Cheng, Chi-Yuan; Han, Songi
2013-01-01
Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.
NASA Technical Reports Server (NTRS)
Vertucci, C. W.; Leopold, A. C.
1987-01-01
The physical status of water in seeds has a pivotal role in determining the physiological reactions that can take place in the dry state. Using water sorption isotherms from cotyledon and axis tissue of five leguminous seeds, the strength of water binding and the numbers of binding sites have been estimated using van't Hoff analyses and the D'Arcy/Watt equation. These parameters of water sorption are calculated for each of the three regions of water binding and for a range of temperatures. Water sorption characteristics are reflective of the chemical composition of the biological materials as well as the temperature at which hydration takes place. Changes in the sorption characteristics with temperature and hydration level may suggest hydration-induced structural changes in cellular components.
Ablation of Porcine Ligamentum Flavum with Ho:YAG, Q-Switched Ho:YAG, and Quadrupled Nd:YAG Lasers
2015-07-02
was that because the LF started the test in a well‐ hydrated state, and therefore the water to be excited by the laser was abundant, the mass‐loss...dry versus well‐ hydrated tissue. In the fourth experiment, as shown in figure 12, reducing the pulsewidth decreases thermal injury in the form of...targeted the Extra Cellular Matrix (ECM), resulting in direct cellular decomposition . Second, the pulsewidth was much shorter. Though the LF was not
Ablation of Porcine Ligamentum Flavum with Ho:YAG, Q-Switched Ho:YAG, and Quadrupled Nd:YAG Lasers
2015-10-07
was linear over all 450 laser pulses. The expectation was that because the LF started the test in a well‐ hydrated state, and therefore the water to...laser having an increased penetration depth in very dry versus well‐ hydrated tissue, or be due to the absorptive properties of the carbonized LF...targeted the Extra Cellular Matrix (ECM), resulting in direct cellular decomposition . Second, the pulsewidth was much shorter. Though the LF was not
Peckys, Diana B; de Jonge, Niels
2015-09-11
This protocol describes the labeling of epidermal growth factor receptor (EGFR) on COS7 fibroblast cells, and subsequent correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM) of whole cells in hydrated state. Fluorescent quantum dots (QDs) were coupled to EGFR via a two-step labeling protocol, providing an efficient and specific protein labeling, while avoiding label-induced clustering of the receptor. Fluorescence microscopy provided overview images of the cellular locations of the EGFR. The scanning transmission electron microscopy (STEM) detector was used to detect the QD labels with nanoscale resolution. The resulting correlative images provide data of the cellular EGFR distribution, and the stoichiometry at the single molecular level in the natural context of the hydrated intact cell. ESEM-STEM images revealed the receptor to be present as monomer, as homodimer, and in small clusters. Labeling with two different QDs, i.e., one emitting at 655 nm and at 800 revealed similar characteristic results.
Mechanisms of water-salt metabolism disturbances in dogs subjected to six month hypokinesia
NASA Technical Reports Server (NTRS)
Korolkov, V. I.; Kovalenko, Y. A.; Krotov, V. P.; Ilyushko, N. A.; Kondratyeva, V. A.; Kondratyev, Y. I.
1980-01-01
Water-salt metabolism in dogs during prolonged restricted motor activity (hypokinesia) was investigated. It was found that hydration occurred and fluid was redistributed between the extra- and intra-cellular sectors. Also, electrolyte excretion rose, and magnetism and calcium metabolism changed significantly. It is concluded that the forces caused by muscle strain proper (which was decreased under conditions of hypokinesia) influence the state of bone metabolism.
Raggueneau, J L; Gambini, D; Levante, A; Riche, F; de Vernejoul, P; Echter, E
1979-01-01
To evaluate the extra-cellular space, we measure the impedance (or resistance) of the extra-cellular electrolyte compartment with an alternating current at a fixed frequency of 5 kHz that can't pass through the cellular membrane. Total water is measured by the impedance to a current of 1 MHz which is conducted by extra and intra cellular hydro-electrolytic space. There is a good correlation between electrical impedance measurements and distribution of isotopic markers. The extra-cellular compartment was evaluated by diffusion of D.T.P.A. marked with 99mTc or with 111In and the total water by the diffusion of Antipyrin marked with 1,311 or 1,231. The findings indicate that there is not a significant difference between the results of the size of extra-cellular water measured by electrical impedance and D.T.P.A. diffusion (r = 0.75). Comparable results have been obtained in the determination of total water by electrical impedance measure and diffusion of Antipyrin (r = 0.90). We have also studied by method of electric impedance:--The state of hydratation in head injured patients and after pituitary surgery.--The lean body mass and hydro-electrolyte compartments in pregnancy. Electrical impedance measure seems to be a simple and reliable method to assess the hydric state of patients.
He, Qiang; Jia, Zhanwei; Zhang, Ying; Ren, Xiumin
2017-03-01
We aimed to investigate the effect of morin hydrate on neural stem cells (NSCs) isolated from mouse inner ear and its potential in protecting neuronal hearing loss. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and bromodeoxyuridine incorporation assays were employed to assess the effect of morin hydrate on the viability and proliferation of in vitro NSC culture. The NSCs were then differentiated into neurons, in which neurosphere formation and differentiation were evaluated, followed by neurite outgrowth and neural excitability measurements in the subsequent in vitro neuronal network. Mechanotransduction of cochlea ex vivo culture and auditory brainstem responses threshold and distortion product optoacoustic emissions amplitude in mouse ototoxicity model were also measured following gentamicin treatment to investigate the protective role of morin hydrate against neuronal hearing loss. Morin hydrate improved viability and proliferation, neurosphere formation and neuronal differentiation of inner ear NSCs, and promoted in vitro neuronal network functions. In both ex vivo and in vivo ototoxicity models, morin hydrate prevented gentamicin-induced neuronal hearing loss. Morin hydrate exhibited potent properties in promoting growth and differentiation of inner ear NSCs into functional neurons and protecting from gentamicin ototoxicity. Our study supports its clinical potential in treating neuronal hearing loss. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells
Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei
2015-01-01
A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199
Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells
Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...
2015-09-01
Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less
Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.
Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei
2015-09-01
A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.
Gorman, S P; Tunney, M M; Keane, P F; Van Bladel, K; Bley, B
1998-03-15
The effective long-term use of indwelling ureteral stents is often hindered by the formation of encrusting deposits which may cause obstruction and blockage of the stent. Development of improved ureteral stent biomaterials capable of preventing or reducing encrustation is therefore particularly desirable. In this study, the suitability as a ureteral stent biomaterial of Aquavene, a novel poly(ethylene oxide)/polyurethane composite hydrogel was compared with that of silicone and polyurethane, two materials widely employed in ureteral stent manufacture. Examination of Aquavene in dry and hydrated states by confocal laser scanning microscopy, scanning electron microscopy, and atomic force microscopy showed the presence of numerous channels within a cellular matrix structure. The channel size increased considerably to as much as 10 microm in diameter in the hydrated state. Aquavene provided superior resistance to encrustation and intraluminal blockage over a 24-week period in a simulated urine flow model. Unobstructed urine flow continued with Aquavene at 24 weeks, whereas silicone and polyurethane stents became blocked with encrustation at 8 and 10 weeks, respectively. Weight loss within Aquavene on the order of 9% (w/w) over the 24-week flow period indicates that extraction of the noncrosslinked poly(ethylene oxide) hydrogel may be responsible for the prevention of encrustation blockage of this biomaterial. In the dry state, Aquavene was significantly harder than either silicone or polyurethane, as shown by Young's modulus, and rapidly became soft on hydration. These additional properties of Aquavene would facilitate ease of stent insertion in the dry state past obstructions in the ureter and provide improved patient comfort on subsequent biomaterial hydration in situ. Aquavene is a promising candidate for use in the urinary tract, as it is probable that effective long-term urine drainage would be maintained in vivo. Further evaluation of this novel biomaterial is therefore warranted.
Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi
2016-01-01
Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147
Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi
2016-07-01
Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.
Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms
Fernandez, Jose-Jesus; Laugks, Ulrike; Schaffer, Miroslava; Bäuerlein, Felix J.B.; Khoshouei, Maryam; Baumeister, Wolfgang; Lucic, Vladan
2016-01-01
Imaging of fully hydrated, vitrified biological samples by electron tomography yields structural information about cellular protein complexes in situ. Here we present a computational procedure that removes artifacts of three-dimensional reconstruction caused by contamination present in samples during imaging by electron microscopy. Applying the procedure to phantom data and electron tomograms of cellular samples significantly improved the resolution and the interpretability of tomograms. Artifacts caused by surface contamination associated with thinning by focused ion beam, as well as those arising from gold fiducial markers and from common, lower contrast contamination, could be removed. Our procedure is widely applicable and is especially suited for applications that strive to reach a higher resolution and involve the use of recently developed, state-of-the-art instrumentation. PMID:26743046
Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase.
Ghane, Tahereh; Gorriz, Rene F; Wrzalek, Sandro; Volkenandt, Senta; Dalatieh, Ferand; Reidelbach, Marco; Imhof, Petra
2018-02-12
Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO's catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).
K V, Athira; Madhana, Rajaram Mohanrao; Kasala, Eshvendar Reddy; Samudrala, Pavan Kumar; Lahkar, Mangala; Gogoi, Ranadeep
2016-12-01
Cisplatin is a widely used chemotherapeutic drug; however, it induces damage on kidney and liver at clinically effective higher doses. Morin hydrate possesses antioxidant, anti-inflammatory, and anticancer properties. Therefore, we aimed to investigate the effects of morin hydrate (50 and 100 mg/kg, orally) against the renohepatic toxicity induced by a high dose of cisplatin (20 mg/kg, intraperitoneally). Renal and hepatic function, oxidative/nitrosative stress, and inflammatory markers along with histopathology were evaluated. Morin hydrate ameliorated cisplatin-induced renohepatic toxicity significantly at 100 mg/kg as evidenced from the significant reversal of cisplatin-induced body weight loss, mortality, functional and structural alterations of kidney, and liver. The protective role offered by morin hydrate against cisplatin-induced renohepatic toxicity is by virtue of its free radical scavenging property, thereby abating the depletion of cellular antioxidant defense components and through modulation of inflammatory cytokines. We speculate morin hydrate as a protective candidate against renohepatic toxicity of cisplatin. © 2016 Wiley Periodicals, Inc.
Cellular Electron Cryotomography: Toward Structural Biology In Situ.
Oikonomou, Catherine M; Jensen, Grant J
2017-06-20
Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.
Garcia, Guilherme J.M.; Boucher, Richard C.; Elston, Timothy C.
2013-01-01
Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration. PMID:23442922
NASA Technical Reports Server (NTRS)
Lett, J. T.; Peters, E. L.
1992-01-01
Until recently, OH radicals formed in bulk nuclear water were believed to be the major causes of DNA damage that results in cell death, especially for sparsely ionizing radiations. That hypothesis has now been challenged, if not refuted. Lethal genomic DNA damage is determined mainly by energy deposition in deoxyribonucleoproteins, and their hydration shells, and charge (energy) transfer processes within those structures.
Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation
NASA Astrophysics Data System (ADS)
Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra
2014-10-01
We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.
The U.S. Geological Survey’s Gas Hydrates Project
Ruppel, Carolyn D.
2018-01-17
The Gas Hydrates Project at the U.S. Geological Survey (USGS) focuses on the study of methane hydrates in natural environments. The project is a collaboration between the USGS Energy Resources and the USGS Coastal and Marine Geology Programs and works closely with other U.S. Federal agencies, some State governments, outside research organizations, and international partners. The USGS studies the formation and distribution of gas hydrates in nature, the potential of hydrates as an energy resource, and the interaction between methane hydrates and the environment. The USGS Gas Hydrates Project carries out field programs and participates in drilling expeditions to study marine and terrestrial gas hydrates. USGS scientists also acquire new geophysical data and sample sediments, the water column, and the atmosphere in areas where gas hydrates occur. In addition, project personnel analyze datasets provided by partners and manage unique laboratories that supply state-of-the-art analytical capabilities to advance national and international priorities related to gas hydrates.
A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems
NASA Astrophysics Data System (ADS)
White, M. D.
2012-12-01
The potential energy resource of natural gas hydrates held in geologic accumulations, using lower volumetric estimates, is sufficient to meet the world demand for natural gas for nearly eight decades, at current rates of increase. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. The thermodynamic complexity of gas hydrate systems makes numerical simulation a particularly attractive research tool for understanding production strategies and experimental observations. Simply stated, producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. Alternatively, the guest-molecule exchange technology releases CH4 by replacing it with more thermodynamically stable molecules (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it potentially releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, nonaqueous liquid, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulations that predict the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. The phase equilibria for the ternary gas hydrate system within the gas hydrate stability range of composition, temperature and pressure, includes regions where the gas hydrate is in equilibrium with gas, nonaqueous liquid, or mixtures of gas and nonaqeuous liquid near the CO2-CH4-N2 mixture critical point. In these regions, solutions to cubic equations of state can be nonconvergent without accurate initial guesses. A hybrid tabular-cubic equation of state is described which avoids convergence issues, but conserves the characteristics and advantages of the cubic equation of state approaches to phase equilibria calculations. The application of interest will be the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.
Neutrophilic inflammation is associated with altered airway hydration in stable asthmatics.
Loughlin, Ceila E; Esther, Charles R; Lazarowski, Eduardo R; Alexis, Neil E; Peden, David B
2010-01-01
Airway dehydration is a potential trigger of bronchoconstriction in exercise-induced asthma; however, its role in stable asthma has not been explored. Using sputum percent solids, as an indicator of airway hydration, we sought relationships between airway hydration and other known markers of neutrophilic (TH1) and allergic (TH2) inflammation in stable asthma. Thirty-seven atopic subjects with stable asthma and 15 healthy controls underwent sputum induction. Sputum was analyzed for percent solids, cell counts, cellular and biochemical markers of inflammation and purines. Sputum percent solids was significantly elevated in stable asthmatics vs. controls and positively correlated with markers of neutrophilic/TH1-type inflammation (neutrophils, IL-8 and AMP). Sputum percent solids were not correlated with markers of allergic/TH2-type inflammation. These data suggest a direct relationship between neutrophil inflammation and airway hydration in stable asthmatics. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Royle, S. H.; Montgomery, W.; Kounaves, S. P.; Sephton, M. A.
