Zinc Signal in Brain Diseases.
Portbury, Stuart D; Adlard, Paul A
2017-11-23
The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.
Fundamental Characteristics of AAA+ Protein Family Structure and Function.
Miller, Justin M; Enemark, Eric J
2016-01-01
Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins.
Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review
Balentova, Sona; Adamkov, Marian
2015-01-01
Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477
Fundamental Characteristics of AAA+ Protein Family Structure and Function
2016-01-01
Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410
Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System
Harrison-Brown, Meredith; Liu, Guo-Jun; Banati, Richard
2016-01-01
Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as “assistants” in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several ‘checkpoints’ from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets. PMID:27918464
From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond.
Michelini, Flavia; Jalihal, Ameya P; Francia, Sofia; Meers, Chance; Neeb, Zachary T; Rossiello, Francesca; Gioia, Ubaldo; Aguado, Julio; Jones-Weinert, Corey; Luke, Brian; Biamonti, Giuseppe; Nowacki, Mariusz; Storici, Francesca; Carninci, Piero; Walter, Nils G; Fagagna, Fabrizio d'Adda di
2018-04-25
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Mitochondrial morphology transitions and functions: implications for retrograde signaling?
Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.
2013-01-01
In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527
Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao
2016-09-01
Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hainsworth, Atticus H; Randall, Andrew D; Stefani, Alessandro
2005-01-01
Voltage-sensitive Ca(2+) channels (VSCC) play a central role in an extensive array of physiological processes. Their importance in cellular function arises from their ability both to sense membrane voltage and to conduct Ca(2+) ions, two facets that couple membrane excitability to a key intracellular second messenger. Through this relationship, activation of VSCCs is tightly coupled to the gamut of cellular functions dependent on intracellular Ca(2+), including muscle contraction, energy metabolism, gene expression, and exocytotic/endocytotic cycling.
Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity.
LaMontagne, Erica D; Heese, Antje
2017-12-01
In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses. Copyright © 2017. Published by Elsevier Ltd.
Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer
Bruntz, Ronald C.; Lindsley, Craig W.
2014-01-01
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928
Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.
Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex
2014-10-01
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Lanni, C; Stanga, S; Racchi, M; Govoni, S
2010-01-01
Multiple molecular, cellular, structural and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively by employing multiple mechanisms in order to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands. Otherwise, they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. An important role in this balancement is played by neurotrophic factors, which are central to many aspects of nervous system function since they regulate the development, maintenance and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. A vast amount of evidence indicates that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to aging as well as to the pathogenesis of diseases of abnormal trophic support (such as neurodegenerative diseases and depression) and diseases of abnormal excitability (such as epilepsy and central pain sensitization). Cellular and molecular mechanisms by which neurotrophic factors may influence cell survival and excitability are also critically examined to provide novel concepts and targets for the treatment of physiological changes bearing detrimental functional alterations and of different diseases affecting the central nervous system during aging.
Regulation of the cellular and physiological effects of glutamine.
Chwals, Walter J
2004-10-01
Glutamine is the most abundant amino acid in humans and possesses many functions in the body. It is the major transporter of amino-nitrogen between cells and an important fuel source for rapidly dividing cells such as cells of the immune and gastrointestinal systems. It is important in the synthesis of nucleic acids, glutathione, citrulline, arginine, gamma aminobutyric acid, and glucose. It is important for growth, gastrointestinal integrity, acid-base homeostasis, and optimal immune function. The regulation of glutamine levels in cells via glutaminase and glutamine synthetase is discussed. The cellular and physiologic effects of glutamine upon the central nervous system, gastrointestinal function, during metabolic support, and following tissue injury and critical illness is also discussed.
Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics
Ammer, Amanda Gatesman; Weed, Scott A.
2008-01-01
Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630
Susaki, Daichi; Takeuchi, Hidenori; Tsutsui, Hiroki; Kurihara, Daisuke; Higashiyama, Tetsuya
2015-05-01
The female gametophytes of many flowering plants contain one egg cell, one central cell, two synergid cells and three antipodal cells with respective morphological characteristics and functions. These cells are formed by cellularization of a multinuclear female gametophyte. However, the dynamics and mechanisms of female gametophyte development remain largely unknown due to the lack of a system to visualize directly and manipulate female gametophytes in living material. Here, we established an in vitro ovule culture system to examine female gametophyte development in Torenia fournieri, a unique plant species with a protruding female gametophyte. The four-nucleate female gametophyte became eight nucleate by the final (third) mitosis and successively cellularized and matured to attract a pollen tube. The duration of final mitosis was 28 ± 6.5 min, and cellularization was completed in 54 ± 20 min after the end of the third mitosis. Fusion of polar nuclei in the central cell occurred in 13.1 ± 1.1 h, and onset of expression of LURE2, a pollen tube attractant gene, was visualized by a green fluorescent protein reporter 10.7 ± 2.3 h after cellularization. Laser disruption analysis demonstrated that the egg and central cells were required for synergid cells to acquire the pollen tube attraction function. Moreover, aberrant nuclear positioning and down-regulation of LURE2 were observed in one of the two synergid cells after disrupting an immature egg cell, suggesting that cell specification was affected. Our system provides insights into the precise dynamics and mechanisms of female gametophyte development in T. fournieri. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F
2016-01-01
Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719
Li, Faqi; Chong, Zhao Zhong; Maiese, Kenneth
2004-09-01
Interest in neuroprotectants for the central nervous system continues to garner significant attention. Nicotinamide, the amide form of niacin (vitamin B3), is the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD+) and is considered to be necessary for cellular function and metabolism. However, recent work has focused on the development of nicotinamide as a novel agent that is critical for modulating cellular plasticity, longevity, and inflammatory microglial function. The ability of nicotinamide to preserve both neuronal and vascular cell populations in the brain during injury is intriguing, but further knowledge of the specific cellular mechanisms that determine protection by this agent is required. The capacity of nicotinamide to govern not only intrinsic cellular integrity, but also extrinsic cellular inflammation rests with the modulation of a host of cellular targets that involve protein kinase B, glycogen synthase kinase-3 beta (GSK-3 beta), Forkhead transcription factors, mitochondrial dysfunction, poly(ADP-ribose) polymerase, cysteine proteases, and microglial activation. Intimately tied to the cytoprotection of nicotinamide is the modulation of an early and late phase of apoptotic injury that is triggered by the loss of membrane asymmetry. Identifying robust cytoprotective agents as nicotinamide in conjunction with the elucidation of the cellular mechanisms responsible for cell survival will continue to solidify the development of therapeutic strategies against neurodegenerative diseases
Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology.
Turan, Belma; Tuncay, Erkan
2017-11-12
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn 2+ . Although Zn 2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn 2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn 2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn 2+ -diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn 2+ in parallel to the discovery of subcellular localization of Zn 2+ -transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn 2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca 2+ dynamics. Cellular labile Zn 2+ is tightly regulated against its adverse effects through either Zn 2+ -transporters, Zn 2+ -binding molecules or Zn 2+ -sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn 2+ distribution in cardiomyocytes and how a remodeling of cellular Zn 2+ -homeostasis can be important in proper cell function with Zn 2+ -transporters under hyperglycemia. We also emphasize the recent investigations on Zn 2+ -transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.
Suman, Matteo; Sharpe, Jenny A; Bentham, Robert B; Kotiadis, Vassilios N; Menegollo, Michela; Pignataro, Viviana; Molgó, Jordi; Muntoni, Francesco; Duchen, Michael R; Pegoraro, Elena; Szabadkai, Gyorgy
2018-07-01
Core myopathies are a group of childhood muscle disorders caused by mutations of the ryanodine receptor (RyR1), the Ca2+ release channel of the sarcoplasmic reticulum. These mutations have previously been associated with elevated inositol trisphosphate receptor (IP3R) levels in skeletal muscle myotubes derived from patients. However, the functional relevance and the relationship of IP3R mediated Ca2+ signalling with the pathophysiology of the disease is unclear. It has also been suggested that mitochondrial dysfunction underlies the development of central and diffuse multi-mini-cores, devoid of mitochondrial activity, which is a key pathological consequence of RyR1 mutations. Here we used muscle biopsies of central core and multi-minicore disease patients with RyR1 mutations, as well as cellular and in vivo mouse models of the disease to characterize global cellular and mitochondrial Ca2+ signalling, mitochondrial function and gene expression associated with the disease. We show that RyR1 mutations that lead to the depletion of the channel are associated with increased IP3-mediated nuclear and mitochondrial Ca2+ signals and increased mitochondrial activity. Moreover, western blot and microarray analysis indicated enhanced mitochondrial biogenesis at the transcriptional and protein levels and was reflected in increased mitochondrial DNA content. The phenotype was recapitulated by RYR1 silencing in mouse cellular myotube models. Altogether, these data indicate that remodelling of skeletal muscle Ca2+ signalling following loss of functional RyR1 mediates bioenergetic adaptation.
The Predator becomes the Prey: Regulating the Ubiquitin System by Ubiquitylation and Degradation
Weissman, Allan M.; Shabek, Nitzan; Ciechanover, Aaron
2012-01-01
Ubiquitylation (also known as ubiquitination) regulates essentially all intracellular processes in eukaryotes through highly specific, and often tightly spatially and temporally regulated, modification of numerous cellular proteins. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology. PMID:21860393
Zou, Chenhui; La Bonte, Laura R.; Pavlov, Vasile I.; Stahl, Gregory L.
2012-01-01
Hyperglycemia, in the absence of type 1 or 2 diabetes, is an independent risk factor for cardiovascular disease. We have previously demonstrated a central role for mannose binding lectin (MBL)-mediated cardiac dysfunction in acute hyperglycemic mice. In this study, we applied whole-genome microarray data analysis to investigate MBL’s role in systematic gene expression changes. The data predict possible intracellular events taking place in multiple cellular compartments such as enhanced insulin signaling pathway sensitivity, promoted mitochondrial respiratory function, improved cellular energy expenditure and protein quality control, improved cytoskeleton structure, and facilitated intracellular trafficking, all of which may contribute to the organismal health of MBL null mice against acute hyperglycemia. Our data show a tight association between gene expression profile and tissue function which might be a very useful tool in predicting cellular targets and regulatory networks connected with in vivo observations, providing clues for further mechanistic studies. PMID:22375142
The Role of Akt in Chronic Liver Disease and Liver Regeneration.
Morales-Ruiz, Manuel; Santel, Ansgar; Ribera, Jordi; Jiménez, Wladimiro
2017-02-01
The liver is continuously exposed to diverse insults, which may culminate in pathological processes causing liver disease. An effective therapeutic strategy for chronic liver disease should control the causal factors of the disease and stimulate functional liver regeneration. Preclinical studies have shown that interventions aimed at maintaining Akt activity in a dysfunctional liver meet most of the criteria. Although the central function of Akt is cell survival, other cellular aspects such as glucose uptake, glycogen synthesis, cell-cycle progression, and lipid metabolism have been shown to be prominent functions of Akt in the context of hepatic physiology. In this review, the authors describe the benefits of the Akt signaling pathway, emphasizing its importance in coordinating proper cellular growth and differentiation during liver regeneration, hepatic function, and liver disease. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets
Spiess, Christoph; Meyer, Anne S.; Reissmann, Stefanie; Frydman, Judith
2010-01-01
Chaperonins are key components of the cellular chaperone machinery. These large, cylindrical complexes contain a central cavity that binds to unfolded polypeptides and sequesters them from the cellular environment. Substrate folding then occurs in this central cavity in an ATP-dependent manner. The eukaryotic chaperonin TCP-1 ring complex (TRiC, also called CCT) is indispensable for cell survival because the folding of an essential subset of cytosolic proteins requires TRiC, and this function cannot be substituted by other chaperones. This specificity indicates that TRiC has evolved structural and mechanistic features that distinguish it from other chaperones. Although knowledge of this unique complex is in its infancy, we review recent advances that open the way to understanding the secrets of its folding chamber. PMID:15519848
NASA Astrophysics Data System (ADS)
Liaw, Kevin; Gök, Ozgul; DeRidder, Louis B.; Kannan, Sujatha; Kannan, Rangaramanujam M.
2018-04-01
Dendrimers are a promising class of polymeric nanoparticles for delivery of therapeutics and diagnostics. Polyamidoamine (PAMAM) dendrimers have shown significant efficacy in many animal models, with performance dependent on surface functionalities. Understanding the effects of end groups on biological interactions is critical for rational design of dendrimer-mediated therapies. In this study, we quantify the cellular trafficking kinetics (endocytosis and exocytosis) of generation 4 neutral (D4-OH), cationic (D4-NH2), anionic (D3.5-COOH), and generation 6 neutral (D6-OH) PAMAM dendrimers to investigate the nanoscale effects of surface functionality and size on cellular interactions. Resting and LPS-activated microglia were studied due to their central roles in dendrimer therapies for central nervous system disorders. D4-OH exhibits greater cellular uptake and lower retention than the larger D6-OH. D4-OH and D3.5-COOH exhibit similar trafficking kinetics, while D4-NH2 exhibits significant membrane interactions, resulting in faster cell association but lower internalization. Cationic charge may also enhance vesicular escape for greater cellular retention and preferential partitioning to nuclei. LPS activation further improves uptake of dendrimers, with smaller and cationic dendrimers experiencing the greatest increases in uptake compared to resting microglia. These studies have implications for the dependence of trafficking pathway on dendrimer properties and inform the design of dendrimer constructs tailored to specific therapeutic needs. Cationic dendrimers are ideal for delivering genetic materials to nuclei, but toxicity may be a limiting factor. Smaller, neutral dendrimers are best suited for delivering high levels of therapeutics in acute neuroinflammation, while larger or cationic dendrimers provide robust retention for sustained release of therapeutics in longer-term diseases.
Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology
Turan, Belma; Tuncay, Erkan
2017-01-01
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes. PMID:29137144
Simultaneous Multiparameter Cellular Energy Metabolism Profiling of Small Populations of Cells.
Kelbauskas, Laimonas; Ashili, Shashaanka P; Lee, Kristen B; Zhu, Haixin; Tian, Yanqing; Meldrum, Deirdre R
2018-03-12
Functional and genomic heterogeneity of individual cells are central players in a broad spectrum of normal and disease states. Our knowledge about the role of cellular heterogeneity in tissue and organism function remains limited due to analytical challenges one encounters when performing single cell studies in the context of cell-cell interactions. Information based on bulk samples represents ensemble averages over populations of cells, while data generated from isolated single cells do not account for intercellular interactions. We describe a new technology and demonstrate two important advantages over existing technologies: first, it enables multiparameter energy metabolism profiling of small cell populations (<100 cells)-a sample size that is at least an order of magnitude smaller than other, commercially available technologies; second, it can perform simultaneous real-time measurements of oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and mitochondrial membrane potential (MMP)-a capability not offered by any other commercially available technology. Our results revealed substantial diversity in response kinetics of the three analytes in dysplastic human epithelial esophageal cells and suggest the existence of varying cellular energy metabolism profiles and their kinetics among small populations of cells. The technology represents a powerful analytical tool for multiparameter studies of cellular function.
Restorer-of-fertility mutations recovered in transposon-active lines of S male-sterile maize
USDA-ARS?s Scientific Manuscript database
Mitochondria execute key pathways of central metabolism and serve as cellular sensing and signaling entities - functions that depend upon interactions between mitochondrial and nuclear genetic systems. This is exemplified in cytoplasmic male sterility type S (CMS-S) of Zea mays, where novel mitochon...
Advances in RNA Structure Determination | Center for Cancer Research
The recent years have witnessed a revolution in the field of RNA structure and function. Until recently the main contribution of RNA in cellular and disease functions was considered to be a role defined by the central dogma, namely DNA codes for mRNAs, which in turn encode for proteins, a notion facilitated by non-coding ribosomal RNA and tRNA. It was also assumed at the time
Di Bonito, Maria; Studer, Michèle
2017-01-01
During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways. PMID:28469562
The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis
Knippschild, Uwe; Krüger, Marc; Richter, Julia; Xu, Pengfei; García-Reyes, Balbina; Peifer, Christian; Halekotte, Jakob; Bakulev, Vasiliy; Bischof, Joachim
2014-01-01
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis. PMID:24904820
Global functional analyses of cellular responses to pore-forming toxins.
Kao, Cheng-Yuan; Los, Ferdinand C O; Huffman, Danielle L; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V
2011-03-01
Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.
Bak, Marek; Zmyślony, Marek
2010-01-01
In the opinion of some experts, a growing emission of man-made electromagnetic fields (EMF), also known as electromagnetic is a source of continuously increasing health hazards to the general population. Due to their large number and very close proximity to the user's head, mobile phones deserve special attention. This work is intended to give a systematic review of objective studies, assessing the effects of mobile phone EMF on the functions of the central nervous system (CNS) structures. Our review shows that short exposures to mobile phone EMF, experienced by telephone users during receiving calls, do not affect the cochlear function. Effects of GSM mobile phone EMF on the conduction of neural impulses from the inner car neurons to the brainstem auditory centres have not been detected either. If Picton's principle, saying that P300 amplitude varies with the improbability of the targets and its latency varies with difficulty of discriminating the target stimulus from standard stimuli, is true, EMF changes the improbability of the targets without hindering their discrimination. Experiments with use of indirect methods do not enable unequivocal verification of EMF effects on the cognitive functions due to the CNS anatomical and functional complexity. Thus, it seems advisable to develop a model of EMF effects on the excitable brain structures at the cellular level.
UnPAKing the class differences among p21-activated kinases.
Eswaran, Jeyanthy; Soundararajan, Meera; Kumar, Rakesh; Knapp, Stefan
2008-08-01
The p21-activated kinases (PAKs) are signal transducers, central to many vital cellular processes, including cell morphology, motility, survival, gene transcription and hormone signalling. The mammalian PAK family contains six serine/threonine kinases divided into two subgroups, group I (PAK 1-3) and group II (PAK4-6), based on their domain architecture and regulation. PAKs functioning as dynamic signalling nodes present themselves as attractive therapeutic targets in tumours, neurological diseases and infection. The recent findings across all PAKs, including newly reported structures, shed light on the cellular functions of PAKs, highlighting molecular mechanisms of activation, catalysis and substrate specificity. We believe that a comprehensive understanding of the entire PAK family is essential for developing strategies towards PAK-targeted therapeutics.
In vitro studies of actin filament and network dynamics
Mullins, R Dyche; Hansen, Scott D
2013-01-01
Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766
Engineering the robustness of industrial microbes through synthetic biology.
Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin
2012-02-01
Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Schanzenbächer, Christoph T
2018-01-01
In homeostatic scaling at central synapses, the depth and breadth of cellular mechanisms that detect the offset from the set-point, detect the duration of the offset and implement a cellular response are not well understood. To understand the time-dependent scaling dynamics we treated cultured rat hippocampal cells with either TTX or bicucculline for 2 hr to induce the process of up- or down-scaling, respectively. During the activity manipulation we metabolically labeled newly synthesized proteins using BONCAT. We identified 168 newly synthesized proteins that exhibited significant changes in expression. To obtain a temporal trajectory of the response, we compared the proteins synthesized within 2 hr or 24 hr of the activity manipulation. Surprisingly, there was little overlap in the significantly regulated newly synthesized proteins identified in the early- and integrated late response datasets. There was, however, overlap in the functional categories that are modulated early and late. These data indicate that within protein function groups, different proteomic choices can be made to effect early and late homeostatic responses that detect the duration and polarity of the activity manipulation. PMID:29447110
Structural Elements Regulating AAA+ Protein Quality Control Machines.
Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F
2017-01-01
Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.
Greenwald, Jess D; Shafritz, Keith M
2018-01-01
Chronic pain can result from many pain syndromes including complex regional pain syndrome (CRPS), phantom limb pain and chronic low back pain, among others. On a molecular level, chronic pain syndromes arise from hypersensitization within the dorsal horn of the spinal cord, a process known as central sensitization. Central sensitization involves an upregulation of ionotropic and metabotropic glutamate receptors (mGluRs) similar to that of long-term potentiation (LTP). Regions of the brain in which LTP occurs, such as the amygdala and hippocampus, are implicated in fear- and memory-related brain circuity. Chronic pain dramatically influences patient quality of life. Individuals with chronic pain may develop pain-related anxiety and pain-related fear. The syndrome also alters functional connectivity in the default-mode network (DMN) and salience network. On a cellular/molecular level, central sensitization may be reversed through degradative glutamate receptor pathways. This, however, rarely happens. Instead, cortical brain regions may serve in a top-down regulatory capacity for the maintenance or alleviation of pain. Specifically, the medial prefrontal cortex (mPFC), which plays a critical role in fear-related brain circuits, the DMN, and salience network may be the driving forces in this process. On a cellular level, the mPFC may form new neural circuits through LTP that may cause extinction of pre-existing pain pathways found within fear-related brain circuits, the DMN, and salience network. In order to promote new LTP connections between the mPFC and other key brain structures, such as the amygdala and insula, we propose a holistic rehabilitation program including cognitive behavioral therapy (CBT) and revolving around: (1) cognitive reappraisals; (2) mindfulness meditation; and (3) functional rehabilitation. Unlike current medical interventions focusing upon pain-relieving medications, we do not believe that chronic pain treatment should focus on reversing the effects of central sensitization. Instead, we propose here that it is critical to focus on non-invasive efforts to promote new neural circuits originating from the mPFC.
Running, William E; Reilly, James P
2010-10-01
Ribosomes occupy a central position in cellular metabolism, converting stored genetic information into active cellular machinery. Ribosomal proteins modulate both the intrinsic function of the ribosome and its interaction with other cellular complexes, such as chaperonins or the signal recognition particle. Chemical modification of proteins combined with mass spectrometric detection of the extent and position of covalent modifications is a rapid, sensitive method for the study of protein structure and flexibility. By altering the pH of the solution, we have induced non-denaturing changes in the structure of bacterial ribosomal proteins and detected these conformational changes by covalent labeling. Changes in ribosomal protein modification across a pH range from 6.6 to 8.3 are unique to each protein, and correlate with their structural environment in the ribosome. Lysine residues whose extent of modification increases as a function of increasing pH are on the surface of proteins, but in close proximity either to glutamate and aspartate residues, or to rRNA backbone phosphates. Increasing pH disrupts tertiary and quaternary interactions mediated by hydrogen bonding or ionic interactions, and regions of protein structure whose conformations are sensitive to these changes are of potential importance in modulating the flexibility of the ribosome or its interaction with other cellular complexes.
Teleost fish as a model system to study successful regeneration of the central nervous system.
Zupanc, Günther K H; Sîrbulescu, Ruxandra F
2013-01-01
Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.
Structure-function relationships in the evolutionary framework of spermine oxidase.
Cervelli, Manuela; Salvi, Daniele; Polticelli, Fabio; Amendola, Roberto; Mariottini, Paolo
2013-06-01
Spermine oxidase is a FAD-dependent enzyme that specifically oxidizes spermine, and plays a central role in the highly regulated catabolism of polyamines in vertebrates. The spermine oxidase substrate is specifically spermine, a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signalling, nitric oxide synthesis and inhibition of immune responses. The oxidative products of spermine oxidase activity are spermidine, H2O2 and the aldehyde 3-aminopropanal that spontaneously turns into acrolein. In this study the reconstruction of the phylogenetic relationships among spermine oxidase proteins from different vertebrate taxa allowed to infer their molecular evolutionary history, and assisted in elucidating the conservation of structural and functional properties of this enzyme family. The amino acid residues, which have been hypothesized or demonstrated to play a pivotal role in the enzymatic activity, and substrate specificity are here analysed to obtain a comprehensive and updated view of the structure-function relationships in the evolution of spermine oxidase.
Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; McGoldrick, Phillip; Devine, Michael J; Zerle, Julia; Kara, Eleanna; Taanman, Jan-Willem; Healy, Daniel G; Marti-Masso, Jose-Felix; Schapira, Anthony H; Plun-Favreau, Helene; Tooze, Sharon; Hardy, John; Bandopadhyay, Rina; Lewis, Patrick A
2013-11-29
LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Melzer, Nico; Meuth, Sven G; Wiendl, Heinz
2012-06-01
The human central nervous system (CNS) can mistakenly be the target of adaptive cellular and humoral immune responses causing both functional and structural impairment. We here provide an overview of neuron-directed autoimmunity as a novel class of inflammatory CNS disorders, their differential diagnoses, clinical hallmarks, imaging features, characteristic laboratory, electrophysiological, cerebrospinal fluid and neuropathological findings, cellular and molecular disease mechanisms, as well as therapeutic options. A growing number of immune-mediated CNS disorders of both autoimmune and paraneoplastic origin have emerged, in which neurons seem to be the target of the immune response. Antibodies binding to a variety of synaptic and extrasynaptic antigens located on the neuronal surface membrane can define distinct entities. Clinically, these disorders are characterized by subacute CNS-related [and sometimes peripheral nervous system (PNS)-related] symptoms involving a variety of cortical and subcortical gray matter areas, which often reflect the expression pattern and function of the respective target antigen. Antibodies seem to be pathogenic and cause (reversible) disturbance of synaptic transmission and neuronal excitability by selective functional inhibition or crosslinking and internalization of their antigen in the absence of overt cytotoxicity, at least at early disease stages. Whether at later disease stages antibody-mediated cytotoxicity, cytotoxic CD8+ T cells, or other detrimental immune mechanisms contribute to neuronal impairment is unclear at present. Adaptive humoral autoimmunity directed to neuronal cell-surface antigens offers first and unique insights and provokes further investigation into the systemic, cellular, and molecular consequences of immune-mediated disruption of distinct neuronal signaling pathways within the living human CNS.
Cell biology in China: Focusing on the lysosome.
Yang, Chonglin; Wang, Xiaochen
2017-06-01
The view that lysosomes are merely the recycling bins of the cell has changed greatly during recent years. Lysosomes are now known to play a central role in signal transduction, cellular adaptation, plasma membrane repair, immune responses and many other fundamental cellular processes. In conjunction with the seminal discoveries made by international colleagues, many important questions regarding lysosomes are being addressed by Chinese scientists. In this review, we briefly summarize recent exciting findings in China on lysosomal signaling, biogenesis, integrity and physiological functions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Membrane contact sites, ancient and central hubs of cellular lipid logistics.
Jain, Amrita; Holthuis, Joost C M
2017-09-01
Membrane contact sites (MCSs) are regions where two organelles are closely apposed to facilitate molecular communication and promote a functional integration of compartmentalized cellular processes. There is growing evidence that MCSs play key roles in controlling intracellular lipid flows and distributions. Strikingly, even organelles connected by vesicular trafficking exchange lipids en bulk via lipid transfer proteins that operate at MCSs. Herein, we describe how MCSs developed into central hubs of lipid logistics during the evolution of eukaryotic cells. We then focus on how modern eukaryotes exploit MCSs to help solve a major logistical problem, namely to preserve the unique lipid mixtures of their early and late secretory organelles in the face of extensive vesicular trafficking. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Copyright © 2017. Published by Elsevier B.V.
Serotonin targets inhibitory synapses to induce modulation of network functions
Manzke, Till; Dutschmann, Mathias; Schlaf, Gerald; Mörschel, Michael; Koch, Uwe R.; Ponimaskin, Evgeni; Bidon, Olivier; Lalley, Peter M.; Richter, Diethelm W.
2009-01-01
The cellular effects of serotonin (5-HT), a neuromodulator with widespread influences in the central nervous system, have been investigated. Despite detailed knowledge about the molecular biology of cellular signalling, it is not possible to anticipate the responses of neuronal networks to a global action of 5-HT. Heterogeneous expression of various subtypes of serotonin receptors (5-HTR) in a variety of neurons differently equipped with cell-specific transmitter receptors and ion channel assemblies can provoke diverse cellular reactions resulting in various forms of network adjustment and, hence, motor behaviour. Using the respiratory network as a model for reciprocal synaptic inhibition, we demonstrate that 5-HT1AR modulation primarily affects inhibition through glycinergic synapses. Potentiation of glycinergic inhibition of both excitatory and inhibitory neurons induces a functional reorganization of the network leading to a characteristic change of motor output. The changes in network operation are robust and help to overcome opiate-induced respiratory depression. Hence, 5-HT1AR activation stabilizes the rhythmicity of breathing during opiate medication of pain. PMID:19651659
Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.
2016-01-01
Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279
Mitochondrial Function in Sepsis
Arulkumaran, Nishkantha; Deutschman, Clifford S.; Pinsky, Michael R.; Zuckerbraun, Brian; Schumacker, Paul T.; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.
2015-01-01
Mitochondria are an essential part of the cellular infrastructure, being the primary site for high energy adenosine triphosphate (ATP) production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered and end organ dysfunction not only common but predictive of long term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used as both a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide. PMID:26871665
MITOCHONDRIAL FUNCTION IN SEPSIS.
Arulkumaran, Nishkantha; Deutschman, Clifford S; Pinsky, Michael R; Zuckerbraun, Brian; Schumacker, Paul T; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A
2016-03-01
Mitochondria are an essential part of the cellular infrastructure, being the primary site for high-energy adenosine triphosphate production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered, and end organ dysfunction is not only common, but also predictive of long-term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used both as a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide.
The Circadian Clock in Cancer Development and Therapy
Fu, Loning; Kettner, Nicole M.
2014-01-01
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, as the world industrialized, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function and aging that are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anti-cancer therapies. PMID:23899600
Vitamin C transport and its role in the central nervous system
May, James M.
2013-01-01
Vitamin C, or ascorbic acid, is important as an antioxidant and participates in numerous cellular functions. Although it circulates in plasma in micromolar concentrations, it reaches millimolar concentrations in most tissues. These high ascorbate cellular concentrations are thought to be generated and maintained by the SVCT2 (Slc23a2), a specific transporter for ascorbate. The vitamin is also readily recycled from its oxidized forms inside cells. Neurons in the central nervous system (CNS) contain some of the highest ascorbic acid concentrations of mammalian tissues. Intracellular ascorbate serves several functions in the CNS, including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. The importance of the SVCT2 for CNS function is supported by the finding that its targeted deletion in mice causes widespread cerebral hemorrhage and death on post-natal day one. Neuronal ascorbate content as maintained by this protein also has relevance for human disease, since ascorbate supplements decrease infarct size in ischemia-reperfusion injury models of stroke, and since ascorbate may protect neurons from the oxidant damage associated with neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis and the extent to which ascorbate affects brain function and antioxidant defenses in the CNS. PMID:22116696
NASA Astrophysics Data System (ADS)
Yamada, Shinnosuke; Matzke-Karasz, Renate
2012-07-01
`Giant sperm', in terms of exceptionally long spermatozoa, occur in a variety of taxa in the animal kingdom, predominantly in arthropod groups, but also in flatworms, mollusks, and others. In some freshwater ostracods (Cypridoidea), filamentous sperm cells reach up to ten times the animal's body length; nonetheless, during a single copulation several dozen sperm cells can be transferred to the female's seminal receptacle. This highly effective ejaculation has traditionally been credited to a chitinous-muscular structure within the seminal duct, which has been interpreted as a sperm pump. We investigated this organ, also known as the Zenker organ, of a cypridoid ostracod, Pseudocandona marchica, utilizing light and electron microscope techniques and produced a three-dimensional reconstruction based on serial semi-thin histological sections. This paper shows that numerous muscle fibers surround the central tube of the Zenker organ, running in parallel with the central tube and that a thin cellular layer underlies the muscular layer. A cellular inner tube exists inside the central tube. A chitinous-cellular structure at the entrance of the organ has been recognized as an ejaculatory valve. In male specimens during copulation, we confirmed a small hole derived from the passage of a single spermatozoon through the valve. The new data allowed for proposing a detailed course of operation of the Zenker organ during giant sperm ejaculation.
Huria, Tahani; Beeraka, Narasimha Murthy; Al-Ghamdi, Badrah; Fern, Robert
2015-01-01
Ischemic-type injury to developing white matter is associated with the significant clinical condition cerebral palsy and with the cognitive deficits associated with premature birth. Premyelinated axons are the major cellular component of fetal white matter and loss of axon function underlies the disability, but the cellular mechanisms producing ischemic injury to premyelinated axons have not previously been described. Injury was found to require longer periods of modelled ischemia than at latter developmental points. Ischemia produced initial hyperexcitability in axons followed by loss of function after Na+ and Ca2+ influx. N-methyl-D-aspartate- (NMDA) type glutamate receptor (GluR) agonists potentiated axon injury while antagonists were protective. The NMDA GluR obligatory Nr1 subunit colocalized with markers of small premyelinated axons and expression was found at focal regions of axon injury. Ischemic injury of glial cells present in early developing white matter was NMDA GluR independent. Axons in human postconception week 18 to 23 white matter had a uniform prediameter expansion phenotype and postembedded immuno-gold labelling showed Nr1 subunit expression on the membrane of these axons, demonstrating a shared key neuropathologic feature with the rodent model. Premyelinated central axons therefore express high levels of functional NMDA GluRs that confer sensitivity to ischemic injury. PMID:25515212
Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway.
Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels
2015-05-12
Ubiquitin and ubiquitin-like proteins (UBLs) function in a wide array of cellular processes. UBL5 is an atypical UBL that does not form covalent conjugates with cellular proteins and which has a known role in modulating pre-mRNA splicing. Here, we report an unexpected involvement of human UBL5 in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function in response to DNA damage and hypersensitivity to ICLs. By mapping the sequence determinants underlying UBL5-FANCI binding, we generated separation-of-function mutants to demonstrate that key aspects of FA pathway function, including FANCI-FANCD2 heterodimerization, FANCD2 and FANCI monoubiquitylation and maintenance of chromosome stability after ICLs, are compromised when the UBL5-FANCI interaction is selectively inhibited by mutations in either protein. Together, our findings establish UBL5 as a factor that promotes the functionality of the FA DNA repair pathway. © 2015 The Authors.
Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress
McAllister, Kimberly; Worth, Leroy; Haugen, Astrid C.; Meyer, Joel N.; Domann, Frederick E.; Van Houten, Bennett; Mostoslavsky, Raul; Bultman, Scott J.; Baccarelli, Andrea A.; Begley, Thomas J.; Sobol, Robert W.; Hirschey, Matthew D.; Ideker, Trey; Santos, Janine H.; Copeland, William C.; Tice, Raymond R.; Balshaw, David M.; Tyson, Frederick L.
2014-01-01
Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors. Citation: Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278; http://dx.doi.org/10.1289/ehp.1408418 PMID:25127496
Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.; ...
2015-03-27
Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.
Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less
2011-01-01
Background A gene's position in regulatory, protein interaction or metabolic networks can be predictive of the strength of purifying selection acting on it, but these relationships are neither universal nor invariably strong. Following work in bacteria, fungi and invertebrate animals, we explore the relationship between selective constraint and metabolic function in mammals. Results We measure the association between selective constraint, estimated by the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, and several, primarily metabolic, measures of gene function. We find significant differences between the selective constraints acting on enzyme-coding genes from different cellular compartments, with the nucleus showing higher constraint than genes from either the cytoplasm or the mitochondria. Among metabolic genes, the centrality of an enzyme in the metabolic network is significantly correlated with Ka/Ks. In contrast to yeasts, gene expression magnitude does not appear to be the primary predictor of selective constraint in these organisms. Conclusions Our results imply that the relationship between selective constraint and enzyme centrality is complex: the strength of selective constraint acting on mammalian genes is quite variable and does not appear to exclusively follow patterns seen in other organisms. PMID:21470417
Systemic deregulation of autophagy upon loss of ALS- and FTD-linked C9orf72.
Ji, Yon Ju; Ugolino, Janet; Brady, Nathan Ryan; Hamacher-Brady, Anne; Wang, Jiou
2017-07-03
A genetic mutation in the C9orf72 gene causes the most common forms of neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The C9orf72 protein, predicted to be a DENN-family protein, is reduced in ALS and FTD, but its functions remain poorly understood. Using a 3110043O21Rik/C9orf72 knockout mouse model, as well as cellular analysis, we have found that loss of C9orf72 causes alterations in the signaling states of central autophagy regulators. In particular, C9orf72 depletion leads to reduced activity of MTOR, a negative regulator of macroautophagy/autophagy, and concomitantly increased TFEB levels and nuclear translocation. Consistent with these alterations, cells exhibit enlarged lysosomal compartments and enhanced autophagic flux. Loss of the C9orf72 interaction partner SMCR8 results in similar phenotypes. Our findings suggest that C9orf72 functions as a potent negative regulator of autophagy, with a central role in coupling the cellular metabolic state with autophagy regulation. We thus propose C9orf72 as a fundamental component of autophagy signaling with implications in basic cell physiology and pathophysiology, including neurodegeneration.
NASA Technical Reports Server (NTRS)
Pelzer, T.; Lyons, G. E.; Kim, S.; Moreadith, R. W.; Blomqvist, C. G. (Principal Investigator)
1996-01-01
The cellular function(s) of the SNO protein remain undefined. To gain a better understanding of possible developmental roles of this cellular proto-oncogene, we have cloned two murine sno cDNAs and have investigated their expression patterns in embryonic and postnatal tissues. A single major transcript of 7.5 kb is detected in multiple tissues by Northern blot. However, reverse transcriptase polymerase chain reaction (RT-PCR) and RNAse protection assays revealed a novel splice variant in every tissue examined. Two isoforms, termed sno N and sno-dE3 (dE3, deletion within exon 3), were identified. The sno-dE3 isoform employs a novel 5' splice site located within the coding region of the third exon and deletes potential kinase recognition motifs. Transcripts of both sno isoforms accumulate ubiquitously but are most abundant in the developing central nervous system. The in situ hybridization patterns of sno expression during murine development suggest potential roles in tissues with a high degree of cellular proliferation. Expression in terminally differentiated tissues such as muscle and neurons indicates that SNO may have multiple functional activities.
Kohlwein, Sepp D.; Veenhuis, Marten; van der Klei, Ida J.
2013-01-01
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide. PMID:23275493
Luger, Anna-Luisa; Sauer, Benedikt; Lorenz, Nadja I; Engel, Anna L; Braun, Yannick; Voss, Martin; Harter, Patrick N; Steinbach, Joachim P; Ronellenfitsch, Michael W
2018-05-17
Inducible gene expression is an important tool in molecular biology research to study protein function. Most frequently, the antibiotic doxycycline is used for regulation of so-called tetracycline (Tet)-inducible systems. In contrast to stable gene overexpression, these systems allow investigation of acute and reversible effects of cellular protein induction. Recent reports have already called for caution when using Tet-inducible systems as the employed antibiotics can disturb mitochondrial function and alter cellular metabolism by interfering with mitochondrial translation. Reprogramming of energy metabolism has lately been recognized as an important emerging hallmark of cancer and is a central focus of cancer research. Therefore, the scope of this study was to systematically analyze dose-dependent metabolic effects of doxycycline on a panel of glioma cell lines with concomitant monitoring of gene expression from Tet-inducible systems. We report that doxycycline doses commonly used with inducible expression systems (0.01⁻1 µg/mL) substantially alter cellular metabolism: Mitochondrial protein synthesis was inhibited accompanied by reduced oxygen and increased glucose consumption. Furthermore, doxycycline protected human glioma cells from hypoxia-induced cell death. An impairment of cell growth was only detectable with higher doxycycline doses (10 µg/mL). Our findings describe settings where doxycycline exerts effects on eukaryotic cellular metabolism, limiting the employment of Tet-inducible systems.
Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.
2006-01-01
The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377
Endoplasmic reticulum stress in the pathogenesis of hypertension.
Young, Colin N
2017-08-01
What is the topic of this review? This review highlights the emerging role of disruptions in endoplasmic reticulum (ER) function, namely ER stress, as a contributor to hypertension. What advances does it highlight? This review presents an integrative view of ER stress in cardiovascular control systems, including systems within the brain, kidney and peripheral vasculature, as related to development of hypertension. The endoplasmic reticulum (ER) is a cellular organelle specialized in the synthesis, folding, assembly and modification of proteins. In situations of increased protein demand, complex signalling pathways, termed the unfolded protein response, influence a series of cellular feedback loops to control ER function strictly. Although this is initially a compensatory attempt to maintain cellular homeostasis, chronic activation of the unfolded protein response, known as ER stress, leads to sustained changes in cellular function. A growing body of literature points to ER stress in diverse cardioregulatory systems, including the brain, kidney and vasculature, as central to the development of hypertension. Here, these recent findings from essential and obesity-related forms of hypertension are highlighted in an integrative manner, with discussion of the potential upstream causes and downstream consequences of ER stress. Given that hypertension is a leading medical and socio-economic global challenge, emerging findings suggest that targeting ER stress might represent a viable strategy for the treatment of hypertensive disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
AAA+ Machines of Protein Destruction in Mycobacteria.
Alhuwaider, Adnan Ali H; Dougan, David A
2017-01-01
The bacterial cytosol is a complex mixture of macromolecules (proteins, DNA, and RNA), which collectively are responsible for an enormous array of cellular tasks. Proteins are central to most, if not all, of these tasks and as such their maintenance (commonly referred to as protein homeostasis or proteostasis) is vital for cell survival during normal and stressful conditions. The two key aspects of protein homeostasis are, (i) the correct folding and assembly of proteins (coupled with their delivery to the correct cellular location) and (ii) the timely removal of unwanted or damaged proteins from the cell, which are performed by molecular chaperones and proteases, respectively. A major class of proteins that contribute to both of these tasks are the AAA+ (ATPases associated with a variety of cellular activities) protein superfamily. Although much is known about the structure of these machines and how they function in the model Gram-negative bacterium Escherichia coli , we are only just beginning to discover the molecular details of these machines and how they function in mycobacteria. Here we review the different AAA+ machines, that contribute to proteostasis in mycobacteria. Primarily we will focus on the recent advances in the structure and function of AAA+ proteases, the substrates they recognize and the cellular pathways they control. Finally, we will discuss the recent developments related to these machines as novel drug targets.
Joshi, Vibhuti; Amanullah, Ayeman; Upadhyay, Arun; Mishra, Ribhav; Kumar, Amit; Mishra, Amit
2016-01-01
Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity and aging. CHIP targets misfolded proteins for their degradation through proteasome, as well as autophagy; simultaneously, with the help of chaperones, it also regulates folding attempts for misfolded proteins. The broad range of CHIP substrates and their associations with multiple pathologies make it a key molecule to work upon and focus for future therapeutic interventions. E3 ubiquitin ligase CHIP interacts and degrades many protein inclusions formed in neurodegenerative diseases. The presence of CHIP at various nodes of cellular protein-protein interaction network presents this molecule as a potential candidate for further research. In this review, we have explored a wide range of functionality of CHIP inside cells by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases. We have also raised many unexplored but expected fundamental questions regarding CHIP functions, which generate hopes for its future applications in research, as well as drug discovery. PMID:27757073
Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria
Burnap, Robert L.
