissociation (k5 = 9.0 ± 0.54 × 10-5 s-1). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the structure of the ligand and the results confirm that the proposed reduction step in the mechanism of hypoxia selectivity is likely to be mediated by NADH-dependent enzymes. Further understanding of the mechanism of hypoxia selectivity may facilitate the development of new imaging and radiotherapeutic agents with increased specificity for tumour hypoxia.
Porins Increase Copper Susceptibility of Mycobacterium tuberculosis
Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael
2013-01-01
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632
Zinc and copper tolerance of Agrostis stolonifera L. in tissue culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, L.; Antonovics, J.
1978-03-01
Callus tissue was induced from shoot meristematic tissue and root tips of a clone of the grass Agrostis stolonifera tolerant to both zinc and copper, and from a control clone tolerant to neither metal. Growth of the callus tissue on media containing zinc and copper showed that tolerance to both metals was maintained in tissue culture. The pattern of metal uptake in tissue culture resembled uptake by whole plants in that tolerant tissue took up more metal than nontolerant tissue. Plants regenerated from callus had the same copper and zinc tolerance as the original parental clones regardless of time ofmore » growth in tissue culture and shoot or root origin of the tissue. The results support previous evidence that metal tolerance is genetically determined and acts at the cellular level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Zhang, Yikai; Zheng, Shanyuan
Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cellsmore » by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities of cisplatin.« less
Transport and intracellular distribution of copper in a human hepatoblastoma cell line, HepG2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockert, R.J.; Grushoff, P.S.; Morell, A.G.
1986-01-01
The uptake of radiocopper by HepG2 cells is a saturable, temperature-dependent and cellular energy-independent process with a Vmax of 7.1 +/- 0.2 pmoles min-1 mg protein-1 and an estimated Km of 3.3 +/- 0.5 microM. The rate of copper uptake is reduced at an equimolar concentration of albumin and is unaffected by zinc at a 10-fold molar excess. Approximately 70% of the newly incorporated radiocopper binds to membranes and organelles, while 30% is recovered in the cytosol. The soluble fraction can be resolved into two copper-binding protein peaks. Incubation of HepG2 with nonisotopic copper results in displacement of radiocopper associatedmore » with the proteins contained in the lower molecular weight peak. Exposure of the cells to cycloheximide inhibits the incorporation of the isotope into this fraction.« less
Kim, Kwang Il; Jang, Su Jin; Park, Ju Hui; Lee, Yong Jin; Lee, Tae Sup; Woo, Kwang Sun; Park, Hyun; Choe, Jae Gol; An, Gwang Il; Kang, Joo Hyun
2014-10-01
Copper is an essential cofactor for a variety of biochemical processes including oxidative phosphorylation, cellular antioxidant activity, and elimination of free radicals. The copper transporter 1 is known to be involved in cellular uptake of copper ions. In this study, we evaluated the utility of human copper transporter 1 (hCTR1) gene as a new reporter gene for (64)Cu PET imaging. Human breast cancer cells (MDA-MB-231) were infected with a lentiviral vector constitutively expressing the hCTR1 gene under super cytomegalovirus promoter, and positive clones (MDA-MB-231-hCTR1) were selected. The expression of hCTR1 gene in MDA-MB-231-hCTR1 cells was measured by reverse transcription polymerase chain reaction, Western blot, and (64)Cu uptake assay. To evaluate the cytotoxic effects induced by hCTR1 expression, the dose-dependent cell survival rate after treatment with cisplatin (Cis-diaminedichloroplatinum (II) [CDDP]) was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and trypan blue dye exclusion. Small-animal PET images were acquired in tumor-bearing mice from 2 to 48 h after an intravenous injection of (64)Cu. The hCTR1 gene expression in MDA-MB-231-hCTR1 cells was confirmed at the RNA and protein expression and the cellular (64)Cu uptake level. MTT assay and trypan blue dye exclusion showed that the cell viability of MDA-MB-231-hCTR1 cells decreased more rapidly than that of MDA-MB-231 cells after treatment with CDDP for 96 or 72 h, respectively. Small-animal PET imaging revealed a higher accumulation of (64)Cu in MDA-MB-231-hCTR1 tumors than in MDA-MB-231 tumors. With respect to the biodistribution data, the percentage injected dose per gram of (64)Cu in the MDA-MB-231 tumors and MDA-MB-231-hCTR1 tumors at 48 h after (64)Cu injection was 2.581 ± 0.254 and 5.373 ± 1.098, respectively. An increase in (64)Cu uptake induced by the expression of hCTR1 gene was demonstrated in vivo and in vitro, suggesting the potential use of hCTR1 gene as a new imaging reporter gene for PET with (64)CuCl2. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Masaldan, Shashank; Clatworthy, Sharnel A S; Gamell, Cristina; Smith, Zoe M; Francis, Paul S; Denoyer, Delphine; Meggyesy, Peter M; Fontaine, Sharon La; Cater, Michael A
2018-06-01
Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mo br ) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease. Copyright © 2018. Published by Elsevier B.V.
Cai, Huawei; Wu, Jiu-sheng; Muzik, Otto; Hsieh, Jer-Tsong; Lee, Robert J; Peng, Fangyu
2014-04-01
Copper is an element required for cell proliferation and angiogenesis. Human prostate cancer xenografts with increased (64)Cu radioactivity were visualized previously by PET using (64)CuCl2 as a radiotracer ((64)CuCl2 PET). This study aimed to determine whether the increased tumor (64)Cu radioactivity was due to increased cellular uptake of (64)Cu mediated by human copper transporter 1 (hCtr1) or simply due to nonspecific binding of ionic (64)CuCl2 to tumor tissue. In addition, the functional role of hCtr1 in proliferation of prostate cancer cells and tumor growth was also assessed. A lentiviral vector encoding short-hairpin RNA specific for hCtr1 (Lenti-hCtr1-shRNA) was constructed for RNA interference-mediated knockdown of hCtr1 expression in prostate cancer cells. The degree of hCtr1 knockdown was determined by Western blot, and the effect of hCtr1 knockdown on copper uptake and proliferation were examined in vitro by cellular (64)Cu uptake and cell proliferation assays. The effects of hCtr1 knockdown on tumor uptake of (64)Cu were determined by PET quantification and tissue radioactivity assay. The effects of hCtr1 knockdown on tumor growth were assessed by PET/CT and tumor size measurement with a caliper. RNA interference-mediated knockdown of hCtr1 was associated with the reduced cellular uptake of (64)Cu and the suppression of prostate cancer cell proliferation in vitro. At 24 h after intravenous injection of the tracer (64)CuCl2, the (64)Cu uptake by the tumors with knockdown of hCtr1 (4.02 ± 0.31 percentage injected dose per gram [%ID/g] in Lenti-hCtr1-shRNA-PC-3 and 2.30 ± 0.59 %ID/g in Lenti-hCtr1-shRNA-DU-145) was significantly lower than the (64)Cu uptake by the control tumors without knockdown of hCtr1 (7.21 ± 1.48 %ID/g in Lenti-SCR-shRNA-PC-3 and 5.57 ± 1.20 %ID/g in Lenti-SCR-shRNA-DU-145, P < 0.001) by PET quantification. Moreover, the volumes of prostate cancer xenograft tumors with knockdown of hCtr1 (179 ± 111 mm(3) for Lenti-hCtr1-shRNA-PC-3 or 39 ± 22 mm(3) for Lenti-hCtr1-shRNA-DU-145) were significantly smaller than those without knockdown of hCtr1 (536 ± 191 mm(3) for Lenti- SCR-shRNA-PC-3 or 208 ± 104 mm(3) for Lenti-SCR-shRNA-DU-145, P < 0.01). Overall, data indicated that hCtr1 is a promising theranostic target, which can be further developed for metabolic imaging of prostate cancer using (64)CuCl2 PET/CT and personalized cancer therapy targeting copper metabolism.
STUDIES ON BIOSORPTION OF ZINC(II) AND COPPER(II) ON DESULFOVIBRIO DESULFURICANS
The objectives of thes studies are to determine the equilibrium concentration and kinetics of metal sorption on sulfate-reducing bacteria (SRB) isolates. Adsorption establishes the net reversible cellular metal uptake and is related to SRB metal toxicity and the effects of enviro...
Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿
Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor
2011-01-01
Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600
Lutsenko, Svetlana; Gupta, Arnab; Burkhead, Jason L.; Zuzel, Vesna
2008-01-01
Summary The human copper-transporting ATPases (Cu-ATPases) are essential for dietary copper uptake, normal development and function of the CNS, and regulation of copper homeostasis in the body. In a cell, Cu-ATPases maintain the intracellular concentration of copper by transporting copper into intracellular exocytic vesicles. In addition, these P-type ATPases mediate delivery of copper to copper-dependent enzymes in the secretory pathway and in specialized cell compartments such as secretory granules or melanosomes. The multiple functions of human Cu-ATPase necessitate complex regulation of these transporters that is mediated through the presence of regulatory domains in their structure, posttranslational modification and intracellular trafficking, as well as interactions with the copper chaperone Atox1 and other regulatory molecules. In this review, we summarize the current information on the function and regulatory mechanisms acting on human Cu-ATPases ATP7A and ATP7B. Brief comparison with the Cu-ATPase orthologues from other species is included. PMID:18534184
What can flies tell us about copper homeostasis?
Southon, Adam; Burke, Richard; Camakaris, James
2013-10-01
Copper (Cu) is an essential redox active metal that is potentially toxic in excess. Multicellular organisms acquire Cu from the diet and must regulate uptake, storage, distribution and export of Cu at both the cellular and organismal levels. Systemic Cu deficiency can be fatal, as seen in Menkes disease patients. Conversely Cu toxicity occurs in patients with Wilson disease. Cu dyshomeostasis has also been implicated in neurodegenerative disorders such as Alzheimer's disease. Over the last decade, the fly Drosophila melanogaster has become an important model organism for the elucidation of eukaryotic Cu regulatory mechanisms. Gene discovery approaches with Drosophila have identified novel genes with conserved protein functions relevant to Cu homeostasis in humans. This review focuses on our current understanding of Cu uptake, distribution and export in Drosophila and the implications for mammals.
Copper uptake by the water hyacinth. [Eichornia crassipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.A.; Hardy, J.K.
1987-01-01
Factors affecting Cu/sup +2/ uptake by the water hyacinth (Eichornia crassipes) were examined. Two phases of copper uptake were observed throughout the uptake range (1-1000 mg/1). An initial rapid uptake phase of 4 hours followed by a slower, near linear uptake phase extending past 48 hours was observed. Stirring the solution enhanced uptake, suggesting copper removal is partially diffusion limited. Variations in pH over the range of 3 to 10 did not significantly affect uptake. Increasing the root mass of the plant increased the amount of copper taken up. As solution volume was increased more copper was removed. The presencemore » of complexing agents during the uptake phase reduced copper uptake. The inability of complexing agents to recover all copper initially removed by a plant suggests a migration to sites within the plant.« less
ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes.
Monestier, Marie; Charbonnier, Peggy; Gateau, Christelle; Cuillel, Martine; Robert, Faustine; Lebrun, Colette; Mintz, Elisabeth; Renaudet, Olivier; Delangle, Pascale
2016-04-01
Liver cells are an essential target for drug delivery in many diseases. The hepatocytes express the asialoglycoprotein receptor (ASGPR), which promotes specific uptake by means of N-acetylgalactosamine (GalNAc) recognition. In this work, we designed two different chemical architectures to treat Wilson's disease by intracellular copper chelation. Two glycoconjugates functionalized with three or four GalNAc units each were shown to enter hepatic cells and chelate copper. Here, we studied two series of compounds derived from these glycoconjugates to find key parameters for the targeting of human hepatocytes. Efficient cellular uptake was demonstrated by flow cytometry using HepG2 human heptic cells that express the human oligomeric ASGPR. Dissociation constants in the nanomolar range showed efficient multivalent interactions with the receptor. Both architectures were therefore concluded to be able to compete with endogeneous asialoglycoproteins and serve as good vehicles for drug delivery in hepatocytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioavailable copper modulates oxidative phosphorylation and growth of tumors
Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas
2013-01-01
Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment. PMID:24218578
Krueger, W B; Kolodziej, B J
1976-01-01
Both atomic absorption spectrophotometry (AAS) and neutron activation analysis have been utilized to determine cellular Cu levels in Bacillus megaterium ATCC 19213. Both methods were selected for their sensitivity to detection of nanogram quantities of Cu. Data from both methods demonstrated identical patterms of Cu uptake during exponenetial growth and sporulation. Late exponential phase cells contained less Cu than postexponential t2 cells while t5 cells contained amounts equivalent to exponential cells. The t11 phase-bright forespore containing cells had a higher Cu content than those of earlier time periods, and the free spores had the highest Cu content. Analysis of the culture medium by AAS corroborated these data by showing concomitant Cu uptake during exponential growth and into t2 postexponential phase of sporulation. From t2 to t4, Cu egressed from the cells followed by a secondary uptake during the maturation of phase-dark forespores into phase-bright forespores (t6--t9).
2014-01-01
Background Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. Results We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu’s positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson’s disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. Conclusions A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations. PMID:24708151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Gang; Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, Shanxi 710032; Chen, Jingyuan
2012-05-01
The homeostasis of copper (Cu) in the cerebrospinal fluid (CSF) is partially regulated by the Cu transporter-1 (CTR1) and divalent metal transporter-1 (DMT1) at the blood–CSF barrier (BCB) in the choroid plexus. Data from human and animal studies suggest an increased Cu concentration in blood, CSF, and brains following in vivo manganese (Mn) exposure. This study was designed to investigate the relative role of CTR1 and DMT1 in Cu transport under normal or Mn-exposed conditions using an immortalized choroidal Z310 cell line. Mn exposure in vitro resulted in an increased cellular {sup 64}Cu uptake and the up-regulation of both CTR1more » and DMT1. Knocking down CTR1 by siRNA counteracted the Mn-induced increase of {sup 64}Cu uptake, while knocking down DMT1 siRNA resulted in an increased cellular {sup 64}Cu uptake in Mn-exposed cells. To distinguish the roles of CTR1 and DMT1 in Cu transport, the Z310 cell-based tetracycline (Tet)-inducible CTR1 and DMT1 expression cell lines were developed, namely iZCTR1 and iZDMT1 cells, respectively. In iZCTR1 cells, Tet induction led to a robust increase (25 fold) of {sup 64}Cu uptake with the time course corresponding to the increased CTR1. Induction of DMT1 by Tet in iZDMT1 cells, however, resulted in only a slight increase of {sup 64}Cu uptake in contrast to a substantial increase in DMT1 mRNA and protein expression. These data indicate that CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB in the choroid plexus. Mn-induced cellular overload of Cu at the BCB is due, primarily, to Mn-induced over-expression of CTR1. -- Highlights: ► This study compares the relative role of CTR1 and DMT1 in Cu transport by the BCB. ► Two novel tetracycline-inducible CTR1 and DMT1 expression cell lines are created. ► CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB. ► Mn-induced cellular Cu overload is due to its induction of CTR1 rather than DMT1. ► Induction of CTR1 by Mn in the BCB contributes to an elevated Cu level in the CSF.« less
Balakumaran, Palanisamy Athiyaman; Förster, Jan; Zimmermann, Martin; Charumathi, Jayachandran; Schmitz, Andreas; Czarnotta, Eik; Lehnen, Mathias; Sudarsan, Suresh; Ebert, Birgitta E; Blank, Lars Mathias; Meenakshisundaram, Sankaranarayanan
2016-02-20
Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge, which revealed the fact that intracellular copper accumulation influenced laccase production and should be considered for high protein expression of copper-dependent enzymes when using P. pastoris. The results are discussed in the context of P. pastoris as a general host for copper -dependent enzyme production.
Comstra, Heather S; McArthy, Jacob; Rudin-Rush, Samantha; Hartwig, Cortnie; Gokhale, Avanti; Zlatic, Stephanie A; Blackburn, Jessica B; Werner, Erica; Petris, Michael; D’Souza, Priya; Panuwet, Parinya; Barr, Dana Boyd; Lupashin, Vladimir; Vrailas-Mortimer, Alysia; Faundez, Victor
2017-01-01
Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival. DOI: http://dx.doi.org/10.7554/eLife.24722.001 PMID:28355134
Xie, Ruzhen; Jin, Yan; Chen, Yao; Jiang, Wenju
2017-12-01
In this study, activated carbon (AC) was prepared from walnut shell using chemical activation. The surface chemistry of the prepared AC was modified by introducing or blocking certain functional groups, and the role of the different functional groups involved in the copper uptake was investigated. The structural and chemical heterogeneity of the produced carbons are characterized by Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, Boehm titration method and N 2 /77 K adsorption isotherm analysis. The equilibrium and the kinetics of copper adsorption onto AC were studied. The results demonstrated that the functional groups on AC played an important role in copper uptake. Among various surface functional groups, the oxygen-containing group was found to play a critical role in the copper uptake, and oxidation is the most effective way to improve Cu (II) adsorption onto AC. Ion-exchange was identified to be the dominant mechanism in the copper uptake by AC. Some other types of interactions, like complexation, were also proven to be involved in the adsorption process, while physical force was found to play a small role in the copper uptake. The regeneration of copper-loaded AC and the recovery of copper were also studied to evaluate the reusability of the oxidized AC.
Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma.
Porcu, Cristiana; Antonucci, Laura; Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara
2018-02-06
Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies.
Evaluation of the factors governing metal biosorption and metal toxicity in acidic soil isolates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, A.A.
1992-06-09
This research project was designed to determine the feasibility of microbial biosorption processes for removing metal ions from aqueous systems. A culture of acidic soil actinomycetes, grown in an aerobic environment in a completely mixed, semibatch culture reactor, was used for the study. The experiments were based on removal of copper and lead from test solutions. The anionic systems tested were nitrate, sulfate, and chloride. To determine the factors influencing biosorption and to characterize metal uptake by cellular and extracellular components of the microbial system, a dialysis testing procedure was developed. The effectiveness of biosorption was influenced by pH, initialmore » concentration of metals, type of anionic system, and organic content of the system. respirometric runs were carried out to identify potential inhibitory effects of metal accumulation on microbial activities. In general, metal accumulation resulted in a decrease in the microbial oxygen uptake rate. Also, a lag phase was observed before the onset of the respiratory activity particularly at concentrations of copper and lead greater than 100 ppM.« less
Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Barycki, Joseph J.; Hart, P. John; Gohara, David W.; Di Cera, Enrico; Jung, Won Hee; Kosman, Daniel J.; Lee, Jaekwon
2016-01-01
Acquisition and distribution of metal ions support a number of biological processes. Here we show that respiratory growth of and iron acquisition by the yeast Saccharomyces cerevisiae relies on potassium (K+) compartmentalization to the trans-Golgi network via Kha1p, a K+/H+ exchanger. K+ in the trans-Golgi network facilitates binding of copper to the Fet3p multi-copper ferroxidase. The effect of K+ is not dependent on stable binding with Fet3p or alteration of the characteristics of the secretory pathway. The data suggest that K+ acts as a chemical factor in Fet3p maturation, a role similar to that of cations in folding of nucleic acids. Up-regulation of KHA1 gene in response to iron limitation via iron-specific transcription factors indicates that K+ compartmentalization is linked to cellular iron homeostasis. Our study reveals a novel functional role of K+ in the binding of copper to apoFet3p and identifies a K+/H+ exchanger at the secretory pathway as a new molecular factor associated with iron uptake in yeast. PMID:26966178
Biological and ecological responses to carbon-based nanomaterials
NASA Astrophysics Data System (ADS)
Ratnikova, Tatsiana A.
This dissertation examines the biological and ecological responses to carbon nanoparticles, a major class of nanomaterials which have been mass produced and extensively studied for their rich physical properties and commercial values. Chapter I of this dissertation offers a comprehensive review on the structures, properties, applications, and implications of carbon nanomaterials, especially related to the perspectives of biological and ecosystems. Given that there are many types of carbon nanomaterials available, this chapter is focused on three major types of carbon-based nanomaterials only, namely, fullerenes, single walled and multi-walled carbon nanotubes. On the whole organism level, specifically, Chapter II presents a first study on the fate of fullerenes and multiwalled carbon nanotubes in rice plants, which was facilitated by the self assembly of these nanomaterials with NOM. The aspects of fullerene uptake, translocation, biodistribution, and generational transfer in the plants were examined and quantified using bright field and electron microscopy, FT-Raman, and FTIR spectroscopy. The uptake and transport of fullerene in the plant vascular system were attributed to water transpiration, convection, capillary force, and the fullerene concentration gradient from the roots to the leaves of the plants. On the cellular level, Chapter III documents the differential uptake of hydrophilic C60(OH)20 vs. amphiphilic C70-NOM complex in Allium cepa plant cells and HT-29 colon carcinoma cells. This study was conducted using a plant cell viability assay, and complemented by bright field, fluorescence and electron microscopy imaging. In particular, C60(OH)20 and C70-NOM showed contrasting uptake in both the plant and mammalian cells, due to their significant differences in physicochemistry and the presence of an extra hydrophobic plant cell wall in the plant cells. Consequently, C60(OH)20 was found to induce toxicity in Allium cepa cells but not in HT-29 cells, while C70-NOM was toxic to HT-29 cells but not to the plant cells. Along with the biophysical study presented in Chapter III, Chapter IV further delineates the toxicological consequences of cell exposure to C 60(OH)20. The cytoprotective properties of C60(OH) 20 against copper were demonstrated using a double-exposure system: HT-29 cells were first exposed to C60(OH)20 and then to copper, a physicologically essential element and a major toxin. Using cell viability, proliferation, and intracellular reactive oxygen species (ROS) production assays, I demonstrated the inhibition of copper-induced cell damage and ROS production by C60(OH)20. Neutralization of copper ions by C60(OH)20 in the extracellular space, as well as adsorption and uptake of the nanoparticles surface-modified by the cell medium were identified as plausible mechanisms for the cytoprotective activities of C60(OH)20 against copper. Extended from the cellular studies in Chapters III and IV, Chapter V and VI show molecular-level inhibitions of two major cellular processes -- DNA amplification and MT polymerization -- by C60(OH) 20. Such inhibitions were mainly attributed to the formation of hydrogen bonding between the nanoparticles and the hydrogens of the triphosphate tail of the nucleotide/DNA or the tubulin heterodimers, the building blocks of microtubules. Specifically, in Chapter V, the effect of C60(OH) 20 on the amplification of an HSTF gene was examined using PCR and real-time PCR, whereas in Chapter VI circular dichroism spectroscopy, GTP hydrolysis assay, and ITC measurements were utilized to examine the effect of C 60(OH)20 on MT polymerization. In both cases, the experimental results were confirmed and substantiated by molecular dynamics simulations. (Abstract shortened by UMI.)
Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae
Wang, Jing; Gammon, Micah G.; Maynard, Margaret K.; White, Olivia L.; Cobine, Jai A.; Mahone, Wilkerson K.
2016-01-01
In Saccharomyces cerevisiae, the mitochondrial carrier family protein Pic2 imports copper into the matrix. Deletion of PIC2 causes defects in mitochondrial copper uptake and copper-dependent growth phenotypes owing to decreased cytochrome c oxidase activity. However, copper import is not completely eliminated in this mutant, so alternative transport systems must exist. Deletion of MRS3, a component of the iron import machinery, also causes a copper-dependent growth defect on non-fermentable carbon. Deletion of both PIC2 and MRS3 led to a more severe respiratory growth defect than either individual mutant. In addition, MRS3 expressed from a high copy number vector was able to suppress the oxygen consumption and copper uptake defects of a strain lacking PIC2. When expressed in Lactococcus lactis, Mrs3 mediated copper and iron import. Finally, a PIC2 and MRS3 double mutant prevented the copper-dependent activation of a heterologously expressed copper sensor in the mitochondrial intermembrane space. Taken together, these data support a role for the iron transporter Mrs3 in copper import into the mitochondrial matrix. PMID:26763345
Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma
Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara
2018-01-01
Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies. PMID:29507693
The emerging role of lysosomes in copper homeostasis.
Polishchuk, Elena V; Polishchuk, Roman S
2016-09-01
The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.
An Expanding Range of Functions for the Copper Chaperone/Antioxidant Protein Atox1
Hatori, Yuta
2013-01-01
Abstract Significance: Antioxidant protein 1 (Atox1 in human cells) is a copper chaperone for the copper export pathway with an essential role in cellular copper distribution. In vitro, Atox1 binds and transfers copper to the copper-transporting ATPases, stimulating their catalytic activity. Inactivation of Atox1 in cells inhibits maturation of secreted cuproenzymes as well as copper export from cells. Recent Advances: Accumulating data suggest that cellular functions of Atox1 are not limited to its copper-trafficking role and may include storage of labile copper, modulation of transcription, and antioxidant defense. The conserved metal binding site of Atox1, CxGC, differs from the metal-binding sites of copper-transporting ATPases and has a physiologically relevant redox potential that equilibrates with the GSH:GSSG pair. Critical Issues: Tight relationship appears to exist between intracellular copper levels and glutathione (GSH) homeostasis. The biochemical properties of Atox1 place it at the intersection of cellular networks that regulate copper distribution and cellular redox balance. Mechanisms through which Atox1 facilitates copper export and contributes to oxidative defense are not fully understood. Future Directions: The current picture of cellular redox homeostasis and copper physiology will be enhanced by further mechanistic studies of functional interactions between the GSH:GSSG pair and copper-trafficking machinery. Antioxid. Redox Signal. 19, 945–957. PMID:23249252
Platinum transfer from hCTR1 to Atox1 is dependent on the type of platinum complex.
Wu, Xuelei; Yuan, Siming; Wang, Erqiong; Tong, Yang; Ma, Guolin; Wei, Kaiju; Liu, Yangzhong
2017-05-24
In spite of their wide application, the cellular uptake of platinum based anticancer drugs is still unclear. The copper transport protein, hCTR1, is proposed to facilitate the cellular uptake of cisplatin, whereas organic cation transport (OCT) is more important for oxaliplatin. It has been reported that both N-terminal and C-terminal metal binding motifs of hCTR1 are highly reactive to cisplatin, which is the initial step of protein assisted cellular uptake of cisplatin. It is still unknown how the platinum drugs in hCTR1 transfer to cytoplasmic media, and whether various platinum complexes possess different activities in this process. Herein, we investigated the reaction of the platinated C-terminal metal binding motif of hCTR1 (C8) with the down-stream protein Atox1. Results show that Atox1 is highly reactive to the platinated C8 adducts of cisplatin and transplatin, whereas the oxaliplatin/C8 adduct is much less reactive. The platinum transfer from C8 to Atox1 occurs in the reaction, which results in the protein unfolding of Atox1. These results demonstrated that the platinated intracellular-domain of hCTR1 is reactive to Atox1, and the reactivity is dependent on the ligand and the coordination structure of platinum complexes. The different reactivity is consistent with the hypothesis that hCTR1 is more significant in the transport of cisplatin than that of oxaliplatin.
Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya
2017-10-18
Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.
Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben
2012-01-01
Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972
Sorption of copper(II) from aqueous phase by waste biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagendra Rao, C.R.; Iyengar, L.; Venkobachar, C.
The objective of the present investigation is to compare three biomasses for copper uptake under different experimental conditions so as to choose the most suitable one for scaleup purposes. Ganoderma lucidum is a macrofungi, growing widely in tropical forests. Sorbent preparation requires its collection from the field. Asperigillus niger is obtained as a waste biomass from the fermentation industry. Activated sludge biomass is available from the biological waste treatment plants. The results of their potential to remove copper are presented. The copper uptake by biosorbents though, varied significantly, showed an increased trend in the range of pH 4 to 6.more » The increase in metal binding after alkali treatment was marginal for G. lucidum, significant for A. niger, and dramatic for sludge. Copper sorption capacities of M and M[sub c] were much higher than for other sorbents at pH 5.0. The effect of anionic ligands, like acetate and tartrate on copper uptake by raw and alkali treated biosorbents, was negligible as the predominant species in the presence of these ligands is divalent copper ion. Pyrophosphate, citrate, and EDTA had varying degrees of adverse effects on metal uptake. Thus, among the sorbents G. lucidum in its raw form is best suited for the practical application of copper removal from industrial effluents.« less
Li, Qing-Quan; Sun, Yan-Ping; Ruan, Can-Ping; Xu, Xin-Yun; Ge, Jun-Hui; He, Jin; Xu, Zu-De; Wang, Qiang; Gao, Wen-Chao
2011-02-01
Cellular prion protein (PrPc) is a glycosylphosphatidylinositol-anchored membrane protein that has various physical functions, including protection against apoptotic and oxidative stress, cellular uptake of copper ions, transmembrane signaling, and adhesion to the extracellular matrix. In this study, we show that PrPc is highly expressed in colorectal adenocarcinomas. Transcriptome profiling of PrPc-depleted DLD-1 cells revealed downregulation of glucose transporter 1 (Glut1). PrPc is shown to be involved in regulating Glut1 expression through the Fyn-HIF-2α pathway. As Glut1 is the natural transporter of glucose and is required for the high glycolytic rate seen in colorectal tumors, silencing of PrPc reduced the proliferation and survival rate of colorectal cancer cells in vitro. In vivo, knockdown of PrPc by hydrodynamic injection with a cocktail of PrPc-shRNA-encoding plasmids also inhibited tumorigenicity in a xenograft model in nude mice. In summary, our data characterize a novel molecular mechanism that links PrPc expression to the regulation of glycolysis. Targeting PrPc will therefore be a promising strategy to overcome the growth and survival advantage in colorectal tumors. © 2010 Japanese Cancer Association.
Copper toxicity, oxidative stress, and antioxidant nutrients.
Gaetke, Lisa M; Chow, Ching Kuang
2003-07-15
Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Although normally bound to proteins, Cu may be released and become free to catalyze the formation of highly reactive hydroxyl radicals. Data obtained from in vitro and cell culture studies are largely supportive of Cu's capacity to initiate oxidative damage and interfere with important cellular events. Oxidative damage has been linked to chronic Cu-overload and/or exposure to excess Cu caused by accidents, occupational hazards, and environmental contamination. Additionally, Cu-induced oxidative damage has been implicated in disorders associated with abnormal Cu metabolism and neurodegenerative changes. Interestingly, a deficiency in dietary Cu also increases cellular susceptibility to oxidative damage. A number of nutrients have been shown to interact with Cu and alter its cellular effects. Vitamin E is generally protective against Cu-induced oxidative damage. While most in vitro or cell culture studies show that ascorbic acid aggravates Cu-induced oxidative damage, results obtained from available animal studies suggest that the compound is protective. High intakes of ascorbic acid and zinc may provide protection against Cu toxicity by preventing excess Cu uptake. Zinc also removes Cu from its binding site, where it may cause free radical formation. Beta-carotene, alpha-lipoic acid and polyphenols have also been shown to attenuate Cu-induced oxidative damage. Further studies are needed to better understand the cellular effects of this essential, but potentially toxic, trace mineral and its functional interaction with other nutrients.
Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan
2015-12-01
Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.
Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan
2016-01-01
Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies. PMID:26587712
NASA Astrophysics Data System (ADS)
Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan
2015-12-01
Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.
Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor.
Rofkar, Jordan R; Dwyer, Daryl F; Bobak, Deanna M
2014-01-01
Here we report on the analysis of two aquatic plant species, Azolla caroliniana and Lemna minor, with respect to tolerance and uptake of co-occurring arsenic, copper, and silicon for use in engineered wetlands. Plants were cultured in nutrient solution that was amended with arsenic (0 or 20 microM), copper (2 or 78 microM), and silicon (0 or 1.8 mM) either singly or in combination. We hypothesized that arsenic and copper would negatively affect the uptake of metals, growth, and pigmentation and that silicon would mitigate those stresses. Tolerance was assessed by measuring growth of biomass and concentrations of chlorophyll and anthocyanins. Both plant species accumulated arsenic, copper, and silicon; L. minor generally had higher levels on a per biomass basis. Arsenic negatively impacted A. caroliniana, causing a 30% decrease in biomass production and an increase in the concentration of anthocyanin. Copper negatively impacted L. minor, causing a 60% decrease in biomass production and a 45% decrease in chlorophyll content. Silicon augmented the impact of arsenic on biomass production in A. caroliniana but mitigated the effect of copper on L. minor. Our results suggest that mixtures of plant species may be needed to maximize uptake of multiple contaminants in engineered wetlands.
Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells
Ramos, Danny; Vargas, Rebecca; Gaite, Michaella; Montgomery, Aaron; Linder, Maria C.
2016-01-01
Ceruloplasmin, the main copper binding protein in blood plasma, has been of particular interest for its role in efflux of iron from cells, but has additional functions. Here we tested the hypothesis that it releases its copper for cell uptake by interacting with a cell surface reductase and transporters, producing apoceruloplasmin. Uptake and transepithelial transport of copper from ceruloplasmin was demonstrated with mammary epithelial cell monolayers (PMC42) with tight junctions grown in bicameral chambers, and purified human 64Cu-labeled ceruloplasmin secreted by HepG2 cells. Monolayers took up virtually all the 64Cu over 16h and secreted half into the apical (milk) fluid. This was partly inhibited by Ag(I). The 64Cu in ceruloplasmin purified from plasma of 64Cu-injected mice accumulated linearly in mouse embryonic fibroblasts (MEFs) over 3-6h. Rates were somewhat higher in Ctr1+/+ versus Ctr1-/- cells, and 3-fold lower at 2°C. The ceruloplasmin-derived 64Cu could not be removed by extensive washing or trypsin treatment, and most was recovered in the cytosol. Actual cell copper (determined by furnace atomic absorption) increased markedly upon 24h exposure to holoceruloplasmin. This was accompanied by a conversion of holo to apoceruloplasmin in the culture medium and did not occur during incubation in the absence of cells. Four different endocytosis inhibitors failed to prevent 64Cu uptake from ceruloplasmin. High concentrations of non-radioactive Cu(II)- or Fe(III)-NTA (substrates for cell surface reductases), or Cu(I)-NTA (to compete for transporter uptake) almost eliminated uptake of 64Cu from ceruloplasmin. MEFs had cell surface reductase activity and expressed Steap 2 (but not Steaps 3 and 4 or dCytB). However, six-day siRNA treatment was insufficient to reduce activity or uptake. We conclude that ceruloplasmin is a circulating copper transport protein that may interact with Steap2 on the cell surface, forming apoceruloplasmin, and Cu(I) that enters cells through CTR1 and an unknown copper uptake transporter. PMID:26934375
Gu, Wenyu; Farhan Ul Haque, Muhammad; Semrau, Jeremy D
2017-05-01
Methanotrophs or methane-oxidizing bacteria exhibit a unique 'copper-switch' where expression of two forms of methane monooxygenase (MMO) is controlled by the availability of copper. In the absence of copper, a cytoplasmic or soluble methane monooxygenase (sMMO) is expressed. In the presence of copper, a membrane-bound or particulate methane monooxygenase (pMMO) is expressed. These two forms of MMO have very different properties, and elucidation of the basis of the copper-switch is of significant interest as methanotrophs are becoming increasingly popular for the valorization of methane. Recently, it was suggested via characterization of a mutant of Methylosinus trichosporium OB3b that expresses sMMO in the presence of copper (smmoC mutant) that the copper-switch may be based on copCD. These genes encode for a periplasmic copper-binding protein and an inner membrane protein, respectively, and are used by other bacteria for copper uptake. Specific knockouts of copCD in M. trichosporium OB3b wild type, however, show that these genes are not part of the copper-switch in methanotrophs, nor do they appear to be critical for copper uptake. Rather, it appears that the constitutive expression of sMMO in the smmoC mutant of M. trichosporium OB3b may be due to multiple lesions as smmoC was generated via random chemical mutagenesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Multiple metal resistance in the cyanobacterium Nostoc muscorum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, S.K.; Singh, S.P.
1995-04-01
Metal tolerant strains of microbes are likely to originate in habitats having elevated metal levels. This aspect has been reviewed quite extensively by Silvers and Misra and the suggested mechanism of metal tolerance are: (a) cellular exclusion of metals; (b) extrusion of metals; and (c) intracellular immobilization. Similar studies on cyanobacterial strains appear to have been initiated by Shehata and Whitton who isolated a Zn-tolerant strain of Anacystis nidulans displaying a Zn uptake comparable to the Zn-sensitive wild type. The metal tolerance in the above strain was attributed to the intracellular detoxification mechanisms as suggested for Plectonema boryanum and Nostocmore » calcicola. The Cd-resistant strain of A. nidulans showed a protection of Cd-induced growth inhibition due to reduce uptake of metal. Recently we reported an energy- and dilution-dependent efflux of copper as the mechanism of Cu tolerance in a copper-resistant strain of Nostoc calcicola. The above studies were concerned mainly with single-metal resistance in cyanobacteria. Since natural habitats are generally characterized by the coexistence of a large number of toxic and nontoxic cations, it is necessary to study multiple-metal response on the physiology and biochemistry of microorganisms. In the presence study, therefore, we describe a multiple metal resistant strain of the cyanobacterium Nostoc muscorum. 15 refs., 1 fig., 1 tab.« less
Copper absorption from human milk, cow's milk, and infant formulas using a suckling rat model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loennerdal, B.B.; Bell, J.G.; Keen, C.L.
1985-11-01
Since copper deficiency is known to occur during infancy, it becomes important to assess copper uptake from various infant diets. The authors have investigated the uptake of copper from human milk, cow's milk, cow's milk formulas, cereal/milk formula and soy formula, compensating for the decay of /sup 64/Cu and using the suckling rat as a model. Radiocopper was added to the diet in trace amounts. Ultracentrifugation, ultrafiltration, and gel filtration were used to show that the added /sup 64/Cu bound to milk fractions and individual binding compounds in a manner analogous to the distribution of native copper, thus validating themore » use of extrinsically labeled diets. Labeled diets were intubated into 14-day-old suckling rats. Animals were killed after 6 h and tissues removed and counted. Liver copper uptake was 25% from human milk, 23% from cow's milk formula, 18% from cow's milk, 17% from premature (cow's milk based) infant formula, 17% from cereal/milk formula and 10% from soy formula. These results show that the rat pup model may provide a rapid, inexpensive, and sensitive method to assay bioavailability of copper from infant foods.« less
Antitumor activity of resveratrol is independent of Cu(II) complex formation in MCF-7 cell line.
Andrade Volkart, Priscylla; Benedetti Gassen, Rodrigo; Mühlen Nogueira, Bettina; Nery Porto, Bárbara; Eduardo Vargas, José; Arigony Souto, André
2017-08-01
Resveratrol (Rsv) is widely reported to possess anticarcinogenic properties in a plethora of cellular and animal models having limited toxicity toward normal cells. In the molecular level, Rsv can act as a suppressive agent for several impaired signaling pathways on cancer cells. However, Fukuhara and Miyata have shown a non-proteic reaction of Rsv, which can act as a prooxidant agent in the presence of copper (Cu), causing cellular oxidative stress accompanied of DNA damage. After this discovery, the complex Rsv-Cu was broadly explored as an antitumor mechanism in multiples tumor cell lines. The aim of the study is to explore the anticarcinogenic behavior of resveratrol-Cu(II) complex in MCF-7 cell line. Selectivity of Rsv binding to Cu ions was analyzed by HPLC and UV-VIS. The cells were enriched with concentrations of 10 and 50µM CuSO 4 solution and treated with 25µM of Rsv. Copper uptake after enrichment of cells, as its intracellular distribution in MCF-7 line, was scanned by ICP-MS and TEM-EDS. Cell death and intracellular ROS production were determined by flow cytometry. Different from the extracellular model, no relationship of synergy between Rsv-Cu(II) and reactive oxidative species (ROS) production was detected in vitro. ICP-MS revealed intracellular copper accumulation to both chosen concentrations (0.33±0.09 and 1.18±0.13ppb) but there is no promotion of cell death by Rsv-Cu(II) complex. In addition, significant attenuation of ROS production was detected when cells were exposed to CuSO 4 after Rsv treatment, falling from 7.54% of ROS production when treated only with Rsv to 3.07 and 2.72% with CuSO 4 . Based on these findings antitumor activity of resveratrol when in copper ions presence, is not mediated by Rsv-Cu complex formation in MCF-7 human cell line, suggesting that the antitumoral reaction is dependent of a cancer cellular model. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thiol-based copper handling by the copper chaperone Atox1.
Hatori, Yuta; Inouye, Sachiye; Akagi, Reiko
2017-04-01
Human antioxidant protein 1 (Atox1) plays a crucial role in cellular copper homeostasis. Atox1 captures cytosolic copper for subsequent transfer to copper pumps in trans Golgi network, thereby facilitating copper supply to various copper-dependent oxidereductases matured within the secretory vesicles. Atox1 and other copper chaperones handle cytosolic copper using Cys thiols which are ideal ligands for coordinating Cu(I). Recent studies demonstrated reversible oxidation of these Cys residues in copper chaperones, linking cellular redox state to copper homeostasis. Highlighted in this review are unique redox properties of Atox1 and other copper chaperones. Also, summarized are the redox nodes in the cytosol which potentially play dominant roles in the redox regulation of copper chaperones. © 2016 IUBMB Life, 69(4):246-254, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Brown, A J; Dean, R T; Jessup, W
1996-02-01
We have defined the lipid composition of copper-oxidized LDL (Cu-oxLDL) and a macrophage-foam cell model generated by the uptake of this modified lipoprotein. An HPLC method previously developed by our group for the measurement of lipid oxidation products of LDL was extended to permit the analysis of an array of 7-ketocholesteryl esters. Gas chromatography was used for the quantitation of oxysterols (free and esterified) in Cu-oxLDL and their subsequent uptake by macrophages. LDL (1.0 mg protein/ml) was oxidized using Cu(II) (20 microM) for up to 48 h at 37 degrees C. Resident mouse peritoneal macrophages were incubated with 24 h Cu-oxLDL (50 micrograms/ml) for 24 h. In 24 h Cu-oxLDL, cholesterol comprised approximately 50% of total sterols, 7-ketocholesterol comprised approximately 30% with five other oxysterols comprising the remainder (7 alpha- and 7 beta-hydroxycholesterol, cholesterol alpha- and beta-epoxides, and 6 beta-hydroxycholesterol). Macrophages that were incubated with 24 h Cu-oxLDL displayed a profile of oxysterols remarkably similar to that of 24 h Cu-oxLDL itself. The majority of cholesteryl esters and 7-ketocholesteryl esters in Cu-oxLDL and in Cu-oxLDL-loaded macrophages contained fatty acyl chains which are presumed oxidized. This work represents a comprehensive survey of free and esterified oxysterols in Cu-oxLDL and Cu-oxLDL-loaded macrophages and provides a basis for exploring how oxysterols are metabolized by macrophages and authentic human foam cells, and how, in turn, these oxysterols influence cellular metabolism.
Adamczyk-Szabela, Dorota; Markiewicz, Justyna; Wolf, Wojciech M
The aim of the study was to estimate the influence of soil pH on the uptake of copper, zinc, and manganese by Valeriana officinalis . Preliminary studies involved soil analyses to determine acidity, organic matter content, and copper, zinc, and manganese total and bioavailable forms. The study involved atomic absorption spectrometry to determine the concentration of the elements, and mineral soil of pH = 5.1 was used in the study, as being typical for central Poland. The copper, zinc, and manganese contents were determined in plants grown in soils which had been modified to cover a wide range of pH values 3÷13. The intensity of germination was strongly pH dependent with the highest yield obtained in original, unmodified soil. Surprisingly, high soil alkalinity stimulated copper and manganese uptake while at the same time resulting in a decrease in zinc content.
Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma
Wachsmann, Jason; Peng, Fangyu
2016-01-01
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Q.; Kaewsarn, P.
1999-06-01
Much work on the biosorption of heavy metals by low-cost, natural biomass has been on the uptake of single metals. In practice, wastewaters often contain multiple heavy metal ions. In this paper the binary adsorption of copper(II) and cadmium(II) by a pretreated biomass of the marine alga Durvillaea potatorum from aqueous solutions was studied. The results showed that the uptake capacities for each heavy metal of the binary system were lower when compared with the single metal biosorption for copper and cadmium, respectively, but the total capacities for the binary system were similar to those obtained for single metal biosorption.more » The uptake capacities for copper and cadmium increased as the equilibrium pH increased and reached a plateau at a pH around 5.0. The uptake process was relatively fast, with 90% of the adsorption completed within 10 minutes for copper and 30 minutes for cadmium, and equilibrium reached after about 60 minutes of stirring. The biosorption isotherms of binary systems were not significantly affected by equilibrium temperature. The presence of light metal ions in solution also did not affect adsorption significantly. The binary adsorption was successfully predicted by the extended Langmuir model, using parameters and capacities obtained from single component systems.« less
Potential immobilized Saccharomyces cerevisiae as heavy metal removal
NASA Astrophysics Data System (ADS)
Raffar, Nur Izzati Abdul; Rahman, Nadhratul Nur Ain Abdul; Alrozi, Rasyidah; Senusi, Faraziehan; Chang, Siu Hua
2015-05-01
Biosorption of copper ion using treated and untreated immobilized Saccharomyces cerevisiae from aqueous solution was investigate in this study. S.cerevisiae has been choosing as biosorbent due to low cost, easy and continuously available from various industries. In this study, the ability of treated and untreated immobilized S.cerevisiae in removing copper ion influence by the effect of pH solution, and initial concentration of copper ion with contact time. Besides, adsorption isotherm and kinetic model also studied. The result indicated that the copper ion uptake on treated and untreated immobilized S.cerevisiae was increased with increasing of contact time and initial concentration of copper ion. The optimum pH for copper ion uptake on untreated and treated immobilized S.cerevisiae at 4 and 6. From the data obtained of copper ion uptake, the adsorption isotherm was fitted well by Freundlich model for treated immobilized S.cerevisiae and Langmuir model for untreated immobilized S.cerevisiae according to high correlation coefficient. Meanwhile, the pseudo second order was described as suitable model present according to high correlation coefficient. Since the application of biosorption process has been received more attention from numerous researchers as a potential process to be applied in the industry, future study will be conducted to investigate the potential of immobilized S.cerevisiae in continuous process.
Reduction of paraquat-induced renal cytotoxicity by manganese and copper complexes of EGTA and EHPG.
Samai, Mohamed; Hague, Theresa; Naughton, Declan P; Gard, Paul R; Chatterjee, Prabal K
2008-02-15
Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potential of two novel SODm, manganese(II) and copper(II) complexes of the calcium chelator ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and of the contrast agent ethylenebis(hydroxyphenylglycine) (EHPG), against paraquat-induced renal toxicity in vitro. Incubation of renal NRK-52E cells with paraquat (1 mM) for 24 h produced submaximal, yet significant, reduction in cellular viability and cell death and produced significant increases in superoxide anion and hydroxyl radical generation. Manganese and copper complexes of EGTA (10-100 microM) and EHPG (30-100 microM) reduced paraquat-induced renal cell toxicity and reduced superoxide anion and hydroxyl radical generation significantly. Manganese complexes displayed greater efficacy than copper complexes and, at equivalent concentrations, manganese complexed with EHPG provided the greatest protection. Furthermore, these metal complexes did not interfere with the uptake of [methyl-(14)C]paraquat into NRK-52E cells, suggesting that they provided protection against paraquat cytotoxicity via intracellular mechanisms. These complexes did not display cytotoxicity at the concentrations examined. Together, these results suggest that manganese and copper complexes of EGTA and EHPG, and especially the manganese-EHPG complex, could provide benefit against paraquat nephrotoxicity.
Copper chaperone Atox1 plays role in breast cancer cell migration.
Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla
2017-01-29
Copper (Cu) is an essential transition metal ion required as cofactor in many key enzymes. After cell uptake of Cu, the metal is transported by the cytoplasmic Cu chaperone Atox1 to P 1B -type ATPases in the Golgi network for incorporation into Cu-dependent enzymes in the secretory path. Cu is vital for many steps of cancer progression and Atox1 was recently suggested to have additional functionality as a nuclear transcription factor. We here investigated the expression level, cellular localization and role in cell migration of Atox1 in an aggressive breast cancer cell line upon combining immunostaining, microscopy and a wound healing assay. We made the unexpected discovery that Atox1 accumulates at lamellipodia borders of migrating cancer cells and Atox1 silencing resulted in migration defects as evidenced from reduced wound closure. Therefore, we have discovered an unknown role of the Cu chaperone Atox1 in breast cancer cell migration. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Copper transport into the secretory pathway is regulated by oxygen in macrophages
White, Carine; Kambe, Taiho; Fulcher, Yan G.; Sachdev, Sherri W.; Bush, Ashley I.; Fritsche, Kevin; Lee, Jaekwon; Quinn, Thomas P.; Petris, Michael J.
2009-01-01
Summary Copper is an essential nutrient for a variety of biochemical processes; however, the redox properties of copper also make it potentially toxic in the free form. Consequently, the uptake and intracellular distribution of this metal is strictly regulated. This raises the issue of whether specific pathophysiological conditions can promote adaptive changes in intracellular copper distribution. In this study, we demonstrate that oxygen limitation promotes a series of striking alterations in copper homeostasis in RAW264.7 macrophage cells. Hypoxia was found to stimulate copper uptake and to increase the expression of the copper importer, CTR1. This resulted in increased copper delivery to the ATP7A copper transporter and copper-dependent trafficking of ATP7A to cytoplasmic vesicles. Significantly, the ATP7A protein was required to deliver copper into the secretory pathway to ceruloplasmin, a secreted copperdependent enzyme, the expression and activity of which were stimulated by hypoxia. However, the activities of the alternative targets of intracellular copper delivery, superoxide dismutase and cytochrome c oxidase, were markedly reduced in response to hypoxia. Collectively, these findings demonstrate that copper delivery into the biosynthetic secretory pathway is regulated by oxygen availability in macrophages by a selective increase in copper transport involving ATP7A. PMID:19351718
Nanomolar Copper Enhances Mercury Methylation by Desulfovibrio desulfuricans ND132
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xia; Johs, Alexander; Zhao, Linduo
Methylmercury (MeHg) is produced by certain anaerobic microorganisms, such as the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132, but environmental factors affecting inorganic mercury [Hg(II)] uptake and methylation remain unclear. We report that the presence of a small amount of copper ions [Cu(II), <100 nM] enhances Hg(II) uptake and methylation by washed cells of ND132, while Hg(II) methylation is inhibited at higher Cu(II) concentrations because of the toxicity of copper to the microorganism. The enhancement or inhibitory effect of Cu(II) is dependent on both time and concentration. The presence of nanomolar concentrations of Cu(II) facilitates rapid uptake of Hg(II) (within minutes) andmore » doubles MeHg production within a 24 h period, but micromolar concentrations of Cu(II) completely inhibit Hg(II) methylation. Metal ions such as zinc [Zn(II)] and nickel [Ni(II)] also inhibit but do not enhance Hg(II) methylation under the same experimental conditions. Furthermore, these observations suggest a synergistic effect of Cu(II) on Hg(II) uptake and methylation, possibly facilitated by copper transporters or metallochaperones in this organism, and highlight the fact that complex environmental factors affect MeHg production in the environment.« less
Nanomolar Copper Enhances Mercury Methylation by Desulfovibrio desulfuricans ND132
Lu, Xia; Johs, Alexander; Zhao, Linduo; ...