2017-12-01
A number of missions to Mars have analyzed the composition of surface samples using thermal extraction techniques. The temperatures of decomposition have been used as diagnostic information for the materials present. One material of great current interest is perchlorate, a relatively recently discovered component of Mars surface geochemistry that leads to deleterious effects on organic matter during thermal extraction. Knowledge of the thermal decomposition behavior of perchlorate salts is essential for mineral identification and possible avoidance of confounding interactions with organic matter. We have performed a series of stepped pyrolysis experiments on samples of magnesium perchlorate hydrate which were dehydrated to various extents - as confirmed by XRD and FTIR analysis. Our data reveal that the hydration state of magnesium perchlorate has a significant effect on decomposition temperature, with differing temperature releases of oxygen corresponding to different perchlorate hydration states. We find that the peak temperature of oxygen release increases from 500 to 600°C as the proportion of the tetrahydrate form in the sample increases and the hexahydrate form decreases. It was known previously that cation chemistry can affect the temperature of oxygen release and now our work shows that the hydration state of these salts can lead to similar variations. Consequently, incorrect identification of perchlorate species may occur if hydration state is not taken into account and a mixture of metastable hydration states (of one type of perchlorate) may be mistaken for a mixture of perchlorate salts. Our findings are important for Mars as the hydration state of salts in the regolith may change throughout the Martian year due to large variations in humidity and temperature.
NASA Astrophysics Data System (ADS)
Tomobe, Katsufumi; Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji
2016-05-01
The conformational change from the cellular prion protein (PrPc) to scrapie prion protein (PrPsc) is a key process in prion diseases. The prion protein has buried water molecules which significantly contribute to the stability of the protein; however, there has been no report investigating the influence on the buried hydration sites by a pathogenic mutation not adjacent to the buried hydration sites. Here, we perform molecular dynamics simulations of wild type (WT) PrPc and pathogenic point mutant T188R to investigate conformational changes and the buried hydration sites. In WT-PrPc, four buried hydration sites are identified by residence time and rotational relaxation analysis. However, there are no stable buried hydration sites in one of T188R simulations, which indicates that T188R sometimes makes the buried hydration sites fragile. We also find that fluctuations of subdomains S1-H1-S2 and H1-H2 increase in T188R when the buried hydration sites become unstable. Since the side chain of arginine which is replaced from threonine in T188R is larger than of threonine, the side chain cannot be embedded in the protein, which is one of the causes of the instability of subdomains. These results show correlations between the buried hydration sites and the mutation which is far from them, and provide a possible explanation for the instability by mutation.
Determinants of Erythrocyte Hydration In Current Opinion in Hematology
Rinehart, Jesse; Gulcicek, Erol E.; Joiner, Clinton H.; Lifton, Richard P.; Gallagher, Patrick G.
2012-01-01
Purpose of Review Maintenance of cellular water and solute homeostasis is critical for survival of the erythrocyte. Inherited or acquired disorders that perturb this homeostasis jeopardize the erythrocyte, leading to its premature destruction. This report reviews recent progress in our understanding the determinants of erythrocyte hydration and its related disorders. Recent Findings The molecular and genetic bases of primary disorders of erythrocyte hydration are poorly understood. Recent studies have implicated roles for the anion transporter, SLC4A1, and the Rh-associated glycoprotein, RhAG. The most common secondary disorder associated with perturbed hydration of the erythrocyte is sickle cell disease, where dehydration contributes to disease pathology and clinical complications. Advances in understanding the mechanisms regulating erythrocyte solute and water content, particularly associated with KCl cotransport and Gardos channel activation, have revealed novel signaling mechanisms controlling erythrocyte hydration. These signaling pathways may provide innovative strategies to prevent erythrocyte dehydration in sickle cell disease. Summary Clinical, translational and biologic studies all contribute to our knowledge of erythrocyte hydration. Understanding the mechanisms controlling erythrocyte water and solute homeostasis will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment. PMID:20182354
Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores
NASA Astrophysics Data System (ADS)
Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael
2017-08-01
During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and about eight water molecules in the first hydration shell within a radius of 3.3 Å at all higher hydration states. Moreover, the MD results show that the complete hydration shells are nearly spherical with an orthogonal coordination sphere. They could only be formed when the basal spacing d001 ≥ 18.7 Å, i.e., approximately, the interlayer separation h ≥ 10 Å. Comparison between DFT and MD simulations shows that DFT failed to reproduce the outer-sphere complexes in the Stern-layer (within ˜5.0 Å from the clay basal-plane), observed in the MD simulations.
The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).
Ayrapetyan, Sinerik
2015-09-01
The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.
Garcia, Guilherme J M; Boucher, Richard C; Elston, Timothy C
2013-02-05
Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Farr, Erik P.; Zho, Chen-Chen; Challa, Jagannadha R.; Schwartz, Benjamin J.
2017-08-01
The structure of the hydrated electron, particularly whether it exists primarily within a cavity or encompasses interior water molecules, has been the subject of much recent debate. In Paper I [C.-C. Zho et al., J. Chem. Phys. 147, 074503 (2017)], we found that mixed quantum/classical simulations with cavity and non-cavity pseudopotentials gave different predictions for the temperature dependence of the rate of the photoexcited hydrated electron's relaxation back to the ground state. In this paper, we measure the ultrafast transient absorption spectroscopy of the photoexcited hydrated electron as a function of temperature to confront the predictions of our simulations. The ultrafast spectroscopy clearly shows faster relaxation dynamics at higher temperatures. In particular, the transient absorption data show a clear excess bleach beyond that of the equilibrium hydrated electron's ground-state absorption that can only be explained by stimulated emission. This stimulated emission component, which is consistent with the experimentally known fluorescence spectrum of the hydrated electron, decreases in both amplitude and lifetime as the temperature is increased. We use a kinetic model to globally fit the temperature-dependent transient absorption data at multiple temperatures ranging from 0 to 45 °C. We find the room-temperature lifetime of the excited-state hydrated electron to be 137 ±40 fs, in close agreement with recent time-resolved photoelectron spectroscopy (TRPES) experiments and in strong support of the "non-adiabatic" picture of the hydrated electron's excited-state relaxation. Moreover, we find that the excited-state lifetime is strongly temperature dependent, changing by slightly more than a factor of two over the 45 °C temperature range explored. This temperature dependence of the lifetime, along with a faster rate of ground-state cooling with increasing bulk temperature, should be directly observable by future TRPES experiments. Our data also suggest that the red side of the hydrated electron's fluorescence spectrum should significantly decrease with increasing temperature. Overall, our results are not consistent with the nearly complete lack of temperature dependence predicted by traditional cavity models of the hydrated electron but instead agree qualitatively and nearly quantitatively with the temperature-dependent structural changes predicted by the non-cavity hydrated electron model.
NASA Astrophysics Data System (ADS)
Huang, Huachuan; Liu, Qiao; Zhu, Liguo; Li, Zeren
2018-01-01
The hydration of biomolecules is closely related to the dynamic process of their functional expression, therefore, characterizing hydration phenomena is a subject of keen interest. However, direct measurements on the global hydration state of biomolecules couldn't have been acquired using traditional techniques such as thermodynamics, ultrasound, microwave spectroscopy or viscosity, etc. In order to realize global hydration characterization of amino acid such as L-threonine, terahertz time-domain attenuated total reflectance spectroscopy (THz-TDS-ATR) was adopted in this paper. By measuring the complex permittivity of L-threonine solutions with various concentrations in the THz region, the hydration state and its concentration dependence were obtained, indicating that the number of hydrous water decreased with the increase of concentration. The hydration number was evaluated to be 17.8 when the molar concentration of L-threonine was 0.34 mol/L, and dropped to 13.2 when the molar concentration increased to 0.84 mol/L, when global hydration was taken into account. According to the proposed direct measurements, it is believed that the THz-TDS-ATR technique is a powerful tool for studying the picosecond molecular dynamics of amino acid solutions.
2015-10-15
to state-of- hydration . Polarization modulated infrared reflection- absorption spectroscopy experiments are enabled by the use of a spin-coater to coat...NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SPEEK, Nafion, Ionomers, state-of- hydration ...enabled correlation of the exchange site structure to state-of- hydration . Polarization modulated infrared reflection-absorption spectroscopy experiments
[Skin hydration and hydrating products].
Duplan, H; Nocera, T
2018-05-01
One of the skin's principal functions is to protect the body against its environment by maintaining an effective epidermal barrier, not only against external factors, but also to prevent water loss from the body. Indeed, water homeostasis is vital for the normal physiological functioning of skin. Hydration levels affect not only visible microscopic parameters such as the suppleness and softness of skin, but also molecular parameters, enzyme activities and cellular signalling within the epidermis. The body is continually losing some of its water, but this phenomenon is limited and the optimal hydration gradient in skin is ensured via a set of sophisticated regulatory processes that rely on the functional and dynamic properties of the uppermost level of the skin consisting of the stratum corneum. The present article brings together data recently acquired in the fields of skin hydration and the characterisation of dehydrated or dry skin, whether through study of the regulatory processes involved or as a result of changes in the techniques used for in situ measurement, and thus in optimisation of management. Copyright © 2018. Published by Elsevier Masson SAS.
Takeuchi, Shoko; Kojima, Takashi; Hashimoto, Kentaro; Saito, Bunnai; Sumi, Hiroyuki; Ishikawa, Tomoyasu; Ikeda, Yukihiro
2015-01-01
Different crystal packing of hydrates from anhydrate crystals leads to different physical properties, such as solubility and stability. Investigation of the potential of varied hydrate formation, and understanding the stability in an anhydrous/hydrate system, are crucial to prevent an undesired transition during the manufacturing process and storage. Only one anhydrous form of T-3256336, a novel inhibitor of apoptosis (IAP) protein antagonist, was discovered during synthesis, and no hydrate form has been identified. In this study, we conducted hydrate screening such as dynamic water vapor sorption/desorption (DVS), and the slurry experiment, and characterized the solid-state properties of anhydrous/hydrate forms to determine the most desirable crystalline form for development. New hydrate forms, both mono-hydrate and hemi-hydrate forms, were discovered as a result of this hydrate screening. The characterization of two new hydrate forms was conducted, and the anhydrous form was determined to be the most desirable development form of T-3256336 in terms of solid-state stability. In addition, the stability of the anhydrous form was investigated using the water content and temperature controlled slurry experiment to obtain the desirable crystal form in the crystallization process. The water content regions of the stable phase of the desired form, the anhydrous form, were identified for the cooling crystallization process.
Hamm, Laura M; Wallace, Adam F; Dove, Patricia M
2010-08-19
The aspartate-rich macromolecules found at nucleation sites of calcifying organisms are widely implicated in regulating biomineral formation. Anecdotal evidence suggests that their ability to influence the onset of nucleation and composition of calcified structures may arise from effects on ion hydration. This study investigates the interactions of acidic amino acids and dipeptides with hydrated cations using molecular dynamics. By monitoring the hydration states of Mg2+, Ca2+, and Sr2+ during their approach to negatively charged molecules, we show that carboxylate moieties of Asp promote dehydration of Ca2+ and Sr2+. A contact ion pair (CIP) is not required to disrupt cation hydration, and we demonstrate that reductions and rearrangements of first shell water can begin at ion-Asp separation distances as large as approximately 4.9 A for Ca2+ and approximately 5.1 A for Sr2+. CIP formation between Ca2+ and Sr2+ and carboxylate groups decreases the total first shell coordination number from an average of 8.0 and 8.4 in bulk water to 7.5 and 8.0, respectively. The energy barrier to physically replacing waters about Ca2+ with carboxylate oxygen atoms is small (approximately 2 kcal/mol) as compared to a somewhat larger barrier for Sr2+ (approximately 4 kcal/mol). This may be explained by differences in the strength of Coulombic interactions between the cations and the Asp, resulting in different paths of approach toward Asp for Ca2+ and Sr2+. In contrast, the primary solvation shell of Mg2+ remains largely unchanged during interactions with Asp until the abrupt physical replacement of water by carboxylate oxygen atoms, which comes at a high energetic cost. These insights support the claim that carboxylated biomolecules increase the growth rate of calcite by lowering the energy barrier to Ca2+ dehydration. The findings also suggest a physical basis for the idea that ion-specific behaviors of Ca2+ and Mg2+ in cellular systems arise from a critical balance between water binding in the ion hydration shells versus their interactions with ligands present in intracellular environments.
The Effects of Hydration on Growth of the House Cricket, Acheta domesticus
McCluney, Kevin E; Date, Rishabh C
2008-01-01
Maintenance of biochemical gradients, membrane fluidity, and sustained periods of activity are key physiological and behavioral functions of water for animals living in desiccating environments. Water stress may reduce the organism's ability to maintain these functions and as such, may reduce an organism's growth. However, few studies have examined this potential effect. The effects of altered hydration state of the house cricket, Acheta domesticus L. (Orthoptera: Gryllidae) on individual growth were studied under laboratory conditions. Crickets were permitted access to water for three different durations each day, resulting in significant differences in hydration state (32% greater hydration for maximum than minimum duration of water availability). Growth was 59% and 72% greater in dry mass and length, respectively, between the lowest and highest hydration state treatments. These findings may be representative for a variety of animal species and environments and could have important ecological implications. PMID:20302456
Hydration states of AFm cement phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com; Matschei, Thomas; Scrivener, Karen L.
2015-07-15
The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFmmore » phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.« less
Castro-Sepulveda, Mauricio; Astudillo, Javier; Letelier, Pablo
2016-01-01
Abstract This study aimed to evaluate and compare the hydration states prior to different sporting events (training sessions, friendly and official matches) in elite female soccer players and relate that to the importance that the player attached to the hydration state as a determinant of sports performance. The hydration state of 17 female elite soccer players (age: 21.5 ± 3 years; body mass: 62 ± 6 kg; body height: 165 ± 9 cm) was determined by measuring their urine specific gravity (USG) prior to three different sports events: training sessions (PT), friendly (PF) and official (PO) matches. The importance that each player attached to the hydration state as a determinant of sports performance was evaluated through a simple questionnaire. An average of 47.05% of the soccer players were severely dehydrated (USG > 1.030), 33.33% were significantly dehydrated (USG > 1.020), 17.64% were mildly dehydrated (USG > 1.010) and 1.96% were euhydrated (USG < 1.010). The average USG was 1.027 ± 0.007 (PT = 1.029 ± 0.009; PF = 1.023 ± 0.010 and PO = 1.030 ± 0.006). Differences were found between urine specific gravity prior to a friendly and an official match (p = 0.03). No relationship was found between urine specific gravity and the importance each player attached to the hydration state as a determinant of sports performance. The results show that dehydration is the most prevalent hydration state of elite soccer players before training sessions, friendly and official matches. Players were most dehydrated prior to official matches, which was unlinked to the players’ perceived importance of hydration for sports performance. PMID:28149344
Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori
2013-01-01
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves. PMID:23940752
Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori
2013-01-01
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.
Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang
2015-08-03
We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements.
Png, G M; Choi, J W; Ng, B W-H; Mickan, S P; Abbott, D; Zhang, X-C
2008-07-07
We present a study of how residual hydration in fresh rat tissue samples can vastly alter their extracted terahertz (THz) optical properties and influence their health assessment. Fresh (as opposed to preserved) tissue most closely mimics in vivo conditions, but high water content creates many challenges for tissue handling and THz measurement. Our THz measurements of fresh tissue over time highlight the effect of tissue hydration on tissue texture and dimension, the latter directly influencing the accuracy of calculated optical properties. We then introduce lyophilization (freeze drying) as a viable solution for overcoming hydration and freshness problems. Lyophilization removes large amounts of water while retaining sample freshness. In addition, lyophilized tissue samples are easy to handle and their textures and dimensions do not vary over time, allowing for consistent and stable THz measurements. A comparison of lyophilized and fresh tissue shows for the first time that freeze drying may be one way of overcoming tissue hydration issues while preserving tissue cellular structure. Finally, we compare THz measurements from fresh tissue against necrotic tissue to verify freshness over time. Indeed, THz measurements from fresh and necrotic tissues show marked differences.
Zohdi, Vladislava; Whelan, Donna R; Wood, Bayden R; Pearson, James T; Bambery, Keith R; Black, M Jane
2015-01-01
Fourier Transform Infrared (FTIR) micro-spectroscopy is an emerging technique for the biochemical analysis of tissues and cellular materials. It provides objective information on the holistic biochemistry of a cell or tissue sample and has been applied in many areas of medical research. However, it has become apparent that how the tissue is handled prior to FTIR micro-spectroscopic imaging requires special consideration, particularly with regards to methods for preservation of the samples. We have performed FTIR micro-spectroscopy on rodent heart and liver tissue sections (two spectroscopically very different biological tissues) that were prepared by desiccation drying, ethanol substitution and formalin fixation and have compared the resulting spectra with that of fully hydrated freshly excised tissues. We have systematically examined the spectra for any biochemical changes to the native state of the tissue caused by the three methods of preparation and have detected changes in infrared (IR) absorption band intensities and peak positions. In particular, the position and profile of the amide I, key in assigning protein secondary structure, changes depending on preparation method and the lipid absorptions lose intensity drastically when these tissues are hydrated with ethanol. Indeed, we demonstrate that preserving samples through desiccation drying, ethanol substitution or formalin fixation significantly alters the biochemical information detected using spectroscopic methods when compared to spectra of fresh hydrated tissue. It is therefore imperative to consider tissue preparative effects when preparing, measuring, and analyzing samples using FTIR spectroscopy.
Mapping hydration dynamics around a protein surface
Zhang, Luyuan; Wang, Lijuan; Kao, Ya-Ting; Qiu, Weihong; Yang, Yi; Okobiah, Oghaghare; Zhong, Dongping
2007-01-01
Protein surface hydration is fundamental to its structure and activity. We report here the direct mapping of global hydration dynamics around a protein in its native and molten globular states, using a tryptophan scan by site-specific mutations. With 16 tryptophan mutants and in 29 different positions and states, we observed two robust, distinct water dynamics in the hydration layer on a few (≈1–8 ps) and tens to hundreds of picoseconds (≈20–200 ps), representing the initial local relaxation and subsequent collective network restructuring, respectively. Both time scales are strongly correlated with protein's structural and chemical properties. These results reveal the intimate relationship between hydration dynamics and protein fluctuations and such biologically relevant water–protein interactions fluctuate on picosecond time scales. PMID:18003912
Maps showing gas-hydrate distribution off the east coast of the United States
Dillon, William P.; Fehlhaber, Kristen L.; Coleman, Dwight F.; Lee, Myung W.; Hutchinson, Deborah R.
1995-01-01
These maps present the inferred distribution of natural-gas hydrate within the sediments of the eastern United States continental margin (Exclusive Economic Zone) in the offshore region from Georgia to New Jersey (fig. 1). The maps, which were created on the basis of seismic interpretations, represent the first attempt to map volume estimates for gas hydrate. Gas hydrate forms a large reservoir for methane in oceanic sediments. Therefore it potentially may represent a future source of energy and it may influence climate change because methane is a very effective greenhouse gas. Hydrate breakdown probably is a controlling factor for sea-floor landslides, and its presence has significant effect on the acoustic velocity of sea-floor sediments.
Volume change associated with formation and dissociation of hydrate in sediment
Ruppel, Carolyn D.; Lee, J.Y.; Santamarina, J. Carlos
2017-01-01
Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.
NASA Astrophysics Data System (ADS)
Vener, M. V.; Chernyshov, I. Yu.; Rykounov, A. A.; Filarowski, A.
2018-01-01
Crystalline HCl and CF3SO3H hydrates serve as excellent model systems for protonated water and perfluorosulphonic acid membranes, respectively. They contain characteristic H3O+, H5О+2, H7О+3 and H3O+(H2O)3 (the Eigen cation) structures. The properties of these cations in the crystalline hydrates of strong monobasic acids are studied by solid-state density function theory (DFT). Simultaneous consideration of the HCl and CF3SO3H hydrates reveals the impact of the size of a counter ion and the crystalline environment on the structure and infrared active bands of the simplest proton hydrates. The H7O+3 structure is very sensitive to the size of the counter ion and symmetry of the local environment. This makes it virtually impossible to identify the specific features of H7O+3 in molecular crystals. The H3O+ ion can be treated as the Eigen-like cation in the crystalline state. Structural, infrared and electron-density features of H5О+2 and the Eigen cation are virtually insensitive to the size of the counter ion and the symmetry of the local crystalline environment. These cations can be considered as the simplest stable proton hydrates in the condensed phase. Finally, the influence of the Grimme correction on the structure and harmonic frequencies of the molecular crystals with short (strong) intermolecular O-H···O bonds is discussed.
Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates
Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming
2006-01-01
The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, S.; Seol, Y.
2015-12-01
In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.
Hydration Phase Diagram of Clay Particles from Molecular Simulations.
Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu
2017-11-07
Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.
Effects of Systemic Hydration on Vocal Acoustics of 18- to 35-Year-Old Females
ERIC Educational Resources Information Center
Franca, Maria Claudia; Simpson, Kenneth O.
2012-01-01
The influence of body hydration and vocal acoustics was investigated in this study. Effects of two levels of hydration on objective measures of vocal acoustics were explored. In an attempt to reduce variability in the degree of systemic hydration and to induce a state of systemic dehydration, participants were instructed to refrain from ingestion…
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
Deng, Junjing; Vine, David J.; Chen, Si; ...
2015-02-24
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less
Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Vine, David J.; Chen, Si
Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaef, Herbert T.; Ilton, Eugene S.; Qafoku, Odeta
2012-01-09
Reactions involving scCO2 and a calcium saturated dioctahedral smectite (Ca-STX-1) were examined by in situ high-pressure x-ray diffraction over a range of temperatures (50° to 100°C) and pressures (90, 125, and 180 bar) relevant to long term geologic storage of CO2. Exposure of Ca-STX-1 containing one water of hydration (1W) to anhydrous scCO2 at 50°C and 90 bar produced an immediate increase of ~0.8 Å in the d001 basal reflection that was sustained for the length of the experiment (~44 hours). Higher ordered basal reflections displayed similar shifts. Following depressurization, positions of basal reflections and FWHM values (d001) returned tomore » initial values, with no measurable modification to the clay structure or water content. Similar results were obtained for tests conducted at 50°C and higher pressures (125 and 180 bar). Exposure of Ca-STX-1 containing two waters of hydration (2W) to scCO2 resulted in a decrease in the d001 reflection from 14.48 Å to 12.52 Å, after pressurization, indicating a partial loss of interlayer water. In addition, the hydration state of the clay became more homogeneous during contact with anhydrous scCO2 and after depressurization. In the presence of scCO2 and water, the clay achieved a 3W hydration state, based on a d001 spacing of 18.8 Å. In contrast to scCO2, comparable testing with N2 gas indicated trivial changes in the d001 series regardless of hydration state (1W or 2W). In the presence of free water and N2, the basal spacing for the Ca-STX-1 expanded slightly, but remained in the 2W hydration state. These experiments indicate that scCO2 can intercalate hydrated clays, where the 1W hydrate state is stable when exposed to anhydrous scCO2 under conditions proposed for geologic storage of CO2. Consequently, clays can act as secondary CO2 traps where potential collapse or expansion of the interlayer spacing depends on the initial hydration state of the clay and scCO2.« less
A New Critical State Model for Geomechanical Behavior of Methane Hydrate-Bearing Sands
NASA Astrophysics Data System (ADS)
Lin, J. S.; Xing, P.; Rutqvist, J.; Seol, Y.; Choi, J. H.
2014-12-01
Methane hydrate bearing sands behave like sands once the hydrate has dissociated, but could exhibit a substantial increase in the shear strength, stiffness and dilatancy as the degree of hydrate saturation increases. A new critical state model was developed that incorporates the spatially mobilized plane (SMP) concept, which has been proven effective in modeling mechanical behavior of sands. While this new model was built on the basic constructs of the critical state model, important enhancements were introduced. The model adopted the t-stress concept, which defined the normal and shear stress on the SMP, in describing the plastic behavior of the soil. In this connection the versatile Matsuoka-Nakai yield criterion was also employed, which defined the general three dimensional yield behavior. The resulting constitutive law was associated in the t-stress space, but became non-associated in the conventional p-q stress space as it should be for sands. The model also introduced a generalized degree of hydrate saturation concept that was modified from the pioneering work of the Cambridge group. The model gives stress change when the sands are subjected to straining, and/or to hydrate saturation changes. The performance of the model has been found satisfactory using data from laboratory triaxial tests on reconstituted samples and core samples taken from Nankai Trough, Japan. The model has been implemented into FLAC3D. A coupling example with the multiphase flow code, TOUGH+, is presented which simulates the mechanical behavior of a sample when the surrounding temperature has been raised, and the hydrate undergoes state change and no longer resides in the stability zone.
Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens
2012-06-20
The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. Copyright © 2012 Elsevier Ltd. All rights reserved.
Methods to determine hydration states of minerals and cement hydrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com; Matschei, Thomas; Scrivener, Karen L.
2014-11-15
This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate aremore » presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.« less
Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun
2011-01-01
To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug research and development.
NASA Astrophysics Data System (ADS)
Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.
2017-08-01
We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments reveal stimulated emission from the excited state with an amplitude and lifetime that decreases with increasing temperature, a result in contrast to the lack of stimulated emission predicted by the cavity model but in good agreement with the non-cavity model. Overall, until ab initio calculations describing the non-adiabatic excited-state dynamics of an excess electron with hundreds of water molecules at a variety of temperatures become computationally feasible, the simulations presented here provide a definitive route for connecting the predictions of cavity and non-cavity models of the hydrated electron with future experiments.
Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori
2014-05-09
We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.
Censi, Roberta; Rascioni, Riccardo; Di Martino, Piera
2015-05-01
The aim of the present work was to investigate the solid state change of the anhydrous and hydrate solid forms of sodium naproxen under different grinding and environmental conditions. Grinding was carried out manually in a mortar under the following conditions: at room temperature under air atmosphere (Method A), in the presence of liquid nitrogen under air atmosphere (Method B), at room temperature under nitrogen atmosphere (Method C), and in the presence of liquid nitrogen under nitrogen atmosphere (Method D). Among the hydrates, the following forms were used: a dihydrate form (DSN) obtained by exposing the anhydrous form at 55% RH; a dihydrate form (CSN) obtained by crystallizing sodium naproxen from water; the tetrahydrate form (TSN) obtained by exposing the anhydrous form at 75% RH. The metastable monohydrate form (MSN), previously described in the literature, was not used because of its high physical instability. The chemical stability during grinding was firstly assessed and proven by HPLC. Modification of the particle size and shape, and changes in the solid state under different grinding methods were evaluated by scanning electron microscopy, and X-ray powder diffractometry and thermogravimetry, respectively. The study demonstrated the strong influence of starting form, grinding and environmental conditions on particle size, shape and solid state of recovered sodium naproxen forms. In particular, it was demonstrated that in the absence of liquid nitrogen (Methods A and C), either at air or at nitrogen atmosphere, the monohydrate form (MSN) was obtained from any hydrates, meaning that these grinding conditions favored the dehydration of superior hydrates. The grinding process carried out in the presence of liquid nitrogen (Method B) led to further hydration of the starting materials: new hydrate forms were identified as one pentahydrate form and one hexahydrate form. The hydration was caused by the condensation of the atmospheric water on sodium naproxen particles by liquid nitrogen and by the grinding forces that created a close contact between water and drug. The simultaneous disruption of the crystals, occurring during grinding, and their close contact with water molecules promoted the conversion in higher hydrates. Under the Method D, it was possible to highlight a certain tendency to hydration probably due to a rearrangement of water already present into the hydrates, but results were substantially different from Method B. Thus, summarizing, the different SN forms behave differently under different grinding and environmental conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Cavity hydration dynamics in cytochrome c oxidase and functional implications
Son, Chang Yun; Cui, Qiang
2017-01-01
Cytochrome c oxidase (CcO) is a transmembrane protein that uses the free energy of O2 reduction to generate the proton concentration gradient across the membrane. The regulation of competitive proton transfer pathways has been established to be essential to the vectorial transport efficiency of CcO, yet the underlying mechanism at the molecular level remains lacking. Recent studies have highlighted the potential importance of hydration-level change in an internal cavity that connects the proton entrance channel, the site of O2 reduction, and the putative proton exit route. In this work, we use atomistic molecular dynamics simulations to investigate the energetics and timescales associated with the volume fluctuation and hydration-level change in this central cavity. Extensive unrestrained molecular dynamics simulations (accumulatively ∼4 μs) and free energy computations for different chemical states of CcO support a model in which the volume and hydration level of the cavity are regulated by the protonation state of a propionate group of heme a3 and, to a lesser degree, the redox state of heme a and protonation state of Glu286. Markov-state model analysis of ∼2-μs trajectories suggests that hydration-level change occurs on the timescale of 100–200 ns before the proton-loading site is protonated. The computed energetic and kinetic features for the cavity wetting transition suggest that reversible hydration-level change of the cavity can indeed be a key factor that regulates the branching of proton transfer events and therefore contributes to the vectorial efficiency of proton transport. PMID:28973914
Hydrate morphology: Physical properties of sands with patchy hydrate saturation
Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.