2014-01-01
Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The “proteomic constraint” is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the ribosome groups. PMID:25654078
The intriguing nature of dorsal root ganglion neurons: linking structure with polarity and function.
Nascimento, Ana Isabel; Mar, Fernando Milhazes; Sousa, Mónica Mendes
2018-05-02
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type. Copyright © 2018. Published by Elsevier Ltd.
The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing
Chang, Po-Yen; Su, Ta-Shun; Shih, Chi-Tin; Lo, Chung-Chuan
2017-01-01
Neural networks regulate brain functions by routing signals. Therefore, investigating the detailed organization of a neural circuit at the cellular levels is a crucial step toward understanding the neural mechanisms of brain functions. To study how a complicated neural circuit is organized, we analyzed recently published data on the neural circuit of the Drosophila central complex, a brain structure associated with a variety of functions including sensory integration and coordination of locomotion. We discovered that, except for a small number of “atypical” neuron types, the network structure formed by the identified 194 neuron types can be described by only a few simple mathematical rules. Specifically, the topological mapping formed by these neurons can be reconstructed by applying a generation matrix on a small set of initial neurons. By analyzing how information flows propagate with or without the atypical neurons, we found that while the general pattern of signal propagation in the central complex follows the simple topological mapping formed by the “typical” neurons, some atypical neurons can substantially re-route the signal pathways, implying specific roles of these neurons in sensory signal integration. The present study provides insights into the organization principle and signal integration in the central complex. PMID:28443014
Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E
2016-07-01
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.
Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.
2015-01-01
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560
Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E
2016-01-01
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations ( healthy young UK men and Scandinavian diabetic patients ) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold ( P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.
Architecture of the human interactome defines protein communities and disease networks
Huttlin, Edward L.; Bruckner, Raphael J.; Paulo, Joao A.; Cannon, Joe R.; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P.; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E.; Schweppe, Devin K.; Rad, Ramin; Erickson, Brian K.; Obar, Robert A.; Guruharsha, K.G.; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P.; Harper, J. Wade
2017-01-01
The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidation of how genome variation contributes to disease1–3. Here, we present BioPlex 2.0 (Biophysical Interactions of ORFEOME-derived complexes), which employs robust affinity purification-mass spectrometry (AP-MS) methodology4 to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein coding genes from the human genome, and constitutes the largest such network to date. With >56,000 candidate interactions, BioPlex 2.0 contains >29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering (MCL)5 of interacting proteins identified more than 1300 protein communities representing diverse cellular activities. Genes essential for cell fitness6,7 are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization. PMID:28514442
Future Targets for Female Sexual Dysfunction.
Farmer, Melissa; Yoon, Hana; Goldstein, Irwin
2016-08-01
Female sexual function reflects a dynamic interplay of central and peripheral nervous, vascular, and endocrine systems. The primary challenge in the development of novel treatments for female sexual dysfunction is the identification and targeted modulation of excitatory sexual circuits using pharmacologic treatments that facilitate the synthesis, release, and/or receptor binding of neurochemicals, peptides, and hormones that promote female sexual function. To develop an evidence-based state-of-the-art consensus report that critically integrates current knowledge of the therapeutic potential for known molecular and cellular targets to facilitate the physiologic processes underlying female sexual function. State-of-the-art review representing the opinions of international experts developed in a consensus process during a 1-year period. Expert opinion was established by grading the evidence-based medical literature, intensive internal committee discussion, public presentation, and debate. Scientific investigation is urgently needed to expand knowledge and foster development of future treatments that maintain genital tissue integrity, enhance genital physiologic responsiveness, and optimize positive subjective appraisal of internal and external sexual cues. This article critically condenses the current knowledge of therapeutic manipulation of molecular and cellular targets within biological systems responsible for female sexual physiologic function. Future treatment targets include pharmacologic modulation of emotional learning circuits, restoration of normal tactile sensation, growth factor therapy, gene therapy, stem cell-based therapies, and regenerative medicine. Concurrent use of centrally and peripherally acting therapies could optimize treatment response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
A virocentric perspective on the evolution of life
Koonin, Eugene V.; Dolja, Valerian V.
2015-01-01
Viruses and/or virus-like selfish elements are associated with all cellular life forms and are the most abundant biological entities on Earth, with the number of virus particles in many environments exceeding the number of cells by one to two orders of magnitude. The genetic diversity of viruses is commensurately enormous and might substantially exceed the diversity of cellular organisms. Unlike cellular organisms with their uniform replication-expression scheme, viruses possess either RNA or DNA genomes and exploit all conceivable replication-expression strategies. Although viruses extensively exchange genes with their hosts, there exists a set of viral hallmark genes that are shared by extremely diverse groups of viruses to the exclusion of cellular life forms. Coevolution of viruses and host defense systems is a key aspect in the evolution of both viruses and cells, and viral genes are often recruited for cellular functions. Together with the fundamental inevitability of the emergence of genomic parasites in any evolving replicator system, these multiple lines of evidence reveal the central role of viruses in the entire evolution of life. PMID:23850169
Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System
Tan, Hong
2018-01-01
The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration. PMID:29805977
DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling.
Eichmann, Thomas Oliver; Lass, Achim
2015-10-01
The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.
Pennati, Roberta; Groppelli, S; De Bernardi, F; Mastrototaro, F; Zega, G
2009-01-01
Almost all ascidian larvae bear three mucus secreting and sensory organs, the adhesive papillae, at the anterior end of the trunk, which play an important role during the settlement phase. The morphology and the cellular composition of these organs varies greatly in the different species. The larvae of the Clavelina genus bear simple bulbous papillae, which are considered to have only a secretory function. We analysed the adhesive papillae of two species belonging to this genus, C. lepadiformis and C. phlegraea, by histological sections and by immunolocalisation of b-tubulin and serotonin, in order to better clarify the cellular composition of these organs. We demonstrated that they contain at least two types of neurons: central neurons, bearing microvilli, and peripheral ciliated neurons. Peripheral neurons of C. lepadiformis contain serotonin. We suggest that these two neurons play different roles during settlement: the central ones may be chemo- or mechanoreceptors that sense the substratum, and the peripheral ones may be involved in the mechanism that triggers metamorphosis.
Applications of CRISPR/Cas9 in the Mammalian Central Nervous System
Savell, Katherine E.; Day, Jeremy J.
2017-01-01
Within the central nervous system, gene regulatory mechanisms are crucial regulators of cellular development and function, and dysregulation of these systems is commonly observed in major neuropsychiatric and neurological disorders. However, due to a lack of tools to specifically modulate the genome and epigenome in the central nervous system, many molecular and genetic mechanisms underlying cognitive function and behavior are still unknown. Although genome editing tools have been around for decades, the recent emergence of inexpensive, straightforward, and widely accessible CRISPR/Cas9 systems has led to a revolution in gene editing. The development of the catalytically dead Cas9 (dCas9) expanded this flexibility even further by acting as an anchoring system for fused effector proteins, structural scaffolds, and RNAs. Together, these advances have enabled robust, modular approaches for specific targeting and modification of the local chromatin environment at a single gene. This review highlights these advancements and how the combination of powerful modulatory tools paired with the versatility of CRISPR-Cas9-based systems offer great potential for understanding the underlying genetic and epigenetic contributions of neuronal function, behavior, and neurobiological diseases. PMID:29259522
Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control.
Michelini, Lisete C; Stern, Javier E
2009-09-01
It is now well established that brain plasticity is an inherent property not only of the developing but also of the adult brain. Numerous beneficial effects of exercise, including improved memory, cognitive function and neuroprotection, have been shown to involve an important neuroplastic component. However, whether major adaptive cardiovascular adjustments during exercise, needed to ensure proper blood perfusion of peripheral tissues, also require brain neuroplasticity, is presently unknown. This review will critically evaluate current knowledge on proposed mechanisms that are likely to underlie the continuous resetting of baroreflex control of heart rate during/after exercise and following exercise training. Accumulating evidence indicates that not only somatosensory afferents (conveyed by skeletal muscle receptors, baroreceptors and/or cardiopulmonary receptors) but also projections arising from central command neurons (in particular, peptidergic hypothalamic pre-autonomic neurons) converge into the nucleus tractus solitarii (NTS) in the dorsal brainstem, to co-ordinate complex cardiovascular adaptations during dynamic exercise. This review focuses in particular on a reciprocally interconnected network between the NTS and the hypothalamic paraventricular nucleus (PVN), which is proposed to act as a pivotal anatomical and functional substrate underlying integrative feedforward and feedback cardiovascular adjustments during exercise. Recent findings supporting neuroplastic adaptive changes within the NTS-PVN reciprocal network (e.g. remodelling of afferent inputs, structural and functional neuronal plasticity and changes in neurotransmitter content) will be discussed within the context of their role as important underlying cellular mechanisms supporting the tonic activation and improved efficacy of these central pathways in response to circulatory demand at rest and during exercise, both in sedentary and in trained individuals. We hope this review will stimulate more comprehensive studies aimed at understanding cellular and molecular mechanisms within CNS neuronal networks that contribute to exercise-induced neuroplasticity and cardiovascular adjustments.
Is central dogma a global property of cellular information flow?
Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar
2012-01-01
The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information. PMID:23189060
Is central dogma a global property of cellular information flow?
Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar
2012-01-01
The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.
Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE
Radbruch, Helena; Bremer, Daniel; Guenther, Robert; Cseresnyes, Zoltan; Lindquist, Randall; Hauser, Anja E.; Niesner, Raluca
2016-01-01
Most multiple sclerosis (MS) patients develop over time a secondary progressive disease course, characterized histologically by axonal loss and atrophy. In early phases of the disease, focal inflammatory demyelination leads to functional impairment, but the mechanism of chronic progression in MS is still under debate. Reactive oxygen species generated by invading and resident central nervous system (CNS) macrophages have been implicated in mediating demyelination and axonal damage, but demyelination and neurodegeneration proceed even in the absence of obvious immune cell infiltration, during clinical recovery in chronic MS. Here, we employ intravital NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX1–4, DUOX1, 2) and, thus, to identify the cellular source of oxidative stress in the CNS of mice affected by experimental autoimmune encephalomyelitis (EAE) in the remission phase of the disease. This directly affects neuronal function in vivo, as monitored by cellular calcium levels using intravital FRET–FLIM, providing a possible mechanism of disease progression in MS. PMID:27014271
Wang, Yan; Xu, Heng-Yong; Zhu, Qing
2007-10-01
Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) is a microsomal enzyme that plays a central role in the metabolism of cellular glycerolipids. DGAT catalyzes the final step in triacylglycerol (TAG) biosynthesis by converting diacylgycerol (DAG) and fatty acyl-coenzyme A (CoA) into triacylglycero1. DGAT plays a fundamental role in the metabolism of cellular diacylglycerol and is important in higher eukaryotes for physiologic processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, and lactation. Therefore, DGAT is not only an key factor for control triglycerides and fatty acids, but also may play a key modulatory role in animal fat deposition.
2016-01-01
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease. PMID:27742732
Metabolic drift in the aging brain.
Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary
2016-05-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.
Ghosh, S K; Chakrabarti, P
2010-08-01
The cellular organisation of the olfactory rosettes of Etroplus suratensis was studied by light and scanning electron microscopy. The oval shaped olfactory rosette of the fish consists of 12 lamellae radiating from a central raphe. The olfactory lamellae are comprised of restricted areas of sensory epithelium and broad areas of non-sensory epithelium in the apical, middle, and basal regions. The sensory epithelium contains three types of receptor cells: microvillus, ciliated, and rod cells, as well as labyrinth cells and supporting cells. The non-sensory epithelium consists of stratified epithelial and mucous cells. The transitional region between the sensory and non-sensory epithelium consists of ciliated receptor cells, mucous cells, and stratified epithelial cells. The different cells on the olfactory epithelium were discussed regarding the functional significance of the fish concerned.
A central role for S-nitrosothiols in plant disease resistance
Feechan, Angela; Kwon, Eunjung; Yun, Byung-Wook; Wang, Yiqin; Pallas, Jacqueline A.; Loake, Gary J.
2005-01-01
Animal S-nitrosoglutathione reductase (GSNOR) governs the extent of cellular S-nitrosylation, a key redox-based posttranslational modification. Mutations in AtGSNOR1, an Arabidopsis thaliana GSNOR, modulate the extent of cellular S-nitrosothiol (SNO) formation in this model plant species. Loss of AtGSNOR1 function increased SNO levels, disabling plant defense responses conferred by distinct resistance (R) gene subclasses. Furthermore, in the absence of AtGSNOR1, both basal and nonhost disease resistance are also compromised. Conversely, increased AtGSNOR1 activity reduced SNO formation, enhancing protection against ordinarily virulent microbial pathogens. Here we demonstrate that AtGSNOR1 positively regulates the signaling network controlled by the plant immune system activator, salicylic acid. This contrasts with the function of this enzyme in mice during endotoxic shock, where GSNOR antagonizes inflammatory responses. Our data imply SNO formation and turnover regulate multiple modes of plant disease resistance. PMID:15911759
Endo, Akinori; Kitamura, Naomi; Komada, Masayuki
2009-10-09
The nucleolus is a subnuclear compartment with multiple cellular functions, including ribosome biogenesis. USP36 is a deubiquitylating enzyme that localizes to nucleoli and plays an essential role in regulating the structure and function of the organelle. However, how the localization of USP36 is regulated remains unknown. Here, we identified a short stretch of basic amino acids (RGKEKKIKKFKREKRR) that resides in the C-terminal region of USP36 and serves as a nucleolar localization signal for the protein. We found that this motif interacts with a central acidic region of nucleophosmin/B23, a major nucleolar protein involved in various nucleolar functions. Knockdown of nucleophosmin/B23 resulted in a significant reduction in the amount of USP36 in nucleoli, without affecting the cellular USP36 level. This was associated with elevated ubiquitylation levels of fibrillarin, a USP36 substrate protein in nucleoli. We conclude that nucleophosmin/B23 recruits USP36 to nucleoli, thereby serving as a platform for the regulation of nucleolar protein functions through ubiquitylation/deubiquitylation.
Torres, Viviana I; Inestrosa, Nibaldo C
2018-06-01
Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.
Mammalian target of rapamycin (mTOR): a central regulator of male fertility?
Jesus, Tito T; Oliveira, Pedro F; Sousa, Mário; Cheng, C Yan; Alves, Marco G
2017-06-01
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.
Surface chemistry governs cellular tropism of nanoparticles in the brain
NASA Astrophysics Data System (ADS)
Song, Eric; Gaudin, Alice; King, Amanda R.; Seo, Young-Eun; Suh, Hee-Won; Deng, Yang; Cui, Jiajia; Tietjen, Gregory T.; Huttner, Anita; Saltzman, W. Mark
2017-05-01
Nanoparticles are of long-standing interest for the treatment of neurological diseases such as glioblastoma. Most past work focused on methods to introduce nanoparticles into the brain, suggesting that reaching the brain interstitium will be sufficient to ensure therapeutic efficacy. However, optimized nanoparticle design for drug delivery to the central nervous system is limited by our understanding of their cellular deposition in the brain. Here, we investigated the cellular fate of poly(lactic acid) nanoparticles presenting different surface chemistries, after administration by convection-enhanced delivery. We demonstrate that nanoparticles with `stealth' properties mostly avoid internalization by all cell types, but internalization can be enhanced by functionalization with bio-adhesive end-groups. We also show that association rates measured in cultured cells predict the extent of internalization of nanoparticles in cell populations. Finally, evaluating therapeutic efficacy in an orthotopic model of glioblastoma highlights the need to balance significant uptake without inducing adverse toxicity.
Immunomodulatory Effects Mediated by Dopamine
Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray
2016-01-01
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960
Augmenting autophagy for prognosis based intervention of COPD-pathophysiology.
Bodas, Manish; Vij, Neeraj
2017-05-04
Chronic obstructive pulmonary disease (COPD) is foremost among the non-reversible fatal ailments where exposure to tobacco/biomass-smoke and aging are the major risk factors for the initiation and progression of the obstructive lung disease. The role of smoke-induced inflammatory-oxidative stress, apoptosis and cellular senescence in driving the alveolar damage that mediates the emphysema progression and severe lung function decline is apparent, although the central mechanism that regulates these processes was unknown. To fill in this gap in knowledge, the central role of proteostasis and autophagy in regulating chronic lung disease causing mechanisms has been recently described. Recent studies demonstrate that cigarette/nicotine exposure induces proteostasis/autophagy-impairment that leads to perinuclear accumulation of polyubiquitinated proteins as aggresome-bodies, indicative of emphysema severity. In support of this concept, autophagy inducing FDA-approved anti-oxidant drugs control tobacco-smoke induced inflammatory-oxidative stress, apoptosis, cellular senescence and COPD-emphysema progression in variety of preclinical models. Hence, we propose that precise and early detection of aggresome-pathology can allow the timely assessment of disease severity in COPD-emphysema subjects for prognosis-based intervention. While intervention with autophagy-inducing drugs is anticipated to reduce alveolar damage and lung function decline, resulting in a decrease in the current mortality rates in COPD-emphysema subjects.
Central Topography of Cranial Motor Nuclei Controlled by Differential Cadherin Expression
Astick, Marc; Tubby, Kristina; Mubarak, Waleed M.; Guthrie, Sarah; Price, Stephen R.
2014-01-01
Summary Neuronal nuclei are prominent, evolutionarily conserved features of vertebrate central nervous system (CNS) organization [1]. Nuclei are clusters of soma of functionally related neurons and are located in highly stereotyped positions. Establishment of this CNS topography is critical to neural circuit assembly. However, little is known of either the cellular or molecular mechanisms that drive nucleus formation during development, a process termed nucleogenesis [2–5]. Brainstem motor neurons, which contribute axons to distinct cranial nerves and whose functions are essential to vertebrate survival, are organized exclusively as nuclei. Cranial motor nuclei are composed of two main classes, termed branchiomotor/visceromotor and somatomotor [6]. Each of these classes innervates evolutionarily distinct structures, for example, the branchial arches and eyes, respectively. Additionally, each class is generated by distinct progenitor cell populations and is defined by differential transcription factor expression [7, 8]; for example, Hb9 distinguishes somatomotor from branchiomotor neurons. We characterized the time course of cranial motornucleogenesis, finding that despite differences in cellular origin, segregation of branchiomotor and somatomotor nuclei occurs actively, passing through a phase of each being intermingled. We also found that differential expression of cadherin cell adhesion family members uniquely defines each motor nucleus. We show that cadherin expression is critical to nucleogenesis as its perturbation degrades nucleus topography predictably. PMID:25308074
Thyroid hormone and the central control of homeostasis.
Warner, Amy; Mittag, Jens
2012-08-01
It has long been known that thyroid hormone has profound direct effects on metabolism and cardiovascular function. More recently, it was shown that the hormone also modulates these systems by actions on the central autonomic control. Recent studies that either manipulated thyroid hormone signalling in anatomical areas of the brain or analysed seasonal models with an endogenous fluctuation in hypothalamic thyroid hormone levels revealed that the hormone controls energy turnover. However, most of these studies did not progress beyond the level of anatomical nuclei; thus, the neuronal substrates as well as the molecular mechanisms remain largely enigmatic. This review summarises the evidence for a role of thyroid hormone in the central autonomic control of peripheral homeostasis and advocates novel strategies to address thyroid hormone action in the brain on a cellular level.
Determinants of the rate of protein sequence evolution
Zhang, Jianzhi; Yang, Jian-Rong
2015-01-01
The rate and mechanism of protein sequence evolution have been central questions in evolutionary biology since the 1960s. Although the rate of protein sequence evolution depends primarily on the level of functional constraint, exactly what constitutes functional constraint has remained unclear. The increasing availability of genomic data has allowed for much needed empirical examinations on the nature of functional constraint. These studies found that the evolutionary rate of a protein is predominantly influenced by its expression level rather than functional importance. A combination of theoretical and empirical analyses have identified multiple mechanisms behind these observations and demonstrated a prominent role that selection against errors in molecular and cellular processes plays in protein evolution. PMID:26055156
The Role of Glia in Sleep Regulation and Function.
Frank, Marcos G
2018-01-28
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
Cáceres, Mónica; Ortiz, Liliana; Recabarren, Tatiana; Romero, Anibal; Colombo, Alicia; Leiva-Salcedo, Elías; Varela, Diego; Rivas, José; Silva, Ian; Morales, Diego; Campusano, Camilo; Almarza, Oscar; Simon, Felipe; Toledo, Hector; Park, Kang-Sik; Trimmer, James S.; Cerda, Oscar
2015-01-01
Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility. PMID:26110647
Tashiro, Manabu; Horikawa, Etsuo; Mochizuki, Hideki; Sakurada, Yumiko; Kato, Motohisa; Inokuchi, Takatoshi; Ridout, Fran; Hindmarch, Ian; Yanai, Kazuhiko
2005-10-01
Antihistamines are a mainstay treatment for allergic rhinitis; however, many older agents cause adverse events, including sedation and central nervous system (CNS) impairment. Research has shown sedating effects of antihistamines on driving; currently, no known study has examined whether cellular phone usage while driving further compounds impairment in individuals administered antihistamines. The aim of this study was to examine this endpoint. In a randomized, double-blind, placebo-controlled, three-way crossover study, healthy volunteers received fexofenadine HCl 120 mg, hydroxyzine HCl 30 mg and placebo. Brake reaction time (BRT) was used to examine driving performance across four conditions: driving only; driving while completing simple calculations; complex calculations; and conversing on a cellular phone. Subjective sedation assessments were also conducted. Brake reaction time with and without cellular phone usage in fexofenadine-treated subjects did not differ significantly from placebo in any condition. In contrast, hydroxyzine-treated subjects were significantly more sedated and had slower BRTs, suggesting slower hazard recognition and brake application, compared with the fexofenadine and placebo groups in all conditions. Importantly, cellular phone operation was an additive factor, increasing BRTs in hydroxyzine-treated volunteers. Fexofenadine did not impair CNS function in subjects involved in a divided attention task of driving and cellular phone operation. Copyright (c) 2005 John Wiley & Sons, Ltd.
The influenza virus NS1 protein as a therapeutic target.
Engel, Daniel A
2013-09-01
Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
The influenza virus NS1 protein as a therapeutic target
Engel, Daniel A.
2015-01-01
Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981
Autophagic pathways and metabolic stress
Kaushik, S.; Singh, R.; Cuervo, A. M.
2014-01-01
Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. PMID:21029294
Autophagic pathways and metabolic stress.
Kaushik, S; Singh, R; Cuervo, A M
2010-10-01
Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. © 2010 Blackwell Publishing Ltd.
A new concept for medical imaging centered on cellular phone technology.
Granot, Yair; Ivorra, Antoni; Rubinsky, Boris
2008-04-30
According to World Health Organization reports, some three quarters of the world population does not have access to medical imaging. In addition, in developing countries over 50% of medical equipment that is available is not being used because it is too sophisticated or in disrepair or because the health personnel are not trained to use it. The goal of this study is to introduce and demonstrate the feasibility of a new concept in medical imaging that is centered on cellular phone technology and which may provide a solution to medical imaging in underserved areas. The new system replaces the conventional stand-alone medical imaging device with a new medical imaging system made of two independent components connected through cellular phone technology. The independent units are: a) a data acquisition device (DAD) at a remote patient site that is simple, with limited controls and no image display capability and b) an advanced image reconstruction and hardware control multiserver unit at a central site. The cellular phone technology transmits unprocessed raw data from the patient site DAD and receives and displays the processed image from the central site. (This is different from conventional telemedicine where the image reconstruction and control is at the patient site and telecommunication is used to transmit processed images from the patient site). The primary goal of this study is to demonstrate that the cellular phone technology can function in the proposed mode. The feasibility of the concept is demonstrated using a new frequency division multiplexing electrical impedance tomography system, which we have developed for dynamic medical imaging, as the medical imaging modality. The system is used to image through a cellular phone a simulation of breast cancer tumors in a medical imaging diagnostic mode and to image minimally invasive tissue ablation with irreversible electroporation in a medical imaging interventional mode.
Efficient DNA Repair: A Cell’s Fountain of Youth? | Center for Cancer Research
Given the central importance of the genome to a cell’s function, it is not surprising that there are a number of proteins devoted to sensing and repairing DNA damage. But what happens when these repair proteins do not work properly? Cancer is one possible outcome, and a growing body of evidence also indicates that the cellular response to DNA damage plays a key role in the
NASA Astrophysics Data System (ADS)
Siegel, Peter H.; Pikov, Victor
2010-02-01
As the application and commercial use of millimeter- and submillimeter-wavelength radiation become more widespread, there is a growing need to understand and quantify both the coupling mechanisms and the impact of this long wavelength energy on biological function. Independent of the health impact of high doses of radio frequency (RF) energy on full organisms, which has been extensively investigated, there exists the potential for more subtle effects, which can best be quantified in studies which examine real-time changes in cellular functions as RF energy is applied. In this paper we present the first real time examination of RF induced changes in cellular activity at absorbed power levels well below the existing safe exposure limits. Fluorescence microscopy imaging of immortalized epithelial and neuronal cells in vitro indicate increased cellular membrane permeability and nanoporation after short term exposure to modest levels (10-50 mW/cm2) of RF power at 60 GHz. Sensitive patch clamp measurements on pyramidal neurons in cortical slices of neonatal rats showed a dramatic increase in cellular membrane permeability resulting either in suppression or facilitation of neuronal activity during exposure to sub-μW/cm2 of RF power at 60 GHz. Non-invasive modulation of neuronal activity could prove useful in a variety of health applications from suppression of peripheral neuropathic pain to treatment of central neurological disorders.
Circuit Analysis of a Drosophila Dopamine Type 2 Receptor That Supports Anesthesia-Resistant Memory.
Scholz-Kornehl, Sabrina; Schwärzel, Martin
2016-07-27
Dopamine is central to reinforcement processing and exerts this function in species ranging from humans to fruit flies. It can do so via two different types of receptors (i.e., D1 or D2) that mediate either augmentation or abatement of cellular cAMP levels. Whereas D1 receptors are known to contribute to Drosophila aversive odor learning per se, we here show that D2 receptors are specific for support of a consolidated form of odor memory known as anesthesia-resistant memory. By means of genetic mosaicism, we localize this function to Kenyon cells, the mushroom body intrinsic neurons, as well as GABAergic APL neurons and local interneurons of the antennal lobes, suggesting that consolidated anesthesia-resistant memory requires widespread dopaminergic modulation within the olfactory circuit. Additionally, dopaminergic neurons themselves require D2R, suggesting a critical role in dopamine release via its recognized autoreceptor function. Considering the dual role of dopamine in balancing memory acquisition (proactive function of dopamine) and its "forgetting" (retroactive function of dopamine), our analysis suggests D2R as central player of either process. Dopamine provides different information; while it mediates reinforcement during the learning act (proactive function), it balances memory performance between two antithetic processes thereafter (retroactive function) (i.e., forgetting and augmentation). Such bidirectional design can also be found at level of dopamine receptors, where augmenting D1 and abating D2 receptors are engaged to balance cellular cAMP levels. Here, we report that consolidated anesthesia-resistant memory (ARM), but not other concomitant memory phases, are sensitive to bidirectional dopaminergic signals. By means of genetic mosaicism, we identified widespread dopaminergic modulation within the olfactory circuit that suggests nonredundant and reiterating functions of D2R in support of ARM. Our results oppose ARM to its concomitant memory phases that localize to mushroom bodies and propose a decentralized organization of consolidated ARM. Copyright © 2016 the authors 0270-6474/16/367936-10$15.00/0.
Light-dependent governance of cell shape dimensions in cyanobacteria.
Montgomery, Beronda L
2015-01-01
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Jimenez, Ana Gabriela; Williams, Joseph B
2014-10-01
The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.
The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites.
Maurer, Laura L; Philbert, Martin A
2015-01-01
The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems. © 2015 Elsevier B.V. All rights reserved.
Slack, Slick, and Sodium-Activated Potassium Channels
Kaczmarek, Leonard K.
2013-01-01
The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675
Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy
Clayton, Kevin A.; Van Enoo, Alicia A.; Ikezu, Tsuneya
2017-01-01
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research. PMID:29311768
Pericyte function in the physiological central nervous system.
Muramatsu, Rieko; Yamashita, Toshihide
2014-01-01
Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Mammalian target of rapamycin (mTOR): a central regulator of male fertility?
Jesus, Tito T.; Oliveira, Pedro F.; Sousa, M ario; Cheng, C. Yan; Alves, Marco G.
2017-01-01
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermato-genesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system. PMID:28124577
Radiation-induced cardiovascular effects
NASA Astrophysics Data System (ADS)
Tapio, Soile
Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.
[Cellular mechanisms of neuroplasticity].
Bergado-Rosado, J A; Almaguer-Melian, W
To present a unified vision of the principal known mechanisms of neuroplasticity, emphasizing their universality. The concept of the central nervous system as an immutable entity has been considerably modified during the second half of the 20th century. Neuroplasticity, that is the ability of the brain regarding change and repair is expressed in different ways, from functional modifications of existing structures to the formation, by growth and proliferation, of new structures and neurons. This study considers the molecular and cellular mechanisms of neuroplastic phenomena and classifies them into two main groups: plasticity due to growth, including the mechanisms of axonal regeneration, collateralization and reactive synaptogenesis; and functional plasticity, which includes changes in the efficacy of synaptic transmission such as long-term potentiation and the activation of silent synapses. We also describe some of the relations of neuroplastic phenomena with disease of the central nervous system, together with examples of physiological, physical and pharmacological factors which may be used in future as therapeutic tools to stimulate and modulate neuroplasticity. Neuroplastic mechanisms show a high degree of phylogenetic and ontogenetic conservation. They are important both in the genesis of disorders and disease of the nervous system and for its repair after different types of damage and trauma. Modulation of neuroplastic mechanisms by physical and chemical agents would appear to be one of the most powerful therapeutic tools of restorative neurology.
Case Study: The Mystery of the Seven Deaths--A Case Study in Cellular Respiration
ERIC Educational Resources Information Center
Gazdik, Michaela
2014-01-01
Cellular respiration, the central component of cellular metabolism, can be a difficult concept for many students to fully understand. In this interrupted, problem-based case study, students explore the purpose of cellular respiration as they play the role of medical examiner, analyzing autopsy evidence to determine the mysterious cause of death…
The Esophagiome: concept, status, and future perspectives.
Gregersen, Hans; Liao, Donghua; Brasseur, James G
2016-09-01
The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment. © 2016 New York Academy of Sciences.
Non-coding RNAs in lung cancer
Ricciuti, Biagio; Mecca, Carmen; Crinò, Lucio; Baglivo, Sara; Cenci, Matteo; Metro, Giulio
2014-01-01
The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers. PMID:25593996
The Mechanism and Function of Group II Chaperonins
Lopez, Tom; Dalton, Kevin; Frydman, Judith
2015-04-30
We report protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substratesmore » of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis.« less
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins.
Norman, Michael; Rivers, Caroline; Lee, Youn-Bok; Idris, Jalilah; Uney, James
2016-12-01
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins. © 2016 The Author(s).
Metabolic drift in the aging brain
Ivanisevic, Julijana; Stauch, Kelly L.; Petrascheck, Michael; Benton, H. Paul; Epstein, Adrian A.; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E.; Boska, Michael D.; Gendelman, Howard E.; Fox, Howard S.; Siuzdak, Gary
2016-01-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841
Prion protein induced signaling cascades in monocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krebs, Bjarne; Dorner-Ciossek, Cornelia; Schmalzbauer, Ruediger
2006-02-03
Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP{sup C}), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP{sup C} fusion proteins synthesized with a human Fc-tag. PrP{sup C} fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signalingmore » pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK{sub 1,2} and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP{sup C} in monocytes and macrophages.« less
Cloonan, Suzanne M.; Choi, Augustine M.K.
2016-01-01
Mitochondria are a distinguishing feature of eukaryotic cells. Best known for their critical function in energy production via oxidative phosphorylation (OXPHOS), mitochondria are essential for nutrient and oxygen sensing and for the regulation of critical cellular processes, including cell death and inflammation. Such diverse functional roles for organelles that were once thought to be simple may be attributed to their distinct heteroplasmic genome, exclusive maternal lineage of inheritance, and ability to generate signals to communicate with other cellular organelles. Mitochondria are now thought of as one of the cell’s most sophisticated and dynamic responsive sensing systems. Specific signatures of mitochondrial dysfunction that are associated with disease pathogenesis and/or progression are becoming increasingly important. In particular, the centrality of mitochondria in the pathological processes and clinical phenotypes associated with a range of lung diseases is emerging. Understanding the molecular mechanisms regulating the mitochondrial processes of lung cells will help to better define phenotypes and clinical manifestations associated with respiratory disease and to identify potential diagnostic and therapeutic targets. PMID:26928034
Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines.
Monroe, Nicole; Hill, Christopher P
2016-05-08
Meiotic clade AAA ATPases (ATPases associated with diverse cellular activities), which were initially grouped on the basis of phylogenetic classification of their AAA ATPase cassette, include four relatively well characterized family members, Vps4, spastin, katanin and fidgetin. These enzymes all function to disassemble specific polymeric protein structures, with Vps4 disassembling the ESCRT-III polymers that are central to the many membrane-remodeling activities of the ESCRT (endosomal sorting complexes required for transport) pathway and spastin, katanin p60 and fidgetin affecting multiple aspects of cellular dynamics by severing microtubules. They share a common domain architecture that features an N-terminal MIT (microtubule interacting and trafficking) domain followed by a single AAA ATPase cassette. Meiotic clade AAA ATPases function as hexamers that can cycle between the active assembly and inactive monomers/dimers in a regulated process, and they appear to disassemble their polymeric substrates by translocating subunits through the central pore of their hexameric ring. Recent studies with Vps4 have shown that nucleotide-induced asymmetry is a requirement for substrate binding to the pore loops and that recruitment to the protein lattice via MIT domains also relieves autoinhibition and primes the AAA ATPase cassettes for substrate binding. The most striking, unifying feature of meiotic clade AAA ATPases may be their MIT domain, which is a module that is found in a wide variety of proteins that localize to ESCRT-III polymers. Spastin also displays an adjacent microtubule binding sequence, and the presence of both ESCRT-III and microtubule binding elements may underlie the recent findings that the ESCRT-III disassembly function of Vps4 and the microtubule-severing function of spastin, as well as potentially katanin and fidgetin, are highly coordinated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cellular reflectarray antenna and method of making same
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R (Inventor)
2011-01-01
A method of manufacturing a cellular reflectarray antenna arranged in an m by n matrix of radiating elements for communication with a satellite includes steps of determining a delay .phi.m,n for each of said m by n matrix of elements of said cellular reflectarray antenna using sub-steps of: determining the longitude and latitude of operation, determining elevation and azimuth angles of the reflectarray with respect to the satellite and converting theta.sub.0 (.theta..sub.0) and phi.sub.0 (.phi..sub.0), determining .DELTA..beta..sub.m,n, the pointing vector correction, for a given inter-element spacing and wavelength, determining .DELTA..phi..sub.m,n, the spherical wave front correction factor, for a given radius from the central element and/or from measured data from the feed horn; and, determining a delay .phi.m,n for each of said m by n matrix of elements as a function of .DELTA..beta..sub.m,n and .DELTA..phi..sub.m,n.
Cellular reflectarray antenna and method of making same
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R (Inventor)
2010-01-01
A method of manufacturing a cellular reflectarray antenna arranged in an m by n matrix of radiating elements for communication with a satellite includes steps of determining a delay .phi.m,n for each of said m by n matrix of elements of said cellular reflectarray antenna using sub-steps of: determining the longitude and latitude of operation, determining elevation and azimuth angles of the reflectarray with respect to the satellite and converting theta.sub.0 (.theta..sub.0) and phi.sub.0 (.phi..sub.0), determining .DELTA..beta..sub.m,n, the pointing vector correction, for a given inter-element spacing and wavelength, determining .DELTA..phi..sub.m,n, the spherical wave front correction factor, for a given radius from the central element and/or from measured data from the feed horn; and, determining a delay .phi.m,n for each of said m by n matrix of elements as a function of .DELTA..beta..sub.m,n and .DELTA..phi..sub.m,n..
Agnati, L F; Guidolin, D; Fuxe, K
2007-01-01
A new model of the brain organization is proposed. The model is based on the assumption that a global molecular network enmeshes the entire central nervous system. Thus, brain extra-cellular and intra-cellular molecular networks are proposed to communicate at the level of special plasma membrane regions (e.g., the lipid rafts) where horizontal molecular networks can represent input/output regions allowing the cell to have informational exchanges with the extracellular environment. Furthermore, some "pervasive signals" such as field potentials, pressure waves and thermal gradients that affect large parts of the brain cellular and molecular networks are discussed. Finally, at least two learning paradigms are analyzed taking into account the possible role of Volume Transmission: the so-called model of "temporal difference learning" and the "Turing B-unorganised machine". The relevance of this new view of brain organization for a deeper understanding of some neurophysiological and neuropathological aspects of its function is briefly discussed.
Kasai, Masataka; Ishida, Reiko; Nakahara, Kazuhiko; Okumura, Ko; Aoki, Katsunori
2018-05-08
Translin and translin-associated factor X (translin/TRAX) proteins have been implicated in a variety of cellular activities central to nucleic acid metabolism. Accumulating evidence indicates that translin/TRAX complexes participate in processes ensuring the replication of DNA, as well as cell division. Significant progress has been made in understanding the roles of translin/TRAX complexes in RNA metabolism, such as through RNA-induced silencing complex activation or the microRNA depletion that occurs in Dicer deficiency. At the cellular level, translin-deficient (Tsn -/- ) mice display delayed endochondral ossification or progressive bone marrow failure with ectopic osteogenesis and adipogenesis, suggesting involvement in mesenchymal cell differentiation. In this review, we summarize the molecular and cellular functions of translin homo-octamer and translin/TRAX hetero-octamer. Finally, we discuss the multifaceted roles of translin, TRAX, and associated proteins in the healthy and disease states. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.
The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng
2014-10-02
Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) hasmore » been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.« less
Understanding the cancer cell phenotype beyond the limitations of current omics analyses.
Moreno-Sánchez, Rafael; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Rumjanek, Franklin D; Rodríguez-Enríquez, Sara
2016-01-01
Efforts to understand the mechanistic principles driving cancer metabolism and proliferation have been lately governed by genomic, transcriptomic and proteomic studies. This paper analyzes the caveats of these approaches. As molecular biology's central dogma proposes a unidirectional flux of information from genes to mRNA to proteins, it has frequently been assumed that monitoring the changes in the gene sequences and in mRNA and protein contents is sufficient to explain complex cellular processes. Such a stance commonly disregards that post-translational modifications can alter the protein function/activity and also that regulatory mechanisms enter into action, to coordinate the protein activities of pathways/cellular processes, in order to keep the cellular homeostasis. Hence, the actual protein activities (as enzymes/transporters/receptors) and their regulatory mechanisms ultimately dictate the final outcomes of a pathway/cellular process. In this regard, it is here documented that the mRNA levels of many metabolic enzymes and transcriptional factors have no correlation with the respective protein contents and activities. The validity of current clinical mRNA-based tests and proposed metabolite biomarkers for cancer detection/prognosis is also discussed. Therefore, it is proposed that, to achieve a thorough understanding of the modifications undergone by proliferating cancer cells, it is mandatory to experimentally analyze the cellular processes at the functional level. This could be achieved (a) locally, by examining the actual protein activities in the cell and their kinetic properties (or at least kinetically characterize the most controlling steps of the pathway/cellular process); (b) systemically, by analyzing the main fluxes of the pathway/cellular process, and how they are modulated by metabolites, all which should contribute to comprehending the regulatory mechanisms that have been altered in cancer cells. By adopting a more holistic approach it may become possible to improve the design of therapeutic strategies that would target cancer cells more specifically. © 2015 FEBS.
Roles of somatic A-type K(+) channels in the synaptic plasticity of hippocampal neurons.
Yang, Yoon-Sil; Kim, Kyeong-Deok; Eun, Su-Yong; Jung, Sung-Cherl
2014-06-01
In the mammalian brain, information encoding and storage have been explained by revealing the cellular and molecular mechanisms of synaptic plasticity at various levels in the central nervous system, including the hippocampus and the cerebral cortices. The modulatory mechanisms of synaptic excitability that are correlated with neuronal tasks are fundamental factors for synaptic plasticity, and they are dependent on intracellular Ca(2+)-mediated signaling. In the present review, the A-type K(+) (IA) channel, one of the voltage-dependent cation channels, is considered as a key player in the modulation of Ca(2+) influx through synaptic NMDA receptors and their correlated signaling pathways. The cellular functions of IA channels indicate that they possibly play as integral parts of synaptic and somatic complexes, completing the initiation and stabilization of memory.
Suzuki, Nobuharu; Numakawa, Tadahiro; Chou, Joshua; de Vega, Susana; Mizuniwa, Chihiro; Sekimoto, Kaori; Adachi, Naoki; Kunugi, Hiroshi; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko; Akazawa, Chihiro
2014-01-01
Teneurin-4 (Ten-4), a transmembrane protein, is highly expressed in the central nervous system; however, its cellular and molecular function in neuronal differentiation remains unknown. In this study, we aimed to elucidate the function of Ten-4 in neurite outgrowth. Ten-4 expression was induced during neurite outgrowth of the neuroblastoma cell line Neuro-2a. Ten-4 protein was localized at the neurite growth cones. Knockdown of Ten-4 expression in Neuro-2a cells decreased the formation of the filopodia-like protrusions and the length of individual neurites. Conversely, overexpression of Ten-4 promoted filopodia-like protrusion formation. In addition, knockdown and overexpression of Ten-4 reduced and elevated the activation of focal adhesion kinase (FAK) and Rho-family small GTPases, Cdc42 and Rac1, key molecules for the membranous protrusion formation downstream of FAK, respectively. Inhibition of the activation of FAK and neural Wiskott-Aldrich syndrome protein (N-WASP), which is a downstream regulator of FAK and Cdc42, blocked protrusion formation by Ten-4 overexpression. Further, Ten-4 colocalized with phosphorylated FAK in the filopodia-like protrusion regions. Together, our findings show that Ten-4 is a novel positive regulator of cellular protrusion formation and neurite outgrowth through the FAK signaling pathway.—Suzuki, N., Numakawa, T., Chou, J., de Vega, S., Mizuniwa, C., Sekimoto, K., Adachi, N., Kunugi, H., Arikawa-Hirasawa, E., Yamada, Y., Akazawa, C. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling. PMID:24344332
NASA Astrophysics Data System (ADS)
Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.