2018-05-29
Methylmercury (MeHg) is produced by certain anaerobic microorganisms, such as the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132, but environmental factors affecting inorganic mercury [Hg(II)] uptake and methylation remain unclear. We report that the presence of a small amount of copper ions [Cu(II), <100 nM] enhances Hg(II) uptake and methylation by washed cells of ND132, while Hg(II) methylation is inhibited at higher Cu(II) concentrations because of the toxicity of copper to the microorganism. The enhancement or inhibitory effect of Cu(II) is dependent on both time and concentration. The presence of nanomolar concentrations of Cu(II) facilitates rapid uptake of Hg(II) (within minutes) andmore » doubles MeHg production within a 24 h period, but micromolar concentrations of Cu(II) completely inhibit Hg(II) methylation. Metal ions such as zinc [Zn(II)] and nickel [Ni(II)] also inhibit but do not enhance Hg(II) methylation under the same experimental conditions. Furthermore, these observations suggest a synergistic effect of Cu(II) on Hg(II) uptake and methylation, possibly facilitated by copper transporters or metallochaperones in this organism, and highlight the fact that complex environmental factors affect MeHg production in the environment.« less
Gamma radiation induces hydrogen absorption by copper in water
NASA Astrophysics Data System (ADS)
Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats
2016-04-01
One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.
Upregulated Copper Transporters in Hypoxia-Induced Pulmonary Hypertension
Zimnicka, Adriana M.; Tang, Haiyang; Guo, Qiang; Kuhr, Frank K.; Oh, Myung-Jin; Wan, Jun; Chen, Jiwang; Smith, Kimberly A.; Fraidenburg, Dustin R.; Choudhury, Moumita S. R.; Levitan, Irena; Machado, Roberto F.; Kaplan, Jack H.; Yuan, Jason X.-J.
2014-01-01
Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness. PMID:24614111
Atox1 Contains Positive Residues That Mediate Membrane Association and Aid Subsequent Copper Loading
Flores, Adrian G.; Unger, Vinzenz M.
2013-01-01
Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution. PMID:24036897
Flores, Adrian G; Unger, Vinzenz M
2013-12-01
Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here, we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution.
2014-01-01
Background Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. Methods Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student’s t-tests or ANOVA and p-values of < 0.05 have been considered significant. Results Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks’ diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of intracellular (IC) copper delivery via the copper chaperone for superoxide dismutase (CCS) to its target cuproenzyme, superoxide dismutase-1 (SOD1): this pathway was rectified by TETA treatment, which normalized SOD1 activity with consequent bolstering of anti-oxidant defenses. Furthermore, diabetes depressed levels of additional intracellular copper-transporting proteins, including antioxidant-protein-1 (ATOX1) and copper-transporting-ATPase-2 (ATP7B), whereas TETA elevated copper-transporting-ATPase-1 (ATP7A). Conclusions Myocardial copper deficiency and defective cellular copper transport/trafficking are revealed as key molecular defects underlying LV impairment in diabetes, and TETA-mediated restoration of copper regulation provides a potential new class of therapeutic molecules for DCM. PMID:24927960
Phuc, Le Thi Minh; Taniguchi, Akiyoshi
2017-01-01
The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications. PMID:28629179
Phuc, Le Thi Minh; Taniguchi, Akiyoshi
2017-06-19
The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.
Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.
Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B
2010-01-01
Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Berg, G.J.; de Goeij, J.J.; Bock, I.
1991-08-01
Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less
Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.; ...
2018-02-27
ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and cofactor composition, yet they all share a conserved heme-copper binuclear site within their catalytic subunit. In this study, we show that the copper atoms of the catalytic center of two similar cytochromecoxidases from this superfamily are provided by different copper uptake systems during their biogenesis. This finding illustrates different strategies by which organisms fine-tune the trafficking of copper, which is an essential but toxic micronutrient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalfaoui-Hassani, Bahia; Wu, Hongjiang; Blaby-Haas, Crysten E.
ABSTRACT Cytochromecoxidases are members of the heme-copper oxidase superfamily. These enzymes have different subunits, cofactors, and primary electron acceptors, yet they all contain identical heme-copper (Cu B) binuclear centers within their catalytic subunits. The uptake and delivery pathways of the Cu Batom incorporated into this active site, where oxygen is reduced to water, are not well understood. Our previous work with the facultative phototrophic bacteriumRhodobacter capsulatusindicated that the copper atom needed for the Cu Bsite ofcbb 3-type cytochromecoxidase (cbb 3-Cox) is imported to the cytoplasm by a major facilitator superfamily-type transporter, CcoA. In this study, a comparative genomic analysis ofmore » CcoA orthologs in alphaproteobacterial genomes showed that CcoA is widespread among organisms and frequently co-occurs with cytochromecoxidases. To define the specificity of CcoA activity, we investigated its function inRhodobacter sphaeroides, a close relative ofR. capsulatusthat contains bothcbb 3- andaa 3-Cox. Phenotypic, genetic, and biochemical characterization of mutants lacking CcoA showed that in its absence, or even in the presence of its bypass suppressors, only the production ofcbb 3-Cox and not that ofaa 3-Cox was affected. We therefore concluded that CcoA is dedicated solely tocbb 3-Cox biogenesis, establishing that distinct copper uptake systems provide the Cu Batoms to the catalytic sites of these two similar cytochromecoxidases. These findings illustrate the large variety of strategies that organisms employ to ensure homeostasis and fine control of copper trafficking and delivery to the target cuproproteins under different physiological conditions. IMPORTANCEThecbb 3- andaa 3-type cytochromecoxidases belong to the widespread heme-copper oxidase superfamily. They are membrane-integral cuproproteins that catalyze oxygen reduction to water under hypoxic and normoxic growth conditions. These enzymes diverge in terms of subunit and cofactor composition, yet they all share a conserved heme-copper binuclear site within their catalytic subunit. In this study, we show that the copper atoms of the catalytic center of two similar cytochromecoxidases from this superfamily are provided by different copper uptake systems during their biogenesis. This finding illustrates different strategies by which organisms fine-tune the trafficking of copper, which is an essential but toxic micronutrient.« less
Ferruzzi, Mario G; Failla, Mark L; Schwartz, Steven J
2002-03-27
Sodium copper chlorophyllin (SCC), a mixture of water-soluble chlorophyll derivatives, is used as both a food colorant and a common dietary supplement. Although the potential antimutagenic and antioxidant properties of this commercial preparation have been demonstrated, limited information is available on its digestion and absorption by humans. Stability of SCC was examined during simulated gastric and small intestinal digestion. Three preparations were subjected to in vitro digestion: SCC in water, SCC in water + 10% corn oil, and SCC in applesauce. SCC components from raw material preparations and in digested samples were analyzed by C(18) HPLC with photodiode array detection. Cu(II)chlorin e(4), the major chlorin component of SCC, was relatively stable during simulated digestion. In contrast, greater than 90% of Cu(II)chlorin e(6) was degraded to undetermined products during digestion. Recovery of Cu(II)chlorin e(6) after digestion was increased by incorporation of SCC into applesauce, suggesting a protective role of the inclusion matrix for stabilization of labile SCC components. Accumulation of SCC derivatives was investigated by using differentiated cultures of the TC7 clone of the Caco-2 human intestinal cell line. Cellular accumulation from media containing 0.5 to 60 ppm SCC was linear with intracellular content ranging between 0.2 and 29.6 microg of total SCC per mg of cellular protein. Uptake of SCC by Caco-2 cells was significantly (p < 0.01) lower in cultures incubated at 4 degrees C than in those incubated at 37 degrees C. Although intracellular SCC was transported into both apical and basolateral compartments when Caco-2 cells were grown on inserts, apical efflux was significantly greater (p < 0.01) than basolateral efflux. Stability of Cu(II)chlorin e(4) during in vitro digestion and effective uptake by Caco-2 enterocyte-like cells support the likelihood that a portion of this SCC component or its metabolites is absorbed from the human intestine.
NASA Astrophysics Data System (ADS)
Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi
2016-05-01
Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01492e
Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai
Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood.more » Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.« less
Screening of Tropical Wood-Rotting Mushrooms for Copper Biosorption
Muraleedharan, T. R.; Iyengar, L.; Venkobachar, C.
1995-01-01
Fruiting bodies (mushrooms) of nine nonedible macrofungi were screened for copper(II) uptake potential. The maximum uptake potentials (Q(infmax)s) derived from equilibrium studies indicated that all nine species exhibited higher Q(infmax)s at pH 4.0 than that of Filtrasorb-400, a generally used adsorbent for metal removal. Wide variation in Q(infmax) was observed among the species and ranged from 0.048 to 0.383 mmol per g of sorbent. The uptake capacity of Ganoderma lucidum, which exhibited the highest Q(infmax), was higher than those of other microbial biosorbents reported in the literature. PMID:16535136
In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion
Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping
2012-01-01
Objective To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. Materials and methods A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. Results The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. Conclusion The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on mouse skin fibroblasts. PMID:22679361
In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion.
Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping
2012-01-01
To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on mouse skin fibroblasts.
Cell Type-Specific Modulation of Cobalamin Uptake by Bovine Serum
Zhao, Hua; Ruberu, Kalani; Li, Hongyun; Garner, Brett
2016-01-01
Tracking cellular 57Co-labelled cobalamin (57Co-Cbl) uptake is a well-established method for studying Cbl homeostasis. Previous studies established that bovine serum is not generally permissive for cellular Cbl uptake when used as a supplement in cell culture medium, whereas supplementation with human serum promotes cellular Cbl uptake. The underlying reasons for these differences are not fully defined. In the current study we address this question. We extend earlier observations by showing that fetal calf serum inhibits cellular 57Co-Cbl uptake by HT1080 cells (a fibrosarcoma-derived fibroblast cell line). Furthermore, we discovered that a simple heat-treatment protocol (95°C for 10 min) ameliorates this inhibitory activity for HT1080 cell 57Co-Cbl uptake. We provide evidence that the very high level of haptocorrin in bovine serum (as compared to human serum) is responsible for this inhibitory activity. We suggest that bovine haptocorrin competes with cell-derived transcobalamin for Cbl binding, and that cellular Cbl uptake may be minimised in the presence of large amounts of bovine haptocorrin that are present under routine in vitro cell culture conditions. In experiments conducted with AG01518 cells (a neonatal foreskin-derived fibroblast cell line), overall cellular 57Co-Cbl uptake was 86% lower than for HT1080 cells, cellular TC production was below levels detectable by western blotting, and heat treatment of fetal calf serum resulted in only a modest increase in cellular 57Co-Cbl uptake. We recommend a careful assessment of cell culture protocols should be conducted in order to determine the potential benefits that heat-treated bovine serum may provide for in vitro studies of mammalian cell lines. PMID:27893837
Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport
Li, Tianshu; Takeoka, Shinji
2014-01-01
With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) – 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG5000-DSPE]/maleimide [M]-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%–45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport. PMID:24940060
Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport.
Li, Tianshu; Takeoka, Shinji
2014-01-01
With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) - 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG₅₀₀₀-DSPE]/maleimide [M]-PEG₅₀₀₀-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG₅₀₀₀-DSPE/PEG₅₀₀₀-Glu2C₁₈ at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%-45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport.
Pilot Study of 64Cu(I) for PET Imaging of Melanoma
Jiang, Lei; Tu, Yingfeng; Hu, Xiang; ...
2017-05-31
Currently, 64Cu(II) labeled tracers including 64CuCl 2 have been widely applied in the research of molecular imaging and therapy. Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells, and specially responsible for the transportation of Cu(I) not Cu(II). Thus, we investigated the feasible application of 64Cu(I) for PET imaging. 64Cu(II) was reduced to 64Cu(I) with the existence of sodium L-ascorbate, DL-Dithiothreitol or cysteine. Cell uptake and efflux assay was investigated using B16F10 and A375 cell lines, respectively. Small animal PET and biodistribution studies were performed in both B16F10 and A375 tumor-bearing mice. Comparedmore » with 64Cu(II), 64Cu(I) exhibited higher cellular uptake by melanoma, which testified CTR1 specially influx of Cu(I). But, due to oxidation reaction in vivo, no significant difference between 64Cu(I) and 64Cu(II) was observed through PET images and biodistribution. In addition, radiation absorbed doses for major tissues of human were calculated based on the mouse biodistribution. Radiodosimetry calculations for 64/67Cu(I) and 64/67Cu(II) were similar, which suggested that although melanoma were with high radiation absorbed doses, high radioactivity accumulation by liver and kidney should be noticed for the further application. Thus, 64Cu(I) should be further studied to evaluate it as a PET imaging radiotracer.« less
Pilot Study of 64Cu(I) for PET Imaging of Melanoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lei; Tu, Yingfeng; Hu, Xiang
Currently, 64Cu(II) labeled tracers including 64CuCl 2 have been widely applied in the research of molecular imaging and therapy. Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells, and specially responsible for the transportation of Cu(I) not Cu(II). Thus, we investigated the feasible application of 64Cu(I) for PET imaging. 64Cu(II) was reduced to 64Cu(I) with the existence of sodium L-ascorbate, DL-Dithiothreitol or cysteine. Cell uptake and efflux assay was investigated using B16F10 and A375 cell lines, respectively. Small animal PET and biodistribution studies were performed in both B16F10 and A375 tumor-bearing mice. Comparedmore » with 64Cu(II), 64Cu(I) exhibited higher cellular uptake by melanoma, which testified CTR1 specially influx of Cu(I). But, due to oxidation reaction in vivo, no significant difference between 64Cu(I) and 64Cu(II) was observed through PET images and biodistribution. In addition, radiation absorbed doses for major tissues of human were calculated based on the mouse biodistribution. Radiodosimetry calculations for 64/67Cu(I) and 64/67Cu(II) were similar, which suggested that although melanoma were with high radiation absorbed doses, high radioactivity accumulation by liver and kidney should be noticed for the further application. Thus, 64Cu(I) should be further studied to evaluate it as a PET imaging radiotracer.« less
Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M
2011-12-01
To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.
Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae.
Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi
2014-07-07
The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1 , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.
Higuchi, Yujiro; Mori, Hikari; Kubota, Takeo; Takegawa, Kaoru
2018-01-01
The molecular mechanism of tolerance to alkaline pH is well studied in model fungi Aspergillus nidulans and Saccharomyces cerevisiae. However, how fission yeast Schizosaccharomyces pombe survives under alkaline stress remains largely unknown, as the genes involved in the alkaline stress response pathways of A. nidulans and S. cerevisiae were not found in the genome of this organism. Since uptake of iron and copper into cells is important for alkaline tolerance in S. cerevisiae, here we examined whether iron and copper uptake processes were involved in conferring tolerance to alkaline stress in S. pombe. We first revealed that S. pombe wild-type strain could not grow at a pH higher than 6.7. We further found that the growths of mutants harboring disruption in the iron uptake-related gene frp1 + , fio1 + or fip1 + were severely inhibited under ambient pH stress condition. In contrast, derepression of these genes, by deletion of their repressor gene fep1 + , caused cells to acquire resistance to pH stress. Together, these results suggested that uptake of iron is essential for ambient pH tolerance in S. pombe. We also found that copper is required for the pH stress response because disruptants of ctr4 + , ctr5 + , ccc2 + and cuf1 + genes, all of which are needed for regulating intracellular Cu + , displayed ambient pH sensitivity. Furthermore, supplementing Fe 2+ and Cu 2+ ions to the culture media improved growth under ambient pH stress. Taken together, our results suggested that uptake of iron and copper is the crucial factor needed for the adaptation of S. pombe to ambient pH stress. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Contribution of electrostatics to the binding of pancreatic-type ribonucleases to membranes.
Sundlass, Nadia K; Eller, Chelcie H; Cui, Qiang; Raines, Ronald T
2013-09-17
Pancreatic-type ribonucleases show clinical promise as chemotherapeutic agents but are limited in efficacy by the inefficiency of their uptake by human cells. Cellular uptake can be increased by the addition of positive charges to the surface of ribonucleases, either by site-directed mutagenesis or by chemical modification. This observation has led to the hypothesis that ribonuclease uptake by cells depends on electrostatics. Here, we use a combination of experimental and computational methods to ascertain the contribution of electrostatics to the cellular uptake of ribonucleases. We focus on three homologous ribonucleases: Onconase (frog), ribonuclease A (cow), and ribonuclease 1 (human). Our results support the hypothesis that electrostatics are necessary for the cellular uptake of Onconase. In contrast, specific interactions with cell-surface components likely contribute more to the cellular uptake of ribonuclease A and ribonuclease 1 than do electrostatics. These findings provide insight for the design of new cytotoxic ribonucleases.
Cai, Huawei; Xie, Fang; Mulgaonkar, Aditi; Chen, Lihong; Sun, Xiankai; Hsieh, Jer-Tsong; Peng, Fangyu; Tian, Rong; Li, Lin; Wu, Changqiang; Ai, Hua
2018-05-22
To synthesize and evaluate the imaging potential of Bom-PEG-[ 64 Cu]CuS nanoparticles (NPs) in orothotopic prostate tumor. [ 64 Cu]CuS NPs were synthesized in aqueous solution by 64 CuCl 2 and Na 2 S reaction. Then PEG linker with or without bombesin peptide were conjugated to the surface of [ 64 Cu]CuS NPs to produce Bom-PEG-[ 64 Cu]CuS and PEG-[ 64 Cu]CuS NPs. These two kinds of NPs were used for testing specific uptake in prostate cancer cells in vitro and imaging of orthotopic prostate tumor in vivo. Bom-PEG-[ 64 Cu]CuS and PEG-[ 64 Cu]CuS NPs were successfully synthesized with core diameter of approximately 5 nm. Radioactive cellular uptake revealed that Bom-PEG-[ 64 Cu]CuS was able to specifically bind to prostate cancer cells, and the microPET-CT imaging indicated clear visualization of orthotopic prostate tumors. Radiolabeled Bom-PEG-[ 64 Cu]CuS NPs have potential as an ideal agent for orthotopic prostate tumor imaging by microPET-CT.
Kim, Jun-Woo; Price, Neil M
2017-10-01
Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu-replete medium (263 fmol Cu' · L -1 ) with maximum rates achieved at 200 μmol photons · m -2 · s -1 . Lowering the Cu concentration at this irradiance to 30.8 fmol Cu' · L -1 decreased cellular Cu quota by 7-fold and reduced growth rate by 50%. Copper-deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETR max ) than Cu-sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low-Cu medium (30.8 fmol Cu' · L -1 ), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu-replete cells when irradiance increased to 400 μmol photons · m -2 · s -1 . Thus, at high light, low-Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETR max and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m -2 · s -1 to levels measured in Cu-replete cells. Steady-state uptake rates of Cu-deficient and sufficient cells were light-dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light-stimulated Cu uptake. © 2017 Phycological Society of America.
Haywood, S; Vaillant, C
2014-01-01
Age-related regulatory failure of the brain barrier towards the influx of redox metals such as copper and iron may be associated with the pathological changes that characterize dementias such as Alzheimer's diseases (ADs) and amyotrophic lateral sclerosis (ALS). The integrity of the brain barrier to regulate copper in the brain is maintained by the complex interplay of membrane-located transporters, of which copper transporter 1 (CTR1) exerts a defining role. North Ronaldsay (NR) sheep are a primitive breed that have adapted to a copper-deficient environment by an enhanced uptake of the metal, resulting in copper overload in the liver and brain. This study reports that CTR1 is overexpressed in both the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB) of adult NR sheep when compared with a domesticated breed. The excess copper is stored ultimately in astrocytes as non-injurious copper-metallothionein (MT). NR sheep have apparently retained an immature regulatory setting for CTR1 in the BBB, promoting facilitated copper uptake into the brain. This putative failure of maturation of CTR1 allows insight into the regulatory control of brain copper homeostasis, whereby the BBB and BCB act in concert to sequester excess copper and protect neurons from injury. The elevated copper content of the ageing human brain may derive from a dysregulation of CTR1 at the brain barrier, with a return to the default (immature) setting and implications for neurodegenerative disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Xiuying; Chen, Dan; Le, Chaoyi; Zhu, Chunliu; Gan, Yong; Hovgaard, Lars; Yang, Mingshi
2011-01-01
Background The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127). Methods The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry. Results The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells. Conclusion PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery. PMID:22163166
Kim, Jayoung; Sunshine, Joel C; Green, Jordan J
2014-01-15
Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.
Lactose-modified DNA tile nanostructures as drug carriers.
Akkus Sut, Pinar; Tunc, Cansu Umran; Culha, Mustafa
2016-09-01
DNA hybridization allows the preparation of nanoscale DNA structures with desired shape and size. DNA structures using simple base pairing can be used for the delivery of drug molecules into the cells. Since DNA carries multiple negative charges, their cellular uptake efficiency is low. Thus, the modification of the DNA structures with molecules that may enhance the cellular internalization may be an option. The objective of this study is to construct DNA-based nanocarrier system and to investigate the cellular uptake of DNA tile with/without lactose modification. Doxorubicin was intercalated to DNA tile and cellular uptake of drug-loaded DNA-based carrier with/without lactose modification was investigated in vitro. HeLa, BT-474, and MDA-MB-231 cancer cells were used for cellular uptake studies and cytotoxicity assays. Using fluorescence spectroscopy, flow cytometry, and confocal microscopy, cellular uptake behavior of DNA tile was investigated. The cytotoxicity of DNA tile structures was determined with WST-1 assay. The results show that modification with lactose effectively increases the intracellular uptake of doxorubicin loaded DNA tile structure by cancer cells compared with the unmodified DNA tile. The findings of this study suggest that DNA-based nanostructures modified with carbohydrates can be used as suitable multifunctional nanocarriers with simple chemical modifications.
Kalidass, Bhagyalakshmi; Ul-Haque, Muhammad Farhan; Baral, Bipin S.; DiSpirito, Alan A.
2014-01-01
It is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that in Methylosinus trichosporium OB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced by M. trichosporium OB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and active in situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin. PMID:25416758
Kalidass, Bhagyalakshmi; Ul-Haque, Muhammad Farhan; Baral, Bipin S; DiSpirito, Alan A; Semrau, Jeremy D
2015-02-01
It is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that in Methylosinus trichosporium OB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced by M. trichosporium OB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and active in situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.
Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen
2017-08-15
While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. Copyright © 2017 American Society for Microbiology.
Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli
Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin
2017-01-01
ABSTRACT While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. PMID:28576762
Isolation of copper-binding proteins from activated sludge culture.
Fukushi, K; Kato, S; Antsuki, T; Omura, T
2001-01-01
Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).
Root Uptake Of Lipophilic Zinc-Rhamnolipid Complexes
This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Bra...
Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng
2017-01-01
We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 ( 64 Cu), to evaluate the metabolism, biodistribution, and potential of [ 64 Cu]PSMA-617 for PET imaging of prostate cancer. [ 64 Cu]PSMA-617 was synthesized by heating PSMA-617 with [ 64 Cu]CuCl 2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64 Cu for PSMA-617 yielded [ 64 Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [ 64 Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [ 64 Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [ 64 Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [ 64 Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64 Cu or 67 Cu-labeled PSMA ligands for imaging and radiotherapy.
Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng
2017-01-01
We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 (64Cu), to evaluate the metabolism, biodistribution, and potential of [64Cu]PSMA-617 for PET imaging of prostate cancer. [64Cu]PSMA-617 was synthesized by heating PSMA-617 with [64Cu]CuCl2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64Cu for PSMA-617 yielded [64Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [64Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [64Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [64Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [64Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64Cu or 67Cu-labeled PSMA ligands for imaging and radiotherapy. PMID:28533936
Cytological stress and element uptake in moss and lichen exposed in bags in urban area.
Spagnuolo, V; Zampella, M; Giordano, S; Adamo, P
2011-07-01
In this study cytological ultrastructure, total content of C, N and S, and cellular location of major and trace elements (K, Ca, Mg, Cu, Pb and Zn) were investigated in the moss Hypnum cupressiforme and in the lichen Pseudevernia furfuracea exposed in bags for a spring-summer 12-weeks period in the urban area of Naples city. In the moss, severe ultrastructural damages, such as membrane interruptions and dehydration, developed after exposure supporting the occurrence of a dead biomonitor. In the lichen, the post-exposure stress marks, such as the development of lysosome-like vesicles and concentric bodies, or the production of melanin, were overall compatible with life. With exposure, N, S, major and trace element contents all increased in both biomonitors, while C remained substantially unchanged. Copper and Pb were mainly retained in extracellular and particulate forms. Intracellular concentration of Zn consistently increased in both biomonitors, irrespective of their vitality. In transplants, cellular location of elements can better reflect the form in which they occur in the environment. Copyright © 2011 Elsevier Inc. All rights reserved.
CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...
Ullah, M F; Ahmad, Aamir; Khan, Husain Y; Zubair, H; Sarkar, Fazlul H; Hadi, S M
2013-11-01
Plant-derived dietary antioxidants have attracted considerable interest in recent past for their ability to induce apoptosis and regression of tumors in animal models. While it is believed that the antioxidant properties of these agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, it could not account for apoptosis induction and chemotherapeutic observations. In this article, we show that dietary antioxidants can alternatively switch to a prooxidant action in the presence of transition metals such as copper. Such a prooxidant action leads to strand breaks in cellular DNA and growth inhibition in cancer cells. Further, the cellular DNA breakage and anticancer effects were found to be significantly enhanced in the presence of copper ions. Moreover, inhibition of antioxidant-induced DNA strand breaks and oxidative stress by Cu(I)-specific chelators bathocuproine and neocuproine demonstrated the role of endogenous copper in the induction of the prooxidant mechanism. Since it is well established that tissue, cellular, and serum copper levels are considerably elevated in various malignancies, such a prooxidant cytotoxic mechanism better explains the anticancer activity of dietary antioxidants against cancer cells.
Temporal aspects of copper homeostasis and its crosstalk with hormones
Peñarrubia, Lola; Romero, Paco; Carrió-Seguí, Angela; Andrés-Bordería, Amparo; Moreno, Joaquín; Sanz, Amparo
2015-01-01
To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalization, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signaling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signaling with developmental pathways to allow enhanced micronutrient acquisition efficiency. PMID:25941529
Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen
2017-01-01
The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.
The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules.
Abou Matar, Tamara; Karam, Pierre
2018-02-01
It is generally accepted that positively charged molecules are the gold standard to by-pass the negatively charged cell membrane. Here, it is shown that cellular uptake is also possible for polymers with negatively charged side chains and hydrophobic backbones. Specifically, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], a conjugated polyelectrolyte with sulfonate, as water-soluble functional groups, is shown to accumulate in the intracellular region. When the polymer hydrophobic backbone is dissolved using polyvinylpyrrolidone, an amphiphilic macromolecule, the cellular uptake is dramatically reduced. The report sheds light on the fine balance between negatively charged side groups and the hydrophobicity of polymers to either enhance or reduce cellular uptake. As a result, these findings will have important ramifications on the future design of targeted cellular delivery nanocarriers for imaging and therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ortolani, F; Tubaro, F; Petrelli, L; Gandaglia, A; Spina, M; Marchini, M
2002-01-01
Previously, reactions with copper phthalocyanines at 0.05 M critical electrolyte concentration were found to cause demineralization in calcifying porcine aortic valves after subdermal implantation in rat, as well as simultaneous visualization of peculiar phthalocyanine-positive layers around cells and cell-derived matrix vesicles. In the present investigation, an appraisal was made of the mechanism and specificity of reactions with Cuprolinic Blue by comparing quantitatively calcium release and copper retention by calcified aortic valves reacted with this phthalocyanine under different critical electrolyte concentration conditions, and the corresponding ultrastructural patterns. It was found that (i) decalcifying properties are inversely proportional to salt molarity; (ii) reactivity to Cuprolinic Blue is critical electrolyte concentration-dependent, since the greatest copper retention occurred in 0.05 M critical electrolyte concentration Cuprolinic Blue-reacted samples, the only ones that also exhibited phthalocyanine-positive layers; (iii) the appearance of phthalocyanine-positive layers depends on Cuprolinic Blue uptake, revealing pericellular clustering of calcium-binding, anionic molecules; and (iv) minor Cuprolinic Blue uptake occurs by residual proteoglycans which still remain in the extracellular matrix after 6-week-long subdermal implantation. The present results indicate that this method is appropriate for the study of mineralized tissues and illustrate peculiar tissue modifications occurring at least in the experimental conditions used here.
Haigh, Cathryn L; Tumpach, Carolin; Drew, Simon C; Collins, Steven J
2015-01-01
Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response.
Haigh, Cathryn L.; Tumpach, Carolin; Drew, Simon C.; Collins, Steven J.
2015-01-01
Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response. PMID:26252007
Hadi, S M; Ullah, M F; Shamim, U; Bhatt, S H; Azmi, A S
2010-01-01
Catalytic therapy is a cancer treatment modality based on the generation of reactive oxygen species (ROS) through administration of ascorbate/medicinal herbal extracts and copper. It is known that antioxidants such as ascorbate also exhibit prooxidant activity in the presence of transition metals such as copper. Based on our work and that in the literature, in this review we propose a mechanism for the cytotoxic action of ascorbate against cancer cells. It involves redox cycling of exogenous/endogenous copper ions and the consequent generation of ROS leading to oxidative DNA breakage. Using human peripheral lymphocytes and the Comet assay, we have shown that ascorbic acid is able to cause oxidative breakage in cellular DNA. Such DNA degradation is inhibited by neocuproine (a Cu(I) sequestering agent) and scavengers of ROS indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. Similar results are also obtained with plant polyphenol antioxidants that are important constituents of medicinal herbal extracts. Copper is an essential component of chromatin and can take part in redox reactions. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and ascorbate/plant polyphenols to generate ROS. In this review we cite evidence to indicate that in catalytic therapy cytotoxic action against cancer cells involves redox cycling of exogenous/endogenous copper ions. Copyright © 2010 S. Karger AG, Basel.
Liebsch, Filip; Aurousseau, Mark R P; Bethge, Tobias; McGuire, Hugo; Scolari, Silvia; Herrmann, Andreas; Blunck, Rikard; Bowie, Derek; Multhaup, Gerd
2017-08-11
The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala 463 and Cys 466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
USDA-ARS?s Scientific Manuscript database
Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma me...
Costa, Marcela Brandão; Tavares, Francesca Valêncio; Martinez, Claudia Bueno; Colares, Ioni Gonçalves; Martins, Camila de Martinez Gaspar
2018-07-15
This study investigated the ability of Potamogeton pectinatus L. to accumulate copper and its effects on plants. In accumulation tests, macrophytes were exposed (96 h) to different copper concentrations (0-1000 µM) and the metal was measured in media and plant tissues (roots, stems and leaves) to determine the bioconcentration factor (BCF). Plants accumulated high concentrations of copper in a dose-dependent manner and roots was the main organ for copper accumulation. However, the more copper increased in water, the more BCF values decreased. It may be due to either saturation of copper uptake or down-regulation of metal uptake by plants. In the physiological and morphological analyses, plants were kept (96 h) in Hoagland nutrient solution without copper, in full Hoagland solution (0.5 µM Cu) and in Hoagland medium with copper from 1 to 100 µM. The absence and the presence of copper above to 1 µM inhibited photosynthesis. Chlorophylls and carotenoid levels also decreased with the excess of copper, a fact that may have affected the photosystem II-dependent of chlorophyll and caused photosynthesis suppression. Only macrophytes at 10 µM Cu showed decrease in length and number of leaves on the 10th day of the test, when they died. Chlorosis and necrosis were observed in control groups and groups with extra copper, but not in Hoalgand group. Overall, the macrophyte P. pectinatus can be considered a suitable plant for monitoring environments contaminated by copper, based on results of copper accumulation in the plant, decrease in pigment concentration and presence of chlorosis and necrosis. However, values of BCF based on fresh water tissues was not proper to indicate the use of P. pectinatus for cleaning environments contaminated by copper. Copyright © 2018 Elsevier Inc. All rights reserved.
Islam, Faisal; Yasmeen, Tahira; Ali, Qasim; Mubin, Muhammad; Ali, Shafaqat; Arif, Muhammad Saleem; Hussain, Sabir; Riaz, Muhammad; Abbas, Farhat
2016-01-01
For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C i , g s , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.
Reeder, Nancy L.; Kaplan, Jerry; Xu, Jun; Youngquist, R. Scott; Wallace, Jared; Hu, Ping; Juhlin, Kenton D.; Schwartz, James R.; Grant, Raymond A.; Fieno, Angela; Nemeth, Suzanne; Reichling, Tim; Tiesman, Jay P.; Mills, Tim; Steinke, Mark; Wang, Shuo L.; Saunders, Charles W.
2011-01-01
Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal. PMID:21947398
Obrador, Ana; Gonzalez, Demetrio; Alvarez, Jose M
2013-05-22
To ensure an optimal concentration of Cu in food crops, the effectiveness of eight liquid Cu fertilizers was studied in a spinach ( Spinacia oleracea L.) crop grown on Cu-deficient soil under greenhouse conditions. Plant dry matter yields, Cu concentrations in spinach plants (total and morpholino acid (MES)- and ethylenediaminedisuccinic acid (EDDS)-extractable), and Cu uptakes were studied. The behavior of Cu in soil was evaluated by both single and sequential extraction procedures. The highest quantities of Cu in labile forms in the soil, total uptakes, and Cu concentrations in the plants were associated with the application of the two sources that contained Cu chelated by EDTA and/or DTPA. The fertilizers containing these Cu chelates represent a promising approach to achieve high levels of agronomic biofortification. The stronger correlations obtained between low-molecular-weight organic acid-extractable Cu in soil and the Cu concentrations and Cu uptakes by the plants show the suitability of this soil extraction method for predicting Cu available to spinach plants.
Quadros, Edward V.; Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M.; Hannibal, Luciana; Wang, Sihe; Jacobsen, Donald W.; Fedosov, Sergey; Wright, Erica; Gallagher, Renata C.; Anastasio, Natascia; Watkins, David; Rosenblatt, David S.
2010-01-01
Elevated methylmalonic acid in five asymptomatic newborns whose fibroblasts showed decreased uptake of transcobalamin-bound cobalamin (holo-TC), suggested a defect in the cellular uptake of cobalamin. Analysis of TCblR/CD320, the gene for the receptor for cellular uptake of holo-TC, identified a homozygous single codon deletion, c.262_264GAG (p.E88del), resulting in the loss of a glutamic acid residue in the low-density lipoprotein receptor type A-like domain. Inserting the codon by site-directed mutagenesis fully restored TCblR function. PMID:20524213
Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications.
Dalecki, Alex G; Crawford, Cameron L; Wolschendorf, Frank
2017-01-01
Copper is a ubiquitous element in the environment as well as living organisms, with its redox capabilities and complexation potential making it indispensable for many cellular functions. However, these same properties can be highly detrimental to prokaryotes and eukaryotes when not properly controlled, damaging many biomolecules including DNA, lipids, and proteins. To restrict free copper concentrations, all bacteria have developed mechanisms of resistance, sequestering and effluxing labile copper to minimize its deleterious effects. This weakness is actively exploited by phagocytes, which utilize a copper burst to destroy pathogens. Though administration of free copper is an unreasonable therapeutic antimicrobial itself, due to insufficient selectivity between host and pathogen, small-molecule ligands may provide an opportunity for therapeutic mimicry of the immune system. By modulating cellular entry, complex stability, resistance evasion, and target selectivity, ligand/metal coordination complexes can synergistically result in high levels of antibacterial activity. Several established therapeutic drugs, such as disulfiram and pyrithione, display remarkable copper-dependent inhibitory activity. These findings have led to development of new drug discovery techniques, using copper ions as the focal point. High-throughput screens for copper-dependent inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus uncovered several new compounds, including a new class of inhibitors, the NNSNs. In this review, we highlight the microbial biology of copper, its antibacterial activities, and mechanisms to discover new inhibitors that synergize with copper. © 2017 Elsevier Ltd. All rights reserved.
Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.
Onda, Nobuhiko; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto
2016-08-01
Indocyanine green (ICG) is a fluorescent agent approved for clinical applications by the Food and Drug Administration and European Medicines Agency. This study examined the mechanism of tumor imaging using intravenously administered ICG. The in vivo kinetics of intravenously administered ICG were determined in tumor xenografts using microscopic approaches that enabled both spatio-temporal and high-magnification analyses. The mechanism of ICG-based tumor imaging was examined at the cellular level in six phenotypically different human colon cancer cell lines exhibiting different grades of epithelioid organization. ICG fluorescence imaging detected xenograft tumors, even those < 1 mm in size, based on their preferential cellular uptake and retention of the dye following its rapid tissue-non-specific delivery, in contrast to its rapid clearance by normal tissue. Live-cell imaging revealed that cellular ICG uptake is temperature-dependent and occurs after ICG binding to the cellular membrane, a pattern suggesting endocytic uptake as the mechanism. Cellular ICG uptake correlated inversely with the formation of tight junctions. Intracellular ICG was entrapped in the membrane traffic system, resulting in its slow turnover and prolonged retention by tumor cells. Our results suggest that tumor-specific imaging by ICG involves non-specific delivery of the dye to tissues followed by preferential tumor cellular uptake and retention. The tumor cell-preference of ICG is driven by passive tumor cell-targeting, the inherent ability of ICG to bind to cell membranes, and the high endocytic activity of tumor cells in association with the disruption of their tight junctions. © 2016 UICC.
Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.
Vinichuk, Mykhailo M
2013-01-01
Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil < soil-root interface (or rhizosphere) < fungal mycelium < fungal sporocarps. The uptake of Cu, Zn and Cd during the entire transfer process in natural conditions between soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.
Wiemer, Matthias; Osiewacz, Heinz D.
2014-01-01
Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ). This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control. PMID:28357247
Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N
2017-08-01
The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel metals and metal complexes as platforms for cancer therapy.
Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q Ping
2010-06-01
Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[Pt(II) (NH(3))(2)Cl(2)], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed.
Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate
NASA Astrophysics Data System (ADS)
Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela
2016-02-01
Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.
Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate
Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica
2016-01-01
Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775
Jung, Ha-il; Gayomba, Sheena R.; Rutzke, Michael A.; Craft, Eric; Kochian, Leon V.; Vatamaniuk, Olena K.
2012-01-01
Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma membrane and mediates copper accumulation when expressed in the Saccharomyces cerevisiae copper uptake mutant. Although the primary sequence of COPT6 contains the family conserved domains, including methionine-rich motifs in the extracellular N-terminal domain and a second transmembrane helix (TM2), it is different from the founding family member, S. cerevisiae Ctr1p. This conclusion was based on the finding that although the positionally conserved Met106 residue in the TM2 of COPT6 is functionally essential, the conserved Met27 in the N-terminal domain is not. Structure-function studies revealed that the N-terminal domain is dispensable for COPT6 function in copper-replete conditions but is important under copper-limiting conditions. In addition, COPT6 interacts with itself and with its homolog, COPT1, unlike Ctr1p, which interacts only with itself. Analyses of the expression pattern showed that although COPT6 is expressed in different cell types of different plant organs, the bulk of its expression is located in the vasculature. We also show that COPT6 expression is regulated by copper availability that, in part, is controlled by a master regulator of copper homeostasis, SPL7. Finally, studies using the A. thaliana copt6-1 mutant and plants overexpressing COPT6 revealed its essential role during copper limitation and excess. PMID:22865877
Water absorption characteristics of novel Cu/LDPE nanocomposite for use in intrauterine devices.
Xia, Xianping; Cai, Shuizhou; Hu, Junhui; Xie, Changsheng
2006-11-01
Intrauterine devices (IUDs), especially the copper-containing IUDs (Cu-IUDs), are one of the worldwide used forms for birth control, owing to their advantages of long-lasting and high efficacy, economy, safety, and reversibility. However, it is not perfect for the existing Cu-IUDs; some shortcomings related to its side effects have not been overcome yet. For this reason, a new Cu-IUDs material, the copper/low-density polyethylene (Cu/LDPE) nanocomposite, has been developed in our research team. The structure and water uptake characteristics of this new Cu-IUDs material have been investigated by using X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and gravimetric analysis in this paper. The results of XRD, SEM, EDS, and FT-IR show three important outcomes associated with the structure of the nanocomposite. First, the nanocomposite is hybrid of the polymer and the copper nanoparticles (nano-Cu). Second, porosities, nano-Cu aggregates, and primary alcohol (R--CH(2)--OH) are existed in the nanocomposite. Third, the nano-Cu aggregates are distributed uniformly in the polymer matrix in general. The results of Gravimetric analysis, which associated with the water uptake characteristics of the nanocomposite, exhibit that the water absorption behavior of the nanocomposite obeys the classical diffusion theory very well, the water uptake of the nanocomposite increases with the increasing of the nano-Cu loading, and that the water uptake ability of the nanocomposite with 15.0 wt % nano-Cu (50 nm in diameter) is about 150 times larger than that of the base resin and about 45 times higher than that of the Cu/LDPE microcomposite with 15.0 wt % copper microparticles (5 microm in diameter). These water uptake characteristics are mainly attributed to the structure of the Cu/LDPE composites and the size effect of the nano-Cu. (c) 2006 Wiley Periodicals, Inc.
Brochez, V; Van Heuverswyn, D; Diniz, J A; De Potter, C R; Van den Eeckhout, E G
1999-05-01
The determination of cellular content of octadecylphosphocholine (D-19391) and hexadecylphosphocholine (HePC, D-18506), two anticancer agents of the alkylphosphocholine group, using capillary gas chromatography is described. The compounds' cytotoxicity was first determined by the MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium] assay, being indicative for the concentration used in the uptake and retention measurements. D-19391 was added to the SK-BR-3 breast cancer cell line and HePC to the Molt-4 leukemia cell line in concentrations of, respectively, 18.6 and 15.0 microM, during a 36-h incubation period at 37 degrees C, 5% CO2. HePC uptake in the leukemia cells was followed by a 24-h reversibility test in drug-free medium. Subsequently, sample clean-up was performed on a weak cation-exchange column. For the quantitative analysis, HePC was used as internal standard for the D-19391 measurements and vice versa. Derivatization of the samples with trimethylsilylbromide was followed by capillary gas chromatographic analysis. From these data we conclude that our uptake results are quite similar with those of a previous study of HePC cellular uptake in the more resistant Caco-2T colon cancer cell line. Without having investigated the mechanism that underlies the cellular uptake results obtained, our study points to no direct correlation between the compounds' cellular uptake and their cytotoxic effects.
Vest, Katherine E.; Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.
2013-01-01
Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria. PMID:23846699
Vest, Katherine E; Leary, Scot C; Winge, Dennis R; Cobine, Paul A
2013-08-16
Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.
[Effects of sub-micro emulsion composition on cellular disposition of incorporated lipophilic drug].
Sun, Xiao-Yi; Xiang, Zhi-Qiang; Wu, Shuo; Lv, Yuan-Yuan; Liang, Wen-Quan
2013-09-01
To investigate the effects of sub-micro emulsion composition on cellular uptake and disposition of incorporated lipophilic drug. Sub-micro emulsions containing 10 % oil, 1.2 % lecithin and 2.25 % glycerol were prepared, and the fluorescent agent coumarin 6 was used as a model drug. The effects of oil types, co-surfactants and cationic lipid on uptake and elimination kinetics of 6-coumarin in HeLa cells were studied. The uptake mechanism of sub-micro emulsions was further investigated. Oil type and Tweens had no influence on the cellular uptake. Modifications of surfactants with Span series increased the cellular influx, among which Span 20 with hydrophilic-lipophilic balance (HLB) value of 8.6 was the best enhancer. The intracellular drug level reached up to (46.09 ± 1.98)ng/μg protein which had significant difference with control group [(38.54 ± 0.34)ng/μg protein]. The positively charged emulsions significantly increased the uptake rate constant and elimination rate constant which were 4 times and 1.5 times of those in anionic groups, respectively. The uptake enhancement was also observed in cationic emulsions, cellular concentrations at plateau were (42.73 ± 0.84)ng/μg protein, which was about 3 times of that in anionic emulsions [(15.71 ± 0.74)ng/μg protein], when extracellular drug concentration kept at 100 ng/ml. Cationic emulsions delivered the payload mainly by direct drug transfer to contacted cells, while the negative ones depended on both drug passive diffusion and clathrin-mediated endocytosis of drug containing oil droplets which accounted for 20% of the intracellular drug. Interfacial characteristic of sub-micro emulsions such as co-surfactants HLB as well as zeta potentials can influence lipophilic drug both in cellular uptake and elimination.
NASA Astrophysics Data System (ADS)
Kong, L.; Price, N. M.
2016-02-01
Copper is an essential micronutrient for phytoplankton growth because of its role as a redox cofactor in electron transfer proteins in photosynthesis and respiration, and a potentially limiting resource in parts of the open sea. Thalassiosira oceanica 1005 can grow at inorganic copper concentrations varying from 10 fmol/L to 10 nmol/L by regulating copper uptake across plasma membrane. Four putative CTR-type copper transporter genes (ToCTR1, ToCTR2, ToCTR3.1 and ToCTR3.2) were identified by BLASTP search against the T. oceanica genome. Predicted gene models were revised by assembled mRNA sequencing transcripts and updated gene models contained all conserved features of characterized CTR-type copper transporters. ToCTR3.1 and ToCTR3.2 may arise from one another by gene duplication as they shared a sequence similarity of 97.6% with a peptide insertion of 5 amino acids at N-terminus of ToCTR3.1. The expression of ToCTR1, ToCTR2 and ToCTR3.1/3.2 was upregulated in low copper concentrations, but only ToCTR3.1/3.2 showed a significant increase (2.5 fold) in copper-starved cells. Both ToCTR3.1 and ToCTR3.2 restored growth of a yeast double mutant, Saccharomyces cerevisiae ctr1Δctr3Δ, in copper deficient medium. GFP-fused ToCTR expression showed that some ToCTR3.1 localized to the plasma membrane but a large portion was retained in the endoplasmic reticulum. Inefficient targeting of ToCTR3.1 to the yeast outer membrane may explain poorer growth compared to the Saccharomyces native ScCTR1 transformant. Thus, diatom CTR genes encoding CTR-type copper transporters show high-affinity copper uptake and their regulation may enable diatoms to survive in ocean environments containing a wide range of copper concentrations.
Target-specific copper hybrid T7 phage particles.
Dasa, Siva Sai Krishna; Jin, Qiaoling; Chen, Chin-Tu; Chen, Liaohai
2012-12-18
Target-specific nanoparticles have attracted significant attention recently, and have greatly impacted life and physical sciences as new agents for imaging, diagnosis, and therapy, as well as building blocks for the assembly of novel complex materials. While most of these particles are synthesized by chemical conjugation of an affinity reagent to polymer or inorganic nanoparticles, we are promoting the use of phage particles as a carrier to host organic or inorganic functional components, as well as to display the affinity reagent on the phage surface, taking advantage of the fact that some phages host well-established vectors for protein expression. An affinity reagent can be structured in a desired geometry on the surface of phage particles, and more importantly, the number of the affinity reagent molecules per phage particle can be precisely controlled. We previously have reported the use of the T7 phage capsid as a template for synthesizing target-specific metal nanoparticles. In this study herein, we reported the synthesis of nanoparticles using an intact T7 phage as a scaffold from which to extend 415 copies of a peptide that contains a hexahistidine (6His) motif for capture of copper ions and staging the conversion of copper ions to copper metal, and a cyclic Arginine-Glycine-Aspartic Acid (RGD4C) motif for targeting integrin and cancer cells. We demonstrated that the recombinant phage could load copper ions under low bulk copper concentrations without interfering with its target specificity. Further reduction of copper ions to copper metal rendered a very stable copper hybrid T7 phage, which prevents the detachment of copper from phage particles and maintains the phage structural integrity even under harsh conditions. Cancer cells (MCF-7) can selectively uptake copper hybrid T7 phage particles through ligand-mediated transmembrane transportation, whereas normal control cells (MCF-12F) uptake 1000-fold less. We further demonstrated that copper hybrid T7 phage could be endocytosed by cancer cells in culture.
Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*
Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan
2012-01-01
Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759
Rodriguez-Lorenzo, Laura; Fytianos, Kleanthis; Blank, Fabian; von Garnier, Christophe; Rothen-Rutishauser, Barbara; Petri-Fink, Alke
2014-04-09
In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthetic fluorescent probes for studying copper in biological systems
Cotruvo, Joseph A.; Aron, Allegra T.; Ramos-Torres, Karla M.; Chang, Christopher J.
2015-01-01
The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals. PMID:25692243
Synthetic fluorescent probes for studying copper in biological systems.
Cotruvo, Joseph A; Aron, Allegra T; Ramos-Torres, Karla M; Chang, Christopher J
2015-07-07
The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals.
Intracellular trafficking of a pH-responsive drug metal complex.
Kheirolomoom, Azadeh; Ingham, Elizabeth S; Commisso, Joel; Abushaban, Neveen; Ferrara, Katherine W
2016-12-10
We previously developed a pH-responsive copper-doxorubicin (CuDox) cargo in lysolipid-based temperature-sensitive liposomes (LTSLs). The CuDox complex is released from the particle by elevated temperature; however, full release of doxorubicin from CuDox requires a reduced pH, such as that expected in lysosomes. The primary goal of this study is to evaluate the cellular uptake and intracellular trafficking of the drug-metal complex in comparison with intact liposomes and free drug. We found that the CuDox complex was efficiently internalized by mammary carcinoma cells after release from LTSLs. Intracellular doxorubicin and copper were 6-fold and 5-fold greater, respectively, after a 0.5h incubation with the released CuDox complex, as compared to incubation with intact liposomes containing the complex. Total cellular doxorubicin fluorescence was similar following CuDox and free doxorubicin incubation. Imaging and mass spectrometry assays indicated that the CuDox complex was initially internalized intact but breaks down over time within cells, with intracellular copper decreasing more rapidly than intracellular doxorubicin. Doxorubicin fluorescence was reduced when complexed with copper, and nuclear fluorescence was reduced when cells were incubated with the CuDox complex as compared with free doxorubicin. Therapeutic efficacy, which typically results from intercalation of doxorubicin with DNA, was equivalent for the CuDox complex and free doxorubicin and was superior to that of liposomal doxorubicin formulations. Taken together, the results suggest that quenched CuDox reaches the nucleus and remains efficacious. In order to design protocols for the use of these temperature-sensitive particles in cancer treatment, the timing of hyperthermia relative to drug administration must be examined. When cells were heated to 42°C prior to the addition of free doxorubicin, nuclear drug accumulation increased by 1.8-fold in cancer cells after 5h, and cytotoxicity increased 1.4-fold in both cancer and endothelial cells. Endothelial cytotoxicity was similarly augmented with mild hyperthermia applied prior to treatment with released CuDox. In summary, we find that the drug-metal complex formed in temperature-sensitive particles can be internalized by cancer and endothelial cells resulting in therapeutic efficacy that is similar to free doxorubicin, and this efficacy can be enhanced by elevated temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
Lu, Wei; Kelly, Alan L; Maguire, Pierce; Zhang, Hongzhou; Stanton, Catherine; Miao, Song
2016-11-16
In this study, an in vitro Caco-2 cell culture assay was employed to evaluate the correlation between emulsion structure and cellular uptake of encapsulated β-carotene. After 4 h of incubation, an emulsion stabilized with whey protein isolate showed the highest intracellular accumulation of β-carotene (1.06 μg), followed by that stabilized with sodium caseinate (0.60 μg) and Tween 80 (0.20 μg), which are 13-, 7.5-, and 2.5-fold higher than that of free β-carotene (0.08 μg), respectively. Emulsions with small droplet size (239 ± 5 nm) showed a higher cellular uptake of β-carotene (1.56 μg) than emulsiond with large droplet size (489 ± 9 nm) (0.93 μg) (p < 0.01). The results suggested that delivery in an emulsion significantly improved the cellular uptake of β-carotene and thus potentially its bioavailability; uptake was closely correlated with the interfacial composition and droplet size of emulsions. The findings support the potential for achieving optimal controlled and targeted delivery of bioactive nutrients by structuring emulsions.
Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake, Egypt.
Osman, O; Tanguichi, H; Ikeda, K; Park, P; Tanabe-Hosoi, S; Nagata, S
2010-04-01
To isolate and characterize copper-resistant halophilic bacteria from the polluted Maruit Lake, Egypt and identify the role of plasmids in toxic metal resistance. We isolated strain MA2, showing high copper resistance up to the 1.5 mmol l(-1) concentration; it was also resistant to other metals such as nickel, cobalt and zinc and a group of antibiotics. Partial 16S rRNA analysis revealed that strain MA2 belonged to the genus Halomonas. Copper uptake, measured by atomic absorption spectrophotometery, was higher in the absence of NaCl than in the presence of 0.5-1.0 mol l(-1) NaCl during 5-15 min of incubation. Cell fractionation and electron microscopic observation clarified that most of the copper accumulated in the outer membrane and periplasmic fractions of the cells. Plasmid screening yielded two plasmids: pMA21 (11 kb) and pMA22 (5 kb). Plasmid curing resulted in a strain that lost both the plasmids and was sensitive to cobalt and chromate but not copper, nickel and zinc. This cured strain also showed weak growth in the presence of 0.5-1.0 mol l(-1) NaCl. Partial sequencing of both plasmids led to the identification of different toxic metals transporters but copper transporters were not identified. The highest cell viability was found in the presence of 1.0 mol l(-1) NaCl at different copper concentrations, and copper uptake was optimal in the absence of NaCl. Plasmid pMA21 encoded chromate, cobalt, zinc and cadmium transporters, whereas pMA22 encoded specific zinc and RND (resistance, nodulation, cell division) efflux transporters as well as different kinds of metabolic enzymes. Copper resistance was mainly incorporated in the chromosome. Strain MA2 is a fast and efficient tool for copper bioremediation and the isolated plasmids show significant characteristics of both toxic metal and antibiotic resistance.
Kelly, Alan L.
2017-01-01
The effects of the initial emulsion structure (droplet size and emulsifier) on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT) digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI)-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN)-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers. PMID:28930195
Andreozzi, Erica M; Torres, Julia Baguña; Sunassee, Kavitha; Dunn, Joel; Walker-Samuel, Simon; Szanda, Istvan; Blower, Philip J
2017-11-15
Alzheimer's disease can involve brain copper dyshomeostasis. We aimed to determine the effect of AD-like pathology on 64 Cu trafficking in mice, using positron emission tomography (PET imaging), during 24 hours after intravenous administration of ionic 64 Cu (Cu(ii) acetate) and 64 Cu-GTSM (GTSMH 2 = glyoxalbis(thiosemicarbazone)). Copper trafficking was evaluated in 6-8-month-old and 13-15 month-old TASTPM transgenic and wild-type mice, by imaging 0-30 min and 24-25 h after intravenous administration of 64 Cu tracer. Regional 64 Cu distribution in brains was compared by ex vivo autoradiography to that of amyloid-β plaque. 64 Cu-acetate showed uptake in, and excretion through, liver and kidneys. There was minimal uptake in other tissues by 30 minutes, and little further change after 24 h. Radioactivity within brain was focussed in and around the ventricles and was significantly greater in younger mice. 64 CuGTSM was taken up in all tissues by 30 min, remaining high in brain but clearing substantially from other tissues by 24 h. Distribution in brain was not localised to specific regions. TASTPM mice showed no major changes in global or regional 64 Cu brain uptake compared to wildtype after administration of 64 Cu acetate (unlike 64 Cu-GTSM) but efflux of 64 Cu from brain by 24 h was slightly greater in 6-8 month-old TASTPM mice than in wildtype controls. Changes in copper trafficking associated with Alzheimer's-like pathology after administration of ionic 64 Cu are minor compared to those observed after administration of 64 Cu-GTSM. PET imaging with 64 Cu could help understand changes in brain copper dynamics in AD and underpin new clinical diagnostic imaging methods.
Bahde, Ralf; Kapoor, Sorabh; Bhargava, Kuldeep K; Palestro, Christopher J; Gupta, Sanjeev
2014-01-01
Identification by molecular imaging of key processes in handling of transition state metals, such as copper (Cu), will be of considerable clinical value. For instance, the ability to diagnose Wilson’s disease with molecular imaging by identifying copper excretion in an ATP7B-dependent manner will be very significant. To develop highly effective diagnostic approaches, we hypothesized that targeting of radiocopper via the asialoglycoprotein receptor will be appropriate for positron emission tomography, and examined this approach in a rat model of Wilson’s disease. After complexing 64Cu to asialofetuin we studied handling of this complex compared with 64Cu in healthy LEA rats and diseased homozygous LEC rats lacking ATP7B and exhibiting hepatic copper toxicosis. We analyzed radiotracer clearance from blood, organ uptake, and biliary excretion, including sixty minute dynamic positron emission tomography recordings. In LEA rats, 64Cu-asialofetuin was better cleared from blood followed by liver uptake and greater biliary excretion than 64Cu. In LEC rats, 64Cu-asialofetuin activity cleared even more rapidly from blood followed by greater uptake in liver, but neither 64Cu-asialofetuin nor 64Cu appeared in bile. Image analysis demonstrated rapid visualization of liver after 64Cu-asialofetuin administration followed by decreased liver activity in LEA rats while liver activity progressively increased in LEC rats. Image analysis resolved this difference in hepatic activity within one hour. We concluded that 64Cu-asialofetuin complex was successfully targeted to the liver and radiocopper was then excreted into bile in an ATP7B-dependent manner. Therefore, hepatic targeting of radiocopper will be appropriate for improving molecular diagnosis and for developing drug/cell/gene therapies in Wilson’s disease. PMID:25250203
A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.
Philipp, Oliver; Hamann, Andrea; Servos, Jörg; Werner, Alexandra; Koch, Ina; Osiewacz, Heinz D
2013-01-01
Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression). A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i) present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii) suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii) present testable predictions for subsequent experimental investigations.
Li, Xiaoqiang; Lin, Zhenhai; Zhang, Bo; Guo, Lei; Liu, Shuang; Li, Hui; Zhang, Jubo; Ye, Qinghai
2016-01-01
β-elemene, a Curcuma wenyujin plant extract, has been used widely as a tumor adjuvant therapeutic agent. However, how to obtain optimum therapeutic effects by combining this compound with other agents remain unclear. In this study, we found that β-elemene, which alone had little effect on hepatocellular carcinoma (HCC) cell proliferation, exerted a synergistic anti-proliferative effect in HCC cells when dosed in combination with oxaliplatin, which increased the amounts of platinum accumulation and platinum-DNA adduct significantly and augmented the oxaliplatin-induced apoptosis. Western blot and laser scanning confocal microscopy studies indicated that β-elemene enhanced the sensitivity of HCC cells to oxaliplatin by upregulating copper transporter 1 (CTR1), a major controller of intracellular platinum accumulation. In an orthotopic transplantation HCC model in nude mice, HCC tumor growth was inhibited significantly by oxaliplatin combined with β-elemene, as compared with oxaliplatin alone. Notably, CTR1 protein expression in xenograft HCC was upregulated in mice who received β-elemene treatment. Taken together, our findings show that β-elemene can block the reduction of CTR1 resulting from oxaliplatin treatment, and therefore has a synergistic anti-HCC effect with oxaliplatin by enhancing cellular uptake of oxaliplatin. The synergistic effects of β-elemene and oxaliplatin deserve further evaluation in clinical settings. PMID:26867799
Huang, Qiansheng; Vera Delgado, Juan Manuel; Seni Pinoargote, Oscar David; Llaguno, Ricardo Avellán
2015-06-01
The solute carrier 15 family (Slc15), also called oligopeptide transporter family (Pept), was well-known for its role in the cellular uptake of di/tripeptides and peptide-like molecules. Our understanding of Slc15 family has already been enlarged since the rapid increasing of genome information; however, efforts are still expected to reveal the diversification of the family in an evolutionary manner. In the study, the sequence information were collected and analyzed through eleven eukaryotic organism representatives, especially in fish species. Gene expansion was observed through the evolution of the family. Further study was carried out with the representative species-Nile tilapia (Oreochromis niloticus). Tissue expression profiles were compared among members of the Slc15 family. Generally, they were all highly expressed both in the intestine and stomach, however, different members possessed its special tissue expression pattern. The mRNA levels of all the members (except Slc15a4) decreased after fasting while refeeding could restore the expression level. The recovery ability was impaired after exposure to environmental relevant concentration of copper (Cu(2+), 160 nmol/L). By contrast, mercury (Hg(2+), 25 nmol/L) did not exert significant impact on the recovery ability. Copyright © 2015 Elsevier B.V. All rights reserved.
Petrova, Natalya S; Chernikov, Ivan V; Meschaninova, Mariya I; Dovydenko, Iiya S; Venyaminova, Aliya G; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L
2012-03-01
The conjugation of siRNA to molecules, which can be internalized into the cell via natural transport mechanisms, can result in the enhancement of siRNA cellular uptake. Herein, the carrier-free cellular uptake of nuclease-resistant anti-MDR1 siRNA equipped with lipophilic residues (cholesterol, lithocholic acid, oleyl alcohol and litocholic acid oleylamide) attached to the 5'-end of the sense strand via oligomethylene linker of various length was investigated. A convenient combination of H-phosphonate and phosphoramidite methods was developed for the synthesis of 5'-lipophilic conjugates of siRNAs. It was found that lipophilic siRNA are able to effectively penetrate into HEK293, HepG2 and KB-8-5 cancer cells when used in a micromolar concentration range. The efficiency of the uptake is dependent upon the type of lipophilic moiety, the length of the linker between the moiety and the siRNA and cell type. Among all the conjugates tested, the cholesterol-conjugated siRNAs with linkers containing from 6 to 10 carbon atoms demonstrate the optimal uptake and gene silencing properties: the shortening of the linker reduces the efficiency of the cellular uptake of siRNA conjugates, whereas the lengthening of the linker facilitates the uptake but retards the gene silencing effect and decreases the efficiency of the silencing.
Assessment of Traumatic Brain Injury by Increased 64Cu Uptake on 64CuCl2 PET/CT
Peng, Fangyu; Muzik, Otto; Gatson, Joshua; Kernie, Steven G.; Diaz-Arrastia, Ramon
2015-01-01
Copper is a nutritional trace element required for cell proliferation and wound repair. Methods To explore increased copper uptake as a biomarker for noninvasive assessment of traumatic brain injury (TBI), experimental TBI in C57BL/6 mice was induced by controlled cortical impact, and 64Cu uptake in the injured cortex was assessed with 64CuCl2 PET/CT. Results At 24 h after intravenous injection of the tracer, uptake was significantly higher in the injured cortex of TBI mice (1.15 ± 0.53 percentage injected dose per gram of tissue [%ID/g]) than in the uninjured cortex of mice without TBI (0.53 ± 0.07 %ID/g, P = 0.027) or the cortex of mice that received an intracortical injection of zymosan A (0.62 ± 0.22 %ID/g, P = 0.025). Furthermore, uptake in the traumatized cortex of untreated TBI mice (1.15 ± 0.53 %ID/g) did not significantly differ from that in minocycline-treated TBI mice (0.93 ± 0.30 %ID/g, P = 0.33). Conclusion Overall, the data suggest that increased 64Cu uptake in traumatized brain tissues holds potential as a new biomarker for noninvasive assessment of TBI with 64CuCl2 PET/CT. PMID:26112025
Waters, Brian M.; McInturf, Samuel A.; Amundsen, Keenan
2014-01-01
Summary Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu deficient plants was independent of the normal Fe uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe regulated, and one was Cu regulated. Simultaneous Fe and Cu deficiency synergistically upregulated Fe uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe– Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants. PMID:24975482
Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea
2017-08-01
Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent copper accumulation in the cytoplasm and the nucleus. Modulation of gene expression by CuO NP appeared to be primarily oxidative stress-related and was more pronounced in redox-sensitive BEAS-2B cells. Regarding CuCl 2 , relevant modulations of gene expression were restricted to cytotoxic concentrations provoking impaired copper homoeostasis.
Xu, Yan; Sun, Xiangli; Zhang, Qiqiong; Li, Xiuzhen; Yan, Zhongzheng
2018-05-30
Tidal flat elevation in the estuarine wetland determines the tidal flooding time and flooding frequency, which will inevitably affect the formation of iron plaque and accumulations of heavy metals (HMs) in wetland plants. The present study investigated the formation of iron plaque and HM's (copper, zinc, lead, and chromium) accumulation in S. alterniflora, a typical estuarine wetland species, at different tidal flat elevations (low, middle and high) in filed and at different time (3, 6, 9, 12 h per day) of waterlogging treatment in greenhouse conditions. Results showed that the accumulation of copper, zinc, lead, and chromium in S. alterniflora was proportional to the exchangeable fraction of these metals in the sediments, which generally increased with the increase of waterlogging time, whereas the formations of iron plaque in roots decreased with the increase of waterlogging time. Under field conditions, the uptake of copper and zinc in the different parts of the plants generally increased with the tidal levels despite the decrease in the metals' exchangeable fraction with increasing tidal levels. The formation of iron plaque was found to be highest in the middle tidal positions and significantly lower in low and high tidal positions. Longer waterlogging time increased the metals' accumulation but decreased the formation of iron plaque in S. alterniflora. The binding of metal ions on iron plaque helped impede the uptake and accumulation of copper and chromium in S. alterniflora. Copyright © 2018 Elsevier Inc. All rights reserved.
Đorđević, Biljana; Neděla, Vilém; Tihlaříková, Eva; Trojan, Václav; Havel, Ladislav
2018-05-18
Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce. Copyright © 2018 Elsevier B.V. All rights reserved.
Zidar, Primož; Kos, Monika; Vogel-Mikuš, Katarina; van Elteren, Johannes Teun; Debeljak, Marta; Žižek, Suzana
2016-10-01
Exposure of beneficial soil organisms to chemical mixtures is of great concern and can result in unexpected deleterious consequences. We investigated the effects of concurrent soil contamination with monensin, a veterinary pharmaceutical and feed additive, and copper, on earthworm copper uptake and reproductive success. The animals were exposed for 14 or 28 days to both substances and the results showed that the Cu body burden of earthworms increases in the presence of monensin. The harmful effects of Cu on earthworm cocoon production were considerably higher when monensin was also present in the soil. To localise the copper in earthworm tissues, histological staining was performed using two different dyes (rubeanic acid and 5-4-(p-dimethylaminobenzylidene)-rhodanine). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to quantify the Cu levels in the tissues. Cu was found predominantly in the gut wall. The Cu content in the body wall was at least ten times lower compared to the gut, but was proportional to the level of soil contamination. Concurrent soil contamination with monensin and copper resulted in higher earthworm Cu levels and in decreased reproductive success of these important soil decomposers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of arginine methylation on the RNA recognition and cellular uptake of Tat-derived peptides.
Li, Jhe-Hao; Chiu, Wen-Chieh; Yao, Yun-Chiao; Cheng, Richard P
2015-05-01
Arginine (Arg) methylation is a common post-translational modification that regulates gene expression and viral infection. The HIV-1 Tat protein is an essential regulatory protein for HIV proliferation, and is methylated in the cell. The basic region (residues 47-57) of the Tat protein contains six Arg residues, and is responsible for two biological functions: RNA recognition and cellular uptake. In this study, we explore the effect of three different methylation states at each Arg residue in Tat-derived peptides on the two biological functions. The Tat-derived peptides were synthesized by solid phase peptide synthesis. TAR RNA binding of the peptides was assessed by electrophoresis mobility shift assays. The cellular uptake of the peptides into Jurkat cells was determined by flow cytometry. Our results showed that RNA recognition was affected by both methylation state and position. In particular, asymmetric dimethylation at position 53 decreased TAR RNA binding affinity significantly, but unexpectedly less so upon asymmetric dimethylation at position 52. The RNA binding affinity even slightly increased upon methylation at some of the flanking Arg residues. Upon Arg methylation, the cellular uptake of Tat-derived peptides mostly decreased. Interestingly, cellular uptake of Tat-derived peptides with a single asymmetrically dimethylated Arg residue was similar to the native all Arg peptide (at 120 μM). Based on our results, TAR RNA binding apparently required both guanidinium terminal NH groups on Arg53, whereas cellular uptake apparently required guanidinium terminal NH₂ groups instead. These results should provide insight into how nature uses arginine methylation to regulate different biological functions, and should be useful for the development of functional molecules with methylated arginines. Copyright © 2015. Published by Elsevier Ltd.
Cellular uptake of titanium and vanadium from addition of salts or fretting corrosion in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, A.M.; Merritt, K.; Brown, S.A.
1994-02-01
The use of titanium and titanium-6% aluminum-4% vanadium alloy for dental and orthopedic implants has increased in the last decade. The implants are presumed to be compatible because oseointegration, bony apposition, and cell attachment are known. However, the cellular association of titanium and vanadium have remained unknown. This study examined the uptake of salts or fretting corrosion products. Titanium was not observed to be toxic to the cells. Vanadium was toxic at levels greater than 10[mu]g/mL. The percentage of cellular association of titanium was shown to be about 10 times that of vanadium. The percentage of cellular association of eithermore » element was greater from fretting corrosion than from the addition of salts. The presence of vanadium did not affect the cellular uptake of titanium. The presence of titanium decreased the cell association of vanadium.« less
Novel Metals and Metal Complexes as Platforms for Cancer Therapy
Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q. Ping
2013-01-01
Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[PtII(NH3)2Cl2], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed. PMID:20337575
Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M
2008-08-01
It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.
Sub-cellular damage by copper in the cnidarian Zoanthus robustus.
Grant, A; Trompf, K; Seung, D; Nivison-Smith, L; Bowcock, H; Kresse, H; Holmes, S; Radford, J; Morrow, P
2010-09-01
Sessile organisms may experience chronic exposure to copper that is released into the marine environment from antifoulants and stormwater runoff. We have identified the site of damage caused by copper to the symbiotic cnidarian, Zoanthus robustus (Anthozoa, Hexacorallia). External changes to the zoanthids were apparent when compared with controls. The normally flexible bodies contracted and became rigid. Histological examination of the zoanthid tissue revealed that copper had caused sub-cellular changes to proteins within the extracellular matrix (ECM) of the tubular body. Collagen in the ECM and the internal septa increased in thickness to five and seven times that of controls respectively. The epithelium, which stained for elastin, was also twice as thick and tough to cut, but exposure to copper did not change the total amount of desmosine which is found only in elastin. We conclude that copper stimulated collagen synthesis in the ECM and also caused cross-linking of existing proteins. However, there was no expulsion of the symbiotic algae (Symbiodinium sp.) and no effect on algal pigments or respiration (44, 66 and 110 microg Cu L(-1)). A decrease in net photosynthesis was observed only at the highest copper concentration (156 microg Cu L(-1)). These results show that cnidarians may be more susceptible to damage by copper than their symbiotic algae. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Kim, Sun Hwa; Jeong, Ji Hoon; Chun, Ki Woo; Park, Tae Gwan
2005-09-13
Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with anionic surface charge were surface coated with cationic di-block copolymer, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL) conjugate, for enhancing their site-specific intracellular delivery against folate receptor overexpressing cancer cells. The PLGA nanoparticles coated with the conjugate were characterized in terms of size, surface charge, and change in surface composition by XPS. By employing the flow cytometry method and confocal image analysis, the extent of cellular uptake was comparatively evaluated under various conditions. PLL-PEG-FOL coated PLGA nanoparticles demonstrated far greater extent of cellular uptake to KB cells, suggesting that they were mainly taken up by folate receptor-mediated endocytosis. The enhanced cellular uptake was also observed even in the presence of serum proteins, possibly due to the densely seeded PEG chains. The PLL-PEG-FOL coated PLGA nanoparticles could be potentially applied for cancer cell targeted delivery of various therapeutic agents.
Kurtz-Chalot, Andréa; Villiers, Christian; Pourchez, Jérémie; Boudard, Delphine; Martini, Matteo; Marche, Patrice N; Cottier, Michèle; Forest, Valérie
2017-06-01
Nanoparticles (NP) physico-chemical features greatly influence NP/cell interactions. NP surface functionalization is often used to improve NP biocompatibility or to enhance cellular uptake. But in biological media, the formation of a protein corona adds a level of complexity. The aim of this study was to investigate in vitro the influence of NP surface functionalization on their cellular uptake and the biological response induced. 50nm fluorescent silica NP were functionalized either with amine or carboxylic groups, in presence or in absence of polyethylene glycol (PEG). NP were incubated with macrophages, cellular uptake and cellular response were assessed in terms of cytotoxicity, pro-inflammatory response and oxidative stress. The NP protein corona was also characterized by protein mass spectroscopy. Results showed that NP uptake was enhanced in absence of PEG, while NP adsorption at the cell membrane was fostered by an initial positively charged NP surface. NP toxicity was not correlated with NP uptake. NP surface functionalization also influenced the formation of the protein corona as the profile of protein binding differed among the NP types. Copyright © 2017 Elsevier B.V. All rights reserved.
Cellular delivery of PEGylated PLGA nanoparticles.
Pamujula, Sarala; Hazari, Sidhartha; Bolden, Gevoni; Graves, Richard A; Chinta, Dakshinamurthy Devanga; Dash, Srikanta; Kishore, Vimal; Mandal, Tarun K
2012-01-01
The objective of this study was to investigate the efficiency of uptake of PEGylated polylactide-co-gycolide (PLGA) nanoparticles by breast cancer cells. Nanoparticles of PLGA containing various amounts of polyethylene glycol (PEG, 5%-15%) were prepared using a double emulsion solvent evaporation method. The nanoparticles were loaded with coumarin-6 (C6) as a fluorescence marker. The particles were characterized for surface morphology, particle size, zeta potential, and for cellular uptake by 4T1 murine breast cancer cells. Irrespective of the amount of PEG, all formulations yielded smooth spherical particles. However, a comparison of the particle size of various formulations showed bimodal distribution of particles. Each formulation was later passed through a 1.2 µm filter to obtain target size particles (114-335 nm) with zeta potentials ranging from -2.8 mV to -26.2 mV. While PLGA-PEG di-block (15% PEG) formulation showed significantly higher 4T1 cellular uptake than all other formulations, there was no statistical difference in cellular uptake among PLGA, PLGA-PEG-PLGA tri-block (10% PEG), PLGA-PEG di-block (5% PEG) and PLGA-PEG di-block (10% PEG) nanoparticles. These preliminary findings indicated that the nanoparticle formulation prepared with 15% PEGylated PLGA showed maximum cellular uptake due to it having the smallest particle size and lowest zeta potential. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Copper transport and regulation in Schizosaccharomyces pombe
Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon
2016-01-01
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4–Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis. PMID:24256274
Copper transport and regulation in Schizosaccharomyces pombe.
Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon
2013-12-01
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.
Hondow, Nicole; Brown, M Rowan; Starborg, Tobias; Monteith, Alexander G; Brydson, Rik; Summers, Huw D; Rees, Paul; Brown, Andy
2016-02-01
Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Prion Protein Regulates Iron Transport by Functioning as a Ferrireductase
Singh, Ajay; Haldar, Swati; Horback, Katharine; Tom, Cynthia; Zhou, Lan; Meyerson, Howard; Singh, Neena
2017-01-01
Prion protein (PrPC) is implicated in the pathogenesis of prion disorders, but its normal function is unclear. We demonstrate that PrPC is a ferrireductase (FR), and its absence causes systemic iron deficiency in PrP knock-out mice (PrP−/−). When exposed to non-transferrin-bound (NTB) radioactive-iron (59FeCl3) by gastric-gavage, PrP−/− mice absorb significantly more 59Fe from the intestinal lumen relative to controls, indicating appropriate systemic response to the iron deficiency. Chronic exposure to excess dietary iron corrects this deficiency, but unlike wild-type (PrP+/+) controls that remain iron over-loaded, PrP−/− mice revert back to the iron deficient phenotype after 5 months of chase on normal diet. Bone marrow (BM) preparations of PrP−/− mice on normal diet show relatively less stainable iron, and this phenotype is only partially corrected by intraperitoneal administration of excess iron-dextran. Cultured PrP−/− BM-macrophages incorporate significantly less NTB-59Fe in the absence or presence of excess extracellular iron, indicating reduced uptake and/or storage of available iron in the absence of PrPC. When expressed in neuroblastoma cells, PrPC exhibits NAD(P)H-dependent cell-surface and intracellular FR activity that requires the copper-binding octa-peptide-repeat region and linkage to the plasma membrane for optimal function. Incorporation of NTB-59Fe by neuroblastoma cells correlates with FR activity of PrPC, implicating PrPC in cellular iron uptake and metabolism. These observations explain the correlation between PrPC expression and cellular iron levels, and the cause of iron imbalance in sporadic-Creutzfeldt-Jakob-disease brains where PrPC accumulates as insoluble aggregates. PMID:23478311
The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles
Cho, Eun Chul; Zhang, Qiang; Xia, Younan
2011-01-01
In vitro experiments typically measure the uptake of nanoparticles by exposing cells at the bottom of a culture plate to a suspension of nanoparticles, which is assumed to be well-dispersed. However, nanoparticles can sediment and this means the concentration of particles on the cell surface and those actually taken up by the cells may be higher than the initial bulk concentration. Here we use upright and inverted cell culture configurations to show that cellular uptake of gold nanoparticles depends on the sedimentation and diffusion velocities of the nanoparticles and is independent of size, shape, density, surface coating and initial concentration of the nanoparticles. Generally more nanoparticles are taken up in the upright configuration than the inverted one and nanoparticles that sediment faster showed greater differences in uptake between the two configurations. Our results suggest that cellular uptake of nanoparticles is sensitive to the way cells are positioned and sedimentation need to be considered when performing in vitro studies for large and heavy nanoparticles. PMID:21516092
Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.
Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R
2008-09-01
Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.
Study of the uptake by duckweed of aluminum, copper, and lead from aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, S.C.; Choi, D.S.; Robinson, J.W.
1988-01-01
THE UPTAKE OF AL/sup 3 +/, CU/sup 2 +/, AND PB/sup 2 +/ FROM AQUEOUS SOLUTION BY DUCKWEED HAS BEEN OBSERVED AT PH 4.0, 4.5, AND 5.0. THE RESULTS SHOWED THAT THE UPTAKE OF PB/sup 2 +/ WAS MUCH FASTER THAN AL/sup 3 +/ AND CU/sup 2 +/. THE UPTAKE OF CU/sup 2 +/ WAS SUPPRESSED BY THE PRESENCE OF PB/sup 2 +/ AND AL/sup 3 +/. THE PROPORTION OF METAL UPTAKE (PMUT) BY DUCKWEED WAS DEPENDENT ON THE METAL CONCENTRATION IN THE SOLUTION WHEN ONLY ONE KIND OF METAL ION WAS PRESENT. IT WAS DECREASED BY INCREASING CONCENTRATIONS OFmore » OTHER METALS IN MIXTURES OF SOLUTIONS. THE METAL UPTAKE BY THE DUCKWEED WAS ALWAYS LESS THAN THE LOSS OF METAL CONTENT IN THE RELEVANT SOLUTION. THIS FACT IMPLIED THAT THE PROCESS OF THE UPTAKE OF METAL IONS BY THE DUCKWEED MAY INVOLVE TWO STAGES. IN THE FIRST, THE METAL IS ABSORBED BUT THEN LATER IT IS ADSORBED BY THE DUCKWEED. THE ALUMINUM ION WAS FOUND TO BE MORE TOXIC THAN THE COPPER ION AT LOWER PH AND HIGHER CONCENTRATION, BUT THE SITUATION IS REVERSED AT HIGHER PH. A POSSIBLE EXPLANATION OF TOXICITY OF CU/sup 2 +/ AND AL/sup 3 +/ IN CHLOROPHYLL WAS REPLACED BY THE CU/sup 2 +/ OR AL/sup 3 +/. THIS MAY LEAD THE CHLOROPHYLL TO LOSE ITS NORMAL ACTIVITY AND KILL THE DUCKWEED.« less
Assessment of Traumatic Brain Injury by Increased 64Cu Uptake on 64CuCl2 PET/CT.
Peng, Fangyu; Muzik, Otto; Gatson, Joshua; Kernie, Steven G; Diaz-Arrastia, Ramon
2015-08-01
Copper is a nutritional trace element required for cell proliferation and wound repair. To explore increased copper uptake as a biomarker for noninvasive assessment of traumatic brain injury (TBI), experimental TBI in C57BL/6 mice was induced by controlled cortical impact, and (64)Cu uptake in the injured cortex was assessed with (64)CuCl2 PET/CT. At 24 h after intravenous injection of the tracer, uptake was significantly higher in the injured cortex of TBI mice (1.15 ± 0.53 percentage injected dose per gram of tissue [%ID/g]) than in the uninjured cortex of mice without TBI (0.53 ± 0.07 %ID/g, P = 0.027) or the cortex of mice that received an intracortical injection of zymosan A (0.62 ± 0.22 %ID/g, P = 0.025). Furthermore, uptake in the traumatized cortex of untreated TBI mice (1.15 ± 0.53 %ID/g) did not significantly differ from that in minocycline-treated TBI mice (0.93 ± 0.30 %ID/g, P = 0.33). Overall, the data suggest that increased (64)Cu uptake in traumatized brain tissues holds potential as a new biomarker for noninvasive assessment of TBI with (64)CuCl2 PET/CT. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
A Role for the ATP7A Copper-transporting ATPase in Macrophage Bactericidal Activity*
White, Carine; Lee, Jaekwon; Kambe, Taiho; Fritsche, Kevin; Petris, Michael J.
2009-01-01
Copper is an essential micronutrient that is necessary for healthy immune function. This requirement is underscored by an increased susceptibility to bacterial infection in copper-deficient animals; however, a molecular understanding of its importance in immune defense is unknown. In this study, we investigated the effect of proinflammatory agents on copper homeostasis in RAW264.7 macrophages. Interferon-γ was found to increase expression of the high affinity copper importer, CTR1, and stimulate copper uptake. This was accompanied by copper-stimulated trafficking of the ATP7A copper exporter from the Golgi to vesicles that partially overlapped with phagosomal compartments. Silencing of ATP7A expression attenuated bacterial killing, suggesting a role for ATP7A-dependent copper transport in the bactericidal activity of macrophages. Significantly, a copper-sensitive mutant of Escherichia coli lacking the CopA copper-transporting ATPase was hypersensitive to killing by RAW264.7 macrophages, and this phenotype was dependent on ATP7A expression. Collectively, these data suggest that copper-transporting ATPases, CopA and ATP7A, in both bacteria and macrophage are unique determinants of bacteria survival and identify an unexpected role for copper at the host-pathogen interface. PMID:19808669
Reciprocal Regulation of Endocytosis and Metabolism
Antonescu, Costin N.; McGraw, Timothy E.; Klip, Amira
2014-01-01
The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe3+, K+) or efflux (e.g., Na+) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis. PMID:24984778
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2008-03-01
Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.
The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42.
González-Sánchez, Antonio; Cubillas, Ciro A; Miranda, Fabiola; Dávalos, Araceli; García-de Los Santos, Alejandro
2017-12-27
Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu + /Cu 2+ ) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram-negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein-protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper-based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl 2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a β-barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild-type gene restored its wild-type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
EFFECT OF HUMIC ACID ON UPTAKE AND TRANSFER OF COPPER FROM MICROBES TO CILIATES TO COPEPODS
This research is part of an ongoing project designed to determine the effect of humic acid on the uptake and transfer of metals by marine organisms at the lower end of the food chain. Binding affinities for Cu, Cd, Zn, and Cr to Suwannee River humic acid were determined at variou...
Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico
2010-11-01
Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.
Arif, Hussain; Sohail, Aamir; Farhan, Mohd; Rehman, Ahmed Abdur; Ahmad, Aamir; Hadi, S M
2018-01-01
Flavonoids, a class of polyphenols are known to be effective inducers of apoptosis and cytotoxicity in cancer cells. It is believed that antioxidant activity of polyphenols cannot fully account for induction of apoptosis and chemotherapeutic prevention in various cancers. In this article, by employing single cell alkaline gel electrophoresis (comet assay), we established that antioxidants, flavonoids such as (myricetin=MN, fisetin=FN, quercetin=QN, kaempferol=KL and galangin=GN) can cause cellular DNA breakage, also act as pro-oxidant in presence of transition metal ion such as copper. It was observed that the extent of cellular DNA breakage was found significantly higher in presence of copper. Hydroxyl radicals are generated as a sign of flavonoids' pro-oxidant nature through redox recycling of copper ions. Further, a dose-dependent inhibition of proliferation of breast cancer cells MDA-MB-231 by MN was found leading to pro-oxidant cell death, as assessed by MTT assay. Since levels of copper are considerably elevated in tissue, cell and serum during various malignancies, suggesting that cancer cells would be more subject to copper induced oxidative DNA breakage. Such a copper dependent pro-oxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Predicting dietborne metal toxicity from metal influxes
Croteau, M.-N.; Luoma, S.N.
2009-01-01
Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.
Singh, Pankaj Kumar; Singh, Sweta; Ganesh, Subramaniam
2012-02-01
Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.
USDA-ARS?s Scientific Manuscript database
We previously showed that curcumin (CUR) may increase lipid accumulation in cultured THP-1 monocytes/macrophages, but tetrahydrocurcumin (THC), an in vivo metabolite of CUR, had no such effect. In the present study, we have hypothesized that different cellular uptake and/or metabolism of CUR and THC...
Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C
2015-12-01
A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.
Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik
2017-02-01
Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.
2015-01-01
To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In conclusion, biomechanical interactions with membrane lipids are involved in cellular uptake and endosomal escape of NPs. Biophysical interaction studies could help us better understand the role of membrane lipids in cellular uptake and intracellular trafficking of NPs. PMID:24911361
Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levesque, Martine; Martineau, Corine; Jumarie, Catherine
Since bone mass is maintained constant by the balance between osteoclastic bone resorption and osteoblastic bone formation, alterations in osteoblast proliferation and differentiation may disturb the equilibrium of bone remodeling. Exposure to cadmium (Cd) has been associated with the alteration of bone metabolism and the development of osteoporosis. Because little information is available about the direct effects of Cd on osteoblastic cells, we have characterized in vitro the cellular accumulation and cytotoxicity of Cd in human osteoblastic cells. Incubation of osteoblast-like MG-63 cells with increasing concentrations of Cd in serum-free culture medium reduced cell viability in a time- and concentration-dependentmore » manner, suggesting that Cd accumulates in osteoblasts. Consequently, an uptake time-course could be characterized for the cellular accumulation of {sup 109}Cd in serum-free culture medium. In order to characterize the mechanisms of Cd uptake, experiments have been conducted under well-defined metal speciation conditions in chloride and nitrate transport media. The results revealed a preferential uptake of Cd{sup 2+} species. The cellular accumulation and cytotoxicity of Cd increased in the absence of extracellular calcium (Ca), suggesting that Cd may enter the cells in part through Ca channels. However, neither the cellular accumulation nor the cytotoxicity of Cd was modified by voltage-dependent Ca channel (VDCC) modulators or potassium-induced depolarization. Moreover, exposure conditions activating or inhibiting capacitative Ca entry (CCE) failed to modify the cellular accumulation and cytotoxicity of Cd, which excludes the involvement of canonical transient receptor potential (TRPC) channels. The cellular accumulation and cytotoxicity of Cd were reduced by 2-APB, a known inhibitor of the Mg and Ca channel TRPM7 and were increased in the absence of extracellular magnesium (Mg). The inhibition of Cd uptake by Mg and Ca was not additive, suggesting that each ion inhibits the same uptake mechanism. Our results indicate that Cd uptake in human osteoblastic cells occurs, at least in part, through Ca- and Mg-inhibitable transport mechanisms, which may involve channels of the TRPM family. The effect of Cd on bone metabolism may be enhanced under low Ca and/or Mg levels.« less
Periodate and hypobromite modification of Southern pine wood to improve sorption of copper ion
James D. McSweeny; Roger M. Rowell; George C. Chen; Thomas L. Eberhardt; Min Soo-Hong
2008-01-01
Milled southern pine wood was modified with sequential treatments of sodium periodate and sodium hypobromite for the purpose of improving copper ion (Cu2+) sorption capacity of the wood when tested in 24-h equilibrium batch tests. The modified wood provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ uptake over that of...
Effect of citric acid modification of aspen wood on sorption of copper ion
James D. McSweeny; Roger M. Rowell; Soo Hong Min
2006-01-01
Milled aspen wood was thermochemically modified with citric acid for the purpose of improving the copper (Cu2+) ion sorption capacity of the wood when tested in 24-hour equilibrium batch tests. The wood-citric acid adducts provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ ion uptake of the modified wood compared with that...
Copper transport and trafficking at the host-bacterial pathogen interface.
Fu, Yue; Chang, Feng-Ming James; Giedroc, David P
2014-12-16
CONSPECTUS: The human innate immune system has evolved the means to reduce the bioavailability of first-row late d-block transition metal ions to invading microbial pathogens in a process termed "nutritional immunity". Transition metals from Mn(II) to Zn(II) function as metalloenzyme cofactors in all living cells, and the successful pathogen is capable of mounting an adaptive response to mitigate the effects of host control of transition metal bioavailability. Emerging evidence suggests that Mn, Fe, and Zn are withheld from the pathogen in classically defined nutritional immunity, while Cu is used to kill invading microorganisms. This Account summarizes new molecular-level insights into copper trafficking across cell membranes from studies of a number of important bacterial pathogens and model organisms, including Escherichia coli, Salmonella species, Mycobacterium tuberculosis, and Streptococcus pneumoniae, to illustrate general principles of cellular copper resistance. Recent highlights of copper chemistry at the host-microbial pathogen interface include the first high resolution structures and functional characterization of a Cu(I)-effluxing P1B-ATPase, a new class of bacterial copper chaperone, a fungal Cu-only superoxide dismutase SOD5, and the discovery of a small molecule Cu-bound SOD mimetic. Successful harnessing by the pathogen of host-derived bactericidal Cu to reduce the bacterial load of reactive oxygen species (ROS) is an emerging theme; in addition, recent studies continue to emphasize the importance of short lifetime protein-protein interactions that orchestrate the channeling of Cu(I) from donor to target without dissociation into bulk solution; this, in turn, mitigates the off-pathway effects of Cu(I) toxicity in both the periplasm in Gram negative organisms and in the bacterial cytoplasm. It is unclear as yet, outside of the photosynthetic bacteria, whether Cu(I) is trafficked to other cellular destinations, for example, to cuproenzymes or other intracellular storage sites, or the general degree to which copper chaperones vs copper efflux transporters are essential for bacterial pathogenesis in the vertebrate host. Future studies will be directed toward the identification and structural characterization of other cellular targets of Cu(I) trafficking and resistance, the physical and mechanistic characterization of Cu(I)-transfer intermediates, and elucidation of the mutual dependence of Cu(I) trafficking and cellular redox status on thiol chemistry in the cytoplasm. Crippling bacterial control of Cu(I) sensing, trafficking, and efflux may represent a viable strategy for the development of new antibiotics.
Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells.
Vaidyanathan, Sriram; Kaushik, Milan; Dougherty, Casey; Rattan, Rahul; Goonewardena, Sascha N; Banaszak Holl, Mark M; Monano, Janet; DiMaggio, Stassi
2016-09-12
Neutral generation 3 poly(amidoamine) dendrimers were labeled with Oregon Green 488 (G3-OG n ) to obtain materials with controlled fluorophore:dendrimer ratios (n = 1-2), a mixture containing mostly 3 dyes per dendrimer, a mixture containing primarily 4 or more dyes per dendrimer ( n = 4+), and a stochastic mixture ( n = 4 avg ). The UV absorbance of the dye conjugates increased linearly as n increased and the fluorescence emission decreased linearly as n increased. Cellular uptake was studied in RAW cells and HEK 293A cells as a function of the fluorophore:dendrimer ratio (n). The cellular uptake of G3-OG n ( n = 3, 4+, 4 avg ) into RAW cells was significantly lower than G3-OG n ( n = 1, 2). The uptake of G3-OG n ( n = 3, 4+, 4 avg ) into HEK 293A cells was not significantly different from G3-OG 1 . Thus, the fluorophore:dendrimer ratio was observed to change the extent of uptake in the macrophage uptake mechanism but not in the HEK 293A cell. This difference in endocytosis indicates the presence of a pathway in the macrophage that is sensitive to hydrophobicity of the particle.
Dempsey, Christopher; Lee, Isac; Cowan, Katie; Suh, Junghae
2015-01-01
Barium titanate nanoparticles (BT NP) belong to a class of second harmonic generating (SHG) nanoprobes that have recently demonstrated promise in biological imaging. Unfortunately, BT NPs display low cellular uptake efficiencies, which may be a problem if cellular internalization is desired or required for a particular application. To overcome this issue, while concomitantly developing a particle platform that can also deliver nucleic acids into cells, we coated the BT NPs with the cationic polymer polyethylenimine (PEI) – one of the most effective nonviral gene delivery agents. Coating of BT with PEI yielded complexes with positive zeta potentials and resulted in an 8-fold increase in cellular uptake of the BT NPs. Importantly, we were able to achieve high levels of gene delivery with the BT-PEI/DNA complexes, supporting further efforts to generate BT platforms for coupled imaging and gene therapy. PMID:23973999
Mechanism for the Cellular Uptake of Targeted Gold Nanorods of Defined Aspect Ratios.
Yang, Hongrong; Chen, Zhong; Zhang, Lei; Yung, Wing-Yin; Leung, Ken Cham-Fai; Chan, Ho Yin Edwin; Choi, Chung Hang Jonathan
2016-10-01
Biomedical applications of non-spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near-parallel manner followed by rotating by ≈90° to enter the cell via a caveolae-mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.
Brady, Graham F; Galbán, Stefanie; Liu, Xuwen; Basrur, Venkatesha; Gitlin, Jonathan D; Elenitoba-Johnson, Kojo S J; Wilson, Thomas E; Duckett, Colin S
2010-04-01
In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.
Taraboletti, Alexandra; Walker, Tia; Avila, Robin; Huang, He; Caporoso, Joel; Manandhar, Erendra; Leeper, Thomas C; Modarelli, David A; Medicetty, Satish; Shriver, Leah P
2017-03-14
Cuprizone intoxication is a common animal model used to test myelin regenerative therapies for the treatment of diseases such as multiple sclerosis. Mice fed this copper chelator develop reversible, region-specific oligodendrocyte loss and demyelination. While the cellular changes influencing the demyelinating process have been explored in this model, there is no consensus about the biochemical mechanisms of toxicity in oligodendrocytes and about whether this damage arises from the chelation of copper in vivo. Here we have identified an oligodendroglial cell line that displays sensitivity to cuprizone toxicity and performed global metabolomic profiling to determine biochemical pathways altered by this treatment. We link these changes with alterations in brain metabolism in mice fed cuprizone for 2 and 6 weeks. We find that cuprizone induces widespread changes in one-carbon and amino acid metabolism as well as alterations in small molecules that are important for energy generation. We used mass spectrometry to examine chemical interactions that are important for copper chelation and toxicity. Our results indicate that cuprizone induces global perturbations in cellular metabolism that may be independent of its copper chelating ability and potentially related to its interactions with pyridoxal 5'-phosphate, a coenzyme essential for amino acid metabolism.
[Cellular uptake of TPS-L-carnitine synthesised as transporter-based renal targeting prodrug].
Li, Li; Zhu, Di; Sun, Xun
2012-11-01
To synthesize transporter-based renal targeting prodrug TPS-L-Carnitine and to determine its cellular uptake in vitro. Triptolide (TP) was conjugated with L-carnitine using succinate as the linker to form TPS-L-Carnitine, which could be specifically recognized by OCTN2, a cationic transporter with high affinity to L-Carnitine and is highly expressed on the apical membrane of renal proximal tubule cells. Cellular uptake assays of the prodrug and its parent drug were performed on HK-2 cells, a human proximal tubule cell line, in different temperature, concentration and in the presence of competitive inhibitors. TPS-L-Carnitine was taken up into HK-2 cells in a saturable and temperature- and concentration-dependent manner. The uptake process could be inhibited by the competitive inhibitors. The uptake of TPS-L-Carnitine was significantly higher than that of TP at 37 degrees C in the same drug concentration. TPS-L-Carnitine was taken through endocytosis mediated by transporter. TPS-L-Carnitine provides a good renal targeting property and lays the foundation for further studies in vivo.
Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana
2016-01-01
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function. PMID:26879543
Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana
2016-02-16
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.
Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O
2011-12-01
This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.
DNA binding studies of a new dicationic porphyrin. Insights into interligand interactions.
Shelton, Alexander H; Rodger, Alison; McMillin, David R
2007-08-07
Cationic porphyrins have an affinity for DNA and potential for applications in the fields of photodynamic therapy and cellular imaging. This report describes a new dicationic porphyrin, 5,15-dimethyl-10,20-di(N-methylpyridinium-4-yl)porphyrin, abbreviated H2tMe2D4. Although tetrasubstituted, H2tMe2D4 presents modest steric requirements and forms in reasonable yield by a "2+2" synthetic method. Accordingly, studies of the zinc(II)- and copper(II)-containing derivatives, Zn(tMe2D4) and Cu(tMe2D4), have also been possible. Methods used to characterize DNA-binding motifs include absorption, emission, linear, and circular dichroism spectroscopies, as well as viscometry. An unusually detailed picture of porphyrin uptake emerges. As the ratio of DNA to porphyrin increases during a typical titration, H2tMe2D4 or Cu(tMe2D4) initially aggregates on the host and then shifts to intercalative binding at close quarters before finally dispersing into non-interacting intercalation sites of the host. Emission studies of the copper(II) porphyrin have been very valuable. The existence of a measurable signal is diagnostic of intercalative binding, and the saturation behavior establishes that internalization typically monopolizes approximately three base pairs. In the moderate loading regime, emission data are most telling because dipole-dipole interactions between near-neighbor porphyrins tend to confuse other spectroscopic assays. The third ligand, Zn(tMe2D4), behaves differently in that the uptake is a strictly cooperative process. The mode of binding also varies with the base content of the DNA host. When the DNA is rich in A=T base pairs, the porphyrin remains five-coordinate and binds externally; however, Zn(tMe2D4) loses its axial ligand and binds by intercalation if the host contains only G[triple bond]C base pairs.
Different roles of glutathione in copper and zinc chelation in Brassica napus roots.
Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V
2017-09-01
We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Treatability of SPF framing lumber with CCA and borate preservatives
Cherilyn Hatfield
2005-01-01
There is increasing interest in preservative pressure-treatment of framing lumber to prevent attack by decay fungi and insects. However, the Spruceâ pineâFir species group that is often used in framing construction can be difficult to penetrate with preservatives. We compared solution uptake and penetration of boron and copper from a boraxâcopper (BC) preservative to...
Enantioselective cellular uptake of chiral semiconductor nanocrystals
NASA Astrophysics Data System (ADS)
Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.
2016-02-01
The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.
Uptake of gentamicin by separated, viable renal tubules from rabbits.
Barza, M; Murray, T; Hamburger, R J
1980-04-01
The proximal renal tubules have a marked affinity for gentamicin; they also are the major site of nephrotoxicity caused by this drug. The uptake of radiolabeled gentamicin in separated, viable renal tubules prepared by enzymatic digestion of rabbit kidneys was studied. The preparations showed rapid initial uptake of gentamicin followed by continued slower uptake. Accumulation was not affected by pH, but was significantly inhibited by ouabain, dinitrophenol, anoxia, and hypothermia in the absence of evident cellular damage. At gentamicin concentrations of greater than 50 microgram/ml in the medium, there was competition for drug uptake. Gentamicin efflux in tubules that were taken from a medium containing antibiotic and placed into antibiotic-free fluid was slow and incomplete. From these data it appears that gentamicin uptake by separated renal tubules occurs by a process that requires metabolic energy; thereafter, the drug resides in a poorly exchangeable cellular pool.
Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T
2013-12-20
Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs.
Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D.; Batinic-Haberle, Ines; Benov, Ludmil T.
2013-01-01
Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs. PMID:24214973
Combined Effect of Cameo2 and CBP on the Cellular Uptake of Lutein in the Silkworm, Bombyx mori
Dong, Xiao-Long; Chai, Chun-Li; Pan, Cai-Xia; Tang, Hui; Chen, Yan-Hong; Dai, Fang-Yin; Pan, Min-Hui; Lu, Cheng
2014-01-01
Formation of yellow-red color cocoons in the silkworm, Bombyx mori, occurs as the result of the selective delivery of carotenoids from the midgut to the silk gland via the hemolymph. This process of pigment transport is thought to be mediated by specific cellular carotenoids carrier proteins. Previous studies indicated that two proteins, Cameo2 and CBP, are associated with the selective transport of lutein from the midgut into the silk gland in Bombyx mori. However, the exact roles of Cameo2 and CBP during the uptake and transport of carotenoids are still unknown. In this study, we investigated the respective contributions of these two proteins to lutein and β-carotene transport in Bombyx mori as well as commercial cell-line. We found that tissues, expressed both Cameo2 and CBP, accumulate lutein. Cells, co-expressed Cameo2 and CBP, absorb 2 fold more lutein (P<0.01) than any other transfected cells, and the rate of cellular uptake of lutein was concentration-dependent and reached saturation. From immunofluorescence staining, confocal microscopy observation and western blot analysis, Cameo2 was localized at the membrane and CBP was expressed in the cytosol. What’s more, bimolecular fluorescence complementation analysis showed that these two proteins directly interacted at cellular level. Therefore, Cameo2 and CBP are necessarily expressed in midguts and silk glands for lutein uptake in Bombyx mori. Cameo2 and CBP, as the membrane protein and the cytosol protein, respectively, have the combined effect to facilitate the cellular uptake of lutein. PMID:24475153
Pramanik, Anup K; Siddikuzzaman; Palanimuthu, Duraippandi; Somasundaram, Kumaravel; Samuelson, Ashoka G
2016-12-21
The synthesis and anticancer activity of a copper(II) diacetyl-bis(N4-methylthiosemicarbazone) complex and its nanoconjugates are reported. The copper(II) complex is connected to a carboxylic acid group through a cleavable disulfide link to enable smart delivery. The copper complex is tethered to highly water-soluble 20 nm gold nanoparticles (AuNPs), stabilized by amine terminated lipoic acid-polyethylene glycol (PEG). The gold nanoparticle carrier was further decorated with biotin to achieve targeted action. The copper complex and the conjugates with and without biotin, were tested against HeLa and HaCaT cells. They show very good anticancer activity against HeLa cells, a cell line derived from cervical cancer and are less active against HaCaT cells. Slow and sustained release of the complex from conjugates is demonstrated through cleavage of disulfide linker in the presence of glutathione (GSH), a reducing agent intrinsically present in high concentrations within cancer cells. Biotin appended conjugates do not show greater activity than conjugates without biotin against HeLa cells. This is consistent with drug uptake studies, which suggests similar uptake profiles for both conjugates in vitro. However, in vivo studies using a HeLa cell xenograft tumor model shows 3.8-fold reduction in tumor volume for the biotin conjugated nanoparticle compared to the control whereas the conjugate without biotin shows only 2.3-fold reduction in the tumor volume suggesting significant targeting.