2012-01-01
The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.
Volk, Gayle M; Crane, Jennifer; Caspersen, Ann M; Hill, Lisa M; Gardner, Candice; Walters, Christina
2006-11-01
The transition from anhydrobiotic to hydrated state occurs during early imbibition of seeds and is lethal if lipid reserves in seeds are crystalline. Low temperatures crystallize lipids during seed storage. We examine the nature of cellular damage observed in seeds of Cuphea wrightii and C. lanceolata that differ in triacylglycerol composition and phase behavior. Intracellular structure, observed using transmission electron microscopy, is profoundly and irreversibly perturbed if seeds with crystalline triacylglycerols are imbibed briefly. A brief heat treatment that melts triacylglycerols before imbibition prevents the loss of cell integrity; however, residual effects of cold treatments in C. wrightii cells are reflected by the apparent coalescence of protein and oil bodies. The timing and temperature dependence of cellular changes suggest that damage arises via a physical mechanism, perhaps as a result of shifts in hydrophobic and hydrophilic interactions when triacylglycerols undergo phase changes. Stabilizers of oil body structure such as oleosins that rely on a balance of physical forces may become ineffective when triacylglycerols crystallize. Recent observations linking poor oil body stability and poor seed storage behavior are potentially explained by the phase behavior of the storage lipids. These findings directly impact the feasibility of preserving genetic resources from some tropical and subtropical species.
Mechanical instability of monocrystalline and polycrystalline methane hydrates
Wu, Jianyang; Ning, Fulong; Trinh, Thuat T.; Kjelstrup, Signe; Vlugt, Thijs J. H.; He, Jianying; Skallerud, Bjørn H.; Zhang, Zhiliang
2015-01-01
Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected crossover from strengthening to weakening in polycrystals. Upon uniaxial depressurisation, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilises the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insight not only into the metastable structures of grain boundaries, but also into unusual ductile flow with hydrate dissociation as observed during macroscopic compression experiments. PMID:26522051
Geomechanical Modeling of Gas Hydrate Bearing Sediments
NASA Astrophysics Data System (ADS)
Sanchez, M. J.; Gai, X., Sr.
2015-12-01
This contribution focuses on an advance geomechanical model for methane hydrate-bearing soils based on concepts of elasto-plasticity for strain hardening/softening soils and incorporates bonding and damage effects. The core of the proposed model includes: a hierarchical single surface critical state framework, sub-loading concepts for modeling the plastic strains generally observed inside the yield surface and a hydrate enhancement factor to account for the cementing effects provided by the presence of hydrates in sediments. The proposed framework has been validated against recently published experiments involving both, synthetic and natural hydrate soils, as well as different sediments types (i.e., different hydrate saturations, and different hydrates morphologies) and confinement conditions. The performance of the model in these different case studies was very satisfactory.
NASA Technical Reports Server (NTRS)
Lett, J. T.
1992-01-01
For several years, it has been evident that cellular radiation biology is in a necessary period of consolidation and transition (Lett 1987, 1990; Lett et al. 1986, 1987). Both changes are moving apace, and have been stimulated by studies with heavy charged particles. From the standpoint of radiation chemistry, there is now a consensus of opinion that the DNA hydration shell must be distinguished from bulk water in the cell nucleus and treated as an integral part of DNA (chromatin) (Lett 1987). Concomitantly, sentiment is strengthening for the abandonment of the classical notions of "direct" and "indirect" action (Fielden and O'Neill 1991; O'Neill 1991; O'Neill et al. 1991; Schulte-Frohlinde and Bothe 1991 and references therein). A layer of water molecules outside, or in the outer edge of, the DNA (chromatin) hydration shell influences cellular radiosensitivity in ways not fully understood. Charge and energy transfer processes facilitated by, or involving, DNA hydration must be considered in rigorous theories of radiation action on cells. The induction and processing of double stand breaks (DSBs) in DNA (chromatin) seem to be the predominant determinants of the radiotoxicity of normally radioresistant mammalian cells, the survival curves of which reflect the patterns of damage induced and the damage present after processing ceases, and can be modelled in formal terms by the use of reaction (enzyme) kinetics. Incongruities such as sublethal damage are neither scientifically sound nor relevant to cellular radiation biology (Calkins 1991; Lett 1990; Lett et al. 1987a). Increases in linear energy transfer (LET infinity) up to 100-200 keV micron-1 cause increases in the extents of neighboring chemical and physical damage in DNA denoted by the general term DSB. Those changes are accompanied by decreasing abilities of cells normally radioresistant to sparsely ionizing radiations to process DSBs in DNA and chromatin and to recover from radiation exposure, so they make significant contributions to the relative biological effectiveness (RBE) of a given radiation.(ABSTRACT TRUNCATED AT 400 WORDS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Greg
This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Projectmore » Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.« less
Cage Occupation of Light Hydrocarbons in Gas Hydrate Crystals
NASA Astrophysics Data System (ADS)
Kida, M.; Watanabe, M.; Konno, Y.; Yoneda, J.; Jin, Y.; Nagao, J.
2016-12-01
Naturally occurring gas hydrates in marine or permafrost environments can trap methane and heavier hydrocarbons within its host lattice structure built up with hydrogen-bonded water molecules. Naturally occurring gas hydrates have been expected as new natural gas resources. It is important to reveal the distribution of guest hydrocarbons in host hydrate framework from viewpoint of assessment of gas capacity. In this study, we assessed cage occupancies of guest hydrocarbons in host hydrate framework of synthetic and natural gas hydrates using solid-state 13C NMR technique. As synthetic samples, gas hydrates formed from gas mixtures including C1 to C5 were investigated. As a natural sample, the pore-space gas hydrate sample recovered from the eastern Nankai Trough area during the 2012 JOGMEC/JAPEX Pressure coring operation was studied. As a result, it revealed that all heavier hydrocarbons than ethane are preferentially incorporated into the larger cage cavities in hydrate frameworks. We performed this study as a part of a Japanese National hydrate research program (MH21, funded by METI).
Skin Membrane Electrical Impedance Properties under the Influence of a Varying Water Gradient
Björklund, Sebastian; Ruzgas, Tautgirdas; Nowacka, Agnieszka; Dahi, Ihab; Topgaard, Daniel; Sparr, Emma; Engblom, Johan
2013-01-01
The stratum corneum (SC) is an effective permeability barrier. One strategy to increase drug delivery across skin is to increase the hydration. A detailed description of how hydration affects skin permeability requires characterization of both macroscopic and molecular properties and how they respond to hydration. We explore this issue by performing impedance experiments on excised skin membranes in the frequency range 1 Hz to 0.2 MHz under the influence of a varying gradient in water activity (aw). Hydration/dehydration induces reversible changes of membrane resistance and effective capacitance. On average, the membrane resistance is 14 times lower and the effective capacitance is 1.5 times higher when the outermost SC membrane is exposed to hydrating conditions (aw = 0.992), as compared to the case of more dehydrating conditions (aw = 0.826). Molecular insight into the hydration effects on the SC components is provided by natural-abundance 13C polarization transfer solid-state NMR and x-ray diffraction under similar hydration conditions. Hydration has a significant effect on the dynamics of the keratin filament terminals and increases the interchain spacing of the filaments. The SC lipids are organized into lamellar structures with ∼ 12.6 nm spacing and hexagonal hydrocarbon chain packing with mainly all-trans configuration of the acyl chains, irrespective of hydration state. Subtle changes in the dynamics of the lipids due to mobilization and incorporation of cholesterol and long-chain lipid species into the fluid lipid fraction is suggested to occur upon hydration, which can explain the changes of the impedance response. The results presented here provide information that is useful in explaining the effect of hydration on skin permeability. PMID:23790372
Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I.
2011-01-01
Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean ??13C=-48.6??? and ??D=-248??? for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. ?? 2010 Elsevier Ltd.
DSC investigation of bovine hide collagen at varying degrees of crosslinking and humidities.
Schroepfer, Michaela; Meyer, Michael
2017-10-01
Bovine hide collagen (nonCLC; non-CrossLinked Collagen) was analysed by differential scanning calorimetry (DSC) at different hydration degrees and compared with hide collagen samples crosslinked with glutaraldehyde (CLC-GA) and chromium(III) ions (CLC-Cr), respectively. Crosslinking and drying were confirmed to increase the denaturation temperature. Different regions were assigned, that reflect the variation of the influence of water on the denaturation temperature. Furthermore, at moderate hydration degrees, the enthalpies of non-crosslinked collagen increase compared to the fully hydrated state. This reflects a glue-like action of water in the range of 25% hydration. Crosslinking of bovine hide collagen decreases the enthalpy by 25% in the fully hydrated state, even at very low levels of crosslinking This can be explained by intensive effects of the crosslinking agent on the hydration network of the collagen molecules, assuming that the enthalpies are principally a result of hydrogen bonding. At very low water contents DSC peaks of CLC-Cr completely disappear. This could be explained by competition between hydroxosulfochromate(III) complexes and collagen for water. Copyright © 2017 Elsevier B.V. All rights reserved.
Pathways through equilibrated states with coexisting phases for gas hydrate formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malolepsza, Edyta; Keyes, Tom
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
Pathways through equilibrated states with coexisting phases for gas hydrate formation
Malolepsza, Edyta; Keyes, Tom
2015-12-01
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
Malacrida, Leonel; Astrada, Soledad; Briva, Arturo; Bollati-Fogolín, Mariela; Gratton, Enrico; Bagatolli, Luis A
2016-11-01
Using LAURDAN spectral imaging and spectral phasor analysis we concurrently studied the growth and hydration state of subcellular organelles (lamellar body-like, LB-like) from live A549 lung cancer cells at different post-confluence days. Our results reveal a time dependent two-step process governing the size and hydration of these intracellular LB-like structures. Specifically, a first step (days 1 to 7) is characterized by an increase in their size, followed by a second one (days 7 to 14) where the organelles display a decrease in their global hydration properties. Interestingly, our results also show that their hydration properties significantly differ from those observed in well-characterized artificial lamellar model membranes, challenging the notion that a pure lamellar membrane organization is present in these organelles at intracellular conditions. Finally, these LB-like structures show a significant increase in their hydration state upon secretion, suggesting a relevant role of entropy during this process. Copyright © 2016 Elsevier B.V. All rights reserved.
Gallat, F.-X.; Laganowsky, A.; Wood, K.; Gabel, F.; van Eijck, L.; Wuttke, J.; Moulin, M.; Härtlein, M.; Eisenberg, D.; Colletier, J.-P.; Zaccai, G.; Weik, M.
2012-01-01
Hydration water is vital for various macromolecular biological activities, such as specific ligand recognition, enzyme activity, response to receptor binding, and energy transduction. Without hydration water, proteins would not fold correctly and would lack the conformational flexibility that animates their three-dimensional structures. Motions in globular, soluble proteins are thought to be governed to a certain extent by hydration-water dynamics, yet it is not known whether this relationship holds true for other protein classes in general and whether, in turn, the structural nature of a protein also influences water motions. Here, we provide insight into the coupling between hydration-water dynamics and atomic motions in intrinsically disordered proteins (IDP), a largely unexplored class of proteins that, in contrast to folded proteins, lack a well-defined three-dimensional structure. We investigated the human IDP tau, which is involved in the pathogenic processes accompanying Alzheimer disease. Combining neutron scattering and protein perdeuteration, we found similar atomic mean-square displacements over a large temperature range for the tau protein and its hydration water, indicating intimate coupling between them. This is in contrast to the behavior of folded proteins of similar molecular weight, such as the globular, soluble maltose-binding protein and the membrane protein bacteriorhodopsin, which display moderate to weak coupling, respectively. The extracted mean square displacements also reveal a greater motional flexibility of IDP compared with globular, folded proteins and more restricted water motions on the IDP surface. The results provide evidence that protein and hydration-water motions mutually affect and shape each other, and that there is a gradient of coupling across different protein classes that may play a functional role in macromolecular activity in a cellular context. PMID:22828339
NASA Astrophysics Data System (ADS)
Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu
2018-01-01
Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation
Lipid Gymnastics: Tethers and Fingers in membrane
NASA Astrophysics Data System (ADS)
Tayebi, Lobat; Miller, Gregory; Parikh, Atul
2009-03-01
A significant body of evidence now links local mesoscopic structure (e.g., shape and composition) of the cell membrane with its function; the mechanisms by which cellular membranes adopt the specific shapes remain poorly understood. Among all the different structures adopted by cellular membranes, the tubular shape is one of the most surprising one. While their formation is typically attributed to the reorganization of membrane cytoskeleton, many exceptions exist. We report the instantaneous formation of tubular membrane mesophases following the hydration under specific thermal conditions. The shapes emerge in a bimodal way where we have two distinct diameter ranges for tubes, ˜20μm and ˜1μm, namely fat fingers and narrow tethers. We study the roughening of hydrated drops of 3 lipids in 3 different spontaneous curvatures at various temp. and ionic strength to figure out the dominant effect in selection of tethers and fingers. Dynamics of the tubes are of particular interest where we observe four distinct steps of birth, coiling, uncoiling and retraction with different lifetime on different thermal condition. These dynamics appear to reflect interplay between membrane elasticity, surface adhesion, and thermal or hydrodynamic gradient.
Del Galdo, Sara; Amadei, Andrea
2016-10-12
In this paper we apply the computational analysis recently proposed by our group to characterize the solvation properties of a native protein in aqueous solution, and to four model aqueous solutions of globular proteins in their unfolded states thus characterizing the protein unfolded state hydration shell and quantitatively evaluating the protein unfolded state partial molar volumes. Moreover, by using both the native and unfolded protein partial molar volumes, we obtain the corresponding variations (unfolding partial molar volumes) to be compared with the available experimental estimates. We also reconstruct the temperature and pressure dependence of the unfolding partial molar volume of Myoglobin dissecting the structural and hydration effects involved in the process.