2018-01-01
Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.
Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis
Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan
2011-01-01
Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323
From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules
Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine
2011-01-01
Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709
Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L
2014-10-16
Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
nextPARS: parallel probing of RNA structures in Illumina
Saus, Ester; Willis, Jesse R.; Pryszcz, Leszek P.; Hafez, Ahmed; Llorens, Carlos; Himmelbauer, Heinz
2018-01-01
RNA molecules play important roles in virtually every cellular process. These functions are often mediated through the adoption of specific structures that enable RNAs to interact with other molecules. Thus, determining the secondary structures of RNAs is central to understanding their function and evolution. In recent years several sequencing-based approaches have been developed that allow probing structural features of thousands of RNA molecules present in a sample. Here, we describe nextPARS, a novel Illumina-based implementation of in vitro parallel probing of RNA structures. Our approach achieves comparable accuracy to previous implementations, while enabling higher throughput and sample multiplexing. PMID:29358234
Prenatal Alcohol Exposure and Cellular Differentiation
Veazey, Kylee J.; Muller, Daria; Golding, Michael C.
2013-01-01
Exposure to alcohol significantly alters the developmental trajectory of progenitor cells and fundamentally compromises tissue formation (i.e., histogenesis). Emerging research suggests that ethanol can impair mammalian development by interfering with the execution of molecular programs governing differentiation. For example, ethanol exposure disrupts cellular migration, changes cell–cell interactions, and alters growth factor signaling pathways. Additionally, ethanol can alter epigenetic mechanisms controlling gene expression. Normally, lineage-specific regulatory factors (i.e., transcription factors) establish the transcriptional networks of each new cell type; the cell’s identity then is maintained through epigenetic alterations in the way in which the DNA encoding each gene becomes packaged within the chromatin. Ethanol exposure can induce epigenetic changes that do not induce genetic mutations but nonetheless alter the course of fetal development and result in a large array of patterning defects. Two crucial enzyme complexes—the Polycomb and Trithorax proteins—are central to the epigenetic programs controlling the intricate balance between self-renewal and the execution of cellular differentiation, with diametrically opposed functions. Prenatal ethanol exposure may disrupt the functions of these two enzyme complexes, altering a crucial aspect of mammalian differentiation. Characterizing the involvement of Polycomb and Trithorax group complexes in the etiology of fetal alcohol spectrum disorders will undoubtedly enhance understanding of the role that epigenetic programming plays in this complex disorder. PMID:24313167
Lenz, B; Braendli-Baiocco, A; Engelhardt, J; Fant, P; Fischer, H; Francke, S; Fukuda, R; Gröters, S; Harada, T; Harleman, H; Kaufmann, W; Kustermann, S; Nolte, T; Palazzi, X; Pohlmeyer-Esch, G; Popp, A; Romeike, A; Schulte, A; Lima, B Silva; Tomlinson, L; Willard, J; Wood, C E; Yoshida, M
2018-02-01
Lysosomes have a central role in cellular catabolism, trafficking, and processing of foreign particles. Accumulation of endogenous and exogenous materials in lysosomes represents a common finding in nonclinical toxicity studies. Histologically, these accumulations often lack distinctive features indicative of lysosomal or cellular dysfunction, making it difficult to consistently interpret and assign adverse dose levels. To help address this issue, the European Society of Toxicologic Pathology organized a workshop where representative types of lysosomal accumulation induced by pharmaceuticals and environmental chemicals were presented and discussed. The expert working group agreed that the diversity of lysosomal accumulations requires a case-by-case weight-of-evidence approach and outlined several factors to consider in the adversity assessment, including location and type of cell affected, lysosomal contents, severity of the accumulation, and related pathological effects as evidence of cellular or organ dysfunction. Lysosomal accumulations associated with cytotoxicity, inflammation, or fibrosis were generally considered to be adverse, while those found in isolation (without morphologic or functional consequences) were not. Workshop examples highlighted the importance of thoroughly characterizing the biological context of lysosomal effects, including mechanistic data and functional in vitro readouts if available. The information provided here should facilitate greater consistency and transparency in the interpretation of lysosomal effects.
A scalable strategy for high-throughput GFP tagging of endogenous human proteins.
Leonetti, Manuel D; Sekine, Sayaka; Kamiyama, Daichi; Weissman, Jonathan S; Huang, Bo
2016-06-21
A central challenge of the postgenomic era is to comprehensively characterize the cellular role of the ∼20,000 proteins encoded in the human genome. To systematically study protein function in a native cellular background, libraries of human cell lines expressing proteins tagged with a functional sequence at their endogenous loci would be very valuable. Here, using electroporation of Cas9 nuclease/single-guide RNA ribonucleoproteins and taking advantage of a split-GFP system, we describe a scalable method for the robust, scarless, and specific tagging of endogenous human genes with GFP. Our approach requires no molecular cloning and allows a large number of cell lines to be processed in parallel. We demonstrate the scalability of our method by targeting 48 human genes and show that the resulting GFP fluorescence correlates with protein expression levels. We next present how our protocols can be easily adapted for the tagging of a given target with GFP repeats, critically enabling the study of low-abundance proteins. Finally, we show that our GFP tagging approach allows the biochemical isolation of native protein complexes for proteomic studies. Taken together, our results pave the way for the large-scale generation of endogenously tagged human cell lines for the proteome-wide analysis of protein localization and interaction networks in a native cellular context.
NADPH oxidases of the brain: distribution, regulation, and function.
Infanger, David W; Sharma, Ram V; Davisson, Robin L
2006-01-01
The NADPH oxidase is a multi-subunit enzyme that catalyzes the reduction of molecular oxygen to form superoxide (O(2)(-)). While classically linked to the respiratory burst in neutrophils, recent evidence now shows that O(2)(-) (and associated reactive oxygen species, ROS) generated by NADPH oxidase in nonphagocytic cells serves myriad functions in health and disease. An entire new family of NADPH Oxidase (Nox) homologues has emerged, which vary widely in cell and tissue distribution, as well as in function and regulation. A major concept in redox signaling is that while NADPH oxidase-derived ROS are necessary for normal cellular function, excessive oxidative stress can contribute to pathological disease. This certainly is true in the central nervous system (CNS), where normal NADPH oxidase function appears to be required for processes such as neuronal signaling, memory, and central cardiovascular homeostasis, but overproduction of ROS contributes to neurotoxicity, neurodegeneration, and cardiovascular diseases. Despite implications of NADPH oxidase in normal and pathological CNS processes, still relatively little is known about the mechanisms involved. This paper summarizes the evidence for NADPH oxidase distribution, regulation, and function in the CNS, emphasizing the diversity of Nox isoforms and their new and emerging role in neuro-cardiovascular function. In addition, perspectives for future research and novel therapeutic targets are offered.
De Feo, Donatella; Merlini, Arianna; Laterza, Cecilia; Martino, Gianvito
2012-06-01
Transplantation of neural stem/precursor cells (NPCs) has been proposed as a promising therapeutic strategy in almost all neurological disorders characterized by the failure of central nervous system (CNS) endogenous repair mechanisms in restoring the tissue damage and rescuing the lost function. Nevertheless, recent evidence consistently challenges the limited view that transplantation of these cells is solely aimed at protecting the CNS from inflammatory and neurodegenerative damage through cell replacement. Recent preclinical data confirmed that transplanted NPCs may also exert a 'bystander' neuroprotective effect and identified a series of molecules - for example, immunomodulatory substances, neurotrophic growth factors, stem cell regulators as well as guidance molecules - whose in-situ secretion by NPCs is temporally and spatially orchestrated by environmental needs. A better understanding of the molecular and cellular mechanisms sustaining this 'therapeutic plasticity' is of pivotal importance for defining crucial aspects of the bench-to-beside translation of neural stem cell therapy, that is route and timing of administration as well as the best cellular source. Further insight into those latter issues is eagerly expected from the ongoing phase I/II clinical trials, while, on the other hand, new cellular sources are being developed, mainly by exploiting the new possibilities offered by cellular reprogramming. Nowadays, the research on NPC transplantation in neurological disorders is advancing on two different fronts: on one hand, recent preclinical data are uncovering the molecular basis of NPC therapeutic plasticity, offering a more solid rational framework for the design of clinical studies. On the other hand, pilot trials are highlighting the safety and feasibility issues of neural stem cell transplantation that need to be addressed before efficacy could be properly evaluated.
A Wireless Communications Laboratory on Cellular Network Planning
ERIC Educational Resources Information Center
Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.
2010-01-01
The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…
Neuritogenesis: A model for space radiation effects on the central nervous system
NASA Technical Reports Server (NTRS)
Vazquez, M. E.; Broglio, T. M.; Worgul, B. V.; Benton, E. V.
1994-01-01
Pivotal to the astronauts' functional integrity and survival during long space flights are the strategies to deal with space radiations. The majority of the cellular studies in this area emphasize simple endpoints such as growth related events which, although useful to understand the nature of primary cell injury, have poor predictive value for extrapolation to more complex tissues such as the central nervous system (CNS). In order to assess the radiation damage on neural cell populations, we developed an in vitro model in which neuronal differentiation, neurite extension, and synaptogenesis occur under controlled conditions. The model exploits chick embryo neural explants to study the effects of radiations on neuritogenesis. In addition, neurobiological problems associated with long-term space flights are discussed.
Innate immune responses in central nervous system inflammation.
Finsen, Bente; Owens, Trevor
2011-12-01
In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Prions: Beyond a Single Protein
Das, Alvin S.
2016-01-01
SUMMARY Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a “prion.” Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins—not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease. PMID:27226089
Engineering microbial phenotypes through rewiring of genetic networks
Rodrigues, Rui T.L.; Lee, Sangjin; Haines, Matthew
2017-01-01
Abstract The ability to program cellular behaviour is a major goal of synthetic biology, with applications in health, agriculture and chemicals production. Despite efforts to build ‘orthogonal’ systems, interactions between engineered genetic circuits and the endogenous regulatory network of a host cell can have a significant impact on desired functionality. We have developed a strategy to rewire the endogenous cellular regulatory network of yeast to enhance compatibility with synthetic protein and metabolite production. We found that introducing novel connections in the cellular regulatory network enabled us to increase the production of heterologous proteins and metabolites. This strategy is demonstrated in yeast strains that show significantly enhanced heterologous protein expression and higher titers of terpenoid production. Specifically, we found that the addition of transcriptional regulation between free radical induced signalling and nitrogen regulation provided robust improvement of protein production. Assessment of rewired networks revealed the importance of key topological features such as high betweenness centrality. The generation of rewired transcriptional networks, selection for specific phenotypes, and analysis of resulting library members is a powerful tool for engineering cellular behavior and may enable improved integration of heterologous protein and metabolite pathways. PMID:28369627
Yao, J; Wigdahl, B
2000-01-01
HTLV-I has been identified as the etiologic agent of neoplasia within the human peripheral blood T lymphocyte population, and a progressive neurologic disorder based primarily within the central nervous system. We have examined the role of HTLV-I in these two distinctly different clinical syndromes by examining the life cycle of the virus, with emphasis on the regulation of viral gene expression within relevant target cell populations. In particular, we have examined the impact of specific viral gene products, particularly Tax, on cellular metabolic function. Tax is a highly promiscuous and pleiotropic viral oncoprotein, and is the most important factor contributing to the initial stages of viral-mediated transformation of T cells after HTLV-I infection. Tax, which weakly binds to Tax response element 1 (TRE-1) in the viral long terminal repeat (LTR), can dramatically trans-activate viral gene expression by interacting with cellular transcription factors, such as activated transcription factors and cyclic AMP response element binding proteins (ATF/CREB), CREB binding protein (CBP/p300), and factors involved with the basic transcription apparatus. At the same time, Tax alters cellular gene expression by directly or indirectly interacting with a variety of cellular transcription factors, cell cycle control elements, and cellular signal transduction molecules ultimately resulting in dysregulated cell proliferation. The mechanisms associated with HTLV-I infection, leading to tropical spastic paraparesis (TSP) are not as clearly resolved. Possible explanations of viral-induced neurologic disease range from central nervous system (CNS) damage caused by direct viral invasion of the CNS to bystander CNS damage caused by the immune response to HTLV-I infection. It is interesting to note that it is very rare for an HTLV-I infected individual to develop both adult T cell leukemia (ATL) and TSP in his/her life time, suggesting that the mechanisms governing development of these two diseases are mutually exclusive.
Regulation of receptor-type protein tyrosine phosphatases by their C-terminal tail domains.
Barnea, Maayan; Olender, Tsviya; Bedford, Mark T; Elson, Ari
2016-10-15
Protein tyrosine phosphatases (PTPs) perform specific functions in vivo, despite being vastly outnumbered by their substrates. Because of this and due to the central roles PTPs play in regulating cellular function, PTP activity is regulated by a large variety of molecular mechanisms. We review evidence that indicates that the divergent C-terminal tail sequences (C-terminal domains, CTDs) of receptor-type PTPs (RPTPs) help regulate RPTP function by controlling intermolecular associations in a way that is itself subject to physiological regulation. We propose that the CTD of each RPTP defines an 'interaction code' that helps determine molecules it will interact with under various physiological conditions, thus helping to regulate and diversify PTP function. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Protein-protein interactions and cancer: targeting the central dogma.
Garner, Amanda L; Janda, Kim D
2011-01-01
Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.
Targeting bacterial central metabolism for drug development.
Murima, Paul; McKinney, John D; Pethe, Kevin
2014-11-20
Current antibiotics, derived mainly from natural sources, inhibit a narrow spectrum of cellular processes, namely DNA replication, protein synthesis, and cell wall biosynthesis. With the worldwide explosion of drug resistance, there is renewed interest in the investigation of alternate essential cellular processes, including bacterial central metabolic pathways, as a drug target space for the next generation of antibiotics. However, the validation of targets in central metabolism is more complex, as essentiality of such targets can be conditional and/or contextual. Bearing in mind our enhanced understanding of prokaryotic central metabolism, a key question arises: can central metabolism be bacteria's Achilles' heel and a therapeutic target for the development of new classes of antibiotics? In this review, we draw lessons from oncology and attempt to address some of the open questions related to feasibility of targeting bacterial central metabolism as a strategy for developing new antibacterial drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.
The neurogenetic frontier--lessons from misbehaving zebrafish.
Burgess, Harold A; Granato, Michael
2008-11-01
One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.
The neurogenetic frontier—lessons from misbehaving zebrafish
Granato, Michael
2008-01-01
One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206
Stress Transmission within the Cell
Stamenović, Dimitrije; Wang, Ning
2014-01-01
An outstanding problem in cell biology is how cells sense mechanical forces and how those forces affect cellular functions. During past decades, it has become evident that the deformable cytoskeleton (CSK), an intracellular network of various filamentous biopolymers, provides a physical basis for transducing mechanical signals into biochemical responses. To understand how mechanical forces regulate cellular functions, it is necessary to first understand how the CSK develops mechanical stresses in response to applied forces, and how those stresses are propagated through the CSK where various signaling molecules are immobilized. New experimental techniques have been developed to quantify cytoskeletal mechanics, which together with new computational approaches have given rise to new theories and models for describing mechanics of living cells. In this article, we discuss current understanding of cell biomechanics by focusing on the biophysical mechanisms that are responsible for the development and transmission of mechanical stresses in the cell and their effect on cellular functions. We compare and contrast various theories and models of cytoskeletal mechanics, emphasizing common mechanisms that those theories are built upon, while not ignoring irreconcilable differences. We highlight most recent advances in the understanding of mechanotransduction in the cytoplasm of living cells and the central role of the cytoskeletal prestress in propagating mechanical forces along the cytoskeletal filaments to activate cytoplasmic enzymes. It is anticipated that advances in cell mechanics will help developing novel therapeutics to treat pulmonary diseases like asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease. PMID:23737186
Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation?
Atzori, Marco; Cuevas-Olguin, Roberto; Esquivel-Rendon, Eric; Garcia-Oscos, Francisco; Salgado-Delgado, Roberto C; Saderi, Nadia; Miranda-Morales, Marcela; Treviño, Mario; Pineda, Juan C; Salgado, Humberto
2016-01-01
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Locus ceruleus control of state-dependent gene expression.
Cirelli, Chiara; Tononi, Giulio
2004-06-09
Wakefulness and sleep are accompanied by changes in behavior and neural activity, as well as by the upregulation of different functional categories of genes. However, the mechanisms responsible for such state-dependent changes in gene expression are unknown. Here we investigate to what extent state-dependent changes in gene expression depend on the central noradrenergic (NA) system, which is active in wakefulness and reduces its firing during sleep. We measured the levels of approximately 5000 transcripts expressed in the cerebral cortex of control rats and in rats pretreated with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], a neurotoxin that removes the noradrenergic innervation of the cortex. We found that NA depletion reduces the expression of approximately 20% of known wakefulness-related transcripts. Most of these transcripts are involved in synaptic plasticity and in the cellular response to stress. In contrast, NA depletion increased the expression of the sleep-related gene encoding the translation elongation factor 2. These results indicate that the activity of the central NA system during wakefulness modulates neuronal transcription to favor synaptic potentiation and counteract cellular stress, whereas its inactivity during sleep may play a permissive role to enhance brain protein synthesis.
Gandhi, Deepa; Sivanesan, Saravanadevi; Kannan, Krishnamurthi
2018-06-01
Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.
Mitochondria and Iron: Current Questions
Paul, Bibbin T.; Manz, David H.; Torti, Frank M.; Torti, Suzy V.
2017-01-01
Introduction Mitochondria are cellular organelles that perform numerous bioenergetic, biosynthetic, and regulatory functions and play a central role in iron metabolism. Extracellular iron is taken up by cells and transported to the mitochondria, where it is utilized for synthesis of cofactors essential to the function of enzymes involved in oxidation-reduction reactions, DNA synthesis and repair, and a variety of other cellular processes. Areas Covered This article reviews the trafficking of iron to the mitochondria and normal mitochondrial iron metabolism, including heme synthesis and iron-sulfur cluster biogenesis. Much of our understanding of mitochondrial iron metabolism has been revealed by pathologies that disrupt normal iron metabolism. These conditions affect not only iron metabolism but mitochondrial function and systemic health. Therefore, this article also discusses these pathologies, including conditions of systemic and mitochondrial iron dysregulation as well as cancer. Literature covering these areas was identified via PubMed searches using keywords: Iron, mitochondria, Heme Synthesis, Iron-sulfur Cluster, and Cancer. References cited by publications retrieved using this search strategy were also consulted. Expert Commentary While much has been learned about mitochondrial iron, key questions remain. Developing a better understanding of mitochondrial iron regulation will be paramount in developing therapies for syndromes that affect mitochondrial iron. PMID:27911100
RAPTOR controls developmental growth transitions by altering the hormonal and metabolic balance.
Salem, Mohamed A; Li, Yan; Bajdzienko, Krzysztof; Fisahn, Joachim; Watanabe, Mutsumi; Hoefgen, Rainer; Schöttler, Mark Aurel; Giavalisco, Patrick
2018-04-23
Vegetative growth requires the systemic coordination of numerous cellular processes, which are controlled by regulatory proteins that monitor extra- and intra-cellular cues and translate them into growth decisions. In eukaryotes, one of the central factors regulating growth is the Ser/Thr protein kinase Target of Rapamycin (TOR), which forms complexes with regulatory proteins. To understand the function of one such regulatory protein, Regulatory-Associated Protein of TOR 1B (RAPTOR1B) in plants, we analyzed the effect of raptor1b mutations on growth and physiology in Arabidopsis thaliana by detailed phenotyping, metabolomic, lipidomic, and proteomic analysis. Mutation of RAPTR1B resulted in a strong reduction of TOR kinase activity, leading to massive changes in central carbon and nitrogen metabolism, accumulation of excess starch, and induction of autophagy. These shifts led to a significant, reduction of plant growth that occurred non-linearly during developmental stage transtions.. This phenotype was accompanied by changes in cell morphology and tissue anatomy. In contrast to previous studies in rice, we found that the Arabidopsis raptor1b mutation did not affect chloroplast development or photosynthetic electron transport efficiency; however, it resulted in decreased CO2 assimilation rate and increased stomatal conductance. The raptor1b mutants also had reduced abscisic acid levels. Surprisingly, ABA feeding experiments resulted in partial complementation of the growth phenotypes, indicating the tight interaction between TOR function and hormone synthesis and signaling in plants. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Markova, Natalyia; Chernopiatko, Anton; Schroeter, Careen A.; Malin, Dmitry; Kubatiev, Aslan; Bachurin, Sergey; Costa-Nunes, João; Steinbusch, Harry M. W.; Strekalova, Tatyana
2013-01-01
Central thyroid hormone signaling is important in brain function/dysfunction, including affective disorders and depression. In contrast to 3,3′,5-triiodo-L-thyronine (T3), the role of 3,5-diiodo-L-thyronine (T2), which until recently was considered an inactive metabolite of T3, has not been studied in these pathologies. However, both T3 and T2 stimulate mitochondrial respiration, a factor counteracting the pathogenesis of depressive disorder, but the cellular origins in the CNS, mechanisms, and kinetics of the cellular action for these two hormones are distinct and independent of each other. Here, Illumina and RT PCR assays showed that hippocampal gene expression of deiodinases 2 and 3, enzymes involved in thyroid hormone regulation, is increased in resilience to stress-induced depressive syndrome and after antidepressant treatment in mice that might suggest elevated T2 and T3 turnover in these phenotypes. In a separate experiment, bolus administration of T2 at the doses 750 and 1500 mcg/kg but not 250 mcg/kg in naive mice reduced immobility in a two-day tail suspension test in various settings without changing locomotion or anxiety. This demonstrates an antidepressant-like effect of T2 that could be exploited clinically. In a wider context, the current study suggests important central functions of T2, whose biological role only lately is becoming to be elucidated. PMID:24386638
Markova, Natalyia; Chernopiatko, Anton; Schroeter, Careen A; Malin, Dmitry; Kubatiev, Aslan; Bachurin, Sergey; Costa-Nunes, João; Steinbusch, Harry M W; Strekalova, Tatyana
2013-01-01
Central thyroid hormone signaling is important in brain function/dysfunction, including affective disorders and depression. In contrast to 3,3',5-triiodo-L-thyronine (T3), the role of 3,5-diiodo-L-thyronine (T2), which until recently was considered an inactive metabolite of T3, has not been studied in these pathologies. However, both T3 and T2 stimulate mitochondrial respiration, a factor counteracting the pathogenesis of depressive disorder, but the cellular origins in the CNS, mechanisms, and kinetics of the cellular action for these two hormones are distinct and independent of each other. Here, Illumina and RT PCR assays showed that hippocampal gene expression of deiodinases 2 and 3, enzymes involved in thyroid hormone regulation, is increased in resilience to stress-induced depressive syndrome and after antidepressant treatment in mice that might suggest elevated T2 and T3 turnover in these phenotypes. In a separate experiment, bolus administration of T2 at the doses 750 and 1,500 mcg/kg but not 250 mcg/kg in naive mice reduced immobility in a two-day tail suspension test in various settings without changing locomotion or anxiety. This demonstrates an antidepressant-like effect of T2 that could be exploited clinically. In a wider context, the current study suggests important central functions of T2, whose biological role only lately is becoming to be elucidated.
Anavi, Sarit; Madar, Zecharia; Tirosh, Oren
2017-10-01
Nonalcoholic fatty liver diseases (NAFLD) is one of the most common chronic liver disease in Western countries. Oxygen is a central component of the cellular microenvironment, which participate in the regulation of cell survival, differentiation, functions and energy metabolism. Accordingly, sufficient oxygen supply is an important factor for tissue durability, mainly in highly metabolic tissues, such as the liver. Accumulating evidence from the past few decades provides strong support for the existence of interruptions in oxygen availability in fatty livers. This outcome may be the consequence of both, impaired systemic microcirculation and cellular membrane modifications which occur under steatotic conditions. This review summarizes current knowledge regarding the main factors which can affect oxygen supply in fatty liver. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Biased and unbiased strategies to identify biologically active small molecules.
Abet, Valentina; Mariani, Angelica; Truscott, Fiona R; Britton, Sébastien; Rodriguez, Raphaël
2014-08-15
Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms. Copyright © 2014. Published by Elsevier Ltd.
Regulation of yeast central metabolism by enzyme phosphorylation
Oliveira, Ana Paula; Ludwig, Christina; Picotti, Paola; Kogadeeva, Maria; Aebersold, Ruedi; Sauer, Uwe
2012-01-01
As a frequent post-translational modification, protein phosphorylation regulates many cellular processes. Although several hundred phosphorylation sites have been mapped to metabolic enzymes in Saccharomyces cerevisiae, functionality was demonstrated for few of them. Here, we describe a novel approach to identify in vivo functionality of enzyme phosphorylation by combining flux analysis with proteomics and phosphoproteomics. Focusing on the network of 204 enzymes that constitute the yeast central carbon and amino-acid metabolism, we combined protein and phosphoprotein levels to identify 35 enzymes that change their degree of phosphorylation during growth under five conditions. Correlations between previously determined intracellular fluxes and phosphoprotein abundances provided first functional evidence for five novel phosphoregulated enzymes in this network, adding to nine known phosphoenzymes. For the pyruvate dehydrogenase complex E1 α subunit Pda1 and the newly identified phosphoregulated glycerol-3-phosphate dehydrogenase Gpd1 and phosphofructose-1-kinase complex β subunit Pfk2, we then validated functionality of specific phosphosites through absolute peptide quantification by targeted mass spectrometry, metabolomics and physiological flux analysis in mutants with genetically removed phosphosites. These results demonstrate the role of phosphorylation in controlling the metabolic flux realised by these three enzymes. PMID:23149688
Engineering Biomaterial Properties for Central Nervous System Applications
NASA Astrophysics Data System (ADS)
Rivet, Christopher John
Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.
Daus, Martin L.
2016-01-01
In 1982, the term “prions” (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being “heretical” but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the “protein-only hypothesis” expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed. PMID:26742083
Daus, Martin L
2016-01-04
In 1982, the term "prions" (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being "heretical" but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the "protein-only hypothesis" expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed.
Rustom, Amin
2016-06-01
Tunnelling nanotubes (TNTs) are increasingly recognized as central players in a multitude of cellular mechanisms and diseases. Although their existence and functions in animal organisms are still elusive, emerging evidence suggests that they are involved in developmental processes, tissue regeneration, viral infections or pathogen transfer, stem cell differentiation, immune responses as well as initiation and progression of neurodegenerative disorders and cancer (see Sisakhtnezhad & Khosravi 2015 Eur. J. Cell Biol. 94, 429-443. (doi:10.1016/j.ejcb.2015.06.010)). A broader field of vision, including their striking functional and structural resemblance with nanotube-mediated phenomena found throughout the phylogenetic tree, from plants down to bacteria, points to a universal, conserved and tightly regulated mechanism of cellular assemblies. Based on our initial definition of TNTs as open-ended channels mediating membrane continuity between connected cells (Rustom et al. 2004 Science 303, 1007-1010. (doi:10.1126/science.1093133)), it is suggested that animal tissues represent supercellular assemblies that-besides opening discrete communication pathways-balance diverse stress factors caused by pathological changes or fluctuating physiological and environmental conditions, such as oxidative stress or nutrient shortage. By combining current knowledge about nanotube formation, intercellular transfer and communication phenomena as well as associated molecular pathways, a model evolves, predicting that the linkage between reactive oxygen species, TNT-based supercellularity and the intercellular shuttling of materials will have significant impact on diverse body functions, such as cell survival, redox/metabolic homeostasis and mitochondrial heteroplasmy. It implies that TNTs are intimately linked to the physiological and pathological state of animal cells and represent a central joint element of diverse diseases, such as neurodegenerative disorders, diabetes or cancer. © 2016 The Authors.
Padmanabhan, Prasad Kottayil; Zghidi-Abouzid, Ouafa; Samant, Mukesh; Dumas, Carole; Aguiar, Bruno Guedes; Estaquier, Jerome; Papadopoulou, Barbara
2016-01-01
DDX3 is a highly conserved member of ATP-dependent DEAD-box RNA helicases with multiple functions in RNA metabolism and cellular signaling. Here, we describe a novel function for DDX3 in regulating the mitochondrial stress response in the parasitic protozoan Leishmania. We show that genetic inactivation of DDX3 leads to the accumulation of mitochondrial reactive oxygen species (ROS) associated with a defect in hydrogen peroxide detoxification. Upon stress, ROS production is greatly enhanced, causing mitochondrial membrane potential loss, mitochondrial fragmentation, and cell death. Importantly, this phenotype is exacerbated upon oxidative stress in parasites forced to use the mitochondrial oxidative respiratory machinery. Furthermore, we show that in the absence of DDX3, levels of major components of the unfolded protein response as well as of polyubiquitinated proteins increase in the parasite, particularly in the mitochondrion, as an indicator of mitochondrial protein damage. Consistent with these findings, immunoprecipitation and mass-spectrometry studies revealed potential interactions of DDX3 with key components of the cellular stress response, particularly the antioxidant response, the unfolded protein response, and the AAA-ATPase p97/VCP/Cdc48, which is essential in mitochondrial protein quality control by driving proteosomal degradation of polyubiquitinated proteins. Complementation studies using DDX3 deletion mutants lacking conserved motifs within the helicase core support that binding of DDX3 to ATP is essential for DDX3's function in mitochondrial proteostasis. As a result of the inability of DDX3-depleted Leishmania to recover from ROS damage and to survive various stresses in the host macrophage, parasite intracellular development was impaired. Collectively, these observations support a central role for the Leishmania DDX3 homolog in preventing ROS-mediated damage and in maintaining mitochondrial protein quality control. PMID:27735940
2011-01-01
Background Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Results Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. Conclusions The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases. PMID:21255393
Alamo, Ines G.; Kannan, Kolenkode B.; Ramos, Harry; Loftus, Tyler J.; Efron, Philip A.; Mohr, Alicia M.
2016-01-01
Background Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Methods Male Sprague-Dawley rats underwent six days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75μg/kg) after the restraint stress. On post-injury day seven, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor (G-CSF), and peripheral blood mobilization of hematopoietic progenitor cells (HPC), as well as bone marrow cellularity and erythroid progenitor cell growth. Results The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress, significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1±0.6 vs. 10.8±0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased HPC mobilization and restored G-CSF levels. Conclusions After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. PMID:27742030
Ohuchi, Hideyo
2013-01-01
A central issue of evolutionary developmental biology is how the eye is diverged morphologically and functionally. However, the unifying mechanisms or schemes that govern eye diversification remain unsolved. In this review, I first introduce the concept of evolutionary developmental biology of the eye with a focus on photoreception, the fundamental property of retinal cells. Second, I summarize the early development of vertebrate eyes and the role of a homeobox gene, Lhx1, in subdivision of the retina into 2 domains, the neural retina and retinal pigmented epithelium of the optic primordium. The 2 retinal domains are essential components of the eye as they are found in such prototypic eyes as the extant planarian eye. Finally, I propose the presence of novel retinal cell subtypes with photosensory functions based on our recent work on atypical photopigments (opsins) in vertebrates. Since human diseases are attributable to the aberration of various types of cells due to alterations in gene expression, understanding the precise mechanisms of cellular diversification and unraveling the molecular profiles of cellular subtypes are essential to future regenerative medicine.
Overexpression of amyloid precursor protein increases copper content in HEK293 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suazo, Miriam; Hodar, Christian; Morgan, Carlos
2009-05-15
Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to bothmore » Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.« less
Wang, Xueying; Hayes, John A; Revill, Ann L; Song, Hanbing; Kottick, Andrew; Vann, Nikolas C; LaMar, M Drew; Picardo, Maria Cristina D; Akins, Victoria T; Funk, Gregory D; Del Negro, Christopher A
2014-01-01
To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Bötzinger complex (preBötC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here, we show that selective photonic destruction of Dbx1 preBötC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85±20 (mean ± SEM) cellular ablations, which corresponds to ∼15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states. DOI: http://dx.doi.org/10.7554/eLife.03427.001 PMID:25027440
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions
Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E. S.; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.; Lemay, Guy; Bisaillon, Martin
2016-01-01
Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.
Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E S; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Lemay, Guy; Bisaillon, Martin
2016-01-01
Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection.
A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses
Liang, Qin; Dexheimer, Thomas S; Zhang, Ping; Rosenthal, Andrew S; Villamil, Mark A; You, Changjun; Zhang, Qiuting; Chen, Junjun; Ott, Christine A; Sun, Hongmao; Luci, Diane K; Yuan, Bifeng; Simeonov, Anton; Jadhav, Ajit; Xiao, Hui; Wang, Yinsheng; Maloney, David J; Zhuang, Zhihao
2014-01-01
Protein ubiquitination and deubiquitination are central to the control of a large number of cellular pathways and signaling networks in eukaryotes. Although the essential roles of ubiquitination have been established in the eukaryotic DNA damage response, the deubiquitination process remains poorly defined. Chemical probes that perturb the activity of deubiquitinases (DUBs) are needed to characterize the cellular function of deubiquitination. Here we report ML323 (2), a highly potent inhibitor of the USP1-UAF1 deubiquitinase complex with excellent selectivity against human DUBs, deSUMOylase, deneddylase and unrelated proteases. Using ML323, we interrogated deubiquitination in the cellular response to UV- and cisplatin-induced DNA damage and revealed new insights into the requirement of deubiquitination in the DNA translesion synthesis and Fanconi anemia pathways. Moreover, ML323 potentiates cisplatin cytotoxicity in non-small cell lung cancer and osteosarcoma cells. Our findings point to USP1-UAF1 as a key regulator of the DNA damage response and a target for overcoming resistance to the platinum-based anticancer drugs. PMID:24531842
Tracking STAT nuclear traffic.
Reich, Nancy C; Liu, Ling
2006-08-01
Accurate cellular localization is crucial for the effective function of most signalling molecules and nuclear translocation is central to the function of transcription factors. The passage of large molecules between the cytoplasm and nucleus is restricted, and this restriction affords a mechanism to regulate transcription by controlling the access of transcription factors to the nucleus. In this Review, we focus on the signal transducer and activator of transcription (STAT) family of transcription factors. The regulation of the nuclear trafficking of STAT-family members is diverse. Some STAT proteins constitutively shuttle between the nucleus and cytoplasm, whereas others require tyrosine phosphorylation for nuclear localization. In either case, the regulation of nuclear trafficking can provide a target for therapeutic intervention.
Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential
Reiner, Andreas; Levitz, Joshua; Isacoff, Ehud Y.
2014-01-01
Light offers unique advantages for studying and manipulating biomolecules and the cellular processes that they control. Optical control of ionotropic and metabotropic glutamate receptors has garnered significant interest, since these receptors are central to signaling at neuronal synapses and only optical approaches provide the spatial and temporal resolution required to directly probe receptor function in cells and tissue. Following the classical method of glutamate photo-uncaging, recently developed methods have added other forms of remote control, including those with high molecular specificity and genetic targeting. These tools open the door to the direct optical control of synaptic transmission and plasticity, as well as the probing of native receptor function in intact neural circuits. PMID:25573450
Marijuana and cannabinoid regulation of brain reward circuits.
Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F
2004-09-01
The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Delta(9)-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation of these receptors located within the central brain reward circuits that is thought to play an important role in sustaining the self-administration of marijuana in humans, and in mediating the anxiolytic and pleasurable effects of the drug. Here we describe the cellular circuitry of the VTA and the NAc, define the sites within these areas at which cannabinoids alter synaptic processes, and discuss the relevance of these actions to the regulation of reinforcement and reward. In addition, we compare the effects of Delta(9)-THC with those of other commonly abused drugs on these reward circuits, and we discuss the roles that endogenous cannabinoids may play within these brain pathways, and their possible involvement in regulating ongoing brain function, independently of marijuana consumption. We conclude that, whereas Delta(9)-THC alters the activity of these central reward pathways in a manner that is consistent with other abused drugs, the cellular mechanism through which this occurs is likely different, relying upon the combined regulation of several afferent pathways to the VTA.
Wildes, Tyler J; Grippin, Adam; Dyson, Kyle A; Wummer, Brandon M; Damiani, David J; Abraham, Rebecca S; Flores, Catherine T; Mitchell, Duane A
2018-04-30
Purpose: Adoptive T-cell immunotherapy (ACT) has emerged as a viable therapeutic for peripheral and central nervous system (CNS) tumors. In peripheral cancers, optimal efficacy of ACT is reliant on dendritic cells (DCs) in the tumor microenvironment. However, the CNS is largely devoid of resident migratory DCs to function as antigen-presenting cells during immunotherapy. Herein, we demonstrate that cellular interactions between adoptively transferred tumor-reactive T cells and bone marrow-derived hematopoietic stem and progenitor cells (HSPCs) lead to the generation of potent intratumoral DCs within the CNS compartment. Experimental Design: We evaluated HSPC differentiation during ACT in vivo in glioma-bearing hosts and HSPC proliferation and differentiation in vitro using a T-cell coculture system. We utilized FACS, ELISAs, and gene expression profiling to study the phenotype and function of HSPC-derived cells ex vivo and in vivo. To demonstrate the impact of HSPC differentiation and function on antitumor efficacy, we performed survival experiments. Results: Transfer of HSPCs with concomitant ACT led to the production of activated CD86 + CD11c + MHCII + cells consistent with DC phenotype and function within the brain tumor microenvironment. These intratumoral DCs largely supplanted abundant host myeloid-derived suppressor cells. We determined that during ACT, HSPC-derived cells in gliomas rely on T-cell-released IFNγ to differentiate into DCs, activate T cells, and reject intracranial tumors. Conclusions: Our data support the use of HSPCs as a novel cellular therapy. Although DC vaccines induce robust immune responses in the periphery, our data demonstrate that HSPC transfer uniquely generates intratumoral DCs that potentiate T-cell responses and promote glioma rejection in situ Clin Cancer Res; 1-12. ©2018 AACR. ©2018 American Association for Cancer Research.
Efficient DNA Repair: A Cell’s Fountain of Youth? | Center for Cancer Research
Given the central importance of the genome to a cell’s function, it is not surprising that there are a number of proteins devoted to sensing and repairing DNA damage. But what happens when these repair proteins do not work properly? Cancer is one possible outcome, and a growing body of evidence also indicates that the cellular response to DNA damage plays a key role in the aging process. This concept is supported by the fact that many premature aging syndromes are caused by mutations in DNA repair proteins.
Cellular and molecular specificity of pituitary gland physiology.
Perez-Castro, Carolina; Renner, Ulrich; Haedo, Mariana R; Stalla, Gunter K; Arzt, Eduardo
2012-01-01
The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.
Measuring the Kinetic and Mechanical Properties of Non-Processive Myosins using Optical Tweezers
Greenberg, Michael J.; Shuman, Henry; Ostap, E. Michael
2017-01-01
The myosin superfamily of molecular motors utilizes energy from ATP hydrolysis to generate force and motility along actin filaments in a diverse array of cellular processes. These motors are structurally, kinetically, and mechanically tuned to their specific molecular roles in the cell. Optical trapping techniques have played a central role in elucidating the mechanisms by which myosins generate force and in exposing the remarkable diversity of myosin functions. Here, we present thorough methods for measuring and analyzing interactions between actin and non-processive myosins using optical trapping techniques. PMID:27844441
Sirtuins of parasitic protozoa: In search of function(s)
Religa, Agnieszka A.; Waters, Andrew P.
2012-01-01
The SIR2 family of NAD+-dependent protein deacetylases, collectively called sirtuins, has been of central interest due to their proposed roles in life-span regulation and ageing. Sirtuins are one group of environment sensors of a cell interpreting external information and orchestrating internal responses at the sub-cellular level, through participation in gene regulation mechanisms. Remarkably conserved across all kingdoms of life SIR2 proteins in several protozoan parasites appear to have both conserved and intriguing unique functions. This review summarises our current knowledge of the members of the sirtuin families in Apicomplexa, including Plasmodium, and other protozoan parasites such as Trypanosoma and Leishmania. The wide diversity of processes regulated by SIR2 proteins makes them targets worthy of exploitation in anti-parasitic therapies. PMID:22906508
Veazey, Kylee J; Muller, Daria; Golding, Michael C
2013-01-01
Exposure to alcohol significantly alters the developmental trajectory of progenitor cells and fundamentally compromises tissue formation (i.e., histogenesis). Emerging research suggests that ethanol can impair mammalian development by interfering with the execution of molecular programs governing differentiation. For example, ethanol exposure disrupts cellular migration, changes cell-cell interactions, and alters growth factor signaling pathways. Additionally, ethanol can alter epigenetic mechanisms controlling gene expression. Normally, lineage-specific regulatory factors (i.e., transcription factors) establish the transcriptional networks of each new cell type; the cell's identity then is maintained through epigenetic alterations in the way in which the DNA encoding each gene becomes packaged within the chromatin. Ethanol exposure can induce epigenetic changes that do not induce genetic mutations but nonetheless alter the course of fetal development and result in a large array of patterning defects. Two crucial enzyme complexes--the Polycomb and Trithorax proteins--are central to the epigenetic programs controlling the intricate balance between self-renewal and the execution of cellular differentiation, with diametrically opposed functions. Prenatal ethanol exposure may disrupt the functions of these two enzyme complexes, altering a crucial aspect of mammalian differentiation. Characterizing the involvement of Polycomb and Trithorax group complexes in the etiology of fetal alcohol spectrum disorders will undoubtedly enhance understanding of the role that epigenetic programming plays in this complex disorder.
van Dyk, Dewald; Hansson, Guy; Pretorius, Isak S; Bauer, Florian F
2003-01-01
In the yeast Saccharomyces cerevisiae, the transition from a nutrient-rich to a nutrient-limited growth medium typically leads to the implementation of a cellular adaptation program that results in invasive growth and/or the formation of pseudohyphae. Complete depletion of essential nutrients, on the other hand, leads either to entry into a nonbudding, metabolically quiescent state referred to as G0 in haploid strains or to meiosis and sporulation in diploids. Entry into meiosis is repressed by the transcriptional regulator Rme1p, a zinc-finger-containing DNA-binding protein. In this article, we show that Rme1p positively regulates invasive growth and starch metabolism in both haploid and diploid strains by directly modifying the transcription of the FLO11 (also known as MUC1) and STA2 genes, which encode a cell wall-associated protein essential for invasive growth and a starch-degrading glucoamylase, respectively. Genetic evidence suggests that Rme1p functions independently of identified signaling modules that regulate invasive growth and of other transcription factors that regulate FLO11 and that the activation of FLO11 is dependent on the presence of a promoter sequence that shows significant homology to identified Rme1p response elements (RREs). The data suggest that Rme1p functions as a central switch between different cellular differentiation pathways. PMID:14668363
Central Role of eNOS in the Maintenance of Endothelial Homeostasis
Rodriguez-Mateos, Ana; Kelm, Malte
2015-01-01
Abstract Significance: Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. Recent Advances: Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. Critical Issues: Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. Future Directions: Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance. Antioxid. Redox Signal. 22, 1230–1242. PMID:25330054
Gullett, Jessica M; Bible, Amber; Alexandre, Gladys
2017-07-01
Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense , Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms. IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular mechanism by which a single CheA protein controls two unrelated functions: chemotaxis and cell length. Acquisition of this multifunctionality is seemingly a recent evolutionary event. The findings illustrate a mechanism by which chemotaxis function may be co-opted to regulate additional cellular functions. Copyright © 2017 American Society for Microbiology.