Miyazawa, Taiki; Kamiyoshihara, Reina; Shimizu, Naoki; Harigae, Takahiro; Otoki, Yurika; Ito, Junya; Kato, Shunji; Miyazawa, Teruo
2018-01-01
Liposomes consisting of 100% phosphatidylcholine exhibit poor membrane fusion, cellular uptake and selective targeting capacities. To overcome these limitations, we used Amadori-glycated phosphatidylethanolamine, which is universally present in animals and commonly consumed in foods. We found that liposomes containing Amadori-glycated phosphatidylethanolamine exhibited significantly reduced negative membrane potential and demonstrated high cellular uptake. PMID:29515844
The Role of Transporters in the Toxicity of Nucleoside and Nucleotide Analogs
Koczor, Christopher A; Torres, Rebecca A
2013-01-01
Introduction Two families of nucleoside analogs have been developed to treat viral infections and cancer, but these compounds can cause tissue and cell-specific toxicity related to their uptake and subcellular activity which are dictated by host enzymes and transporters. Cellular uptake of these compounds requires nucleoside transporters that share functional similarities but differ in substrate specificity. Tissue-specific cellular expression of these transporters enables nucleoside analogs to produce their tissue specific toxic effects, a limiting factor in the treatment of retroviruses and cancer. Areas Covered This review discusses the families of nucleoside transporters and how they mediate cellular uptake of nucleoside analogs. Specific focus is placed on examples of known cases of transporter-mediated cellular toxicity and classification of the toxicities resulting. Efflux transporters are also explored as a contributor to analog toxicity and cell-specific effects. Expert Opinion Efforts to modulate transporter uptake/clearance remain long-term goals of oncologists and virologists. Accordingly, subcellular approaches that either increase or decrease intracellular nucleoside analog concentrations are eagerly sought and include transporter inhibitors and targeting transporter expression. However, additional understanding of nucleoside transporter kinetics, tissue expression, and genetic polymorphisms are required to design better molecules and better therapies. PMID:22509856
Yang, Fang; Tang, Quanming; Zhong, Xueyun; Bai, Yan; Chen, Tianfeng; Zhang, Yibo; Li, Yinghua; Zheng, Wenjie
2012-01-01
A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G(1) cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers.
Yang, Fang; Tang, Quanming; Zhong, Xueyun; Bai, Yan; Chen, Tianfeng; Zhang, Yibo; Li, Yinghua; Zheng, Wenjie
2012-01-01
A simple and solution-phase method for functionalization of selenium nanoparticles (SeNPs) with Spirulina polysaccharides (SPS) has been developed in the present study. The cellular uptake and anticancer activity of SPS-SeNPs were also evaluated. Monodisperse and homogeneous spherical SPS-SeNPs with diameters ranging from 20 nm to 50 nm were achieved under optimized conditions, which were stable in the solution phase for at least 3 months. SPS surface decoration significantly enhanced the cellular uptake and cytotoxicity of SeNPs toward several human cancer cell lines. A375 human melanoma cells were found extremely susceptible to SPS-SeNPs with half maximal (50%) inhibitory concentration value of 7.94 μM. Investigation of the underlying mechanisms revealed that SPS-SeNPs inhibited cancer cell growth through induction of apoptosis, as evidenced by an increase in sub-G1 cell population, deoxyribonucleic acid fragmentation, chromatin condensation, and phosphatidylserine translocation. Results suggest that the strategy to use SPS as a surface decorator could be an effective way to enhance the cellular uptake and anticancer efficacy of nanomaterials. SPS-SeNPs may be a potential candidate for further evaluation as a chemopreventive and chemotherapeutic agent against human cancers. PMID:22359460
Redox control of copper homeostasis in cyanobacteria.
López-Maury, Luis; Giner-Lamia, Joaquín; Florencio, Francisco J
2012-12-01
Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.
Ogunkunle, Clement O; Jimoh, Mahboob A; Asogwa, Nnaemeka T; Viswanathan, K; Vishwakarma, Vinita; Fatoba, Paul O
2018-07-15
Increased use of nanoparticles-based products in agriculture portends important implications for agriculture. Therefore, the impact of nano-copper particles (<25 nm and 60-80 nm) on Cu uptake, bioaccumulation (roots, leaves and seeds), activity of ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and lipid peroxidation in leaves and roots of Vigna unguiculata (cowpea) was studied. Plants were exposed to four levels (0, 125, 500 and 1000 mg/kg) of 25 nm or 60-80 nm nano-Cu for 65 days. Results indicated significant (P<.05) uptake of Cu at all nano-Cu levels compared to control, and bioaccumulation increased in seeds by at least 250%. Response of antioxidant enzymes to both nano-Cu types was concentration-dependent. Activity of APX and GR was enhanced in leaves and roots in response to both nano-Cu treatments in similar patterns compared to control. Both nano-Cu increased CAT activity in roots while SOD activity reduced in both leaves and roots. This shows that response of antioxidant enzymes to nano-Cu toxicity was organ-specific in cowpea. Malondialdehyde, a measure of lipid peroxidation, increased at 500 -1000 mg/kg of 25 nm nano-Cu in leaves by average of 8.4%, and 60-80 nm nano-Cu in root by 52.8%, showing particle-size and organ-dependent toxicity of nano-Cu. In conclusion, exposure of cowpea to nano-Cu treatments increased both the uptake and bioaccumulation of Cu, and also promoted the activity of APX and GR in root and leaf tissues of cowpea. Therefore, APX- and GR-activity level could be a useful predictive biomarker of nano-Cu toxicity in cowpea. Copyright © 2018 Elsevier Inc. All rights reserved.
Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate.
Luo, Yangchao; Teng, Zi; Wang, Thomas T Y; Wang, Qin
2013-08-07
Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS)-stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with different zein/CAS mass ratios. The prepared nanoparticles demonstrated good stabilities to maintain particle size (120-140 nm) in cell culture medium and HBSS buffer at 37 °C. The nanoparticles showed no cytotoxicity for Caco-2 cells for 72 h. CAS not only significantly enhanced cell uptake of zein nanoparticles in a concentration- and time-dependent manner but also remarkably improved epithelial transport through Caco-2 cell monolayer. The cell uptake of zein-CAS nanoparticles indicated an energy-dependent endocytosis process as evidenced by cell uptake under blocking conditions, that is, 4 °C, sodium azide, and colchicine. Fluorescent microscopy clearly showed the internalization of zein-CAS nanoparticles. This study may shed some light on the cellular evaluations of hydrophobic protein nanoparticles.
Punfa, Wanisa; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Ampasavate, Chadarat; Limtrakul, Pornngarm
2012-06-01
To compare the anti-cancer activity and cellular uptake of curcumin (Cur) delivered by targeted and non-targeted drug delivery systems in multidrug-resistant cervical cancer cells. Cur was entrapped into poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Cur-NPs) in the presence of modified-pluronic F127 stabilizer using nano-precipitation technique. On the surface of Cur-NPs, the carboxy-terminal of modified pluronic F127 was conjugated to the amino-terminal of anti-P-glycoprotein (P-gp) (Cur-NPs-APgp). The physical properties of the Cur-NPs, including particle size, zeta potential, particle morphology and Cur release kinetics, were investigated. Cellular uptake and specificity of the Cur-NPs and Cur-NPs-APgp were detected in cervical cancer cell lines KB-V1 (higher expression of P-gp) and KB-3-1 (lower expression of P-gp) using fluorescence microscope and flow cytometry, respectively. Cytotoxicity of the Cur-NPs and Cur-NPs-APgp was determined using MTT assay. The particle size of Cur-NPs and Cur-NPs-APgp was 127 and 132 nm, respectively. The entrapment efficiency and actual loading of Cur-NPs-APgp (60% and 5 μg Cur/mg NP) were lower than those of Cur-NPs (99% and 7 μg Cur/mg NP). The specific binding of Cur-NPs-APgp to KB-V1 cells was significantly higher than that to KB-3-1 cells. Cellular uptake of Cur-NPs-APgp into KB-V1 cells was higher, as compared to KB-3-1 cells. However, the cellular uptake of Cur-NPs and Cur-NPs-IgG did not differ between the two types of cells. Besides, the cytotoxicity of Cur-NPs-APgp in KB-V1 cells was higher than those of Cur and Cur-NPs. The results demonstrate that Cur-NPs-APgp targeted to P-gp on the cell surface membrane of KB-V1 cells, thus enhancing the cellular uptake and cytotoxicity of Cur.
Early histological and functional effects of chronic copper exposure in rat liver.
Cisternas, Felipe A; Tapia, Gladys; Arredondo, Miguel; Cartier-Ugarte, Denise; Romanque, Pamela; Sierralta, Walter D; Vial, María T; Videla, Luis A; Araya, Magdalena
2005-10-01
Cu is an essential trace element capable of producing toxic effects in animals and man when ingested acutely or chronically in excess. Although chronic Cu exposure is increasingly recognized as a public health issue, its early effects remain largely unknown. We approached the significance of a moderate chronic Cu load in young rats to correlate early hepatic histopathological changes with functional alterations of liver cells. For this purpose, supplementation with 1,200 ppm of Cu in rat food for 16 weeks was chosen. In these conditions, Cu load elicited a significant decrease in growth curves. There were mild light microscopy alterations in Cu-treated rats, although increasing intracellular Cu storage was correlated with longer Cu exposure both by histological and biochemical measurements. Ultrastructural alterations included lysosomal inclusions as well as mitochondrial and nuclear changes. Liver perfusion studies revealed higher rates of basal O(2) consumption and colloidal carbon-induced O(2) uptake in Cu-treated rats, with enhanced carbon-induced O(2)/carbon uptake ratios and NF-kappaB DNA binding activity. These changes were time-dependent and returned to control values after 12 or 16 weeks. It is concluded that subchronic Cu loading in young rats induces early hepatic morphological changes, with enhancement in Küpffer cell-dependent respiratory burst activity and NF-kappaB DNA binding, cellular responses that may prevent or alleviate the hepatotoxicity of the metal.
Wang, Lin; Ge, Yan
2016-01-01
Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267
Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2
Villafane, Aramis; Voskoboynik, Yekaterina; Cuebas, Mariola; Ruhl, Ilona; Bini, Elisabetta
2009-01-01
Copper is an essential micronutrient, but toxic in excess. Sulfolobus solfataricus cells have the ability to adapt to fluctuations of copper levels in their external environment. To better understand the molecular mechanism behind the organismal response to copper, the expression of the cluster of genes copRTA, which encodes the copper-responsive transcriptional regulator CopR, the copper-binding protein CopT, and CopA, has been investigated and the whole operon has been shown to be cotranscribed at low levels from the copR promoter under all conditions, whereas increased transcription from the copTA promoter occurs in the presence of excess copper. Furthermore, the expression of the copper-transporting ATPase CopA over a 27-hour interval has been monitored by quantitative real-time RT-PCR and compared to the pattern of cellular copper accumulation, as determined in a parallel analysis by Inductively Coupled Plasma Optical Emission spectrometry (ICP-OES). The results provide the basis for a model of the molecular mechanisms of copper homeostasis in Sulfolobus, which relies on copper efflux and sequestration. PMID:19427833
The Yeast Copper Response Is Regulated by DNA Damage
Dong, Kangzhen; Addinall, Stephen G.; Lydall, David
2013-01-01
Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast. PMID:23959798
Iwaki, Tomoko; Sekito, Takayuki; Kakinuma, Yoshimi
2010-01-01
The fission yeast Schizosaccharomyces pombe was sensitive to salinity; cell growth was stopped by 0.5 M NaCl and by 10 mM LiCl. The avt5+ gene encodes a vacuolar transporter with a broad specificity for amino acids. We found that the avt5Delta mutant became highly tolerant of Li+ and Na+ in growth. Concanamycin A-sensitive Li+ uptake as well as cellular Li+ content was lower in the avt5 mutant, suggesting a role of Avt5p in cellular uptake of toxic Li+.
Interplay of drug metabolizing enzymes with cellular transporters.
Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter
2014-11-01
Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.
Xia, Tian; Kovochich, Michael; Liong, Monty; Meng, Huan; Kabehie, Sanaz; Zink, Jeffrey I.; Nel, Andre E.
2014-01-01
Surface-functionalized mesoporous silica nanoparticles (MSNP) can be used as an efficient and safe carrier for bioactive molecules. In order to make the MSNP a more efficient delivery system, we modified the surface of the particles by a functional group that enhances cellular uptake and allows nucleic acid delivery in addition to traditional drug delivery. Non-covalent attachment of polyethyleneimine (PEI) polymers to the surface not only increases MSNP cellular uptake, but also generates a cationic surface to which DNA and siRNA constructs could be attached. While efficient for intracellular delivery of these nucleic acids, the 25 KD PEI polymer unfortunately changes the safety profile of the MSNP that is otherwise very safe. By experimenting with several different polymer molecular weights, it was possible to retain high cellular uptake and transfection efficiency while reducing or even eliminating cationic MSNP cytotoxicity. The particles coated with the 10 KD PEI polymer was particularly efficient for transducing HEPA-1 cells with a siRNA construct that was capable of knocking down GFP expression. Similarly, transfection of a GFP plasmid induced effective expression of the fluorescent protein in > 70% cells in the population. These outcomes were quantitatively assessed by confocal microscopy and flow cytometry. We also demonstrated that the enhanced cellular uptake of the non-toxic cationic MSNP enhance the delivery of the hydrophobic anticancer drug, paclitaxel, to pancreatic cancer cells. In summary, we demonstrate that by a careful selection of PEI size, it is possible to construct cationic MSNP that are capable of nucleotide and enhanced drug delivery with minimal or no cytotoxicity. This novel use of a cationic MSNP extends its therapeutic use potential. PMID:19739605
Veltman, Karin; Huijbregts, Mark A J; Hendriks, A Jan
2010-07-01
Both biotic ligand models (BLM) and bioaccumulation models aim to quantify metal exposure based on mechanistic knowledge, but key factors included in the description of metal uptake differ between the two approaches. Here, we present a quantitative comparison of both approaches and show that BLM and bioaccumulation kinetics can be merged into a common mechanistic framework for metal uptake in aquatic organisms. Our results show that metal-specific absorption efficiencies calculated from BLM-parameters for freshwater fish are highly comparable, i.e. within a factor of 2.4 for silver, cadmium, copper, and zinc, to bioaccumulation-absorption efficiencies for predominantly marine fish. Conditional affinity constants are significantly related to the metal-specific covalent index. Additionally, the affinity constants of calcium, cadmium, copper, sodium, and zinc are significantly comparable across aquatic species, including molluscs, daphnids, and fish. This suggests that affinity constants can be estimated from the covalent index, and constants can be extrapolated across species. A new model is proposed that integrates the combined effect of metal chemodynamics, as speciation, competition, and ligand affinity, and species characteristics, as size, on metal uptake by aquatic organisms. An important direction for further research is the quantitative comparison of the proposed model with acute toxicity values for organisms belonging to different size classes.
Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M
2011-09-01
The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.
Bioavailability of zinc, copper, and manganese from infant diets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, J.G.
1987-01-01
A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose)more » in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.« less
Khan, Saman; Zafar, Atif; Naseem, Imrana
2018-06-25
Coumarin is an important bioactive pharmacophore. It is found in plants as a secondary metabolite and exhibits diverse pharmacological properties including anticancer effects against different malignancies. Therapeutic efficacy of coumarin derivatives depends on the pattern of substitution and conjugation with different moieties. Cancer cells contain elevated copper as compared to normal cells that plays a role in angiogenesis. Thus, targeting copper in malignant cells via copper chelators can serve as an attractive targeted anticancer strategy. Our previous efforts led to the synthesis of di(2-picolyl)amine-3(bromoacetyl)coumarin hybrid molecule (ligand-L) endowed with DNA/Cu(II) binding properties, and ROS generation ability in the presence of copper ions. In the present study, we aimed to validate copper-dependent cytotoxic action of ligand-L against malignant cells. For this, we used a cellular model system of copper (Cu) overloaded lymphocytes (CuOLs) to simulate malignancy-like condition. In CuOLs, lipid peroxidation/protein carbonylation, ROS generation, DNA fragmentation and apoptosis were investigated in the presence of ligand-L. Results showed that ligand-L-Cu(II) interaction leads to ROS generation, lipid peroxidation/protein carbonylation (oxidative stress parameters), DNA damage, up-regulation of p53 and mitochondrial-mediated apoptosis in treated lymphocytes. Further, pre-incubation with neocuproine (membrane permeable copper chelator) and ROS scavengers attenuated the DNA damage and apoptosis. These results suggest that cellular copper acts as molecular target for ligand-L to propagate redox cycling and generation of ROS via Fenton-like reaction leading to DNA damage and apoptosis. Further, we showed that ligand-L targets elevated copper in breast cancer MCF-7 and colon cancer HCT116 cells leading to a pro-oxidant inhibition of proliferation of cancer cells. In conclusion, we propose copper-dependent ROS-mediated mechanism for the cytotoxic action of ligand-L in malignant cells. Thus, targeting elevated copper represents an effective therapeutic strategy for selective cytotoxicity against malignant cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Nakase, Ikuhiko; Noguchi, Kosuke; Fujii, Ikuo; Futaki, Shiroh
2016-10-17
Extracellular vesicles (EVs, exosomes) are approximately 30- to 200-nm-long vesicles that have received increased attention due to their role in cell-to-cell communication. Although EVs are highly anticipated to be a next-generation intracellular delivery tool because of their pharmaceutical advantages, including non-immunogenicity, their cellular uptake efficacy is low because of the repulsion of EVs and negatively charged cell membranes and size limitations in endocytosis. Here, we demonstrate a methodology for achieving enhanced cellular EV uptake using arginine-rich cell-penetrating peptides (CPPs) to induce active macropinocytosis. The induction of macropinocytosis via a simple modification to the exosomal membrane using stearylated octaarginine, which is a representative CPP, significantly enhanced the cellular EV uptake efficacy. Consequently, effective EV-based intracellular delivery of an artificially encapsulated ribosome-inactivating protein, saporin, in EVs was attained.
Freudenberg, Robert; Wendisch, Maria; Runge, Roswitha; Wunderlich, Gerd; Kotzerke, Jörg
2012-12-01
Cellular radionuclide uptake increases the heterogeneity of absorbed dose to biological structures. Dose increase depends on uptake yield and emission characteristics of radioisotopes. We used an in vitro model to compare the impact of cellular uptake of (188)Re-perrhenate and (99m)Tc-pertechnetate on cellular survival. Rat thyroid PC Cl3 cells in culture were incubated with (188)Re or (99m)Tc in the presence or absence of perchlorate for 1 hour. Clonogenic cell survival was measured by colony formation. In addition, intracellular radionuclide uptake was quantified. Dose effect curves were established for (188)Re and (99m)Tc for various extra- and intracellular distributions of the radioactivity. In the presence of perchlorate, no uptake of radionuclides was detected and (188)Re reduced cell survival more efficiently than (99m)Tc. A(37), the activity that is necessary to yield 37% cell survival was 14 MBq/ml for (188)Re and 480 MBq/ml for (99m)Tc. In the absence of perchlorate, both radionuclides showed similar uptakes; however, A(37) was reduced by 30% for the beta-emitter and by 95% for (99m)Tc. The dose D(37) that yields 37% cell survival was between 2.3 and 2.8 Gy for both radionuclides. Uptake of (188)Re and (99m)Tc decreased cell survival. Intracellular (99m)Tc yielded a dose increase that was higher compared to (188)Re due to emitted Auger and internal conversion-electrons. Up to 5 Gy there was no difference in radiotoxicity of (188)Re and (99m)Tc. At doses higher than 5 Gy intracellular (99m)Tc became less radiotoxic than (188)Re, probably due to a non-uniform lognormal radionuclide uptake.
Copper attachment to a non-octarepeat site in prion protein
NASA Astrophysics Data System (ADS)
Hodak, Miroslav; Bernholc, Jerry
2010-03-01
Prion protein, PrP, plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The PrP is known to efficiently bind copper ions and this ability has been linked to its function. PrP contains up to six binding sites, four of which are located in the so-called octarepeat region and are now well known. The binding sites outside this region are still largely undetermined, despite evidence of their relevance to prion diseases. Using a hybrid DFT/DFT, which combines Kohn-Sham DFT with orbital-free DFT to achieve accurate and efficient description of solvent effects in ab initio calculations, we have investigated copper attachment to the sequence GGGTH, which represents the copper binding site located at His96. We have considered both NNNN and NNNO types of copper coordination, as suggested by experiments. Our calculations have determined the geometry of copper attachment site and its energetics. Comparison to the already known binding sites provides insight into the process of copper uptake in PrP.
Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.
He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng
2017-12-09
Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Yang; Monteiro-Riviere, Nancy A
2016-12-01
To assess inflammation, cellular uptake and endocytic mechanisms of gold nanoparticles (AuNP) in human epidermal keratinocytes with and without a protein corona. Human epidermal keratinocytes were exposed to 40 and 80 nm AuNP with lipoic acid, polyethylene glycol (PEG) and branched polyethyleneimine (BPEI) coatings with and without a protein corona up to 48 h. Inhibitors were selected to characterize endocytosis. BPEI-AuNP showed the greatest uptake, while PEG-AuNP had the least. Protein coronas decreased uptake and affected their mechanism. AuNP uptake was energy-dependent, except for 40 nm lipoic-AuNP. Most AuNP were internalized by clathrin and lipid raft-mediated endocytosis, except for 40 nm PEG was by raft/noncaveolae mediated endocytosis. Coronas inhibited caveolae-mediated-endocytosis with lipoic acid and BPEI-AuNP and altered 40 nm PEG-AuNP from raft/noncaveolae to clathrin. Inflammatory responses decreased with a plasma corona. Results suggest protein coronas significantly affect cellular uptake and inflammatory responses of AuNP.
Bompiani, Kristin M; Tsai, Cheng-Yu; Achatz, Felix P; Liebig, Janika K; Howell, Stephen B
2016-09-01
The development of resistance to cisplatin (cDDP) is commonly accompanied by reduced drug uptake or increased efflux. Previous studies in yeast and murine embryonic fibroblasts have reported that the copper (Cu) transporters and chaperones participate in the uptake, efflux, and intracellular distribution of cDDP. However, there is conflicting data from studies in human cells. We used CRISPR-Cas9 genome editing to individually knock out the human copper transporters CTR1 and CTR2 and the copper chaperones ATOX1 and CCS. Isogenic knockout cell lines were generated in both human HEK-293T and ovarian carcinoma OVCAR8 cells. All knockout cell lines had slowed growth compared to parental cells, small changes in basal Cu levels, and varying sensitivities to Cu depending on the gene targeted. However, all of the knockouts demonstrated only modest 2 to 5-fold changes in cDDP sensitivity that did not differ from the range of sensitivities of 10 wild type clones grown from the same parental cell population. We conclude that, under basal conditions, loss of CTR1, CTR2, ATOX1, or CCS does not produce a change in cisplatin sensitivity that exceeds the variance found within the parental population, suggesting that they are not essential to the mechanism by which cDDP enters these cell lines and is transported to the nucleus.
Copper uptake by Pteris melanocaulon Fée from a Copper-Gold mine in Surigao del Norte, Philippines.
De la Torre, Joseph Benjamin B; Claveria, Rene Juna R; Perez, Rubee Ellaine C; Perez, Teresita R; Doronila, Augustine I
2016-01-01
The ability of some plants to take up metal contaminants in the soil has been of increasing interest as an environmental approach to pollution clean-up. This study aimed to assess the ability of Pteris melanocaulon for copper(Cu) uptake by determining the Cu levels in the fern vis-à-vis surrounding soil and the location of Cu accumulation within its biomass. It also aimed to add information to existing literature as P. melanocaulon are found to be less documented compared to other fern metal accumulators, such as P. vittata. The P. melanocaulon found in the Suyoc Pit of a Copper-Gold mine in Placer, Surigao del Norte, Philippines exhibited a high Bioaccumulation Factor(BF) of 4.04 and a low Translocation Factor(TF) of 0.01, suggesting more Cu accumulation in the roots (4590.22 ± 385.66 µg g(-1) Cu). Noteworthy was the Cu concentration in the rhizome which was also high (3539.44 ± 1696.35 µg g(-1) Cu). SEM/EDX analyses of the Cu content in the roots indicated high elemental %Cu in the xylem (6.95%) than in the cortex (2.68%). The high Cu content in the roots and rhizomes and the localization of Cu in the xylem manifested a potential utilization of the fern as a metallophyte for rhizofiltration and phytostabilization.
Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries
Manshian, Bella B.; Soenen, Stefaan J.; Brown, Andy; Hondow, Nicole; Wills, John; Jenkins, Gareth J. S.; Doak, Shareen H.
2016-01-01
Quantum dots (QD) have unique electronic and optical properties promoting biotechnological advances. However, our understanding of the toxicological structure–activity relationships remains limited. This study aimed to determine the biological impact of varying nanomaterial surface chemistry by assessing the interaction of QD with either a negative (carboxyl), neutral (hexadecylamine; HDA) or positive (amine) polymer coating with human lymphoblastoid TK6 cells. Following QD physico-chemical characterisation, cellular uptake was quantified by optical and electron microscopy. Cytotoxicity was evaluated and genotoxicity was characterised using the micronucleus assay (gross chromosomal damage) and the HPRT forward mutation assay (point mutagenicity). Cellular damage mechanisms were also explored, focusing on oxidative stress and mitochondrial damage. Cell uptake, cytotoxicity and genotoxicity were found to be dependent on QD surface chemistry. Carboxyl-QD demonstrated the smallest agglomerate size and greatest cellular uptake, which correlated with a dose dependent increase in cytotoxicity and genotoxicity. Amine-QD induced minimal cellular damage, while HDA-QD promoted substantial induction of cell death and genotoxicity. However, HDA-QD were not internalised by the cells and the damage they caused was most likely due to free cadmium release caused by QD dissolution. Oxidative stress and induced mitochondrial reactive oxygen species were only partially associated with cytotoxicity and genotoxicity induced by the QD, hence were not the only mechanisms of importance. Colloidal stability, nanoparticle (NP) surface chemistry, cellular uptake levels and the intrinsic characteristics of the NPs are therefore critical parameters impacting genotoxicity induced by QD. PMID:26275419
Shabala, Lana; Walker, Emma J; Eklund, Annelie; Randall-Demllo, Sarron; Shabala, Sergey; Guven, Nuri; Cook, Anthony L; Eri, Rajaraman D
2013-10-01
Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux 'signatures' during these stress conditions are poorly characterized. We investigated the kinetics of K(+) , Ca(2+) and H(+) ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non-invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K(+) efflux was observed following acute ER stress with peak K(+) efflux being -30·6 and -138·7 nmolm(-2) s(-1) for 10 and 50 µg ml(-1) , respectively (p < 0·01). TM-dependent Ca(2+) uptake was more prolonged with peak values of 0·85 and 2·68 nmol m(-2) s(-1) for 10 and 50 µg ml(-1) TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K(+) efflux and Ca(2+) uptake. While K(+) changes were significantly higher at each time point tested, Ca(2+) uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K(+) efflux and Ca(2+) uptake. Functional assays to investigate the effect of inhibiting K(+) efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K(+) , Ca(2+) and H(+) ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases. Copyright © 2012 John Wiley & Sons, Ltd.
Diselenolane-mediated cellular uptake.
Chuard, Nicolas; Poblador-Bahamonde, Amalia I; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi; Matile, Stefan
2018-02-21
The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.
Celis-Plá, Paula S M; Brown, Murray T; Santillán-Sarmiento, Alex; Korbee, Nathalie; Sáez, Claudio A; Figueroa, Félix L
2018-03-01
Global scenarios evidence that contamination due to anthropogenic activities occur at different spatial-temporal scales, being important stressors: eutrophication, due to increased nutrient inputs; and metal pollution, mostly derived from industrial activities. In this study, we investigated ecophysiological and metabolic responses to copper and nutrient excess in the brown macroalga Cystoseira tamariscifolia. Whole plants were incubated in an indoor system under control conditions, two levels of nominal copper (0.5 and 2.0μM), and two levels of nutrient supply for two weeks. Maximal quantum yield (F v /F m ) and maximal electron transport rate (ETR max ) increased under copper exposure. Photosynthetic pigments and phenolic compounds (PC) increased under the highest copper levels. The intra-cellular copper content increased under high copper exposure in both nutrient conditions. C. tamariscifolia from the Atlantic displayed efficient metal exclusion mechanisms, since most of the total copper accumulated by the cell was bound to the cell wall. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum.
Costa, Giulia Burle; de Felix, Marthiellen R L; Simioni, Carmen; Ramlov, Fernanda; Oliveira, Eva Regina; Pereira, Débora T; Maraschin, Marcelo; Chow, Fungyi; Horta, Paulo Antunes; Lalau, Cristina Moreira; da Costa, Cristina H; Matias, William Gerson; Bouzon, Zenilda L; Schmidt, Éder C
2016-01-01
The effects of the heavy metals copper (Cu) and lead (Pb) on Sargassum cymosum were evaluated by determining uptake capacity, growth rates, photosynthetic efficiency, contents of photosynthetic pigments and phenolic compounds, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity, and morphological and cellular changes. S. cymosum was cultivated with Cu and Pb separately and combined at concentrations of 10, 25, and 50 μM for 7 days in laboratory-controlled conditions. Seaweeds under Cu treatment showed the highest biosorption capacity, and growth rates were significantly reduced compared to the control. The photosynthesis/irradiance curves showed alterations in kinetic patterns in the metal-treated samples. Specifically, Cu treatment alone inhibited electron transport rate (ETR) response, while Pb alone induced it. However, samples treated with both Cu and Pb (Cu + Pb) showed inhibition in ETR. The total amount of pigments increased relative to control. Light microscopy showed an increase in phenolic compounds, with physodes migrating towards cortical cells. Scanning electronic microscopy revealed alterations in the typical rough surface of thallus, when compared with control, especially for Pb treatments. Based on these results, it could be concluded that Cu and Pb are stress factors for S. cymosum, promoting alterations in seaweed metabolism and stimulating protective mechanisms against oxidative stress. However, the high bioaccumulation capacity of both heavy metals indicates a possible application for S. cymosum as a biosorbent agent for contaminated wastewater when metals are in low concentrations.
Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou
2016-01-01
Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers. PMID:27531648
NASA Astrophysics Data System (ADS)
Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou
2016-08-01
Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.
Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou
2016-08-17
Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.
Nasrolahi Shirazi, Amir; Tiwari, Rakesh Kumar; Oh, Donghoon; Banerjee, Antara; Yadav, Arpita; Parang, Keykavous
2013-05-06
Phosphopeptides are valuable reagent probes for studying protein-protein and protein-ligand interactions. The cellular delivery of phosphopeptides is challenging because of the presence of the negatively charged phosphate group. The cellular uptake of a number of fluorescent-labeled phosphopeptides, including F'-GpYLPQTV, F'-NEpYTARQ, F'-AEEEIYGEFEAKKKK, F'-PEpYLGLD, F'-pYVNVQN-NH2, and F'-GpYEEI (F' = fluorescein), was evaluated in the presence or absence of a [WR]4, a cyclic peptide containing alternative arginine (R) and tryptophan (W) residues, in human leukemia cells (CCRF-CEM) after 2 h incubation using flow cytometry. [WR]4 improved significantly the cellular uptake of all phosphopeptides. PEpYLGLD is a sequence that mimics the pTyr1246 of ErbB2 that is responsible for binding to the Chk SH2 domain. The cellular uptake of F'-PEpYLGLD was enhanced dramatically by 27-fold in the presence of [WR]4 and was found to be time-dependent. Confocal microscopy of a mixture of F'-PEpYLGLD and [WR]4 in live cells exhibited intracellular localization and significantly higher cellular uptake compared to that of F'-PEpYLGLD alone. Transmission electron microscopy (TEM) and isothermal calorimetry (ITC) were used to study the interaction of PEpYLGLD and [WR]4. TEM results showed that the mixture of PEpYLGLD and [WR]4 formed noncircular nanosized structures with width and height of 125 and 60 nm, respectively. ITC binding studies confirmed the interaction between [WR]4 and PEpYLGLD. The binding isotherm curves, derived from sequential binding models, showed an exothermic interaction driven by entropy. These studies suggest that amphiphilic peptide [WR]4 can be used as a cellular delivery tool of cell-impermeable negatively charged phosphopeptides.
Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns.
Singh, Deependra; Singh, Satpal; Sahu, Jageshwari; Srivastava, Shikha; Singh, Manju Rawat
2016-01-01
Over the past few years, nanoparticles and their role in drug delivery have been the centre of attraction as new drug delivery systems. Various forms of nanosystems have been designed, such as nanoclays, scaffolds and nanotubes, having numerous applications in areas such as drug loading, target cell uptake, bioassay and imaging. The present study discusses various types of nanoparticles, with special emphasis on ceramic nanocarriers. Ceramic materials have high mechanical strength, good body response and low or non-existing biodegradability. In this article, the various aspects concerning ceramic nanoparticles, such as their advantages over other systems, their cellular uptake and toxicity concerns are discussed in detail.
Zheng, Sha; Chang, Wenqiang; Li, Chen; Lou, Hongxiang
2016-05-01
Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lasorsa, Alessia; Natile, Giovanni; Rosato, Antonio; Tadini-Buoninsegni, Francesco; Arnesano, Fabio
2018-02-12
Resistance, either at the onset of the treatment or developed after an initial positive response, is a major limitation of antitumor therapy. In the case of platinum- based drugs, copper transporters have been found to interfere with drug trafficking by facilitating the import or favoring the platinum export and inactivation. The use of powerful spectroscopic, spectrometric and computational methods has allowed a deep structural insight into the mode of interaction of platinum drugs with the metal-binding domains of the transporter proteins. This review article focuses on the mode in which platinum drugs can compete with copper ion for binding to transport proteins and consequent structural and biological effects. Three types of transporters are discussed in detail: copper transporter 1 (Ctr1), the major responsible for Cu+ uptake; antioxidant-1 copper chaperone (Atox1), responsible for copper transfer within the cytoplasm; and copper ATPases (ATP7A/B), responsible for copper export into specific subcellular compartments and outside the cell. The body of knowledge summarized in this review can help in shaping current chemotherapy to optimize the efficacy of platinum drugs (particularly in relation to resistance) and to mitigate adverse effects on copper metabolism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Canine Models for Copper Homeostasis Disorders.
Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille
2016-02-04
Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.
Canine Models for Copper Homeostasis Disorders
Wu, Xiaoyan; Leegwater, Peter A. J.; Fieten, Hille
2016-01-01
Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted. PMID:26861285
Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John
2015-01-01
Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. PMID:26527619
Lye, Jessica C.; Hwang, Joab E. C.; Paterson, David; de Jonge, Martin D.; Howard, Daryl L.; Burke, Richard
2011-01-01
Tissue-specific manipulation of known copper transport genes in Drosophila tissues results in phenotypes that are presumably due to an alteration in copper levels in the targeted cells. However direct confirmation of this has to date been technically challenging. Measures of cellular copper content such as expression levels of copper-responsive genes or cuproenzyme activity levels, while useful, are indirect. First-generation copper-sensitive fluorophores show promise but currently lack the sensitivity required to detect subtle changes in copper levels. Moreover such techniques do not provide information regarding other relevant biometals such as zinc or iron. Traditional techniques for measuring elemental composition such as inductively coupled plasma mass spectroscopy are not sensitive enough for use with the small tissue amounts available in Drosophila research. Here we present synchrotron x-ray fluorescence microscopy analysis of two different Drosophila tissues, the larval wing imaginal disc, and sectioned adult fly heads and show that this technique can be used to detect changes in tissue copper levels caused by targeted manipulation of known copper homeostasis genes. PMID:22053217
Popendorf, Kimberly J; Duhamel, Solange
2015-10-01
Microbial uptake of dissolved phosphorus (P) is an important lever in controlling both microbial production and the fate and cycling of marine P. We investigated the relative role of heterotrophic bacteria and phytoplankton in P cycling by measuring the P uptake rates of individual microbial groups (heterotrophic bacteria and the phytoplankton groups Synechococcus, Prochlorococcus and picoeukaryotic phytoplankton) in the P-depleted Gulf of Mexico. Phosphorus uptake rates were measured using incubations with radiolabelled phosphate and adenosine triphosphate coupled with cell sorting flow cytometry. We found that heterotrophic bacteria were the dominant consumers of P on both a biomass basis and a population basis. Biovolume normalized heterotrophic bacteria P uptake rate per cell (amol P μm(-3) h(-1)) was roughly an order of magnitude greater than phytoplankton uptake rates, and heterotrophic bacteria were responsible for generally greater than 50% of total picoplankton P uptake. We hypothesized that this variation in uptake rates reflects variation in cellular P allocation strategies, and found that, indeed, the fraction of cellular P uptake utilized for phospholipid production was significantly higher in heterotrophic bacteria compared with cyanobacterial phytoplankton. These findings indicate that heterotrophic bacteria have a uniquely P-oriented physiology and play a dominant role in cycling dissolved P. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Crowe, Andrew; Jackaman, Connie; Beddoes, Katie M.; Ricciardo, Belinda; Nelson, Delia J.
2013-01-01
Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression) and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes. PMID:24013775
NASA Astrophysics Data System (ADS)
Wei, Lin; Yang, Qiaoyu; Xiao, Lehui
2014-08-01
Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery.Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery. Electronic supplementary information (ESI) available: Experimental section and additional supporting results as noted in the text. See DOI: 10.1039/c4nr02732a
Activation of dioxygen by copper metalloproteins and insights from model complexes
Quist, David A.; Diaz, Daniel E.; Liu, Jeffrey J.; Karlin, Kenneth D.
2017-01-01
Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing met-alloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O2-activation in copper proteins are addressed. PMID:27921179
Bondanese, Victor P; Lamboux, Aline; Simon, Melanie; Lafont, Jérôme E; Albalat, Emmanuelle; Pichat, Sylvain; Vanacker, Jean-Marc; Telouk, Philippe; Balter, Vincent; Oger, Philippe; Albarède, Francis
2016-11-09
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, with increasing incidence worldwide. The unrestrained proliferation of tumour cells leads to tumour hypoxia which in turn promotes cancer aggressiveness. While changes in the concentration of copper (Cu) have long been observed upon cancerization, we have recently reported that the isotopic composition of copper is also altered in several types of cancer. In particular, we showed that in hepatocellular carcinoma, tumour tissue contains heavier copper compared to the surrounding parenchyma. However, the reasons behind such isotopic signature remained elusive. Here we show that hypoxia causes heavy copper enrichment in several human cell lines. We also demonstrate that this effect of hypoxia is pH, HIF-1 and -2 independent. Our data identify a previously unrecognized cellular process associated with hypoxia, and suggests that in vivo tumour hypoxia determines copper isotope fractionation in HCC and other solid cancers.
Activation of dioxygen by copper metalloproteins and insights from model complexes.
Quist, David A; Diaz, Daniel E; Liu, Jeffrey J; Karlin, Kenneth D
2017-04-01
Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing metalloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O 2 -activation in copper proteins are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilton, B.R.; Zubriski, J.C.
1985-01-01
Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yieldsmore » from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.« less
Gonzaga, Maria Isidoria Silva; Mackowiak, Cheryl; Quintão de Almeida, André; Wisniewski, Alberto; Figueiredo de Souza, Danyelle; da Silva Lima, Idamar; Nascimento de Jesus, Amanda
2018-06-01
Copper contamination and toxicity in soils is a worldwide problem, especially in areas where copper-based fungicides are applied. Indian mustard (Brassica juncea L.) plants are used in phytoremediation and are also edible crops commonly cultivated in organic agricultural areas. Application of biochar to Cu contaminated soils may reduce Cu availability and uptake, thereby allowing for greater Indian mustard production. A (3 × 2) + 1) experiment in a randomized complete block design was used to evaluate the effect of three different biochars (coconut shell, orange bagasse and sewage sludge) and two application rates (30 and 60 t ha -1 ) on Cu uptake by Indian mustard during three successive growth cycles and Cu immobilization in soil, under greenhouse conditions. Coconut husk biochar did not influence available soil Cu; however, its presence increased shoot Cu uptake by 117% and 38% in the two last growth cycles. Orange bagasse biochar, at the 60 t ha -1 application rate, reduced Cu availability, but it was not effective in reducing Cu uptake. Sewage sludge biochar did not affect Cu availability and caused an approximated 100% increase in shoot Cu uptake at the highest application rate. Therefore, the orange bagasse biochar is the most effective whereas the sewage sludge biochar is the least in Cu immobilization. None of the biochars was shown to be suitable as soil amendment to reduce the uptake of Cu by Indian mustard. However, coconut shell and sewage sludge biochar can be effectively applied to soil as an auxiliary tool to remediate Cu-contaminated soils. Copyright © 2018. Published by Elsevier Ltd.
Ullah, Mohd Fahad; Shamim, Uzma; Hanif, Sarmad; Azmi, Asfar S; Hadi, Sheikh M
2009-11-01
Epidemiological studies have indicated that populations with high isoflavone intake through soy consumption have lower rates of breast, prostate, and colon cancer. The isoflavone polyphenol genistein in soybean is considered to be a potent chemopreventive agent against cancer. In order to explore the chemical basis of chemopreventive activity of genistein, in this paper we have examined the structure-activity relationship between genistein and its structural analogue biochanin A. We show that both genistein and its methylated derivative biochanin A are able to mobilize nuclear copper in human lymphocyte, leading to degradation of cellular DNA. However, the relative rate of DNA breakage was greater in the case of genistein. Further, the cellular DNA degradation was inhibited by copper chelator (neocuproine/bathocuproine) but not by compounds that specifically bind iron and zinc (desferrioxamine mesylate and histidine, respectively). We also compared the antioxidant activity of the two isoflavones against tert-butylhydroperoxide-induced oxidative breakage in lymphocytes. Again genistein was found to be more effective than biochanin A in providing protection against oxidative stress induced by tert-butylhydroperoxide. It would therefore appear that the structural features of isoflavones that are important for antioxidant properties are also the ones that contribute to their pro-oxidant action through a mechanism that involves redox cycling of chromatin-bound nuclear copper.
Alesso, C A; Discola, K F; Monteiro, G
2015-09-01
In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH. Copyright © 2015 Elsevier Inc. All rights reserved.
Mehbuba Hossain, Sultana; Chowdhury, Ezharul Hoque
2018-01-01
Biodegradable inorganic apatite-based particle complex is popular for its pH-sensitivity at the endosomal acidic environment to facilitate drug release following cellular uptake. Despite being a powerful anticancer drug, doxorubicin shows severe off-target effects and therefore would need a carrier for the highest effectiveness. We aimed to chemically modify carbonate apatite (CA) with Krebs cycle intermediates, such as citrate and succinate in order to control the growth of the resultant particles to more efficiently carry and transport the anticancer drug into the cancer cells. Citrate- or succinate-modified CA particles were synthesized with different concentrations of sodium citrate or sodium succinate, respectively, in the absence or presence of doxorubicin. The drug loading efficiency of the particles and their cellular uptake were observed by quantifying fluorescence intensity. The average diameter and surface charge of the particles were determined using Zetasizer. Cell viability was assessed by MTT assay. Citrate-modified carbonate apatite (CMCA) exhibited the highest (31.38%) binding affinity for doxorubicin and promoted rapid cellular uptake of the drug, leading to the half-maximal inhibitory concentration 1000 times less than that of the free drug in MCF-7 cells. Hence, CMCA nanoparticles with greater surface area enhance cytotoxicity in different breast cancer cells by enabling higher loading and more efficient cellular uptake of the drug. PMID:29534497
Eriksson, Mats; Moseley, Jeffrey L.; Tottey, Stephen; del Campo, Jose A.; Quinn, Jeanette; Kim, Youngbae; Merchant, Sabeeha
2004-01-01
A genetic screen for Chlamydomonas reinhardtii mutants with copper-dependent growth or nonphotosynthetic phenotypes revealed three loci, COPPER RESPONSE REGULATOR 1 (CRR1), COPPER RESPONSE DEFECT 1 (CRD1), and COPPER RESPONSE DEFECT 2 (CRD2), distinguished as regulatory or target genes on the basis of phenotype. CRR1 was shown previously to be required for transcriptional activation of target genes like CYC6, CPX1, and CRD1, encoding, respectively, cytochrome c6 (which is a heme-containing substitute for copper-containing plastocyanin), coproporphyrinogen III oxidase, and Mg-protoporphyrin IX monomethylester cyclase. We show here that CRR1 is required also for normal accumulation of copper proteins like plastocyanin and ferroxidase in copper-replete medium and for apoplastocyanin degradation in copper-deficient medium, indicating that a single pathway controls nutritional copper homeostasis at multiple levels. CRR1 is linked to the SUPPRESSOR OF PCY1-AC208 13 (SOP13) locus, which corresponds to a gain-of-function mutation resulting in copper-independent expression of CYC6. CRR1 is required also for hypoxic growth, pointing to a physiologically meaningful regulatory connection between copper deficiency and hypoxia. The growth phenotype of crr1 strains results primarily from secondary iron deficiency owing to reduced ferroxidase abundance, suggesting a role for CRR1 in copper distribution to a multicopper ferroxidase involved in iron assimilation. Mutations at the CRD2 locus also result in copper-conditional iron deficiency, which is consistent with a function for CRD2 in a pathway for copper delivery to the ferroxidase. Taken together, the observations argue for a specialized copper-deficiency adaptation for iron uptake in Chlamydomonas. PMID:15514054
Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming
2015-12-01
Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is subsequently solved by PEGylating the hybrid nanoparticles. With increased research and clinical applications of lipid-polymer hybrid nanoparticles in drug and vaccine delivery, this work will significantly impact the design of the hybrid nanoparticles for minimized molecule release during circulation and increased bioavailability of the target molecules. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mashock, Michael J.
Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode mutant strains containing gene knockouts in the divalent-metal transporters smf-1 and smf-2 showed increased tolerance to copper exposure. These results lend credence to the hypothesis that some toxicological effects to eukaryotic organisms from copper oxide nanoparticle exposure may be due to properties specific to the nanoparticles and not solely from the released copper ions.
Goldberg, Deborah S; Ghandehari, Hamidreza; Swaan, Peter W
2010-08-01
This study investigates the mechanisms of G3.5 poly (amido amine) dendrimer cellular uptake, intracellular trafficking, transepithelial transport and tight junction modulation in Caco-2 cells in the context of oral drug delivery. Chemical inhibitors blocking clathrin-, caveolin- and dynamin-dependent endocytosis pathways were used to investigate the mechanisms of dendrimer cellular uptake and transport across Caco-2 cells using flow cytometry and confocal microscopy. Dendrimer cellular uptake was found to be dynamin-dependent and was reduced by both clathrin and caveolin endocytosis inhibitors, while transepithelial transport was only dependent on dynamin- and clathrin-mediated endocytosis. Dendrimers were quickly trafficked to the lysosomes after 15 min of incubation and showed increased endosomal accumulation at later time points, suggesting saturation of this pathway. Dendrimers were unable to open tight junctions in cell monolayers treated with dynasore, a selective inhibitor of dynamin, confirming that dendrimer internalization promotes tight junction modulation. G3.5 PAMAM dendrimers take advantage of several receptor-mediated endocytosis pathways for cellular entry in Caco-2 cells. Dendrimer internalization by dynamin-dependent mechanisms promotes tight junction opening, suggesting that dendrimers act on intracellular cytoskeletal proteins to modulate tight junctions, thus catalyzing their own transport via the paracellular route.
Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M
2017-07-01
Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.
Effects of copper sulfate on seedlings of Prosopis pubescens (screwbean mesquite).
Zappala, Marian N; Ellzey, Joanne T; Bader, Julia; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge
2014-01-01
Phytoextraction is an established method of removal of heavy metals from contaminated soils worldwide. Phytoextraction is most efficient if local plants are used in the contaminated site. We propose that Prosopis pubescens (Screw bean mesquite) would be a successful phytoextractor of copper in our local soils. In order to determine the feasibility of using Screw bean mesquite, we utilized inductively-coupled plasma-optical emission spectroscopy (ICP-OES) and elemental analysis to observe the uptake of copper and the effects on macro and micro nutrients within laboratory-grown seedlings. We have previously shown that P. pubescens is a hyperaccumulator of copper in soil-grown seedlings. Light and transmission electron microscopy demonstrated death of root cells and ultrastructural changes due to the presence of copper from 50 mg/L - 600 mg/L. Ultrastructural changes included plasmolysis, starch accumulation, increased vacuolation and swollen chloroplasts with disarranged thylakoid membranes in cotyledons. Inductively coupled plasma-optical emission spectroscopy analyses of macro- and micro-nutrients revealed that the presence of copper sulfate in the growth medium of Petri-dish grown Prosopis pubescens seedlings resulted in dramatic decreases of magnesium, potassium and phosphorus. At 500-600 mg/L of copper sulfate, a substantial increase of sulfur was present in roots.
The influence of duckweed species diversity on ecophysiological tolerance to copper exposure.