Enemark, J M D; Schmidt, H B; Jakobsen, J; Enevoldsen, C
2009-02-01
The disease risk is very high among transition cows that may suffer from poor appetite. The aim of the present study was therefore to investigate the effect of drenching on energy balance, hydration state and selected production parameters in fresh cows. Twenty-one Danish Holstein-Friesian dairy cows in late pregnancy were randomly allocated to either treatment (TG) or control group (CG). TG cows were drenched twice with 20 l of water containing a mixture of calcium propionate, MgSO(4), and KCL specifically developed for prophylactic treatment of fresh cows. The results indicated that cows become dehydrated around calving, losing on average 53 l (TG) and 24.5 l (CG) of extra-cellular fluid, respectively. The drenching volume applied in the present study did not affect the degree of hydration after calving. Based on blood NEFA and BHB values it was shown that drenching caused a reduction in the degree of negative energy balance (NEB). Somatic cell count (SCC) for cows in first lactation was lower in the TG compared to CG. Milk yield was unaffected by treatment. We conclude that prophylactic drenching added little to the health promotion in the transition cows in the present study. Instead, increased focus on management routines would probably be of more value.
Hydration during intense exercise training.
Maughan, R J; Meyer, N L
2013-01-01
Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Karunatillake, Suniti; Wray, James J.; Gasnault, Olivier; McLennan, Scott M.; Deanne Rogers, A.; Squyres, Steven W.; Boynton, William V.; Skok, J. R.; Button, Nicole E.; Ojha, Lujendra
2016-07-01
Midlatitudinal hydrated sulfates on Mars may influence brine pH, atmospheric humidity, and collectively water activity. These factors affect the habitability of the planetary subsurface and the preservation of relict biomolecules. Regolith at grain sizes smaller than gravel, constituting the bulk of the Martian subsurface at regional scales, may be a primary repository of chemical alteration, mechanical alteration, and biosignatures. The Mars Odyssey Gamma Ray Spectrometer with hundreds of kilometers of lateral resolution and compositional sensitivity to decimeter depth provides unique insight into this component of the regolith, which we call soil. Advancing the globally compelling association between H2O and S established by our previous work, we characterize latitudinal variations in the association between H and S, as well as in the hydration state of soil. Represented by H2O:S molar ratios, the hydration state of candidate sulfates increases with latitude in the northern hemisphere. In contrast, hydration states generally decrease with latitude in the south. Furthermore, we observe that H2O concentration may affect the degree of sulfate hydration more than S concentration. Limited H2O availability in soil-atmosphere exchange and in subsurface recharge could explain such control exerted by H2O on salt hydration. Differences in soil thickness, ground ice table depths, atmospheric circulation, and insolation may contribute to hemispheric differences in the progression of hydration with latitude. Our observations support chemical association of H2O with S in the southern hemisphere as suggested by Karunatillake et al. (2014), including the possibility of Fe sulfates as a key mineral group.
Du, Yuzhang; Yu, Meng; Chen, Xiaofeng; Ma, Peter X; Lei, Bo
2016-02-10
Biodegradable elastomeric biomaterials have attracted much attention in tissue engineering due to their biomimetic viscoelastic behavior and biocompatibility. However, the low mechanical stability at hydrated state, fast biodegradation in vivo, and poor osteogenic activity greatly limited bioelastomers applications in bone tissue regeneration. Herein, we develop a series of poly(octanediol citrate)-polyhedral oligomeric silsesquioxanes (POC-POSS) hybrids with highly tunable elastomeric behavior (hydrated state) and biodegradation and osteoblasts biocompatibility through a facile one-pot thermal polymerization strategy. POC-POSS hybrids show significantly improved stiffness and ductility in either dry or hydrated conditions, as well as good antibiodegradation ability (20-50% weight loss in 3 months). POC-POSS hybrids exhibit significantly enhanced osteogenic differentiation through upregulating alkaline phosphatase (ALP) activity, calcium deposition, and expression of osteogenic markers (ALPL, BGLAP, and Runx2). The high mechanical stability at hydrated state and enhanced osteogenic activity make POC-POSS hybrid elastomers promising as scaffolds and nanoscale vehicles for bone tissue regeneration and drug delivery. This study may also provide a new strategy (controlling the stiffness under hydrated condition) to design advanced hybrid biomaterials with high mechanical properties under physiological condition for tissue regeneration applications.
Thermodynamic properties and interactions of salt hydrates used as phase change materials
NASA Astrophysics Data System (ADS)
Braunstein, J.
1982-12-01
The state-of-the-art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed with the objective of recommending research that would result in more practicable use of these materials. Areas for review included phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrates.
NASA Astrophysics Data System (ADS)
Yang, Z.; He, T.
2017-12-01
To more accurately explain geophysical exploration data of natural gas hydrate reservoir and to better assess the formation stability for geological or engineering hazards, it is important to comprehensively understand the geophysical and mechanical properties of hydrate-bearing unconsolidated marine sediments, which are significantly different from sea-water saturated ones. Compared to hard-to-control in-situ measurement, laboratory methods are important and feasible to investigate the parameter effects. With the new designed experimental apparatus, we measured ultrasonic velocity, resistivity and stress-strain relation of methane hydrate-bearing unconsolidated sediments. The experimental mineral mixture is prepared as the composition of sample HY-3 of core SH-7 from Shenhu area, South China Sea. It composed of 0.4 wt. % kaolinite, 23.5 wt. % silt (4 - 63 μm), 32.1 wt. % fine sand (63 - 250 μm), 29.2 wt. % medium sand (250 - 500 μm) and 14.8 wt. % coarse sand (500 - 2000 μm). The pure methane enters into the brine (NaCl salinity of 3.5%) saturated sample all around to synthesis methane hydrate. The methane hydrate saturation was calculated by methane consumption amount, which was in turn calculated by gas state equation using the measured methane pressure drop in high pressure reactor. The ultrasonic velocities and resistivity were measured frequently during methane hydrate saturation increasing to examine the velocity varying pattern, especially for S-wave velocities, which may reflect different hydrate occurrence states in sediment pores: load-bearing or not. The stress - strain curves of methane hydrate - bearing sediments showed typical elastic - plastic characteristics and were used to obtain Young's modulus, Poisson's ratio, failure strength and other mechanical parameters. With these results, we can know better about the hydrate reservoir at Shenhu area.
USDA-ARS?s Scientific Manuscript database
Effect of chitosan molecular weight (M(cs)) on the rheological properties of chitosan modified clay (CMCs) at highly hydrated state was investigated. With special emphasis on its effect on the thixotropy of CMCs, the structure recovery at rest after underwent a pre-shearing process was further perfo...
Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa
NASA Technical Reports Server (NTRS)
Marion, G. M.; Kargel, J. S.; Catling, D. C.
2004-01-01
Gas hydrates are implicated in the geochemical evolution of both Mars and Europa [1- 3]. Most models developed for gas hydrate chemistry are based on the statistical thermodynamic model of van der Waals and Platteeuw [4] with subsequent modifications [5-8]. None of these models are, however, state-of-the-art with respect to gas hydrate/electrolyte interactions, which is particularly important for planetary applications where solution chemistry may be very different from terrestrial seawater. The objectives of this work were to add gas (carbon dioxide and methane) hydrate chemistries into an electrolyte model parameterized for low temperatures and high pressures (the FREZCHEM model) and use the model to examine controls on gas hydrate chemistries for Mars and Europa.
Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavda, Mehul A.; Bernal, Susan A.; Apperley, David C.
The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {supmore » 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.« less
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
NASA Astrophysics Data System (ADS)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.
2016-08-01
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca
2016-08-15
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better thanmore » the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.« less
Vasudeva, Singh; Vishwanathan, K H; Aswathanarayana, K N; Indhudhara Swamy, Y M
2010-01-01
Cereals and millets generally hydrate at a moderate rate and their hydration behaviour differs in native and in processed state. The study was on the hydration of paddy, milled rice, parboiled rice, wheat, millets and equilibrium moisture content (EMC) on soaking at room temperature. Paddy hydrated very slowly, hydration rate was slow in brown rice but fast in milled rice and highest in waxy rice. In most of the rice varieties, maximum absorption occurred at the end of 30 min. In wheat hydration rate was slow and its EMC was highest (43%). Maize grits of big size hydrated slowly compared to small grits. In coarse cereals EMC varied from 28 to 38%. Foxtail millet hydration was slow whereas that of finger millet was fast. The data were tested on the Peleg's equation, which gave a reasonable fit to experimental data. Peleg's constants k1 and k2 were calculated for the above grains and their hydration behaviour has been predicted. The model fitted very well to milled rice hydration data where the coefficient of variance ranged from 0.9982 to 0.9995. With exception in some millet the hydration data fitted well with the Peleg's equation. Generalized equations have been formulated for prediction of moisture content of cereals and millets.
Ayrapetyan, Sinerik; De, Jaysankar
2014-01-01
"Changes in cell hydration" have been hypothesized as an input signal for intracellular metabolic cascade responsible for biological effects of nonionizing radiation (NIR). To test this hypothesis a comparative study on the impacts of different temperature and NIR (infrasound frequency mechanical vibration (MV), static magnetic field (SMF), extremely low frequency electromagnetic field (ELF EMF), and microwave (MW)) pretreated water on the hydration of barley seeds in its dormant and germination periods was performed. In dormant state temperature sensitivity (Q 10) of seed hydration in distilled water (DW) was less than 2, and it was nonsensitive to NIR treated DW, whereas during the germination period (48-72 hours) seeds hydration exhibited temperature sensitivity Q 10 > 2 and higher sensitivity to NIR treated DW. Obtained data allow us to suggest that the metabolic driving of intracellular water dynamics accompanied by hydrogen bonding and breaking is more sensitive to NIR-induced water structure changes in seed bathing aqua medium than the simple thermodynamic processes such as osmotic gradient driven water absorption by seeds in dormant state. Therefore, cell hydration is suggested to be a universal and extrasensitive biomarker for detection of biological effects of NIR on cells and organisms.
Energy resource potential of natural gas hydrates
Collett, T.S.
2002-01-01
The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.
Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.
1999-01-01
The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable presence of free gas within the normal zone of hydrate stability.
Oliver, Katherine V.; Maréchal, Amandine
2016-01-01
When analyzing solutes by Fourier transform infrared (FT-IR) spectroscopy in attenuated total reflection (ATR) mode, drying of samples onto the ATR crystal surface can greatly increase solute band intensities and, therefore, aid detection of minor components. However, analysis of such spectra is complicated by the existence of alternative partial hydration states of some substances that can significantly alter their infrared signatures. This is illustrated here with urea, which is a dominant component of urine. The effects of hydration state on its infrared spectrum were investigated both by incubation in atmospheres of fixed relative humidities and by recording serial spectra during the drying process. Significant changes of absorption band positions and shapes were observed. Decomposition of the CN antisymmetric stretching (νas) band in all states was possible with four components whose relative intensities varied with hydration state. These correspond to the solution (1468 cm–1) and dry (1464 cm–1) states and two intermediate (1454 cm–1 and 1443 cm–1) forms that arise from specific urea–water and/or urea–urea interactions. Such intermediate forms of other compounds can also be formed, as demonstrated here with creatinine. Recognition of these states and their accommodation in analyses of materials such as dried urine allows more precise decomposition of spectra so that weaker bands of diagnostic interest can be more accurately defined. PMID:27170705
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. White; B. P. McGrail; S. K. Wurstner
Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to poremore » clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.« less
Fundamentals and applications of gas hydrates.
Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T
2011-01-01
Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.
NASA Astrophysics Data System (ADS)
Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho
2017-03-01
Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.
Microscopic diffusion in hydrated encysted eggs of brine shrimp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene
We have studied microscopic diffusion of water in fully hydrated encysted eggs of brine shrimp (Artemia). We utilized quasielastic neutron scattering. Dry eggs of brine shrimp were rehydrated using (1) water without additives, (2) eutectic mixture of water and dimethyl sulfoxide, and (3) a concentrated aqueous solution of lithium chloride. Despite the complexity of the hydrated multicellular organism, measurable microscopic diffusivity of water is rather well defined. Pure hydration water in eggs exhibits freezing temperature depression, whereas hydration water in eggs mixed with dimethyl sulfoxide or lithium chloride does not crystallize at all. The characteristic size of the voids occupiedmore » by water or aqueous solvents in hydrated brine shrimp eggs is between 2 and 10 nm. Those voids are accessible to co-solvents such as dimethyl sulfoxide and lithium chloride. There is no evidence of intracellular water in the hydrated eggs. The lack of intracellular water in the fully hydrated (but still under arrested development) state must be linked to the unique resilience against adverse environmental factors documented not only for the anhydrous, but also hydrated encysted eggs of brine shrimp.« less
Microscopic diffusion in hydrated encysted eggs of brine shrimp
Mamontov, Eugene
2017-05-24
We have studied microscopic diffusion of water in fully hydrated encysted eggs of brine shrimp (Artemia). We utilized quasielastic neutron scattering. Dry eggs of brine shrimp were rehydrated using (1) water without additives, (2) eutectic mixture of water and dimethyl sulfoxide, and (3) a concentrated aqueous solution of lithium chloride. Despite the complexity of the hydrated multicellular organism, measurable microscopic diffusivity of water is rather well defined. Pure hydration water in eggs exhibits freezing temperature depression, whereas hydration water in eggs mixed with dimethyl sulfoxide or lithium chloride does not crystallize at all. The characteristic size of the voids occupiedmore » by water or aqueous solvents in hydrated brine shrimp eggs is between 2 and 10 nm. Those voids are accessible to co-solvents such as dimethyl sulfoxide and lithium chloride. There is no evidence of intracellular water in the hydrated eggs. The lack of intracellular water in the fully hydrated (but still under arrested development) state must be linked to the unique resilience against adverse environmental factors documented not only for the anhydrous, but also hydrated encysted eggs of brine shrimp.« less
Lee, Ae-Ri Cho; Moon, Hee Kyung
2007-11-01
A thermal gravimetric analysis (TGA) and a differential scanning calorimetry (DSC) were carried out to characterize the water property and an alteration of lipid phase transition of stratum corneum (SC) by glycerin. In addition, the relationship between steady state skin permeation rate and skin hydration in various concentrations of glycerin was investigated. Water vapor absorption-desorption was studied in the hairless mouse stratum corneum. Dry SC samples were exposed to different conc. of glycerin (0-50%) followed by exposure to dry air and the change in weight property was monitored over time by use of TGA. In DSC study, significant decrease in DeltaH of the lipid transition in 10% glycerin and water treated sample: the heat of lipid transition of normal, water, 10% glycerin treated SC were 6.058, 4.412 and 4.316 mJ/mg, respectively. In 10% glycerin treated SCs, the Tc of water shifts around 129 degrees C, corresponding to the weakly bound secondary water. In 40% glycerin treated SC, the Tc of water shifts to 144 degrees C corresponding to strongly bound primary water. There was a good correlation between the hydration property of the skin and the steady state skin flux with the correlation coefficient (r2=0.94). As the hydration increased, the steady state flux increased. As glycerin concentration increased, hydration property decreased. High diffusivity induced by the hydration effect of glycerin and water could be the major contributing factor for the enhanced skin permeation of nicotinic acid (NA).