Gullett, Jessica M.
2017-01-01
ABSTRACT Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense, Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms. IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular mechanism by which a single CheA protein controls two unrelated functions: chemotaxis and cell length. Acquisition of this multifunctionality is seemingly a recent evolutionary event. The findings illustrate a mechanism by which chemotaxis function may be co-opted to regulate additional cellular functions. PMID:28416707
Snm1B/Apollo functions in the Fanconi anemia pathway in response to DNA interstrand crosslinks.
Mason, Jennifer M; Sekiguchi, JoAnn M
2011-07-01
Fanconi anemia (FA) is an inherited chromosomal instability disorder characterized by childhood aplastic anemia, developmental abnormalities and cancer predisposition. One of the hallmark phenotypes of FA is cellular hypersensitivity to agents that induce DNA interstrand crosslinks (ICLs), such as mitomycin C (MMC). FA is caused by mutation in at least 14 genes which function in the resolution of ICLs during replication. The FA proteins act within the context of a protein network in coordination with multiple repair factors that function in distinct pathways. SNM1B/Apollo is a member of metallo-β-lactamase/βCASP family of nucleases and has been demonstrated to function in ICL repair. However, the relationship between SNM1B and the FA protein network is not known. In the current study, we establish that SNM1B functions epistatically to the central FA factor, FANCD2, in cellular survival after ICL damage and homology-directed repair of DNA double-strand breaks. We also demonstrate that MMC-induced chromosomal anomalies are increased in SNM1B-depleted cells, and this phenotype is not further exacerbated upon depletion of either FANCD2 or another key FA protein, FANCI. Furthermore, we find that SNM1B is required for proper localization of critical repair factors, including FANCD2, BRCA1 and RAD51, to MMC-induced subnuclear foci. Our findings demonstrate that SNM1B functions within the FA pathway during the repair of ICL damage.
NASA Astrophysics Data System (ADS)
Marshall, Paul; Bredy, Timothy W.
2016-07-01
A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. So far, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here, we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.
Control of proliferation and cancer growth by the Hippo signaling pathway
Ehmer, Ursula; Sage, Julien
2015-01-01
The control of cell division is essential for normal development and the maintenance of cellular homeostasis. Abnormal cell proliferation is associated with multiple pathological states, including cancer. While the Hippo/YAP signaling pathway was initially thought to control organ size and growth, increasing evidence indicates that this pathway also plays a major role in the control of proliferation independent of organ size control. In particular, accumulating evidence indicates that the Hippo/YAP signaling pathway functionally interacts with multiple other cellular pathways and serves as a central node in the regulation of cell division, especially in cancer cells. Here recent observations are highlighted that connect Hippo/YAP signaling to transcription, the basic cell cycle machinery, and the control of cell division. Furthermore, the oncogenic and tumor suppressive attributes of YAP/TAZ are reviewed which emphasizes the relevance of the Hippo pathway in cancer. PMID:26432795
D'Onofrio, David J; Abel, David L; Johnson, Donald E
2012-03-14
The fields of molecular biology and computer science have cooperated over recent years to create a synergy between the cybernetic and biosemiotic relationship found in cellular genomics to that of information and language found in computational systems. Biological information frequently manifests its "meaning" through instruction or actual production of formal bio-function. Such information is called prescriptive information (PI). PI programs organize and execute a prescribed set of choices. Closer examination of this term in cellular systems has led to a dichotomy in its definition suggesting both prescribed data and prescribed algorithms are constituents of PI. This paper looks at this dichotomy as expressed in both the genetic code and in the central dogma of protein synthesis. An example of a genetic algorithm is modeled after the ribosome, and an examination of the protein synthesis process is used to differentiate PI data from PI algorithms.
Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia
Sun, Hong-shuo; Feng, Zhong-ping
2013-01-01
ATP-sensitive potassium (KATP) channels are weak, inward rectifiers that couple metabolic status to cell membrane electrical activity, thus modulating many cellular functions. An increase in the ADP/ATP ratio opens KATP channels, leading to membrane hyperpolarization. KATP channels are ubiquitously expressed in neurons located in different regions of the brain, including the hippocampus and cortex. Brief hypoxia triggers membrane hyperpolarization in these central neurons. In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the KATP channels increases ischemic infarction, and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults. These findings provide the basis for a practical strategy whereby activation of endogenous KATP channels reduces cellular damage resulting from cerebral ischemic stroke. KATP channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future. PMID:23123646
Marshall, Paul; Bredy, Timothy W.
2016-01-01
A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. To date, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram. PMID:27512601
Cannabinoid Receptor Signaling in Central Regulation of Feeding Behavior: A Mini-Review.
Koch, Marco
2017-01-01
Cannabinoids are lipid messengers that modulate a variety of physiological processes and modify the generation of specific behaviors. In this regard, the cannabinoid receptor type 1 (CB 1 ) represents the most relevant target molecule of cannabinoids so far. One main function of central CB 1 signaling is to maintain whole body energy homeostasis. Thus, cannabinoids functionally interact with classical neurotransmitters in neural networks that control energy metabolism and feeding behavior. The promotion of CB 1 signaling can increase appetite and stimulate feeding, while blockade of CB 1 suppresses hunger and induces hypophagia. However, in order to treat overeating, pharmacological blockade of CB 1 by the inverse agonist rimonabant not only suppressed feeding but also resulted in psychiatric side effects. Therefore, research within the last decade focused on deciphering the underlying cellular and molecular mechanisms of central cannabinoid signaling that control feeding and other behaviors, with the overall aim still being the identification of specific targets to develop safe pharmacological interventions for the treatment of obesity. Today, many studies unraveled the subcellular localization of CB 1 and the function of cannabinoids in neurons and glial cells within circumscribed brain regions that represent integral parts of neural circuitries controlling feeding behavior. Here, these novel experimental findings will be summarized and recent advances in understanding the mechanisms of CB 1 -dependent cannabinoid signaling being relevant for central regulation of feeding behavior will be highlighted. Finally, presumed alternative pathways of cannabinoids that are not driven by CB 1 activation but also contributing to control of feeding behavior will be introduced.
Cannabinoid Receptor Signaling in Central Regulation of Feeding Behavior: A Mini-Review
Koch, Marco
2017-01-01
Cannabinoids are lipid messengers that modulate a variety of physiological processes and modify the generation of specific behaviors. In this regard, the cannabinoid receptor type 1 (CB1) represents the most relevant target molecule of cannabinoids so far. One main function of central CB1 signaling is to maintain whole body energy homeostasis. Thus, cannabinoids functionally interact with classical neurotransmitters in neural networks that control energy metabolism and feeding behavior. The promotion of CB1 signaling can increase appetite and stimulate feeding, while blockade of CB1 suppresses hunger and induces hypophagia. However, in order to treat overeating, pharmacological blockade of CB1 by the inverse agonist rimonabant not only suppressed feeding but also resulted in psychiatric side effects. Therefore, research within the last decade focused on deciphering the underlying cellular and molecular mechanisms of central cannabinoid signaling that control feeding and other behaviors, with the overall aim still being the identification of specific targets to develop safe pharmacological interventions for the treatment of obesity. Today, many studies unraveled the subcellular localization of CB1 and the function of cannabinoids in neurons and glial cells within circumscribed brain regions that represent integral parts of neural circuitries controlling feeding behavior. Here, these novel experimental findings will be summarized and recent advances in understanding the mechanisms of CB1-dependent cannabinoid signaling being relevant for central regulation of feeding behavior will be highlighted. Finally, presumed alternative pathways of cannabinoids that are not driven by CB1 activation but also contributing to control of feeding behavior will be introduced. PMID:28596721
Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani
2017-04-01
The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Neuroendocrine mechanisms for immune system regulation during stress in fish.
Nardocci, Gino; Navarro, Cristina; Cortés, Paula P; Imarai, Mónica; Montoya, Margarita; Valenzuela, Beatriz; Jara, Pablo; Acuña-Castillo, Claudio; Fernández, Ricardo
2014-10-01
In the last years, the aquaculture crops have experienced an explosive and intensive growth, because of the high demand for protein. This growth has increased fish susceptibility to diseases and subsequent death. The constant biotic and abiotic changes experienced by fish species in culture are challenges that induce physiological, endocrine and immunological responses. These changes mitigate stress effects at the cellular level to maintain homeostasis. The effects of stress on the immune system have been studied for many years. While acute stress can have beneficial effects, chronic stress inhibits the immune response in mammals and teleost fish. In response to stress, a signaling cascade is triggered by the activation of neural circuits in the central nervous system because the hypothalamus is the central modulator of stress. This leads to the production of catecholamines, corticosteroid-releasing hormone, adrenocorticotropic hormone and glucocorticoids, which are the essential neuroendocrine mediators for this activation. Because stress situations are energetically demanding, the neuroendocrine signals are involved in metabolic support and will suppress the "less important" immune function. Understanding the cellular mechanisms of the neuroendocrine regulation of immunity in fish will allow the development of new pharmaceutical strategies and therapeutics for the prevention and treatment of diseases triggered by stress at all stages of fish cultures for commercial production. Copyright © 2014 Elsevier Ltd. All rights reserved.
The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure?
O’Sullivan, Justin M.; Pai, Dave A.; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.
2016-01-01
The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfil the cellular demand for rRNA, the ribosomal RNA genes (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization. PMID:25436580
The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure?
O'Sullivan, Justin M; Pai, Dave A; Cridge, Andrew G; Engelke, David R; Ganley, Austen R D
2013-06-01
The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfill the cellular demand for rRNA, the ribosomal RNA (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review, we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization.
Gonsior, Constantin; Binamé, Fabien; Frühbeis, Carsten; Bauer, Nina M.; Hoch-Kraft, Peter; Luhmann, Heiko J.; Trotter, Jacqueline; White, Robin
2014-01-01
Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cytoskeletal rearrangements which need to be tightly regulated. The non-receptor tyrosine kinase Fyn plays a central role in oligodendrocyte differentiation and myelination. In order to improve our understanding of the role of oligodendroglial Fyn kinase, we have identified Fyn targets in these cells. Purification and mass-spectrometric analysis of tyrosine-phosphorylated proteins in response to overexpressed active Fyn in the oligodendrocyte precursor cell line Oli-neu, yielded the adaptor molecule p130Cas. We analyzed the function of this Fyn target in oligodendroglial cells and observed that reduction of p130Cas levels by siRNA affects process outgrowth, the thickness of cellular processes and migration behavior of Oli-neu cells. Furthermore, long term p130Cas reduction results in decreased cell numbers as a result of increased apoptosis in cultured primary oligodendrocytes. Our data contribute to understanding the molecular events taking place during oligodendrocyte migration and morphological differentiation and have implications for myelin formation. PMID:24586768
A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress.
Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d'Hellencourt, Christian; Ravanan, Palaniyandi
2014-01-01
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalski, Michael; Coppolino, Marc G.
2005-10-07
In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cellmore » spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of {alpha}{sub 5}{beta}{sub 1} integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading.« less
p21-Activated protein kinases and their emerging roles in glucose homeostasis.
Chiang, Yu-ting Alex; Jin, Tianru
2014-04-01
p21-Activated protein kinases (PAKs) are centrally involved in a plethora of cellular processes and functions. Their function as effectors of small GTPases Rac1 and Cdc42 has been extensively studied during the past two decades, particularly in the realms of cell proliferation, apoptosis, and hence tumorigenesis, as well as cytoskeletal remodeling and related cellular events in health and disease. In recent years, a large number of studies have shed light onto the fundamental role of group I PAKs, most notably PAK1, in metabolic homeostasis. In skeletal muscle, PAK1 was shown to mediate the function of insulin on stimulating GLUT4 translocation and glucose uptake, while in pancreatic β-cells, PAK1 participates in insulin granule localization and vesicle release. Furthermore, we demonstrated that PAK1 mediates the cross talk between insulin and Wnt/β-catenin signaling pathways and hence regulates gut proglucagon gene expression and the production of the incretin hormone glucagon-like peptide-1 (GLP-1). The utilization of chemical inhibitors of PAK and the characterization of Pak1(-/-) mice enabled us to gain mechanistic insights as well as to assess the overall contribution of PAKs in metabolic homeostasis. This review summarizes our current understanding of PAKs, with an emphasis on the emerging roles of PAK1 in glucose homeostasis.
Rigas, Pavlos; Adamos, Dimitrios A; Sigalas, Charalambos; Tsakanikas, Panagiotis; Laskaris, Nikolaos A; Skaliora, Irini
2015-01-01
Understanding the development and differentiation of the neocortex remains a central focus of neuroscience. While previous studies have examined isolated aspects of cellular and synaptic organization, an integrated functional index of the cortical microcircuit is still lacking. Here we aimed to provide such an index, in the form of spontaneously recurring periods of persistent network activity -or Up states- recorded in mouse cortical slices. These coordinated network dynamics emerge through the orchestrated regulation of multiple cellular and synaptic elements and represent the default activity of the cortical microcircuit. To explore whether spontaneous Up states can capture developmental changes in intracortical networks we obtained local field potential recordings throughout the mouse lifespan. Two independent and complementary methodologies revealed that Up state activity is systematically modified by age, with the largest changes occurring during early development and adolescence. To explore possible regional heterogeneities we also compared the development of Up states in two distinct cortical areas and show that primary somatosensory cortex develops at a faster pace than primary motor cortex. Our findings suggest that in vitro Up states can serve as a functional index of cortical development and differentiation and can provide a baseline for comparing experimental and/or genetic mouse models.
Developing and applying the adverse outcome pathway ...
To support a paradigm shift in regulatory toxicology testing and risk assessment, the Adverse Outcome Pathway (AOP) concept has recently been proposed. This concept is similar to that for Mode of Action (MOA), describing a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis to predict effects for structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed.A variety of cellular and molecular processes are known to be critical to normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of principles of the description and assessment of MOA and AOPs, examples of adverse out
Mammalian Fe-S cluster biogenesis and its implication in disease.
Beilschmidt, Lena K; Puccio, Hélène M
2014-05-01
Iron-sulfur (Fe-S) clusters are inorganic cofactors that are ubiquitous and essential. Due to their chemical versatility, Fe-S clusters are implicated in a wide range of protein functions including mitochondrial respiration and DNA repair. Composed of iron and sulfur, they are sensible to oxygen and their biogenesis requires a highly conserved protein machinery that facilitates assembly of the cluster as well as its insertion into apoproteins. Mitochondria are the central cellular compartment for Fe-S cluster biogenesis in eukaryotic cells and the importance of proper function of this biogenesis for life is highlighted by a constantly increasing number of human genetic diseases that are associated with dysfunction of this Fe-S cluster biogenesis pathway. Although these disorders are rare and appear dissimilar, common aspects are found among them. This review will give an overview on what is known on mammalian Fe-S cluster biogenesis today, by putting it into the context of what is known from studies from lower model organisms, and focuses on the associated diseases, by drawing attention to the respective mutations. Finally, it outlines the importance of adequate cellular and murine models to uncover not only each protein function, but to resolve their role and requirement throughout the mammalian organism. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system
Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C.; Moon, Tae Seok
2016-01-01
A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA–asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions. PMID:26837577
Rigas, Pavlos; Adamos, Dimitrios A.; Sigalas, Charalambos; Tsakanikas, Panagiotis; Laskaris, Nikolaos A.; Skaliora, Irini
2015-01-01
Understanding the development and differentiation of the neocortex remains a central focus of neuroscience. While previous studies have examined isolated aspects of cellular and synaptic organization, an integrated functional index of the cortical microcircuit is still lacking. Here we aimed to provide such an index, in the form of spontaneously recurring periods of persistent network activity -or Up states- recorded in mouse cortical slices. These coordinated network dynamics emerge through the orchestrated regulation of multiple cellular and synaptic elements and represent the default activity of the cortical microcircuit. To explore whether spontaneous Up states can capture developmental changes in intracortical networks we obtained local field potential recordings throughout the mouse lifespan. Two independent and complementary methodologies revealed that Up state activity is systematically modified by age, with the largest changes occurring during early development and adolescence. To explore possible regional heterogeneities we also compared the development of Up states in two distinct cortical areas and show that primary somatosensory cortex develops at a faster pace than primary motor cortex. Our findings suggest that in vitro Up states can serve as a functional index of cortical development and differentiation and can provide a baseline for comparing experimental and/or genetic mouse models. PMID:26528142
The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury.
Ince, Can
2014-01-01
Acute kidney injury (AKI) is a rapidly developing condition often associated with critical illness, with a high degree of morbidity and mortality, whose pathophysiology is ill understood. Recent investigations have identified the dysfunction of the renal microcirculation and its cellular and subcellular constituents as being central to the etiology of AKI. Injury is caused by inflammatory activation involving endothelial leucocyte interactions in combination with dysregulation of the homeostatis between oxygen, nitric oxide, and reactive oxygen species. Effective therapies expected to resolve AKI will have to control inflammation and restore this homeostasis. In order to apply and guide these therapies effectively, diagnostic tools aimed at physiological biomarkers of AKI for monitoring renal microcirculatory function in advance of changes in pharmacological biomarkers associated with structural damage of the kidney will need to be developed. 2014 S. Karger AG, Basel.
The central amygdala circuits in fear regulation
NASA Astrophysics Data System (ADS)
Li, Bo
The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.
Genomes, Proteomes and the Central Dogma
Franklin, Sarah; Vondriska, Thomas M.
2011-01-01
Systems biology, with its associated technologies of proteomics, genomics and metabolomics, is driving the evolution of our understanding of cardiovascular physiology. Rather than studying individual molecules or even single reactions, a systems approach allows integration of orthogonal datasets from distinct tiers of biological data, including gene, RNA, protein, metabolite and other component networks. Together these networks give rise to emergent properties of cellular function and it is their reprogramming that causes disease. We present five observations regarding how systems biology is guiding a revisiting of the central dogma: (i) de-emphasizing the unidirectional flow of information from genes to proteins; (ii) revealing the role of modules of molecules as opposed to individual proteins acting in isolation; (iii) enabling discovery of novel emergent properties; (iv) demonstrating the importance of networks in biology; and (v) adding new dimensionality to the study of biological systems. PMID:22010165
Gadher, Suresh; Bhide, Mangesh; Kovarova, Hana
2018-05-01
The Central and Eastern European Proteomic Conference (CEEPC) successfully launched its second decade of proteomics in Košice, Slovakia with a program of systems biology, cellular, clinical, veterinary and sports proteomics. Whilst many conferences are struggling to attract participants, CEEPC with its outstanding track record and unique 'family - feel' packaged with excellent ambiance is thriving and bringing together proteomics experts from academia, industry, scientific specialties, clinics and precision medicine communities interested in resolving mysteries about protein functionalities in health and disease. CEEPC is also renowned for addressing humanitarian global healthcare issues, may it be ageing, chronic diseases or global epidemics. This year CEEPC intertwined with Košice Peace Marathon's pursuit of excellence in sports and initiatives including sports medicine and global peace.
Physical biology of human brain development.
Budday, Silvia; Steinmann, Paul; Kuhl, Ellen
2015-01-01
Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.
Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential.
Reiner, Andreas; Levitz, Joshua; Isacoff, Ehud Y
2015-02-01
Light offers unique advantages for studying and manipulating biomolecules and the cellular processes that they control. Optical control of ionotropic and metabotropic glutamate receptors has garnered significant interest, since these receptors are central to signaling at neuronal synapses and only optical approaches provide the spatial and temporal resolution required to directly probe receptor function in cells and tissue. Following the classical method of glutamate photo-uncaging, recently developed methods have added other forms of remote control, including those with high molecular specificity and genetic targeting. These tools open the door to the direct optical control of synaptic transmission and plasticity, as well as the probing of native receptor function in intact neural circuits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Regulation of autophagy by amino acid availability in S. cerevisiae and mammalian cells.
Abeliovich, Hagai
2015-10-01
Autophagy is a catabolic membrane-trafficking process that occurs in all eukaryotic organisms analyzed to date. The study of autophagy has exploded over the last decade or so, branching into numerous aspects of cellular and organismal physiology. From basic functions in starvation and quality control, autophagy has expanded into innate immunity, aging, neurological diseases, redox regulation, and ciliogenesis, to name a few roles. In the present review, I would like to narrow the discussion to the more classical roles of autophagy in supporting viability under nutrient limitation. My aim is to provide a semblance of a historical overview, together with a concise, and perhaps subjective, mechanistic and functional analysis of the central questions in the autophagy field.
Platelets: No longer bystanders in liver disease
Adams, David H.; Watson, Steve P.; Lalor, Patricia F.
2016-01-01
Growing lines of evidence recognize that platelets play a central role in liver homeostasis and pathobiology. Platelets have important roles at every stage during the continuum of liver injury and healing. These cells contribute to the initiation of liver inflammation by promoting leukocyte recruitment through sinusoidal endothelium. They can activate effector cells, thus amplifying liver damage, and by modifying the hepatic cellular and cytokine milieu drive both hepatoprotective and hepatotoxic processes. Conclusion: In this review we summarize how platelets drive such pleiotropic actions and attempt to reconcile the paradox of platelets being both deleterious and beneficial to liver function; with increasingly novel methods of manipulating platelet function at our disposal, we highlight avenues for future therapeutic intervention in liver disease. (Hepatology 2016;64:1774‐1784) PMID:26934463
Sigma receptors: biology and therapeutic potential.
Guitart, Xavier; Codony, Xavier; Monroy, Xavier
2004-07-01
More than 20 years after the identification of the sigma receptors as a unique binding site in the brain and in the peripheral organs, several questions regarding this receptor are still open. Only one of the subtypes of the receptor has been cloned to date, but the endogenous ligand still remains unknown, and the possible association of the receptor with a conventional second messenger system is controversial. From the very beginning, the sigma receptors were associated with various central nervous system disorders such as schizophrenia or movement disorders. Today, after hundreds of papers dealing with the importance of sigma receptors in brain function, it is widely accepted that sigma receptors represent a new and different avenue in the possible pharmacological treatment of several brain-related disorders. In this review, what is known about the biology of the sigma receptor regarding its putative structure and its distribution in the central nervous system is summarized first. The role of sigma receptors regulating cellular functions and other neurotransmitter systems is also addressed, as well as a short overview of the possible endogenous ligands. Finally, although no specific sigma ligand has reached the market, different pharmacological approaches to the alleviation and treatment of several central nervous system disorders and deficits, including schizophrenia, pain, memory deficits, etc., are discussed, with an overview of different compounds and their potential therapeutic use.
Alamo, Ines G; Kannan, Kolenkode B; Ramos, Harry; Loftus, Tyler J; Efron, Philip A; Mohr, Alicia M
2017-03-01
Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Male Sprague-Dawley rats underwent 6 days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75 μg/kg) after the restraint stress. On postinjury day 7, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor, and peripheral blood mobilization of hematopoietic progenitor cells, as well as bone marrow cellularity and erythroid progenitor cell growth. The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1 ± 0.6 vs 10.8 ± 0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased hematopoietic progenitor cells mobilization and restored granulocyte colony stimulating factor levels. After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Leptin regulation of hippocampal synaptic function in health and disease
Irving, Andrew J.; Harvey, Jenni
2014-01-01
The endocrine hormone leptin plays a key role in regulating food intake and body weight via its actions in the hypothalamus. However, leptin receptors are highly expressed in many extra-hypothalamic brain regions and evidence is growing that leptin influences many central processes including cognition. Indeed, recent studies indicate that leptin is a potential cognitive enhancer as it markedly facilitates the cellular events underlying hippocampal-dependent learning and memory, including effects on glutamate receptor trafficking, neuronal morphology and activity-dependent synaptic plasticity. However, the ability of leptin to regulate hippocampal synaptic function markedly declines with age and aberrant leptin function has been linked to neurodegenerative disorders such as Alzheimer's disease (AD). Here, we review the evidence supporting a cognitive enhancing role for the hormone leptin and discuss the therapeutic potential of using leptin-based agents to treat AD. PMID:24298156
Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation.
Liu, Hong; Aramaki, Michihiko; Fu, Yulong; Forrest, Douglas
2017-01-01
The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity. 2017 Published by Elsevier Inc.
Boc modifies the spectrum of holoprosencephaly in the absence of Gas1 function
Seppala, Maisa; Xavier, Guilherme M.; Fan, Chen-Ming; Cobourne, Martyn T.
2014-01-01
ABSTRACT Holoprosencephaly is a heterogeneous developmental malformation of the central nervous system characterized by impaired forebrain cleavage, midline facial anomalies and wide phenotypic variation. Indeed, microforms represent the mildest manifestation, associated with facial anomalies but an intact central nervous system. In many cases, perturbations in sonic hedgehog signaling are responsible for holoprosencephaly. Here, we have elucidated the contribution of Gas1 and an additional hedgehog co-receptor, Boc during early development of the craniofacial midline, by generating single and compound mutant mice. Significantly, we find Boc has an essential role in the etiology of a unique form of lobar holoprosencephaly that only occurs in conjunction with combined loss of Gas1. Whilst Gas1−/− mice have microform holoprosencephaly characterized by a single median maxillary central incisor, cleft palate and pituitary anomalies, Boc−/− mice have a normal facial midline. However, Gas1−/−; Boc−/− mutants have lobar holoprosencephaly associated with clefting of the lip, palate and tongue, secondary to reduced sonic hedgehog transduction in the central nervous system and face. Moreover, maxillary incisor development is severely disrupted in these mice, arresting prior to cellular differentiation as a result of apoptosis in the odontogenic epithelium. Thus, Boc and Gas1 retain an essential function in these tooth germs, independent of their role in midline development of the central nervous system and face. Collectively, this phenotype demonstrates both redundancy and individual requirements for Gas1 and Boc during sonic hedgehog transduction in the craniofacial midline and suggests BOC as a potential digenic locus for lobar holoprosencephaly in human populations. PMID:25063195
Morales González, E; Contreras, I; Estrada, J A
2014-09-01
Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Adaptation of the membrane in Archaea.
Oger, Philippe M; Cario, Anaïs
2013-12-15
Microbes often face contrasted and fluctuating environmental conditions, to which they need to adapt or die. Because membranes play a central role in regulating fluxes inward and outward from the cells, maintaining the appropriate structure of the membrane is crucial to maintain cellular integrity and functions. This is achieved in bacteria and eucarya by a modification of the membrane lipid compositions, a strategy termed homeoviscous adaptation. We review here evidence for homeoviscous adaptation in Archaea, and discuss the limits of this strategy and our knowledge in this very peculiar domain of life. © 2013 Elsevier B.V. All rights reserved.
Minireview: Metabolism of Female Reproduction: Regulatory Mechanisms and Clinical Implications
Babayev, Elnur; Collins, Stephen C.; Nemeth, Gabor; Horvath, Tamas L.
2014-01-01
Female fertility is highly dependent on successful regulation of energy metabolism. Central processes in the hypothalamus monitor the metabolic state of the organism and, together with metabolic hormones, drive the peripheral availability of energy for cellular functions. In the ovary, the oocyte and neighboring somatic cells of the follicle work in unison to achieve successful metabolism of carbohydrates, amino acids, and lipids. Metabolic disturbances such as anorexia nervosa, obesity, and diabetes mellitus have clinically important consequences on human reproduction. In this article, we review the metabolic determinants of female reproduction and their role in infertility. PMID:24678733
Neuronal Morphology goes Digital: A Research Hub for Cellular and System Neuroscience
Parekh, Ruchi; Ascoli, Giorgio A.
2013-01-01
Summary The importance of neuronal morphology in brain function has been recognized for over a century. The broad applicability of “digital reconstructions” of neuron morphology across neuroscience sub-disciplines has stimulated the rapid development of numerous synergistic tools for data acquisition, anatomical analysis, three-dimensional rendering, electrophysiological simulation, growth models, and data sharing. Here we discuss the processes of histological labeling, microscopic imaging, and semi-automated tracing. Moreover, we provide an annotated compilation of currently available resources in this rich research “ecosystem” as a central reference for experimental and computational neuroscience. PMID:23522039
Minireview: Metabolism of female reproduction: regulatory mechanisms and clinical implications.
Seli, Emre; Babayev, Elnur; Collins, Stephen C; Nemeth, Gabor; Horvath, Tamas L
2014-06-01
Female fertility is highly dependent on successful regulation of energy metabolism. Central processes in the hypothalamus monitor the metabolic state of the organism and, together with metabolic hormones, drive the peripheral availability of energy for cellular functions. In the ovary, the oocyte and neighboring somatic cells of the follicle work in unison to achieve successful metabolism of carbohydrates, amino acids, and lipids. Metabolic disturbances such as anorexia nervosa, obesity, and diabetes mellitus have clinically important consequences on human reproduction. In this article, we review the metabolic determinants of female reproduction and their role in infertility.
Bringing the physical sciences into your cell biology research
Robinson, Douglas N.; Iglesias, Pablo A.
2012-01-01
Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences. PMID:23112230
Bringing the physical sciences into your cell biology research.
Robinson, Douglas N; Iglesias, Pablo A
2012-11-01
Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.
The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.
Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L
2017-07-12
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.
The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii
Pérez-Pérez, María Esther; Crespo, José L.
2017-01-01
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae. PMID:28704927
The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders
Costales, Jesse; Kolevzon, Alexander
2016-01-01
Central nervous system (CNS) development is a finely tuned process that relies on multiple factors and intricate pathways to ensure proper neuronal differentiation, maturation, and connectivity. Disruption of this process can cause significant impairments in CNS functioning and lead to debilitating disorders that impact motor and language skills, behavior, and cognitive functioning. Recent studies focused on understanding the underlying cellular mechanisms of neurodevelopmental disorders have identified a crucial role for insulin-like growth factor-1 (IGF-1) in normal CNS development. Work in model systems has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 is administered, and several clinical studies have shown promise of efficacy in disorders of the CNS, including autism spectrum disorder (ASD). In this review, we explore the molecular pathways and downstream effects of IGF-1 and summarize the results of completed and ongoing pre-clinical and clinical trials using IGF-1 as a pharmacologic intervention in various CNS disorders. This aim of this review is to provide evidence for the potential of IGF-1 as a treatment for neurodevelopmental disorders and ASD. PMID:26780584
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Kilfoil, Maria L.
2013-03-01
The high fidelity segregation of chromatin is the central problem in cell mitosis. The role of mechanics underlying this, however, is undetermined. Work in this area has largely focused on cytoskeletal elements of the process. Preliminary work in our lab suggests the mechanical properties of chromatin are fundamental in this process. Nevertheless, the mechanical properties of chromatin in the cellular context are not well-characterized. For better understanding of the role of mechanics in this cellular process, and of the chromatin mechanics in vivo generally, a systematic dynamical description of chromatin in vivo is required. Accordingly, we label specific sites on chromatin with fluorescent proteins of different wave lengths, enabling us to detect multiple spots separately in 3D and track their displacements in time inside living yeast cells. We analyze the pairwise cross-correlated motion between spots as a function of relative distance along the DNA contour. Comparison between the reptation model and our data serves to test our conjecture that chromatin in the cell is basically an entangled polymer network under constraints to thermal motion, and removal of constraints by non-thermal cellular processes is expected to affect its dynamic behavior.
Learning to swim, again: Axon regeneration in fish.
Rasmussen, Jeffrey P; Sagasti, Alvaro
2017-01-01
Damage to the central nervous system (CNS) of fish can often be repaired to restore function, but in mammals recovery from CNS injuries usually fails due to a lack of axon regeneration. The relatively growth-permissive environment of the fish CNS may reflect both the absence of axon inhibitors found in the mammalian CNS and the presence of pro-regenerative environmental factors. Despite their different capacities for axon regeneration, many of the physiological processes, intrinsic molecular pathways, and cellular behaviors that control an axon's ability to regrow are conserved between fish and mammals. Fish models have thus been useful both for identifying factors differing between mammals and fish that may account for differences in CNS regeneration and for characterizing conserved intrinsic pathways that regulate axon regeneration in all vertebrates. The majority of adult axon regeneration studies have focused on the optic nerve or spinal axons of the teleosts goldfish and zebrafish, which have been productive models for identifying genes associated with axon regeneration, cellular mechanisms of circuit reestablishment, and the basis of functional recovery. Lampreys, which are jawless fish lacking myelin, have provided an opportunity to study regeneration of well defined spinal cord circuits. Newer larval zebrafish models offer numerous genetic tools and the ability to monitor the dynamic behaviors of extrinsic cell types regulating axon regeneration in live animals. Recent advances in imaging and gene editing methods are making fish models yet more powerful for investigating the cellular and molecular underpinnings of axon regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
Fanconi anemia: causes and consequences of genetic instability.
Kalb, R; Neveling, K; Nanda, I; Schindler, D; Hoehn, H
2006-01-01
Fanconi anemia (FA) is a rare recessive disease that reflects the cellular and phenotypic consequences of genetic instability: growth retardation, congenital malformations, bone marrow failure, high risk of neoplasia, and premature aging. At the cellular level, manifestations of genetic instability include chromosomal breakage, cell cycle disturbance, and increased somatic mutation rates. FA cells are exquisitely sensitive towards oxygen and alkylating drugs such as mitomycin C or diepoxybutane, pointing to a function of FA genes in the defense against reactive oxygen species and other DNA damaging agents. FA is caused by biallelic mutations in at least 12 different genes which appear to function in the maintenance of genomic stability. Eight of the FA proteins form a nuclear core complex with a catalytic function involving ubiquitination of the central FANCD2 protein. The posttranslational modification of FANCD2 promotes its accumulation in nuclear foci, together with known DNA maintenance proteins such as BRCA1, BRCA2, and the RAD51 recombinase. Biallelic mutations in BRCA2 cause a severe FA-like phenotype, as do biallelic mutations in FANCD2. In fact, only leaky or hypomorphic mutations in this central group of FA genes appear to be compatible with life birth and survival. The newly discovered FANCJ (= BRIP1) and FANCM (= Hef ) genes correspond to known DNA-maintenance genes (helicase resp. helicase-associated endonuclease for fork-structured DNA). These genes provide the most convincing evidence to date of a direct involvement of FA genes in DNA repair functions associated with the resolution of DNA crosslinks and stalled replication forks. Even though genetic instability caused by mutational inactivation of the FANC genes has detrimental effects for the majority of FA patients, around 20% of patients appear to benefit from genetic instability since genetic instability also increases the chance of somatic reversion of their constitutional mutations. Intragenic crossover, gene conversion, back mutation and compensating mutations in cis have all been observed in revertant, and, consequently, mosaic FA-patients, leading to improved bone marrow function. There probably is no other experiment of nature in our species in which causes and consequences of genetic instability, including the role of reactive oxygen species, can be better documented and explored than in FA.
Body weight, metabolism and clock genes
2010-01-01
Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885
Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge
2015-01-01
Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482
The role of the immune system in central nervous system plasticity after acute injury.
Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano
2014-12-26
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center
Willi, Jessica; Küpfer, Pascal; Evéquoz, Damien; Fernandez, Guillermo; Polacek, Norbert
2018-01-01
Abstract Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation. PMID:29309687
Reis, Helton J; Guatimosim, Cristina; Paquet, Maryse; Santos, Magda; Ribeiro, Fabíola M; Kummer, Arthur; Schenatto, Grace; Salgado, João V; Vieira, Luciene B; Teixeira, Antônio L; Palotás, András
2009-01-01
This review article gives an overview of a number of central neuro-transmitters, which are essential for integrating many functions in the central nervous system (CNS), such as learning, memory, sleep cycle, body movement, hormone regulation and many others. Neurons use neuro-transmitters to communicate, and a great variety of molecules are known to fit the criteria to be classified as such. A process shared by all neuro-transmitters is their release by excocytosis, and we give an outline of the molecular events and protein complexes involved in this mechanism. Synthesis, transport, inactivation, and cellular signaling can be very diverse when different neuro-transmitters are compared, and these processes are described separately for each neuro-transmitter system. Here we focus on the most well known neuro-transmitters: acetyl-choline, catechol-amines (dopamine and nor-adrenalin), indole-amine (serotonin), glutamate, and gamma-amino-butyric acid (GABA). Glutamate is the major excitatory neuro-transmitter in the brain and its actions are counter-balanced by GABA, which is the major inhibitory substance in the CNS. A balance of neuronal transmission between these two neuro-transmitters is essential to normal brain function. Acetyl-choline, serotonin and catechol-amines have a more modulatory function in the brain, being involved in many neuronal circuits. Apart from summarizing the current knowledge about the synthesis, release and receptor signaling of these transmitters, some disease states due to alteration of their normal neuro-transmission are also described.
Mladenov, Emil; Iliakis, George
2011-06-03
A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis. 2011 Elsevier B.V. All rights reserved.
ABCA1 agonist peptides for the treatment of disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bielicki, John K.
Purpose of review The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. Recent findings Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potentialmore » for clinical use. Structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia have been identified. These may have implications for the design of other HDL mimetic peptides. Summary ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.« less
ABCA1 agonist peptides for the treatment of disease
Bielicki, John K.
2016-02-01
Purpose of review The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. Recent findings Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potentialmore » for clinical use. Structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia have been identified. These may have implications for the design of other HDL mimetic peptides. Summary ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.« less
Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices.
Tremblay, Marie-Ève; Zettel, Martha L; Ison, James R; Allen, Paul D; Majewska, Ania K
2012-04-01
Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical, and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. Copyright © 2012 Wiley Periodicals, Inc.
Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices
Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.
2011-01-01
Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464
NASA Astrophysics Data System (ADS)
Zanzoni, Serena; Ceccon, Alberto; Assfalg, Michael; Singh, Rajesh K.; Fushman, David; D'Onofrio, Mariapina
2015-04-01
The use of nanoparticles (NPs) in biomedical applications requires an in-depth understanding of the mechanisms by which NPs interact with biomolecules. NPs associating with proteins may interfere with protein-protein interactions and affect cellular communication pathways, however the impact of NPs on biomolecular recognition remains poorly characterized. In this respect, particularly relevant is the study of NP-induced functional perturbations of proteins implicated in the regulation of key biochemical pathways. Ubiquitin (Ub) is a prototypical protein post-translational modifier playing a central role in numerous essential biological processes. To contribute to the understanding of the interactions between this universally distributed biomacromolecule and NPs, we investigated the adsorption of polyhydroxylated [60]fullerene on monomeric Ub and on a minimal polyubiquitin chain in vitro at atomic resolution. Site-resolved chemical shift and intensity perturbations of Ub's NMR signals, together with 15N spin relaxation rate changes, exchange saturation transfer effects, and fluorescence quenching data were consistent with the reversible formation of soluble aggregates incorporating fullerenol clusters. The specific interaction epitopes were identified, coincident with functional recognition sites in a monomeric and lysine48-linked dimeric Ub. Fullerenol appeared to target the open state of the dynamic structure of a dimeric Ub according to a conformational selection mechanism. Importantly, the protein-NP association prevented the enzyme-catalyzed synthesis of polyubiquitin chains. Our findings provide an experiment-based insight into protein/fullerenol recognition, with implications in functional biomolecular communication, including regulatory protein turnover, and for the opportunity of therapeutic intervention in Ub-dependent cellular pathways.The use of nanoparticles (NPs) in biomedical applications requires an in-depth understanding of the mechanisms by which NPs interact with biomolecules. NPs associating with proteins may interfere with protein-protein interactions and affect cellular communication pathways, however the impact of NPs on biomolecular recognition remains poorly characterized. In this respect, particularly relevant is the study of NP-induced functional perturbations of proteins implicated in the regulation of key biochemical pathways. Ubiquitin (Ub) is a prototypical protein post-translational modifier playing a central role in numerous essential biological processes. To contribute to the understanding of the interactions between this universally distributed biomacromolecule and NPs, we investigated the adsorption of polyhydroxylated [60]fullerene on monomeric Ub and on a minimal polyubiquitin chain in vitro at atomic resolution. Site-resolved chemical shift and intensity perturbations of Ub's NMR signals, together with 15N spin relaxation rate changes, exchange saturation transfer effects, and fluorescence quenching data were consistent with the reversible formation of soluble aggregates incorporating fullerenol clusters. The specific interaction epitopes were identified, coincident with functional recognition sites in a monomeric and lysine48-linked dimeric Ub. Fullerenol appeared to target the open state of the dynamic structure of a dimeric Ub according to a conformational selection mechanism. Importantly, the protein-NP association prevented the enzyme-catalyzed synthesis of polyubiquitin chains. Our findings provide an experiment-based insight into protein/fullerenol recognition, with implications in functional biomolecular communication, including regulatory protein turnover, and for the opportunity of therapeutic intervention in Ub-dependent cellular pathways. Electronic supplementary information (ESI) available: Experimental details. Fig. S1. Characterization of fullerenol by dynamic light scattering. Fig. S2. Size-exclusion chromatography. Fig. S3. 15N R1 spin relaxation rates of Ub and Ub2 upon subsequent additions of fullerenol. See DOI: 10.1039/c5nr00539f
Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.
Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F
2016-01-01
The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.