Zhao, Zhao; Shi, Huijuan; Duan, Dongzhu; Li, Hongmei; Lei, Tingwen; Wang, Maolin; Zhao, Hai; Zhao, Yun
2015-07-01
In excess, copper is toxic to plants. In the plants, Landoltia punctata and Lemna minor grown in mixed and monoculture, the effects of exposure to varying concentrations of copper (0.01, 0.1, 0.5 and 1mgL(-1) Cu) for seven days were assessed by measuring changes in the chlorophyll, protein and malondialdehyde (MDA) content, catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity. According to results, Cu levels in plants increased with increasing Cu concentration. The level of photosynthetic pigments and crude proteins decreased only upon exposure to high Cu concentrations. However, the starch and malondialdehyde (MDA) content increased. These results suggested a stress alleviation that was possibly the result of antioxidants such as CAT and SOD, the activities of which increased with increasing Cu levels. APX activity increased in L. punctata, but decreased in L. minor, under monoculture or mixed culture conditions. In addition, the duckweed in mixed culture exhibited increased antioxidant enzyme activities which provide increased resistance to copper in moderate copper concentrations. As the copper concentration increased, the duckweed in the mixed culture limited the uptake of copper to avoid toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Trace metal uptake by garden herbs and vegetables.
Shariatpanahi, M; Anderson, A C; Mather, F
1986-12-01
In many regions of Iran, crops are irrigated with municipal and industrial wastewater that contain a variety of metals. The purpose of this study was to simulate the level of metals that may be presented to plants over a growing season in a controlled laboratory setting. Cadmium, lead, arsenic, chromium, mercury, nickel, copper, zinc, and selenium were applied to plants at the high rate of 200 g metal/ha/wk. The following plants were examined for metal accumulation and effects on yield: garden cress (Lipidium sativum), leek (Allium porrum L.), basil (Ocimum basilicum L.), mint (Mentha arvensis L.), onion (Allium capa L.), radish (Raphanus sativus L.), and tarragon (Artemisia draculus L.). All plants showed significant uptake of all metals when compared to control (p=0.05), and growth was significantly reduced (p=0.05). Cadmium and chromium levels of 85±7.4 and 47.6±8.9 μg/g); selenium levels were highest in tarragon (16.5±5.8 μg/g). Zinc levels were similar (p=0.05) in all species tested, as were mercury and lead. The remaining metals (nickel and copper) showed significant differences in uptake, depending on plant species.
Fungal accumulation of metals from building materials during brown rot wood decay.
Hastrup, Anne Christine Steenkjær; Jensen, Bo; Jellison, Jody
2014-08-01
This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood decay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksu, Z.; Acikel, U.; Kutsal, T.
1999-02-01
Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studiesmore » the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.« less
Chu, Zhaoxia; Wang, Xingming; Wang, Yunmin; Liu, Guijian; Dong, Zhongbing; Lu, Xianwen; Chen, Guangzhou; Zha, Fugeng
2017-12-21
Copper mine tailings pose many threats to the surrounding environment and human health, and thus, their remediation is fundamental. Coal spoil is the waste by-product of coal mining and characterized by low levels of metals, high content of organic matter, and many essential microelements. This study was designed to evaluate the role of coal spoil on heavy uptake and physiological responses of Lolium perenne L. grown in copper mine tailings amended with coal spoil at rates of 0, 0.5, 1, 5, 10, and 20%. The results showed that applying coal spoil to copper mine tailings decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, and Zn contents in tailings and reduced those metal contents in both roots and shoots of the plant. However, application of coal spoil increased the DTPA-extractable Cr concentration in tailings and also increased Cr uptake and accumulation by Lolium perenne L. The statistical analysis of physiological parameters indicated that chlorophyll and carotenoid increased at the lower amendments of coal spoil followed by a decrease compared to their respective controls. Protein content was enhanced at all the coal spoil amendments. When treated with coal spoil, the activities of superoxide dismutases (SOD), peroxidase (POD), and catalase (CAT) responded differently. CAT activity was inhibited, but POD activity was increased with increasing amendment ratio of coal spoil. SOD activity increased up to 1% coal spoil followed by a decrease. Overall, the addition of coal spoil decreased the oxidative stress in Lolium perenne L., reflected by the reduction in malondialdehyde (MDA) contents in the plant. It is concluded that coal spoil has the potential to stabilize most metals studied in copper mine tailings and ameliorate the harmful effects in Lolium perenne L. through changing the physiological attributes of the plant grown in copper mine tailings.
Assessing the Role of Dissolved Organic Phosphate on Rates of Microbial Phosphorus Cycling
NASA Astrophysics Data System (ADS)
Gonzalez, A. C.; Popendorf, K. J.; Duhamel, S.
2016-02-01
Phosphorus (P) is an element crucial to life, and it is limiting in many parts of the ocean. In oligotrophic environments, the dissolved P pool is cycled rapidly through the activity of microbes, with turnover times of several hours or less. The overarching aim of this study was to assess the flux of P from picoplankton to the dissolved pool and the role this plays in fueling rapid P cycling. To determine if specific microbial groups are responsible for significant return of P to the dissolved pool during cell lifetime, we compared the rate of cellular P turnover (cell-Pτ, the rate of cellular P uptake divided by cellular P content) to the rate of cellular biomass turnover (cellτ). High rates of P return to the dissolved pool during cell lifetime (high cell-Pτ/cellτ) indicate significant P regeneration, fueling more rapid turnover of the dissolved P pool. We hypothesized that cell-Pτ/cellτ varies widely across picoplankton groups. One factor influencing this variation may be each microbial group's relative uptake of dissolved organic phosphorus (DOP) versus dissolved inorganic phosphorus (DIP). As extracellular hydrolysis is necessary for P incorporation from DOP, this process may return more P to the dissolved pool than DIP incorporation. This leads to the question: does a picoplankton's relative uptake of DOP (versus DIP) affect the rate at which it returns phosphorus to the dissolved pool? To address this question, we compared the rate of cellular P turnover based on uptake of DOP and uptake DIP using cultured representatives of three environmentally significant picoplankton groups: Prochlorococcus, Synechococcus, and heterotrophic bacteria. These different picoplankton groups are known to take up different ratios of DOP to DIP, and may in turn make significantly different contributions to the regeneration and cycling phosphorus. These findings have implications towards our understanding of the timeframes of biogeochemical cycling of phosphorus in the ocean.
Gray, Lawrence W.; Peng, Fangyu; Molloy, Shannon A.; Pendyala, Venkata S.; Muchenditsi, Abigael; Muzik, Otto; Lee, Jaekwon; Kaplan, Jack H.; Lutsenko, Svetlana
2012-01-01
Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b−/− mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b−/− livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1 −/− knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD. PMID:22802922
Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus.
Li, Xiaomin; Zhou, Suyang; Fan, Wenhong
2016-06-09
Nano-Al₂O₃ has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al₂O₃ is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al₂O₃ and heavy metals as well as the effect of nano-Al₂O₃ on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al₂O₃ towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al₂O₃ reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al₂O₃ decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al₂O₃. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al₂O₃. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water.
Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept.
Bishop, W M; Rodgers, J H
2012-04-01
The formulation of a specific algaecide can greatly influence the bioavailability, uptake, and consequent control of the targeted alga. In this research, three copper-based algaecide formulations were evaluated in terms of copper sorption to a specific problematic alga and amount of copper required to achieve control. The objectives of this study were (1) to compare the masses of copper required to achieve control of Lyngbya wollei using the algaecide formulations Algimycin-PWF, Clearigate, and copper sulfate pentahydrate in laboratory toxicity experiments; (2) to relate the responses of L. wollei to the masses of copper adsorbed and absorbed (i.e., dose) as well as the concentrations of copper in the exposure water; and (3) to discern the relation between the mass of copper required to achieve control of a certain mass of L. wollei among different algaecide formulations. The critical burden of copper (i.e., threshold algaecide concentration that must be absorbed or adsorbed to achieve control) for L. wollei averaged 3.3 and 1.9 mg Cu/g algae for Algimycin-PWF and Clearigate, respectively, in experiments with a series of aqueous copper concentrations, water volumes, and masses of algae. With reasonable exposures in these experiments, control was not achieved with single applications of copper sulfate despite copper sorption >13 mg Cu/g algae in one experiment. Factors governing the critical burden of copper required for control of problematic cyanobacteria include algaecide formulation and concentration, volume of water, and mass of algae. By measuring the critical burden of copper from an algaecide formulation necessary to achieve control of the targeted algae, selection of an effective product and treatment rate can be calculated at a given field site.
Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Zhang, Wei-Peng; Bajic, Vladimir; Qian, Pei-Yuan
2014-11-04
Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper treatment on the community structure and functional gene composition, revealing that copper treatment had a selective effect on the functions of the bacterial community in the sponge. These findings suggest that copper pollution has an ecological impact on the sponge symbiont. The analysis showed that the untreated sponges hosted symbiotic autotrophic bacteria as dominant species, and the high-concentration copper treatment enriched for a heterotrophic bacterial community with enrichment for genes important for bacterial motility, supplementary cellular components, signaling and regulation, and virulence. Microscopic observation showed obvious bacterial aggregation and a reduction of sponge cell numbers in treated sponges, which suggested the formation of aggregates to reduce the copper concentration. The enrichment for functions of directional bacterial movement and supplementary cellular components and the formation of bacterial aggregates and phage enrichment are novel findings in sponge studies. Copyright © 2014 Tian et al.
On Guanidinium and Cellular Uptake
2015-01-01
Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative. The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established. PMID:25019333
2016-03-28
PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS ANTHONY B. POLITO III, Maj, USAF, BSC, PhD, MT(ASCP)SBB March 2016 Final Report for March...HIGH CELLULAR UPTAKE IN VITRO WHILE PRESERVING OPTICAL PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS. 5a. CONTRACT NUMBER 5b...These findings identify MTAB-TA GNRs as prime candidates for use in nano-based bio -imaging and photo-thermal applications. 15. SUBJECT TERMS
Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells
NASA Astrophysics Data System (ADS)
Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming
2017-02-01
Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.
The minute virus of mice exploits different endocytic pathways for cellular uptake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca
The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy andmore » flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.« less
Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans.
Afadzi, Mercy; Strand, Sabina P; Nilssen, Esben A; Måsøy, Svein-Erik; Johansen, Tonni F; Hansen, Rune; Angelsen, Bjørn A; de L Davies, Catharina
2013-01-01
The mechanism involved in the ultrasoundenhanced intracellular delivery of fluorescein-isothiocyanate (FITC)-dextran (molecular weight 4 to 2000 kDa) and liposomes containing doxorubicin (Dox) was studied using HeLa cells and an ultrasound transducer at 300 kHz, varying the acoustic power. The cellular uptake and cell viability were measured using flow cytometry and confocal microscopy. The role of endocytosis was investigated by inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis. Microbubbles were found to be required during ultrasound treatment to obtain enhanced cellular uptake. The percentage of cells internalizing Dox and dextran increased with increasing mechanical index. Confocal images and flow cytometric analysis indicated that the liposomes were disrupted extracellularly and that released Dox was taken up by the cells. The percentage of cells internalizing dextran was independent of the molecular weight of dextrans, but the amount of the small 4-kDa dextran molecules internalized per cell was higher than for the other dextrans. The inhibition of endocytosis during ultrasound exposure resulted in a significant decrease in cellular uptake of dextrans. Therefore, the improved uptake of Dox and dextrans may be a result of both sonoporation and endocytosis.
Cellular sensing and transport of metal ions: implications in micronutrient homeostasis
Bird, Amanda J.
2015-01-01
Micronutrients include the transition metal ions zinc, copper, and iron. These metals are essential for life as they serve as cofactors for many different proteins. On the other hand, they can also be toxic to cell growth when in excess. As a consequence, all organisms require mechanisms to tightly regulate the levels of these metal ions. In eukaryotes, one of the primary ways in which metal levels are regulated is through changes in expression of genes required for metal uptake, compartmentalization, storage, and export. By tightly regulating the expression of these genes each organism is able to balance metal levels despite fluctuations in the diet or extracellular environment. The goal of this review is to provide an overview of how gene expression can be controlled at a transcriptional, post-transcriptional, and post-translational level in response to metal ions in lower and higher eukaryotes. Specifically, I review what is know about how these metallo-regulatory factors sense fluctuations in metal ion levels, and how changes in gene expression maintain nutrient homeostasis. PMID:26342943
Rink, Jonathan S; Yang, Shuo; Cen, Osman; Taxter, Tim; McMahon, Kaylin M; Misener, Sol; Behdad, Amir; Longnecker, Richard; Gordon, Leo I; Thaxton, C Shad
2017-11-06
Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.
NASA Technical Reports Server (NTRS)
Chen, C. P.; Lakes, R. S.
1991-01-01
An experimental study by holographic interferometry is reported of the following material properties of conventional and negative Poisson's ratio copper foams: Young's moduli, Poisson's ratios, yield strengths and characteristic lengths associated with inhomogeneous deformation. The Young's modulus and yield strength of the conventional copper foam were comparable to those predicted by microstructural modeling on the basis of cellular rib bending. The reentrant copper foam exhibited a negative Poisson's ratio, as indicated by the elliptical contour fringes on the specimen surface in the bending tests. Inhomogeneous, non-affine deformation was observed holographically in both foam materials.
Stapel, Britta; Kotsiari, Alexandra; Scherr, Michaela; Hilfiker-Kleiner, Denise; Bleich, Stefan; Frieling, Helge; Kahl, Kai G
2017-05-01
The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bálint, Štefan; Rao, Satish; Sánchez, Mónica Marro; Huntošová, Veronika; Miškovský, Pavol; Petrov, Dmitri
2010-03-01
An understanding of the mechanisms of drug diffusion and uptake through cellular membranes is critical for elucidating drug action and in the development of effective drug delivery systems. We study these processes for emodin, a potential anticancer drug, in live cancer cells using surface-enhanced Raman scattering. Micrometer-sized silica beads covered by nanosized silver colloids are passively embedded into the cell and used as sensors of the drug. We demonstrate that the technique offers distinct advantages: the possibility to study the kinetics of drug diffusion through the cellular membrane toward specific cell organelles, the detection of lower drug concentrations compared to fluorescence techniques, and less damage imparted on the cell.
Wang, Chunxia; Ho, Paul C; Lim, Lee Yong
2010-11-15
The purpose of this study was to investigate the potentiation of the anticancer activity and enhanced cellular retention of paclitaxel-loaded PLGA nanoparticles after surface conjugation with wheat germ agglutinin (WGA) against colon cancer cells. Glycosylation patterns of representative colon cancer cells confirmed the higher expression levels of WGA-binding glycoproteins in the Caco-2 and HT-29 cells, than in the CCD-18Co cells. Cellular uptake and in vitro cytotoxicity of WNP (final formulation) against colon cell lines was evaluated alongside control formulations. Confocal microscopy and quantitative analysis of intracellular paclitaxel were used to monitor the endocytosis and retention of nanoparticles inside the cells. WNP showed enhanced anti-proliferative activity against Caco-2 and HT-29 cells compared to corresponding nanoparticles without WGA conjugation (PNP). The greater efficacy of WNP was associated with higher cellular uptake and sustained intracellular retention of paclitaxel, which in turn was attributed to the over-expression of N-acetyl-D-glucosamine-containing glycoprotein on the colon cell membrane. WNP also demonstrated increased intracellular retention in the Caco-2 (30% of uptake) and HT-29 (40% of uptake) cells, following post-uptake incubation with fresh medium, compared to the unconjugated PNP nanoparticles (18% in Caco-2) and (27% in HT-29), respectively. Cellular trafficking study of WNP showed endocytosed WNP could successful escape from the endo-lysosome compartment and release into the cytosol with increasing incubation time. It may be concluded that WNP has the potential to be applied as a targeted delivery platform for paclitaxel in the treatment of colon cancer. Copyright © 2010 Elsevier B.V. All rights reserved.
Misra, Sougat; Kwong, Raymond W M; Niyogi, Som
2012-05-01
Transport of essential solutes across biological membranes is one of the fundamental characteristics of living cells. Although selenium is an essential micronutrient, little is known about the cellular mechanisms of chemical species-specific selenium transport in fish. We report here the kinetic and pharmacological transport characteristics of selenite and its thiol (glutathione and l-cysteine) derivatives in primary cultures of hepatocytes and isolated enterocytes of rainbow trout. Findings from the current study suggest an apparent low-affinity linear transport system for selenite in both cell types. However, we recorded high-affinity Hill kinetics (K(d)=3.61±0.28 μmol l(-1)) in enterocytes exposed to selenite in the presence of glutathione. The uptake of selenite in the presence of thiols was severalfold higher than uptake of selenite alone (at equimolar concentration) in both hepatocytes and enterocytes. Cellular accumulation of selenium was found to be energy independent. Interestingly, we observed a decrease in selenite transport with increasing pH, whereas selenite uptake increased with increasing pH in the presence glutathione in both cell types. The cellular uptake of selenite demonstrated a pronounced competitive interaction with a structurally similar compound, sulfite. The uptake of selenite as well as its thiol derivatives was found to be sensitive to the anion transport blocker DIDS, irrespective of the cell type. Inorganic mercury (Hg(2+)) elicited an inhibition of selenite transport in both cell types, but augmented the transport of reduced forms of selenite in hepatocytes. Based on the substrate choice and comparable pharmacological properties, we advocate that multiple anion transport systems are probably involved in the cellular transport of selenite in fish.
Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei
2018-01-10
Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.
Hassan, Hatem A.F.M.; Smyth, Lesley; Rubio, Noelia; Ratnasothy, Kulachelvy; Wang, Julie T.-W.; Bansal, Sukhvinder S.; Summers, Huw D.; Diebold, Sandra S.; Lombardi, Giovanna; Al-Jamal, Khuloud T.
2016-01-01
Carbon nanotubes (CNTs) have shown marked capabilities in enhancing antigen delivery to antigen presenting cells. However, proper understanding of how altering the physical properties of CNTs may influence antigen uptake by antigen presenting cells, such as dendritic cells (DCs), has not been established yet. We hypothesized that altering the physical properties of multi-walled CNTs (MWNTs)-antigen conjugates, e.g. length and surface charge, can affect the internalization of MWNT-antigen by DCs, hence the induced immune response potency. For this purpose, pristine MWNTs (p-MWNTs) were exposed to various chemical reactions to modify their physical properties then conjugated to ovalbumin (OVA), a model antigen. The yielded MWNTs-OVA conjugates were long MWNT-OVA (~ 386 nm), bearing net positive charge (5.8 mV), or short MWNTs-OVA (~ 122 nm) of increasing negative charges (− 23.4, − 35.8 or − 39 mV). Compared to the short MWNTs-OVA bearing high negative charges, short MWNT-OVA with the lowest negative charge demonstrated better cellular uptake and OVA-specific immune response both in vitro and in vivo. However, long positively-charged MWNT-OVA showed limited cellular uptake and OVA specific immune response in contrast to short MWNT-OVA displaying the least negative charge. We suggest that reduction in charge negativity of MWNT-antigen conjugate enhances cellular uptake and thus the elicited immune response intensity. Nevertheless, length of MWNT-antigen conjugate might also affect the cellular uptake and immune response potency; highlighting the importance of physical properties as a consideration in designing a MWNT-based vaccine delivery system. PMID:26802552
Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes
2016-12-01
Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.
Introductory Laboratory Exercises in Radiobiology
ERIC Educational Resources Information Center
Williams, J. R. Parry; Servant, D. M.
1970-01-01
Describes experiments suitable for introducing use of radioisotopes in biology. Includes demonstrations of tracing food chains, uptake of ions by plants, concentration of elements by insects, tracing photosynthetic reactions, activation analysis of copper, and somatic and genetic effects. Uses autoradiographic and counting techniques. (AL)
USDA-ARS?s Scientific Manuscript database
This study constitutes an approach to understand the enhancing effect of glycosaminoglycans (GAGs) on Fe uptake to Caco-2 cells. The high-sulfated GAGs fraction was isolated and purified from cooked haddock. An in vitro digestion/Caco-2 cell culture model was used to monitor Fe uptake (cell ferritin...
Luminescent single-walled carbon nanotube-sensitized europium nanoprobes for cellular imaging
Avti, Pramod K; Sitharaman, Balaji
2012-01-01
Lanthanoid-based optical probes with excitation wavelengths in the ultra-violet (UV) range (300–325 nm) have been widely developed as imaging probes. Efficient cellular imaging requires that lanthanoid optical probes be excited at visible wavelengths, to avoid UV damage to cells. The efficacy of europium-catalyzed single-walled carbon nanotubes (Eu-SWCNTs), as visible nanoprobes for cellular imaging, is reported in this study. Confocal fluorescence microscopy images of breast cancer cells (SK-BR-3 and MCF-7) and normal cells (NIH 3T3), treated with Eu-SWCNT at 0.2 μg/mL concentration, showed bright red luminescence after excitation at 365 nm and 458 nm wavelengths. Cell viability analysis showed no cytotoxic effects after the incubation of cells with Eu-SWCNTs at this concentration. Eu-SWCNT uptake is via the endocytosis mechanism. Labeling efficiency, defined as the percentage of incubated cells that uptake Eu-SWCNT, was 95%–100% for all cell types. The average cellular uptake concentration was 6.68 ng Eu per cell. Intracellular localization was further corroborated by transmission electron microscopy and Raman microscopy. The results indicate that Eu-SWCNT shows potential as a novel cellular imaging probe, wherein SWCNT sensitizes Eu3+ ions to allow excitation at visible wavelengths, and stable time-resolved red emission. The ability to functionalize biomolecules on the exterior surface of Eu-SWCNT makes it an excellent candidate for targeted cellular imaging. PMID:22619533
Lingual dyskinesia and tics: a novel presentation of copper-metabolism disorder.
Goez, Helly R; Jacob, Francois D; Yager, Jerome Y
2011-02-01
Copper is a trace element that is required for cellular respiration, neurotransmitter biosynthesis, pigment formation, antioxidant defense, peptide amidation, and formation of connective tissue. Abnormalities of copper metabolism have been linked with neurologic disorders that affect movement, such as Wilson disease and Menkes disease; however, the diagnosis of non-Wilson, non-Menkes-type copper-metabolism disorders has been more elusive, especially in cases with atypical characteristics. We present here the case of an adolescent with a novel presentation of copper-metabolism disorder who exhibited acute severe hemilingual dyskinesia and prominent tics, with ballismus of the upper limbs, but had normal brain and spinal MRI results and did not show any signs of dysarthria or dysphagia. His serum copper and ceruloplasmin levels were low, but his urinary copper level was elevated after penicillamine challenge. We conclude that copper-metabolism disorders should be included in the differential diagnosis for movement disorders, even in cases with highly unusual presentations, because many of them are treatable. Moreover, a connection between copper-metabolism disorders and tics is presented, to our knowledge, for the first time in humans; further investigation is needed to better establish this connection and understand its underlying pathophysiology.
Non-specific cellular uptake of surface-functionalized quantum dots
NASA Astrophysics Data System (ADS)
Kelf, T. A.; Sreenivasan, V. K. A.; Sun, J.; Kim, E. J.; Goldys, E. M.; Zvyagin, A. V.
2010-07-01
We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically significant moieties, e.g. carboxyl, amino, and streptavidin, were used, in combination with surface derivatization with polyethylene glycol (PEG) for a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and when it is intended for material to be internalized as efficiently as possible.
Eierhoff, Thorsten; Hrincius, Eike R; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina
2010-09-09
Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.
Eierhoff, Thorsten; Hrincius, Eike R.; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina
2010-01-01
Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake. PMID:20844577
Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa.
Raimunda, Daniel; Padilla-Benavides, Teresita; Vogt, Stefan; Boutigny, Sylvain; Tomkinson, Kaleigh N; Finney, Lydia A; Argüello, José M
2013-02-01
Pseudomonas aeruginosa, an opportunistic pathogen, has two transmembrane Cu(+) transport ATPases, CopA1 and CopA2. Both proteins export cytoplasmic Cu(+) into the periplasm and mutation of either gene leads to attenuation of virulence. CopA1 is required for maintaining cytoplasmic copper levels, while CopA2 provides copper for cytochrome c oxidase assembly. We hypothesized that transported Cu(+) ions would be directed to their destination via specific periplasmic partners and disruption of transport should affect the periplasmic copper homeostasis. Supporting this, mutation of either ATPase gene led to large increments in periplasmic cuproprotein levels. Toward identifying the proteins participating in this cellular response the periplasmic metalloproteome was resolved in non-denaturing bidimensional gel electrophoresis, followed by X-ray fluorescence visualization and identification by mass-spectrometry. A single spot containing the electron shuttle protein azurin was responsible for the observed increments in cuproprotein contents. In agreement, lack of either Cu(+)-ATPase induced an increase in azu transcription. This is associated with an increase in the expression of anr and rpoS oxidative stress response regulators, rather than cueR, a copper sensing regulator. We propose that azurin overexpression and accumulation in the periplasm is part of the cellular response to cytoplasmic oxidative stress in P. aeruginosa.
NASA Astrophysics Data System (ADS)
Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.
2016-10-01
Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application development.
NASA Astrophysics Data System (ADS)
Coutaud, Margot; Méheut, Merlin; Glatzel, Pieter; Pokrovski, Gleb S.; Viers, Jérôme; Rols, Jean-Luc; Pokrovsky, Oleg S.
2018-01-01
Despite the importance of phototrophic biofilms in metal cycling in freshwater systems, metal isotope fractionation linked to metal adsorption and uptake by biofilm remains very poorly constrained. Here, copper isotope fractionation by a mature phototrophic biofilm during Cu surface adsorption and incorporation was studied in batch reactor (BR) and open drip flow reactor (DFR) systems at ambient conditions. X-ray Absorption Spectroscopy (both Near Edge Structure, XANES, and Extended Fine Structure, EXAFS) at Cu K-edge of the biofilm after its interaction with Cu in BR experiments allowed characterizing the molecular structure of assimilated Cu and quantifying the degree of CuII to CuI reduction linked to Cu assimilation. For both BR and DFR experiments, Cu adsorption caused enrichment in heavy isotope at the surface of the biofilm relative to the aqueous solution, with an apparent enrichment factor for the adsorption process, ε65Cuads, of +1.1 ± 0.3‰. In contrast, the isotope enrichment factor during copper incorporation into the biofilm (ε65Cuinc) was highly variable, ranging from -0.6 to +0.8‰. This variability of the ε65Cuinc value was likely controlled by Cu cellular uptake via different transport pathways resulting in contrasting fractionation. Specifically, the CuII storage induced enrichment in heavy isotope, whereas the toxicity response of the biofilm to Cu exposure resulted in reduction of CuII to CuI, thus yielding the biofilm enrichment in light isotope. EXAFS analyses suggested that a major part of the Cu assimilated by the biofilm is bound to 5.1 ± 0.3 oxygen or nitrogen atoms, with a small proportion of Cu linked to sulfur atoms (NS < 0.6) of sulfhydryl groups. XANES analyses showed that the proportion of CuIIvs CuI, compared to the initial CuII/CuI ratio, decreased by 14% after the first hour of reaction and by 6% after 96 h of reaction. The value of ε65Cuinc of the biofilm exhibited a similar trend over time of exposure. Our study demonstrates the complexity of biological processes associated with live phototrophic biofilms, which produce large and contrasting isotope fractionations following rather small Cu redox and speciation changes during uptake, storage or release of the metal, i.e., favoring heavy isotopes during complexation with carboxylate ligands and light isotopes during reduction of CuII-O/N to CuI-sulfhydryl moieties.
Onuki, Yoshinori; Obata, Yasuko; Kawano, Kumi; Sano, Hiromu; Matsumoto, Reina; Hayashi, Yoshihiro; Takayama, Kozo
2016-02-01
The purpose of this study is to obtain a comprehensive relationship between membrane microdomain structures of liposomes and their cellular uptake efficiency. Model liposomes consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol (Ch) were prepared with various lipid compositions. To detect distinct membrane microdomains in the liposomes, fluorescence-quenching assays were performed at temperatures ranging from 25 to 60 °C using 1,6-diphenyl-1,3,5-hexatriene-labeled liposomes and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl. From the data analysis using the response surface method, we gained a better understanding of the conditions for forming distinct domains (Lo, Ld, and gel phase membranes) as a function of lipid composition. We further performed self-organizing maps (SOM) clustering to simplify the complicated behavior of the domain formation to obtain its essence. As a result, DPPC/DOPC/Ch liposomes in any lipid composition were integrated into five distinct clusters in terms of similarity of the domain structure. In addition, the findings from synchrotron small-angle X-ray scattering analysis offered further insight into the domain structures. As a last phase of this study, an in vitro cellular uptake study using HeLa cells was conducted using SOM clusters' liposomes with/without PEGylation. As a consequence of this study, higher cellular uptake was observed from liposomes having Ch-rich ordered domains.
Wang, Yu-Chun; Hu, Chao-Wei; Liu, Ming-Yu; Jiang, Hong-Chao; Huo, Rong; Dong, De-Li
2013-01-01
Copper is an essential trace element for normal cellular function and contributes to critical physiological or pathological processes. The aim of the study was to investigate the effects of copper on vascular tone of rat mesenteric artery and compare the effects of copper on noradrenaline (NA) and high K(+) induced vasoconstriction. The rat mesenteric arteries were isolated and the vessel tone was measured by using multi wire myograph system in vitro. Blood pressure of carotid artery in rabbits was measured by using physiological data acquisition and analysis system in vivo. Copper dose-dependently blunted NA-induced vasoconstriction of rat mesenteric artery. Copper-induced vasorelaxation was inhibited when the vessels were pretreated with NG-nitro-L-arginine methyl ester (L-NAME). Copper did not blunt high K(+)-induced vasoconstriction. Copper preincubation inhibited NA-evoked vasoconstriction and the inhibition was not affected by the presence of L-NAME. Copper preincubation showed no effect on high K(+)-evoked vasoconstriction. Copper chelator diethyldithiocarbamate trihydrate (DTC) antagonized the vasoactivity induced by copper in rat mesenteric artery. In vivo experiments showed that copper injection (iv) significantly decreased blood pressure of rabbits and NA or DTC injection (iv) did not rescue the copper-induced hypotension and animal death. Copper blunted NA but not high K(+)-induced vasoconstriction of rat mesenteric artery. The acute effect of copper on NA-induced vasoconstriction was depended on nitric oxide (NO), but the effect of copper pretreatment on NA-induced vasoconstriction was independed on NO, suggesting that copper affected NA-induced vasoconstriction by two distinct mechanisms. © 2013 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Johnston, Helinor J.; Mouras, Rabah; Brown, David M.; Elfick, Alistair; Stone, Vicki
2015-12-01
The uptake of nanomaterials (NMs) by cells is critical in determining their potential biological impact, whether beneficial or detrimental. Thus, investigation of NM internalization by cells is a common consideration in hazard and efficacy studies. There are currently a number of approaches that are routinely used to investigate NM-cell interactions, each of which have their own advantages and limitations. Ideally, imaging modalities used to investigate NM uptake by cells should not require the NM to be labelled (e.g. with fluorophores) to facilitate its detection. We present a multimodal imaging approach employing a combination of label-free microscopies that can be used to investigate NM-cell interactions. Coherent anti-Stokes Raman scattering microscopy was used in combination with either two-photon photoluminescence or four-wave mixing (FWM) to visualize the uptake of gold or titanium dioxide NMs respectively. Live and fixed cell imaging revealed that NMs were internalized by J774 macrophage and C3A hepatocyte cell lines (15-31 μg ml-1). Sprague Dawley rats were exposed to NMs (intratracheal instillation, 62 μg) and NMs were detected in blood and lung leucocytes, lung and liver tissue, demonstrating that NMs could translocate from the exposure site. Obtained data illustrate that multimodal nonlinear optical microscopy may help overcome current challenges in the assessment of NM cellular uptake and biodistribution. It is therefore a powerful tool that can be used to investigate unlabelled NM cellular and tissue uptake in three dimensions, requires minimal sample preparation, and is applicable to live and fixed cells.
A Plasmodium falciparum copper-binding membrane protein with copper transport motifs
2012-01-01
Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769
Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis.
Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La
2013-01-01
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis
Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La
2013-01-01
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration. PMID:23986700
Design of ligand-targeted nanoparticles for enhanced cancer targeting
NASA Astrophysics Data System (ADS)
Stefanick, Jared F.
Ligand-targeted nanoparticles are increasingly used as drug delivery vehicles for cancer therapy, yet have not consistently produced successful clinical outcomes. Although these inconsistencies may arise from differences in disease models and target receptors, nanoparticle design parameters can significantly influence therapeutic efficacy. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles with high purity, reproducibility, and precisely controlled stoichiometry of functionalities, this work evaluates the roles of polyethylene glycol (PEG) coating, ethylene glycol (EG) peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size on tumor targeting in a systematic manner. These parameters were analyzed in multiple disease models by targeting human epidermal growth factor receptor 2 (HER2) in breast cancer and very late antigen-4 (VLA-4) in multiple myeloma to demonstrate the widespread applicability of this approach. By increasing the hydrophilicity of the targeting peptide sequence and simultaneously optimizing the EG peptide-linker length, the in vitro cellular uptake of targeted liposomes was significantly enhanced. Specifically, including a short oligolysine chain adjacent to the targeting peptide sequence effectively increased cellular uptake ~80-fold using an EG6 peptide-linker compared to ~10-fold using an EG45 linker. In vivo, targeted liposomes prepared in a traditional manner lacking the oligolysine chain demonstrated similar biodistribution and tumor uptake to non-targeted liposomes. However, by including the oligolysine chain, targeted liposomes using an EG45 linker significantly improved tumor uptake ~8-fold over non-targeted liposomes, while the use of an EG6 linker decreased tumor accumulation and uptake, owing to differences in cellular uptake kinetics, clearance mechanisms, and binding site barrier effects. To further improve tumor targeting and enhance the selectivity of targeted nanoparticles, a dual-receptor targeted approach was evaluated by targeting multiple cell surface receptors simultaneously. Liposomes functionalized with two distinct peptide antagonists to target VLA-4 and Leukocyte Peyer's Patch Adhesion Molecule-1 (LPAM-1) demonstrated synergistically enhanced cellular uptake by cells overexpressing both target receptors and negligible uptake by cells that do not simultaneously express both receptors, providing a strategy to improve selectivity over conventional single receptor-targeted designs. Taken together, this process of systematic optimization of well-defined nanoparticle drug delivery systems has the potential to improve cancer therapy for a broader patient population.
Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean
Sunda, William G.
2012-01-01
In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon) the productivity and species composition of marine phytoplankton communities are also regulated by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium). Of these, iron is most limiting to phytoplankton growth and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N2) fixation rates, and thus is important in controlling ocean inventories of fixed nitrogen. Because of these effects, iron is thought to play a key role in regulating biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO2 pump, which helps regulate atmospheric CO2 and CO2-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese) have lesser effects on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals control the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and recycling processes, downward flux of biogenic particles, biological release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution of marine and terrestrial biology over geologic history. PMID:22701115
Privalova, Larisa I.; Katsnelson, Boris A.; Loginova, Nadezhda V.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Beikin, Yakov B.; Sutunkova, Marina P.; Minigalieva, Ilzira A.; Shishkina, Ekaterina V.; Pichugova, Svetlana V.; Tulakina, Ludmila G.; Beljayeva, Svetlana V.
2014-01-01
We used stable water suspensions of copper oxide particles with mean diameter 20 nm and of particles containing copper oxide and element copper with mean diameter 340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal instillation of these suspensions using optical, transmission electron, and semi-contact atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage fluid. Although both nano and submicron ultrafine particles were adversely bioactive, the former were found to be more toxic for lungs as compared with the latter while evoking more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes and more active phagocytosis. Based on our results and literature data, we consider both copper solubilization and direct contact with cellular organelles (mainly, mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of their cytotoxicity. PMID:25421246
Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper
Stafford, Sian L.; Bokil, Nilesh J.; Achard, Maud E. S.; Kapetanovic, Ronan; Schembri, Mark A.; McEwan, Alastair G.; Sweet, Matthew J.
2013-01-01
The immunomodulatory and antimicrobial properties of zinc and copper have long been appreciated. In addition, these metal ions are also essential for microbial growth and survival. This presents opportunities for the host to either harness their antimicrobial properties or limit their availability as defence strategies. Recent studies have shed some light on mechanisms by which copper and zinc regulation contribute to host defence, but there remain many unanswered questions at the cellular and molecular levels. Here we review the roles of these two metal ions in providing protection against infectious diseases in vivo, and in regulating innate immune responses. In particular, we focus on studies implicating zinc and copper in macrophage antimicrobial pathways, as well as the specific host genes encoding zinc transporters (SLC30A, SLC39A family members) and CTRs (copper transporters, ATP7 family members) that may contribute to pathogen control by these cells. PMID:23738776
Tsukahara, Tamotsu; Haniu, Hisao
2011-06-01
Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.
Bhashyam, Siva; Fields, Anjali V; Patterson, Brandy; Testani, Jeffrey M; Chen, Li; Shen, You-Tang; Shannon, Richard P
2010-07-01
We have shown that glucagon-like peptide-1 (GLP-1[7-36] amide) stimulates myocardial glucose uptake in dilated cardiomyopathy (DCM) independent of an insulinotropic effect. The cellular mechanisms of GLP-1-induced myocardial glucose uptake are unknown. Myocardial substrates and glucoregulatory hormones were measured in conscious, chronically instrumented dogs at control (n=6), DCM (n=9) and DCM after treatment with a 48-hour infusion of GLP-1 (7-36) amide (n=9) or vehicle (n=6). GLP-1 receptors and cellular pathways implicated in myocardial glucose uptake were measured in sarcolemmal membranes harvested from the 4 groups. GLP-1 stimulated myocardial glucose uptake (DCM: 20+/-7 nmol/min/g; DCM+GLP-1: 61+/-12 nmol/min/g; P=0.001) independent of increased plasma insulin levels. The GLP-1 receptors were upregulated in the sarcolemmal membranes (control: 98+/-2 density units; DCM: 256+/-58 density units; P=0.046) and were expressed in their activated (65 kDa) form in DCM. The GLP-1-induced increases in myocardial glucose uptake did not involve adenylyl cyclase or Akt activation but was associated with marked increases in p38alpha MAP kinase activity (DCM+vehicle: 97+/-22 pmol ATP/mg/min; DCM+GLP-1: 170+/-36 pmol ATP/mg/min; P=0.051), induction of nitric oxide synthase 2 (DCM+vehicle: 151+/-13 density units; DCM+GLP-1: 306+/-12 density units; P=0.001), and GLUT-1 translocation (DCM+vehicle: 21+/-3% membrane bound; DCM+GLP-1: 39+/-3% membrane bound; P=0.005). The effects of GLP-1 on myocardial glucose uptake were blocked by pretreatment with the p38alpha MAP kinase inhibitor or the nonspecific nitric oxide synthase inhibitor nitro-l-arginine. GLP-1 stimulates myocardial glucose uptake through a non-Akt-1-dependent mechanism by activating cellular pathways that have been identified in mediating chronic hibernation and the late phase of ischemic preconditioning.
Claudia, Meindl; Kristin, Öhlinger; Jennifer, Ober; Eva, Roblegg; Eleonore, Fröhlich
2017-01-01
At many portals of entry the relative uptake by phagocytes and non-phagocytic cells has a prominent effect on availability and biological action of nanoparticles (NPs). Cellular uptake can be determined for fluorescence-labeled NPs. The present study compares three methods (plate reader, flow cytometry and image analysis) in order to investigate the influence of particle size and functionalization and medium content on cellular uptake of fluorescence–labeled polystyrene particles and to study the respective method’s suitability for uptake studies. For comparison between the techniques, ratios of macrophage to alveolar epithelial cell uptakes were used. Presence of serum protein in the exposure solution decreased uptake of carboxyl-functionalized and non-functionalized particles; there was no clear effect for the amine-functionalized particles. The 200 nm non- or carboxyl-functionalized NPs were taken up preferentially by phagocytes while for amine-functionalized particles preference was lowest. The presence of the serum slightly increased the preference for these particles. In conclusion, due to the possibility of calibration, plate reader measurements might present a better option than the other techniques to (semi)quantify differences between phagocytes and non-phagocytic cells for particles with different fluorescence. In order to obtain unbiased data the fluorescent labeling has to fulfill certain requirements. PMID:28065592
Averbeck, N B; Borghouts, C; Hamann, A; Specke, V; Osiewacz, H D
2001-01-01
The lifespan of the ascomycete Podospora anserina was previously demonstrated to be significantly increased in a copper-uptake mutant, suggesting that copper is a potential stressor involved in degenerative processes. In order to determine whether changes in copper stress occur in the cells during normal aging of cultures, we cloned and characterized a gene coding for a component of the molecular machinery involved in the control of copper homeostasis. This gene, PaMt1, is a single-copy gene that encodes a metallothionein of 26 amino acids. The coding sequence of PaMt1 is interrupted by a single intron. The deduced amino acid sequence shows a high degree of sequence identity to metallothioneins of the filamentous ascomycete Neurospora crassa and the basidiomycete Agaricus bisporus, and to the N-terminal portion of mammalian metallothioneins. Levels of PaMt1 transcript increase in response to elevated amounts of copper in the growth medium and during aging of wild-type cultures. In contrast, in the long-lived mutant grisea, transcript levels first increase but then decrease again. The ability of wild-type cultures to respond to exogenous copper stress via the induction of PaMt1 transcription is not affected as they grow older.
Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.
2013-01-01
Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948
Celllular Uptake and Clearance of TIO2 Nanoparticles
Differential rates of cellular uptake and clearance of engineered nanomaterials may influence the propensity for tissue accumulation under chronic exposure conditions. A retinal pigment epithelial cell line (ARPE-19) was used to investigate 1) if Ti02 (Degussa, P25) nanoparticles...
Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus
Li, Xiaomin; Zhou, Suyang; Fan, Wenhong
2016-01-01
Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942
Live Cell Imaging of a Fluorescent Gentamicin Conjugate
Escobedo, Jorge O.; Chu, Yu-Hsuan; Wang, Qi; Steyger, Peter S.; Strongin, Robert M.
2012-01-01
Understanding cellular mechanisms of ototoxic and nephrotoxic drug uptake, intracellular distribution, and molecular trafficking across cellular barrier systems aids the study of potential uptake blockers that preserve sensory and renal function during critical life-saving therapy. Herein we report the design, synthesis characterization and evaluation of a fluorescent conjugate of the aminoglycoside antibiotic gentamicin. Live cell imaging results show the potential utility of this new material. Related gentamicin conjugates studied to date quench in live kindney cells, and have been largely restricted to use in fixed (delipidated) cells. PMID:22545403
Nilsen, T
1991-10-16
Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.
Point-particle method to compute diffusion-limited cellular uptake.
Sozza, A; Piazza, F; Cencini, M; De Lillo, F; Boffetta, G
2018-02-01
We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry, and related sciences.
Oncogene pathway activation in mammary tumors dictates [18F]-FDG-PET uptake
Alvarez, James V.; Belka, George K.; Pan, Tien-chi; Chen, Chien-Chung; Blankemeyer, Eric; Alavi, Abass; Karp, Joel; Chodosh, Lewis A.
2015-01-01
Increased glucose utilization is a hallmark of human cancer that is used to image tumors clinically. In this widely used application, glucose uptake by tumors is monitored by positron emission tomography (PET) of the labeled glucose analog F-18-2-fluoro-2-deoxyglucose (18F-FDG). Despite its widespread clinical use, the cellular and molecular mechanisms that determine FDG uptake - a tool that can monitor tumor heterogeneity - remain poorly understood. In this study, we compared FDG uptake in mammary tumors driven by the Akt1, c-MYC, HER2/neu, Wnt1 or H-Ras oncogenes in genetically engineered mice, correlating it to tumor growth, cell proliferation and levels of gene expression involved in key steps of glycolytic metabolism. We found that FDG uptake by tumors was dictated principally by the driver oncogene and was not independently associated with tumor growth or cellular proliferation. Oncogene downregulation resulted in a rapid decrease in FDG uptake, preceding effects on tumor regression, irrespective of the baseline level of uptake. FDG uptake correlated positively with expression of hexokinase-2 (HK2) and HIF-1α and associated negatively with PFK-2b expression and p-AMPK. The correlation of HK2 and FDG uptake was independent of all variables tested, including the initiating oncogene, suggesting that HK2 is an independent predictor of FDG uptake. In contrast, expression of Glut1 was correlated with FDG uptake only in tumors driven by Akt or HER2/neu. Together, these results showed that the oncogenic pathway activated within a tumor is a primary determinant of its FDG uptake, mediated by key glycolytic enzymes that provide a framework to interpret effects on this key parameter in clinical imaging. PMID:25239452
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M.; Knox, A.; Kuhne, W.
2015-10-15
DOE sites conduct traditional environmental monitoring programs that require collecting, processing, and analyzing water, sediment, and fish samples. However, recently developed passive sampling technologies, such as Diffusive Gradient in Thin films (DGT), may measure the chemical phases that are available and toxic to organisms (the bioavailable fraction), thereby producing more accurate and economical results than traditional methods. Our laboratory study showed that dissolved copper concentrations measured by DGT probes were strongly correlated with the uptake of copper by Lumbriculus variegatus, an aquatic worm, and with concentrations of copper measured by conventional methods. Dissolved copper concentrations in DGT probes increased with timemore » of exposure, paralleling the increase in copper with time that ocurred in Lumbriculus. Additional studies with a combination of seven dissolved metals showed similar results. These findings support the use of DGT as a biomimetic monitoring tool and provide a basis for refinement of these methods for cost-effective environmental monitoring at DOE sites.« less
Krumova, Ekaterina Ts; Stoitsova, Stoyanka R; Paunova-Krasteva, Tsvetelina S; Pashova, Svetlana B; Angelova, Maria B
2012-12-01
Humicola lutea 103 is a copper-tolerant fungal strain able to grow in the presence of 300 μg·mL(-1) Cu(2+) under submerged cultivation. To prevent the consequences of copper overload, microorganisms have evolved molecular mechanisms that regulate its uptake, intracellular traffic, storage, and efflux. In spite of this avoidance strategy, high heavy-metal concentrations caused distinct and widespread ultrastructural alterations in H. lutea. The mitochondria were the first and main target of the toxic action. The effect of copper on activities of the key enzymes (hexokinase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase) included in the 3 main metabolic pathways, glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle, was investigated. High metal concentrations exhibited a dramatic negative effect on hexokinase, while the other 3 enzymes showed a significant and dose-dependent stimulation. On the basis of the present and previous results we concluded that the copper-induced oxidative stress plays an important role in the fungal tolerance to high Cu (2+) concentrations.
Kik, Krzysztof; Wasowska-Lukawska, Malgorzata; Oszczapowicz, Irena; Szmigiero, Leszek
2009-04-01
In this work a comparison was made of the cytotoxicity and cellular uptake of doxorubicin (DOX) and two of its derivatives containing a formamidino group (-N=CH-N<) at the 3' position with morpholine (DOXM) or hexamethyleneimine (DOXH) ring. All tests were performed in doxorubicin-sensitive HL60 and -resistant HL60/MX2 cells which are known for the presence of altered topoisomerase II. Cytotoxic activity of DOX toward HL60/MX2 cells was about 195 times lower when compared with the sensitive HL60 cell line. DOXM and DOXH were approximately 20 times more active in resistant cells than DOX. It was found that the uptake of DOX was lower in resistant cells by about 16%, while that of DOXM and DOXH was lower by about 36% and 19%, respectively. Thus the changes in the cellular uptake of anthracyclines are not associated with the fact that cytotoxicity of DOXM and DOXH exceed the cytotoxicity of DOX. Experiments in cell-free system containing human topoisomerase II showed that topoisomerase II is not inhibited by DOXM and DOXH. Formamidinoanthracyclines may be more useful than parent drugs in therapy against tumor cells with altered topoisomerase II activity.
NASA Astrophysics Data System (ADS)
Ma, Xi-Xi; Gao, Han; Zhang, Ya-Xuan; Jia, Yi-Yang; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le
2018-02-01
Non-viral nanovectors have attracted much attention owing to their ability to condense genetic materials and their ease of modification. However, their poor stability, low biocompatibility and gene degradation in endosomes or lysosomes has significantly hampered their application in vivo and in the clinic. In an attempt to overcome these difficulties a series of bovine serum albumin (BSA)-calcium phosphate (CaP) nanoparticles were constructed. The CaP condenses with DNA to form nanocomplexes coated with a biomimetic corona of BSA. Such complexes may retain the inherent endocytosis profile of BSA, with improved biocompatibility. In particular the transgene performance may be enhanced by stimulating the cellular uptake pathway via caveolae-mediated endocytosis. Two methods were employed to construct and optimize the formulation of BSA-CaP nanomaterials. The optimized BSA-CaP-50-M2 nanoparticles prepared by our second method exhibited good stability, negligible cytotoxicity and enhanced transgene performance with long-term expression for 72 h in vivo even with a single dose. Determination of the cellular uptake pathway and Western blot revealed that cellular uptake of the designed BSA-CaP-50-M2 nanoparticles was mainly via caveolae-mediated endocytosis in a non-degradative pathway in which the biomimetic uptake profile of BSA was retained.
Ma, Xi-Xi; Gao, Han; Zhang, Ya-Xuan; Jia, Yi-Yang; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le
2018-02-23
Non-viral nanovectors have attracted much attention owing to their ability to condense genetic materials and their ease of modification. However, their poor stability, low biocompatibility and gene degradation in endosomes or lysosomes has significantly hampered their application in vivo and in the clinic. In an attempt to overcome these difficulties a series of bovine serum albumin (BSA)-calcium phosphate (CaP) nanoparticles were constructed. The CaP condenses with DNA to form nanocomplexes coated with a biomimetic corona of BSA. Such complexes may retain the inherent endocytosis profile of BSA, with improved biocompatibility. In particular the transgene performance may be enhanced by stimulating the cellular uptake pathway via caveolae-mediated endocytosis. Two methods were employed to construct and optimize the formulation of BSA-CaP nanomaterials. The optimized BSA-CaP-50-M2 nanoparticles prepared by our second method exhibited good stability, negligible cytotoxicity and enhanced transgene performance with long-term expression for 72 h in vivo even with a single dose. Determination of the cellular uptake pathway and Western blot revealed that cellular uptake of the designed BSA-CaP-50-M2 nanoparticles was mainly via caveolae-mediated endocytosis in a non-degradative pathway in which the biomimetic uptake profile of BSA was retained.
Leclerc, L; Rima, W; Boudard, D; Pourchez, J; Forest, V; Bin, V; Mowat, P; Perriat, P; Tillement, O; Grosseau, P; Bernache-Assollant, D; Cottier, M
2012-08-01
Micrometric and nanometric particles are increasingly used in different fields and may exhibit variable toxicity levels depending on their physicochemical characteristics. The aim of this study was to determine the impact of the size parameter on cellular uptake and biological activity, working with well-characterized fluorescent particles. We focused our attention on macrophages, the main target cells of the respiratory system responsible for the phagocytosis of the particles. FITC fluorescent silica particles of variable submicronic sizes (850, 500, 250 and 150 nm) but with similar surface coating (COOH) were tailored and physico-chemically characterized. These particles were then incubated with the RAW 264.7 macrophage cell line. After microscopic observations (SEM, TEM, confocal), a quantitative evaluation of the uptake was carried out. Fluorescence detected after a quenching with trypan blue allows us to distinguish and quantify entirely engulfed fluorescent particles from those just adhering to the cell membrane. Finally, these data were compared to the in vitro toxicity assessed in terms of cell damage, inflammation and oxidative stress (evaluated by LDH release, TNF-α and ROS production respectively). Particles were well characterized (fluorescence, size distribution, zeta potential, agglomeration and surface groups) and easily visualized after cellular uptake using confocal and electron microscopy. The number of internalized particles was precisely evaluated. Size was found to be an important parameter regarding particles uptake and in vitro toxicity but this latter strongly depends on the particles doses employed.
Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.
2017-12-01
Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.
Cytoprotective properties of a fullerene derivative against copper
NASA Astrophysics Data System (ADS)
Ratnikova, Tatsiana A.; Bebber, Mark J.; Huang, George; Larcom, Lyndon L.; Ke, Pu Chun
2011-10-01
To delineate the complexity of the response of cells to nanoparticles we have performed a study on HT-29 human colon carcinoma cells exposed first to a fullerene derivative C60(OH)20 and then to physiological copper ions. Our cell viability, proliferation, and intracellular reactive oxygen species (ROS) production assays clearly indicated that C60(OH)20 suppressed cell damage as well as ROS production induced by copper, probably through neutralization of the metal ions by C60(OH)20 in the extracellular space, as well as by adsorption and uptake of the nanoparticles surface-modified by the biomolecular species in the cell medium. This double-exposure study provides new data on the effects of nanoparticles on cell metabolism and may aid the treatment of oxidant-mediated diseases using nanomedicine.
Cellular uptake of modified oligonucleotides: fluorescence approach
NASA Astrophysics Data System (ADS)
Kočišová, Eva; Praus, Petr; Rosenberg, Ivan; Seksek, Olivier; Sureau, Franck; Štěpánek, Josef; Turpin, Pierre-Yves
2005-06-01
Cellular uptake and intracellular distribution of the synthetic antisense analogue of dT 15 oligonucleotide (homogenously containing 3'-O-P-CH 2-O-5' internucleotide linkages and labeled with tetramethylrhodamine dye) was studied on B16 melanoma cell line by fluorescence micro-imaging and time-resolved microspectrofluorimetry. By using amphotericin B 3-dimethylaminopropyl amide as an enhancer molecule for the uptake process, homogenous staining of the cells with rather distinct nucleoli staining was achieved after 4 h of incubation. Two spectral components of 2.7 and 1.3 ns lifetime, respectively, were resolved in the emission collected from the cell nucleus. The way of staining and the long-lived component differed from our previous experiments demonstrating complexity of the intracellular oligonucleotide distribution and in particular of the binding inside the nucleus.
NASA Astrophysics Data System (ADS)
Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.
2015-11-01
Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05173h
Yi, Yilwoong; Kim, Jae Hong; Kang, Hye-Won; Oh, Hun Seung; Kim, Sung Wan; Seo, Min Hyo
2005-02-01
To evaluate a new polymeric nanoparticulate drug delivery formulation that consists of two components: i) an amphiphilic diblock copolymer having tocopherol moiety at the end of the hydrophobic block in which the hydrophobic tocopherol moiety increases stability of hydrophobic core of the nanoparticle in aqueous medium; and ii) a biodegradable copolyester having carboxylate end group that is capable of forming ionic complex with positively charged compounds such as doxorubicin. A doxourubicin-loaded polymeric nanoparticle (Dox-PNP) was prepared by solvent evaporation method. The entrapment efficiency, size distribution, and in vitro release profile at various pH conditions were characterized. In vitro cellular uptake was investigated by confocal microscopy, flow cytometry, and MTT assay using drug-sensitive and drug-resistant cell lines. Pharmacokinetics and biodistribution were evaluated in rats and tumor-bearing mice. Doxorubicin (Dox) was efficiently loaded into the PNP (higher than 95% of entrapment efficiency), and the diameter of Dox-PNP was in the range 20-25 nm with a narrow size distribution. In Vitro study showed that Dox-PNP exhibited higher cellular uptake into both human breast cancer cell (MCF-7) and human uterine cancer cell (MES-SA) than free doxorubicin solution (Free-Dox), especially into drug-resistant cells (MCF-7/ADR and MES-SA/Dx-5). In pharmacokinetics and tissue distribution study, the bioavailability of Dox-PNP calculated from the area under the blood concentration-time curve (AUC) was 69.8 times higher than that of Free-Dox in rats, and Dox-PNP exhibited 2 times higher bioavailability in tumor tissue of tumor-bearing mice. Dox-PNP exhibited enhanced cellular uptake of the drug. In the cytotoxic activity study, this improved cellular uptake was proved to be more advantageous in drug-resistant cell. Dox-PNP exhibited much higher bioavailability in blood plasma and more drug accumulation in tumor tissue than conventional doxorubicin formulation. The results of this study suggest that the PNP system is an advantageous carrier for drug delivery.
Pan-In, Porntip; Wanichwecharungruang, Supason; Hanes, Justin; Kim, Anthony J
2014-01-01
Garcinia mangostana Linn extract (GME) is a natural product that has received considerable attention in cancer therapy, and has the potential to reduce side effects of chemotherapeutics and improve efficacy. We formulated GME-encapsulated ethyl cellulose (GME-EC) and a polymer blend of ethyl cellulose and methyl cellulose (GME-EC/MC) nanoparticles. We achieved high drug-loading and encapsulation efficiency using a solvent-displacement method with particle sizes around 250 nm. Cellular uptake and accumulation of GME was higher for GME-encapsulated nanoparticles compared to free GME. In vitro cytotoxicity analysis showed effective anticancer activity of GME-EC and GME-EC/MC nanoparticles in HeLa cells in a dose-dependent manner. GME-EC/MC nanoparticles showed approximately twofold-higher anticancer activity compared to GME-EC nanoparticles, likely due to their enhanced bioavailability. GME-encapsulated nanoparticles primarily entered HeLa cells by clathrin-mediated endocytosis and trafficked through the endolysosomal pathway. As far as we know, this is the first report on the cellular uptake and intracellular trafficking mechanism of drug-loaded cellulose-based nanoparticles. In summary, encapsulation of GME using cellulose-derivative nanoparticles – GME-EC and GME-EC/MC nanoparticles – successfully improved the bioavailability of GME in aqueous solution, enhanced cellular uptake, and displayed effective anticancer activity. PMID:25125977
Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.
Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang
2015-01-21
Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.
Yang, Cheng; Zhang, Hua; Liu, Ronghua; Zhu, Honghui; Zhang, Lianfu; Tsao, Rong
2017-11-29
The bioaccessibility, bioavailability, and antioxidative activities of three astaxanthin geometric isomers were investigated using an in vitro digestion model and human intestinal Caco-2 cells. This study demonstrated that the trans-cis isomerization of all-E-astaxanthin and the cis-trans isomerization of Z-astaxanthins could happen both during in vitro gastrointestinal digestion and cellular uptake processes. 13Z-Astaxanthin showed higher bioaccessibility than 9Z- and all-E-astaxanthins during in vitro digestion, and 9Z-astaxanthin exhibited higher transport efficiency than all-E- and 13Z-astaxanthins. These might explain why 13Z- and 9Z-astaxanthins are found at higher concentrations in human plasma than all-E-astaxanthin in reported studies. All three astaxanthin isomers were effective in maintaining cellular redox homeostasis as seen in the antioxidant enzyme (CAT, SOD) activities ; 9Z- and 13Z- astaxanthins exhibited a higher protective effect than all-E-astaxanthin against oxidative stress as demonstrated by the lower cellular uptake of Z-astaxanthins and lower secretion and gene expression of the pro-inflammatory cytokine IL-8 in Caco-2 cells treated with H 2 O 2 . We conclude, for the first time, that Z-astaxanthin isomers may play a more important role in preventing oxidative stress induced intestinal diseases.
Ilovich, Ohad; Natarajan, Arutselvan; Hori, Sharon; Sathirachinda, Ataya; Kimura, Richard; Srinivasan, Ananth; Gebauer, Mathias; Kruip, Jochen; Focken, Ingo; Lange, Christian; Carrez, Chantal; Sassoon, Ingrid; Blanc, Veronique; Sarkar, Susanta K; Gambhir, Sanjiv S
2015-07-01
To develop and compare three copper 64 ((64)Cu)-labeled antibody fragments derived from a CA6-targeting antibody (huDS6) as immuno-positron emission tomography (immuno-PET)-based companion diagnostic agents for an antibody-drug conjugate by using huDS6. Three antibody fragments derived from huDS6 were produced, purified, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and evaluated in the following ways: (a) the affinity of the fragments and the DOTA conjugates was measured via flow cytometry, (b) the stability of the labeled fragments was determined ex vivo in human serum over 24 hours, and (c) comparison of the in vivo imaging potential of the fragments was evaluated in mice bearing subcutaneous CA6-positive and CA6-negative xenografts by using serial PET imaging and biodistribution. Isotype controls with antilysozyme and anti-DM4 B-Fabs and blocking experiments with an excess of either B-Fab or huDS6 were used to determine the extent of the antibody fragment (64)Cu-DOTA-B-Fab binding specificity. Immunoreactivity and tracer kinetics were evaluated by using cellular uptake and 48-hour imaging experiments, respectively. Statistical analyses were performed by using t tests, one-way analysis of variance, and Wilcoxon and Mann-Whitney tests. The antibody fragment (64)Cu-DOTA-B-Fab was more than 95% stable after 24 hours in human serum, had an immunoreactivity of more than 70%, and allowed differentiation between CA6-positive and CA6-negative tumors in vivo as early as 6 hours after injection, with a 1.7-fold uptake ratio between tumors. Isotype and blocking studies experiments showed tracer-specific uptake in antigen-positive tumors, despite some nonspecific uptake in both tumor models. Three antibody fragments were produced and examined as potential companion diagnostic agents. (64)Cu-DOTA-B-Fab is a stable and effective immuno-PET tracer for CA6 imaging in vivo.
Ilovich, Ohad; Natarajan, Arutselvan; Hori, Sharon; Sathirachinda, Ataya; Kimura, Richard; Srinivasan, Ananth; Gebauer, Mathias; Kruip, Jochen; Focken, Ingo; Lange, Christian; Carrez, Chantal; Sassoon, Ingrid; Blanc, Veronique; Sarkar, Susanta K.
2015-01-01
Purpose To develop and compare three copper 64 (64Cu)–labeled antibody fragments derived from a CA6-targeting antibody (huDS6) as immuno-positron emission tomography (immuno-PET)–based companion diagnostic agents for an antibody-drug conjugate by using huDS6. Materials and Methods Three antibody fragments derived from huDS6 were produced, purified, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and evaluated in the following ways: (a) the affinity of the fragments and the DOTA conjugates was measured via flow cytometry, (b) the stability of the labeled fragments was determined ex vivo in human serum over 24 hours, and (c) comparison of the in vivo imaging potential of the fragments was evaluated in mice bearing subcutaneous CA6-positive and CA6-negative xenografts by using serial PET imaging and biodistribution. Isotype controls with antilysozyme and anti-DM4 B-Fabs and blocking experiments with an excess of either B-Fab or huDS6 were used to determine the extent of the antibody fragment 64Cu-DOTA-B-Fab binding specificity. Immunoreactivity and tracer kinetics were evaluated by using cellular uptake and 48-hour imaging experiments, respectively. Statistical analyses were performed by using t tests, one-way analysis of variance, and Wilcoxon and Mann-Whitney tests. Results The antibody fragment 64Cu-DOTA-B-Fab was more than 95% stable after 24 hours in human serum, had an immunoreactivity of more than 70%, and allowed differentiation between CA6-positive and CA6-negative tumors in vivo as early as 6 hours after injection, with a 1.7-fold uptake ratio between tumors. Isotype and blocking studies experiments showed tracer-specific uptake in antigen-positive tumors, despite some nonspecific uptake in both tumor models. Conclusion Three antibody fragments were produced and examined as potential companion diagnostic agents. 64Cu-DOTA-B-Fab is a stable and effective immuno-PET tracer for CA6 imaging in vivo. © RSNA, 2015 Online supplemental material is available for this article. PMID:25734548
Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien
2012-06-15
Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening withmore » approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.« less
Yao, Hua; Ma, Jinqi
2018-01-01
The present paper investigates the enhancement of the therapeutic effect of Paclitaxel (a potent anticancer drug) by increasing its cellular uptake in the cancerous cells with subsequent reduction in its cytotoxic effects. To fulfill these goals the Paclitaxel (PTX)-Biotinylated PAMAM dendrimer complexes were prepared using biotinylation method. The primary parameter of Biotinylated PAMAM with a terminal HN 2 group - the degree of biotinylation - was evaluated using HABA assay. The basic integrity of the complex was studied using DSC. The Drug Loading (DL) and Drug Release (DR) parameters of Biotinylated PAMAM dendrimer-PTX complexes were also examined. Cellular uptake study was performed in OVCAR-3 and HEK293T cells using fluorescence technique. The statistical analysis was also performed to support the experimental data. The results obtained from HABA assay showed the complete biotinylation of PAMAM dendrimer. DSC study confirmed the integrity of the complex as compared with pure drug, biotinylated complex and their physical mixture. Batch 9 showed the highest DL (12.09%) and DR (70%) for 72 h as compared to different concentrations of drug and biotinylated complex. The OVCAR-3 (cancerous) cells were characterized by more intensive cellular uptake of the complexes than HEK293T (normal) cells. The obtained experimental results were supported by the statistical data. The results obtained from both experimental and statistical evaluation confirmed that the biotinylated PAMAM NH 2 dendrimer-PTX complex not only displays increased cellular uptake but has also enhanced release up to 72 h with the reduction in cytotoxicity.
Visualization of self-delivering hydrophobically modified siRNA cellular internalization
Ly, Socheata; Navaroli, Deanna M.; Didiot, Marie-Cécile; Cardia, James; Pandarinathan, Lakshmipathi; Alterman, Julia F.; Fogarty, Kevin; Standley, Clive; Lifshitz, Lawrence M.; Bellve, Karl D.; Prot, Matthieu; Echeverria, Dimas; Corvera, Silvia; Khvorova, Anastasia
2017-01-01
siRNAs are a new class of therapeutic modalities with promising clinical efficacy that requires modification or formulation for delivery to the tissue and cell of interest. Conjugation of siRNAs to lipophilic groups supports efficient cellular uptake by a mechanism that is not well characterized. Here we study the mechanism of internalization of asymmetric, chemically stabilized, cholesterol-modified siRNAs (sd-rxRNAs®) that efficiently enter cells and tissues without the need for formulation. We demonstrate that uptake is rapid with significant membrane association within minutes of exposure followed by the formation of vesicular structures and internalization. Furthermore, sd-rxRNAs are internalized by a specific class of early endosomes and show preferential association with epidermal growth factor (EGF) but not transferrin (Tf) trafficking pathways as shown by live cell TIRF and structured illumination microscopy (SIM). In fixed cells, we observe ∼25% of sd-rxRNA co-localizing with EGF and <5% with Tf, which is indicative of selective endosomal sorting. Likewise, preferential sd-rxRNA co-localization was demonstrated with EEA1 but not RBSN-containing endosomes, consistent with preferential EGF-like trafficking through EEA1-containing endosomes. sd-rxRNA cellular uptake is a two-step process, with rapid membrane association followed by internalization through a selective, saturable subset of the endocytic process. However, the mechanistic role of EEA1 is not yet known. This method of visualization can be used to better understand the kinetics and mechanisms of hydrophobic siRNA cellular uptake and will assist in further optimization of these types of compounds for therapeutic intervention. PMID:27899655
Jia, Yuqi; Lu, Liping; Yuan, Caixia; Feng, Sisi; Zhu, Miaoli
2017-05-01
Recent researches indicated that a copper complex-binding proteome that potently interacted with copper complexes and then influenced cellular metabolism might exist in organism. In order to explore the copper complex-binding proteome, a copper chelating ion-immobilized affinity chromatography (Cu-IMAC) column and mass spectrometry were used to separate and identify putative Cu-binding proteins in primary rat hepatocytes. A total of 97 putative Cu-binding proteins were isolated and identified. Five higher abundance proteins, aspartate aminotransferase (AST), malate dehydrogenase (MDH), catalase (CAT), calreticulin (CRT) and albumin (Alb) were further purified using a SP-, and (or) Q-Sepharose Fast Flow column. The interaction between the purified proteins and selected 11 copper complexes and CuCl 2 was investigated. The enzymes inhibition tests demonstrated that AST was potently inhibited by copper complexes while MDH and CAT were weakly inhibited. Schiff-based copper complexes 6 and 7 potently inhibited AST with the IC 50 value of 3.6 and 7.2μM, respectively and exhibited better selectivity over MDH and CAT. Fluorescence titration results showed the two complexes tightly bound to AST with binding constant of 3.89×10 6 and 3.73×10 6 M -1 , respectively and a stoichiometry ratio of 1:1. Copper complex 6 was able to enter into HepG2 cells and further inhibit intracellular AST activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Dong, Chaoqing; Irudayaraj, Joseph
2012-10-11
Aqueous quantum dots (QDs) directly synthesized with various thiol ligands have been investigated as imaging probes in living cells. However, the effect of the surface chemistry of these ligands on QDs' cellular uptakes and their intracellular fate remains poorly understood. In this work, four CdTe QDs were directly synthesized under aqueous conditions using four different thiols as stabilizers and their interactions with cells were investigated. Fluorescence correlation spectroscopy (FCS), X-ray photoelectron spectroscopy (XPS), and zeta potential measurements on QDs primarily show that the surface structure of these QDs is highly dependent on the thiol ligands used in the preparation of QDs' precursors, including its layer thicknesses, densities, and surface charges. Subsequently, FCS integrated with the maximum-entropy-method-based FCS (MEMFCS) was used to investigate the concentration distribution and dynamics of these QDs in living A-427 cells. Our findings indicate that QDs' surface characteristics affect cell membrane adsorption and subsequent internalization. More critically, we show that the cellular uptake of aqueous QDs is dependent on their hydrodynamic diameter and might have the potential to escape trapped environments to accumulate in the cytoplasm.
Infante, Rodney Elwood; Radhakrishnan, Arun
2017-01-01
Cells employ regulated transport mechanisms to ensure that their plasma membranes (PMs) are optimally supplied with cholesterol derived from uptake of low-density lipoproteins (LDL) and synthesis. To date, all inhibitors of cholesterol transport block steps in lysosomes, limiting our understanding of post-lysosomal transport steps. Here, we establish the cholesterol-binding domain 4 of anthrolysin O (ALOD4) as a reversible inhibitor of cholesterol transport from PM to endoplasmic reticulum (ER). Using ALOD4, we: (1) deplete ER cholesterol without altering PM or overall cellular cholesterol levels; (2) demonstrate that LDL-derived cholesterol travels from lysosomes first to PM to meet cholesterol needs, and subsequently from PM to regulatory domains of ER to suppress activation of SREBPs, halting cholesterol uptake and synthesis; and (3) determine that continuous PM-to-ER cholesterol transport allows ER to constantly monitor PM cholesterol levels, and respond rapidly to small declines in cellular cholesterol by activating SREBPs, increasing cholesterol uptake and synthesis. DOI: http://dx.doi.org/10.7554/eLife.25466.001 PMID:28414269
Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles
NASA Astrophysics Data System (ADS)
Kusi-Appiah, Aubrey E.; Mastronardi, Melanie L.; Qian, Chenxi; Chen, Kenneth K.; Ghazanfari, Lida; Prommapan, Plengchart; Kübel, Christian; Ozin, Geoffrey A.; Lenhert, Steven
2017-03-01
Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions.
FAT/CD36 expression alone is insufficient to enhance cellular uptake of oleate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyre, Nicholas S.; Cleland, Leslie G.; Mayrhofer, Graham
2008-06-06
Fatty acid translocase (FAT/CD36) is one of several proteins implicated in receptor-mediated uptake of long-chain fatty acids (LCFAs). We have tested whether levels of FAT/CD36 correlate with cellular oleic acid import, using a Tet-Off inducible transfected CHO cell line. Consistent with our previous findings, FAT/CD36 was enriched in lipid raft-derived detergent-resistant membranes (DRMs) that also contained caveolin-1, the marker protein of caveolae. Furthermore in transfected cells, plasma membrane FAT/CD36 co-localized extensively with the lipid raft-enriched ganglioside GM1, and partially with a caveolin-1-EGFP fusion protein. Nevertheless, even at high levels of expression, FAT/CD36 did not affect uptake of oleic acid. Wemore » propose that the ability of FAT/CD36 to mediate enhanced uptake of LCFAs is dependent on co-expression of other proteins or factors that are lacking in CHO cells.« less
2011-01-01
Background The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. Results To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. Conclusions As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs. PMID:22023736
Aitken, Jade B; Lay, Peter A; Duong, T T Hong; Aran, Roshanak; Witting, Paul K; Harris, Hugh H; Lai, Barry; Vogt, Stefan; Giles, Gregory I
2012-04-01
Synchrotron radiation induced X-ray emission (SRIXE) spectroscopy was used to map the cellular uptake of the organoselenium-based antioxidant drug ebselen using differentiated ND15 cells as a neuronal model. The cellular SRIXE spectra, acquired using a hard X-ray microprobe beam (12.8-keV), showed a large enhancement of fluorescence at the K(α) line for Se (11.2-keV) following treatment with ebselen (10 μM) at time periods from 60 to 240 min. Drug uptake was quantified and ebselen was shown to induce time-dependent changes in cellular elemental content that were characteristic of oxidative stress with the efflux of K, Cl, and Ca species. The SRIXE cellular Se distribution map revealed that ebselen was predominantly localized to a discreet region of the cell which, by comparison with the K and P elemental maps, is postulated to correspond to the endoplasmic reticulum. On the basis of these findings, it is hypothesized that a major outcome of ebselen redox catalysis is the induction of cellular stress. A mechanism of action of ebselen is proposed that involves the cell responding to drug-induced stress by increasing the expression of antioxidant genes. This hypothesis is supported by the observation that ebselen also regulated the homeostasis of the transition metals Mn, Cu, Fe, and Zn, with increases in transition metal uptake paralleling known induction times for the expression of antioxidant metalloenzymes. © SBIC 2012
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Urbán, Patricia; Bogni, Alessia; Ponti, Jessica; Gioria, Sabrina; Kinsner-Ovaskainen, Agnieszka
2017-06-26
Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called "critical quality attributes", that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs.
NASA Astrophysics Data System (ADS)
Zimmermann, Kristen A.; Inglefield, David L.; Zhang, Jianfei; Dorn, Harry C.; Long, Timothy E.; Rylander, Christopher G.; Rylander, M. Nichole
2014-01-01
Single-walled carbon nanohorns (SWNHs) have great potential to enhance thermal and chemotherapeutic drug efficiencies for cancer therapies. Despite their diverse capabilities, minimal research has been conducted so far to study nanoparticle intracellular transport, which is an important step in designing efficient therapies. SWNHs, like many other carbon nanomaterials, do not have inherent fluorescence properties making intracellular transport information difficult to obtain. The goals of this project were to (1) develop a simple reaction scheme to decorate the exohedral surface of SWNHs with fluorescent quantum dots (QDs) and improve conjugate stability, and (2) evaluate SWNH-QD conjugate cellular uptake kinetics and localization in various cancer cell lines of differing origins and morphologies. In this study, SWNHs were conjugated to CdSe/ZnS core/shell QDs using a unique approach to carbodiimide chemistry. Transmission electron microscopy and electron dispersive spectroscopy verified the conjugation of SWNHs and QDs. Cellular uptake kinetics and efficiency were characterized in three malignant cell lines: U-87 MG (glioblastoma), MDA-MB-231 (breast cancer), and AY-27 (bladder transitional cell carcinoma) using flow cytometry. Cellular distribution was verified by confocal microscopy, and cytotoxicity was also evaluated using an alamarBlue assay. Results indicate that cellular uptake kinetics and efficiency are highly dependent on cell type, highlighting the significance of studying nanoparticle transport at the cellular level. Nanoparticle intracellular transport investigations may provide information to optimize treatment parameters (e.g., SWNH concentration, treatment time, etc.) depending on tumor etiology.
NASA Astrophysics Data System (ADS)
Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie
2016-05-01
PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02174c
Claudia, Meindl; Kristin, Öhlinger; Jennifer, Ober; Eva, Roblegg; Eleonore, Fröhlich
2017-03-01
At many portals of entry the relative uptake by phagocytes and non-phagocytic cells has a prominent effect on availability and biological action of nanoparticles (NPs). Cellular uptake can be determined for fluorescence-labeled NPs. The present study compares three methods (plate reader, flow cytometry and image analysis) in order to investigate the influence of particle size and functionalization and medium content on cellular uptake of fluorescence-labeled polystyrene particles and to study the respective method́s suitability for uptake studies. For comparison between the techniques, ratios of macrophage to alveolar epithelial cell uptakes were used. Presence of serum protein in the exposure solution decreased uptake of carboxyl-functionalized and non-functionalized particles; there was no clear effect for the amine-functionalized particles. The 200nm non- or carboxyl-functionalized NPs were taken up preferentially by phagocytes while for amine-functionalized particles preference was lowest. The presence of the serum slightly increased the preference for these particles. In conclusion, due to the possibility of calibration, plate reader measurements might present a better option than the other techniques to (semi)quantify differences between phagocytes and non-phagocytic cells for particles with different fluorescence. In order to obtain unbiased data the fluorescent labeling has to fulfill certain requirements. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Enhanced Cellular Uptake of Short Polyarginine Peptides through Fatty Acylation and Cyclization
2015-01-01
Many of the reported arginine-rich cell-penetrating peptides (CPPs) for the enhanced delivery of drugs are linear peptides composed of more than seven arginine residues to retain the cell penetration properties. Herein, we synthesized a class of nine polyarginine peptides containing 5 and 6 arginines, namely, R5 and R6. We further explored the effect of acylation with long chain fatty acids (i.e., octanoic acid, dodecanoic acid, and hexadecanoic acid) and cyclization on the cell penetrating properties of the peptides. The fluorescence-labeled acylated cyclic peptide dodecanoyl-[R5] and linear peptide dodecanoyl-(R5) showed approximately 13.7- and 10.2-fold higher cellular uptake than that of control 5,6-carboxyfluorescein, respectively. The mechanism of the peptide internalization into cells was found to be energy-dependent endocytosis. Dodecanoyl-[R5] and dodecanoyl-[R6] enhanced the intracellular uptake of a fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F′-GpYEEI) in human ovarian cancer cells (SK-OV-3) by 3.4-fold and 5.5-fold, respectively, as shown by flow cytometry. The cellular uptake of F′-GpYEEI in the presence of hexadecanoyl-[R5] was 9.3- and 6.0-fold higher than that in the presence of octanoyl-[R5] and dodecanoyl-[R5], respectively. Dodecanoyl-[R5] enhanced the cellular uptake of the phosphopeptide by 1.4–2.5-fold higher than the corresponding linear peptide dodecanoyl-(R5) and those of representative CPPs, such as hepta-arginine (CR7) and TAT peptide. These results showed that a combination of acylation by long chain fatty acids and cyclization on short arginine-containing peptides can improve their cell-penetrating property, possibly through efficient interaction of rigid positively charged R and hydrophobic dodecanoyl moiety with the corresponding residues in the cell membrane phospholipids. PMID:24978295
NASA Astrophysics Data System (ADS)
Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei
2016-03-01
Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.
Chuard, Nicolas; Poblador-Bahamonde, Amalia I.; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi
2018-01-01
The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides. PMID:29675232
Lichtenstein, Dajana; Ebmeyer, Johanna; Knappe, Patrick; Juling, Sabine; Böhmert, Linda; Selve, Sören; Niemann, Birgit; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso
2015-11-01
Because of the rising application of nanoparticles in food and food-related products, we investigated the influence of the digestion process on the toxicity and cellular uptake of silver nanoparticles for intestinal cells. The main food components--carbohydrates, proteins and fatty acids--were implemented in an in vitro digestion process to simulate realistic conditions. Digested and undigested silver nanoparticle suspensions were used for uptake studies in the well-established Caco-2 model. Small-angle X-ray scattering was used to estimate particle core size, size distribution and stability in cell culture medium. Particles proved to be stable and showed radii from 3.6 to 16.0 nm. Undigested particles and particles digested in the presence of food components were comparably taken up by Caco-2 cells, whereas the uptake of particles digested without food components was decreased by 60%. Overall, these findings suggest that in vivo ingested poly (acrylic acid)-coated silver nanoparticles may reach the intestine in a nanoscaled form even if enclosed in a food matrix. While appropriate for studies on the uptake into intestinal cells, the Caco-2 model might be less suited for translocation studies. Moreover, we show that nanoparticle digestion protocols lacking food components may lead to misinterpretation of uptake studies and inconclusive results.
Anticancer activity of metal complexes: involvement of redox processes.
Jungwirth, Ute; Kowol, Christian R; Keppler, Bernhard K; Hartinger, Christian G; Berger, Walter; Heffeter, Petra
2011-08-15
Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of "activation by reduction" as well as the "hard and soft acids and bases" theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology.
Anticancer Activity of Metal Complexes: Involvement of Redox Processes
Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra
2012-01-01
Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772
Na, Ha-Na; Dubuisson, Olga; Hegde, Vijay; Nam, Jae-Hwan; Dhurandhar, Nikhil V
2016-05-01
Aging and obesity are associated with elevated pro-inflammatory cytokines such as monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)α, which are linked to insulin resistance. Anti-inflammatory agents have marginal effect in improving insulin resistance. Hence, agents are needed to improve glycemic control despite the inflammation. Ad36, a human adenovirus, increases TNFα and MCP1 mRNA in adipose tissue, yet improves glycemic control in mice. Ad36 via its E4orf1 gene, up-regulates AKT/glucose transporter (Glut)-4 signaling to enhance cellular glucose uptake. Directly test a role of Ad36, or E4orf1 in enhancing cellular glucose uptake in presence of inflammatory cytokines. Experiment 1: 3T3-L1 preadipocytes were treated with 0, 10 or 100 ng/mL lipopolysaccharides (LPS), and infected with 0 or 5 plaque forming units (PFU) of Ad36/cell. 3T3-L1 cells that stably and inducibly express E4orf1 or a null vector (pTRE-E4orf1 or pTRE-null cells), were similarly treated with LPS and then with doxycycline, to induce E4orf1. Experiment 2: 3T3L1 preadipocytes were treated with 25 nM MCP1 or 20 nM TNFα for 16 h, followed by infection with 0 or 5 PFU of Ad36/cell. Experiment 3: pTRE-E4orf1 or -null cells were similarly treated with MCP1 or TNFα followed by doxycycline to induce E4orf1. Cellular glucose uptake and cellular signaling were determined 72 h post-Ad36 infection or E4orf1-induction, in continued presence of MCP1 or TNFα. In 3T3-L1 preadipocytes, Ad36, but not E4orf1, increased MCP1 and TNFα mRNA, in presence of LPS stimulation. Ad36 or E4orf1 up-regulated AKT-phosphorylation and Glut4 and increased glucose uptake (P < 0.05) in the presence of MCP1 or TNFα. Unlike Ad36, E4orf1 does not appear to stimulate inflammatory response. Ad36 and E4orf1 both enhance cellular glucose uptake even in presence of inflammation. Further research is needed to harness this novel and beneficial property of E4orf1 to improve hyperglycemia despite chronic inflammation that is commonly present in aging and obesity. Copyright © 2014 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
MEDIA SERUM LEVELS AND IN VITRO HEPATIC ABSORPTION OF LINDANE
High plasma protein binding is known to reduce the tissue uptake of chemicals in vivo, but the extent of its importance in vitro is less clear. Experiments were conducted to determine the cellular uptake of lindane in vitro under different conditions. Lindane was selected because...
Dias, Decivaldo S; Coelho, Milton V
2007-01-01
ATPases, an important target of insecticides, are enzymes that hydrolyze ATP and use the energy released in that process to accomplish some type of cellular work. Pachymerus nucleorum (Fabricius) larvae possess an ATPase, that presents high Ca-ATPase activity, but no Mg-ATPase activity. In the present study, the effect of zinc and copper ions in the activity Ca-ATPase of that enzyme was tested. More than 90% of the Ca-ATPase activity was inhibited in 0.5 mM of copper ions or 0.25 mM of zinc ions. In the presence of EDTA, but not in the absence, the inhibition by zinc was reverted with the increase of calcium concentration. The inhibition by copper ions was not reverted in the presence or absence of EDTA. The Ca-ATPase was not inhibited by treatment of the ATPase fraction with copper, suggesting that the copper ion does not bind directly to the enzyme. The results suggest that zinc and copper ions form a complex with ATP and bind to the enzyme inhibiting its Ca-ATPase activity.
Cadmium and calcium uptake in the mollusc donax rugosus and effect of a calcium channel blocker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidoumou, Z.; Gnassia-Barelli, M.; Romeo, M.
Donax rugosus, a common bivalve mollusc in the coastal waters of Mauritania, has been studied for trace metal concentrations as a function of sampling site (from South of Mauritania to the North of this country) and of season. In this paper, the uptake of cadmium was experimentally studied in the different organs of D. rugosus. Since metals such as cadmium, copper and mercury may alter calcium homeostasis, calcium uptake was also studied in the animals treated with cadmium. Since calcium is taken up through specific channels, it appears that metals inhibit Ca uptake by interacting with these channels in themore » plasma membrane. Cadmium and calcium have very similar atomic radii, thus cadmium may be taken up through the calcium channels, particularly through voltage-dependent channels. The uptake of cadmium and calcium by D. Rugosus was therefore also studied in the presence of the calcium channel blocker verapamil. 13 refs., 3 figs., 1 tab.« less
Combinatorics of feedback in cellular uptake and metabolism of small molecules.
Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim
2007-12-26
We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration).
Xu, Leyuan; Kittrell, Shannon; Yeudall, W Andrew; Yang, Hu
2016-11-01
Folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) was synthesized and studied for targeted delivery of genes to head and neck cancer cells expressing high levels of folate receptors (FRs). Cellular uptake, targeting specificity, cytocompatibility and transfection efficiency were evaluated. G4-FA competes with free FA for the same binding site. G4-FA facilitates the cellular uptake of DNA plasmids in a FR-dependent manner and selectively delivers plasmids to FR-high cells, leading to enhanced gene expression. G4-FA is a suitable vector to deliver genes selectively to head and neck cancer cells. The fundamental understandings of G4-FA as a vector and its encouraging transfection results for head and neck cancer cells provided support for its further testing in vivo.
The role of FDG-PET in detecting rejection after liver transplantation.
Watson, Ashley M; Bhutiani, Neal; Philips, Prejesh; Davis, Eric G; Eng, Mary; Cannon, Robert M; Jones, Christopher M
2018-05-15
The activation and increased metabolic activity of T cells in acute cellular rejection could allow fluoro-2-deoxyglucose positron emission tomography to be utilized for detection of acute cellular rejection. The objective of this study was to evaluate the effectiveness of fluoro-2-deoxyglucose positron emission tomography in detecting acute cellular rejection in the clinical setting. Fluoro-2-deoxyglucose positron emission tomography studies were performed on 88 orthotopic liver transplant patients at 7 and 17 days postoperatively (first positron emission tomography and second positron emission tomography, respectively). Additional studies were performed if patients had suspicion of rejection and at resolution of rejection (third positron emission tomography and fourth positron emission tomography, respectively). A circular region of interest was placed over the liver for semiquantitative evaluation of fluoro-2-deoxyglucose positron emission tomography images by means of standard uptake values. Eighteen of 88 patients in our study (20.5%) had histologically proven acute cellular rejection during a 16 ± 11 day follow-up. There was no significant difference between the standard uptake values of first positron emission tomography among non-rejecters versus rejecters (2.05 ±0.46 non-rejecters versus 1.82 ± 0.40 rejecters, P = .127). Within the rejection cohort, the standard uptake values from the third positron emission tomography (rejection) were higher compared to the first positron emission tomography (baseline) (2.41 ± 0.48 third positron emission tomography versus 1.82 ± 0.41 first positron emission tomography, P < .001). Increased signal on fluoro-2-deoxyglucose positron emission tomography over baseline is associated with acute cellular rejection in liver transplant recipients. Additional prospective validation studies are essential to define the role of fluoro-2-deoxyglucose positron emission tomography scan as an early marker for acute cellular rejection. Copyright © 2018 Elsevier Inc. All rights reserved.
Kinetic modeling of copper biosorption by immobilized biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veglio, F.; Beolchini, F.; Toro, L.
1998-03-01
Biosorption of heavy metals is one of the most promising technologies involved in the removal of toxic metals from industrial waste streams and natural waters. The kinetic modeling of copper biosorption by Arthrobacter sp. immobilized in a hydroxyethyl methacrylate-based matrix is reported in this work. The resin-biomass complex (RBC) has been used for copper biosorption in different conditions according to a factorial experiment. Factors investigated were cross-linker (trimethylolpropane trimethacrylate) concentration, biomass concentration in the solid, and particles` granulometry. A maximum copper specific uptake of abut 7 mg of Cu/g of biomass (dry weight) has been observed, in the case ofmore » a RBC with the following characteristics: 2% (w/w) cross-linker concentration, 8% (w/w) biomass concentration, and 425--750 {micro}m granulometry. The shrinking core model has been used for the fitting of experimental data. A good fit has been found in the case of controlling intraparticle diffusion in all experimental trials. The copper diffusion coefficient in RBC has been estimated from the slope of the regression lines. Values obtained for the diffusion coefficients do not differ from one another with respect to the estimated standard error. An average apparent copper diffusion coefficient of about 3 {times} 10{sup {minus}6} cm{sup 2}/s has been found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, B.F.Gh.; Belak, Z.R.; Ignatyev, K.
2009-06-04
The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, B.F.G.; Belak, Z.R.; Ignatyev, K.
2009-04-29
The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less
Mann, G E; Yudilevich, D L
1984-01-01
Capillary permeability and cellular uptake of noradrenaline by the isolated artificially perfused rabbit heart was measured using rapid (less than 30 s) single-circulation tracer-dilution techniques. In a single coronary circulation capillary extractions of L-[14C]noradrenaline and D-[3H]mannitol (extracellular reference) relative to an intravascular marker, 125I-labelled albumin, were similar and above 60%. The 'apparent' volume of distribution for tracer noradrenaline was 2.5-fold larger than that measured for D-mannitol (0.32 ml g-1) suggesting cellular uptake of the amine. Unidirectional noradrenaline uptake was estimated by directly comparing coronary sinus dilution profiles of L-[3H]noradrenaline and D-[14C]mannitol. Michaelis-Menten saturation kinetics based on a single-entry system were determined (Km = 2.8 +/- 1.5 microM, Vmax = 2.1 +/- 0.5 nmol min-1 g-1, n = 4) by perfusing hearts with varying concentrations of L-noradrenaline (1-10 microM). Various known inhibitors of noradrenaline uptake were investigated to determine whether uptake was mediated by neuronal (uptake1) and/or extraneuronal (uptake2) mechanisms. Desipramine (5 microM), imipramine (5 microM) and metaraminol (2 microM) resulted in a 66-94% inhibition of noradrenaline influx. In comparison, the steroids, 17 beta-oestradiol (1 microM) and corticosterone (10 microM), and the noradrenaline metabolite normetanephrine (5 microM) caused virtually no inhibitory effects. The beta-adrenergic antagonist propranolol (5 microM) was also relatively ineffective. These results together with the kinetic constants estimated suggest that the rapid noradrenaline uptake reflects transport into adrenergic neurones lying in the coronary interstitium. The high resolution of this paired-tracer dilution technique has permitted a 'non-invasive' study of neuronal uptake mechanisms and its application may be of clinical value. PMID:6425496
Holographic study of non-affine deformation in copper foam with a negative Poisson's ratio of -0.8
NASA Technical Reports Server (NTRS)
Chen, C. P.; Lakes, R. S.
1993-01-01
While conventional foams have positive Poisson's ratios (become smaller in cross-section when stretched and larger when compressed), foam materials have recently been defined which possess 'reentrant' cellular architectures; in these, inwardly-protruding cell ribs are responsible for negative Poisson's ratio behavior, yielding greater resilience than conventional foams. Double-exposure holographic interferometry is presently used to examine the microdeformation of a reentrant copper foam. Attention is given to the nonaffine (inhomogeneous) deformation of this foam.
Wiesemann, Nicole; Mohr, Juliane; Grosse, Cornelia; Herzberg, Martin; Hause, Gerd; Reith, Frank
2013-01-01
Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757–17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems. PMID:23475973
Mechanisms of iron and copper-frataxin interactions.
Han, T H L; Camadro, J M; Santos, R; Lesuisse, E; El Hage Chahine, J M; Ha-Duong, N T
2017-08-16
Frataxin is a mitochondrial protein whose deficiency is the cause of Friedreich's ataxia, a hereditary neurodegenerative disease. This protein plays a role in iron-sulfur cluster biosynthesis, protection against oxidative stress and iron metabolism. In an attempt to provide a better understanding of the role played by metals in its metabolic functions, the mechanisms of mitochondrial metal binding to frataxin in vitro have been investigated. A purified recombinant yeast frataxin homolog Yfh1 binds two Cu(ii) ions with a K d1 (Cu II ) of 1.3 × 10 -7 M and a K d2 (Cu II ) of 3.1 × 10 -4 M and a single Cu(i) ion with a higher affinity than for Cu(ii) (K d (Cu I ) = 3.2 × 10 -8 M). Mn(ii) forms two complexes with Yfh1 (K d1 (Mn II ) = 4.0 × 10 -8 M; K d2 (Mn II ) = 4.0 × 10 -7 M). Cu and Mn bind Yfh1 with higher affinities than Fe(ii). It is established for the first time that the mechanisms of the interaction of iron and copper with frataxin are comparable and involve three kinetic steps. The first step occurs in the 50-500 ms range and corresponds to a first metal uptake. This is followed by two other kinetic processes that are related to a second metal uptake and/or to a change in the conformation leading to thermodynamic equilibrium. Frataxin deficient Δyfh1 yeast cells exhibited a marked growth defect in the presence of exogenous Cu or Mn. Mitochondria from Δyfh1 strains also accumulated higher amounts of copper, suggesting a functional role of frataxin in vivo in copper homeostasis.
LAMB, DAVID J; AVADES, TONY Y; FERNS, GORDON AA
2001-01-01
There has been considerable debate about how copper status may affect the biochemical and cellular processes associated with atherogenesis. We have investigated the effects of graded dietary copper supplementation on processes likely to contribute to atherogenesis, using the cholesterol-fed New Zealand White rabbit model. Rabbits (n = 40) were fed a 0.25–1% cholesterol diet deficient in copper. Animals received either 0, 1, 3 or 20 mg copper/day and were killed after 13 weeks. Plasma cholesterol levels were similar in each dietary group. Aortic concentrations of copper were higher in the 20 mg copper/day animals compared to those receiving 0 mg copper/day (3.70 ± 0.78 vs. 1.33 ± 0.46 µg/g wet tissue; P < 0.05). Aortic superoxide dismutase activity was higher in animals receiving 20 mg copper/day (323 ± 21 IU/mg tissue) compared to the other groups (187 ± 21; 239 ± 53; 201 ± 33 IU/mg tissue) (P > 0.05). En face staining of aortae with oil red O showed that both high copper supplementation (20 mg/day) (67.1 ± 5.5%) and a deficient diet (0 mg/day) (63.1 ± 4.8%) was associated with significantly larger lesions (P < 0.05) compared to moderately supplemented animals (1 mg/day and 3 mg/day) (51.3 ± 6.3 and 42.8 ± 7.9%). These data indicate that in the cholesterol-fed rabbit, there is an optimal dietary copper intake and that dietary copper deficiency or excess are associated with an increased susceptibility to aortic atherosclerosis. Many Western diets contain insufficient copper and these findings indicate that a moderate dietary copper content may confer a degree of cardiac protection to the human population. PMID:11703538
Wang, Shiyu; Allen, Nickolas; Vickers, Timothy A; Revenko, Alexey S; Sun, Hong; Liang, Xue-hai; Crooke, Stanley T
2018-01-01
Abstract Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs. PMID:29514240
NASA Astrophysics Data System (ADS)
Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher
2014-03-01
In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.
The uptake of 3H-vincristine by a mouse carcinoma during a course of fractionated radiotherapy.
Zanelli, G D; Rota, L; Trovo, M; Grigoletto, E; Roncadin, M
1989-09-01
The variations in uptake of 3H-vincristine sulphate, given as a bolus i.v. injection, by a transplantable murine tumour during a realistic course of fractionated daily gamma-radiation of 25 x 2.0 Gy have been investigated. Maximum levels of 3H in the tumours are found when the tracer is injected 4h after irradiation and the tumours are dissected out 1 h after injection. During the course of daily irradiation the pattern of uptake varies considerably but reproducibly. There are peaks of uptake after 7, 13 and 22 fractions of 2.0 Gy when the amount of 3H in the tumours is as much as three times that found in non-irradiated tumours. After 17-18 fractions, however, the tumour content of 3H is lower than that of non-irradiated tumours. The wave-like pattern of uptake could be due either to capillary occlusion brought about by radiation induced cellular swelling and oedema followed by re-opening of the capillaries during periods of decreased cellularity, or to some mechanism of recovery from radiation damage during the week-end rest period.
The uptake of 3H-vincristine by a mouse carcinoma during a course of fractionated radiotherapy.
Zanelli, G. D.; Rota, L.; Trovo, M.; Grigoletto, E.; Roncadin, M.
1989-01-01
The variations in uptake of 3H-vincristine sulphate, given as a bolus i.v. injection, by a transplantable murine tumour during a realistic course of fractionated daily gamma-radiation of 25 x 2.0 Gy have been investigated. Maximum levels of 3H in the tumours are found when the tracer is injected 4h after irradiation and the tumours are dissected out 1 h after injection. During the course of daily irradiation the pattern of uptake varies considerably but reproducibly. There are peaks of uptake after 7, 13 and 22 fractions of 2.0 Gy when the amount of 3H in the tumours is as much as three times that found in non-irradiated tumours. After 17-18 fractions, however, the tumour content of 3H is lower than that of non-irradiated tumours. The wave-like pattern of uptake could be due either to capillary occlusion brought about by radiation induced cellular swelling and oedema followed by re-opening of the capillaries during periods of decreased cellularity, or to some mechanism of recovery from radiation damage during the week-end rest period. PMID:2789937
Vicario-Parés, Unai; Lacave, Jose M; Reip, Paul; Cajaraville, Miren P; Orbea, Amaia
2018-01-01
Due to their antimicrobial, electrical and magnetic properties, copper nanoparticles (NPs) are suitable for a vast array of applications. Copper can be toxic to biota, making it necessary to assess the potential hazard of copper nanomaterials. Zebrafish (Danio rerio) were exposed to 10 µg Cu/L of CuO NPs of ≈100 nm (CuO-poly) or ionic copper to compare the effects provoked after 3 and 21 days of exposure and at 6 months post-exposure (mpe). At 21 days, significant copper accumulation was only detected in fish exposed to ionic copper. Exposure to both copper forms caused histopathological alterations that could reduce gill functionality, more markedly in the case of ionic copper. Nevertheless, at 6 mpe higher prevalences of gill lesions were detected in fish previously exposed to CuO-poly NPs. No relevant histological alterations were detected in liver, but the lysosomal membrane stability test showed significantly impaired general health status after exposure to both metal forms that lasted up to 6 mpe. 69 transcripts appeared regulated after 3 days of exposure to CuO-poly NPs, suggesting that NPs could produce oxidative stress and reduce metabolism and transport processes. Thirty transcripts were regulated after 21 days of exposure to ionic copper, indicating possible DNA damage. Genes of the circadian clock were identified as the key genes involved in time-dependent differences between the two copper forms. In conclusion, each copper form showed a distinct pattern of liver transcriptome regulation, but both caused gill histopathological alterations and long lasting impaired health status in adult zebrafish.
Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun
2017-09-23
Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.
The cellular uptake and transport of zein nanoparticles: Effect of sodium caseinate
USDA-ARS?s Scientific Manuscript database
Cellular evaluation of zein nanoparticles has not been studied systematically due to their poor redispersibility. Caseinate (CAS) stabilized zein nanoparticles have been recently developed with better redispersibility in salt solutions. In this study, zein-CAS nanoparticles were prepared with differ...
NASA Astrophysics Data System (ADS)
Das, Debobrato
Current methods for gene delivery utilize nanocarriers such as liposomes and viral vectors that may produce in vivo toxicity, immunogenicity, or mutagenesis. Moreover, these common high-cost systems have a low efficacy of gene-vehicle transport across the cell plasma membrane followed by inadequate release and weak intracellular stability of the genetic sequence. Thus, this study aims to maximize gene transfection while minimizing cytotoxicity by utilizing supersaturated blood-plasma ions derived from simulated body fluids (SBF). With favorable electrostatic interactions to create biocompatible calcium-phosphate nanoparticles (NPs) derived from biomimetic apatite (BA), results suggest that the SBF system, though naturally sensitive to reaction conditions, after optimization can serve as a tunable and versatile platform for the delivery of various types of nucleic acids. From a systematic exploration of the effects of nucleation pH, incubation temperature, and time on transfection efficiency, the study proposes distinct characteristic trends in SBF BA-NP morphology, cellular uptake, cell viability, and gene modulation. Specifically, with aggressive nucleation and growth of BA-NPs in solution (observed via scanning electron microscopy), the ensuing microenvironment imposes a more toxic cellular interaction (indicated by alamarBlue and BCA assays), limiting particle uptake (fluorescence experiments) and subsequent gene knockdown (quantitative loss of function assays). Controlled precipitation of BA-NPs function to increase particle accessibility by surrounding cells, and subsequently enhance uptake and transfection efficiency. By closely examining such trends, an optimal fabrication condition of pH 6.5-37C can be observed where particle growth is more tamed and less chaotic, providing improved, favorable cellular interactions that increase cell uptake and consequently maximize gene transfection, without compromising cellular viability.
Yogalingam, Gouri; Lee, Amanda R; Mackenzie, Donald S; Maures, Travis J; Rafalko, Agnes; Prill, Heather; Berguig, Geoffrey Y; Hague, Chuck; Christianson, Terri; Bell, Sean M; LeBowitz, Jonathan H
2017-03-10
Neutrophil myeloperoxidase (MPO) catalyzes the H 2 O 2 -dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N -retinylidene- N -retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N -retinylidene- N -retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Yogalingam, Gouri; Lee, Amanda R.; Mackenzie, Donald S.; Maures, Travis J.; Rafalko, Agnes; Prill, Heather; Berguig, Geoffrey Y.; Hague, Chuck; Christianson, Terri; Bell, Sean M.; LeBowitz, Jonathan H.