NASA Astrophysics Data System (ADS)
Sasaki, T.; Soga, K.; Yamamoto, K.
2016-12-01
World's first offshore production of gas from methane hydrate-bearing sediment was accomplished in Nankai Trough off the coast of Japan. The achievement signals the beginning of exploitation of methane hydrate as a new source of energy, as an estimated amount of the new gas resource significantly exceeds that of the existing conventional oil and gas resources. Conventional gas reservoirs exist in consolidated sediment (i.e. rocks) thousands of metres below seafloor, and such sediment is hard enough to resist deformation. Methane hydrate reservoirs, on the other hand, lies only a couple of hundreds of metres down the seafloor, which means the sediment is unconsolidated (i.e. soils) and is readily deformed. In addition, the hydrate melts away in the pore space when it releases gas, giving rise to a significant rearrangement of stresses in the sediment. Well construction in methane hydrate reservoir might affect the mechanical state of the sediment to the point where the interpretation of the fracture pressure test becomes difficult and sand production could be enhanced. Existing numerical simulations tend to overlook soil mechanics, which is more appropriate than rock mechanics to model unconsolidated sediment, and the effect of methane hydrate on soil's mechanical behaviour is missed. In the present research, the construction of well in unconsolidated hydrate-bearing sediment was modelled with finite element analysis incorporating the critical state soil mechanics. Results showed that cement shrinkage in the well annulus would have a significant effect on the principal stresses and directions of the sediment even if the magnitude of the shrinkage was 0.1%. Cement shrinkage would also promote the generation of plastic strains, potentially enhancing sand production. Results also showed that the direction of fracture inferred from a fracture pressure test at Nankai Trough might have been vertical, indicating it was developed at the cement-sediment interface.
A method to predict equilibrium conditions of gas hydrate formation in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, M.A.; Pooladi-Darvish, M.; Bishnoi, P.R.
1999-06-01
In the petroleum industry, it is desirable to avoid the formation of gas hydrates. When gas hydrates form, they tend to agglomerate and block pipelines and process equipment. However, naturally occurring gas hydrates that form in the permafrost region or in deep oceans represent a vast untouched natural gas reserve. Although the exact amount of gas in the hydrate form is not known, it is believed to be comparable to the known amount of gas in the free state. Numerous methods for the recovery of natural gas from hydrate fields have been proposed. These techniques include thermal decomposition, depressurization, andmore » chemical injection. To fully exploit hydrate reserves, it will be necessary to know the decomposition/formation conditions of the gas hydrate in porous media. A predictive model has been developed to determine the incipient hydrate formation conditions in porous media. The only additional information that is needed to determine the incipient hydrate formation conditions is the pore radius, surface energy per unit area, and wetting angle. It was found that the model performed well in predicting the experimental data of Handa and Stupin.« less
Study of supported phospholipid bilayers by THz-TDS
NASA Astrophysics Data System (ADS)
Ionescu, Alina; Mernea, Maria; Vasile, Ionut; Brandus, Catalina Alice; Barbinta-Patrascu, Marcela Elisabeta; Tugulea, Laura; Mihailescu, Dan; Dascalu, Traian
2012-10-01
Terahertz Time-Domain Spectroscopy (THz-TDS) is a new technique in studying the conformational state of molecules. Cell membranes are important structures in the interaction with extra cellular entities. Their principal building blocks are lipids, amphiphilic molecules that spontaneously self-assemble when in contact with water. In this work we report the use of THz-TDS in transmission mode to examine the behavior of supported phospholipid bilayers (SPBs) within the frequency range of 0.2 THz to 3 THz. SPBs were obtained by vesicle adsorption method involving the spread of a suspension (50-100 μl) of small unilamellar vesicles (SUVs) or multilamellar vesicles (MLVs) dissolved in PBS (phosphate buffer solution) on a support of silicon wafers. Both SUVs and MLVs were obtained from dipalmitoyl phosphatidylcholine (DPPC) and lecithin by using the thin-film hydration method. Broadband THz pulses are generated and detected using photoconductive antennas optically excited by a femtosecond laser pulse emitted from a self-mode locked fiber laser at a wavelength of 780 nm with a pulse widths of 150 fs. THz-TDS was proven to be a useful method in studying SPBs and their hydration states. The absorption coefficient and refractive index of the samples were calculated from THz measurements data. The THz absorption spectra for different lipids in SPBs indicate specific absorption frequency lines. A difference in the magnitude of the refractive index was also observed due to the different structure of supported lipid bilayers. The THz spectrum of DPPC was obtained by using theoretical simulations and then the experimental and theoretical THz spectra were compared.
Ultrafast Hydration Dynamics and Coupled Water-Protein Fluctuations in Apomyoglobin
NASA Astrophysics Data System (ADS)
Yang, Yi; Zhang, Luyuan; Wang, Lijuan; Zhong, Dongping
2009-06-01
Protein hydration dynamics are of fundamental importance to its structure and function. Here, we characterize the global solvation dynamics and anisotropy dynamics around the apomyoglobin surface in different conformational states (native and molten globule) by measuring the Stokes shift and anisotropy decay of tryptophan with femtosecond-resolved fluorescence upconversion. With site-directed mutagenesis, we designed sixteen mutants with one tryptophan in each, and placed the probe at a desirable position ranging from buried in the protein core to fully solvent-exposed on the protein surface. In all protein sites studied, two distinct solvation relaxations (1-8 ps and 20-200 ps) were observed, reflecting the initial collective water relaxation and subsequent hydrogen-bond network restructuring, respectively, and both are strongly correlated with protein's local structures and chemical properties. The hydration dynamics of the mutants in molten globule state are faster than those observed in native state, indicating that the protein becomes more flexible and less structured when its conformation is converted from fully-folded native state to partially-folded molten globule state. Complementary, fluorescence anisotropy dynamics of all mutants in native state show an increasing trend of wobbling times (40-260 ps) when the location of the probe is changed from a loop, to a lateral helix, and then, to the compact protein core. Such an increase in wobbling times is related to the local protein structural rigidity, which relates the interaction of water with side chains. The ultrafast hydration dynamics and related side-chain motion around the protein surface unravel the coupled water-protein fluctuations on the picosecond time scales and indicate that the local protein motions are slaved by hydrating water fluctuations.
NASA Astrophysics Data System (ADS)
Dyrdin, V. V.; Smirnov, V. G.; Kim, T. L.; Manakov, A. Yu.; Fofanov, A. A.; Kartopolova, I. S.
2017-06-01
The physical processes occurring in the coal - natural gas system under the gas pressure release were studied experimentally. The possibility of gas hydrates presence in the inner space of natural coal was shown, which decomposition leads to an increase in the amount of gas passing into the free state. The decomposition of gas hydrates can be caused either by the seam temperature increase or the pressure decrease to lower than the gas hydrates equilibrium curve. The contribution of methane released during gas hydrates decomposition should be taken into account in the design of safe mining technologies for coal seams prone to gas dynamic phenomena.
Research opportunities in salt hydrates for thermal energy storage
NASA Astrophysics Data System (ADS)
Braunstein, J.
1983-11-01
The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.
Cinar, Hasan; Cinar, Süleyman; Chan, Hue Sun; Winter, Roland
2018-05-08
We investigated the combined effects of temperature and pressure on liquid-liquid phase separation (LLPS) phenomena of α-elastin up to the multi-kbar regime. FT-IR spectroscopy, CD, UV/Vis absorption, phase-contrast light and fluorescence microscopy techniques were employed to reveal structural changes and mesoscopic phase states of the system. A novel pressure-induced reentrant LLPS was observed in the intermediate temperature range. A molecular-level picture, in particular on the role of hydrophobic interactions, hydration, and void volume in controlling LLPS phenomena is presented. The potential role of the LLPS phenomena in the development of early cellular compartmentalization is discussed, which might have started in the deep sea, where pressures up to the kbar level are encountered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nilsson, E. J. C.; Pallon, J.; Przybylowicz, W. J.; Wang, Y. D.; Jönsson, K. I.
2014-08-01
Although heavy on labor and equipment, thus not often applied, cryoanalysis of frozen hydrated biological specimens can provide information that better reflects the living state of the organism, compared with analysis in the freeze-dried state. In this paper we report a study where the cryoanalysis facility with cryosectioning capabilities at Materials Research Department, iThemba LABS, South Africa was employed to evaluate the usefulness of combining three ion beam analytical methods (μPIXE, RBS and STIM) to analyze a biological target where a better elemental compositional description is needed - the tardigrade. Imaging as well as quantification results are of interest. In a previous study, the element composition and redistribution of elements in the desiccated and active states of two tardigrade species was investigated. This study included analysis of both whole and sectioned tardigrades, and the aim was to analyze each specimen twice; first frozen hydrated and later freeze-dried. The combination of the three analytical techniques proved useful: elements from C to Rb in the tardigrades could be determined and certain differences in distribution of elements between the frozen hydrated and the freeze-dried states were observed. RBS on frozen hydrated specimens provided knowledge of matrix elements.
NASA Astrophysics Data System (ADS)
Royle, Samuel H.; Montgomery, Wren; Kounaves, Samuel P.; Sephton, Mark A.
2017-12-01
Three Mars missions have analyzed the composition of surface samples using thermal extraction techniques. The temperatures of decomposition have been used as diagnostic information for the materials present. One compound of great current interest is perchlorate, a relatively recently discovered component of Mars' surface geochemistry that leads to deleterious effects on organic matter during thermal extraction. Knowledge of the thermal decomposition behavior of perchlorate salts is essential for mineral identification and possible avoidance of confounding interactions with organic matter. We have performed a series of experiments which reveal that the hydration state of magnesium perchlorate has a significant effect on decomposition temperature, with differing temperature releases of oxygen corresponding to different perchlorate hydration states (peak of O2 release shifts from 500 to 600°C as the proportion of the tetrahydrate form in the sample increases). Changes in crystallinity/crystal size may also have a secondary effect on the temperature of decomposition, and although these surface effects appear to be minor for our samples, further investigation may be warranted. A less than full appreciation of the hydration state of perchlorate salts during thermal extraction analyses could lead to misidentification of the number and the nature of perchlorate phases present.
Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data
Lee, Myung Woong; Collett, Timothy S.
2011-01-01
High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.
Microstructural response of variably hydrated Ca-rich montmorillonite to supercritical CO2.
Lee, Mal-Soon; McGrail, B Peter; Glezakou, Vassiliki-Alexandra
2014-01-01
First-principles molecular dynamics simulations were carried out to explore the mechanistic and thermodynamic ramifications of the exposure of variably hydrated Ca-rich montmorillonites to supercritical CO2 and CO2-SO2 mixtures under geologic storage conditions. In sub- to single-hydrated systems (≤ 1W), CO2 intercalation causes interlamellar expansion of 8-12%, while systems transitioning to 2W may undergo contraction (∼ 7%) or remain almost unchanged. When compared to ∼2W hydration state, structural analysis of the ≤ 1W systems, reveals more Ca-CO2 contacts and partial transition to vertically confined CO2 molecules. Infrared spectra and projected vibrational frequency analysis imply that intercalated Ca-bound CO2 are vibrationally constrained and contribute to the higher frequencies of the asymmetric stretch band. Reduced diffusion coefficients of intercalated H2O and CO2 (10(-6)-10(-7) cm(2)/s) indicate that Ca-montmorillonites in ∼ 1W hydration states can be more efficient in capturing CO2. Simulations including SO2 imply that ∼ 0.66 mmol SO2/g clay can be intercalated without other significant structural changes. SO2 is likely to divert H2O away from the cations, promoting Ca-CO2 interactions and CO2 capture by further reducing CO2 diffusion (10(-8) cm(2)/s). Vibrational bands at ∼ 1267 or 1155 cm(-1) may be used to identify the chemical state (oxidation states +4 or +6, respectively) and the fate of sulfur contaminants.
Sun, Wendell Q.
2000-01-01
To understand the relationship between the organization of cellular water, molecular interactions, and desiccation tolerance, dielectric behaviors of water and water-plasticized biomolecules in red oak (Quercus rubra) seeds were studied during dehydration. The thermally stimulated current study showed three dielectric dispersions: (a) the relaxation of loosely-bound water and small polar groups, (b) the relaxation of tightly-bound water, carbohydrate chains, large polar groups of macromolecules, and (c) the “freezing in” of molecular mobility (glassy state). Seven discrete hydration levels (water contents of 1.40, 0.55, 0.41, 0.31, 0.21, 0.13, and 0.08 g/g dry weight, corresponding to −1.5, −8, −11, −14, −24, −74, and −195 MPa, respectively) were identified according to the changes in thermodynamic and dielectric properties of water and water-plasticized biomolecules during dehydration. The implications of intracellular water organization for desiccation tolerance were discussed. Cytoplasmic viscosity increased exponentially at water content < 0.40 g/g dry weight, which was correlated with the great relaxation slowdown of water-plasticized biomolecules, supporting a role for viscosity in metabolic shutdown during dehydration. PMID:11080297
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayama, Yuki; Nakasako, Masayoshi; RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148
2012-05-15
Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, wemore » report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.« less
Jin, Geng Bang; Lin, Jian; Estes, Shanna L.; ...
2017-11-17
Here, the influence of countercations (A n+) in directing the composition of monomeric metal–ligand (ML) complexes that precipitate from solution are often overlooked despite the wide usage of A n+ in materials synthesis. Herein, we describe a correlation between the composition of ML complexes and A + hydration enthalpies found for two related series of thorium (Th)–nitrate molecular compounds obtained by evaporating acidic aqueous Th–nitrate solutions in the presence of A + counterions. Analyses of their chemical composition and solid-state structures demonstrate that A + not only affects the overall solid-state packing of the Th–nitrato complexes but also influences themore » composition of the Th–nitrato monomeric anions themselves. Trends in composition and structure are found to correlate with A + hydration enthalpies, such that the A + with smaller hydration enthalpies associate with less hydrated and more anionic Th–nitrato complexes. This perspective, broader than the general assumption of size and charge as the dominant influence of A n+, opens a new avenue for the design and synthesis of targeted metal–ligand complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Geng Bang; Lin, Jian; Estes, Shanna L.