Detection of human Dicer and Argonaute 2 catalytic activity
Perron, Marjorie P.; Landry, Patricia; Plante, Isabelle; Provost, Patrick
2013-01-01
The microRNA (miRNA)-guided RNA silencing pathway is a central and well-defined cellular process involved in messenger RNA (mRNA) translational control. This complex regulatory process is achieved by a well orchestrated machinery composed of a relatively few protein components, among which the ribonuclease III (RNase III) Dicer and Argonaute 2 (Ago2) play a central role. These two proteins are essential and it is of particular interest to measure and detect their catalytic activity under various situations and/or conditions. In this chapter, we describe different protocols that aim to study and determine the catalytic activity of Dicer and Ago2 in cell extracts, immune complexes and size-fractionated cell extracts. Another protocol aimed at assessing miRNA binding to Ago2 is also described. These experimental approaches are likely to be useful to researchers investigating the main steps of miRNA biogenesis and function in human health and diseases. PMID:21528451
Food reward in the absence of taste receptor signaling.
de Araujo, Ivan E; Oliveira-Maia, Albino J; Sotnikova, Tatyana D; Gainetdinov, Raul R; Caron, Marc G; Nicolelis, Miguel A L; Simon, Sidney A
2008-03-27
Food palatability and hedonic value play central roles in nutrient intake. However, postingestive effects can influence food preferences independently of palatability, although the neurobiological bases of such mechanisms remain poorly understood. Of central interest is whether the same brain reward circuitry that is responsive to palatable rewards also encodes metabolic value independently of taste signaling. Here we show that trpm5-/- mice, which lack the cellular machinery required for sweet taste transduction, can develop a robust preference for sucrose solutions based solely on caloric content. Sucrose intake induced dopamine release in the ventral striatum of these sweet-blind mice, a pattern usually associated with receipt of palatable rewards. Furthermore, single neurons in this same ventral striatal region showed increased sensitivity to caloric intake even in the absence of gustatory inputs. Our findings suggest that calorie-rich nutrients can directly influence brain reward circuits that control food intake independently of palatability or functional taste transduction.
Hur, Eun-Mi; Lee, Byoung Dae
2014-12-01
Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.
Macrophage heterogeneity in liver injury and fibrosis.
Tacke, Frank; Zimmermann, Henning W
2014-05-01
Hepatic macrophages are central in the pathogenesis of chronic liver injury and have been proposed as potential targets in combatting fibrosis. Recent experimental studies in animal models revealed that hepatic macrophages are a remarkably heterogeneous population of immune cells that fulfill diverse functions in homeostasis, disease progression, and regression from injury. These range from clearance of pathogens or cellular debris and maintenance of immunological tolerance in steady state conditions; central roles in initiating and perpetuating inflammation in response to injury; promoting liver fibrosis via activating hepatic stellate cells in chronic liver damage; and, finally, resolution of inflammation and fibrosis by degradation of extracellular matrix and release of anti-inflammatory cytokines. Cellular heterogeneity in the liver is partly explained by the origin of macrophages. Hepatic macrophages can either arise from circulating monocytes, which are recruited to the injured liver via chemokine signals, or from self-renewing embryo-derived local macrophages, termed Kupffer cells. Kupffer cells appear essential for sensing tissue injury and initiating inflammatory responses, while infiltrating Ly-6C(+) monocyte-derived macrophages are linked to chronic inflammation and fibrogenesis. In addition, proliferation of local or recruited macrophages may possibly further contribute to their accumulation in injured liver. During fibrosis regression, monocyte-derived cells differentiate into Ly-6C (Ly6C, Gr1) low expressing 'restorative' macrophages and promote resolution from injury. Understanding the mechanisms that regulate hepatic macrophage heterogeneity, either by monocyte subset recruitment, by promoting restorative macrophage polarization or by impacting distinctive macrophage effector functions, may help to develop novel macrophage subset-targeted therapies for liver injury and fibrosis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Yousef, A F; Fonseca, G J; Pelka, P; Ablack, J N G; Walsh, C; Dick, F A; Bazett-Jones, D P; Shaw, G S; Mymryk, J S
2010-08-19
Hub proteins have central roles in regulating cellular processes. By targeting a single cellular hub, a viral oncogene may gain control over an entire module in the cellular interaction network that is potentially comprised of hundreds of proteins. The adenovirus E1A oncoprotein is a viral hub that interacts with many cellular hub proteins by short linear motifs/molecular recognition features (MoRFs). These interactions transform the architecture of the cellular protein interaction network and virtually reprogram the cell. To identify additional MoRFs within E1A, we screened portions of E1A for their ability to activate yeast pseudohyphal growth or differentiation. This identified a novel functional region within E1A conserved region 2 comprised of the sequence EVIDLT. This MoRF is necessary and sufficient to bind the N-terminal region of the SUMO conjugase UBC9, which also interacts with SUMO noncovalently and is involved in polySUMOylation. Our results suggest that E1A interferes with polySUMOylation, but not with monoSUMOylation. These data provide the first insight into the consequences of the interaction of E1A with UBC9, which was initially described in 1996. We further demonstrate that polySUMOylation regulates pseudohyphal growth and promyelocytic leukemia body reorganization by E1A. In conclusion, the interaction of the E1A oncogene with UBC9 mimics the normal binding between SUMO and UBC9 and represents a novel mechanism to modulate polySUMOylation.
Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network.
Tam, Patrick P L; Fossat, Nicolas; Wilkie, Emilie; Loebel, David A F; Ip, Chi Kin; Ramialison, Mirana
2016-01-01
The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head. © 2016 Elsevier Inc. All rights reserved.
MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells
Jones, Russell G.; Pearce, Edward J.
2017-01-01
Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. PMID:28514674
Metallic Glass Wire Based Localization of Kinesin/Microtubule Bio-molecular Motility System
NASA Astrophysics Data System (ADS)
Kim, K.; Sikora, A.; Yaginuma, S.; Nakayama, K. S.; Nakazawa, H.; Umetsu, M.; Hwang, W.; Teizer, W.
2014-03-01
We report electrophoretic accumulation of microtubules along metallic glass (Pd42.5Cu30Ni7.5P20) wires free-standing in solution. Microtubules are dynamic cytoskeletal filaments. Kinesin is a cytoskeletal motor protein. Functions of these bio-molecules are central to various dynamic cellular processes. Functional artificial organization of bio-molecules is a prerequisite for transferring their native functions into device applications. Fluorescence microscopy at the individual-microtubule level reveals microtubules aligning along the wire axis during the electrophoretic migration. Casein-treated electrodes are effective for releasing trapped microtubules upon removal of the external field. Furthermore, we demonstrate gliding motion of microtubules on kinesin-treated metallic glass wires. The reversible manner in the local adsorption of microtubules, the flexibility of wire electrodes, and the compatibility between the wire electrode and the bio-molecules are beneficial for spatio-temporal manipulation of the motility machinery in 3 dimensions.
A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress
Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi
2014-01-01
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434
NASA Astrophysics Data System (ADS)
Staikopoulos, Vasiliki; Gosnell, Martin E.; Anwer, Ayad G.; Mustafa, Sanam; Hutchinson, Mark R.; Goldys, Ewa M.
2016-12-01
Fluorescence-based bio-imaging methods have been extensively used to identify molecular changes occurring in biological samples in various pathological adaptations. Auto-fluorescence generated by endogenous fluorescent molecules within these samples can interfere with signal to background noise making positive antibody based fluorescent staining difficult to resolve. Hyperspectral imaging uses spectral and spatial imaging information for target detection and classification, and can be used to resolve changes in endogenous fluorescent molecules such as flavins, bound and free NADH and retinoids that are involved in cell metabolism. Hyperspectral auto-fluorescence imaging of spinal cord slices was used in this study to detect metabolic differences within pain processing regions of non-pain versus sciatic chronic constriction injury (CCI) animals, an established animal model of peripheral neuropathy. By using an endogenous source of contrast, subtle metabolic variations were detected between tissue samples, making it possible to distinguish between animals from non-injured and injured groups. Tissue maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant tissue regions with compromised mitochondrial function. Taken together, our results demonstrate that hyperspectral imaging provides a new non-invasive method to investigate central changes of peripheral neuropathic injury and other neurodegenerative disease models, and paves the way for novel cellular characterisation in health, disease and during treatment, with proper account of intrinsic cellular heterogeneity.
Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks.
Ramkumar, Amrita; Murthy, Divya; Raja, Desingu Ayyappa; Singh, Archana; Krishnan, Anusha; Khanna, Sangeeta; Vats, Archana; Thukral, Lipi; Sharma, Pushkar; Sivasubbu, Sridhar; Rani, Rajni; Natarajan, Vivek T; Gokhale, Rajesh S
2017-08-03
Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pigmentary disorders, the mechanistic relationship between the 2 pathways has not been elucidated. In this study, we show that autophagic proteins LC3B and ATG4B mediate melanosome trafficking on cytoskeletal tracks. While studying melanogenesis, we observed spatial segregation of LC3B-labeled melanosomes with preferential absence at the dendritic ends of melanocytes. This LC3B labeling of melanosomes did not impact the steady-state levels of these organelles but instead facilitated their intracellular positioning. Melanosomes primarily traverse on microtubule and actin cytoskeletal tracks and our studies reveal that LC3B enables the assembly of microtubule translocon complex. At the microtubule-actin crossover junction, ATG4B detaches LC3B from melanosomal membranes by enzymatic delipidation. Further, by live-imaging we show that melanosomes transferred to keratinocytes lack melanocyte-specific LC3B. Our study thus elucidates a new role for autophagy proteins in directing melanosome movement and reveal the unconventional use of these proteins in cellular trafficking pathways. Such crosstalk between the central cellular function and housekeeping pathway may be a crucial mechanism to balance melanocyte bioenergetics and homeostasis.
Brereton, Melissa F.; Vergari, Elisa; Zhang, Quan
2015-01-01
Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca2+-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function. PMID:26216135
Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system.
Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C; Moon, Tae Seok
2016-03-18
A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA-asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Molecular Mechanism of Arenavirus Assembly and Budding
Urata, Shuzo; Yasuda, Jiro
2012-01-01
Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2. PMID:23202453
Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation
Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo
2016-01-01
Purpose Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. Materials and Methods This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Results Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Conclusion Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders. PMID:27593875
Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.
Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun
2016-11-01
Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.
Repair and tissue engineering techniques for articular cartilage.
Makris, Eleftherios A; Gomoll, Andreas H; Malizos, Konstantinos N; Hu, Jerry C; Athanasiou, Kyriacos A
2015-01-01
Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of acellular and cellular regenerative products and techniques that could revolutionize joint care over the next decade by promoting the development of functional articular cartilage. Acellular products typically consist of collagen or hyaluronic-acid-based materials, whereas cellular techniques use either primary cells or stem cells, with or without scaffolds. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed.
Gelashvili, D B
2002-01-01
The author considers the application of natural toxins as arrow poison by Homo sapiens from ancient time till today for hunting and ethnic wars on the example of natives of Asia, Africa, South America and Oceania. Geographic isolation was important determining the spectrum of natural toxin sources and the methods of their application. Cellular and molecular mechanisms of arrow poisons effects are considered in biogeographical context: aconitin and strychnin in Asia, diamphotoxin in Africa, indole alcaloids of plants and steroid alcaloids of amphibian in Central and South America, palytoxin in Oceania islands. High efficiency and selective effect of natural toxins allow to use them as molecular markers in current studies of functional membrane architecture and cellular structures. Great differences in pace of civilization development leads to the co-existence at the beginning of the XXI century ethnic groups that use natural toxins as arrow poison and human beings that use the same toxins in fundamental and applied investigations within international scientific society.
Remy, Estelle; Duque, Paula
2014-01-01
Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617
Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.
Jayakumar, Siddharth; Hasan, Gaiti
2018-01-01
All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.
Long-range allosteric signaling in red light–regulated diguanylyl cyclases
Gourinchas, Geoffrey; Etzl, Stefan; Göbl, Christoph; Vide, Uršula; Madl, Tobias; Winkler, Andreas
2017-01-01
Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light–sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate–producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light–regulated optogenetic tools. PMID:28275738
Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry
2014-06-07
Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.
ERIC Educational Resources Information Center
Daher, Wajeeh; Baya'a, Nimer
2012-01-01
Learning in the cellular phone environment enables utilizing the multiple functions of the cellular phone, such as mobility, availability, interactivity, verbal and voice communication, taking pictures or recording audio and video, measuring time and transferring information. These functions together with mathematics-designated cellular phone…
Axonal regeneration in zebrafish spinal cord
Hui, Subhra Prakash
2018-01-01
Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326
Axonal regeneration in zebrafish spinal cord.
Ghosh, Sukla; Hui, Subhra Prakash
2018-03-01
In the present review we discuss two interrelated events-axonal damage and repair-known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals.
Jordan, Martha S; Maltzman, Jonathan S; Kliche, Stefanie; Shabason, Jacob; Smith, Jennifer E; Obstfeld, Amrom; Schraven, Burkhart; Koretzky, Gary A
2007-10-01
Multi-molecular complexes nucleated by adaptor proteins play a central role in signal transduction. In T cells, one central axis consists of the assembly of several signaling proteins linked together by the adaptors linker of activated T cells (LAT), Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76), and Grb2-related adaptor downstream of Shc (Gads). Each of these adaptors has been shown to be important for normal T cell development, and their proper sub-cellular localization is critical for optimal function in cell lines. We previously demonstrated in Jurkat T cells and a rat basophilic leukemic cell line that expression of a 50-amino acid polypeptide identical to the site on SLP-76 that binds to Gads blocks proper localization of SLP-76 and SLP-76-dependent signaling events. Here we extend these studies to investigate the ability of this polypeptide to inhibit TCR-induced integrin activity in Jurkat cells and to inhibit in vivo thymocyte development and primary T cell function. These data provide evidence for the in vivo function of a dominant-negative peptide based upon the biology of SLP-76 action and suggest the possibility of therapeutic potential of targeting the SLP-76/Gads interaction.
Herranz, María; Pardos, Fernando; Boyle, Michael J
2013-03-01
Cycloneuralian taxa exhibit similar organ system architectures, providing informative characters of metazoan evolution, yet very few modern comparative descriptions of cellular and molecular homologies within and among those taxa are available. We immunolabeled and characterized elements of the serotonergic nervous system in the kinorhynchs Echinoderes spinifurca, Antygomonas paulae, and Zelinkaderes brightae using confocal laser scanning microscopy. Fluorescent markers targeting DNA were combined with observations of auto-fluorescent structures to guide interpretations of the internal and external anatomy in each species. Results show a common pattern of the central nervous system with a circumenteric brain divided into ring-shaped anterior and posterior neuronal somata and a central neuropil connected to a multi-stringed, longitudinal ventral nerve cord. Structural similarities and differences in the nervous systems of these species were observed and described, stressing the incomplete ring nature of the anterior region of the kinorhynch brain, the functional relationship between the brain and the movable introvert, and the number and arrangement of nerve strings and somata of the ventral nerve cord. The ventral cord ends in two ventrolateral cell bodies in E. spinifurca, and forms a terminal loop associated with a midterminal spine in A. paulae and Z. brightae. The possible functional and phylogenetic significance of these features and arrangements are discussed. Copyright © 2012 Wiley Periodicals, Inc.
2014-01-01
Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs—from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS) networks that are involved in the control of ambulation and other stereotyped motor patterns—specifically Central Pattern Generators (CPGs) that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of spinal cord-injured (SCI) should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic SCI patients. PMID:24910602
Epigenetic modulators play critical roles in reprogramming of cellular functions, emerging as a new class of promising therapeutic targets. Nuclear receptor binding SET domain protein 3 (NSD3) is a member of the lysine methyltransferase family. Interestingly, the short isoform of NSD3 without the methyltransferase fragment, NSD3S, exhibits oncogenic activity in a wide range of cancers. We recently showed that NSD3S interacts with MYC, a central regulator of tumorigenesis, suggesting a mechanism by which NSD3S regulates cell proliferation through engaging MYC.
The E3 Ligase CHIP: Insights into Its Structure and Regulation
Paul, Indranil; Ghosh, Mrinal K.
2014-01-01
The carboxy-terminus of Hsc70 interacting protein (CHIP) is a cochaperone E3 ligase containing three tandem repeats of tetratricopeptide (TPR) motifs and a C-terminal U-box domain separated by a charged coiled-coil region. CHIP is known to function as a central quality control E3 ligase and regulates several proteins involved in a myriad of physiological and pathological processes. Recent studies have highlighted varied regulatory mechanisms operating on the activity of CHIP which is crucial for cellular homeostasis. In this review article, we give a concise account of our current knowledge on the biochemistry and regulation of CHIP. PMID:24868554
Epigenetic Control of Stem Cell Potential During Homeostasis, Aging, and Disease
Beerman, Isabel; Rossi, Derrick J.
2015-01-01
Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease. PMID:26046761
Ca2+-stores in sperm: their identities and functions
Costello, Sarah; Michelangeli, Francesco; Nash, Kate; Lefievre, Linda; Morris, Jennifer; Machado-Oliveira, Gisela; Barratt, Christopher; Kirkman-Brown, Jackson; Publicover, Stephen
2013-01-01
Intracellular Ca2+ stores play a central role in the regulation of cellular [Ca2+]i and the generation of complex [Ca2+] signals such as oscillations and waves. Ca2+ signalling is of particular significance in sperm cells, where it is a central regulator in many key activities (including capacitation, hyperactivation, chemotaxis and acrosome reaction) yet mature sperm lack endoplasmic reticulum and several other organelles which serve as Ca2+ stores in somatic cells. Here we review (i) the evidence for the expression in sperm of the molecular components (pumps and channels) which are functionally significant in the activity of Ca2+ stores of somatic cells and (ii) the evidence for the existence of functional Ca2+ stores in sperm. This evidence supports the existence of at least two storage organelles in mammalian sperm, one in the acrosomal region and another in the region of the sperm neck and midpiece. We then go on to discuss the likely identity of these organelles and their discrete functions: regulation by the acrosome of its own secretion and regulation by membranous organelles at the sperm neck (and possibly by the mitochondria) of flagellar activity and hyperactivation. Finally we consider the ability of the sperm discretely to control mobilisation of these stores and the functional interaction of stored Ca2+ at the sperm neck/midpiece with CatSper channels in the principal piece in regulation of the activities of mammalian sperm. PMID:19542252
BAR domain proteins regulate Rho GTPase signaling.
Aspenström, Pontus
2014-01-01
BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.
Harper, Ronald M; Kumar, Rajesh; Macey, Paul M; Harper, Rebecca K; Ogren, Jennifer A
2015-01-01
Congenital central hypoventilation syndrome (CCHS) patients show major autonomic alterations in addition to their better-known breathing deficiencies. The processes underlying CCHS, mutations in the PHOX2B gene, target autonomic neuronal development, with frame shift extent contributing to symptom severity. Many autonomic characteristics, such as impaired pupillary constriction and poor temperature regulation, reflect parasympathetic alterations, and can include disturbed alimentary processes, with malabsorption and intestinal motility dyscontrol. The sympathetic nervous system changes can exert life-threatening outcomes, with dysregulation of sympathetic outflow leading to high blood pressure, time-altered and dampened heart rate and breathing responses to challenges, cardiac arrhythmia, profuse sweating, and poor fluid regulation. The central mechanisms contributing to failed autonomic processes are readily apparent from structural and functional magnetic resonance imaging studies, which reveal substantial cortical thinning, tissue injury, and disrupted functional responses in hypothalamic, hippocampal, posterior thalamic, and basal ganglia sites and their descending projections, as well as insular, cingulate, and medial frontal cortices, which influence subcortical autonomic structures. Midbrain structures are also compromised, including the raphe system and its projections to cerebellar and medullary sites, the locus coeruleus, and medullary reflex integrating sites, including the dorsal and ventrolateral medullary nuclei. The damage to rostral autonomic sites overlaps metabolic, affective and cognitive regulatory regions, leading to hormonal disruption, anxiety, depression, behavioral control, and sudden death concerns. The injuries suggest that interventions for mitigating hypoxic exposure and nutrient loss may provide cellular protection, in the same fashion as interventions in other conditions with similar malabsorption, fluid turnover, or hypoxic exposure.
Complexity of Gene Expression Evolution after Duplication: Protein Dosage Rebalancing
Rogozin, Igor B.
2014-01-01
Ongoing debates about functional importance of gene duplications have been recently intensified by a heated discussion of the “ortholog conjecture” (OC). Under the OC, which is central to functional annotation of genomes, orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of gene ontology (GO) annotations and expression profiles, among within-species paralogs compared to orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. Subsequent studies suggested that the OC appears to be generally valid when applied to mammalian evolution but the complete picture of evolution of gene expression also has to incorporate lineage-specific aspects of paralogy. The observed complexity of gene expression evolution after duplication can be explained through selection for gene dosage effect combined with the duplication-degeneration-complementation model. This paper discusses expression divergence of recent duplications occurring before functional divergence of proteins encoded by duplicate genes. PMID:25197576
Rahn, Elizabeth J; Guzman-Karlsson, Mikael C; David Sweatt, J
2013-10-01
Sensitization is a form of non-associative conditioning in which amplification of behavioral responses can occur following presentation of an aversive or noxious stimulus. Understanding the cellular and molecular underpinnings of sensitization has been an overarching theme spanning the field of learning and memory as well as that of pain research. In this review we examine how sensitization, both in the context of learning as well as pain processing, shares evolutionarily conserved behavioral, cellular/synaptic, and epigenetic mechanisms across phyla. First, we characterize the behavioral phenomenon of sensitization both in invertebrates and vertebrates. Particular emphasis is placed on long-term sensitization (LTS) of withdrawal reflexes in Aplysia following aversive stimulation or injury, although additional invertebrate models are also covered. In the context of vertebrates, sensitization of mammalian hyperarousal in a model of post-traumatic stress disorder (PTSD), as well as mammalian models of inflammatory and neuropathic pain is characterized. Second, we investigate the cellular and synaptic mechanisms underlying these behaviors. We focus our discussion on serotonin-mediated long-term facilitation (LTF) and axotomy-mediated long-term hyperexcitability (LTH) in reduced Aplysia systems, as well as mammalian spinal plasticity mechanisms of central sensitization. Third, we explore recent evidence implicating epigenetic mechanisms in learning- and pain-related sensitization. This review illustrates the fundamental and functional overlay of the learning and memory field with the pain field which argues for homologous persistent plasticity mechanisms in response to sensitizing stimuli or injury across phyla. Copyright © 2013 Elsevier Inc. All rights reserved.
Epigenetic Regulation of Memory Formation and Maintenance
ERIC Educational Resources Information Center
Zovkic, Iva B.; Guzman-Karlsson, Mikael C.; Sweatt, J. David
2013-01-01
Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural…
Winter, Gal; Cordente, Antonio G.; Curtin, Chris
2014-01-01
Discoveries on the toxic effects of cysteine accumulation and, particularly, recent findings on the many physiological roles of one of the products of cysteine catabolism, hydrogen sulfide (H2S), are highlighting the importance of this amino acid and sulfur metabolism in a range of cellular activities. It is also highlighting how little we know about this critical part of cellular metabolism. In the work described here, a genome-wide screen using a deletion collection of Saccharomyces cerevisiae revealed a surprising set of genes associated with this process. In addition, the yeast vacuole, not previously associated with cysteine catabolism, emerged as an important compartment for cysteine degradation. Most prominent among the vacuole-related mutants were those involved in vacuole acidification; we identified each of the eight subunits of a vacuole acidification sub-complex (V1 of the yeast V-ATPase) as essential for cysteine degradation. Other functions identified included translation, RNA processing, folate-derived one-carbon metabolism, and mitochondrial iron-sulfur homeostasis. This work identified for the first time cellular factors affecting the fundamental process of cysteine catabolism. Results obtained significantly contribute to the understanding of this process and may provide insight into the underlying cause of cysteine accumulation and H2S generation in eukaryotes. PMID:25517415
Proteasome expression and activity in cancer and cancer stem cells.
Voutsadakis, Ioannis A
2017-03-01
Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.
Cellular self-organization by autocatalytic alignment feedback
Junkin, Michael; Leung, Siu Ling; Whitman, Samantha; Gregorio, Carol C.; Wong, Pak Kin
2011-01-01
Myoblasts aggregate, differentiate and fuse to form skeletal muscle during both embryogenesis and tissue regeneration. For proper muscle function, long-range self-organization of myoblasts is required to create organized muscle architecture globally aligned to neighboring tissue. However, how the cells process geometric information over distances considerably longer than individual cells to self-organize into well-ordered, aligned and multinucleated myofibers remains a central question in developmental biology and regenerative medicine. Using plasma lithography micropatterning to create spatial cues for cell guidance, we show a physical mechanism by which orientation information can propagate for a long distance from a geometric boundary to guide development of muscle tissue. This long-range alignment occurs only in differentiating myoblasts, but not in non-fusing myoblasts perturbed by microfluidic disturbances or other non-fusing cell types. Computational cellular automata analysis of the spatiotemporal evolution of the self-organization process reveals that myogenic fusion in conjunction with rotational inertia functions in a self-reinforcing manner to enhance long-range propagation of alignment information. With this autocatalytic alignment feedback, well-ordered alignment of muscle could reinforce existing orientations and help promote proper arrangement with neighboring tissue and overall organization. Such physical self-enhancement might represent a fundamental mechanism for long-range pattern formation during tissue morphogenesis. PMID:22193956
PTP1B Regulates Cortactin Tyrosine Phosphorylation by Targeting Tyr446*S⃞
Stuible, Matthew; Dubé, Nadia; Tremblay, Michel L.
2008-01-01
The emergence of protein-tyrosine phosphatase 1B (PTP1B) as a potential drug target for treatment of diabetes, obesity, and cancer underlies the importance of understanding its full range of cellular functions. Here, we have identified cortactin, a central regulator of actin cytoskeletal dynamics, as a substrate of PTP1B. A trapping mutant of PTP1B binds cortactin at the phosphorylation site Tyr446, the regulation and function of which have not previously been characterized. We show that phosphorylation of cortactin Tyr446 is induced by hyperosmolarity and potentiates apoptotic signaling during prolonged hyperosmotic stress. This study advances the importance of Tyr446 in the regulation of cortactin and provides a potential mechanism to explain the effects of PTP1B on processes including cell adhesion, migration, and tumorigenesis. PMID:18387954
Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.
2015-01-01
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346
Membrane-type matrix metalloproteases as diverse effectors of cancer progression.
Turunen, S Pauliina; Tatti-Bugaeva, Olga; Lehti, Kaisa
2017-11-01
Membrane-type matrix metalloproteases (MT-MMP) are pivotal regulators of cell invasion, growth and survival. Tethered to the cell membranes by a transmembrane domain or GPI-anchor, the six MT-MMPs can exert these functions via cell surface-associated extracellular matrix degradation or proteolytic protein processing, including shedding or release of signaling receptors, adhesion molecules, growth factors and other pericellular proteins. By interactions with signaling scaffold or cytoskeleton, the C-terminal cytoplasmic tail of the transmembrane MT-MMPs further extends their functionality to signaling or structural relay. MT-MMPs are differentially expressed in cancer. The most extensively studied MMP14/MT1-MMP is induced in various cancers along malignant transformation via pathways activated by mutations in tumor suppressors or proto-oncogenes and changes in tumor microenvironment including cellular heterogeneity, extracellular matrix composition, tissue oxygenation, and inflammation. Classically such induction involves transcriptional programs related to epithelial-to-mesenchymal transition. Besides inhibition by endogenous tissue inhibitors, MT-MMP activities are spatially and timely regulated at multiple levels by microtubular vesicular trafficking, dimerization/oligomerization, other interactions and localization in the actin-based invadosomes, in both tumor and the stroma. The functions of MT-MMPs are multifaceted within reciprocal cellular responses in the evolving tumor microenvironment, which poses the importance of these proteases beyond the central function as matrix scissors, and necessitates us to rethink MT-MMPs as dynamic signaling proteases of cancer. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.
Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.
Noda, Mami
2018-01-01
The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.
Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes
Young, Eric; Alper, Hal
2010-01-01
The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964
Principles of Unconventional Myosin Function and Targeting
Hartman, M. Amanda; Finan, Dina; Sivaramakrishnan, Sivaraj; Spudich, James A.
2016-01-01
Unconventional myosins are a superfamily of actin-based motors implicated in diverse cellular processes. In recent years, much progress has been made in describing their biophysical properties, and headway has been made into analyzing their cellular functions. Here, we focus on the principles that guide in vivo motor function and targeting to specific cellular locations. Rather than describe each motor comprehensively, we outline the major themes that emerge from research across the superfamily and use specific examples to illustrate each. In presenting the data in this format, we seek to identify open questions in each field as well as to point out commonalities between them. To advance our understanding of myosins’ roles in vivo, clearly we must identify their cellular cargoes and the protein complexes that regulate motor attachment to fully appreciate their functions on the cellular and developmental levels. PMID:21639800
Protein aggregation in bacteria: the thin boundary between functionality and toxicity.
Bednarska, Natalia G; Schymkowitz, Joost; Rousseau, Frederic; Van Eldere, Johan
2013-09-01
Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and type II diabetes--all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides--all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.
van Dyk, Dewald; Pretorius, Isak S.; Bauer, Florian F.
2005-01-01
The invasive and filamentous growth forms of Saccharomyces cerevisiae are adaptations to specific environmental conditions, under particular conditions of limited nutrient availability. Both growth forms are dependent on the expression of the FLO11 gene, which encodes a cell-wall-associated glycoprotein involved in cellular adhesion. A complex regulatory network consisting of signaling pathways and transcription factors has been associated with the regulation of FLO11. Mss11p has been identified as a transcriptional activator of this gene, and here we present an extensive genetic analysis to identify functional relationships between Mss11p and other FLO11 regulators. The data show that Mss11p is absolutely required for the activation of FLO11 by most proteins that have previously been shown to affect FLO11 expression, including the signaling proteins Ras2p, Kss1p, and Tpk2p, the activators Tec1p, Flo8p, and Phd1p, and the repressors Nrg1p, Nrg2p, Sok2p, and Sfl1p. The genetic evidence furthermore suggests that Mss11p activity is not dependent on the presence of any of the above-mentioned factors and that the protein also regulates other genes involved in cellular adhesion phenotypes. Taken together, the data strongly suggest a central role for Mss11p in the regulatory network controlling FLO11 expression, invasive growth, and pseudohyphal differentiation. PMID:15466424
Programming of respiratory health in childhood: influence of outdoor air pollution.
Wright, Rosalind J; Brunst, Kelly J
2013-04-01
This overview highlights recent experimental and epidemiological evidence for the programming effects of outdoor air pollution exposures during early development on lung function and chronic respiratory disorders, such as asthma and related allergic disorders. Air pollutants may impact anatomy and/or physiological functioning of the lung and interrelated systems. Programming effects may result from pollutant-induced shifts in a number of molecular, cellular, and physiological states and their interacting systems. Specific key regulatory systems susceptible to programming may influence lung development and vulnerability to respiratory diseases, including both central and peripheral components of neuroendocrine pathways and autonomic nervous system (ANS) functioning which, in turn, influence the immune system. Starting in utero, environmental factors, including air pollutants, may permanently organize these systems toward trajectories of enhanced pediatric (e.g., asthma, allergy) as well as adult disease risk (e.g., chronic obstructive pulmonary disease). Evidence supports a central role of oxidative stress in the toxic effects of air pollution. Additional research suggests xenobiotic metabolism and subcellular components, such as mitochondria are targets of ambient air pollution and play a role in asthma and allergy programming. Mechanisms operating at the level of the placenta are being elucidated. Epigenetic mechanisms may be at the roots of adaptive developmental programming. Optimal coordinated functioning of many complex processes and their networks of interaction are necessary for normal lung development and the maintenance of respiratory health. Outdoor air pollution may play an important role in early programming of respiratory health and is potentially amenable to intervention.
Haynes, Lia M.; Anderson, Larry J.
2017-01-01
Respiratory Syncytial Virus (RSV) infects respiratory epithelial cells and deregulates host gene expression by many mechanisms including expression of RSV G protein (RSV G). RSV G protein encodes a central conserved region (CCR) containing a CX3C motif that functions as a fractalkine mimic. Disruption of the CX3C motif (a.a. 182–186) located in the CCR of the G protein has been shown to affect G protein function in vitro and the severity of RSV disease pathogenesis in vivo. We show that infection of polarized Calu3 respiratory cells with recombinant RSV having point mutations in Cys173 and 176 (C173/176S) (rA2-GC12), or Cys186 (C186S) (rA2-GC4) is associated with a decline in the integrity of polarized Calu-3 cultures and decreased virus production. This is accompanied with downregulation of miRNAs let-7f and miR-24 and upregulation of interferon lambda (IFNλ), a primary antiviral cytokine for RSV in rA2-GC12/rA2-GC4 infected cells. These results suggest that residues in the cysteine noose region of RSV G protein can modulate IFN λ expression accompanied by downregulation of miRNAs, and are important for RSV G protein function and targeting. PMID:28671606
Bakre, Abhijeet A; Harcourt, Jennifer L; Haynes, Lia M; Anderson, Larry J; Tripp, Ralph A
2017-07-03
Respiratory Syncytial Virus (RSV) infects respiratory epithelial cells and deregulates host gene expression by many mechanisms including expression of RSV G protein (RSV G). RSV G protein encodes a central conserved region (CCR) containing a CX3C motif that functions as a fractalkine mimic. Disruption of the CX3C motif (a.a. 182-186) located in the CCR of the G protein has been shown to affect G protein function in vitro and the severity of RSV disease pathogenesis in vivo. We show that infection of polarized Calu3 respiratory cells with recombinant RSV having point mutations in Cys173 and 176 (C173/176S) (rA2-GC12), or Cys186 (C186S) (rA2-GC4) is associated with a decline in the integrity of polarized Calu-3 cultures and decreased virus production. This is accompanied with downregulation of miRNAs let-7f and miR-24 and upregulation of interferon lambda (IFNλ), a primary antiviral cytokine for RSV in rA2-GC12/rA2-GC4 infected cells. These results suggest that residues in the cysteine noose region of RSV G protein can modulate IFN λ expression accompanied by downregulation of miRNAs, and are important for RSV G protein function and targeting.
Epigenetic regulation of memory formation and maintenance
Zovkic, Iva B.; Guzman-Karlsson, Mikael C.; Sweatt, J. David
2013-01-01
Understanding the cellular and molecular mechanisms underlying the formation and maintenance of memories is a central goal of the neuroscience community. It is well regarded that an organism's ability to lastingly adapt its behavior in response to a transient environmental stimulus relies on the central nervous system's capability for structural and functional plasticity. This plasticity is dependent on a well-regulated program of neurotransmitter release, post-synaptic receptor activation, intracellular signaling cascades, gene transcription, and subsequent protein synthesis. In the last decade, epigenetic markers like DNA methylation and post-translational modifications of histone tails have emerged as important regulators of the memory process. Their ability to regulate gene transcription dynamically in response to neuronal activation supports the consolidation of long-term memory. Furthermore, the persistent and self-propagating nature of these mechanisms, particularly DNA methylation, suggests a molecular mechanism for memory maintenance. In this review, we will examine the evidence that supports a role of epigenetic mechanisms in learning and memory. In doing so, we hope to emphasize (1) the widespread involvement of these mechanisms across different behavioral paradigms and distinct brain regions, (2) the temporal and genetic specificity of these mechanisms in response to upstream signaling cascades, and (3) the functional outcome these mechanisms may have on structural and functional plasticity. Finally, we consider the future directions of neuroepigenetic research as it relates to neuronal storage of information. PMID:23322554
Death receptor Fas (CD95) signaling in the central nervous system: tuning neuroplasticity?
Reich, Arno; Spering, Christopher; Schulz, Jörg B
2008-09-01
For over a decade, neuroscientific research has focused on processes of apoptosis and its contribution to the pathophysiology of neurological diseases. In the central nervous system, the degree of intrinsic mitochondrial-mediated apoptotic signaling expresses a cell's individual metabolic stress, whereas activation of the extrinsic death receptor-induced cascade is regarded as a sign of imbalanced cellular networks. Under physiological conditions, most neurons possess death receptors without being sensitive to receptor-mediated apoptosis. This paradox raises two questions: what is the evolutionary advantage of expressing potentially harmful proteins? How is their signaling controlled? This review summarizes the functional relevance of FasL-Fas signaling--a quintessential death ligand/receptor system--in different neurological disease models ranging from traumatic, inflammatory and ischemic to neurodegenerative processes. Furthermore, it outlines alternative non-apoptotic Fas signaling, shedding new light on its neuroplastic capacity. Finally, receptor-proximal regulatory proteins are introduced and identified as potential protagonists of disease-modifying neurological therapies.
Nam, Hyun-Jun; Kim, Inhae; Bowie, James U.; Kim, Sanguk
2015-01-01
A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms. PMID:25923201
Crystal Structure of a Coiled-Coil Domain from Human ROCK I
Tu, Daqi; Li, Yiqun; Song, Hyun Kyu; Toms, Angela V.; Gould, Christopher J.; Ficarro, Scott B.; Marto, Jarrod A.; Goode, Bruce L.; Eck, Michael J.
2011-01-01
The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK), participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535–700). The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620) are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation. PMID:21445309
Role of antibody in recovery from experimental rabies. I. Effect of depletion of B and T cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A.; Morse, H.C. III; Winkelstein, J.
1978-07-01
The avirulent high egg passage (HEP) strain of rabies virus produces an inapparent infection limited to the central nervous system (CNS) in intracerebrally inoculated adult mice. Heavy chain isotype (anti-..mu.. antiserum) immunosuppression potentiates the infection, with a mortality of about 60% and with elevated virus titers in the brain. Anti-..mu..-treated mice fail to raise antibody responses to rabies virus although their T cell function is normal when measured by the concanavalin A response of splenic lymphocytes. This indicates that the B cell response plays an important role in clearance of rabies virus from the neuroparenchyma. Treatment with cyclophosphamide or bymore » adult thymectomy, x-irradiation, and bone marrow reconstitution potentiates HEP infection to a greater extent than does isotype supression. Since these suppressive techniques impair both T and B lymphocyte responses, the data suggest that cellular immune mechanisms may also contribute to host defenses against this central nervous system (CNS) virus infection.« less
Synaptogenesis in the CNS: An Odyssey from Wiring Together to Firing Together
Munno, David W; Syed, Naweed I
2003-01-01
To acquire a better comprehension of nervous system function, it is imperative to understand how synapses are assembled during development and subsequently altered throughout life. Despite recent advances in the fields of neurodevelopment and synaptic plasticity, relatively little is known about the mechanisms that guide synapse formation in the central nervous system (CNS). Although many structural components of the synaptic machinery are pre-assembled prior to the arrival of growth cones at the site of their potential targets, innumerable changes, central to the proper wiring of the brain, must subsequently take place through contact-mediated cell-cell communications. Identification of such signalling molecules and a characterization of various events underlying synaptogenesis are pivotal to our understanding of how a brain cell completes its odyssey from ‘wiring together to firing together’. Here we attempt to provide a comprehensive overview that pertains directly to the cellular and molecular mechanisms of selection, formation and refinement of synapses during the development of the CNS in both vertebrates and invertebrates. PMID:12897180
Zaborowska, Justyna; Isa, Nur F.
2015-01-01
Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P‐TEFb could be effective anti‐viral agents. PMID:27398404
The Influence of Nicotinamide on Health and Disease in the Central Nervous System
Fricker, Rosemary A; Green, Emma L; Jenkins, Stuart I; Griffin, Síle M
2018-01-01
Nicotinamide, the amide form of vitamin B3 (niacin), has long been associated with neuronal development, survival, and function in the central nervous system (CNS), being implicated in both neuronal death and neuroprotection. Here, we summarise a body of research investigating the role of nicotinamide in neuronal health within the CNS, with a focus on studies that have shown a neuroprotective effect. Nicotinamide appears to play a role in protecting neurons from traumatic injury, ischaemia, and stroke, as well as being implicated in 3 key neurodegenerative conditions: Alzheimer’s, Parkinson’s, and Huntington’s diseases. A key factor is the bioavailability of nicotinamide, with low concentrations leading to neurological deficits and dementia and high levels potentially causing neurotoxicity. Finally, nicotinamide’s potential mechanisms of action are discussed, including the general maintenance of cellular energy levels and the more specific inhibition of molecules such as the nicotinamide adenine dinucleotide-dependent deacetylase, sirtuin 1 (SIRT1). PMID:29844677
Santos, Laura M.; Mattiace, Linda A.; Costa, Manoel L.; Ferreira, Luciano C.; Benabou, Kelly; Kim, Ana H.; Abrahams, John; Bennett, Michael V. L.; Rozental, Renato
2012-01-01
Spreading depression (SD), a slow diffusion-mediated self-sustained wave of depolarization that severely disrupts neuronal function, has been implicated as a cause of cellular injury in a number of central nervous system pathologies, including blind spots in the retina. Here we show that in the hypoglycemic chicken retina, spontaneous episodes of SD can occur, resulting in irreversible punctate lesions in the macula, the region of highest visual acuity in the central region of the retina. These lesions in turn can act as sites of origin for secondary self-sustained reentrant spiral waves of SD that progressively enlarge the lesions. Furthermore, we show that the degeneration of the macula under hypoglycemic conditions can be prevented by blocking reentrant spiral SDs or by blocking caspases. The observation that spontaneous formation of reentrant spiral SD waves leads to the development of progressive retinal lesions under conditions of hypoglycemia establishes a potential role of SD in initiation and progression of macular degeneration, one of the leading causes of visual disability worldwide. PMID:22308470
Chen, Xubo; Zhao, Xueyan; Cai, Hua; Sun, Haiying; Hu, Yujuan; Huang, Xiang; Kong, Wen; Kong, Weijia
2017-08-01
Age-related dysfunction of the central auditory system, known as central presbycusis, is characterized by defects in speech perception and sound localization. It is important to determine the pathogenesis of central presbycusis in order to explore a feasible and effective intervention method. Recent work has provided fascinating insight into the beneficial function of H 2 S on oxidative stress and stress-related disease. In this study, we investigated the pathogenesis of central presbycusis and tried to explore the mechanism of H 2 S action on different aspects of aging by utilizing a mimetic aging rat and senescent cellular model. Our results indicate that NaHS decreased oxidative stress and apoptosis levels in an aging model via CaMKKβ and PI3K/AKT signaling pathways. Moreover, we found that NaHS restored the decreased activity of antioxidants such as GSH, SOD and CAT in the aging model in vivo and in vitro by regulating CaMKKβ and PI3K/AKT. Mitochondria function was preserved by NaHS, as indicated by the following: DNA POLG and OGG-1, the base excision repair enzymes in mitochondrial, were upregulated; OXPHOS activity was downregulated; mitochondrial membrane potential was restored; ATP production was increased; and mtDNA damage, indicated by the common deletion (CD), declined. These effects were also achieved by activating CaMKKβ/AMPK and PI3K/AKT signaling pathways. Lastly, protein homeostasis, indicated by HSP90 alpha, was strengthened by NaHS via CaMKKβ and PI3K/AKT. Our findings demonstrate that the ability to resist oxidative stress and mitochondria function are both decreased as aging developed; however, NaHS, a novel free radical scavenger and mitochondrial protective agent, precludes the process of oxidative damage by activating CaMKKβ and PI3K/AKT. This study might provide a therapeutic target for aging and age-related disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Kang, Seung-Kyun; Park, Gayoung; Kim, Kyungmin; Hwang, Suk-Won; Cheng, Huanyu; Shin, Jiho; Chung, Sangjin; Kim, Minjin; Yin, Lan; Lee, Jeong Chul; Lee, Kyung-Mi; Rogers, John A
2015-05-06
Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.