2017-01-01
Neutrophil myeloperoxidase (MPO) catalyzes the H2O2-dependent oxidation of chloride anion to generate hypochlorous acid, a potent antimicrobial agent. Besides its well defined role in innate immunity, aberrant degranulation of neutrophils in several inflammatory diseases leads to redistribution of MPO to the extracellular space, where it can mediate tissue damage by promoting the oxidation of several additional substrates. Here, we demonstrate that mannose 6-phosphate receptor-mediated cellular uptake and delivery of MPO to lysosomes of retinal pigmented epithelial (RPE) cells acts to clear this harmful enzyme from the extracellular space, with lysosomal-delivered MPO exhibiting a half-life of 10 h. Lysosomal-targeted MPO exerts both cell-protective and cytotoxic functions. From a therapeutic standpoint, MPO catalyzes the in vitro degradation of N-retinylidene-N-retinylethanolamine, a toxic form of retinal lipofuscin that accumulates in RPE lysosomes and drives the pathogenesis of Stargardt macular degeneration. Furthermore, chronic cellular uptake and accumulation of MPO in lysosomes coincides with N-retinylidene-N-retinylethanolamine elimination in a cell-based model of macular degeneration. However, lysosomal-delivered MPO also disrupts lysosomal acidification in RPE cells, which coincides with nuclear translocation of the lysosomal stress-sensing transcription factor EB and, eventually, cell death. Based on these findings we predict that under periods of acute exposure, cellular uptake and lysosomal degradation of MPO mediates elimination of this harmful enzyme, whereas chronic exposure results in progressive accumulation of MPO in lysosomes. Lysosomal-accumulated MPO can be both cell-protective, by promoting the degradation of toxic retinal lipofuscin deposits, and cytotoxic, by triggering lysosomal stress and cell death. PMID:28115520
NASA Astrophysics Data System (ADS)
Liaw, Kevin; Gök, Ozgul; DeRidder, Louis B.; Kannan, Sujatha; Kannan, Rangaramanujam M.
2018-04-01
Dendrimers are a promising class of polymeric nanoparticles for delivery of therapeutics and diagnostics. Polyamidoamine (PAMAM) dendrimers have shown significant efficacy in many animal models, with performance dependent on surface functionalities. Understanding the effects of end groups on biological interactions is critical for rational design of dendrimer-mediated therapies. In this study, we quantify the cellular trafficking kinetics (endocytosis and exocytosis) of generation 4 neutral (D4-OH), cationic (D4-NH2), anionic (D3.5-COOH), and generation 6 neutral (D6-OH) PAMAM dendrimers to investigate the nanoscale effects of surface functionality and size on cellular interactions. Resting and LPS-activated microglia were studied due to their central roles in dendrimer therapies for central nervous system disorders. D4-OH exhibits greater cellular uptake and lower retention than the larger D6-OH. D4-OH and D3.5-COOH exhibit similar trafficking kinetics, while D4-NH2 exhibits significant membrane interactions, resulting in faster cell association but lower internalization. Cationic charge may also enhance vesicular escape for greater cellular retention and preferential partitioning to nuclei. LPS activation further improves uptake of dendrimers, with smaller and cationic dendrimers experiencing the greatest increases in uptake compared to resting microglia. These studies have implications for the dependence of trafficking pathway on dendrimer properties and inform the design of dendrimer constructs tailored to specific therapeutic needs. Cationic dendrimers are ideal for delivering genetic materials to nuclei, but toxicity may be a limiting factor. Smaller, neutral dendrimers are best suited for delivering high levels of therapeutics in acute neuroinflammation, while larger or cationic dendrimers provide robust retention for sustained release of therapeutics in longer-term diseases.
Aoyama, Michihiko; Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Yoshioka, Yasuo; Tsutsumi, Yasuo
2016-11-25
In biological fluids, nanoparticles interact with biological components such as proteins, and a layer called the "protein corona" forms around the nanoparticles. It is believed that the composition of the protein corona affects the cellular uptake and in vivo biodistribution of nanoparticles; however, the key proteins of the protein corona that control the biological fate of nanoparticles remain unclear. Recently, it was reported that clusterin binding to pegylated nanoparticles is important for the stealth effect of pegylated nanoparticles in phagocytes. However, the effect of clusterin on non-pegylated nanoparticles is unknown, although it is known that clusterin is present in the protein corona of non-pegylated nanoparticles. Here, we assessed the stealth effect of clusterin in the corona of non-pegylated silver nanoparticles and silica nanoparticles. We found that serum- and plasma-protein corona inhibited the cellular uptake of silver nanoparticles and silica nanoparticles in phagocytes and that the plasma-protein corona showed a greater stealth effect compared with the serum-protein corona. Clusterin was present in both the serum- and plasma-protein corona, but was present at a higher level in the plasma-protein corona than in the serum-protein corona. Clusterin binding to silver nanoparticles and silica nanoparticles suppressed the cellular uptake of nanoparticles in human macrophage-like cells (THP-1 cells). Although further studies are required to determine how clusterin suppresses non-specific cellular uptake in phagocytes, our data suggest that clusterin plays a key role in the stealth effect of not only pegylated nanoparticles but also non-pegylated nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.
2017-01-01
The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles’ rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (∼60–160 nm), tubular length (∼6–70 nm), and outer diameter (∼6–10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, <5 min), unique internalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core–shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications. PMID:28852697
Schrand, Amanda M; Lin, Jonathan B; Hens, Suzanne Ciftan; Hussain, Saber M
2011-02-01
Nanoparticles (NPs) offer promise for a multitude of biological applications including cellular probes at the bio-interface for targeted delivery of anticancer substances, Raman and fluorescent-based imaging and directed cell growth. Nanodiamonds (NDs), in particular, have several advantages compared to other carbon-based nanomaterials - including a rich surface chemistry useful for chemical conjugation, high biocompatibility with little reactive oxygen species (ROS) generation, physical and chemical stability that affords sterilization, high surface area to volume ratio, transparency and a high index of refraction. The visualization of ND internalization into cells is possible via photoluminescence, which is produced by direct dye conjugation or high energy irradiation that creates nitrogen vacancy centers. Here, we explore the kinetics and mechanisms involved in the intracellular uptake and localization of novel, highly-stable, fluorophore-conjugated NDs. Examination in a neuronal cell line (N2A) shows ND localization to early endosomes and lysosomes with eventual release into the cytoplasm. The addition of endocytosis and exocytosis inhibitors allows for diminished uptake and increased accumulation, respectively, which further corroborates cellular behavior in response to NDs. Ultimately, the ability of the NDs to travel throughout cellular compartments of varying pH without degradation of the surface-conjugated fluorophore or alteration of cell viability over extended periods of time is promising for their use in biomedical applications as stable, biocompatible, fluorescent probes.
CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803.
Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J
2015-02-01
Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux-resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ~3 × 10(-16) ). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803
Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J
2015-01-01
Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux–resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ∼3 × 10−16). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. PMID:25545960
Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster
Navarro, Juan A.; Schneuwly, Stephan
2017-01-01
Maintenance of metal homeostasis is crucial for many different enzymatic activities and in turn for cell function and survival. In addition, cells display detoxification and protective mechanisms against toxic accumulation of metals. Perturbation of any of these processes normally leads to cellular dysfunction and finally to cell death. In the last years, loss of metal regulation has been described as a common pathological feature in many human neurodegenerative diseases. However, in most cases, it is still a matter of debate whether such dyshomeostasis is a primary or a secondary downstream defect. In this review, we will summarize and critically evaluate the contribution of Drosophila to model human diseases that involve altered metabolism of metals or in which metal dyshomeostasis influence their pathobiology. As a prerequisite to use Drosophila as a model, we will recapitulate and describe the main features of core genes involved in copper and zinc metabolism that are conserved between mammals and flies. Drosophila presents some unique strengths to be at the forefront of neurobiological studies. The number of genetic tools, the possibility to easily test genetic interactions in vivo and the feasibility to perform unbiased genetic and pharmacological screens are some of the most prominent advantages of the fruitfly. In this work, we will pay special attention to the most important results reported in fly models to unveil the role of copper and zinc in cellular degeneration and their influence in the development and progression of human neurodegenerative pathologies such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Friedreich's Ataxia or Menkes, and Wilson's diseases. Finally, we show how these studies performed in the fly have allowed to give further insight into the influence of copper and zinc in the molecular and cellular causes and consequences underlying these diseases as well as the discovery of new therapeutic strategies, which had not yet been described in other model systems. PMID:29312444
Hu, Changwei; Liu, Lei; Li, Xiuling; Xu, Yundi; Ge, Zhigang; Zhao, Yongjun
2018-01-05
The wide application and unique properties of graphene oxide (GO) make it to interact with other pollutants and subsequently alter their behavior and toxicity. We evaluated the influences of GO at different concentrations (1 and 5mg/L) on copper (Cu) stress in duckweed (Lemna minor L.) GO below a concentration of 5mg/L showed no adverse effects on L. minor. The addition of Cu above 10μM represented a stress condition, which was evidenced by various parameters such as frond number, percent inhibition of growth rate (I r ), total chlorophyll content, dry weight, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). When L. minor was simultaneously exposed to GO and Cu, especially at a GO concentration of 5mg/L and a Cu level above 10μM, the increase of I r and decrease of chlorophyll content were inhibited, suggesting that the Cu stress was diminished in the presence of GO. The addition of Cu alone, ranging between 5 and 20μM, increased Cu, B, Mn, Fe, Co, and Zn uptake, but decreased P uptake. Our results suggest that GO can lessen Cu stress in L. minor via Cu adsorption, thereby protecting the plants from the damaging effects of high Cu concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Minocha, Shalini
Nanotoxicology and anticancer nanotherapeutics are essentially two sides of the same coin. The nanotoxicology discipline deals with the nanoparticle (NP)-induced toxicity and mechanisms of cell death in healthy cells, whereas anticancer agents delivered via nano-based approaches aim to induce cell death in abnormally proliferating cancer cells. The objectives of the studies presented herein were two-fold; to (a) systematically study the physico-chemical properties and cell death mechanisms of model NPs and (b) utilize the knowledge gained from cell death-nanotoxicity studies in developing a potentially novel anticancer nanotherapeutic agent. For the first objective, the effect of a distinguishing characteristic, i.e., surface carbon coating on the matched pairs of carbon-coated and non-coated copper and nickel NPs (Cu, C-Cu, Ni and C-Ni) on the physico-chemical properties and toxicity in A549 alveolar epithelial cells were evaluated. The effect of carbon coating on particle size, zeta potential, oxidation state, cellular uptake, release of soluble metal and concentration dependent toxicity of Cu and Ni NPs was systematically evaluated. A significant effect of carbon coating was observed on the physico-chemical properties, interaction with cellular membranes, and overall toxicity of the NPs. C-Cu NPs, compared to Cu NPs, showed four-fold lower release of soluble copper, ten-fold higher cellular uptake and protection against surface oxidation. In toxicity assays, C-Cu NPs induced higher mitochondrial damage than Cu NPs whereas Cu NPs were associated with a significant damage to plasma membrane integrity. Nickel and carbon coated nickel NPs were less toxic compared to Cu and C-Cu NPs. Thus, by studying the effect of carbon coating, correlations between physico-chemical properties and toxicity of NPs were established. The second objective was focused on utilizing nano-based approaches for the intracellular delivery of an anticancer agent, Cytochrome c (Cyt c), to breast cancer cells for inducing apoptosis. Cytochrome c is an endogenous mitochondrial protein and upon its release to cytosol, leads to apoptotic cell death. Although the mechanism by which Cyt c induces apoptosis theoretically makes it an attractive anti-cancer therapeutic agent, the lack of physicochemical characteristics required for successful cell permeation requires the use of delivery systems such as nanocarriers to facilitate its intracellular delivery. Cytochrome c, being a protein, is susceptible to changes in structural integrity and aggregation which might occur upon exposure to organic solvents and high shear/stress conditions, often used during nanoparticle preparation. Furthermore, successful delivery to cell cytosol requires endosomal release. Therefore, to deliver Cyt c intracellularly, while maintaining conditions for its stability, entrapment was performed using a film hydration method with 1,2-dioleoyl-3-trimethylammonium-propane and cholesterol (DOTAP-Chol) liposomes. It was shown that modulation of hydration buffer pH from 7 to 8.5 increased entrapment of Cyt c in DOTAP-Chol liposomes from 2% to 30%. The optimized formulation showed apoptotic activity in MDA-MB-231 cells. It was also shown that no aggregation, secondary and heme crevice structure change and deamidation was observed for Cyt c released from optimized formulation and that released Cyt c retained apoptotic activity after storage of formulation for twenty eight days at 4 °C.
Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy
NASA Astrophysics Data System (ADS)
Han, Jishu; Zhang, Jingjing; Yang, Meng; Cui, Daxiang; de La Fuente, Jesus M.
2015-12-01
Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future.Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future. Electronic supplementary information (ESI) available: The evolution of the UV-vis absorption of Au NPrs by centrifugation, TEM image of PEG-capped Au NPrs, the UV-vis absorption of glucose, cytotoxicity of Au@PEG-Glc NPrs, gastric cell viabilities versus the concentration of Au@PEG-Glc NPrs and gastric cell viabilities filled with 80 μg Au@PEG-Glc NPrs versus the irradiation time, optoacoustic signals of Au NPr solution and Au@PEG NPrs. See DOI: 10.1039/c5nr06261f
Facing the challenges of Cu, Fe and Zn homeostasis in plants.
Palmer, Christine M; Guerinot, Mary Lou
2009-05-01
Plants have recently moved into the spotlight owing to the growing realization that the world needs solutions to energy and food production that are sustainable and environmentally sound. Iron, copper and zinc are essential for plant growth and development, yet the same properties that make these transition metals indispensable can also make them deadly in excess. Iron and copper are most often used for their redox properties, whereas zinc is primarily used for its ability to act as a Lewis acid. Here we review recent advances in the field of metal homeostasis and integrate the findings on uptake and transport of these three metals.
Optimal copper supply is required for normal plant iron deficiency responses
Waters, Brian M; Armbrust, Laura C
2013-01-01
Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity. PMID:24084753
Optimal copper supply is required for normal plant iron deficiency responses.
Waters, Brian M; Armbrust, Laura C
2013-01-01
Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity.
NASA Astrophysics Data System (ADS)
Kettler, Katja; Giannakou, Christina; de Jong, Wim H.; Hendriks, A. Jan; Krystek, Petra
2016-09-01
Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.
2013-01-01
Background The uptake of nanoparticles (NPs) by cells remains to be better characterized in order to understand the mechanisms of potential NP toxicity as well as for a reliable risk assessment. Real NP uptake is still difficult to evaluate because of the adsorption of NPs on the cellular surface. Results Here we used two approaches to distinguish adsorbed fluorescently labeled NPs from the internalized ones. The extracellular fluorescence was either quenched by Trypan Blue or the uptake was analyzed using imaging flow cytometry. We used this novel technique to define the inside of the cell to accurately study the uptake of fluorescently labeled (SiO2) and even non fluorescent but light diffracting NPs (TiO2). Time course, dose-dependence as well as the influence of surface charges on the uptake were shown in the pulmonary epithelial cell line NCI-H292. By setting up an integrative approach combining these flow cytometric analyses with confocal microscopy we deciphered the endocytic pathway involved in SiO2 NP uptake. Functional studies using energy depletion, pharmacological inhibitors, siRNA-clathrin heavy chain induced gene silencing and colocalization of NPs with proteins specific for different endocytic vesicles allowed us to determine macropinocytosis as the internalization pathway for SiO2 NPs in NCI-H292 cells. Conclusion The integrative approach we propose here using the innovative imaging flow cytometry combined with confocal microscopy could be used to identify the physico-chemical characteristics of NPs involved in their uptake in view to redesign safe NPs. PMID:23388071
Laboratory evolution of copper tolerant yeast strains
2012-01-01
Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds. PMID:22214286
USDA-ARS?s Scientific Manuscript database
Biosolids have been applied to agricultural land for many years as a source of plant nutrients. There are growing concerns of residual phosphorus and metals from long-term biosolids amended fields and their potential impact on the environment. Objectives of this study were to determine, i) phosphor...
Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Payne, H. Ross; Kier, Ann B.
2012-01-01
The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting. PMID:22859366
Rinklebe, Jörg; Shaheen, Sabry M
2015-09-01
The problem of copper (Cu) pollution in riverine ecosystems is world-wide and has significant environmental, eco-toxicological, and agricultural relevance. We assessed the suitability and effectiveness of application rate of 1% of activated charcoal, bentonite, biochar, cement kiln dust, chitosan, coal fly ash, limestone, nano-hydroxyapatite, organo-clay, sugar beet factory lime, and zeolite as soil amendments together with rapeseed as bioenergy crop as a possible remediation option for a heavily Cu polluted floodplain soil (total Cu=3041.9mgkg(-1)) that has a very high proportion of sorbed/carbonate fraction (484.6mgkg(-1)) and potential mobile fraction of Cu (1611.9mgkg(-1)). Application changed distribution of Cu among geochemical fractions: alkaline materials lead to increased carbonate bounded fraction and the acid rhizosphere zone might cause release of this Cu. Thus, mobilization of Cu and uptake of Cu by rapeseed were increased compared to the control (except for organo-clay) under the prevailing conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response
dos Santos, Nathália Villa; Matias, Andreza Cândido; Higa, Guilherme Shigueto Vilar; Kihara, Alexandre Hiroaki; Cerchiaro, Giselle
2015-01-01
The toxicologic effects of copper (Cu) on tumor cells have been studied during the past decades, and it is suggested that Cu ion may trigger antiproliferative effects in vitro. However, in normal cells the toxicologic effects of high exposures of free Cu are not well understood. In this work, Cu uptake, the expression of genes associated with cell cycle regulation, and the levels of ROS production and related oxidative processes were evaluated in Cu-treated mammary epithelial MCF10A nontumoral cells. We have shown that the Cu additive is associated with the activation of cyclin D1 and cyclin B1, as well as cyclin-dependent kinase 2 (CDK2). These nontumor cells respond to Cu-induced changes in the oxidative balance by increase of the levels of reduced intracellular glutathione (GSH), decrease of reactive oxygen species (ROS) generation, and accumulation during progression of the cell cycle, thus preventing the cell abnormal proliferation or death. Taken together, our findings revealed an effect that contributes to prevent a possible damage of normal cells exposed to chemotherapeutic effects of drugs containing the Cu ion. PMID:26583055
Foster, Daniel J; Heacock, Anne M; Fisher, Stephen K
2010-04-01
In addition to its function as an excitatory neurotransmitter, glutamate plays a major role as an osmolyte within the central nervous system (CNS). Accordingly, mechanisms that regulate glutamate release and uptake are of physiological importance not only during conditions in which cell volume remains constant but also when cells are subjected to hypoosmotic stress. In the present study, the ability of muscarinic cholinergic receptors (mAChRs) to regulate the uptake of glutamate (monitored as D-aspartate) into human SH-SY5Y neuroblastoma cells under isotonic or hypotonic conditions has been examined. In isotonic media, agonist activation of mAChRs resulted in a significant increase (250-300% of control) in the uptake of D-aspartate and, concurrently, a cellular redistribution of the excitatory amino acid transporter 3 (EAAT3) to the plasma membrane. mAChR-mediated increases in d-aspartate uptake were potently blocked by the EAAT3 inhibitor l-beta-threo-benzyl-aspartate. In hypotonic media, the ability of mAChR activation to facilitate D-aspartate uptake was significantly attenuated (40-50%), and the cellular distribution of EAAT3 was disrupted. Reduction of mAChR-stimulated D-aspartate uptake under hypoosmotic conditions could be fully reversed upon re-exposure of the cells to isotonic media. Under both isotonic and hypotonic conditions, mAChR-mediated increases in D-aspartate uptake depended on cytoskeletal integrity, protein kinase C and phosphatidylinositol 3-kinase activities, and the availability of intracellular Ca2+. In contrast, dependence on extracellular Ca2+ was observed only under isotonic conditions. The results suggest that, although the uptake of D-aspartate into SH-SY5Y cells is enhanced after mAChR activation, this process is markedly attenuated by hypoosmolarity.
Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.
2014-01-01
Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225
Effect of adenosine on the growth of human T-lymphocyte leukemia cell line MOLT-4.
Streitová, Denisa; Weiterová, Lenka; Hofer, Michal; Holá, Jirina; Horváth, Viktor; Kozubík, Alois; Znojil, Vladimír
2007-09-01
Adenosine has been observed to suppress the growth of MOLT-4 human leukemia cells in vitro. Changes in the cell cycle, especially increased percentage of cells in S phase, prolonged generation time, and induction of apoptosis at higher adenosine concentrations have been found to be responsible for the growth suppression. Dipyridamole, a drug inhibiting the cellular uptake of adenosine, reversed partially but significantly the adenosine-induced growth suppression. It follows from these results that the action of adenosine on the MOLT-4 cells comprises its cellular uptake and intracellular operation. These findings present new data on anticancer efficacy of adenosine.
Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Constantinou, Pamela E.; Danysh, Brian P.; Shenefelt, Derek L.; Carson, Daniel D.; Farach-Carson, Mary C.; Kulchitsky, Vladimir A.; Wu, Xiangwei; Wagner, Daniel S.; Lapotko, Dmitri O.
2012-01-01
The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level. PMID:22509318
Lukianova-Hleb, Ekaterina Y; Ren, Xiaoyang; Constantinou, Pamela E; Danysh, Brian P; Shenefelt, Derek L; Carson, Daniel D; Farach-Carson, Mary C; Kulchitsky, Vladimir A; Wu, Xiangwei; Wagner, Daniel S; Lapotko, Dmitri O
2012-01-01
The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level.
Phagocytosis: studies by optical tweezers and time-resolved microspectrofluorometry
NASA Astrophysics Data System (ADS)
Schneckenburger, Herbert; Sailer, Reinhard; Hendinger, Anita; Gschwend, Michael H.; Bauer, Manfred; Strauss, Wolfgang S. L.
1999-01-01
Cellular uptake of transparent Latex particles by J774A.1 mouse macrophages has been studied: First, single beads were kept within an optical light trap and located in close vicinity to individual cells. Uptake of the beads was visualized, and intrinsic fluorescence was detected in the spectral range of 420 - 530 nm. Second, time-gated fluorescence spectra of single cells were recorded at pre- selected times during one hour after cellular uptake. A rapid increase of autofluorescence and a subsequent decrease to the level of control cells within about 10 min. was measured within a time gate of 0 - 5 ns after the exciting laser pulses, and attributed to the 'free' coenzyme NAD(P)H. In contrast, fluorescence increase of NAD(P)H bound to proteins (measured within time gates of 5 - 10 ns or 10 - 15 ns) was less pronounced, and the subsequent decrease occurred within a longer period (about one hour).
Schaffert, David H; Okholm, Anders H; Sørensen, Rasmus S; Nielsen, Jesper S; Tørring, Thomas; Rosen, Christian B; Kodal, Anne Louise B; Mortensen, Michael R; Gothelf, Kurt V; Kjems, Jørgen
2016-05-01
DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site-selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22-fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khurana, Rajneet Kaur; Gaspar, Balan Louis; Welsby, Gail; Katare, O P; Singh, Kamalinder K; Singh, Bhupinder
2018-06-01
The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of < 60 nm and > 80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency.
Marr, A K; Jenssen, H; Moniri, M Roshan; Hancock, R E W; Panté, N
2009-01-01
Although both lactoferrin (Lf), a component of the innate immune system of living organisms, and its N-terminal pepsin cleavage product lactoferricin (Lfcin) have anti-herpes activity, the precise mechanisms by which Lf and Lfcin bring about inhibition of herpes infections are not fully understood. In the present study, experiments were carried out to characterize the activity of bovine Lf and Lfcin (BLf and BLfcin) against the Herpes simplex virus-1 (HSV-1). HSV-1 cellular uptake and intracellular trafficking were studied by immunofluorescence microscopy. In comparison to the untreated infected control cells, both the BLf- and BLfcin-treated cells showed a significant reduction in HSV-1 cellular uptake. The few virus particles that were internalized appeared to have a delayed intracellular trafficking. Thus, in addition to their interference with the uptake of the virus into host cells, Lf and Lfcin also exert their antiviral effect intracellularly.
g-force induced giant efficiency of nanoparticles internalization into living cells
Ocampo, Sandra M.; Rodriguez, Vanessa; de la Cueva, Leonor; Salas, Gorka; Carrascosa, Jose. L.; Josefa Rodríguez, María; García-Romero, Noemí; Luis, Jose; Cuñado, F.; Camarero, Julio; Miranda, Rodolfo; Belda-Iniesta, Cristobal; Ayuso-Sacido, Angel
2015-01-01
Nanotechnology plays an increasingly important role in the biomedical arena. Iron oxide nanoparticles (IONPs)-labelled cells is one of the most promising approaches for a fast and reliable evaluation of grafted cells in both preclinical studies and clinical trials. Current procedures to label living cells with IONPs are based on direct incubation or physical approaches based on magnetic or electrical fields, which always display very low cellular uptake efficiencies. Here we show that centrifugation-mediated internalization (CMI) promotes a high uptake of IONPs in glioblastoma tumour cells, just in a few minutes, and via clathrin-independent endocytosis pathway. CMI results in controllable cellular uptake efficiencies at least three orders of magnitude larger than current procedures. Similar trends are found in human mesenchymal stem cells, thereby demonstrating the general feasibility of the methodology, which is easily transferable to any laboratory with great potential for the development of improved biomedical applications. PMID:26477718
Vassbotn, F S; Langeland, N; Holmsen, H
1990-09-01
Porcine PDGF was found to increase [3H]inositol trisphosphate, [3H]thymidine incorporation and 32P-labelling of polyphosphoinositides in C3H/10T1/2 Cl 8 fibroblasts. These responses to PDGF stimulation were all inhibited by 5 mM neomycin, a polycationic aminoglycoside formerly known to inhibit polyphosphoinositide turnover. PDGF also markedly increased the cellular uptake of inorganic [32P]Pi. This response of PDGF was not inhibited by neomycin (5 mM). Thus, neomycin inhibited PDGF-induced IP3 formation, 32P-labelling of polyphosphoinositides and DNA synthesis, but not cellular uptake of inorganic phosphate. These effects of neomycin suggest a bifurcation of the initial part of the PDGF-induced signal transduction, separating at the receptor level or before phospholipase C activation.
Park, Yoonjee C; Smith, Jared B; Pham, Tuan; Whitaker, Ragnhild D; Sucato, Christopher A; Hamilton, James A; Bartolak-Suki, Elizabeth; Wong, Joyce Y
2014-07-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are currently unavailable as MRI contrast agents for detecting atherosclerosis in the clinical setting because of either low signal enhancement or safety concerns. Therefore, a new generation of SPIONs with increased circulation time, enhanced image contrast, and less cytotoxicity is essential. In this study, monodisperse SPIONs were synthesized and coated with polyethylene glycol (PEG) of varying molecular weights. The resulting PEGylated SPIONs were characterized, and their interactions with vascular smooth muscle cells (VSMCs) were examined. SPIONs were tested at different concentrations (100 and 500 ppm Fe) for stability, T2 contrast, cytotoxicity, and cellular uptake to determine an optimal formulation for in vivo use. We found that at 100 ppm Fe, the PEG 2K SPIONs showed adequate stability and magnetic contrast, and exhibited the least cytotoxicity and nonspecific cellular uptake. An increase in cell viability was observed when the SPION-treated cells were washed with PBS after 1h incubation compared to 5 and 24h incubation without washing. Our investigation provides insight into the potential safe application of SPIONs in the clinic. Copyright © 2014 Elsevier B.V. All rights reserved.
Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng
2017-01-01
To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329
Baek, Jong-Suep; Cho, Cheong-Weon
2017-08-01
Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.
Lartigue, Audrey; Burlat, Bénédicte; Coutard, Bruno; Chaspoul, Florence; Claverie, Jean-Michel
2014-01-01
ABSTRACT Giant viruses able to replicate in Acanthamoeba castellanii penetrate their host through phagocytosis. After capsid opening, a fusion between the internal membranes of the virion and the phagocytic vacuole triggers the transfer in the cytoplasm of the viral DNA together with the DNA repair enzymes and the transcription machinery present in the particles. In addition, the proteome analysis of purified mimivirus virions revealed the presence of many enzymes meant to resist oxidative stress and conserved in the Mimiviridae. Megavirus chilensis encodes a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD), an enzyme known to detoxify reactive oxygen species released in the course of host defense reactions. While it was thought that the metal ions are required for the formation of the active-site lid and dimer stabilization, megavirus chilensis SOD forms a very stable metal-free dimer. We used electron paramagnetic resonance (EPR) analysis and activity measurements to show that the supplementation of the bacterial culture with copper and zinc during the recombinant expression of Mg277 is sufficient to restore a fully active holoenzyme. These results demonstrate that the viral enzyme's activation is independent of a chaperone both for disulfide bridge formation and for copper incorporation and suggest that its assembly may not be as regulated as that of its cellular counterparts. A SOD protein is encoded by a variety of DNA viruses but is absent from mimivirus. As in poxviruses, the enzyme might be dispensable when the virus infects Acanthamoeba cells but may allow megavirus chilensis to infect a broad range of eukaryotic hosts. IMPORTANCE Mimiviridae are giant viruses encoding more than 1,000 proteins. The virion particles are loaded with proteins used by the virus to resist the vacuole's oxidative stress. The megavirus chilensis virion contains a predicted copper, zinc superoxide dismutase (Cu,Zn-SOD). The corresponding gene is present in some megavirus chilensis relatives but is absent from mimivirus. This first crystallographic structure of a viral Cu,Zn-SOD highlights the features that it has in common with and its differences from cellular SODs. It corresponds to a very stable dimer of the apo form of the enzyme. We demonstrate that upon supplementation of the growth medium with Cu and Zn, the recombinant protein is fully active, suggesting that the virus's SOD activation is independent of a copper chaperone for SOD generally used by eukaryotic SODs. PMID:25355875
Removal of Cu(II) from leachate using natural zeolite as a landfill liner material.
Turan, N Gamze; Ergun, Osman Nuri
2009-08-15
All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.
Lima, Isabel; Marshall, Wayne E
2005-01-01
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.
Hubacher, David; Akora, Vitalis; Masaba, Rose; Chen, Mario; Veena, Valentine
2014-02-01
The levonorgestrel intrauterine system (LNG IUS) was developed over 30 years ago, but the product is currently too expensive for widespread use in many developing countries. In Kenya, one organization has received donated commodities for 5 years, providing an opportunity to assess impact and potential future role of the product. We reviewed service statistics on insertions of the LNG IUS, copper intrauterine device (IUD), and subdermal implant from 15 mobile outreach teams during the 2011 calendar year. To determine the impact of the LNG IUS introduction, we analyzed changes in uptake and distribution of the copper IUD and subdermal implant by comparing periods of time when the LNG IUS was available with periods when it was not available. In addition, we interviewed 27 clinicians to assess their views of the product and of its future role. When the LNG IUS was not available, intrauterine contraception accounted for 39% of long-acting method provision. The addition of the LNG IUS created a slight rise in intrauterine contraception uptake (to 44%) at the expense of the subdermal implant, but the change was only marginally significant (P = .08) and was largely attributable to the copper IUD. All interviewed providers felt that the LNG IUS would increase uptake of long-acting methods, and 70% felt that the noncontraceptive benefits of the product are important to clients. The LNG IUS was well-received among providers and family planning clients in this population in Kenya. Although important changes in service statistics were not apparent from this analysis (perhaps due to the small quantity of LNG IUS that was available), provider enthusiasm for the product was high. This finding, above all, suggests that a larger-scale introduction effort would have strong support from providers and thus increase the chances of success. Adding another proven and highly acceptable long-acting contraceptive technology to the method mix could have important reproductive health impact.
Highlights in Endocytosis of Nanostructured Systems.
Voltan, Aline R; Alarcon, Kaila M; Fusco-Almeida, Ana M; Soares, Christiane P; Mendes-Giannini, Maria J S; Chorilli, Marlus
2017-01-01
The focus of this review is the cellular internalisation mechanism of nanostructured systems (NSs) and their endosomal escape for targeted drug delivery. Endocytosis is a cellular process of internalisation of different molecules and foreign microorganisms. It is currently being studied for drug delivery through nanostructured systems. The most commonly studied routes of cellular uptake are phagocytosis, macro-pinocytosis, clathrinmediated endocytosis, caveolin-mediated endocytosis, and clathrin and caveolinindependent endocytosis. The mechanism utilised by NSs for cellular entry depends on factors such as cell type and its physicochemical properties. Currently, with the development of drugs-loaded onto NSs, it has been possible to increase the therapeutic index against few diseases. The NSs can deliver the active drug at locations that conventional drugs cannot, thereby minimising unwanted side effects. On cellular entry of NSs, there is a possibility of an endosomal escape of the contents into the cytoplasm, a mechanism that can be exploited so that NSs can migrate intra-cellularly and deliver the drug to the target of interest. Designing endolysosomal escape strategy is not an easy task, but it is critical for the optimal pharmacological action on the target tissue. The cellular uptake of drugs is a very important factor in therapy. Although NSs have emerged as effective drug delivery vehicle for treatment of diseases, it is crucial to understand the mechanism of NSs endocytosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; De Stefano, Luca; Santos, Hélder A
2015-12-21
Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.
Huppke, Peter; Brendel, Cornelia; Korenke, Georg Christoph; Marquardt, Iris; Donsante, Anthony; Yi, Ling; Hicks, Julia D.; Steinbach, Peter J.; Wilson, Callum; Elpeleg, Orly; Møller, Lisbeth Birk; Christodoulou, John; Kaler, Stephen G.; Gärtner, Jutta
2012-01-01
Copper is a trace metal that readily gains and donates electrons, a property that renders it desirable as an enzyme cofactor but dangerous as a source of free radicals. To regulate cellular copper metabolism, an elaborate system of chaperones and transporters has evolved, although no human copper chaperone mutations have been described to date. We describe a child from a consanguineous family who inherited a homozygous mutations in the SLC33A1, encoding an acetyl CoA transporter, and in CCS, encoding the copper chaperone for superoxide dismutase. The CCS mutation, p.Arg163Trp, predicts substitution of a highly conserved arginine residue at position 163 with tryptophan in domain II of CCS, which interacts directly with SOD1. Biochemical analyses of the patient’s fibroblasts, mammalian cell transfections, immunoprecipitation assays, and Lys7Δ (CCS homolog) yeast complementation support the pathogenicity of the mutation. Expression of CCS was reduced and binding of CCS to SOD1 impaired. As a result this mutation causes reduced SOD1 activity and may impair other mechanisms important for normal copper homeostasis. CCS-Arg163Trp represents the primary example of a human mutation in a gene coding for a copper chaperone. PMID:22508683
Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: A pro-oxidant mechanism.
Rehmani, Nida; Zafar, Atif; Arif, Hussain; Hadi, Sheikh Mumtaz; Wani, Altaf A
2017-04-01
Oxidative DNA damage has been implicated in the pathogenesis of neurological disorders, cancer and ageing. Owing to the established link between labile copper concentrations and neurological diseases, it is critical to explore the interactions of neurotransmitters and drug supplements with copper. Herein, we investigate the pro-oxidant DNA damage induced by the interaction of L-DOPA and dopamine (DA) with copper. The DNA binding affinity order of the compounds has been determined by in silico molecular docking. Agarose gel electrophoresis reveals that L-DOPA and DA are able to induce strand scission in plasmid pcDNA3.1 (+/-) in a copper dependent reaction. These metabolites also cause cellular DNA breakage in human lymphocytes by mobilizing endogenous copper, as assessed by comet assay. Further, L-DOPA and DA-mediated DNA breaks were detected by the appearance of post-DNA damage sensitive marker γH2AX in cancer cell lines accumulating high copper. Immunofluorescence demonstrated the co-localization of downstream repair factor 53BP1 at the damaged induced γH2AX foci in cancer cells. The present study corroborates and provides a mechanism to the hypothesis that suggests metal-mediated oxidation of catecholamines contributes to the pathogenesis of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.
1993-09-01
Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John E. Aston; William A. Apel; Brady D. Lee
2010-12-01
This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g-1, to viable cells at pH 5.5. The highest kL (binding-site affinity) observed was 61.2 ± 3.0 L mmol-1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells atmore » pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.« less
The ionic charge of Copper-64 complexes conjugated to an engineered antibody effects biodistribution
Dearling, Jason L. J.; Smith, Suzanne V.; Paterson, Brett M.; ...
2015-04-15
The development of biomolecules as imaging probes requires radiolabeling methods that do not significantly influence their biodistribution. Sarcophagine (Sar) chelators form extremely stable complexes with copper, and are therefore a promising option for labeling proteins with ⁶⁴Cu. However, initial studies using the first-generation sarcophagine bifunctional chelator SarAr to label the engineered antibody fragment ch14.18-ΔC H2 (MW 120 kDa) with ⁶⁴Cu showed high tracer retention in the kidneys,(>38% injected dose per gram (ID/g) 48 h post-injection), presumably because the high local positive charge on the Cu II-SarAr moiety resulted in increased binding of the labeled protein to the negatively charged basalmore » cells of the glomerulus. To test this hypothesis, ch14.18-ΔC H2 was conjugated with a series of Sar derivatives of decreasing positive charge and three commonly used macrocyclic polyaza polycarboxylate (PAC) BFCs. The immunoconjugates were labeled with ⁶⁴Cu and injected into mice, and PET/CT images were obtained at 24 and 48 h post injection (p.i.). At 48 h p.i., ex vivo biodistribution was carried out. In addition, to demonstrate the potential of metastasis detection using ⁶⁴Cu-labeled ch14.18-ΔC H2, a preclinical imaging study of intrahepatic neuroblastoma tumors was performed carried out. Reducing the positive charge on the Sar chelators decreased kidney uptake of Cu-labeled ch14.18-ΔC H2 by more than 6-fold, from >45 ID/g to <6% ID/g, while the uptake in most other tissues, including liver, was relatively unchanged. However, despite this dramatic decrease, the renal uptake of the PAC BFCs was generally lower than that of the Sar derivatives, as was the liver uptake. Uptake of ⁶⁴Cu-labeled ch14.18-ΔC H2 in neuroblastoma hepatic metastases was detected using PET.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Ekhtear; Ota, Akinobu, E-mail: aota@aichi-med-u.ac.jp; Karnan, Sivasundaram
Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, anmore » anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.« less
Copper homeostasis gene discovery in Drosophila melanogaster.
Norgate, Melanie; Southon, Adam; Zou, Sige; Zhan, Ming; Sun, Yu; Batterham, Phil; Camakaris, James
2007-06-01
Recent studies have shown a high level of conservation between Drosophila melanogaster and mammalian copper homeostasis mechanisms. These studies have also demonstrated the efficiency with which this species can be used to characterize novel genes, at both the cellular and whole organism level. As a versatile and inexpensive model organism, Drosophila is also particularly useful for gene discovery applications and thus has the potential to be extremely useful in identifying novel copper homeostasis genes and putative disease genes. In order to assess the suitability of Drosophila for this purpose, three screening approaches have been investigated. These include an analysis of the global transcriptional response to copper in both adult flies and an embryonic cell line using DNA microarray analysis. Two mutagenesis-based screens were also utilized. Several candidate copper homeostasis genes have been identified through this work. In addition, the results of each screen were carefully analyzed to identify any factors influencing efficiency and sensitivity. These are discussed here with the aim of maximizing the efficiency of future screens and the most suitable approaches are outlined. Building on this information, there is great potential for the further use of Drosophila for copper homeostasis gene discovery.
Bligny, R; Douce, R
1983-01-01
A laccase-type polyphenol oxidase is excreted by sycamore cells (Acer pseudoplatanus L.) cells. The enzyme has been purified by classical purification techniques. It is a blue copper protein of Mr 97 000, containing 45% carbohydrate and 0.24% copper. This protein consists of one single unit and the copper content corresponds to four copper atoms per protein molecule. The specific activity of the purified extracellular sycamore-cell laccase measured at pH 6.6 (optimum pH) and in the presence of 20mM-4-methhylcatechol (optimum substrate conditions) corresponded to an oxygen uptake of 32 000 nmol of O2/min per mg of protein. Under these conditions, the catalytic-centre activity of the enzyme reached 100 s-1. The excretion of laccase by sycamore cells is significant, being about 2% of the total protein synthesized by the cells during the exponential phase of growth, and is independent of cell growth. The physiological significance and the problems raised by the passage of this protein across the cytoplasmic membrane are discussed. PMID:6847630
Hatano, Ken-Ichi; Kanazawa, Kazuki; Tomura, Hiroki; Yamatsu, Takeshi; Tsunoda, Kin-Ichi; Kubota, Kenji
2016-09-01
Phytoextraction has been proposed as an alternative remediation technology for heavy metal contamination, and it is well known that chelators may alter the toxicity of heavy metals and the bioavailability in plants. Our previous work demonstrated that an adsorbent-column chromatography can effectively separate melanoidin-like product (MLP) from sugarcane molasses. The aim of this study was to examine the chelating property of MLP and to evaluate the facilitatory influence on the phytoextraction efficiency of Japanese radish. The result showed that MLP binds to all the metal ions examined and the binding capacity of MLP toward Cu(2+) seems to be the highest among them. The metal detoxification by MLP followed the order of Pb(2+) > Zn(2+) > Ni(2+) > Cu(2+) > Fe(2+) > Cd(2+) > Co(2+). Furthermore, in the phytoextraction experiment using copper sulfate, the application of MLP accelerated the detoxification of copper and the bioavailability in radish sprouts. Thus, these results suggest that MLP possesses the potential for an accelerator of phytoextraction in the copper-contaminated media.
Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin
2016-01-01
Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.
Liu, Shuyun; Yuan, Yujia; Zhou, Yijie; Zhao, Meng; Chen, Younan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping
2017-10-01
Hyperuricemia is an important risk factor for cardiovascular and renal diseases. Phloretin had shown antioxidant and anti-inflammatory properties, but its role in endothelial injury is rarely reported. In this study, we aimed to investigate the protective effect of phloretin on UA-induced injury in human umbilical vein endothelial cells. The effects of UA and phloretin on cell viability, inflammation, THP-1 monocyte adhesion, endothelial cell tube formation, GLUT9 expression and UA uptake in human umbilical vein endothelial cells were evaluated. The changes of nuclear factor-kappa B/extracellular regulated protein kinases signalling were also analysed. Our results showed that UA reduced cell viability and tube formation, and increased inflammation and monocytes adhesion in human umbilical vein endothelial cells in a dose-dependent manner. In contrast, phloretin significantly attenuated pro-inflammatory factors expression and endothelial injury induced by UA. Phloretin inhibited the activation of extracellular regulated protein kinases/nuclear factor-kappa B pathway, and reduced GLUT9 and it mediated UA uptake in human umbilical vein endothelial cells. These results indicated that phloretin attenuated UA-induced endothelial injury via a synergic mechanism including direct anti-inflammatory effect and lowering cellular UA uptake. Our study suggested that phloretin might be a promising therapy for hyperuricemia-related cardiovascular diseases. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling
Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V.
2016-01-01
Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling. PMID:27537838
E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.
Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V
2016-01-01
Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.
Hofman, Jan-Willem; Carstens, Myrra G.; van Zeeland, Femke; Helwig, Conny; Flesch, Frits M.; Hennink, Wim E.
2008-01-01
Purpose To study the in vitro photocytotoxicity and cellular uptake of biodegradable polymeric micelles loaded with the photosensitizer mTHPC, including the effect of lipase-catalyzed micelle degradation. Methods Micelles of mPEG750-b-oligo(ɛ-caprolactone)5 (mPEG750-b-OCL5) with a hydroxyl (OH), benzoyl (Bz) or naphthoyl (Np) end group were formed and loaded with mTHPC by the film hydration method. The cellular uptake of the loaded micelles, and their photocytotoxicity on human neck squamous carcinoma cells in the absence and presence of lipase were compared with free and liposomal mTHPC (Fospeg®). Results Micelles composed of mPEG750-b-OCL5 with benzoyl and naphtoyl end groups had the highest loading capacity up to 30% (w/w), likely due to π–π interactions between the aromatic end group and the photosensitizer. MTHPC-loaded benzoylated micelles (0.5 mg/mL polymer) did not display photocytotoxicity or any mTHPC-uptake by the cells, in contrast to free and liposomal mTHPC. After dilution of the micelles below the critical aggregation concentration (CAC), or after micelle degradation by lipase, photocytotoxicity and cellular uptake of mTHPC were restored. Conclusion The high loading capacity of the micelles, the high stability of mTHPC-loaded micelles above the CAC, and the lipase-induced release of the photosensitizer makes these micelles very promising carriers for photodynamic therapy in vivo. PMID:18597164
Bernal, María; Casero, David; Singh, Vasantika; Wilson, Grandon T.; Grande, Arne; Yang, Huijun; Dodani, Sheel C.; Pellegrini, Matteo; Huijser, Peter; Connolly, Erin L.; Merchant, Sabeeha S.; Krämer, Ute
2012-01-01
The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research. PMID:22374396
Effects of chronic copper exposure during early life in rhesus monkeys.
Araya, Magdalena; Kelleher, Shannon L; Arredondo, Miguel A; Sierralta, Walter; Vial, María Teresa; Uauy, Ricardo; Lönnerdal, Bo
2005-05-01
Whether infants regulate copper absorption and the potential effects of excess copper in early life remain poorly defined. The objective of the study was to assess copper retention, liver copper content, and liver function in infant rhesus monkeys fed infant formula containing 6.6 mg Cu/L. From birth to 5 mo of age, infant rhesus monkeys were fed formula that was supplemented with copper (0.6 mg Cu/L; n = 5) or not supplemented (n = 4). In all animals, weight and crown-rump length (by anthropometry), hemoglobin, hematocrit, plasma ceruloplasmin activity, and zinc and copper concentrations were measured monthly (birth to 6 mo) and at 8 and 12 mo. When the animals were 1, 5, and 8 mo old, liver copper and metallothionein concentrations, liver histology (by light and electron microscopy), and the number of Kupffer cells were assessed, and 67Cu retention was measured. Liver function was assessed by measurement of plasma alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and alkaline phosphatase activities and protein, albumin, bilirubin, and blood urea nitrogen concentrations. 67Cu retention was 19.2% and 10.9% after 1 and 5 mo of copper treatment, respectively, compared with approximately 75% in controls at age 2 mo. At age 8 mo, 67Cu retention was 22.9% in copper-treated animals and 31.5% in controls. Liver histology remained normal by light microscopy, with mild ultrastructural signs of cell damage at 5 mo. Liver copper concentration was 4711, 1139, and 498 microg/g dry tissue at 1, 5, and 8 mo, respectively, in copper-treated animals and 250 microg/g at 2 mo in controls. Measurements could not be completed in all animals. No clinical evidence of copper toxicity was observed. Copper absorption was down-regulated; increases in liver copper content at ages 1 and 5 mo did not result in histologic damage. Ultrastructural changes at age 5 mo could signal early cellular damage.
Targeted delivery of polyoxometalate nanocomposites.
Geisberger, Georg; Paulus, Susann; Gyenge, Emina Besic; Maake, Caroline; Patzke, Greta R
2011-10-04
Polyoxometalate/carboxymethyl chitosan nanocomposites with an average diameter of 130 nm are synthesized and labeled with fluorescein isothiocyanate (FITC) for a combined drug-carrier and cellular-monitoring approach. [Eu(β(2) -SiW(11) O(39) )(2) ](13-) /CMC nanospheres as a representative example do not display cytotoxicity for POM concentrations up to 2 mg mL(-1) . Cellular uptake of fluoresecently labelled {EuSiW(11) O(39) }/FITC-CMC nanoparticles is monitored with confocal laser scanning microscopy. Nanoparticle uptake occurs after incubation times of around 1 h and no cyctotoxic effects are observed upon prolonged treatment. The preferential location of the POM/CMC nanocomposites in the perinuclear region is furthermore verified with transmission electron microscopy investigations on unlabeled nanoparticles. Therefore, this approach is a promising dual strategy for the safe cellular transfer and monitoring of bioactive POMs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rojas, Robert; Segovia, Christopher; Trombert, Annette Nicole; Santander, Javier; Manque, Patricio
2014-10-01
Crithidia fasciculata represents a very interesting model organism to study biochemical, cellular, and genetic processes unique to members of the family of the Trypanosomatidae. Thus, C. fasciculata parasitizes several species of insects and has been widely used to test new therapeutic strategies against parasitic infections. By using tunicamycin, a potent inhibitor of glycosylation in asparaginyl residues of glycoproteins (N-glycosylation), we demonstrate that N-glycosylation in C. fasciculata cells is involved in modulating glucose uptake, dramatically impacting growth, and cell adhesion. C. fasciculata treated with tunicamycin was severely affected in their ability to replicate and to adhere to polystyrene substrates and losing their ability to aggregate into small and large groups. Moreover, under tunicamycin treatment, the parasites were considerably shorter and rounder and displayed alterations in cytoplasmic vesicles formation. Furthermore, glucose uptake was significantly impaired in a tunicamycin dose-dependent manner; however, no cytotoxic effect was observed. Interestingly, this effect was reversible. Thus, when tunicamycin was removed from the culture media, the parasites recovered its growth rate, cell adhesion properties, and glucose uptake. Collectively, these results suggest that changes in the tunicamycin-dependent glycosylation levels can influence glucose uptake, cell growth, and adhesion in the protozoan parasite C. fasciculata.
Cellular uptake and intracellular trafficking of PEG-b-PLA polymeric micelles.
Zhang, Zhen; Xiong, Xiaoqin; Wan, Jiangling; Xiao, Ling; Gan, Lu; Feng, Youmei; Xu, Huibi; Yang, Xiangliang
2012-10-01
Besides as an inert carrier for hydrophobic anticancer agents, polymeric micelles composed of di-block copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-b-PLA) function as biological response modifiers including reversal of multidrug resistance in cancer. However, the uptake mechanisms and the subsequent intracellular trafficking remain to be elucidated. In this paper, we found that the uptake of PEG-b-PLA polymeric micelles incorporating nile red (M-NR) was significantly inhibited by both dynamin inhibitor dynasore and dynamin-2 dominant negative mutant (dynamin-2 K44A). Exogenously expressed caveolin-1 colocalized with M-NR and upregulated M-NR internalization in HepG2 cells expressing low level of endogenous caveolin-1, while caveolin-1 dominant negative mutant (caveolin-1 Y14F) significantly downregulated M-NR internalization in C6 cells expressing high level of endogenous caveolin-1. Exogenously expressed clathrin light chain A (clathrin LCa) did not mainly colocalize with the internalized M-NR and had no effect on M-NR uptake. These results suggested that dynamin- and caveolin-dependent but clathrin-independent endocytosis was involved in M-NR cellular uptake. We further found that M-NR colocalized with lysosome and microtubulin after internalization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues
Gromnicova, Radka; Kaya, Mehmet; Romero, Ignacio A.; Williams, Phil; Satchell, Simon; Sharrack, Basil; Male, David
2016-01-01
The selective entry of nanoparticles into target tissues is the key factor which determines their tissue distribution. Entry is primarily controlled by microvascular endothelial cells, which have tissue-specific properties. This study investigated the cellular properties involved in selective transport of gold nanoparticles (<5 nm) coated with PEG-amine/galactose in two different human vascular endothelia. Kidney endothelium (ciGENC) showed higher uptake of these nanoparticles than brain endothelium (hCMEC/D3), reflecting their biodistribution in vivo. Nanoparticle uptake and subcellular localisation was quantified by transmission electron microscopy. The rate of internalisation was approximately 4x higher in kidney endothelium than brain endothelium. Vesicular endocytosis was approximately 4x greater than cytosolic uptake in both cell types, and endocytosis was blocked by metabolic inhibition, whereas cytosolic uptake was energy-independent. The cellular basis for the different rates of internalisation was investigated. Morphologically, both endothelia had similar profiles of vesicles and cell volumes. However, the rate of endocytosis was higher in kidney endothelium. Moreover, the glycocalyces of the endothelia differed, as determined by lectin-binding, and partial removal of the glycocalyx reduced nanoparticle uptake by kidney endothelium, but not brain endothelium. This study identifies tissue-specific properties of vascular endothelium that affects their interaction with nanoparticles and rate of transport. PMID:27560685
Luo, Shuanghui; Wang, Zhiying; Kansara, Viral; Pal, Dhananjay; Mitra, Ashim. K.