Here, the influence of countercations (A n+) in directing the composition of monomeric metal–ligand (ML) complexes that precipitate from solution are often overlooked despite the wide usage of A n+ in materials synthesis. Herein, we describe a correlation between the composition of ML complexes and A + hydration enthalpies found for two related series of thorium (Th)–nitrate molecular compounds obtained by evaporating acidic aqueous Th–nitrate solutions in the presence of A + counterions. Analyses of their chemical composition and solid-state structures demonstrate that A + not only affects the overall solid-state packing of the Th–nitrato complexes but also influences themore » composition of the Th–nitrato monomeric anions themselves. Trends in composition and structure are found to correlate with A + hydration enthalpies, such that the A + with smaller hydration enthalpies associate with less hydrated and more anionic Th–nitrato complexes. This perspective, broader than the general assumption of size and charge as the dominant influence of A n+, opens a new avenue for the design and synthesis of targeted metal–ligand complexes.« less
Hydration and Cooling Practices Among Farmworkers in Oregon and Washington
Bethel, Jeffrey W.; Spector, June T.; Krenz, Jennifer
2018-01-01
Objectives Although recommendations for preventing occupational heat-related illness among farmworkers include hydration and cooling practices, the extent to which these recommendations are universally practiced is unknown. The objective of this analysis was to compare hydration and cooling practices between farmworkers in Oregon and Washington. Methods A survey was administered to a purposive sample of Oregon and Washington farmworkers. Data collected included demographics, work history and current work practices, hydration practices, access and use of cooling measures, and headwear and clothing worn. Results Oregon farmworkers were more likely than those in Washington to consume beverages containing sugar and/or caffeine. Workers in Oregon more frequently reported using various cooling measures compared with workers in Washington. Availability of cooling measures also varied between the two states. Conclusions These results highlight the large variability between workers in two states regarding access to and use of methods to stay cool while working in the heat. PMID:28402203
Hydration and Cooling Practices Among Farmworkers in Oregon and Washington.
Bethel, Jeffrey W; Spector, June T; Krenz, Jennifer
2017-01-01
Although recommendations for preventing occupational heat-related illness among farmworkers include hydration and cooling practices, the extent to which these recommendations are universally practiced is unknown. The objective of this analysis was to compare hydration and cooling practices between farmworkers in Oregon and Washington. A survey was administered to a purposive sample of Oregon and Washington farmworkers. Data collected included demographics, work history and current work practices, hydration practices, access and use of cooling measures, and headwear and clothing worn. Oregon farmworkers were more likely than those in Washington to consume beverages containing sugar and/or caffeine. Workers in Oregon more frequently reported using various cooling measures compared with workers in Washington. Availability of cooling measures also varied between the two states. These results highlight the large variability between workers in two states regarding access to and use of methods to stay cool while working in the heat.
Molecular mechanisms of decomposition of hydrated Na+Cl- ion pairs under planar nanopore conditions
NASA Astrophysics Data System (ADS)
Shevkunov, S. V.
2017-02-01
The decomposition of Na+Cl- ion pairs under the conditions of a nanoscopic planar pore with structureless walls in a material contact with water vapor at 298 K is simulated by Monte Carlo method. The transition from the state of a contact ion pair (CIP) to the state of solvent-separated ion pair (SSIP) is shown to occur as a result of an increase in the vapor pressure over a pore after exceeding the threshold number of molecules in a hydrate shell. It is found that the planar form of a molecular cluster under the conditions of a narrow pore does not level an abrupt structural transition and the formation of hydrogen bonds in the hydrate shell starts after three molecules are added. The hydrogen bond length under pore conditions is found to be resistant to variations in the hydrate shell size and coincides with that in water under normal conditions.
Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems
NASA Astrophysics Data System (ADS)
White, M. D.
2011-12-01
Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. This paper describes and demonstrates a numerical solution scheme for ternary hydrate systems that seeks a balance between accuracy and computational efficiency. This scheme uses a generalize cubic equation of state, functional forms for the hydrate equilibria and cage occupancies, variable switching scheme for phase transitions, and kinetic exchange of hydrate formers (i.e., CH4, CO2, and N2) between the mobile phases (i.e., aqueous, liquid CO2, and gas) and hydrate phase. Accuracy of the scheme will be evaluated by comparing property values and phase equilibria against experimental data. Computational efficiency of the scheme will be evaluated by comparing the base scheme against variants. The application of interest will the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.
NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins.
Bokor, Mónika; Csizmók, Veronika; Kovács, Dénes; Bánki, Péter; Friedrich, Peter; Tompa, Peter; Tompa, Kálmán
2005-03-01
Intrinsically unstructured/disordered proteins (IUPs) exist in a disordered and largely solvent-exposed, still functional, structural state under physiological conditions. As their function is often directly linked with structural disorder, understanding their structure-function relationship in detail is a great challenge to structural biology. In particular, their hydration and residual structure, both closely linked with their mechanism of action, require close attention. Here we demonstrate that the hydration of IUPs can be adequately approached by a technique so far unexplored with respect to IUPs, solid-state NMR relaxation measurements. This technique provides quantitative information on various features of hydrate water bound to these proteins. By freezing nonhydrate (bulk) water out, we have been able to measure free induction decays pertaining to protons of bound water from which the amount of hydrate water, its activation energy, and correlation times could be calculated. Thus, for three IUPs, the first inhibitory domain of calpastatin, microtubule-associated protein 2c, and plant dehydrin early responsive to dehydration 10, we demonstrate that they bind a significantly larger amount of water than globular proteins, whereas their suboptimal hydration and relaxation parameters are correlated with their differing modes of function. The theoretical treatment and experimental approach presented in this article may have general utility in characterizing proteins that belong to this novel structural class.
Electron cryo-tomography captures macromolecular complexes in native environments.
Baker, Lindsay A; Grange, Michael; Grünewald, Kay
2017-10-01
Transmission electron microscopy has a long history in cellular biology. Fixed and stained samples have been used for cellular imaging for over 50 years, but suffer from sample preparation induced artifacts. Electron cryo-tomography (cryoET) instead uses frozen-hydrated samples, without chemical modification, to determine the structure of macromolecular complexes in their native environment. Recent developments in electron microscopes and associated technologies have greatly expanded our ability to visualize cellular features and determine the structures of macromolecular complexes in situ. This review highlights the technological improvements and the new areas of biology these advances have made accessible. We discuss the potential of cryoET to reveal novel and significant biological information on the nanometer or subnanometer scale, and directions for further work. Copyright © 2017. Published by Elsevier Ltd.
Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott
2008-01-01
Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.
Oliver, Katherine V; Maréchal, Amandine; Rich, Peter R
2016-06-01
When analyzing solutes by Fourier transform infrared (FT-IR) spectroscopy in attenuated total reflection (ATR) mode, drying of samples onto the ATR crystal surface can greatly increase solute band intensities and, therefore, aid detection of minor components. However, analysis of such spectra is complicated by the existence of alternative partial hydration states of some substances that can significantly alter their infrared signatures. This is illustrated here with urea, which is a dominant component of urine. The effects of hydration state on its infrared spectrum were investigated both by incubation in atmospheres of fixed relative humidities and by recording serial spectra during the drying process. Significant changes of absorption band positions and shapes were observed. Decomposition of the CN antisymmetric stretching (νas) band in all states was possible with four components whose relative intensities varied with hydration state. These correspond to the solution (1468 cm(-1)) and dry (1464 cm(-1)) states and two intermediate (1454 cm(-1) and 1443 cm(-1)) forms that arise from specific urea-water and/or urea-urea interactions. Such intermediate forms of other compounds can also be formed, as demonstrated here with creatinine. Recognition of these states and their accommodation in analyses of materials such as dried urine allows more precise decomposition of spectra so that weaker bands of diagnostic interest can be more accurately defined. © The Author(s) 2016.
2017-01-01
The changes of protein expression that are monitored in proteomic experiments are a type of biological transformation that also involves changes in chemical composition. Accompanying the myriad molecular-level interactions that underlie any proteomic transformation, there is an overall thermodynamic potential that is sensitive to microenvironmental conditions, including local oxidation and hydration potential. Here, up- and down-expressed proteins identified in 71 comparative proteomics studies were analyzed using the average oxidation state of carbon (ZC) and water demand per residue (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$\\end{document}n¯H2O), calculated using elemental abundances and stoichiometric reactions to form proteins from basis species. Experimental lowering of oxygen availability (hypoxia) or water activity (hyperosmotic stress) generally results in decreased ZC or \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$\\end{document}n¯H2O of up-expressed compared to down-expressed proteins. This correspondence of chemical composition with experimental conditions provides evidence for attraction of the proteomes to a low-energy state. An opposite compositional change, toward higher average oxidation or hydration state, is found for proteomic transformations in colorectal and pancreatic cancer, and in two experiments for adipose-derived stem cells. Calculations of chemical affinity were used to estimate the thermodynamic potentials for proteomic transformations as a function of fugacity of O2 and activity of H2O, which serve as scales of oxidation and hydration potential. Diagrams summarizing the relative potential for formation of up- and down-expressed proteins have predicted equipotential lines that cluster around particular values of oxygen fugacity and water activity for similar datasets. The changes in chemical composition of proteomes are likely linked with reactions among other cellular molecules. A redox balance calculation indicates that an increase in the lipid to protein ratio in cancer cells by 20% over hypoxic cells would generate a large enough electron sink for oxidation of the cancer proteomes. The datasets and computer code used here are made available in a new R package, canprot. PMID:28603672
Faulting of gas-hydrate-bearing marine sediments - contribution to permeability
Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael
1997-01-01
Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.
Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel
2017-01-01
Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site. PMID:28589962
Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; ...
2017-06-07
Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less
Hong, Wei-Li; Torres, Marta E; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel
2017-06-07
Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn
Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less
Lapham, Darren P; Lapham, Julie L
2017-09-15
Commercial grades of magnesium stearate have been analysed by nitrogen adsorption having been pre-treated at temperatures between 30°C and 110°C and in the as-received state. Characteristics of nitrogen adsorption/desorption isotherms are assessed through the linearity of low relative pressure isotherm data and the BET transform plot together with the extent of isotherm hysteresis. Comparison is made between thermal gravimetric analysis and mass loss on drying. Features of gas adsorption isotherms considered atypical are identified and possible causes presented. It is shown that atypical isotherm features and issues of applying BET theory to the calculation of S BET are linked to the presence of hydrated water and that these depend on the hydration state: being more pronounced for the di-hydrate than the mono-hydrate. Dehydration reduces the extent of atypical features. S BET of a mono-hydrate sample is 5.6m 2 g -1 and 3.2m 2 g -1 at 40°C and 100°C degassing respectively but 23.9m 2 g 1 and 5.9m 2 g -1 for di-hydrate containing samples under comparable degassing. Di-hydrated samples also show S BET >15m 2 g 1 , BET C-values <7 and BET correlation coefficients <0.98 before dehydration. Possible mechanisms for atypical isotherms are critically discussed together with the suitability of applying BET theory to nitrogen adsorption data. Copyright © 2017 Elsevier B.V. All rights reserved.
Sánchez-Palencia, Diana M; D'Amore, Antonio; González-Mancera, Andrés; Wagner, William R; Briceño, Juan C
2014-08-22
In small intestinal submucosa scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on success rate may be related to the mechanotransductory properties of the final microstructural organization of collagen fibers. We hypothesized that two fabrication parameters, 1) preservation (P) or removal (R) of a dense collagen layer present in SIS and 2) SIS in a final dehydrated (D) or hydrated (H) state, have an effect on scaffold void area, microstructural anisotropy (fiber alignment) and mechanical anisotropy (global mechanical compliance). We further integrated our experimental measurements in a constitutive model to explore final effects on the micromechanical environment inside the scaffold volume. Our results indicated that PH scaffolds might exhibit recurrent and large force fluctuations between layers (up to 195 pN), while fluctuations in RH scaffolds might be larger (up to 256 pN) but not as recurrent. In contrast, both PD and RD groups were estimated to produce scarcer and smaller fluctuations (not larger than 50 pN). We concluded that the hydration parameter strongly affects the micromechanics of SIS and that an adequate choice of fabrication parameters, assisted by the herein developed method, might leverage the use of SIS for functional tissue engineering applications, where forces at the cellular level are of concern in the guidance of new tissue formation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chloral hydrate in intractable status epilepticus.
Lampl, Y; Eshel, Y; Gilad, R; Sarova-Pinchas, I
1990-06-01
Five adult patients were admitted to the neurological department in a state of status epilepticus. All were treated unsuccessfully with IV diazepam and diphenylhydantoin. Administration of sodium valporate or phenobarbital also was ineffective. However, after treatment with intrarectal chloral hydrate, all seizures ceased. The excellent effect of this drug was proved both clinically and electrodiagnostically. Discussed is the possibility of using chloral hydrate to treat patients with status epilepticus in whom conventional treatment has failed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... its salt, ester or hydrate form; or chemical intermediates intended for the manufacture of... salt, ester or hydrate forms of an INN active ingredient should state a rationale for the nomination...
Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling
NASA Astrophysics Data System (ADS)
Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting
2018-02-01
Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened.
Effect of Grinding on the Solid-State Stability and Particle Dissolution of Acyclovir Polymorphs.
Magnoni, Federico; Gigliobianco, Maria Rosa; Vargas Peregrina, Dolores; Censi, Roberta; Di Martino, Piera
2017-10-01
The present work investigated the solid state change of 4 acyclovir polymorphs when ground at room temperature (Method A) and under cryo-grinding in the presence of liquid nitrogen (Method B). Modifications in particle size and shape (evaluated by scanning electron microscopy) and in the water content (evaluated by thermal analysis) were related to transitions at the solid state, as confirmed by X-ray powder diffractometry. Anhydrous Form I was stable under grinding by both Methods A and B. The anhydrous Form II was stable during grinding under Method A, whereas it was progressively converted to the hydrate Form V during grinding under Method B. The hydrate Form V was stable under Method A, whereas it was converted to the anhydrous Form I after 15 min and then to the hydrate Form VI after 45 min of grinding. The hydrate Form VI proved to be stable under grinding by both Methods A and B. Thus, Form I and VI were the only forms that yielded a sizeable decrease in particle size under grinding, with a consequent increase in particle dissolution rate, while maintaining solid state physicochemical stability. Form I treated under Method B grinding gave the best dissolution rate. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Small Effect of Hydration on Elastic Wave Velocities of Ringwoodite in Earth's Transition Zone
NASA Astrophysics Data System (ADS)
Schulze, K.; Marquardt, H.; Boffa Ballaran, T.; Kurnosov, A.; Kawazoe, T.; Koch-Müller, M.