In vivo imaging of the neurovascular unit in CNS disease
Merlini, Mario; Davalos, Dimitrios; Akassoglou, Katerina
2014-01-01
The neurovascular unit—comprised of glia, pericytes, neurons and cerebrovasculature—is a dynamic interface that ensures physiological central nervous system (CNS) functioning. In disease dynamic remodeling of the neurovascular interface triggers a cascade of responses that determine the extent of CNS degeneration and repair. The dynamics of these processes can be adequately captured by imaging in vivo, which allows the study of cellular responses to environmental stimuli and cell-cell interactions in the living brain in real time. This perspective focuses on intravital imaging studies of the neurovascular unit in stroke, multiple sclerosis (MS) and Alzheimer disease (AD) models and discusses their potential for identifying novel therapeutic targets. PMID:25197615
Scaffolding protein RanBPM and its interactions in diverse signaling pathways in health and disease.
Das, Soumyadip; Haq, Saba; Ramakrishna, Suresh
2018-04-01
Ran-binding protein in the microtubule-organizing center (RanBPM) is an evolutionarily conserved, nucleocytoplasmic scaffolding protein involved in various cellular processes and several signal transduction pathways. RanBPM has a crucial role in mediating disease pathology by interacting with diverse proteins to regulate their functions. Previously, we compiled diverse cellular functions of RanBPM. Since then the functions of RanBPM have increased exponentially. In this article, we have updated the functions of RanBPM through its manifold interactions that have been investigated to date, according to their roles in protein stability, transcriptional activity, cellular development, neurobiology, and the cell cycle. Our review provides a complete guide on RanBPM interactors, the physiological role of RanBPM in cellular functions, and potential applications in disease therapeutics.
MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells.
Jones, Russell G; Pearce, Edward J
2017-05-16
Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. Copyright © 2017. Published by Elsevier Inc.
Late-onset of spinal neurodegeneration in knock-in mice expressing a mutant BiP.
Jin, Hisayo; Mimura, Naoya; Kashio, Makiko; Koseki, Haruhiko; Aoe, Tomohiko
2014-01-01
Most human neurodegenerative diseases are sporadic, and appear later in life. While the underlying mechanisms of the progression of those diseases are still unclear, investigations into the familial forms of comparable diseases suggest that endoplasmic reticulum (ER) stress is involved in the pathogenesis. Binding immunoglobulin protein (BiP) is an ER chaperone that is central to ER function. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence in order to evaluate the effect of a functional defect in an ER chaperone in multi-cellular organisms. Here we report that heterozygous mutant BiP mice revealed motor disabilities in aging. We found a degeneration of some motoneurons in the spinal cord accompanied by accumulations of ubiquitinated proteins. The defect in retrieval of BiP by the KDEL receptor leads to impaired activities in quality control and autophagy, suggesting that functional defects in the ER chaperones may contribute to the late onset of neurodegenerative diseases.
ROCK in CNS: Different Roles of Isoforms and Therapeutic Target for Neurodegenerative Disorders.
Chong, Cheong-Meng; Ai, Nana; Lee, Simon Ming-Yuen
2017-01-01
Rho-associated protein kinase (ROCK) is a serine-threonine kinase originally identified as a crucial regulator of actin cytoskeleton. Recent studies have defined new functions of ROCK as a critical component of diverse signaling pathways in neurons. In addition, inhibition of ROCK causes several biological events such as increase of neurite outgrowth, axonal regeneration, and activation of prosurvival Akt. Thus, it has attracted scientist's strong attentions and considered ROCK as a promising therapeutic target for the treatment of neurodegenerative disorders including Alzheimer disease, Parkinson's disease, Huntington';s disease, multiple sclerosis, and amyotrophic lateral sclerosis. However, ROCK has two highly homologous isoforms, ROCK1 and ROCK2. Accumulated evidences indicate that ROCK1 and ROCK2 might involve in distinct cellular functions in central nervous system (CNS) and neurodegenerative processes. This review summarizes recent updates regarding ROCK isoformspecific functions in CNS and the progress of ROCK inhibitors in preclinical studies for neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Functional network inference of the suprachiasmatic nucleus
Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.
2016-01-01
In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure. PMID:27044085
Mechanisms of dendritic mRNA transport and its role in synaptic tagging
Doyle, Michael; Kiebler, Michael A
2011-01-01
The localization of RNAs critically contributes to many important cellular processes in an organism, such as the establishment of polarity, asymmetric division and migration during development. Moreover, in the central nervous system, the local translation of mRNAs is thought to induce plastic changes that occur at synapses triggered by learning and memory. Here, we will critically review the physiological functions of well-established dendritically localized mRNAs and their associated factors, which together form ribonucleoprotein particles (RNPs). Second, we will discuss the life of a localized transcript from transcription in the nucleus to translation at the synapse and introduce the concept of the ‘RNA signature' that is characteristic for each transcript. Finally, we present the ‘sushi belt model' of how localized RNAs within neuronal RNPs may dynamically patrol multiple synapses rather than being anchored at a single synapse. This new model integrates our current understanding of synaptic function ranging from synaptic tagging and capture to functional and structural reorganization of the synapse upon learning and memory. PMID:21878995
HIF-2α is essential for carotid body development and function
Cowburn, Andrew S; Torres-Torrelo, Hortensia; Ortega-Sáenz, Patricia; López-Barneo, José
2018-01-01
Mammalian adaptation to oxygen flux occurs at many levels, from shifts in cellular metabolism to physiological adaptations facilitated by the sympathetic nervous system and carotid body (CB). Interactions between differing forms of adaptive response to hypoxia, including transcriptional responses orchestrated by the Hypoxia Inducible transcription Factors (HIFs), are complex and clearly synergistic. We show here that there is an absolute developmental requirement for HIF-2α, one of the HIF isoforms, for growth and survival of oxygen sensitive glomus cells of the carotid body. The loss of these cells renders mice incapable of ventilatory responses to hypoxia, and this has striking effects on processes as diverse as arterial pressure regulation, exercise performance, and glucose homeostasis. We show that the expansion of the glomus cells is correlated with mTORC1 activation, and is functionally inhibited by rapamycin treatment. These findings demonstrate the central role played by HIF-2α in carotid body development, growth and function. PMID:29671738
Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks
NASA Astrophysics Data System (ADS)
Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy
2014-06-01
Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.
Regulation of the Cardiovascular System by Histamine.
Hattori, Yuichi; Hattori, Kohshi; Matsuda, Naoyuki
2017-01-01
Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H 1 - and H 2 -receptors has become recognized adequately. Besides the recognized H 1 - and H 2 -receptor-mediated cardiovascular responses, novel roles of H 3 - and H 4 -receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H 3 - and H 4 -receptors, their potential mechanisms of action, and their pathological significance.
Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; Meilleur, Flora; Mattos, Carla
2015-01-01
RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated γ-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases. PMID:26515069
Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; ...
2015-10-29
RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated gamma-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the startmore » of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. As a result, the neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases.« less
Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function.
Fleshner, M; Johnson, J D
2005-08-01
Exposure to acute physical and/or psychological stressors induces a cascade of physiological changes collectively termed the stress response. The stress response is demonstrable at the behavioural, neural, endocrine and cellular levels. Stimulation of the stress response functions to improve an organism's chance of survival during acute stressor challenge. The current review focuses on one ubiquitous cellular stress response, up-regulation of heat shock protein 72 (Hsp72). Although a great deal is known about the function of intra-cellular Hsp72 during exposure to acute stressors, little is understood about the potential function of endogenous extra-cellular Hsp72 (eHsp72). The current review will develop the hypothesis that eHsp72 release may be a previously unrecognized feature of the acute stress response and may function as an endogenous 'danger signal' for the immune system. Specifically, it is proposed that exposure to physical or psychological acute stressors stimulate the release of endogenous eHsp72 into the blood via an alpha1-adrenergic receptor-mediated mechanism and that elevated eHsp72 functions to facilitate innate immunity in the presence of bacterial challenge.
Sule, Preeti; Horne, Shelley M.; Logue, Catherine M.; Prüß, Birgit M.
2011-01-01
To understand the continuous problems that Escherichia coli O157:H7 causes as food pathogen, this study assessed global gene regulation in bacteria growing on meat. Since FlhD/FlhC of E. coli K-12 laboratory strains was previously established as a major control point in transducing signals from the environment to several cellular processes, this study compared the expression pattern of an E. coli O157:H7 parent strain to that of its isogenic flhC mutant. This was done with bacteria that had been grown on meat. Microarray experiments revealed 287 putative targets of FlhC. Real-time PCR was performed as an alternative estimate of transcription and confirmed microarray data for 13 out of 15 genes tested (87%). The confirmed genes are representative of cellular functions, such as central metabolism, cell division, biofilm formation, and pathogenicity. An additional 13 genes from the same cellular functions that had not been hypothesized as being regulated by FlhC by the microarray experiment were tested with real-time PCR and also exhibited higher expression levels in the flhC mutant than in the parent strain. Physiological experiments were performed and confirmed that FlhC reduced the cell division rate, the amount of biofilm biomass, and pathogenicity in a chicken embryo lethality model. Altogether, this study provides valuable insight into the complex regulatory network of the pathogen that enables its survival under various environmental conditions. This information may be used to develop strategies that could be used to reduce the number of cells or pathogenicity of E. coli O157:H7 on meat by interfering with the signal transduction pathways. PMID:21498760
Clavagnier, Simon; Dumoulin, Serge O; Hess, Robert F
2015-11-04
The neural basis of amblyopia is a matter of debate. The following possibilities have been suggested: loss of foveal cells, reduced cortical magnification, loss of spatial resolution of foveal cells, and topographical disarray in the cellular map. To resolve this we undertook a population receptive field (pRF) functional magnetic resonance imaging analysis in the central field in humans with moderate-to-severe amblyopia. We measured the relationship between averaged pRF size and retinal eccentricity in retinotopic visual areas. Results showed that cortical magnification is normal in the foveal field of strabismic amblyopes. However, the pRF sizes are enlarged for the amblyopic eye. We speculate that the pRF enlargement reflects loss of cellular resolution or an increased cellular positional disarray within the representation of the amblyopic eye. The neural basis of amblyopia, a visual deficit affecting 3% of the human population, remains a matter of debate. We undertook the first population receptive field functional magnetic resonance imaging analysis in participants with amblyopia and compared the projections from the amblyopic and fellow normal eye in the visual cortex. The projection from the amblyopic eye was found to have a normal cortical magnification factor, enlarged population receptive field sizes, and topographic disorganization in all early visual areas. This is consistent with an explanation of amblyopia as an immature system with a normal complement of cells whose spatial resolution is reduced and whose topographical map is disordered. This bears upon a number of competing theories for the psychophysical defect and affects future treatment therapies. Copyright © 2015 the authors 0270-6474/15/3514740-16$15.00/0.
Imamura, Morikazu; Kato, Nobuko; Okada, Hiroyuki; Yoshioka, Miyako; Iwamaru, Yoshifumi; Shimizu, Yoshihisa; Mohri, Shirou; Yokoyama, Takashi; Murayama, Yuichi
2013-01-01
The central event in prion infection is the conformational conversion of host-encoded cellular prion protein (PrPC) into the pathogenic isoform (PrPSc). Diverse mammalian species possess the cofactors required for in vitro replication of PrPSc by protein-misfolding cyclic amplification (PMCA), but lower organisms, such as bacteria, yeasts, and insects, reportedly lack the essential cofactors. Various cellular components, such as RNA, lipids, and other identified cofactor molecules, are commonly distributed in both eukaryotes and prokaryotes, but the reasons for the absence of cofactor activity in lower organisms remain to be elucidated. Previously, we reported that brain-derived factors were necessary for the in vitro replication of glycosylphosphatidylinositol-anchored baculovirus-derived recombinant PrP (Bac-PrP). Here, we demonstrate that following protease digestion and heat treatment, insect cell lysates had the functional cofactor activity required for Bac-PrP replication by PMCA. Mammalian PrPSc seeds and Bac-PrPSc generated by PMCA using Bac-PrP and insect cell-derived cofactors showed similar pathogenicity and produced very similar lesions in the brains of inoculated mice. These results suggested that the essential cofactors required for the high-fidelity replication of mammalian PrPSc were present in the insect cells but that the cofactor activity was masked or inhibited in the native state. We suggest that not only RNA, but also DNA, are the key components of PMCA, although other cellular factors were necessary for the expression of the cofactor activity of nucleic acids. PMCA using only insect cell-derived substances (iPMCA) was highly useful for the ultrasensitive detection of PrPSc of some prion strains. PMID:24367521
Molecular Mechanisms of Neurodegenerative Diseases Induced by Human Retroviruses: A Review
Irish, Bryan P.; Khan, Zafar K.; Jain, Pooja; Nonnemacher, Michael R.; Pirrone, Vanessa; Rahman, Saifur; Rajagopalan, Nirmala; Suchitra, Joyce B.; Mostoller, Kate; Wigdahl, Brian
2010-01-01
Problem statement Infection with retroviruses such as human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type 1 (HTLV-1) have been shown to lead to neurodegenerative diseases such as HIV-associated dementia (HAD) or neuroAIDS and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), respectively. Approach HIV-1-induced neurologic disease is associated with an influx of HIV-infected monocytic cells across the blood-brain barrier. Following neuroinvasion, HIV-1 and viral proteins, in addition to cellular mediators released from infected and uninfected cells participate in astrocytic and neuronal dysregulation, leading to mild to severe neurocognitive disorders. Results The molecular architecture of viral regulatory components including the Long Terminal Repeat (LTR), genes encoding the viral proteins Tat, Vpr and Nef as well as the envelope gene encoding gp120 and gp41 have been implicated in ‘indirect’ mechanisms of neuronal injury, mechanisms which are likely responsible for the majority of CNS damage induced by HIV-1 infection. The neuropathogenesis of HAM/TSP is linked, in part, with both intra-and extracellular effectors functions of the viral transactivator protein Tax and likely other viral proteins. Tax is traditionally known to localize in the nucleus of infected cells serving as a regulator of both viral and cellular gene expression. Conclusion/Recommendations However, recent evidence has suggested that Tax may also accumulate in the cytoplasm and be released from the infected cell through regulated cellular secretion processes. Once in the extracellular environment, Tax may cause functional alterations in cells of the peripheral blood, lymphoid organs and the central nervous system. These extracellular biological activities of Tax are likely very relevant to the neuropathogenesis of HTLV-1 and represent attractive targets for therapeutic intervention. PMID:20352020
Huang, Yung-Jen; Lee, Kuan H; Grau, James W
2017-02-01
Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABA A agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing. Copyright © 2016 Elsevier Inc. All rights reserved.
The photoreceptive cells of the pineal gland in adult zebrafish (Danio rerio).
Laurà, Rosaria; Magnoli, Domenico; Zichichi, Rosalia; Guerrera, Maria Cristina; De Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino
2012-03-01
The zebrafish pineal gland plays a fundamental role in the regulation of the circadian rhythm through the melatonin secretion. The pinealocytes, also called photoreceptive cells, are considered the morphofunctional unit of pineal gland. In literature, the anatomical features, the cellular characteristics, and the pinealocytes morphology of zebrafish pineal gland have not been previously described in detail. Therefore, this study was undertaken to analyze the structure and ultrastructure, as well as the immunohistochemical profile of the zebrafish pineal gland with particular reference to the pinealocytes. Here, we demonstrated, using RT-PCR, immunohistochemistry and transmission electron microscopy, the expression of the mRNA for rhodopsin in the pineal gland of zebrafish, as well as its cellular localization exclusively in the pinealocytes of adult zebrafish. Moreover, the ultrastructural observations demonstrated that the pinealocytes were constituted by an outer segment with numerous lamellar membranes, an inner segment with many mitochondria, and a basal pole with the synapses. Our results taken together demonstrated a central role of zebrafish pinealocytes in the control of pineal gland functions. Copyright © 2011 Wiley Periodicals, Inc.
In silico evidence for sequence-dependent nucleosome sliding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lequieu, Joshua; Schwartz, David C.; de Pablo, Juan J.
Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nudeosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces andmore » the corresponding dynamics of nudeosome repositioning. The mechanism of nudeosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.« less
Structural and Biochemical Studies of ALIX/AlP1 and Its Role in Retrovirus Budding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher,R.; Chung, H.; Zhai, Q.
2007-01-01
ALIX/AIP1 functions in enveloped virus budding, endosomal protein sorting, and many other cellular processes. Retroviruses, including HIV-1, SIV, and EIAV, bind and recruit ALIX through YPXnL late-domain motifs (X = any residue; n = 1-3). Crystal structures reveal that human ALIX is composed of an N-terminal Bro1 domain and a central domain that is composed of two extended three-helix bundles that form elongated arms that fold back into a 'V.'. The structures also reveal conformational flexibility in the arms that suggests that the V domain may act as a flexible hinge in response to ligand binding. YPXnL late domains bindmore » in a conserved hydrophobic pocket on the second arm near the apex of the V, whereas CHMP4/ESCRT-III proteins bind a conserved hydrophobic patch on the Bro1 domain, and both interactions are required for virus budding. ALIX therefore serves as a flexible, extended scaffold that connects retroviral Gag proteins to ESCRT-III and other cellular-budding machinery.« less
NASA Technical Reports Server (NTRS)
2008-01-01
Regulatory control in biological systems is exerted at all levels within the central dogma of biology. Metabolites are the end products of all cellular regulatory processes and reflect the ultimate outcome of potential changes suggested by genomics and proteomics caused by an environmental stimulus or genetic modification. Following on the heels of genomics, transcriptomics, and proteomics, metabolomics has become an inevitable part of complete-system biology because none of the lower "-omics" alone provide direct information about how changes in mRNA or protein are coupled to changes in biological function. The challenges are much greater than those encountered in genomics because of the greater number of metabolites and the greater diversity of their chemical structures and properties. To meet these challenges, much developmental work is needed, including (1) methodologies for unbiased extraction of metabolites and subsequent quantification, (2) algorithms for systematic identification of metabolites, (3) expertise and competency in handling a large amount of information (data set), and (4) integration of metabolomics with other "omics" and data mining (implication of the information). This article reviews the project accomplishments.
Ivakine, Evgueni A.; Lam, Emily; Deurloo, Marielle; Dida, Joana; Zirngibl, Ralph A.
2015-01-01
Abstract Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src thl/thl) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src thl/thl mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I). Src phosphorylation regulates the movement of GTF2I protein (TFII-I) between the nucleus, where it is a transcriptional activator, and the cytoplasm, where it regulates trafficking of transient receptor potential cation channel, subfamily C, member 3 (TRPC3) subunits to the plasma membrane. Here, we demonstrate altered cellular localization of both TFII-I and TRPC3 in the Src mutants, suggesting that disruption of Src can phenocopy behavioral phenotypes observed in WBS through its regulation of TFII-I. PMID:26464974
Principles in redox signaling: from chemistry to functional significance.
Bindoli, Alberto; Rigobello, Maria Pia
2013-05-01
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Plant sphingolipids: Their importance in cellular organization and adaption.
Michaelson, Louise V; Napier, Johnathan A; Molino, Diana; Faure, Jean-Denis
2016-09-01
Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
How the shapes of seeds can influence pathology.
Melki, Ronald
2018-01-01
It is widely accepted that the loss of function of different cellular proteins following their aggregation into highly stable aggregates or the gain of pathologic function of the resulting macromolecular assemblies or both processes are tightly associated to distinct debilitating neurodegenerative diseases such as Alzheimer's, Parkinson's, Creutzfeldt-Jacob, Amyotrophic Lateral Sclerosis and Huntington's diseases. How the aggregation of one given protein leads to distinct diseases is unclear. Here, a structural-molecular explanation based on the ability of proteins such as α-synuclein or tau to form assemblies that differ by their intrinsic architecture, stability, seeding capacity, and surfaces is proposed to account for distinct synucleinopathies and tauopathies. The shape and surfaces of the seeds is proposed to define at the same time their seeding capacity, interactome and tropism for defined neuronal cells within the central nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.
[Energy expenditure at rest and obesity].
Müllerová, D; Matĕjková, D; Rusavý, Z; Müller, L
1998-01-01
Adult human body has to have, because of every day fluctuating energy intake and energy needs, very precious adaptive mechanisms for maintenance of heat homeostasis in the body and nearly stable body weight and body composition, which are optimal for life and reproduction. These short term functioning adaptive mechanisms are called "empty biochemical mechanisms", where chemically bound energy is transformed to heat without work performance. These mechanisms are present on the cellular level (substrates cycles, uncoupling of respiration chain), on the interorgan metabolic level (glycolysis and gluconeogenesis between liver and adipose tissue-glucose-lactate cycle). Central nervous system controls them via many factors; the most important are catecholamines, leptin, insulin, thyroid hormones, cortisol, growth and sex hormones. Neurotransmitters and neuronal net influence energy intake and other behavior. Obesity seems to be associated with the amelioration or overcoming of possibilities of function short-term effective adaptive mechanisms.
Listening to Another Sense: Somatosensory Integration in the Auditory System
Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.
2014-01-01
Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698
A multiplexable TALE-based binary expression system for in vivo cellular interaction studies.
Toegel, Markus; Azzam, Ghows; Lee, Eunice Y; Knapp, David J H F; Tan, Ying; Fa, Ming; Fulga, Tudor A
2017-11-21
Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity
Anastassiadis, Theonie; Deacon, Sean W.; Devarajan, Karthik; Ma, Haiching; Peterson, Jeffrey R.
2011-01-01
Small-molecule protein kinase inhibitors are central tools for elucidating cellular signaling pathways and are promising therapeutic agents. Due to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments utilizing these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we profiled the activity of 178 commercially available kinase inhibitors against a panel of 300 recombinant protein kinases using a functional assay. Quantitative analysis revealed complex and often unexpected kinase-inhibitor interactions, with a wide spectrum of promiscuity. Many off-target interactions occur with seemingly unrelated kinases, revealing how large-scale profiling can be used to identify multi-targeted inhibitors of specific, diverse kinases. The results have significant implications for drug development and provide a resource for selecting compounds to elucidate kinase function and for interpreting the results of experiments that use them. PMID:22037377
Impact of Hypoglycemia on Brain Metabolism During Diabetes.
Rehni, Ashish K; Dave, Kunjan R
2018-04-10
Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.
Reduced Mastication Impairs Memory Function.
Fukushima-Nakayama, Y; Ono, Takehito; Hayashi, M; Inoue, M; Wake, H; Ono, Takashi; Nakashima, T
2017-08-01
Mastication is an indispensable oral function related to physical, mental, and social health throughout life. The elderly tend to have a masticatory dysfunction due to tooth loss and fragility in the masticatory muscles with aging, potentially resulting in impaired cognitive function. Masticatory stimulation has influence on the development of the central nervous system (CNS) as well as the growth of maxillofacial tissue in children. Although the relationship between mastication and cognitive function is potentially important in the growth period, the cellular and molecular mechanisms have not been sufficiently elucidated. Here, we show that the reduced mastication resulted in impaired spatial memory and learning function owing to the morphological change and decreased activity in the hippocampus. We used an in vivo model for reduced masticatory stimuli, in which juvenile mice were fed with powder diet and found that masticatory stimulation during the growth period positively regulated long-term spatial memory to promote cognitive function. The functional linkage between mastication and brain was validated by the decrease in neurons, neurogenesis, neuronal activity, and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. These findings taken together provide in vivo evidence for a functional linkage between mastication and cognitive function in the growth period, suggesting a need for novel therapeutic strategies in masticatory function-related cognitive dysfunction.
del Sol, Antonio; Araúzo-Bravo, Marcos J; Amoros, Dolors; Nussinov, Ruth
2007-01-01
Background Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. Results We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gαs subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. Conclusion Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. PMID:17531094
Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain.
Santoro, Antonietta; Spinelli, Chiara Carmela; Martucciello, Stefania; Nori, Stefania Lucia; Capunzo, Mario; Puca, Annibale Alessandro; Ciaglia, Elena
2018-03-01
Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases. ©2018 Society for Leukocyte Biology.
Mbye, Lamin H; Keles, Eyup; Tao, Luyang; Zhang, Jimmy; Chung, Joonyong; Larvie, Mykol; Koppula, Rajani; Lo, Eng H; Whalen, Michael J
2012-03-01
Loss of plasma membrane integrity is a feature of acute cellular injury/death in vitro and in vivo. Plasmalemma-resealing agents are protective in acute central nervous system injury models, but their ability to reseal cell membranes in vivo has not been reported. Using a mouse controlled cortical impact (CCI) model, we found that propidium iodide-positive (PI+) cells pulse labeled at 6, 24, or 48 hours maintained a degenerative phenotype and disappeared from the injured brain by 7 days, suggesting that plasmalemma permeability is a biomarker of fatal cellular injury after CCI. Intravenous or intracerebroventricular administration of Kollidon VA64, poloxamer P188, or polyethylene glycol 8000 resealed injured cell membranes in vivo (P<0.05 versus vehicle or poloxamer P407). Kollidon VA64 (1 mmol/L, 500 μL) administered intravenously to mice 1 hour after CCI significantly reduced acute cellular degeneration, chronic brain tissue damage, brain edema, blood-brain barrier damage, and postinjury motor deficits (all P<0.05 versus vehicle). However, VA64 did not rescue pulse-labeled PI+ cells from eventual demise. We conclude that PI permeability within 48 hours of CCI is a biomarker of eventual cell death/loss. Kollidon VA64 reduces secondary damage after CCI by mechanisms other than or in addition to resealing permeable cells.
The sigma-1 receptor: a regulator of cancer cell electrical plasticity?
Crottès, David; Guizouarn, Hélène; Martin, Patrick; Borgese, Franck; Soriani, Olivier
2013-01-01
Originally mistaken as an opioid receptor, the sigma-1 receptor (Sig1R) is a ubiquitous membrane protein that has been involved in many cellular processes. While the precise function of Sig1R has long remained mysterious, recent studies have shed light on its role and the molecular mechanisms triggered. Sig1R is in fact a stress-activated chaperone mainly associated with the ER-mitochondria interface that can regulate cell survival through the control of calcium homeostasis. Sig1R functionally regulates ion channels belonging to various molecular families and it has thus been involved in neuronal plasticity and central nervous system diseases. Interestingly, Sig1R is frequently expressed in tumors but its function in cancer has not been yet clarified. In this review, we discuss the current understanding of Sig1R. We suggest herein that Sig1R shapes cancer cell electrical signature upon environmental conditions. Thus, Sig1R may be used as a novel therapeutic target to specifically abrogate pro-invasive functions of ion channels in cancer tissue. PMID:23882221
Old Maids: Aging and Its Impact on Microglia Function
Koellhoffer, Edward C.; McCullough, Louise D.; Ritzel, Rodney M.
2017-01-01
Microglia are highly active and vigilant housekeepers of the central nervous system that function to promote neuronal growth and activity. With advanced age, however, dysregulated inflammatory signaling and defects in phagocytosis impede their ability to perform the most essential of homeostatic functions, including immune surveillance and debris clearance. Microglial activation is one of the hallmarks of the aging brain and coincides with age-related neurodegeneration and cognitive decline. Age-associated microglial dysfunction leads to cellular senescence and can profoundly alter the response to sterile injuries and immune diseases, often resulting in maladaptive responses, chronic inflammation, and worsened outcomes after injury. Our knowledge of microglia aging and the factors that regulate age-related microglial dysfunction remain limited, as the majority of pre-clinical studies are performed in young animals, and human brain samples are difficult to obtain quickly post-mortem or in large numbers. This review outlines the impact of normal aging on microglial function, highlights the potential mechanisms underlying age-related changes in microglia, and discusses how aging can shape the recovery process following injury. PMID:28379162
Arends, Jan; Griego, Marcena; Thomanek, Nikolas; Lindemann, Claudia; Kutscher, Blanka; Meyer, Helmut E; Narberhaus, Franz
2018-04-30
Controlling the cellular abundance and proper function of proteins by proteolysis is a universal process in all living organisms. In Escherichia coli, the ATP-dependent Lon protease is crucial for protein quality control and regulatory processes. To understand how diverse substrates are selected and degraded, unbiased global approaches are needed. We employed a quantitative Super-SILAC mass spectrometry approach and compared the proteomes of a lon mutant and a strain producing the protease to discover Lon-dependent physiological functions. To identify Lon substrates, we took advantage of a Lon trapping variant, which is able to translocate substrates but unable to degrade them. Lon-associated proteins were identified by label-free LC-MS/MS. The combination of both approaches revealed a total of 14 novel Lon substrates. Besides the identification of known pathways affected by Lon, for example the superoxide-stress response, our cumulative data suggests previously unrecognized fundamental functions of Lon in sulfur assimilation, nucleotide biosynthesis, amino acid and central energy metabolism. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Gene, Immune and Cellular Responses to Single and Combined Space Flight Conditions-B (TripleLux-B):
2015-03-31
ISS043E070945 (03/31/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti, Expedition 43 flight engineer aboard the International Space Station, is seen working on a science experiment that includes photographic documentation of Cellular Responses to Single and Combined Space Flight Conditions. Some effects of the space environment level appear to act at the cellular level and it is important to understand the underlying mechanisms of these effects. This science project uses invertebrate hemocytes to focus on two aspects of cellular function which may have medical importance. The synergy between the effects of the space radiation environment and microgravity on cellular function is the goal of this experiment along with studying the impairment of immune functions under spaceflight conditions.
The Central Nervous Connections Involved in the Vomiting Reflex
NASA Technical Reports Server (NTRS)
Brizzee, K. R.; Mehler, W. R.
1986-01-01
The vomiting reflex may be elicited by a number of different types or classes of stimuli involving many varieties of receptor structures and considerable diversity in afferent pathways and central connections. Central relay or mediating structures thus may vary widely according to the type of initial emetic stimulus. The emetic circuits which have been most completely delineated to date are probably those in which the Chemoreceptor Trigger Zone (CTZ) in the Area Postrema (AP) functions as a key mediating structure. Even in this system, however, there are large gaps in our knowledge of the nerve tracts and central nervous connections involved. Knowledge of most other emetic circuits subserving the emetic reflex resulting from many diverse types of stimuli such, for example, as emotional stress (e.g. psychogenic vomiting, Wruble et al. 1982), pain (e.g. testicular trauma), and chemical or mechanical irritation of the gastrointestinal tract or urinary tract is quite incomplete at this time, thus precluding any very adequate description of their central connections at present. One physiological system, however, which has received considerable attention recently in relation to the vomiting reflex elicited by motion stimuli is the vestibular system. Due to the paucity of data on central nervous connections of several or the non-vestibular types of emetic stimuli cited above, we will devote most of our attention in this brief review to the central connections of the vestibular system which seem likely to be involved in the vomiting response to motion stimuli. However, the latter part of the review will be concerned with the concept of the reticular vomiting centre in relation to the ParviCellular Reticular Formation (PCRF), and will thus probably pertain to all of the many classes of emetic stimuli since it will address the question of the final common emetic pathway.
The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements
Uhlirova, Hana; Kılıç, Kıvılcım; Tian, Peifang; Sakadžić, Sava; Thunemann, Martin; Desjardins, Michèle; Saisan, Payam A.; Nizar, Krystal; Yaseen, Mohammad A.; Hagler, Donald J.; Vandenberghe, Matthieu; Djurovic, Srdjan; Andreassen, Ole A.; Silva, Gabriel A.; Masliah, Eliezer; Vinogradov, Sergei; Buxton, Richard B.; Einevoll, Gaute T.; Boas, David A.; Dale, Anders M.; Devor, Anna
2016-01-01
The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed ‘bottom-up’ forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the ‘ground truth’ for the development of new tools for tackling the inverse problem—estimation of neuronal activity from multimodal non-invasive imaging data. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574309
Bierhaus, A; Nawroth, P P
2009-11-01
The pattern recognition receptor or receptor for AGE (RAGE) is constitutionally expressed in a few cell types only. However in almost all cells studied so far it is induced by reactions known to initiate inflammation. Its biological activity seems to be mainly dependent on the presence of its various ligands, including AGE, S100-calcium binding protein/calgranulins, high-mobility group protein 1, amyloid-beta-peptides and the family of beta-sheet fibrils, all known to be elevated in chronic metabolic, malignant and inflammatory diseases. The RAGE pathway interacts with cytokine-, lipopolysaccharide-, oxidised LDL- and glucose-triggered cellular reactions by turning a short-lasting inflammatory response into a sustained change of cellular function driven by perpetuated activation of the proinflammatory transcription factor, nuclear factor kappa-B. RAGE-mediated persistent cell activation is of pivotal importance in various experimental and clinical settings, including diabetes and its complications, neurodegeneration, ageing, tumour growth, and autoimmune and infectious inflammatory disease. Due to RAGE's central role in maintaining perpetuated cell activation, various therapeutic attempts to block RAGE or its ligands are currently under investigation. Despite broad experimental evidence for the role of RAGE in chronic disease, knowledge of its physiological function is still missing, limiting predictions about safety of long-term inhibition of RAGE x ligand interaction in chronic diseases.
Stamatkin, Christopher; Ratermann, Kelley L; Overley, Colleen W; Black, Esther P
2015-01-01
Deregulation of the phosphatidylinositol 3-kinase (PI3K) pathway is central to many human malignancies while normal cell proliferation requires pathway functionality. Although inhibitors of the PI3K pathway are in clinical trials or approved for therapy, an understanding of the functional activities of pathway members in specific malignancies is needed. In lung cancers, the PI3K pathway is often aberrantly activated by mutation of genes encoding EGFR, KRAS, and PIK3CA proteins. We sought to understand whether class IA PI3K enzymes represent rational therapeutic targets in cells of non-squamous lung cancers by exploring pharmacological and genetic inhibitors of PI3K enzymes in a non-small cell lung cancer (NSCLC) cell line system. We found that class IA PI3K enzymes were expressed in all cell lines tested, but treatment of NSCLC lines with isoform-selective inhibitors (A66, TGX-221, CAL-101 and IC488743) had little effect on cell proliferation or prolonged inhibition of AKT activity. Inhibitory pharmacokinetic and pharmacodynamic responses were observed using these agents at non-isoform selective concentrations and with the pan-class I (ZSTK474) agent. Response to pharmacological inhibition suggested that PI3K isoforms may functionally compensate for one another thus limiting efficacy of single agent treatment. However, combination of ZSTK474 and an EGFR inhibitor (erlotinib) in NSCLC resistant to each single agent reduced cellular proliferation. These studies uncovered unanticipated cellular responses to PI3K isoform inhibition in NSCLC that does not correlate with PI3K mutations, suggesting that patients bearing tumors with wildtype EGFR and KRAS are unlikely to benefit from inhibitors of single isoforms but may respond to pan-isoform inhibition.
Lee, Irene; Berdis, Anthony J
2016-01-01
Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.
ORF phage display to identify cellular proteins with different functions.
Li, Wei
2012-09-01
Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.
Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T
2015-12-01
The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
Nietzel, Thomas; Mostertz, Jörg; Hochgräfe, Falko; Schwarzländer, Markus
2017-03-01
Mitochondria are hotspots of cellular redox biochemistry. Respiration as a defining mitochondrial function is made up of a series of electron transfers that are ultimately coupled to maintaining the proton motive force, ATP production and cellular energy supply. The individual reaction steps involved require tight control and flexible regulation to maintain energy and redox balance in the cell under fluctuating demands. Redox regulation by thiol switching has been a long-standing candidate mechanism to support rapid adjustment of mitochondrial protein function at the posttranslational level. Here we review recent advances in our understanding of cysteine thiol switches in the mitochondrial proteome with a focus on their operation in vivo. We assess the conceptual basis for thiol switching in mitochondria and discuss to what extent insights gained from in vitro studies may be valid in vivo, considering thermodynamic, kinetic and structural constraints. We compare functional proteomic approaches that have been used to assess mitochondrial protein thiol switches, including thioredoxin trapping, redox difference gel electrophoresis (redoxDIGE), isotope-coded affinity tag (OxICAT) and iodoacetyl tandem mass tag (iodoTMT) labelling strategies. We discuss conditions that may favour active thiol switching in mitochondrial proteomes in vivo, and appraise recent advances in dissecting their impact using combinations of in vivo redox sensing and quantitative redox proteomics. Finally we focus on four central facets of mitochondrial biology, aging, carbon metabolism, energy coupling and electron transport, exemplifying the current emergence of a mechanistic understanding of mitochondrial regulation by thiol switching in living plants and animals. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Zhang, Yan; Fan, Kai-Ji; Sun, Qiang; Chen, Ai-Zhong; Shen, Wen-Long; Zhao, Zhi-Hu; Zheng, Xiao-Fei; Yang, Xiao
2012-01-01
The transforming growth factor-β (TGF-β) signalling pathway participates in various biological processes. Dysregulation of Smad4, a central cellular transducer of TGF-β signalling, is implicated in a wide range of human diseases and developmental disorders. However, the mechanisms underlying Smad4 dysregulation are not fully understood. Using a functional screening approach based on luciferase reporter assays, we identified 39 microRNAs (miRNAs) as potential regulators of Smad4 from an expression library of 388 human miRNAs. The screening was supported by bioinformatic analysis, as 24 of 39 identified miRNAs were also predicted to target Smad4. MiR-199a, one of the identified miRNAs, was inversely correlated with Smad4 expression in various human cancer cell lines and gastric cancer tissues, and repressed Smad4 expression and blocked canonical TGF-β transcriptional responses in cell lines. These effects were dependent on the presence of a conserved, but not perfect seed paired, miR-199a-binding site in the Smad4 3′-untranslated region (UTR). Overexpression of miR-199a significantly inhibited the ability of TGF-β to induce gastric cancer cell growth arrest and apoptosis in vitro, and promoted anchorage-independent growth in soft agar, suggesting that miR-199a plays an oncogenic role in human gastric tumourigenesis. In conclusion, our functional screening uncovers multiple miRNAs that regulate the cellular responsiveness to TGF-β signalling and reveals important roles of miR-199a in gastric cancer by directly targeting Smad4. PMID:22821565
Bal-Price, Anna; Lein, Pamela J.; Keil, Kimberly P.; Sethi, Sunjay; Shafer, Timothy; Barenys, Marta; Fritsche, Ellen; Sachana, Magdalini; Meek, M.E. (Bette)
2016-01-01
The Adverse Outcome Pathway (AOP) concept has recently been proposed to support a paradigm shift in regulatory toxicology testing and risk assessment. This concept is similar to the Mode of Action (MOA), in that it describes a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis for predicting effects of structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed. A variety of cellular and molecular processes are known to be critical for normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of the principles of MOA and AOPs, examples of potential or putative adverse outcome pathways specific for developmental or adult neurotoxicity are summarized and aspects of their assessment considered. Their possible application in developing mechanistically informed Integrated Approaches to Testing and Assessment (IATA) is also discussed. PMID:27212452
Furuta, Nobumichi; Takeuchi, Hiroki; Amano, Atsuo
2009-11-01
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis.
Furuta, Nobumichi; Takeuchi, Hiroki; Amano, Atsuo
2009-01-01
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis. PMID:19737899
Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo.
Giacci, Marcus K; Bartlett, Carole A; Smith, Nicole M; Iyer, K Swaminathan; Toomey, Lillian M; Jiang, Haibo; Guagliardo, Paul; Kilburn, Matt R; Fitzgerald, Melinda
2018-06-18
Loss of function following injury to the central nervous system is worsened by secondary degeneration of neurons and glia surrounding the injury and initiated by oxidative damage. However, it is not yet known which cellular populations and structures are most vulnerable to oxidative damage in vivo Using Nanoscale secondary ion mass spectrometry (NanoSIMS), oxidative damage was semi-quantified within cellular subpopulations and structures of optic nerve vulnerable to secondary degeneration, following a partial transection of the optic nerve in adult female PVG rats. Simultaneous assessment of cellular subpopulations and structures revealed oligodendroglia as the most vulnerable to DNA oxidation following injury. 5-ethynyl-2'-deoxyuridine (EdU) was used to label cells that proliferated in the first 3 days after injury. Injury led to increases in DNA, protein and lipid damage in OPCs and mature oligodendrocytes at 3 days, regardless of proliferative state, associated with a decline in the numbers of OPCs at 7 days. O4+ pre-oligodendrocytes also exhibited increased lipid peroxidation. Interestingly, EdU+ mature oligodendrocytes derived after injury demonstrated increased early susceptibility to DNA damage and lipid peroxidation. However, EdU- mature oligodendrocytes with high 8OHdG immunoreactivity were more likely to be caspase3+. By day 28, newly derived mature oligodendrocytes had significantly reduced MYRF mRNA indicating that the myelination potential of these cells may be reduced. The proportion of caspase3+ oligodendrocytes remained higher in EdU- cells. Innovative use of NanoSIMS together with traditional immunohistochemistry and in situ hybridisation have enabled the first demonstration of subpopulation specific oligodendroglial vulnerability to oxidative damage, due to secondary degeneration in vivo. SIGNIFICANCE STATEMENT Injury to the central nervous system is characterised by oxidative damage in areas adjacent to the injury. However, the cellular subpopulations and structures most vulnerable to this damage remain to be elucidated. Here we use powerful NanoSIMS techniques to show increased oxidative damage in oligodendroglia and axons and to demonstrate that cells early in the oligodendroglial lineage are the most vulnerable to DNA oxidation. Further immunohistochemical and in situ hybridisation investigation reveals that mature oligodendrocytes derived after injury are more vulnerable to oxidative damage than their counterparts existing at the time of injury and have reduced MYRF mRNA, yet pre-existing oligodendrocytes are more likely to die. Copyright © 2018 the authors.