2008-01-01
The objective of this research was to functionally characterize sodium-dependent vitamin C transporter (SVCT) in MDCK-MDR1 cells and to study the effect of substituted benzene derivatives on the intracellular accumulation of ascorbic acid (AA). Mechanism of AA uptake and transport was delineated. Uptake of [14C]ascorbic acid ([14C]AA) was studied in the absence and presence of excess unlabelled AA, anion transporter inhibitors, and a series of mono- and di- substituted benzenes. Transepithelial transport of [14C]AA across polarized cell membrane has been studied for the first time. Role of cellular protein kinase mediated pathways on the regulation of AA uptake has been investigated. The cellular localizations of SVCTs were observed using confocal microscopy. Uptake of AA was found to be saturable with a Km of 83.2 μM and Vmax of 94.2 pmol/min/mg protein for SVCT1. The process was pH, sodium, temperature, and energy dependent. It was under the regulation of cellular protein kinase C (PKC) and Ca2+/CaM mediated pathways. [14C]AA uptake was significantly inhibited in the presence of excess unlabelled AA and a series of electron-withdrawing group i.e. halogen- and nitro- substituted benzene derivatives. AA appears to translocate across polarized cell membrane from apical to basal side (A−B) as well as basal to apical side (B−A) at a similar permeability. It appears that SVCT1 was mainly expressed on the apical side and SVCT2 may be located on both apical and basal sides. In conclusion, SVCT has been functionally characterized in MDCK-MDR1 cells. The interference of a series of electrophile substituted benzenes on the AA uptake process may be explained by their structural similarity. SVCT may be targeted to facilitate the delivery of drugs with low bioavailability by conjugating with AA and its structural analogs. MDCK-MDR1 cell line may be utilized as an in vitro model to study the permeability of AA conjugated prodrugs. PMID:18417304
Inherited Copper Transport Disorders: Biochemical Mechanisms, Diagnosis, and Treatment
Kodama, Hiroko; Fujisawa, Chie; Bhadhprasit, Wattanaporn
2012-01-01
Copper is an essential trace element required by all living organisms. Excess amounts of copper, however, results in cellular damage. Disruptions to normal copper homeostasis are hallmarks of three genetic disorders: Menkes disease, occipital horn syndrome, and Wilson’s disease. Menkes disease and occipital horn syndrome are characterized by copper deficiency. Typical features of Menkes disease result from low copper-dependent enzyme activity. Standard treatment involves parenteral administration of copper-histidine. If treatment is initiated before 2 months of age, neurodegeneration can be prevented, while delayed treatment is utterly ineffective. Thus, neonatal mass screening should be implemented. Meanwhile, connective tissue disorders cannot be improved by copper-histidine treatment. Combination therapy with copper-histidine injections and oral administration of disulfiram is being investigated. Occipital horn syndrome characterized by connective tissue abnormalities is the mildest form of Menkes disease. Treatment has not been conducted for this syndrome. Wilson’s disease is characterized by copper toxicity that typically affects the hepatic and nervous systems severely. Various other symptoms are observed as well, yet its early diagnosis is sometimes difficult. Chelating agents and zinc are effective treatments, but are inefficient in most patients with fulminant hepatic failure. In addition, some patients with neurological Wilson’s disease worsen or show poor response to chelating agents. Since early treatment is critical, a screening system for Wilson’s disease should be implemented in infants. Patients with Wilson’s disease may be at risk of developing hepatocellular carcinoma. Understanding the link between Wilson’s disease and hepatocellular carcinoma will be beneficial for disease treatment and prevention. PMID:21838703
Functional characterization of the copper transcription factor AfMac1 from Aspergillus fumigatus.
Park, Yong-Sung; Kim, Tae-Hyoung; Yun, Cheol-Won
2017-07-03
Although copper functions as a cofactor in many physiological processes, copper overload leads to harmful effects in living cells. Thus, copper homeostasis is tightly regulated. However, detailed copper metabolic pathways have not yet been identified in filamentous fungi. In this report, we investigated the copper transcription factor AfMac1 ( A spergillus f umigatus Mac1 homolog) and identified its regulatory mechanism in A. fumigatus AfMac1 has domains homologous to the DNA-binding and copper-binding domains of Mac1 from Saccharomyces cerevisiae , and AfMac1 efficiently complemented Mac1 in S. cerevisiae Expression of Afmac1 resulted in CTR1 up-regulation, and mutation of the DNA-binding domain of Afmac1 failed to activate CTR1 expression in S. cerevisiae The Afmac1 deletion strain of A. fumigatus failed to grow in copper-limited media, and its growth was restored by introducing ctrC We found that AfMac1 specifically bound to the promoter region of ctrC based on EMSA. The AfMac1-binding motif 5'-TGTGCTCA-3' was identified from the promoter region of ctrC , and the addition of mutant ctrC lacking the AfMac1-binding motif failed to up-regulate ctrC in A. fumigatus Furthermore, deletion of Afmac1 significantly reduced strain virulence and activated conidial killing activity by neutrophils and macrophages. Taken together, these results suggest that AfMac1 is a copper transcription factor that regulates cellular copper homeostasis in A. fumigatus . © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Nadella, Sunita Rao; Grosell, Martin; Wood, Chris M
2007-05-01
Copper (Cu) is both a vital nutrient and a potent toxicant. The objective of this study was to analyze the mechanistic nature of intestinal Cu transport in rainbow trout using radiolabeled Cu (64Cu) and an in vitro gut sac technique. Reduction of mucosal NaCl levels inhibited Cu transport while increase caused stimulation; Na(2)SO(4) had an identical effect, implicating Na(+) rather than the anion. These responses were unrelated to solvent drag, osmotic pressure or changes in transepithelial potential. The presence of elevated luminal Ag stimulated Cu and Na(+) uptake. Phenamil caused a partial inhibition of both Cu and Na(+) uptake while hypercapnia stimulated Na(+) and Cu transport. Cu uptake was sensitive to luminal pH and inhibited by a tenfold excess of Fe and Zn. These factors had no effect on Na(+ )uptake. On the basis of these results we propose a novel Na(+)-assisted mechanism of Cu uptake wherein the Na(+) gradient stimulates an increase in the H(+) concentration of the brushborder creating a suitable microenvironment for the effective transport of Cu via either DMT1 or Ctr1.
NASA Astrophysics Data System (ADS)
Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.
2014-02-01
Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.
Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells
NASA Astrophysics Data System (ADS)
Yang, Linxiao; Shang, Li; Nienhaus, G. Ulrich
2013-01-01
We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h.We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h. Electronic supplementary information (ESI) available: Effect of serum on the AuNC uptake by HeLa cells and colocalization result of AuNCs with the cell nucleus for 2-24 h. See DOI: 10.1039/c2nr33147k
Characterization of iron uptake from transferrin by murine endothelial cells.
Hallmann, R; Savigni, D L; Morgan, E H; Baker, E
2000-01-01
Iron is required by the brain for normal function, however, the mechanisms by which it crosses the blood-brain barrier (BBB) are poorly understood. The uptake and efflux of transferrin (Tf) and Fe by murine brain-derived (bEND3) and lymph node-derived (m1END1) endothelial cell lines was compared. The effects of iron chelators, metabolic inhibitors and the cellular activators, lipopolysaccharide (LPS) and tumour necrosis factor-alpha (TNF-alpha), on Tf and Fe uptake were investigated. Cells were incubated with 59Fe-125I-Tf; Fe uptake was shown to increase linearly over time for both cell lines, while Tf uptake reached a plateau within 2 h. Both Tf and Fe uptake were saturable. bEND3 cells were shown to have half as many Tf receptors as m1END1 cells, but the mean cycling times of a Tf molecule were the same. Tf and Fe efflux from the cells were measured over time, revealing that after 2 h only 25% of the Tf but 80% of the Fe remained associated with the cells. Of 7 iron chelators, only deferriprone (L1) markedly decreased Tf uptake. However, Fe uptake was reduced by more than 50% by L1, pyridoxal isonicotinoyl hydrazone (PIH) and desferrithiocin (DFT). The cellular activators TNF-alpha or LPS had little effect on Tf turnover, but they accelerated Fe uptake in both endothelial cell types. Phenylarsenoxide (PhAsO) and N-ethyl maleimide (NEM), inhibitors of Tf endocytosis, reduced both Tf and Fe uptake in both cell lines, while bafilomycin A1, an inhibitor of endosomal acidification, reduced Fe uptake but did not affect Tf uptake. The results suggest that Tf and Fe uptake by both bEND3 and m1END1 is via receptor-mediated endocytosis with release of Fe from Tf within the cell and recycling of apo-Tf. On the basis of Tf- and Fe-metabolism both cell lines are similar and therefore well suited for use in in vitro models for Fe transport across the BBB.
BIOAVAILABILITY AND TROPHIC TRANSFER OF HUMIC-BOUND COPPER FROM BACTERIA TO ZOOPLANKTON
The effect of humic acid (HA) on uptake and transfer of Cu by selected marine organisms from the microbial loop was determined. Bacteria grown to stationary phase in cultures with and without 15 ug Cu l -1 and with and without 10 mg Suwannee River Humic Acid (SRHA) l -1 were fed ...
Shah, Karan M; Quinn, Paul D; Gartland, Alison; Wilkinson, J Mark
2015-01-01
Cobalt and chromium species are released in the local tissues as a result of tribo-corrosion, and affect bone cell survival and function. However we have little understanding of the mechanisms of cellular entry, intracellular distribution, and speciation of the metals that result in impaired bone health. Here we used synchrotron based X-ray fluorescence (XRF), X-ray absorption spectroscopy (XAS), and fluorescent-probing approaches of candidate receptors P2X7R and divalent metal transporter-1 (DMT-1), to better understand the entry, intra-cellular distribution and speciation of cobalt (Co) and chromium (Cr) in human osteoblasts and primary human osteoclasts. We found that both Co and Cr were most highly localized at nuclear and perinuclear sites in osteoblasts, suggesting uptake through cell membrane transporters, and supported by a finding that P2X7 receptor blockade reduced cellular entry of Co. In contrast, metal species were present at discrete sites corresponding to the basolateral membrane in osteoclasts, suggesting cell entry by endocytosis and trafficking through a functional secretory domain. An intracellular reduction of Cr6+ to Cr3+ was the only redox change observed in cells treated with Co2+, Cr3+, and Cr6+. Our data suggest that the cellular uptake and processing of Co and Cr differs between osteoblasts and osteoclasts. © 2014 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka
2015-01-01
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.
Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin
2012-02-05
Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka
2015-01-01
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays. PMID:26517371
Fan, Wei; Wu, Xin; Ding, Baoyue; Gao, Jing; Cai, Zhen; Zhang, Wei; Yin, Dongfeng; Wang, Xiang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen
2012-01-01
Background Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers’ structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake. Methods This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers. Results Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to homogeneous distribution in the cytoplasm; those with a lower hydrophilic-lipophilic balance value prefer to localize in the nucleus. Conclusion This Pluronic-polyethyleneimine system may be worth exploring as components in the cationic copolymers as the DNA or small interfering RNA/microRNA delivery system in the near future. PMID:22403492
Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun
2017-01-01
Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.
Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi
2015-01-01
Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in the lysosomes with time.
Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun
2017-01-01
Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6–78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts. PMID:28860768
Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie
2013-06-01
To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Liolios, C; Schäfer, M; Haberkorn, U; Eder, M; Kopka, K
2016-03-16
A new series of bispecific radioligands (BRLs) targeting prostate-specific membrane antigen (PSMA) and gastrin releasing peptide receptor (GRPr), both expressed on prostate cancer cells, was developed. Their design was based on the bombesin (BN) analogue, H2N-PEG2-[D-Tyr(6),β-Ala(11),Thi(13),Nle(14)]BN(6-14), which binds to GRPr with high affinity and specificity, and the peptidomimetic urea-based pseudoirreversible inhibitor of PSMA, Glu-ureido-Lys. The two pharmacophores were coupled through copper(I)-catalyzed azide-alkyne cycloaddition to the bis(tetrafluorophenyl) ester of the chelating agent HBED-CC via amino acid linkers made of positively charged His (H) and negatively charged Glu (E): -(HE)n- (n = 0-3). The BRLs were labeled with (68)Ga, and their preliminary pharmacological properties were evaluated in vitro (competitive and time kinetic binding assays) on prostate cancer (PC-3, LNCaP) and rat pancreatic (AR42J) cell lines and in vivo by biodistribution and small animal PET imaging studies in both normal and tumor-bearing mice. The IC50/Ki values determined for all BRLs essentially matched those of the respective monomers. The maximal cellular uptake of the BLRs was observed between 20 and 30 min. The BRLs showed a synergistic ability in vivo by targeting both PSMA (LNCaP) and GRPr (PC-3) positive tumors, whereas the charged -(HE)n- (n = 1-3) linkers significantly reduced the kidney and spleen uptake. The bispecific (PSMA and GRPr) targeting ability and optimized pharmacokinetics of the compounds developed in this study could lead to their future application in clinical practice as more sensitive radiotracers for noninvasive imaging of prostate cancer (PCa) by PET/CT and PET/MRI.
Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao
2015-12-01
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated that the developed DOX-PLGA/PEI/P-gp shRNA NBs is a potential, safe and efficient theranotic agent for cancer therapy and diagnostics.
Lakhan, Ram; Said, Hamid M
2017-04-01
Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr 78 Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.
Lakhan, Ram
2017-01-01
Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr78Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway. PMID:28052864
Lee, Hyang Yeon; Lee, Jae Jeong; Park, Jongmin; Park, Seung Bum
2011-01-03
We developed a novel fluorescent glucose bioprobe, GB2-Cy3, for the real-time and quantitative monitoring of glucose uptake in living cells. We synthesized a series of fluorescent glucose analogues by adding Cy3 fluorophores to the α-anomeric position of D-glucose through various linkers. Systematic and quantitative analysis of these Cy3-labeled glucose analogues revealed that GB2-Cy3 was the ideal fluorescent glucose bioprobe. The cellular uptake of this probe competed with the cellular uptake of D-glucose in the media and was mediated by a glucose-specific transport system, and not by passive diffusion. Flow cytometry and fluorescence microscopy analyses revealed that GB2-Cy3 is ten times more sensitive than 2-NBDG, a leading fluorescent glucose bioprobe. GB2-Cy3 can also be utilized for the quantitative flow cytometry monitoring of glucose uptake in metabolically active C2C12 myocytes under various treatment conditions. As opposed to a glucose uptake assay performed by using radioisotope-labeled deoxy-D-glucose and a scintillation counter, GB2-Cy3 allows the real-time monitoring of glucose uptake in living cells under various experimental conditions by using fluorescence microscopy or confocal laser scanning microscopy (CLSM). Therefore, we believe that GB2-Cy3 can be utilized in high-content screening (HCS) for the discovery of novel therapeutic agents and for making significant advances in biomedical studies and diagnosis of various diseases, especially metabolic diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poulin, Patrick; Burczynski, Frank J; Haddad, Sami
2016-02-01
A critical component in the development of physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) models for estimating target organ dosimetry in pharmacology and toxicology studies is the understanding of the uptake kinetics and accumulation of drugs and chemicals at the cellular level. Therefore, predicting free drug concentrations in intracellular fluid will contribute to our understanding of concentrations at the site of action in cells in PBPK/PD research. Some investigators believe that uptake of drugs in cells is solely driven by the unbound fraction; conversely, others argue that the protein-bound fraction contributes a significant portion of the total amount delivered to cells. Accordingly, the current literature suggests the existence of a so-called albumin-mediated uptake mechanism(s) for the protein-bound fraction (i.e., extracellular protein-facilitated uptake mechanisms) at least in hepatocytes and cardiac myocytes; however, such mechanism(s) and cells from other organs deserve further exploration. Therefore, the main objective of this present study was to discuss further the implication of potential protein-facilitated uptake mechanism(s) on drug distribution in cells under in vivo conditions. The interplay between the protein-facilitated uptake mechanism(s) and the effects of a pH gradient, metabolism, transport, and permeation limitation potentially occurring in cells was also discussed, as this should violate the basic assumption on similar free drug concentration in cells and plasma. This was made because the published equations used to calculate drug concentrations in cells in a PBPK/PD model did not consider potential protein-facilitated uptake mechanism(s). Consequently, we corrected some published equations for calculating the free drug concentrations in cells compared with plasma in PBPK/PD modeling studies, and we proposed a refined strategy for potentially performing more accurate quantitative in vitro-to-in vivo extrapolations (IVIVEs) of toxicity (efficacy) at the cellular level from data generated in cell assays. Overall, this present study may help to optimize the human dose prediction in preclinical and clinical studies, while prescribing drugs with narrow therapeutic windows that are highly bound to extracellular proteins and/or highly ionized at the physiological pH. This may facilitate building a more accurate safety (efficacy) profile for such drugs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J
2001-12-13
We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (P<0.001) in all cases. The present results demonstrate that biotin-PEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential for enhancing the cellular uptake and transport of small peptide therapeutic agents.
Sarkar, Swarbhanu; Bhatt, Nikunj; Ha, Yeong Su; Huynh, Phuong Tu; Soni, Nisarg; Lee, Woonghee; Lee, Yong Jin; Kim, Jung Young; Pandya, Darpan N; An, Gwang Il; Lee, Kyo Chul; Chang, Yongmin; Yoo, Jeongsoo
2018-01-11
Although the importance of bifunctional chelators (BFCs) is well recognized, the chemophysical parameters of chelators that govern the biological behavior of the corresponding bioconjugates have not been clearly elucidated. Here, five BFCs closely related in structure were conjugated with a cyclic RGD peptide and radiolabeled with Cu-64 ions. Various biophysical and chemical properties of the Cu(II) complexes were analyzed with the aim of identifying correlations between individual factors and the biological behavior of the conjugates. Tumor uptake and body clearance of the 64 Cu-labeled bioconjugates were directly compared by animal PET imaging in animal models, which was further supported by biodistribution studies. Conjugates containing propylene cross-bridged chelators showed higher tumor uptake, while a closely related ethylene cross-bridged analogue exhibited rapid body clearance. High in vivo stability of the copper-chelator complex was strongly correlated with high tumor uptake, while the overall lipophilicity of the bioconjugate affected both tumor uptake and body clearance.
NASA Astrophysics Data System (ADS)
Hu, Q.; Joshi, R. P.
2017-07-01
Electric pulse driven membrane poration finds applications in the fields of biomedical engineering and drug/gene delivery. Here we focus on nanosecond, high-intensity electroporation and probe the role of pulse shape (e.g., monopolar-vs-bipolar), multiple electrode scenarios, and serial-versus-simultaneous pulsing, based on a three-dimensional time-dependent continuum model in a systematic fashion. Our results indicate that monopolar pulsing always leads to higher and stronger cellular uptake. This prediction is in agreement with experimental reports and observations. It is also demonstrated that multi-pronged electrode configurations influence and increase the degree of cellular uptake.
Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle.
Saptarshi, Shruti R; Duschl, Albert; Lopata, Andreas L
2013-07-19
Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein molecules which may affect the overall bio-reactivity of the nanoparticle. In depth understanding of such interactions can be directed towards generating bio-compatible nanomaterials with controlled surface characteristics in a biological environment. The main aim of this review is to summarise current knowledge on factors that influence nanoparticle-protein interactions and their implications on cellular uptake.
Bioaccumulation of metals in plants, arthropods, and mice at a seasonal wetland.
Torres, K C; Johnson, M L
2001-11-01
Concentrations of arsenic, cadmium, copper, lead, and nickel were measured in soils, house mice (Mus musculus), and the main food items of this omnivorous mouse to examine the occurrence of these metals in selected components of a seasonal wetland. Soil concentrations of copper, lead, and (in some areas) nickel were elevated, but extractable soil concentrations indicated low bioavailability of metals. Levels of most metals in mice and composited arthropods were consistent with reference site concentrations from other studies. However, copper was found to be particularly mobile within the local ecosystem and accumulated in house mouse carcasses and composited arthropods at substantial levels. Metal residues in Scirpus robustus (alkali bulrush) roots exceeded those in seeds, consistent with patterns of bioaccumulation commonly observed in plants. Uptake and bioaccumulation factors for S. robustus seeds and roots, arthropods, and mouse carcasses and livers are reported. Concentrations of lead and nickel in S. robustus roots exhibited significant linear relationships with levels in soils. Copper levels in S. robustus seeds varied significantly with those in house mouse livers, suggesting that trophic transfer of copper from this food source to mice occurred. However, other spatial patterns of bioaccumulation in S. robustus and house mice relative to soil/seed concentrations were absent. Metal levels in house mice bore no relation to body weight or estimated age.
Wang, Dishi; Zhou, Yanxia; Li, Xinru; Qu, Xiaoyou; Deng, Yunqiang; Wang, Ziqi; He, Chuyu; Zou, Yang; Jin, Yiguang; Liu, Yan
2017-03-01
pH-responsive polymeric micelles have shown promise for the targeted and intracellular delivery of antitumor agents. The present study aimed to elucidate the possible mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles in detail, further unravel the effect of hydrophilic/hydrophobic ratio of the micelles on their cellular internalization, and examine the intracellular trafficking routes and fate of PEOz-b-PLA after internalization of the micelles. The results of variations in the size and Zeta potential of PEOz-b-PLA micelles and cross-sectional area of PEOz-b-PLA molecules with pH values suggested that electrostatic repulsion between PEOz chains resulting from ionization of the tertiary amide groups along PEOz chain at pH lower than its pK a was responsible for pH-sensitivity of PEOz-b-PLA micelles. Furthermore, the studies on internalization of PEOz-b-PLA micelles by MCF-7 cells revealed that the uptake of PEOz-b-PLA micelles was strongly influenced by their structural features, and showed that PEOz-b-PLA micelles with hydrophilic/hydrophobic ratio of 1.7-2.0 exhibited optimal cellular uptake. No evident alteration in cellular uptake of PEOz-b-PLA micelles was detected by flow cytometry upon the existence of EIPA and chlorpromazine. However, the intracellular uptake of the micelles in the presence of MβCD and genistein was effectively inhibited. Hence, the internalization of such micelles by MCF-7 cells appeared to proceed mainly through caveolae/lipid raft-mediated endocytosis without being influenced by their hydrophilic/hydrophobic ratio. Confocal micrographs revealed that late endosomes, mitochondria and endoplasmic reticulum were all involved in the intracellular trafficking of PEOz-b-PLA copolymers following their internalization via endocytosis, and then part of them was excreted from tumor cells to extracellular medium. These findings provided valuable information for developing desired PEOz-b-PLA micelles to improve their therapeutic efficacy and reducing the potential safety risks associated with their intracellular accumulation.
Uptake of Light Elements in Thin Metallic Films
NASA Astrophysics Data System (ADS)
Markwitz, Andreas; Waldschmidt, Mathias
Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.
Le Deunff, Erwan; Malagoli, Philippe
2014-01-01
Background and Aims In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. Methods A cross-combination of a Flow–Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to ‘Enzyme–Substrate’ interpretations, a Flow–Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. Key Results and Conclusions Use of a Flow–Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure–function mechanistic model of N uptake. PMID:24638820
Smith, Carol-Anne M; de la Fuente, Jesus; Pelaz, Beatriz; Furlani, Edward P; Mullin, Margaret; Berry, Catherine C
2010-05-01
Magnetic nanoparticles are widely used in bioapplications such as imaging (MRI), targeted delivery (drugs/genes) and cell transfection (magnetofection). Historically, the impermeable nature of both the plasma and nuclear membranes hinder potential. Researchers combat this by developing techniques to enhance cellular and nuclear uptake. Two current popular methods are using external magnetic fields to remotely control particle direction or functionalising the nanoparticles with a cell penetrating peptide (e.g. tat); both of which facilitate cell entry. This paper compares the success of both methods in terms of nanoparticle uptake, analysing the type of magnetic forces the particles experience, and determines gross cell response in terms of morphology and structure and changes at the gene level via microarray analysis. Results indicated that both methods enhanced uptake via a caveolin dependent manner, with tat peptide being the more efficient and achieving nuclear uptake. On comparison to control cells, many groups of gene changes were observed in response to the particles. Importantly, the magnetic field also caused many change in gene expression, regardless of the nanoparticles, and appeared to cause F-actin alignment in the cells. Results suggest that static fields should be modelled and analysed prior to application in culture as cells clearly respond appropriately. Furthermore, the use of cell penetrating peptides may prove more beneficial in terms of enhancing uptake and maintaining cell homeostasis than a magnetic field. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes
2016-04-01
The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.
NASA Astrophysics Data System (ADS)
Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa
2014-08-01
Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.
Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara
2017-05-01
In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.
Chen, Wei-Liang; Li, Fang; Tang, Yan; Yang, Shu-di; Li, Ji-Zhao; Yuan, Zhi-Qiang; Liu, Yang; Zhou, Xiao-Feng; Liu, Chun; Zhang, Xue-Nong
2017-01-01
Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents.
Chen, Wei-liang; Li, Fang; Tang, Yan; Yang, Shu-di; Li, Ji-zhao; Yuan, Zhi-qiang; Liu, Yang; Zhou, Xiao-feng; Liu, Chun; Zhang, Xue-nong
2017-01-01
Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents. PMID:28652730
Heart cells in culture: a model of myocardial iron overload and chelation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, G.; Pinson, A.; Hershko, C.
1985-08-01
The effect of iron loading and chelation was studied in heart cell cultures obtained from newborn rats. Radioactive iron uptake per 2 X 10(6) cells/24 hr was 3.8% for /sup 59/Fe-transferrin, 15.8% for /sup 59/Fe-ferric ammonium citrate (FeAC) at 20 micrograms Fe/ml in 20% serum, and 37.1% for /sup 59/FeAC at 20 micrograms Fe/ml in serum-free medium. About one third of the cellular radioactive iron was in ferritin and the rest in an insoluble lysosomal fraction. Iron uptake was almost completely inhibited by reducing the incubation temperature from 37 degrees C to 10 degrees C. Intracellular concentrations of malonyldialdehyde (MDA)more » were doubled after 15 minutes of iron loading and reached maximal concentrations at 3 hours. Conversely, iron mobilization by deferoxamine at concentrations ranging from 0.025 mmol/L to 0.3 mmol/L resulted in normalization of cellular MDA concentrations, in direct proportion to the amounts of iron removed. These findings indicate that cultured myocardial cells are able to assimilate large amounts of nontransferrin iron and that iron uptake and mobilization are associated with striking changes in lipid peroxidation as manifested by the respective increase and decrease in cellular MDA concentrations.« less
Sun, Dequan; Hussain, Hashmath I; Yi, Zhifeng; Siegele, Rainer; Cresswell, Tom; Kong, Lingxue; Cahill, David M
2014-08-01
We report the uptake of MSNs into the roots and their movement to the aerial parts of four plant species and their quantification using fluorescence, TEM and proton-induced x - ray emission (micro - PIXE) elemental analysis. Monodispersed mesoporous silica nanoparticles (MSNs) of optimal size and configuration were synthesized for uptake by plant organs, tissues and cells. These monodispersed nanoparticles have a size of 20 nm with interconnected pores with an approximate diameter of 2.58 nm. There were no negative effects of MSNs on seed germination or when transported to different organs of the four plant species tested in this study. Most importantly, for the first time, a combination of confocal laser scanning microscopy, transmission electron microscopy and proton-induced X-ray emission (micro-PIXE) elemental analysis allowed the location and quantification MSNs in tissues and in cellular and sub-cellular locations. Our results show that MSNs penetrated into the roots via symplastic and apoplastic pathways and then via the conducting tissues of the xylem to the aerial parts of the plants including the stems and leaves. The translocation and widescale distribution of MSNs in plants will enable them to be used as a new delivery means for the transport of different sized biomolecules into plants.
Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan
2010-01-01
The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459
Cell uptake survey of pegylated nanographene oxide.
Vila, M; Portolés, M T; Marques, P A A P; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Gonçalves, G; Cruz, S M A; Nieto, A; Vallet-Regi, M
2012-11-23
Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml(-1) pegylated GO solutions. GO uptake kinetics revealed differences in the agent's uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.
Effect of Thiols, Zinc, and Redox Conditions on Hg Uptake in Shewanella oneidensis
Szczuka, Aleksandra; Morel, Francois M. M.; Schaefer, Jeffra K.
2015-05-18
Mercury uptake in bacteria represents a key first step in the production and accumulation Of methylmercury in biota. Previous experiments with mercury methylating bacteria have shown that Hg uptake is enhanced by some thiols, in particular cysteine, and that it is an energy-dependent process through heavy Metal TA transporters. In this study, we examine Hg uptake in the nonmethylating facultative aerobe, Shewanella oneidensis, under both anaerobic and aerobic conditions. Our results demonstrate similar characteristics of the Hg uptake system to those of the Hg methylating strains: uptake is enhanced in the presence of some thiols but not others; uptake ismore » energy dependent as evidenced by inhibition by a protonophore; and uptake is inhibited by high Zn(II) concentrations. Initial cellular uptake rates in S. oneidensis were remarkably similar under aerobic and fumarate-reducing conditions. In conclusion, these data support a similar Hg(II) uptake mechanism within the proteobacteria of accidental Hg(II) transport through heavy metal transporters with similar rates of uptake but differences in the ability to take up Hg bound to different thiols.« less
A multicopper oxidase contributes to the copper tolerance of Brucella melitensis 16M.
Wu, Tonglei; Wang, Shaohua; Wang, Zhen; Peng, Xiaowei; Lu, Yanli; Wu, Qingmin
2015-06-01
Copper is a potent antimicrobial agent. Multiple mechanisms of copper tolerance are utilized by some pathogenic bacteria. BMEII0580, which is significantly similar to the multicopper oxidase from Escherichia coli, was predicted to be the probable blue copper protein YacK precursor in Brucella melitensis 16M, and was designated as Brucella multicopper oxidase (BmcO). A bioinformatics analysis indicated that the typical motifs of multicopper oxidases are present in BmcO. BmcO, the expression of which was up-regulated by copper, could catalyze the oxidation of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), dimethoxyphenol (DMP) and para-phenylenediamine (pPD), which are widely used as substrates for multicopper oxidase. Additionally, BmcO exhibited ferroxidase activity, which indicated that it might play an important role in the Fe(2+) uptake of B. melitensis. Importantly, the mutant strain 16MΔbmcO was more sensitive to copper than the wild-type strain B. melitensis 16M as well as its complementation strain 16MΔbmcO(bmcO). The infection assays of cells showed that similar bacterial numbers of B. melitensis 16M, 16MΔbmcO and 16MΔbmcO(bmcO) strains were recovered from the infected macrophages. This result indicated that BmcO was not essential for B. melitensis intracellular growth. In conclusion, our results confirm that BmcO is a multicopper oxidase and contributes to the copper tolerance of B. melitensis 16M. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kapoor, Vikram; Li, Xuan; Chandran, Kartik; Impellitteri, Christopher A; Santo Domingo, Jorge W
2016-04-01
Autotrophic nitrification in biological nitrogen removal systems has been shown to be sensitive to the presence of heavy metals in wastewater treatment plants. Using transcriptase-quantitative polymerase chain reaction (RT-qPCR) data, we examined the effect of copper on the relative expression of functional genes (i.e., amoA, hao, nirK, and norB) involved in redox nitrogen transformation in batch enrichment cultures obtained from a nitrifying bioreactor operated as a continuous reactor (24-h hydraulic retention time). 16S ribosomal RNA (rRNA) gene next-generation sequencing showed that Nitrosomonas-like populations represented 60-70% of the bacterial community, while other nitrifiers represented <5%. We observed a strong correspondence between the relative expression of amoA and hao and ammonia removal in the bioreactor. There were no considerable changes in the transcript levels of amoA, hao, nirK, and norB for nitrifying samples exposed to copper dosages ranging from 0.01 to 10 mg/L for a period of 12 h. Similar results were obtained when ammonia oxidation activity was measured via specific oxygen uptake rate (sOUR). The lack of nitrification inhibition by copper at doses lower than 10 mg/L may be attributed to the role of copper as cofactor for ammonia monooxygenase or to the sub-inhibitory concentrations of copper used in this study. Overall, these results demonstrate the use of molecular methods combined with conventional respirometry assays to better understand the response of wastewater nitrifying systems to the presence of copper.
Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping
2013-01-01
Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397
Characterization of 64Cu-DOTA-conatumumab: a PET tracer for in vivo imaging of death receptor 5.
Rossin, Raffaella; Kohno, Tadahiko; Hagooly, Aviv; Sharp, Terry; Gliniak, Brian; Arroll, Thomas; Chen, Qing; Hewig, Art; Kaplan-Lefko, Paula; Friberg, Greg; Radinsky, Robert; Evelhoch, Jeffrey L; Welch, Michael J; Hwang, Dah-Ren
2011-06-01
Conatumumab is a fully human monoclonal antibody that binds to and activates human death receptor 5 (DR5; also known as TRAIL receptor 2). The purpose of this study was to characterize (64)Cu-labeled conatumumab as a PET tracer for imaging DR5 in tumors. DOTA-conatumumab was synthesized by incubating conatumumab with 2,2',2″-(10-(2-(2,5-dioxopyrrolidin-1-yloxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DOTA-NHS). The absolute numbers of DOTA molecules per conatumumab molecules were determined by matrix-assisted laser desorption ionization mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry. (64)Cu-DOTA-conatumumab was prepared by incubating (64)CuCl(2) (33-222 MBq) with DOTA-conatumumab at 37°C for 1 h. Binding of conatumumab and DOTA-conatumumab to Fc-coupled human DR5 (huTR2-Fc) was tested in a kinetic analysis assay, and the biologic activity of copper-DOTA-conatumumab was measured using a caspase-3/7 luminescent assay. In vivo evaluation of DOTA-conatumumab and copper-DOTA-conatumumab was done in severe combined immunodeficiency mice bearing Colo205 xenografts: tissue uptake was determined with biodistribution studies, and small-animal PET and autoradiography were used to determine the uptake of (64)Cu-DOTA conatumumab into tumors and other tissues. DOTA-conatumumab was prepared with an average of 5 DOTA molecules per conatumumab molecule. The in vitro median effective concentration required to induce a 50% effect of DOTA-conatumumab and conatumumab from the assay were 389 and 320 pM, respectively. The median effective dose (±SD) of DOTA-conatumumab and conatumumab via the caspase assay was 135 ± 31 and 128 ± 30 pM, respectively. In female CB17 severe combined immunodeficiency mice bearing Colo205 xenografts, DOTA-conatumumab and conatumumab inhibited tumor growth to the same extent. Small-animal PET studies showed tumor uptake at 24 h after injection of the tracer, with a mean standardized uptake value of 3.16 (n = 2). Tumor uptake was decreased by the coadministration of 400 μg of unlabeled conatumumab (mean standardized uptake value, 1.55; n = 2), suggesting saturable uptake. Tissue uptake determined by biodistribution studies was in agreement with the small-animal PET findings. These results suggest that (64)Cu-DOTA-conatumumab is a potential PET tracer for imaging DR5 in tumors and may be useful for measuring on-target occupancy by conatumumab.
Fournier, Michel; Pépin, Claude; Houde, Daniel; Ouellet, René; van Lier, Johan E
2004-01-01
In order to evaluate the potential of copper and nickel phthalocyanine tetrasulfonates as sensitizers for two-photon photodynamic therapy, we conducted kinetic femtosecond measurements of transient absorption and bleaching of their excited state dynamics in aqueous solution. Samples were pumped with 620 nm and 310 nm laser light, which allowed us to study relaxation processes from both the first and second singlet (or doublet for the copper phthalocyanine) excited states. A second excitation from the first excited triplet state, approximately 685 and 105 ps after the first excitation for copper and nickel phthalocyanine tetrasulfonate respectively, was the most efficient way to bring the molecules to an upper triplet state. Presumably this highest triplet state can inflict molecular damage on adjacent biomolecules int eh absence of oxygen, resulting in the desired cytotoxic cellular response. Transient absorption spectra at different fixed delays indicate that optimum efficiency would require that the second photon has a wavelength of approximately 750 nm.
McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.
2014-01-01
Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220
Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.
Keating, Elisa; Martel, Fátima
2018-01-01
In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect-an aerobic lactatogenesis- characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.
2014-01-01
Background Increased cellular iron levels are associated with high mortality in HIV-1 infection. Moreover iron is an important cofactor for viral replication, raising the question whether highly divergent lentiviruses actively modulate iron homeostasis. Here, we evaluated the effect on cellular iron uptake upon expression of the accessory protein Nef from different lentiviral strains. Results Surface Transferrin receptor (TfR) levels are unaffected by Nef proteins of HIV-1 and its simian precursors but elevated in cells expressing Nefs from most other primate lentiviruses due to reduced TfR internalization. The SIV Nef-mediated reduction of TfR endocytosis is dependent on an N-terminal AP2 binding motif that is not required for downmodulation of CD4, CD28, CD3 or MHCI. Importantly, SIV Nef-induced inhibition of TfR endocytosis leads to the reduction of Transferrin uptake and intracellular iron concentration and is accompanied by attenuated lentiviral replication in macrophages. Conclusion Inhibition of Transferrin and thereby iron uptake by SIV Nef might limit viral replication in myeloid cells. Furthermore, this new SIV Nef function could represent a virus-host adaptation that evolved in natural SIV-infected monkeys. PMID:24383984
Schuster, Sabine; Biri-Kovács, Beáta; Szeder, Bálint; Farkas, Viktor; Buday, László; Szabó, Zsuzsanna; Halmos, Gábor
2018-01-01
Gonadotropin releasing hormone-III (GnRH-III), a native isoform of the human GnRH isolated from sea lamprey, specifically binds to GnRH receptors on cancer cells enabling its application as targeting moieties for anticancer drugs. Recently, we reported on the identification of a novel daunorubicin–GnRH-III conjugate (GnRH-III–[4Lys(Bu), 8Lys(Dau=Aoa)] with efficient in vitro and in vivo antitumor activity. To get a deeper insight into the mechanism of action of our lead compound, the cellular uptake was followed by confocal laser scanning microscopy. Hereby, the drug daunorubicin could be visualized in different subcellular compartments by following the localization of the drug in a time-dependent manner. Colocalization studies were carried out to prove the presence of the drug in lysosomes (early stage) and on its site of action (nuclei after 10 min). Additional flow cytometry studies demonstrated that the cellular uptake of the bioconjugate was inhibited in the presence of the competitive ligand triptorelin indicating a receptor-mediated pathway. For comparative purpose, six novel daunorubicin–GnRH-III bioconjugates have been synthesized and biochemically characterized in which 6Asp was replaced by D-Asp, D-Glu and D-Trp. In addition to the analysis of the in vitro cytostatic effect and cellular uptake, receptor binding studies with 125I-triptorelin as radiotracer and degradation of the GnRH-III conjugates in the presence of rat liver lysosomal homogenate have been performed. All derivatives showed high binding affinities to GnRH receptors and displayed in vitro cytostatic effects on HT-29 and MCF-7 cancer cells with IC50 values in a low micromolar range. Moreover, we found that the release of the active drug metabolite and the cellular uptake of the bioconjugates were strongly affected by the amino acid exchange which in turn had an impact on the antitumor activity of the bioconjugates. PMID:29719573
Ma, Jinyuan; Li, Yang; Liu, Guihua; Li, Ai; Chen, Yilin; Zhou, Xinyi; Chen, Dengyue; Hou, Zhenqing; Zhu, Xuan
2018-02-01
The novel drug delivery system based on self-assembly of zinc phthalocyanine-soybean phosphatidylcholine (ZnPc-SPC) complex was developed by a co-solvent method followed by a nanoprecipitaion technique. DSPE-PEG-methotrexate (DSPE-PEG-MTX) was introduced on the surface of ZnPc-SPC self-assembled nanoparticles (ZS) to endow them with folate receptor-targeting property. NMR, XRD, FTIR, and UV-vis-NIR analysis demonstrated the weak molecular interaction between ZnPc and SPC. The ZS functionalized with DSPE-PEG-MTX (ZSPM) was successfully constructed with an average particle size of ∼170nm, a narrow size distribution, and could remain physiologically stable for at least 7days. In vitro cellular uptake and cytotoxicity studies demonstrated that ZSPM exhibited stronger cellular uptake efficacy and photodynamic cytotoxicity against HeLa and MCF-7 cells than ZS functionalized with DSPE-mPEG (ZSP) and free ZnPc. More importantly, ZSPM showed the enhanced accumulation effect at the tumor region compared with ZSP by the active-plus-passive targeting via enhanced permeability and retention (EPR) effect and folate receptor-mediated endocytosis. Furthermore, in vivo antitumor effect and histological analysis demonstrated the superior tumor growth inhibition effect of ZSPM. In addition, the needle-shape ZSP (ZSPN) exhibited better in vitro cellular uptake and in vivo tumor accumulation compared with ZSP due to the shape-assisted effect. Moreover, the interesting off-on switch effect of reactive oxygen species (ROS) production of ZnPc-SPC complex-based nanoparticles was discovered to achieve photodynamic treatment in a controllable way. These findings suggested that the ZnPc-SPC complex-based self-assembled nanoparticles could serve as a promising and effective formulation to achieve tumor-targeting fluorescence imaging and enhanced photodynamic treatment. Copyright © 2017. Published by Elsevier B.V.
Mayor, Daniel J.; Gray, Nia B.; Elver-Evans, Joanna; Midwood, Andrew J.; Thornton, Barry
2013-01-01
Copper is essential for healthy cellular functioning, but this heavy metal quickly becomes toxic when supply exceeds demand. Marine sediments receive widespread and increasing levels of copper contamination from antifouling paints owing to the 2008 global ban of organotin-based products. The toxicity of copper will increase in the coming years as seawater pH decreases and temperature increases. We used a factorial mesocosm experiment to investigate how increasing sediment copper concentrations and the presence of a cosmopolitan bioturbating amphipod, Corophium volutator, affected a range of ecosystem functions in a soft sediment microbial community. The effects of copper on benthic nutrient release, bacterial biomass, microbial community structure and the isotopic composition of individual microbial membrane [phospholipid] fatty acids (PLFAs) all differed in the presence of C. volutator. Our data consistently demonstrate that copper contamination of global waterways will have pervasive effects on the metabolic functioning of benthic communities that cannot be predicted from copper concentrations alone; impacts will depend upon the resident macrofauna and their capacity for bioturbation. This finding poses a major challenge for those attempting to manage the impacts of copper contamination on ecosystem services, e.g. carbon and nutrient cycling, across different habitats. Our work also highlights the paucity of information on the processes that result in isotopic fractionation in natural marine microbial communities. We conclude that the assimilative capacity of benthic microbes will become progressively impaired as copper concentrations increase. These effects will, to an extent, be mitigated by the presence of bioturbating animals and possibly other processes that increase the influx of oxygenated seawater into the sediments. Our findings support the move towards an ecosystem approach for environmental management. PMID:23741430
Mayor, Daniel J; Gray, Nia B; Elver-Evans, Joanna; Midwood, Andrew J; Thornton, Barry
2013-01-01
Copper is essential for healthy cellular functioning, but this heavy metal quickly becomes toxic when supply exceeds demand. Marine sediments receive widespread and increasing levels of copper contamination from antifouling paints owing to the 2008 global ban of organotin-based products. The toxicity of copper will increase in the coming years as seawater pH decreases and temperature increases. We used a factorial mesocosm experiment to investigate how increasing sediment copper concentrations and the presence of a cosmopolitan bioturbating amphipod, Corophium volutator, affected a range of ecosystem functions in a soft sediment microbial community. The effects of copper on benthic nutrient release, bacterial biomass, microbial community structure and the isotopic composition of individual microbial membrane [phospholipid] fatty acids (PLFAs) all differed in the presence of C. volutator. Our data consistently demonstrate that copper contamination of global waterways will have pervasive effects on the metabolic functioning of benthic communities that cannot be predicted from copper concentrations alone; impacts will depend upon the resident macrofauna and their capacity for bioturbation. This finding poses a major challenge for those attempting to manage the impacts of copper contamination on ecosystem services, e.g. carbon and nutrient cycling, across different habitats. Our work also highlights the paucity of information on the processes that result in isotopic fractionation in natural marine microbial communities. We conclude that the assimilative capacity of benthic microbes will become progressively impaired as copper concentrations increase. These effects will, to an extent, be mitigated by the presence of bioturbating animals and possibly other processes that increase the influx of oxygenated seawater into the sediments. Our findings support the move towards an ecosystem approach for environmental management.
Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.
Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang
2017-01-04
Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.
Qin, Shuzhi; Sun, Xiangshi; Li, Feng; Yu, Kongtong; Zhou, Yulin; Liu, Na; Zhao, Chengguo; Teng, Lesheng; Li, Youxin
2017-12-21
Biodegradable nanoparticles with diameters between 100 nm and 500 nm are of great interest in the contexts of targeted delivery. The present work provides a review concerning the effect of binary organic solvents together with emulsifier on particle size as well as the influence of particle size on the in vitro drug release and uptake behavior. The polymeric lipid nanoparticles (PLNs) with different particle sizes were prepared by using binary solvent dispersion method. Various formulation parameters such as binary organic solvent composition and emulsifier types were evaluated on the basis of their effects on particle size and size distribution. PLNs had a strong dependency on the surface tension, intrinsic viscosity and volatilization rate of binary organic solvents and the hydrophilicity/hydrophobicity of emulsifiers. Acetone-methanol system together with pluronic F68 as emulsifier was proved to obtain the smallest particle size. Then the PLNs with different particle sizes were used to investigate how particle size at nanoscale affects interacted with tumor cells. As particle size got smaller, cellular uptake increased in tumor cells and PLNs with particle size of ~120 nm had the highest cellular uptake and fastest release rate. The paclitaxel (PTX)-loaded PLNs showed a size-dependent inhibition of tumor cell growth, which was commonly influenced by cellular uptake and PTX release. The PLNs would provide a useful means to further elucidate roles of particle size on delivery system of hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping
2011-10-01
Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.
The Receptor-Binding Domain in the VP1u Region of Parvovirus B19.
Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos
2016-02-24
Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5-80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system.
The Receptor-Binding Domain in the VP1u Region of Parvovirus B19
Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos
2016-01-01
Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5–80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system. PMID:26927158
Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie
2015-08-01
In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.
Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto
2018-05-31
Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.
Gastrointestinal uptake and distribution of copper in rainbow trout.
Clearwater, S J; Baskin, S J; Wood, C M; McDonald, D G
2000-08-01
A single dose of radioactive copper ((64)Cu or new Cu) was infused into the stomach of rainbow trout (Oncorhynchus mykiss) to model dietary copper (Cu) uptake under conditions of a normal nutritional dose and optimum environmental temperature (16 degrees C, 0.117 microg Cu g(-)(1 )body mass). The distribution of new Cu to the gut and internal organs occurred in two phases: rapid uptake by the gut tissues (almost complete by 24 h post-infusion) followed by slower uptake by the internal organs. By 72 h, 60 % of the dose had been excreted, 19 % was still retained in the gut tissue, 10 % remained in the lumen and 12 % had been absorbed across the gut and partitioned amongst the internal organs. A reduction in water temperature of 10 degrees C (to 6 degrees C) significantly retarded components of new Cu distribution (movement of the bolus along the gut and excretion); nonetheless, by 72 h, the fraction absorbed by all the internal organs was similar to that at 16 degrees C. An increase in water temperature of 3 degrees C (to 19 degrees C) caused a pronounced increase in internal organ uptake by 24 h to approximately double the uptake occurring at 16 degrees C. The uptake of new Cu by the gut tissue had a low temperature coefficient (Q(10)<1) consistent with simple diffusion, while the temperature coefficient for transfer of new Cu from gut tissue to the internal organs was high (Q(10)>2), consistent with facilitated transport. Internally, the liver and gall bladder (including bile) were the target organs for dietary Cu partitioning since they were the only organs that concentrated new Cu from the plasma. Individual tissues differed in terms of the exchange of their background Cu pools with new Cu. The background Cu in the walls of the gastrointestinal tract (excluding stomach) exchanged 45-94 % with new Cu from the gut lumen, while tissues such as the stomach, gills, kidney, carcass and fat had 5-7 % exchangeable background Cu. The liver, heart, spleen, ovary, bile and plasma had only 0.2-0.8 % exchangeable background Cu. The gastrointestinal tissues appear to act as a homeostatic organ, regulating the absorption of nutritional (non-toxic) doses of Cu (0. 117 microg g(-)(1 )body mass day(-)(1)) by the internal organs. Within the dose range we used and at optimal temperature (16 degrees C), the new Cu content of the gut tissues fluctuated, but absorption of new Cu by the internal organs remained relatively constant. For example, predosing the fish with non-radioactive Cu caused new Cu absorption by the gut tissues to double and decreased new Cu excretion from 38 to 1.5 %, but had no effect on new Cu uptake by the internal organs. Feeding fish after application of the normal liquid dose of new Cu also had no effect on new Cu uptake by the internal organs, even though the presence of food in the digestive tract reduced the binding of new Cu to the gut tissues and assisted with the excretion of new Cu. The gut was therefore able to regulate new Cu internalization at this dosage. Higher new Cu doses (10, 100 and 1000 times the normal dose), however, evoked regurgitation and increased new Cu excretion within 4 h of application but did not elevate new Cu levels in gut tissue beyond a threshold of approximately 40 microg of new Cu. Only at the highest dose (1000 times the normal dose, 192 microg g(-)(1 )body mass), equivalent to toxic concentrations in the daily diet (7000 microg Cu g(-)(1 )dry mass food), was the buffering capacity of the gut overwhelmed, resulting in an increase in internal new Cu uptake.