Garza-Lombó, Carla; Posadas, Yanahi; Quintanar, Liliana; Gonsebatt, María E; Franco, Rodrigo
2018-06-20
Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Schöneich, Stefan; Hedwig, Berthold
2012-01-01
The singing behavior of male crickets allows analyzing a central pattern generator (CPG) that was shaped by sexual selection for reliable production of species-specific communication signals. After localizing the essential ganglia for singing in Gryllus bimaculatus, we now studied the calling song CPG at the cellular level. Fictive singing was initiated by pharmacological brain stimulation. The motor pattern underlying syllables and chirps was recorded as alternating spike bursts of wing-opener and wing-closer motoneurons in a truncated wing nerve; it precisely reflected the natural calling song. During fictive singing, we intracellularly recorded and stained interneurons in thoracic and abdominal ganglia and tested their impact on the song pattern by intracellular current injections. We identified three interneurons of the metathoracic and first unfused abdominal ganglion that rhythmically de- and hyperpolarized in phase with the syllable pattern and spiked strictly before the wing-opener motoneurons. Depolarizing current injection in two of these opener interneurons caused additional rhythmic singing activity, which reliably reset the ongoing chirp rhythm. The closely intermeshing arborizations of the singing interneurons revealed the dorsal midline neuropiles of the metathoracic and three most anterior abdominal neuromeres as the anatomical location of singing pattern generation. In the same neuropiles, we also recorded several closer interneurons that rhythmically hyper- and depolarized in the syllable rhythm and spiked strictly before the wing-closer motoneurons. Some of them received pronounced inhibition at the beginning of each chirp. Hyperpolarizing current injection in the dendrite revealed postinhibitory rebound depolarization as one functional mechanism of central pattern generation in singing crickets. PMID:23170234
Proteome-wide Prediction of Self-interacting Proteins Based on Multiple Properties*
Liu, Zhongyang; Guo, Feifei; Zhang, Jiyang; Wang, Jian; Lu, Liang; Li, Dong; He, Fuchu
2013-01-01
Self-interacting proteins, whose two or more copies can interact with each other, play important roles in cellular functions and the evolution of protein interaction networks (PINs). Knowing whether a protein can self-interact can contribute to and sometimes is crucial for the elucidation of its functions. Previous related research has mainly focused on the structures and functions of specific self-interacting proteins, whereas knowledge on their overall properties is limited. Meanwhile, the two current most common high throughput protein interaction assays have limited ability to detect self-interactions because of biological artifacts and design limitations, whereas the bioinformatic prediction method of self-interacting proteins is lacking. This study aims to systematically study and predict self-interacting proteins from an overall perspective. We find that compared with other proteins the self-interacting proteins in the structural aspect contain more domains; in the evolutionary aspect they tend to be conserved and ancient; in the functional aspect they are significantly enriched with enzyme genes, housekeeping genes, and drug targets, and in the topological aspect tend to occupy important positions in PINs. Furthermore, based on these features, after feature selection, we use logistic regression to integrate six representative features, including Gene Ontology term, domain, paralogous interactor, enzyme, model organism self-interacting protein, and betweenness centrality in the PIN, to develop a proteome-wide prediction model of self-interacting proteins. Using 5-fold cross-validation and an independent test, this model shows good performance. Finally, the prediction model is developed into a user-friendly web service SLIPPER (SeLf-Interacting Protein PrEdictoR). Users may submit a list of proteins, and then SLIPPER will return the probability_scores measuring their possibility to be self-interacting proteins and various related annotation information. This work helps us understand the role self-interacting proteins play in cellular functions from an overall perspective, and the constructed prediction model may contribute to the high throughput finding of self-interacting proteins and provide clues for elucidating their functions. PMID:23422585
Greene, Nicholas D.E.; Copp, Andrew J.
2015-01-01
Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496
Renal Control of Calcium, Phosphate, and Magnesium Homeostasis
Chonchol, Michel; Levi, Moshe
2015-01-01
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933
Leptin and its potential interest in assisted reproduction cycles.
Catteau, A; Caillon, H; Barrière, P; Denis, M G; Masson, D; Fréour, T
2016-04-01
Leptin, an adipose hormone, has been shown to control energy homeostasis and food intake, and exert many actions on female reproductive function. Consequently, this adipokine is a pivotal factor in studies conducted on animal models and humans to decipher the mechanisms behind the infertility often observed in obese women. A systematic PubMed search was conducted on all articles, published up to January 2015 and related to leptin and its actions on energy balance and reproduction, using the following key words: leptin, reproduction, infertility, IVF and controlled ovarian stimulation. The available literature was reviewed in order to provide an overview of the current knowledge on the physiological roles of leptin, its involvement in female reproductive function and its potential interest as a prognostic marker in IVF cycles. Animal and human studies show that leptin communicates nutritional status to the central nervous system and emerging evidence has demonstrated that leptin is involved in the control of reproductive functions by acting both directly on the ovaries and indirectly on the central nervous system. With respect to the clinical use of leptin as a biomarker in IVF cycles, a systematic review of the literature suggested its potential interest as a predictor of IVF outcome, as high serum and/or follicular fluid leptin concentrations have correlated negatively with cycle outcome. However, these preliminary results remain to be confirmed. Leptin regulates energy balance and female reproductive function, mainly through its action on hypothalamic-pituitary-ovarian function, whose molecular and cellular aspects are progressively being deciphered. Preliminary studies evaluating leptin as a biomarker in human IVF seem promising but need further confirmation. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk
2014-10-09
To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accuratemore » comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.« less
Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective
Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein
2018-01-01
Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells. PMID:29670635
Lammerding, Jan
2015-01-01
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203
Neuron-glia metabolic coupling and plasticity.
Magistretti, Pierre J
2006-06-01
The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.
Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury
Camara, Amadou K. S.; Bienengraeber, Martin; Stowe, David F.
2011-01-01
The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury. PMID:21559063
Kim, Mi Seong; Gloor, Gregory B; Bai, Donglin
2013-06-01
GJs (gap junctions) allow direct intercellular communication, and consist of Cxs (connexins). In the mammalian central nervous system, oligodendrocytes express Cx47, Cx32 and Cx29, whereas astrocytes express Cx43, Cx30 and Cx26. Homotypic Cx47/Cx47 GJs couple oligodendrocytes, and heterotypic Cx47/Cx43 channels are the primary GJs at oligodendrocyte/astrocyte junctions. Interestingly, autosomal recessive mutations in the gene GJC2 encoding Cx47 have been linked to a central hypomyelinating disease termed PMLD (Pelizaeus-Merzbacher-like disease). The aim of the present study was to determine the cellular distribution and functional properties of PMLD-associated Cx47 mutants (I46M, G149S, G236R, G236S, M286T and T398I). Expressing GFP (green fluorescent protein)-tagged mutant versions of Cx47 in gap-junction-deficient model cells revealed that these mutants were detected at the cell-cell interface similar to that observed for wild-type Cx47. Furthermore, four of the six mutants showed no electrical coupling in both Cx47/Cx47 and Cx47/Cx43 GJ channels. These results suggest that most of the PMLD-linked Cx47 mutants disrupt Cx47/Cx47 and Cx47/Cx43 GJ function in the glial network, which may play a role in leading to PMLD symptoms.
Huszar, Gabor; Celik-Ozenci, Ciler; Cayli, Sevil; Kovacs, Tamas; Vigue, Lynne; Kovanci, Ertug
2004-01-01
We tested several approaches that can be used to preserve sperm attributes and the objective biochemical markers of sperm maturity and function for assessment in a remote centralized laboratory after overnight shipping of semen samples. Addition of phenyl-methyl-sulfonyl-fluoride (PMSF) to a final concentration of 20 microg/mL semen at 4 degrees C has preserved sperm concentrations and HspA2 isoform ratios, even at room temperature, simulating a shipping delay in moderate ambient temperatures. Regarding the attributes of individual spermatozoa, the patterns of CK-immunocytochemistry (demonstrates cytoplasmic retention in diminished-maturity spermatozoa); aniline blue staining pattern (tests chromatin maturity); sperm shape assessed by both Kruger strict morphology and computer assisted morphometry; and sperm DNA integrity, as tested by DNA nick translation, all remained unchanged. Thus, the PMSF-4 degrees C conditions preserved sperm concentrations and the cytoplasmic and nuclear biomarkers of sperm cellular maturity and function for next-day analysis. This shipping method will facilitate the early detection of subtle changes in semen quality that can affect sperm function, even when there has been no decline in sperm concentrations to signal possible toxic effects. Furthermore, sample preservation will enable investigators to evaluate semen for toxicology studies and for diagnosis of male infertility from remote locations. Home collection of semen should enhance study participation, and semen assessment in centralized laboratories will address concerns regarding interlaboratory variations and quality control.
[Thyroid hormones and the development of the nervous system].
Mussa, G C; Zaffaroni, M; Mussa, F
1990-09-01
The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)
2011-01-01
Background Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. Results We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. Conclusion Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm. PMID:21806785
Understanding D-Ribose and Mitochondrial Function.
Mahoney, Diane E; Hiebert, John B; Thimmesch, Amanda; Pierce, John T; Vacek, James L; Clancy, Richard L; Sauer, Andrew J; Pierce, Janet D
2018-01-01
Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production. With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.
Lipids, lysosomes, and autophagy
2016-01-01
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054
Cerebellar learning properties are modulated by the CRF receptor in granular cells.
Ezra-Nevo, Gili; Prestori, Francesca; Locatelli, Francesca; Soda, Teresa; Ten Brinke, Michiel M; Engel, Mareen; Boele, Henk-Jan; Botta, Laura; Leshkowitz, Dena; Ramot, Assaf; Tsoory, Michael; Biton, Inbal E; Deussing, Jan; D'Angelo, Egidio; De Zeeuw, Chris I; Chen, Alon
2018-06-22
Corticotropin-releasing factor (CRF) and its type 1 receptor (CRFR 1 ) play an important role in the responses to stressful challenges. Despite the well-established expression of CRFR 1 in granular cells (GrCs), its role in procedural motor performance and memory formation remains elusive. To investigate the role of CRFR 1 expression in cerebellar GrCs, we used a mouse model depleted of CRFR 1 in these cells. We detected changes in the cellular learning mechanisms in GrCs depleted of CRFR 1 in that they showed changes in intrinsic excitability and long-term synaptic plasticity. Moreover, male mice depleted of CRFR 1 specifically in GrCs showed accelerated Pavlovian associative eye-blink conditioning, but no differences in baseline motor performance, locomotion or fear and anxiety-related behaviors. Last, we analyzed cerebella transcriptome of KO and control mice and detected prominent alterations in the expression of calcium signaling pathways components. Our findings shed light on the interplay between stress-related central mechanisms and cerebellar motor conditioning, highlighting the role of the CRF system in regulating particular forms of cerebellar learning. SIGNIFICANCE STATEMENT Although it is known that CRFR 1 is highly expressed in the cerebellum, little attention has been given to its role in cerebellar functions in the behaving animal. Moreover, most of the attention was directed to the effect of CRF on Purkinje cells at the cellular level, and to this date, almost no data exist on the role of this stress-related receptor in other cerebellar structures. Here, we explored the behavioral and cellular effect of GrCs specific ablation of CRFR 1 We found a profound effect on learning, both at the cellular and behavioral levels, without affecting baseline motor skills. Copyright © 2018 the authors.
Whitaker-Azmitia, Patricia M
2005-02-01
The hypothesis explored in this review is that the high levels of serotonin in the blood seen in some autistic children (the so-called hyperserotonemia of autism) may lead to some of the behavioral and cellular changes also observed in the disorder. At early stages of development, when the blood-brain Barrier is not yet fully formed, the high levels of serotonin in the blood can enter the brain of a developing fetus and cause loss of serotonin terminals through a known negative feedback function of serotonin during development. The loss of serotonin innervation persists throughout subsequent development and the symptoms of autism appear. A review of the basic scientific literature on prenatal treatments affecting serotonin is given, in support of this hypothesis, with an emphasis on studies using the serotonin agonist, 5-methoxytryptamine (5-MT). In work using 5-MT to mimic hyperserotonemia, Sprague-Dawley rats are treated from gestational day 12 until postnatal 20. In published reports, these animals have been found to have a significant loss of serotonin terminals, decreased metabolic activity in cortex, changes in columnar development in cortex, changes in serotonin receptors, and "autistic-like" behaviors. In preliminary cellular findings given in this review, the animals have also been found to have cellular changes in two relevant brain regions: 1. Central nucleus of the amygdala, a brain region involved in fear-responding, where an increase in calcitonin gene related peptide (CGRP) was found 2. Paraventricular nucleus of the hypothalamus, a brain region involved in social memory and bonding, where a decrease in oxytocin was found. Both of these cellular changes could result from loss of serotonin innervation, possibly due to loss of terminal outgrowth from the same cells of the raphe nuclei. Thus, increased serotonergic activity during development could damage neurocircuitry involved in emotional responding to social stressors and may have relevance to the symptoms of autism.
Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan
2016-01-01
ABSTRACT Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family. PMID:27795408
Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan; Vitour, Damien
2017-01-01
Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family. Copyright © 2016 Gouzil et al.
Johansson, Martin M; Lundin, Elin; Qian, Xiaoyan; Mirzazadeh, Mohammadreza; Halvardson, Jonatan; Darj, Elisabeth; Feuk, Lars; Nilsson, Mats; Jazin, Elena
2016-01-01
Renewed attention has been directed to the functions of the Y chromosome in the central nervous system during early human male development, due to the recent proposed involvement in neurodevelopmental diseases. PCDH11Y and NLGN4Y are of special interest because they belong to gene families involved in cell fate determination and formation of dendrites and axon. We used RNA sequencing, immunocytochemistry and a padlock probing and rolling circle amplification strategy, to distinguish the expression of X and Y homologs in situ in the human brain for the first time. To minimize influence of androgens on the sex differences in the brain, we focused our investigation to human embryos at 8-11 weeks post-gestation. We found that the X- and Y-encoded genes are expressed in specific and heterogeneous cellular sub-populations of both glial and neuronal origins. More importantly, we found differential distribution patterns of X and Y homologs in the male developing central nervous system. This study has visualized the spatial distribution of PCDH11X/Y and NLGN4X/Y in human developing nervous tissue. The observed spatial distribution patterns suggest the existence of an additional layer of complexity in the development of the male CNS.
Woods, John W; Tanen, Michael; Figueroa, David J; Biswas, Chhabi; Zycband, Emanuel; Moller, David E; Austin, Christopher P; Berger, Joel P
2003-06-13
The peroxisome proliferator-activated receptors (PPARs), PPARdelta, PPARgamma and PPARalpha, comprise a subclass of the supergene family of nuclear receptors. As such they are ligand-regulated transcription factors whose major effects are mediated by altering expression of target genes. PPARdelta has been shown to be ubiquitously expressed in mammals. However, its primary biological role(s) has yet to be defined. Several recent studies have demonstrated that PPARdelta is the most highly expressed PPAR isoform in the central nervous system, but ambiguity still exists as to the specific brain sub-regions and cells in which it is expressed. Here, utilizing novel, isoform-selective PPARdelta riboprobes and an anti-peptide antibody, we performed a series of in situ hybridization and immunolocalization studies to determine the distribution of PPARdelta in the central nervous system (CNS) of mice. We found that PPARdelta mRNA and protein is expressed throughout the brain, with particularly high levels in the entorhinal cortex, hypothalamus and hippocampus, and lower levels in the corpus callosum and caudate putamen. At the cellular level, PPARdelta mRNA and protein were found to be expressed in oligodendrocytes and neurons but not astrocytes. Such results suggest a role for PPARdelta in both myelination and neuronal functioning within the CNS.
Coffee, R. Lane; Tessier, Charles R.; Woodruff, Elvin A.; Broadie, Kendal
2010-01-01
SUMMARY Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity. PMID:20442204
Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast.
Higuchi-Sanabria, Ryo; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A
2016-01-01
Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
.... Neurobiology-A November 16, 2012...... *VA Central Office. Cellular and Molecular Medicine...... November 19... December 11, 2012...... Sheraton Crystal City Hotel. Clinical Application of Genetics..... December 12...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... City. Cardiovascular Studies June 3, 2013 Ritz-Carlton, Pentagon City. Cellular and Molecular Medicine..., 2013........ VA Central Office.* Clinical Application of Genetics..... June 18, 2013 Ritz-Carlton...
NASA Astrophysics Data System (ADS)
Barton, Alan J.; Haqqani, Arsalan S.
2011-11-01
Three public biological network data sets (KEGG, GeneRIF and Reactome) are collected and described. Two problems are investigated (inter- and intra- cellular interactions) via augmentation of the collected networks to the problem specific data. Results include an estimate of the importance of proteins for the interaction of inflammatory cells with the blood-brain barrier via the computation of Betweenness Centrality. Subsequently, the interactions may be validated from a number of differing perspectives; including comparison with (i) existing biological results, (ii) the literature, and (iii) new hypothesis driven biological experiments. Novel therapeutic and diagnostic targets for inhibiting inflammation at the blood-brain barrier in a number of brain diseases including Alzheimer's disease, stroke and multiple sclerosis are possible. In addition, this methodology may also be applicable towards investigating the breast cancer tumour microenvironment.
The extracellular matrix of Volvox carteri: molecular structure of the cellular compartment.
Ertl, H; Mengele, R; Wenzl, S; Engel, J; Sumper, M
1989-12-01
The extracellular matrix (ECM) of Volvox contains insoluble fibrous layers that surround individual cells at a distance to form contiguous cellular compartments. Using immunological techniques, we identified a sulfated surface glycoprotein (SSG 185) as the monomeric precursor of this substructure within the ECM. The primary structure of the SSG 185 poly-peptide chain has been derived from cDNA and genomic DNA. A central domain of the protein, 80 amino acid residues long, consists almost exclusively of hydroxyproline residues. The chemical structure of the highly sulfated polysaccharide covalently attached to SSG 185 has been determined by permethylation analysis. As revealed by EM, SSG 185 is a rod-shaped molecule with a 21-nm-long polysaccharide strand protruding from its central region. The chemical nature of the cross-links between SSG 185 monomers is discussed.
Adapting to stress - chaperome networks in cancer.
Joshi, Suhasini; Wang, Tai; Araujo, Thaís L S; Sharma, Sahil; Brodsky, Jeffrey L; Chiosis, Gabriela
2018-05-23
In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.
The concept of self-organization in cellular architecture
Misteli, Tom
2001-01-01
In vivo microscopy has recently revealed the dynamic nature of many cellular organelles. The dynamic properties of several cellular structures are consistent with a role for self-organization in their formation, maintenance, and function; therefore, self-organization might be a general principle in cellular organization. PMID:11604416
Ponizovskiy, Michail R
2016-01-01
Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.
Talsma, Aaron D; Christov, Christo P; Terriente-Felix, Ana; Linneweber, Gerit A; Perea, Daniel; Wayland, Matthew; Shafer, Orie T; Miguel-Aliaga, Irene
2012-07-24
The role of the central neuropeptide pigment-dispersing factor (PDF) in circadian timekeeping in Drosophila is remarkably similar to that of vasoactive intestinal peptide (VIP) in mammals. Like VIP, PDF is expressed outside the circadian network by neurons innervating the gut, but the function and mode of action of this PDF have not been characterized. Here we investigate the visceral roles of PDF by adapting cellular and physiological methods to the study of visceral responses to PDF signaling in wild-type and mutant genetic backgrounds. We find that intestinal PDF acts at a distance on the renal system, where it regulates ureter contractions. We show that PdfR, PDF's established receptor, is expressed by the muscles of the excretory system, and present evidence that PdfR-induced cAMP increases underlie the myotropic effects of PDF. These findings extend the similarities between PDF and VIP beyond their shared central role as circadian regulators, and uncover an unexpected endocrine mode of myotropic action for an intestinal neuropeptide on the renal system.
Talsma, Aaron D.; Christov, Christo P.; Terriente-Felix, Ana; Linneweber, Gerit A.; Perea, Daniel; Wayland, Matthew; Shafer, Orie T.; Miguel-Aliaga, Irene
2012-01-01
The role of the central neuropeptide pigment-dispersing factor (PDF) in circadian timekeeping in Drosophila is remarkably similar to that of vasoactive intestinal peptide (VIP) in mammals. Like VIP, PDF is expressed outside the circadian network by neurons innervating the gut, but the function and mode of action of this PDF have not been characterized. Here we investigate the visceral roles of PDF by adapting cellular and physiological methods to the study of visceral responses to PDF signaling in wild-type and mutant genetic backgrounds. We find that intestinal PDF acts at a distance on the renal system, where it regulates ureter contractions. We show that PdfR, PDF's established receptor, is expressed by the muscles of the excretory system, and present evidence that PdfR-induced cAMP increases underlie the myotropic effects of PDF. These findings extend the similarities between PDF and VIP beyond their shared central role as circadian regulators, and uncover an unexpected endocrine mode of myotropic action for an intestinal neuropeptide on the renal system. PMID:22778427
Leptin in the interplay of inflammation, metabolism and immune system disorders.
Abella, Vanessa; Scotece, Morena; Conde, Javier; Pino, Jesús; Gonzalez-Gay, Miguel Angel; Gómez-Reino, Juan J; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Gualillo, Oreste
2017-02-01
Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.
Ye, Xin; Wang, Yanshu; Cahill, Hugh; Yu, Minzhong; Badea, Tudor C; Smallwood, Philip M; Peachey, Neal S; Nathans, Jeremy
2009-10-16
Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled-4 (Fz4) receptor, Lrp5 coreceptor, or Norrin ligand cause retinal hypovascularization, but the mechanisms by which Norrin/Fz4/Lrp signaling controls vascular development have not been defined. Using mouse genetic and cell culture models, we show that loss of Fz4 signaling in endothelial cells causes defective vascular growth, which leads to chronic but reversible silencing of retinal neurons. Loss of Fz4 in all endothelial cells disrupts the blood brain barrier in the cerebellum, whereas excessive Fz4 signaling disrupts embryonic angiogenesis. Sox17, a transcription factor that is upregulated by Norrin/Fz4/Lrp signaling, plays a central role in inducing the angiogenic program controlled by Norrin/Fz4/Lrp. These experiments establish a cellular basis for retinal hypovascularization diseases due to insufficient Frizzled signaling, and they suggest a broader role for Frizzled signaling in vascular growth, remodeling, maintenance, and disease.
Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms.
Wu, Mingxuan; Chong, Lucy S; Perlman, David H; Resnick, Adam C; Fiedler, Dorothea
2016-11-01
Inositol-based signaling molecules are central eukaryotic messengers and include the highly phosphorylated, diffusible inositol polyphosphates (InsPs) and inositol pyrophosphates (PP-InsPs). Despite the essential cellular regulatory functions of InsPs and PP-InsPs (including telomere maintenance, phosphate sensing, cell migration, and insulin secretion), the majority of their protein targets remain unknown. Here, the development of InsP and PP-InsP affinity reagents is described to comprehensively annotate the interactome of these messenger molecules. By using the reagents as bait, >150 putative protein targets were discovered from a eukaryotic cell lysate (Saccharomyces cerevisiae). Gene Ontology analysis of the binding partners revealed a significant overrepresentation of proteins involved in nucleotide metabolism, glucose metabolism, ribosome biogenesis, and phosphorylation-based signal transduction pathways. Notably, we isolated and characterized additional substrates of protein pyrophosphorylation, a unique posttranslational modification mediated by the PP-InsPs. Our findings not only demonstrate that the PP-InsPs provide a central line of communication between signaling and metabolic networks, but also highlight the unusual ability of these molecules to access two distinct modes of action.
Melatonin and female reproduction.
Tamura, Hiroshi; Takasaki, Akihisa; Taketani, Toshiaki; Tanabe, Manabu; Lee, Lifa; Tamura, Isao; Maekawa, Ryo; Aasada, Hiromi; Yamagata, Yoshiaki; Sugino, Norihiro
2014-01-01
Melatonin (N-acetyl-5-methoxytryptamine) is secreted during the dark hours at night by the pineal gland. After entering the circulation, melatonin acts as an endocrine factor and a chemical messenger of light and darkness. It regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It also affects the brain, immune, gastrointestinal, cardiovascular, renal, bone and endocrine functions and acts as an oncostatic and anti-aging molecule. Many of melatonin's actions are mediated through interactions with specific membrane-bound receptors expressed not only in the central nervous system, but also in peripheral tissues. Melatonin also acts through non-receptor-mediated mechanisms, for example serving as a scavenger for reactive oxygen species and reactive nitrogen species. At both physiological and pharmacological concentrations, melatonin attenuates and counteracts oxidative stress and regulates cellular metabolism. Growing scientific evidence of reproductive physiology supports the role of melatonin in human reproduction. This review was conducted to investigate the effects of melatonin on female reproduction and to summarize our findings in this field. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.
Umasankar, Perunthottathu K; Ma, Li; Thieman, James R; Jha, Anupma; Doray, Balraj; Watkins, Simon C; Traub, Linton M
2014-01-01
Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization. DOI: http://dx.doi.org/10.7554/eLife.04137.001 PMID:25303365
Pearlstein, Robert A; McKay, Daniel J J; Hornak, Viktor; Dickson, Callum; Golosov, Andrei; Harrison, Tyler; Velez-Vega, Camilo; Duca, José
2017-01-01
Cellular drug targets exist within networked function-generating systems whose constituent molecular species undergo dynamic interdependent non-equilibrium state transitions in response to specific perturbations (i.e.. inputs). Cellular phenotypic behaviors are manifested through the integrated behaviors of such networks. However, in vitro data are frequently measured and/or interpreted with empirical equilibrium or steady state models (e.g. Hill, Michaelis-Menten, Briggs-Haldane) relevant to isolated target populations. We propose that cells act as analog computers, "solving" sets of coupled "molecular differential equations" (i.e. represented by populations of interacting species)via "integration" of the dynamic state probability distributions among those populations. Disconnects between biochemical and functional/phenotypic assays (cellular/in vivo) may arise with targetcontaining systems that operate far from equilibrium, and/or when coupled contributions (including target-cognate partner binding and drug pharmacokinetics) are neglected in the analysis of biochemical results. The transformation of drug discovery from a trial-and-error endeavor to one based on reliable design criteria depends on improved understanding of the dynamic mechanisms powering cellular function/dysfunction at the systems level. Here, we address the general mechanisms of molecular and cellular function and pharmacological modulation thereof. We outline a first principles theory on the mechanisms by which free energy is stored and transduced into biological function, and by which biological function is modulated by drug-target binding. We propose that cellular function depends on dynamic counter-balanced molecular systems necessitated by the exponential behavior of molecular state transitions under non-equilibrium conditions, including positive versus negative mass action kinetics and solute-induced perturbations to the hydrogen bonds of solvating water versus kT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing
Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric
2017-01-01
AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457
Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea.
Prabhakar, Nanduri R
2016-08-01
What is the topic of this review? This article presents emerging evidence for heightened carotid body chemoreflex activity as a major driver of sympathetic activation and hypertension in sleep apnoea patients. What advances does it heighlight? This article discusses the recent advances on cellular, molecular and epigenetic mechanisms underlying the exaggerated chemoreflex in experimental models of sleep apnoea. The carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen concentration, and the resulting chemoreflex is a potent regulator of the sympathetic tone, blood pressure and breathing. Sleep apnoea is a disease of the respiratory system that affects several million adult humans. Apnoeas occur during sleep, often as a result of obstruction of the upper airway (obstructive sleep apnoea) or because of defective respiratory rhythm generation by the CNS (central sleep apnoea). Patients with sleep apnoea exhibit several co-morbidities, with the most notable among them being heightened sympathetic nerve activity and hypertension. Emerging evidence suggests that intermittent hypoxia resulting from periodic apnoea stimulates the carotid body, and the ensuing chemoreflex mediates the increased sympathetic tone and hypertension in sleep apnoea patients. Rodent models of intermittent hypoxia that simulate the O2 saturation profiles encountered during sleep apnoea have provided important insights into the cellular and molecular mechanisms underlying the heightened carotid body chemoreflex. This article describes how intermittent hypoxia affects the carotid body function and discusses the cellular, molecular and epigenetic mechanisms underlying the exaggerated chemoreflex. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling
Lee, Sung Ryul; Noh, Su Jin; Pronto, Julius Ryan; Jeong, Yu Jeong; Kim, Hyoung Kyu; Song, In Sung; Xu, Zhelong; Kwon, Hyog Young; Kang, Se Chan; Sohn, Eun-Hwa; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari
2015-01-01
Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn2+) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn2+ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn2+ levels are largely regulated by metallothioneins (MTs), Zn2+ importers (ZIPs), and Zn2+ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn2+. However, these regulatory actions of Zn2+ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn2+ levels, Zn2+-mediated signal transduction, impacts of Zn2+ on ion channels and mitochondrial metabolism, and finally, the implications of Zn2+ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn2+. PMID:26330751
Melgaço, Juliana Gil; Morgado, Lucas Nóbrega; Santiago, Marta Almeida; Oliveira, Jaqueline Mendes de; Lewis-Ximenez, Lia Laura; Hasselmann, Bárbara; Cruz, Oswaldo Gonçalves; Pinto, Marcelo Alves; Vitral, Claudia Lamarca
2015-07-31
Based on current studies on the effects of single dose vaccines on antibody production, Latin American countries have adopted a single dose vaccine program. However, no data are available on the activation of cellular response to a single dose of hepatitis A. Our study investigated the functional reactivity of the memory cell phenotype after hepatitis A virus (HAV) stimulation through administration of the first or second dose of HAV vaccine and compared the response to that of a baseline group to an initial natural infection. Proliferation assays showed that the first vaccine dose induced HAV-specific cellular response; this response was similar to that induced by a second dose or an initial natural infection. Thus, from the first dose to the second dose, increase in the frequencies of classical memory B cells, TCD8 cells, and central memory TCD4 and TCD8 cells were observed. Regarding cytokine production, increased IL-6, IL-10, TNF, and IFNγ levels were observed after vaccination. Our findings suggest that a single dose of HAV vaccine promotes HAV-specific memory cell response similar to that induced by a natural infection. The HAV-specific T cell immunity induced by primary vaccination persisted independently of the protective plasma antibody level. In addition, our results suggest that a single dose immunization system could serve as an alternative strategy for the prevention of hepatitis A in developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés
2018-07-04
Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.
Functional Dynamics of PDZ Binding Domains: A Normal-Mode Analysis
De Los Rios, Paolo; Cecconi, Fabio; Pretre, Anna; Dietler, Giovanni; Michielin, Olivier; Piazza, Francesco; Juanico, Brice
2005-01-01
Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains are relatively small (80–120 residues) protein binding modules central in the organization of receptor clusters and in the association of cellular proteins. Their main function is to bind C-terminals of selected proteins that are recognized through specific amino acids in their carboxyl end. Binding is associated with a deformation of the PDZ native structure and is responsible for dynamical changes in regions not in direct contact with the target. We investigate how this deformation is related to the harmonic dynamics of the PDZ structure and show that one low-frequency collective normal mode, characterized by the concerted movements of different secondary structures, is involved in the binding process. Our results suggest that even minimal structural changes are responsible for communication between distant regions of the protein, in agreement with recent NMR experiments. Thus, PDZ domains are a very clear example of how collective normal modes are able to characterize the relation between function and dynamics of proteins, and to provide indications on the precursors of binding/unbinding events. PMID:15821164
Functional network inference of the suprachiasmatic nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel
2016-04-04
In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data frommore » individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.« less
Durability of PEM Fuel Cell Membranes
NASA Astrophysics Data System (ADS)
Huang, Xinyu; Reifsnider, Ken
Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.
Neurophysiology of Drosophila Models of Parkinson's Disease
West, Ryan J. H.; Furmston, Rebecca; Williams, Charles A. C.; Elliott, Christopher J. H.
2015-01-01
We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak's scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing. PMID:25960916
Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair
Knott, Eric P.; Assi, Mazen; Rao, Sudheendra N. R.; Ghosh, Mousumi; Pearse, Damien D.
2017-01-01
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic. PMID:28338622
Tensegrity, cellular biophysics, and the mechanics of living systems
Ingber, Donald E.; Wang, Ning; Stamenović, Dimitrije
2014-01-01
The recent convergence between physics and biology has led many physicists to enter the fields of cell and developmental biology. One of the most exciting areas of interest has been the emerging field of mechanobiology that centers on how cells control their mechanical properties, and how physical forces regulate cellular biochemical responses, a process that is known as mechanotransduction. In this article, we review the central role that tensegrity (tensional integrity) architecture, which depends on tensile prestress for its mechanical stability, plays in biology. We describe how tensional prestress is a critical governor of cell mechanics and function, and how use of tensegrity by cells contributes to mechanotransduction. Theoretical tensegrity models are also described that predict both quantitative and qualitative behaviors of living cells, and these theoretical descriptions are placed in context of other physical models of the cell. In addition, we describe how tensegrity is used at multiple size scales in the hierarchy of life — from individual molecules to whole living organisms — to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level. PMID:24695087
Neurotoxic effects and biomarkers of lead exposure: a review.
Sanders, Talia; Liu, Yiming; Buchner, Virginia; Tchounwou, Paul B
2009-01-01
Lead, a systemic toxicant affecting virtually every organ system, primarily affects the central nervous system, particularly the developing brain. Consequently, children are at a greater risk than adults of suffering from the neurotoxic effects of lead. To date, no safe lead-exposure threshold has been identified. The ability of lead to pass through the blood-brain barrier is due in large part to its ability to substitute for calcium ions. Within the brain, lead-induced damage in the prefrontal cerebral cortex, hippocampus, and cerebellum can lead to a variety of neurologic disorders. At the molecular level, lead interferes with the regulatory action of calcium on cell functions and disrupts many intracellular biological activities. Experimental studies have also shown that lead exposure may have genotoxic effects, especially in the brain, bone marrow, liver, and lung cells. Knowledge of the neurotoxicology of lead has advanced in recent decades due to new information on its toxic mechanisms and cellular specificity. This paper presents an overview, updated to January 2009, of the neurotoxic effects of lead with regard to children, adults, and experimental animals at both cellular and molecular levels, and discusses the biomarkers of lead exposure that are useful for risk assessment in the field of environmental health.
Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.
Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel
2016-03-01
The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis. © 2015 Wiley Periodicals, Inc.
The Dynamics of Drug Resistance: A Mathematical Perspective
Lavi, Orit; Gottesman, Michael M.; Levy, Doron
2012-01-01
Resistance to chemotherapy is a key impediment to successful cancer treatment that has been intensively studied for the last three decades. Several central mechanisms have been identified as contributing to the resistance. In the case of multidrug resistance (MDR), the cell becomes resistant to a variety of structurally and mechanistically unrelated drugs in addition to the drug initially administered. Mathematical models of drug resistance have dealt with many of the known aspects of this field, such as pharmacologic sanctuary and location/diffusion resistance, intrinsic resistance that is therapy independent, therapy-dependent cellular alterations including induced resistance (dose-dependent) and acquired resistance (dose-independent). In addition, there are mathematical models that take into account the kinetic/phase resistance, and models that investigate intra-cellular mechanisms based on specific biological functions (such as ABC transporters, apoptosis and repair mechanisms). This review covers aspects of MDR that have been mathematically studied, and explains how, from a methodological perspective, mathematics can be used to study drug resistance. We discuss quantitative approaches of mathematical analysis, and demonstrate how mathematics can be used in combination with other experimental and clinical tools. We emphasize the potential benefits of integrating analytical and mathematical methods into future clinical and experimental studies of drug resistance. PMID:22387162
Kovalchuk, Anna; Kolb, Bryan
2017-07-03
Based on the most recent estimates by the Canadian Cancer Society, 2 in 5 Canadians will develop cancer in their lifetimes. More than half of all cancer patients receive some type of radiation therapy, and all patients undergo radiation-based diagnostics. While radiation is one of the most important diagnostic and treatments modalities, high-dose cranial radiation therapy causes numerous central nervous system side-effects, including declines in cognitive function, memory, and attention. While the mechanisms of these effects have been studies, they still need to be further elucidated. On the other hand, the effects of low dose radiation as well as indirect radiation bystander effects on the brain remain elusive. We pioneered analysis of the molecular and cellular effects of low dose direct, bystander and scatter radiation on the brain. Using a rat model, we showed that low dose radiation exposures cause molecular and cellular changes in the brain and impacts animal behavior. Here we reflect upon our recent findings and current state of knowledge in the field, and suggest novel radiation effect biomarkers and means of prevention. We propose strategies and interventions to prevent and mitigate radiation effects on the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, Anne O.; Miller, Susan M.; Wall, Judy
2016-06-18
Elemental mercury, Hg(0) is a contaminant at many DOE sites, especially at Oak Ridge National Laboratory (ORNL) where the spread of spilled Hg and its effects on microbial populations have been monitored for decades. To explore the microbial interactions with Hg, we have devised a global proteomic approach capable of directly detecting Hg-adducts of proteins. This technique developed in the facultative anaerobe, Escherichia coli, allows us to identify the proteins most vulnerable to acute exposure to organomercurials phenyl- and ethyl-mercury (as surrogates for the highly neurotoxic methyl-Hg) (Polacco, et al, 2011). We have found >300 such proteins in all metabolicmore » functional groups and cellular compartments; most are highly conserved and can serve as markers for acute Hg exposure (Zink, et al. 2016, in preparation). We have also discovered that acute Hg exposure severely disrupts thiol, iron and redox homeostases, and electrolyte balance (LaVoie, et al., 2015) Thus, we proposed to bring these techniques to bear on the central problem of identifying the cellular proteins involved in bacterial uptake and methylation of mercury and its release from the cell.« less
76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-21
...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... June 29, 2011, the committee will discuss cellular and gene therapy products for the treatment of...
Lien, Anthony D.; Scanziani, Massimo
2011-01-01
Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948
Small molecule-induced cellular fate reprogramming: promising road leading to Rome.
Li, Xiang; Xu, Jun; Deng, Hongkui
2018-05-29
Cellular fate reprogramming holds great promise to generate functional cell types for replenishing new cells and restoring functional loss. Inspired by transcription factor-induced reprogramming, the field of cellular reprogramming has greatly advanced and developed into divergent streams of reprogramming approaches. Remarkably, increasing studies have shown the power and advantages of small molecule-based approaches for cellular fate reprogramming, which could overcome the limitations of conventional transgenic-based reprogramming. In this concise review, we discuss these findings and highlight the future potentiality with particular focus on this new trend of chemical reprogramming. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genome-Wide Detection and Analysis of Multifunctional Genes
Pritykin, Yuri; Ghersi, Dario; Singh, Mona
2015-01-01
Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655
Erdem, Beril; Schulz, Angela; Saglar, Emel; Deniz, Ferhat; Schöneberg, Torsten; Mergen, Hatice
2018-01-01
Diabetes insipidus is a rare disorder characterized by an impairment in water balance because of the inability to concentrate urine. While central diabetes insipidus is caused by mutations in the AVP , the reason for genetically determined nephrogenic diabetes insipidus can be mutations in AQP2 or AVPR2 After release of AVP from posterior pituitary into blood stream, it binds to AVPR2, which is one of the receptors for AVP and is mainly expressed in principal cells of collecting ducts of kidney. Receptor activation increases cAMP levels in principal cells, resulting in the incorporation of AQP2 into the membrane, finally increasing water reabsorption. This pathway can be altered by mutations in AVPR2 causing nephrogenic diabetes insipidus. In this study, we functionally characterize four mutations (R68W, ΔR67-G69/G107W, V162A and T273M) in AVPR2, which were found in Turkish patients. Upon AVP stimulation, R68W, ΔR67-G69/G107W and T273M showed a significantly reduced maximum in cAMP response compared to wild-type receptor. All mutant receptor proteins were expressed at the protein level; however, R68W, ΔR67-G69/G107W and T273M were partially retained in the cellular interior. Immunofluorescence studies showed that these mutant receptors were trapped in ER and Golgi apparatus. The function of V162A was indistinguishable from the indicating other defects causing disease. The results are important for understanding the influence of mutations on receptor function and cellular trafficking. Therefore, characterization of these mutations provides useful information for further studies addressing treatment of intracellularly trapped receptors with cell-permeable antagonists to restore receptor function in patients with nephrogenic diabetes insipidus. © 2018 The authors.
Schulz, Angela; Saglar, Emel; Deniz, Ferhat; Schöneberg, Torsten; Mergen, Hatice
2018-01-01
Diabetes insipidus is a rare disorder characterized by an impairment in water balance because of the inability to concentrate urine. While central diabetes insipidus is caused by mutations in the AVP, the reason for genetically determined nephrogenic diabetes insipidus can be mutations in AQP2 or AVPR2. After release of AVP from posterior pituitary into blood stream, it binds to AVPR2, which is one of the receptors for AVP and is mainly expressed in principal cells of collecting ducts of kidney. Receptor activation increases cAMP levels in principal cells, resulting in the incorporation of AQP2 into the membrane, finally increasing water reabsorption. This pathway can be altered by mutations in AVPR2 causing nephrogenic diabetes insipidus. In this study, we functionally characterize four mutations (R68W, ΔR67-G69/G107W, V162A and T273M) in AVPR2, which were found in Turkish patients. Upon AVP stimulation, R68W, ΔR67-G69/G107W and T273M showed a significantly reduced maximum in cAMP response compared to wild-type receptor. All mutant receptor proteins were expressed at the protein level; however, R68W, ΔR67-G69/G107W and T273M were partially retained in the cellular interior. Immunofluorescence studies showed that these mutant receptors were trapped in ER and Golgi apparatus. The function of V162A was indistinguishable from the indicating other defects causing disease. The results are important for understanding the influence of mutations on receptor function and cellular trafficking. Therefore, characterization of these mutations provides useful information for further studies addressing treatment of intracellularly trapped receptors with cell-permeable antagonists to restore receptor function in patients with nephrogenic diabetes insipidus. PMID:29117938
The nucleolus—guardian of cellular homeostasis and genome integrity.
Grummt, Ingrid
2013-12-01
All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.
NASA Astrophysics Data System (ADS)
Mehta, Pankaj; Lang, Alex H.; Schwab, David J.
2016-03-01
A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... Sheraton Crystal City Hotel. Cellular and Molecular Medicine........ November 25, 2013 *VA Central Office... Hotel. Oncology-A December 5-6, 2013 Sheraton Crystal City Hotel. Clinical Application of Genetics...
Time scale of diffusion in molecular and cellular biology
NASA Astrophysics Data System (ADS)
Holcman, D.; Schuss, Z.
2014-05-01
Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.
Heme Oxygenases in Cardiovascular Health and Disease
Ayer, Anita; Zarjou, Abolfazl; Agarwal, Anupam; Stocker, Roland
2016-01-01
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies. PMID:27604527
An integrative systems biology approach to understanding pulmonary diseases.
Auffray, Charles; Adcock, Ian M; Chung, Kian Fan; Djukanovic, Ratko; Pison, Christophe; Sterk, Peter J
2010-06-01
Chronic inflammatory pulmonary diseases such as COPD and asthma are highly prevalent and associated with a major health burden worldwide. Despite a wealth of biologic and clinical information on normal and pathologic airway structure and function, the primary causes and mechanisms of disease remain to a large extent unknown, preventing the development of more efficient diagnosis and treatment. We propose to overcome these limitations through an integrative systems biology research strategy designed to identify the functional and regulatory pathways that play central roles in respiratory pathophysiology, starting with severe asthma. This approach relies on global genome, transcriptome, proteome, and metabolome data sets collected in cross-sectional patient cohorts with high-throughput measurement platforms and integrated with biologic and clinical data to inform predictive multiscale models ranging from the molecular to the organ levels. Working hypotheses formulated on the mechanisms and pathways involved in various disease states are tested through perturbation experiments using model simulation combined with targeted and global technologies in cellular and animal models. The responses observed are compared with those predicted by the initial models, which are refined to account better for the results. Novel perturbation experiments are designed and tested both computationally and experimentally to arbitrate between competing hypotheses. The process is iterated until the derived knowledge allows a better classification and subphenotyping of severe asthma using complex biomarkers, which will facilitate the development of novel diagnostic and therapeutic interventions targeting multiple components of the molecular and cellular pathways involved. This can be tested and validated in prospective clinical trials.
Frecska, Ede; Szabo, Attila; Winkelman, Michael J; Luna, Luis E; McKenna, Dennis J
2013-09-01
N,N-dimethyltryptamine (DMT) is classified as a naturally occurring serotonergic hallucinogen of plant origin. It has also been found in animal tissues and regarded as an endogenous trace amine transmitter. The vast majority of research on DMT has targeted its psychotropic/psychedelic properties with less focus on its effects beyond the nervous system. The recent discovery that DMT is an endogenous ligand of the sigma-1 receptor may shed light on yet undiscovered physiological mechanisms of DMT activity and reveal some of its putative biological functions. A three-step active uptake process of DMT from peripheral sources to neurons underscores a presumed physiological significance of this endogenous hallucinogen. In this paper, we overview the literature on the effects of sigma-1 receptor ligands on cellular bioenergetics, the role of serotonin, and serotoninergic analogues in immunoregulation and the data regarding gene expression of the DMT synthesizing enzyme indolethylamine-N-methyltransferase in carcinogenesis. We conclude that the function of DMT may extend central nervous activity and involve a more universal role in cellular protective mechanisms. Suggestions are offered for future directions of indole alkaloid research in the general medical field. We provide converging evidence that while DMT is a substance which produces powerful psychedelic experiences, it is better understood not as a hallucinogenic drug of abuse, but rather an agent of significant adaptive mechanisms that can also serve as a promising tool in the development of future medical therapies.
Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.
Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen
2011-02-01
Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Putative adverse outcome pathways relevant to neurotoxicity
Bal-Price, Anna; Crofton, Kevin M.; Sachana, Magdalini; Shafer, Timothy J.; Behl, Mamta; Forsby, Anna; Hargreaves, Alan; Landesmann, Brigitte; Lein, Pamela J.; Louisse, Jochem; Monnet-Tschudi, Florianne; Paini, Alicia; Rolaki, Alexandra; Schrattenholz, André; Suñol, Cristina; van Thriel, Christoph; Whelan, Maurice; Fritsche, Ellen
2016-01-01
The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways. PMID:25605028
KDM1 Class Flavin-Dependent Protein Lysine Demethylases
Burg, Jonathan M.; Link, Jennifer E.; Morgan, Brittany S.; Heller, Frederick J.; Hargrove, Amanda E.; McCafferty, Dewey G.
2015-01-01
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1 -selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance. PMID:25787087
Kanaan, Georges N; Ichim, Bianca; Gharibeh, Lara; Maharsy, Wael; Patten, David A; Xuan, Jian Ying; Reunov, Arkadiy; Marshall, Philip; Veinot, John; Menzies, Keir; Nemer, Mona; Harper, Mary-Ellen
2018-04-01
Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC) to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Retinoic Acid as a Modulator of T Cell Immunity
Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela
2016-01-01
Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965
Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach
Westermark, Stefanie; Steuer, Ralf
2016-01-01
Oxygenic photosynthesis dominates global primary productivity ever since its evolution more than three billion years ago. While many aspects of phototrophic growth are well understood, it remains a considerable challenge to elucidate the manifold dependencies and interconnections between the diverse cellular processes that together facilitate the synthesis of new cells. Phototrophic growth involves the coordinated action of several layers of cellular functioning, ranging from the photosynthetic light reactions and the electron transport chain, to carbon-concentrating mechanisms and the assimilation of inorganic carbon. It requires the synthesis of new building blocks by cellular metabolism, protection against excessive light, as well as diurnal regulation by a circadian clock and the orchestration of gene expression and cell division. Computational modeling allows us to quantitatively describe these cellular functions and processes relevant for phototrophic growth. As yet, however, computational models are mostly confined to the inner workings of individual cellular processes, rather than describing the manifold interactions between them in the context of a living cell. Using cyanobacteria as model organisms, this contribution seeks to summarize existing computational models that are relevant to describe phototrophic growth and seeks to outline their interactions and dependencies. Our ultimate aim is to understand cellular functioning and growth as the outcome of a coordinated operation of diverse yet interconnected cellular processes. PMID:28083530
SPED light sheet microscopy: fast mapping of biological system structure and function
Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl
2016-01-01
The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363
Evolutionary tradeoffs in cellular composition across diverse bacteria
Kempes, Christopher P; Wang, Lawrence; Amend, Jan P; Doyle, John; Hoehler, Tori
2016-01-01
One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components. PMID:27046336
Minor, Daniel L; Findeisen, Felix
2010-01-01
Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.
Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease
Mitchelson, Keith Richard; Qin, Wen-Yan
2015-01-01
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development. PMID:26322174
[Mobile phones radiate--risk to the health?].
Jokela, Kari; Auvinen, Anssi; Hämäläinen, Heikki
2011-01-01
The mobile phones radiate electromagnetic energy which is partly absorbed into the tissues in the vicinity of the phone. The minor heating, in maximum up to 0.3 degrees C, may cause some alterations in the expression of genes and proteins similar to physiological response to other stimuli. Biophysical studies at the cellular and molecular level have not revealed any well established interaction mechanism, through which mobile phone radiation could induce toxic effects below the thermal effect level. Research results on various biological effects in vitro and in vivo are continuously published but there is no consistent evidence on well established harmful effects. The mobile phone radiation is not carcinogenic for experimental animals or genotoxic for cells. According to epidemiological studies and psychophysiological brain function studies the use of mobile phones does not seem to increase the risk of tumors in the head and brain or disturb the function of central nervous system. However, there is a need for more research on the long-term effects of mobile phone radiation particularly on children.
AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability
Brechet, Aline; Buchert, Rebecca; Schwenk, Jochen; Boudkkazi, Sami; Zolles, Gerd; Siquier-Pernet, Karine; Schaber, Irene; Bildl, Wolfgang; Saadi, Abdelkrim; Bole-Feysot, Christine; Nitschke, Patrick; Reis, Andre; Sticht, Heinrich; Al-Sanna’a, Nouriya; Rolfs, Arndt; Kulik, Akos; Schulte, Uwe; Colleaux, Laurence; Abou Jamra, Rami; Fakler, Bernd
2017-01-01
AMPA-type glutamate receptors (AMPARs), key elements in excitatory neurotransmission in the brain, are macromolecular complexes whose properties and cellular functions are determined by the co-assembled constituents of their proteome. Here we identify AMPAR complexes that transiently form in the endoplasmic reticulum (ER) and lack the core-subunits typical for AMPARs in the plasma membrane. Central components of these ER AMPARs are the proteome constituents FRRS1l (C9orf4) and CPT1c that specifically and cooperatively bind to the pore-forming GluA1-4 proteins of AMPARs. Bi-allelic mutations in the human FRRS1L gene are shown to cause severe intellectual disability with cognitive impairment, speech delay and epileptic activity. Virus-directed deletion or overexpression of FRRS1l strongly impact synaptic transmission in adult rat brain by decreasing or increasing the number of AMPARs in synapses and extra-synaptic sites. Our results provide insight into the early biogenesis of AMPARs and demonstrate its pronounced impact on synaptic transmission and brain function. PMID:28675162
Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein.
Liger, Dominique; Mora, Liliana; Lazar, Noureddine; Figaro, Sabine; Henri, Julien; Scrima, Nathalie; Buckingham, Richard H; van Tilbeurgh, Herman; Heurgué-Hamard, Valérie; Graille, Marc
2011-08-01
Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.
Mechanism of activation of methyltransferases involved in translation by the Trm112 ‘hub’ protein
Liger, Dominique; Mora, Liliana; Lazar, Noureddine; Figaro, Sabine; Henri, Julien; Scrima, Nathalie; Buckingham, Richard H.; van Tilbeurgh, Herman; Heurgué-Hamard, Valérie; Graille, Marc
2011-01-01
Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases. PMID:21478168
Archaeal and eukaryotic homologs of Hfq
Mura, Cameron; Randolph, Peter S.; Patterson, Jennifer; Cozen, Aaron E.
2013-01-01
Hfq and other Sm proteins are central in RNA metabolism, forming an evolutionarily conserved family that plays key roles in RNA processing in organisms ranging from archaea to bacteria to human. Sm-based cellular pathways vary in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in each of these pathways being mediated by an RNA-associated molecular assembly built upon Sm proteins. Though the first structures of Sm assemblies were from archaeal systems, the functions of Sm-like archaeal proteins (SmAPs) remain murky. Our ignorance about SmAP biology, particularly vis-à-vis the eukaryotic and bacterial Sm homologs, can be partly reduced by leveraging the homology between these lineages to make phylogenetic inferences about Sm functions in archaea. Nevertheless, whether SmAPs are more eukaryotic (RNP scaffold) or bacterial (RNA chaperone) in character remains unclear. Thus, the archaeal domain of life is a missing link, and an opportunity, in Sm-based RNA biology. PMID:23579284
Neuro-Modulation of Immuno-Endocrine Response Induced by Kaliotoxin of Androctonus Scorpion Venom.
Ladjel-Mendil, Amina; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima
2016-12-01
Kaliotoxin (KTX), a specific blocker of potassium channels, exerts various toxic effects due to its action on the central nervous system. Its use in experimental model could help the understanding of the cellular and molecular mechanisms involved in the neuropathological processes related to potassium channel dysfunctions. In this study, the ability of KTX to stimulate neuro-immuno-endocrine axis was investigated. As results, the intracerebroventricular injection of KTX leads to severe structural-functional alterations of both hypothalamus and thyroid. These alterations were characterized by a massive release of hormones' markers of thyroid function associated with damaged tissue which was infiltrated by inflammatory cell and an imbalanced redox status. Taken together, these data highlight that KTX is able to modulate the neuro-endocrine response after binding to its targets leading to the hypothalamus and the thyroid stimulation, probably by inflammatory response activation and the installation of oxidative stress in these organs. © 2016 Wiley Periodicals, Inc.
Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila
NASA Astrophysics Data System (ADS)
Wang, Bin; Chen, Nan; Wei, Yingliang; Li, Jiang; Sun, Li; Wu, Jiarui; Huang, Qing; Liu, Chang; Fan, Chunhai; Song, Haiyun
2012-08-01
Gold nanoparticles (AuNPs) are often used as vehicles to deliver drugs or biomolecules, due to their mild effect on cell survival and proliferation. However, little is known about their effect on cellular metabolism. Here we examine the in vivo effect of AuNPs on metabolism using Drosophila as a model. Drosophila and vertebrates possess similar basic metabolic functions, and a highly conserved PI3K/Akt/mTOR signaling pathway plays a central role in the regulation of energy metabolism in both organisms. We show that dietary AuNPs enter the fat body, a key metabolic tissue in Drosophila larvae. Significantly, larvae fed with AuNP show increased lipid levels without triggering stress responses. In addition, activities of the PI3K/Akt/mTOR signaling pathway and fatty acids synthesis are increased in these larvae. This study thus reveals a novel function of AuNPs in influencing animal metabolism and suggests its potential therapeutic applications for metabolic disorders.
Voelzmann, Andre; Okenve-Ramos, Pilar; Qu, Yue; Chojnowska-Monga, Monika; del Caño-Espinel, Manuela; Prokop, Andreas; Sanchez-Soriano, Natalia
2016-01-01
The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer’s disease. DOI: http://dx.doi.org/10.7554/eLife.14694.001 PMID:27501441
Amphiphilic gold nanoparticles as modulators of lipid membrane fusion
NASA Astrophysics Data System (ADS)
Tahir, Mukarram; Alexander-Katz, Alfredo
The fusion of lipid membranes is central to biological functions like inter-cellular transport and signaling and is coordinated by proteins of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) superfamily. We utilize molecular dynamics simulations to demonstrate that gold nanoparticles functionalized with a mixed-monolayer of hydrophobic and hydrophilic alkanethiol ligands can act as synthetic analogues of these fusion proteins and mediate lipid membrane fusion by catalyzing the formation of a toroidal stalk between adjacent membranes and enabling the formation of a fusion pore upon influx of Ca2+ into the exterior solvent. The fusion pathway enabled by these synthetic nanostructures is analogous to the regulated fast fusion pathway observed during synaptic vesicle fusion; it therefore provides novel physical insights into this important biological process while also being relevant in a number of single-cell therapeutic applications. Computational resources from NSF XSEDE contract TG-DMR130042. Financial support from DOE CSGF fellowship DE-FG02-97ER25308.
The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)
MELANDER, MARIA C.; JÜRGENSEN, HENRIK J.; MADSEN, DANIEL H.; ENGELHOLM, LARS H.; BEHRENDT, NIELS
2015-01-01
The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases. PMID:26316068
The UNC-45 Myosin Chaperone: From Worms to Flies to Vertebrates
Lee, Chi F.; Melkani, Girish C.; Bernstein, Sanford I.
2014-01-01
UNC-45 is a UCS domain protein that is critical for myosin stability and function. It likely aides in folding myosin during cellular differentiation and maintenance and protects myosin from denaturation during stress. Invertebrates have a single unc-45 gene that is expressed in both muscle and non-muscle tissues. Vertebrates possess one gene expressed in striated muscle (unc-45b) and one that is more generally expressed (unc-45a). Structurally, UNC-45 is composed of a series of alpha-helices connected by loops. It has an N-terminal TPR domain that binds to Hsp90 and a central domain composed of armadillo repeats. Its C-terminal UCS domain, which is also comprised of helical armadillo repeats, interacts with myosin. In this review, we present biochemical, structural and genetic analyses of UNC-45 in Caenorhabditis elegans, Drosophila melanogaster and various vertebrates. Further, we provide insights into UNC-45 functions, its potential mechanism of action and its roles in human disease. PMID:25376491
All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice
Strazzeri, Jennifer M.; Williams, David R.; Merigan, William H.
2018-01-01
Here we demonstrate the application of a method that could accelerate the development of novel therapies by allowing direct and repeatable visualization of cellular function in the living eye, to study loss of vision in animal models of retinal disease, as well as evaluate the time course of retinal function following therapeutic intervention. We use high-resolution adaptive optics scanning light ophthalmoscopy to image fluorescence from the calcium sensor GCaMP6s. In mice with photoreceptor degeneration (rd10), we measured restored visual responses in ganglion cell layer neurons expressing the red-shifted channelrhodopsin ChrimsonR over a six-week period following significant loss of visual responses. Combining a fluorescent calcium sensor, a channelrhodopsin, and adaptive optics enables all-optical stimulation and recording of retinal neurons in the living eye. Because the retina is an accessible portal to the central nervous system, our method also provides a novel non-invasive method of dissecting neuronal processing in the brain. PMID:29596518
Gutekunst, Matthias; Oren, Moshe; Weilbacher, Andrea; Dengler, Michael A.; Markwardt, Christiane; Thomale, Jürgen; Aulitzky, Walter E.; van der Kuip, Heiko
2011-01-01
Consistent with the excellent clinical results in testicular germ cell tumors (TGCT), most cell lines derived from this cancer show an exquisite sensitivity to Cisplatin. It is well accepted that the high susceptibility of TGCT cells to apoptosis plays a central role in this hypersensitive phenotype. The role of the tumor suppressor p53 in this response, however, remains controversial. Here we show that siRNA-mediated silencing of p53 is sufficient to completely abrogate hypersensitivity not only to Cisplatin but also to non-genotoxic inducers of p53 such as the Mdm2 antagonist Nutlin-3 and the proteasome inhibitor Bortezomib. The close relationship between p53 protein levels and induction of apoptosis is lost upon short-term differentiation, indicating that this predominant pro-apoptotic function of p53 is unique in pluripotent embryonal carcinoma (EC) cells. RNA interference experiments as well as microarray analysis demonstrated a central role of the pro-apoptotic p53 target gene NOXA in the p53-dependent apoptotic response of these cells. In conclusion, our data indicate that the hypersensitivity of TGCT cells is a result of their unique sensitivity to p53 activation. Furthermore, in the very specific cellular context of germ cell-derived pluripotent EC cells, p53 function appears to be limited to induction of apoptosis. PMID:21532991
Monoacylglycerol signalling and ABHD6 in health and disease.
Poursharifi, Pegah; Madiraju, Sri Ramachandra Murthy; Prentki, Marc
2017-09-01
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications. © 2017 John Wiley & Sons Ltd.
Predicting multicellular function through multi-layer tissue networks
Zitnik, Marinka; Leskovec, Jure
2017-01-01
Abstract Motivation: Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Results: Here, we present OhmNet, a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Availability and implementation: Source code and datasets are available at http://snap.stanford.edu/ohmnet. Contact: jure@cs.stanford.edu PMID:28881986
Mind the Organelle Gap - Peroxisome Contact Sites in Disease.
Castro, Inês Gomes; Schuldiner, Maya; Zalckvar, Einat
2018-03-01
The eukaryotic cell is organized as a complex grid system where membrane-bound cellular compartments, organelles, must be localized to the right place at the right time. One way to facilitate correct organelle localization and organelle cooperation is through membrane contact sites, areas of close proximity between two organelles that are bridged by protein/lipid complexes. It is now clear that all organelles physically contact each other. The main focus of this review is contact sites of peroxisomes, central metabolic hubs whose defects lead to a variety of diseases. New peroxisome contacts, their tethering complexes and functions have been recently discovered. However, if and how peroxisome contacts contribute to the development of peroxisome-related diseases is still a mystery. Copyright © 2018 Elsevier Ltd. All rights reserved.
What lysosomes actually tell us about Parkinson's disease?
Bourdenx, Mathieu; Dehay, Benjamin
2016-12-01
Parkinson's disease is a common neurodegenerative disorder of unknown origin mainly characterized by the loss of neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta and the presence of intraneuronal proteinaceous inclusions called Lewy bodies. Lysosomes are dynamic organelles that degrade, in a controlled manner, cellular components delivered via the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Increasing amounts of evidence suggest a central role of lysosomal impairment in PD aetiology. This review provides an update on how genetic evidence support this connection and highlights how the neuropathologic and mechanistic evidence might relate to the disease process in sporadic forms of Parkinson's disease. Finally, we discuss the influence of ageing on lysosomal impairment and PD aetiology and therapeutic strategies targeting lysosomal function. Copyright © 2016 Elsevier B.V. All rights reserved.
Long noncoding RNA in hematopoiesis and immunity.
Satpathy, Ansuman T; Chang, Howard Y
2015-05-19
Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
The balance of protein expression and degradation: an ESCRTs point of view.
Babst, Markus; Odorizzi, Greg
2013-08-01
Endosomal sorting complexes required for transport (ESCRTs) execute the biogenesis of late endosomal multivesicular bodies (MVBs). The ESCRT pathway has traditionally been viewed as a means by which transmembrane proteins are degraded in vacuoles/lysosomes. More recent studies aimed at understanding the broader functions of ESCRTs have uncovered unexpected links with pathways that control cellular metabolism. Central to this communication is TORC1, the kinase complex that controls many of the catabolic and anabolic systems. The connection between TORC1 activity and ESCRTs allows cells to quickly adapt to the stress of nutrient limitations until the longer-term autophagic pathway is activated. Increasing evidence also points to ESCRTs regulating RNA interference (RNAi) pathways that control translation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular parallels between neural and vascular development.
Eichmann, Anne; Thomas, Jean-Léon
2013-01-01
The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.
Renal control of calcium, phosphate, and magnesium homeostasis.
Blaine, Judith; Chonchol, Michel; Levi, Moshe
2015-07-07
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.
Zlopasa, Livija; Brachner, Andreas; Foisner, Roland
2016-06-01
Ankyrin repeats and LEM domain containing protein 1 (Ankle1) belongs to the LEM protein family, whose members share a chromatin-interacting LEM motif. Unlike most other LEM proteins, Ankle1 is not an integral protein of the inner nuclear membrane but shuttles between the nucleus and the cytoplasm. It contains a GIY-YIG-type nuclease domain, but its function is unknown. The mammalian genome encodes only one other GIY-YIG domain protein, termed Slx1. Slx1 has been described as a resolvase that processes Holliday junctions during homologous recombination-mediated DNA double strand break repair. Resolvase activity is regulated in a spatial and temporal manner during the cell cycle. We hypothesized that Ankle1 may have a similar function and its nucleo-cytoplasmic shuttling may contribute to the regulation of Ankle1 activity. Hence, we aimed at identifying the domains mediating Ankle1 shuttling and investigating whether cellular localization is affected during DNA damage response. Sequence analysis predicts the presence of two canonical nuclear import and export signals in Ankle1. Immunofluorescence microscopy of cells expressing wild-type and various mutated Ankle1-fusion proteins revealed a C-terminally located classical monopartite nuclear localization signal and a centrally located CRM1-dependent nuclear export signal that mediate nucleo-cytoplasmic shuttling of Ankle1. These sequences are also functional in heterologous proteins. The predominant localization of Ankle1 in the cytoplasm, however, does not change upon induction of several DNA damage response pathways throughout the cell cycle. We identified the domains mediating nuclear import and export of Ankle1. Ankle1's cellular localization was not affected following DNA damage.
Alshehri, M M; Robbins, S M; Senger, D L
2017-01-01
The p75 neurotrophin receptor (p75 NTR , a.k.a. CD271), a transmembrane glycoprotein and a member of the tumor necrosis family (TNF) of receptors, was originally identified as a nerve growth factor receptor in the mid-1980s. While p75 NTR is recognized to have important roles during neural development, its presence in both neural and nonneural tissues clearly supports the potential to mediate a broad range of functions depending on cellular context. Using an unbiased in vivo selection paradigm for genes underlying the invasive behavior of glioma, a critical characteristic that contributes to poor clinical outcome for glioma patients, we identified p75 NTR as a central regulator of glioma invasion. Herein we review the expanding role that p75 NTR plays in glioma progression with an emphasis on how p75 NTR may contribute to the treatment refractory nature of glioma. Based on the observation that p75 NTR is expressed and functional in two critical glioma disease reservoirs, namely, the highly infiltrative cells that evade surgical resection, and the radiation- and chemotherapy-resistant brain tumor-initiating cells (also referred to as brain tumor stem cells), we propose that p75 NTR and its myriad of downstream signaling effectors represent rationale therapeutic targets for this devastating disease. Lastly, we provide the provocative hypothesis that, in addition to the well-documented cell autonomous signaling functions, the neurotrophins, and their respective receptors, contribute in a cell nonautonomous manner to drive the complex cellular and molecular composition of the brain tumor microenvironment, an environment that fuels tumorigenesis. © 2017 Elsevier Inc. All rights reserved.
New insights into the pathways initiating and driving pancreatitis
Gukovskaya, Anna S.; Pandol, Stephen J.; Gukovsky, Ilya
2016-01-01
Purpose of review In this article, we discuss recent studies that advance our understanding of molecular and cellular factors initiating and driving pancreatitis, with the emphasis on the role of acinar cell organelle disorders. Recent findings The central physiologic function of the pancreatic acinar cell – to synthesize, store, and secrete digestive enzymes – critically relies on coordinated actions of the endoplasmic reticulum (ER), the endolysosomal system, mitochondria, and autophagy. Recent studies begin to unravel the roles of these organelles’ disordering in the mechanism of pancreatitis. Mice deficient in key autophagy mediators Atg5 or Atg7, or lysosome-associated membrane protein-2, exhibit dysregulation of multiple signaling and metabolic pathways in pancreatic acinar cells and develop spontaneous pancreatitis. Mitochondrial dysfunction caused by sustained opening of the permeability transition pore is shown to mediate pancreatitis in several clinically relevant experimental models, and its inhibition by pharmacologic or genetic means greatly reduces local and systemic pathologic responses. Experimental pancreatitis is also alleviated with inhibitors of ORAI1, a key component of the plasma membrane channel mediating pathologic rise in acinar cell cytosolic Ca2+. Pancreatitis-promoting mutations are increasingly associated with the ER stress. These findings suggest novel pathways and drug targets for pancreatitis treatment. In addition, the recent studies identify new mediators (e.g., neutrophil extracellular traps) of the inflammatory and other responses of pancreatitis. Summary The recent findings illuminate a critical role of organelles regulating the autophagic, endolysosomal, mitochondrial, and ER pathways in maintaining pancreatic acinar cell homeostasis and secretory function; provide compelling evidence that organelle disordering is a key pathogenic mechanism initiating and driving pancreatitis; and identify molecular and cellular factors that could be targeted to restore organellar functions and thus alleviate or treat pancreatitis. PMID:27428704
Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali
2016-11-01
Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Dendritic Cells: A Spot on Sialic Acid
Crespo, Hélio J.; Lau, Joseph T. Y.; Videira, Paula A.
2013-01-01
Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host–host and host-pathogen interactions occur. The role of glycan epitopes in cell–cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies. PMID:24409183
Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao
2015-04-01
Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Interactions of Freshwater Cyanobacteria with Bacterial Antagonists
Beier, Sara; Grabherr, Manfred
2017-01-01
ABSTRACT Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas, Stenotrophomonas, Acinetobacter, and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses in both heterotrophs and cyanobacteria were identified. The study contributes to a better understanding of the interspecies cellular interactions underpinning the persistence and collapse of cyanobacterial blooms. PMID:28115385
Interactions of Freshwater Cyanobacteria with Bacterial Antagonists.
Osman, Omneya Ahmed; Beier, Sara; Grabherr, Manfred; Bertilsson, Stefan
2017-04-01
Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas , Stenotrophomonas , Acinetobacter , and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses in both heterotrophs and cyanobacteria were identified. The study contributes to a better understanding of the interspecies cellular interactions underpinning the persistence and collapse of cyanobacterial blooms. Copyright © 2017 Osman et al.
Protein arginine methylation: Cellular functions and methods of analysis.
Pahlich, Steffen; Zakaryan, Rouzanna P; Gehring, Heinz
2006-12-01
During the last few years, new members of the growing family of protein arginine methyltransferases (PRMTs) have been identified and the role of arginine methylation in manifold cellular processes like signaling, RNA processing, transcription, and subcellular transport has been extensively investigated. In this review, we describe recent methods and findings that have yielded new insights into the cellular functions of arginine-methylated proteins, and we evaluate the currently used procedures for the detection and analysis of arginine methylation.
Mechanisms of information decoding in a cascade system of gene expression
NASA Astrophysics Data System (ADS)
Wang, Haohua; Yuan, Zhanjiang; Liu, Peijiang; Zhou, Tianshou
2016-05-01
Biotechnology advances have allowed investigation of heterogeneity of cellular responses to stimuli on the single-cell level. Functionally, this heterogeneity can compromise cellular responses to environmental signals, and it can also enlarge the repertoire of possible cellular responses and hence increase the adaptive nature of cellular behaviors. However, the mechanism of how this response heterogeneity is generated remains elusive. Here, by systematically analyzing a representative cellular signaling system, we show that (1) the upstream activator always amplifies the downstream burst frequency (BF) but the noiseless activator performs better than the noisy one, remarkably for small or moderate input signal strengths, and the repressor always reduces the downstream BF but the difference in the reducing effect between noiseless and noise repressors is very small; (2) both the downstream burst size and mRNA mean are a monotonically increasing function of the activator strength but a monotonically decreasing function of the repressor strength; (3) for repressor-type input, there is a noisy signal strength such that the downstream mRNA noise arrives at an optimal level, but for activator-type input, the output noise intensity is fundamentally a monotonically decreasing function of the input strength. Our results reveal the essential mechanisms of both signal information decoding and cellular response heterogeneity, whereas our analysis provides a paradigm for analyzing dynamics of noisy biochemical signaling systems.
NASA Astrophysics Data System (ADS)
Chen, Q.; Rice, A. F.
2005-03-01
Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).
SIRTUIN 1 AND SIRTUIN 3: PHYSIOLOGICAL MODULATORS OF METABOLISM
Nogueiras, Ruben; Habegger, Kirk M.; Chaudhary, Nilika; Finan, Brian; Banks, Alexander S.; Dietrich, Marcelo O.; Horvath, Tamas L.; Sinclair, David A.; Pfluger, Paul T.; Tschöop, Matthias H.
2013-01-01
The sirtuins are a family of highly conserved NAD+-dependent deacetylases that act as cellular sensors to detect energy availability and modulate metabolic processes. Two sirtuins that are central to the control of metabolic processes are mammalian sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), which are localized to the nucleus and mitochondria, respectively. Both are activated by high NAD+ levels, a condition caused by low cellular energy status. By deacetylating a variety of proteins that induce catabolic processes while inhibiting anabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately maintain cellular energy homeostasis. Defects in the pathways controlled by SIRT1 and SIRT3 are known to result in various metabolic disorders. Consequently, activation of sirtuins by genetic or pharmacological means can elicit multiple metabolic benefits that protect mice from diet-induced obesity, type 2 diabetes, and nonalcoholic fatty liver disease. PMID:22811431
Control of fluxes in metabolic networks
Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu
2016-01-01
Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218
E3Net: a system for exploring E3-mediated regulatory networks of cellular functions.
Han, Youngwoong; Lee, Hodong; Park, Jong C; Yi, Gwan-Su
2012-04-01
Ubiquitin-protein ligase (E3) is a key enzyme targeting specific substrates in diverse cellular processes for ubiquitination and degradation. The existing findings of substrate specificity of E3 are, however, scattered over a number of resources, making it difficult to study them together with an integrative view. Here we present E3Net, a web-based system that provides a comprehensive collection of available E3-substrate specificities and a systematic framework for the analysis of E3-mediated regulatory networks of diverse cellular functions. Currently, E3Net contains 2201 E3s and 4896 substrates in 427 organisms and 1671 E3-substrate specific relations between 493 E3s and 1277 substrates in 42 organisms, extracted mainly from MEDLINE abstracts and UniProt comments with an automatic text mining method and additional manual inspection and partly from high throughput experiment data and public ubiquitination databases. The significant functions and pathways of the extracted E3-specific substrate groups were identified from a functional enrichment analysis with 12 functional category resources for molecular functions, protein families, protein complexes, pathways, cellular processes, cellular localization, and diseases. E3Net includes interactive analysis and navigation tools that make it possible to build an integrative view of E3-substrate networks and their correlated functions with graphical illustrations and summarized descriptions. As a result, E3Net provides a comprehensive resource of E3s, substrates, and their functional implications summarized from the regulatory network structures of E3-specific substrate groups and their correlated functions. This resource will facilitate further in-depth investigation of ubiquitination-dependent regulatory mechanisms. E3Net is freely available online at http://pnet.kaist.ac.kr/e3net.
Lysosomal storage disorders: The cellular impact of lysosomal dysfunction
2012-01-01
Lysosomal storage diseases (LSDs) are a family of disorders that result from inherited gene mutations that perturb lysosomal homeostasis. LSDs mainly stem from deficiencies in lysosomal enzymes, but also in some non-enzymatic lysosomal proteins, which lead to abnormal storage of macromolecular substrates. Valuable insights into lysosome functions have emerged from research into these diseases. In addition to primary lysosomal dysfunction, cellular pathways associated with other membrane-bound organelles are perturbed in these disorders. Through selective examples, we illustrate why the term “cellular storage disorders” may be a more appropriate description of these diseases and discuss therapies that can alleviate storage and restore normal cellular function. PMID:23185029
Lee, Haejung; Kim, Myoung Soo; Son, Hyun Kyung; Ahn, Sukhee; Kim, Jung Soon; Kim, Young Hae
2007-10-01
The purpose of this study was to examine the degrees of cellular phone usage among middle school students and to identify discriminating factors of addictive use of cellular phones among sociodemographic and psychological variables. From 123 middle schools in Busan, potential participants were identified through stratified random sampling and 747 middle school students participated in the study. The data was collected from December 1, 2004 to December 30, 2004. Descriptive and discriminant analyses were used. Fifty seven percent of the participants were male and 89.7% used cellular phones at school. The participants were grouped into three groups depending on the levels of the cellular phone usage: addicted (n=117), dependent (n=418), non-addicted (n=212). Within the three groups, two functions were produced and only one function was significant, discriminating the addiction group from non-addiction group. Additional discriminant analysis with only two groups produced one function that classified 81.2% of the participants correctly into the two groups. Impulsiveness, anxiety, and stress were significant discriminating factors. Based on the findings of this study, developing intervention programs focusing on impulsiveness, anxiety and stress to reduce the possible addictive use of cellular phones is suggested.
Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?
Domenech, Maribella; Polo-Corrales, Lilliana; Ramirez-Vick, Jaime E; Freytes, Donald O
2016-12-01
Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.
Cellular stress induces a protective sleep-like state in C. elegans.
Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl
2014-10-20
Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brzezicka, Emilia; Kozieradzka-Kiszkurno, Małgorzata
2018-01-01
Until now, development of the female gametophyte has been investigated only in some species of Crassulaceae using a light microscope. To the best of our knowledge, this is the first report that describes the process of megasporogenesis and megagametogenesis in Crassulaceae in detail. To achieve this, we performed embryological studies on Sedum hispanicum L. (Crassulaceae). Cytochemical analysis detected the presence of proteins, lipids, and insoluble polysaccharides in individual cells of the gametophyte. The development of the embryo sac conforms to the monosporic or Polygonum-type in anatropous, crassinucellate, and bitegmic ovules. One megaspore mother cell initiates the process of megasporogenesis. Prior to the first meiotic division, the nucleus is centrally located within the meiocyte. Other organelles seem to be distributed evenly over the micropylar and chalazal parts during the development. Most storage reserves detected during megasporogenesis were observed in the megaspore mother cell. Three mitotic divisions within the chalazal functional megaspore resulted in the enlargement of the eight-nucleated embryo sac. In the seven-celled gametophyte, three chalazally located antipodes degenerated. A mature embryo sac was formed by the egg apparatus and central cell. When the antipodes degenerated, both synergids became organelle-rich and more active. The concentration of lipid droplets, starch grains, and proteins increased during megagametogenesis in the growing gametophyte. In the cellular embryo sac, the central cell can be distinguished by its largest accumulation. Our data confirm the hypothesis that plasmodesmata with electron-dense dome are formed during development of the female gametophyte in S. hispanicum and not just during the stages of embryogenesis. We observed these structures in megaspores and coenocytic embryo sac walls. Functions of observed plasmodesmata are discussed.
Zhou, Yu; Wang, Liyun; Park, Sung-Soo; Martin, Bronwen; Wang, Rui; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Peers, Chris; Maudsley, Stuart
2011-01-01
The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity. PMID:21738745
Applications of systems biology towards microbial fuel production.
Gowen, Christopher M; Fong, Stephen S
2011-10-01
Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Erickson, Michelle A.
2018-01-01
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood–brain barrier (BBB), blood–cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions. PMID:29496890
Derivation of Functional Human Astrocytes from Cerebral Organoids
Dezonne, Rômulo Sperduto; Sartore, Rafaela Costa; Nascimento, Juliana Minardi; Saia-Cereda, Verônica M.; Romão, Luciana Ferreira; Alves-Leon, Soniza Vieira; de Souza, Jorge Marcondes; Martins-de-Souza, Daniel; Rehen, Stevens Kastrup; Gomes, Flávia Carvalho Alcantara
2017-01-01
Astrocytes play a critical role in the development and homeostasis of the central nervous system (CNS). Astrocyte dysfunction results in several neurological and degenerative diseases. However, a major challenge to our understanding of astrocyte physiology and pathology is the restriction of studies to animal models, human post-mortem brain tissues, or samples obtained from invasive surgical procedures. Here, we report a protocol to generate human functional astrocytes from cerebral organoids derived from human pluripotent stem cells. The cellular isolation of cerebral organoids yielded cells that were morphologically and functionally like astrocytes. Immunolabelling and proteomic assays revealed that human organoid-derived astrocytes express the main astrocytic molecular markers, including glutamate transporters, specific enzymes and cytoskeletal proteins. We found that organoid-derived astrocytes strongly supported neuronal survival and neurite outgrowth and responded to ATP through transient calcium wave elevations, which are hallmarks of astrocyte physiology. Additionally, these astrocytes presented similar functional pathways to those isolated from adult human cortex by surgical procedures. This is the first study to provide proteomic and functional analyses of astrocytes isolated from human cerebral organoids. The isolation of these astrocytes holds great potential for the investigation of developmental and evolutionary features of the human brain and provides a useful approach to drug screening and neurodegenerative disease modelling. PMID:28345587
Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells.
Lay, Sui; Sanislav, Oana; Annesley, Sarah J; Fisher, Paul R
2016-01-01
Mitochondria not only play a critical and central role in providing metabolic energy to the cell but are also integral to the other cellular processes such as modulation of various signaling pathways. These pathways affect many aspects of cell physiology, including cell movement, growth, division, differentiation, and death. Mitochondrial dysfunction which affects mitochondrial bioenergetics and causes oxidative phosphorylation defects can thus lead to altered cellular physiology and manifest in disease. The assessment of the mitochondrial bioenergetics can thus provide valuable insights into the physiological state, and the alterations to the state of the cells. Here, we describe a method to successfully use the Seahorse XF(e)24 Extracellular Flux Analyzer to assess the mitochondrial respirometry of the cellular slime mold Dictyostelium discoideum.
Localization of rem2 in the central nervous system of the adult rainbow trout (Oncorhynchus mykiss).
Downs, Anna G; Scholles, Katie R; Hollis, David M
2016-12-01
Rem2 is member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins known to influence Ca 2+ entry into the cell. In addition, Rem2, which is found at high levels in the vertebrate brain, is also implicated in cell proliferation and synapse formation. Though the specific, regional localization of Rem2 in the adult mammalian central nervous system has been well-described, such information is lacking in other vertebrates. Rem2 is involved in neuronal processes where the capacities between adults of different vertebrate classes vary. Thus, we sought to localize the rem2 gene in the central nervous system of an adult anamniotic vertebrate, the rainbow trout (Oncorhynchus mykiss). In situ hybridization using a digoxigenin (DIG)-labeled RNA probe was used to identify the regional distribution of rem2 expression throughout the trout central nervous system, while real-time polymerase chain reaction (rtPCR) further supported these findings. Based on in situ hybridization, the regional distribution of rem2 occurred within each major subdivision of the brain and included large populations of rem2 expressing cells in the dorsal telencephalon of the cerebrum, the internal cellular layer of the olfactory bulb, and the optic tectum of the midbrain. In contrast, no rem2 expressing cells were resolved within the cerebellum. These results were corroborated by rtPCR, where differential rem2 expression occurred between the major subdivisions assayed with the highest levels being found in the cerebrum, while it was nearly absent in the cerebellum. These data indicate that rem2 gene expression is broadly distributed and likely influences diverse functions in the adult fish central nervous system. Copyright © 2016 Elsevier B.V. All rights reserved.
Genetics Home Reference: spastic paraplegia type 3A
... on PubMed or Free article on PubMed Central Blackstone C. Cellular pathways of hereditary spastic paraplegia. Annu ... PP, Soderblom C, Tao-Cheng JH, Stadler J, Blackstone C. SPG3A protein atlastin-1 is enriched in ...
Innovative cellular distance structures from polymeric and metallic threads
NASA Astrophysics Data System (ADS)
Wieczorek, F.; Trümper, W.; Cherif, C.
2017-10-01
Knitting allows a high individual adaptability of the geometry and properties of flat-knitted spacer fabrics. This offers advantages for the specific adjustment of the mechanical properties of innovative composites based on highly viscous matrix systems such as bone cement, elastomer or foam and cellular reinforcing structures made from e. g. polymeric monofilaments or metallic wires. The prerequisite is the availability of binding solutions for highly productive production of functional, cellular, self-stabilized spacer flat knitted fabrics as supporting and functionalized structures.
Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.
2016-01-01
Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296
Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan
2017-06-07
Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.
The requirement of iron transport for lymphocyte function.
Lo, Bernice
2016-01-01
Iron is essential in multiple cellular processes and is especially critical for cellular respiration and division. A new study identified a mutation affecting the iron import receptor TfR1 as the cause of a human primary immunodeficiency, illuminating the importance of iron in immune cell function.
Environmental contaminants have been reported to function as hormone mimics in various wildlife species. To investigate a potential mechanism for the interaction of contaminants with the endocrine system, we evaluated the cellular bioavailability of numerous chemicals. Hormone bi...
NASA Astrophysics Data System (ADS)
Sohn, Illsoo; Lee, Byong Ok; Lee, Kwang Bok
Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.
NASA Astrophysics Data System (ADS)
Gutowitz, Howard
1991-08-01
Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices. Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole. Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.
Central obesity, type 2 diabetes and insulin: exploring a pathway full of thorns
Papakyriakou, Panagiotis; Panagiotou, Themistoklis N.
2015-01-01
The prevalence of type 2 diabetes (T2D) is rapidly increasing. This is strongly related to the contemporary lifestyle changes that have resulted in increased rates of overweight individuals and obesity. Central (intra-abdominal) obesity is observed in the majority of patients with T2D. It is associated with insulin resistance, mainly at the level of skeletal muscle, adipose tissue and liver. The discovery of macrophage infiltration in the abdominal adipose tissue and the unbalanced production of adipocyte cytokines (adipokines) was an essential step towards novel research perspectives for a better understanding of the molecular mechanisms governing the development of insulin resistance. Furthermore, in an obese state, the increased cellular uptake of non-esterified fatty acids is exacerbated without any subsequent β-oxidation. This in turn contributes to the accumulation of intermediate lipid metabolites that cause defects in the insulin signaling pathway. This paper examines the possible cellular mechanisms that connect central obesity with defects in the insulin pathway. It discusses the discrepancies observed from studies organized in cell cultures, animal models and humans. Finally, it emphasizes the need for therapeutic strategies in order to achieve weight reduction in overweight and obese patients with T2D. PMID:26170839