2017-12-01
Ringwoodite can incorporate significant amounts of hydrogen as OH-defects into its crystal structure. The measurement of 1.4 wt.% H20 in a natural ringwoodite diamond inclusion (Pearson et al. 2014) showed that hydrous ringwoodite can exist in the Earth's mantle. Since ringwoodite is considered to be the major phase in the mantle between 520 and 660 km depth it likely plays an important role for Earth's deep water cycle and the mantle water budget. Previous experimental work has shown that hydration reduces seismic wave velocities in ringwoodite, motivating attempts to map the hydration state of the mantle using seismic wave speed variations as depicted by seismic tomography. However, large uncertainties on the actual effects at transition zone pressures and temperatures remain. A major difficulty is the comparability of studies with different experimental setups and pressure- and temperature conditions. Here, we present results from a comparative elasticity study designed to quantify the effects of hydration on the seismic wave velocities of ringwoodite in Earth's transition zone. Focused ion beam cut single-crystals of four samples of either Fo90 or Fo100 ringwoodite with hydration states between 0.21 - 1.71 wt.% H2O were loaded in the pressure chamber of one diamond-anvil cell to ensure identical experimental conditions. Single-crystal Brillouin Spectroscopy and X-ray diffraction measurements were performed at room temperature to a pressure of 22 GPa. Additional experiments at high pressure and temperatures up to 500 K were performed. Our data collected at low pressures show a significant reduction of elastic wave velocities with hydration, consistent with previous work. However, in contrast to previous inferences, our results indicate that pressure significantly reduces the effect of hydration. Based on the outcome of our work, the redution in aggregate velocities caused by 1 wt.% H2O becomes smaller than 1% in ringwoodite at pressures equivalent to the Earth's transition zone. The detection of differences in the hydration state in pyrolitic mantle with about 56% ringwoodite by seismic tomography, might therefore be only possible in mantle regions of very high water contents.
Origins of hydration differences in homochiral and racemic crystals of aspartic acid.
Juliano, Thomas R; Korter, Timothy M
2015-02-26
The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.
Jang, Kyung-In; Han, Sang Youn; Xu, Sheng; Mathewson, Kyle E; Zhang, Yihui; Jeong, Jae-Woong; Kim, Gwang-Tae; Webb, R Chad; Lee, Jung Woo; Dawidczyk, Thomas J; Kim, Rak Hwan; Song, Young Min; Yeo, Woon-Hong; Kim, Stanley; Cheng, Huanyu; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Chung, Ha Uk; Lee, Dongjun; Yang, Yiyuan; Cho, Moongee; Gaspar, John G; Carbonari, Ronald; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Rogers, John A
2014-09-03
Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be applied and removed hundreds of times without damaging the devices or the skin, even in regions with substantial topography and coverage of hair. The approach combines thin, ultralow modulus, cellular silicone materials with elastic, strain-limiting fabrics, to yield a compliant but rugged platform for stretchable electronics. Theoretical and experimental studies highlight the mechanics of adhesion and elastic deformation. Demonstrations include cutaneous optical, electrical and radio frequency sensors for measuring hydration state, electrophysiological activity, pulse and cerebral oximetry. Multipoint monitoring of a subject in an advanced driving simulator provides a practical example.
NASA Astrophysics Data System (ADS)
Jang, Kyung-In; Han, Sang Youn; Xu, Sheng; Mathewson, Kyle E.; Zhang, Yihui; Jeong, Jae-Woong; Kim, Gwang-Tae; Webb, R. Chad; Lee, Jung Woo; Dawidczyk, Thomas J.; Kim, Rak Hwan; Song, Young Min; Yeo, Woon-Hong; Kim, Stanley; Cheng, Huanyu; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Chung, Ha Uk; Lee, Dongjun; Yang, Yiyuan; Cho, Moongee; Gaspar, John G.; Carbonari, Ronald; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Rogers, John A.
2014-09-01
Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be applied and removed hundreds of times without damaging the devices or the skin, even in regions with substantial topography and coverage of hair. The approach combines thin, ultralow modulus, cellular silicone materials with elastic, strain-limiting fabrics, to yield a compliant but rugged platform for stretchable electronics. Theoretical and experimental studies highlight the mechanics of adhesion and elastic deformation. Demonstrations include cutaneous optical, electrical and radio frequency sensors for measuring hydration state, electrophysiological activity, pulse and cerebral oximetry. Multipoint monitoring of a subject in an advanced driving simulator provides a practical example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang
2012-12-15
Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less
Traditional Portland cement and MgO-based cement: a promising combination?
NASA Astrophysics Data System (ADS)
Tonelli, Monica; Martini, Francesca; Calucci, Lucia; Geppi, Marco; Borsacchi, Silvia; Ridi, Francesca
2017-06-01
MgO/SiO2 cements are materials potentially very useful for radioactive waste disposal, but knowledge about their physico-chemical properties is still lacking. In this paper we investigated the hydration kinetics of cementitious formulations prepared by mixing MgO/SiO2 and Portland cement in different proportions and the structural properties of the hydrated phases formed in the first month of hydration. In particular, the hydration kinetics was investigated by measuring the free water index on pastes by means of differential scanning calorimetry, while the structural characterization was carried out by combining thermal (DTA), diffractometric (XRD), and spectroscopic (FTIR, 29Si solid state NMR) techniques. It was found that calcium silicate hydrate (C-S-H) and magnesium silicate hydrate (M-S-H) gels mainly form as separate phases, their relative amount and structural characteristics depending on the composition of the hydrated mixture. Moreover, the composition of the mixtures strongly affects the kinetics of hydration and the pH of the aqueous phase in contact with the cementitious materials. The results here reported show that suitable mixtures of Portland cement and MgO/SiO2 could be used to modify the properties of hydrated phases with potential application in the storage of nuclear waste in clayey disposal.
Inhibition of insulin amyloid fibrillation by Morin hydrate.
Patel, Palak; Parmar, Krupali; Das, Mili
2018-03-01
We report here the inhibition of amyloid fibrillation of human insulin in vitro by Morin hydrate, a naturally occurring small molecule. Using spectroscopic assays and transmission electron microscopy, we found that Morin hydrate effectively inhibits insulin amyloid fibrillation in a dose dependent manner with more than 80% inhibition occurring even at only a 1:1 concentration. As suggested by fluorescence spectroscopic titration studies, Morin hydrate binds to insulin with a fairly strong affinity of -26.436kJmol -1 . Circular dichroism (CD) spectroscopy was used to analyse structural changes of insulin in the presence of Morin hydrate demonstrating the ability of Morin hydrate to bind with the native monomeric protein and/or its near native state, intermediate oligomeric species and amyloid fibrils. Based on computational docking and molecular dynamics study, we propose that Morin hydrate binds to residues having greater aggregation propensity and prevent structural and/or conformational changes leading to amyloid fibrillation. Morin hydrate should also bind to fibrils by hydrogen bonding and/or hydrophobic forces throughout the surface, stabilize them and inhibit the release of oligomeric species which could be nuclei or template for further fibrillation. Overall results provide an insight into the mechanism of inhibition of insulin amyloid fibrillation by Morin hydrate. Copyright © 2017 Elsevier B.V. All rights reserved.
Stress and Dilatancy Relation of Methane Hydrate Bearing Sand with Various Fines Content
NASA Astrophysics Data System (ADS)
Hyodo, M.
2016-12-01
This study presents an experimental and numerical study on the shear behaviour of methane hydrate bearing sand with variable confining pressures and methane hydrate saturations. A representative grading curve of Nankai Trough is selected as the grain size distribution of host sand to artificially produce the methane hydrate bearing sand. A shear strength estimation equation for methane hydrate bearing sand from test results is established. A simple constitutive model has been proposed to predict the stress-strain response of methane hydrate bearing sand based on a few well-known relationships. Experimental results indicate that the inclination of stress-dilatancy curve becomes steeper with a rise in methane hydrate saturation. A revised stress-dilatancy equation has been integrated with this simple model to consider the variance in the inclination of stress-dilatancy curve. The mean stress Pcr at critical state when the peak stress ratio reduces to the residual stress ratio increases with the level of methane hydrate saturation. The dilatancy parameter a tends to increase with the methane hydrate saturation. The shear deformability parameter A exhibits a decreasing tendency with the rise in methane hydrate saturation at each confining pressure. This model is capable of reasonably predicting the strength and stiffness enhancement and the dilation behaviour as methane hydrate saturation increases. The volumetric variation from contraction to expansion of MH bearing sand at a lower confining pressure and only pure volumetric contraction a higher confining pressure can be represented by this simple model.
Investigation of C3S hydration by environmental scanning electron microscope.
Sakalli, Y; Trettin, R
2015-07-01
Tricalciumsilicate (C(3)S, Alite) is the major component of the Portland cement clinker, The hydration of the Alite is decisive for the properties of the resulting material due to the high content in cement. The mechanism of the hydration of C(3)S is very complicated and not yet fully understood. There are some models that describe the hydration of C(3)S in various ways. The Environmental Scanning Electron Microscopy (ESEM) working in gaseous atmosphere enables high-resolution dynamic observations of structure of materials, from micrometre to nanometre scale. This provides a new perspective in material research. ESEM significantly allows imaging of specimen in their natural state without the need for special preparation (coating, drying, etc.) that can alter the physical properties. This paper presents the results of our experimental studies of hydration of C(3)S using ESEM. The ESEM turned out to be an important extension of the conventional scanning microscopy. The purpose of these investigations is to gain insight of hydration mechanism to determine which hydration products are formed and to analyze if there are any differences in the composition of the hydration products. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Jin, Y.K.; Lee, M.W.; Collett, T.S.
2002-01-01
Well logs acquired at the Mallik 2L-38 gas hydrate research well. Mackenzie Delta, Canada, reveal a distinct trend showing that the resistivity of gas-hydrate-bearing sediments increases with increases in density porosities. This trend, opposite to the general trend of decrease in resistivity with porosity, implies that gas hydrates are more concentrated in the higher porosity. Using the Mallik 2L-38 well data, a proportional gas hydrate concentration (PGHC) model, which states that the gas hydrate concentration in the sediment's pore space is linearly proportional to porosity, is proposed for the general habitat of gas hydrate in sediments. Anomalous data (less than 6% of the total data) outside the dominant observed trend can be explained by local geological characteristics. The anomalous data analysis indicates that highly concentrated gas-hydrate-bearing layers would be expected where sediments have high proportions of gravel and coarse sand. Using the parameters in the PGHC model determined from resistivity-porosity logs, it is possible to qualitatively predict the degree of reflection amplitude variations in seismic profiles. Moderate-to-strong reflections are expected for the Mallik 2L-38 well. ?? 2002 Elsevier Science Ltd. All rights reserved.
Does hydration status affect MRI measures of brain volume or water content?
Meyers, Sandra M; Tam, Roger; Lee, Jimmy S; Kolind, Shannon H; Vavasour, Irene M; Mackie, Emilie; Zhao, Yinshan; Laule, Cornelia; Mädler, Burkhard; Li, David K B; MacKay, Alex L; Traboulsee, Anthony L
2016-08-01
To determine whether differences in hydration state, which could arise from routine clinical procedures such as overnight fasting, affect brain total water content (TWC) and brain volume measured with magnetic resonance imaging (MRI). Twenty healthy volunteers were scanned with a 3T MR scanner four times: day 1, baseline scan; day 2, hydrated scan after consuming 3L of water over 12 hours; day 3, dehydrated scan after overnight fasting of 9 hours, followed by another scan 1 hour later for reproducibility. The following MRI data were collected: T2 relaxation (for TWC measurement), inversion recovery (for T1 measurement), and 3D T1 -weighted (for brain volumes). Body weight and urine specific gravity were also measured. TWC was calculated by fitting the T2 relaxation data with a nonnegative least-squares algorithm, with corrections for T1 relaxation and image signal inhomogeneity and normalization to ventricular cerebrospinal fluid. Brain volume changes were measured using SIENA. TWC means were calculated within 14 tissue regions. Despite indications of dehydration as demonstrated by increases in urine specific gravity (P = 0.03) and decreases in body weight (P = 0.001) between hydrated and dehydrated scans, there was no measurable change in TWC (within any brain region) or brain volume between hydration states. We demonstrate that within a range of physiologic conditions commonly encountered in routine clinical scans (no pretreatment with hydration, well hydrated before MRI, and overnight fasting), brain TWC and brain volumes are not substantially affected in a healthy control cohort. J. Magn. Reson. Imaging 2016;44:296-304. © 2016 Wiley Periodicals, Inc.
Melnik, T N; Nagibina, G S; Surin, A K; Glukhova, K A; Melnik, B S
2018-01-01
Studying the effect of cysteine bridges on different energy levels of multistage folding proteins will enable a better understanding of the process of folding and functioning of globular proteins. In particular, it will create prospects for directed change in the stability and rate of protein folding. In this work, using the method of differential scanning microcalorimetry, we have studied the effect of three cysteine bridges introduced in different structural elements of the green fluorescent protein on the denaturation enthalpies, activation energies, and heat-capacity increments when this protein passes from native to intermediate and transition states. The studies have allowed us to confirm that, with this protein denaturation, the process hardly damages the structure initially, but then changes occur in the protein structure in the region of 4-6 beta sheets. The cysteine bridge introduced in this region decreases the hydration of the second transition state and increases the hydration of the second intermediate state during the thermal denaturation of the green fluorescent protein.
Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments
NASA Astrophysics Data System (ADS)
De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.
2017-12-01
A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.
Vidavsky, Netta; Akiva, Anat; Kaplan-Ashiri, Ifat; Rechav, Katya; Addadi, Lia; Weiner, Steve; Schertel, Andreas
2016-12-01
Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm 3 ) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.
Meyer, H W; Bunjes, H; Ulrich, A S
1999-06-01
The phase transition of hydrated brain sphingomyelin occurs at around 35 degrees C, which is close to the physiological temperature. Freeze-fracture electron microscopy is used to characterize different gel state morphologies in terms of solid-ordered and liquid-ordered phase states, according to the occurrence of ripples and other higher-dimensional bilayer deformations. Evidently, the natural mixed-chain sphingomyelin does not assume the flat L beta, phase but instead the rippled P beta, phase, with symmetric and asymmetric ripples as well as macroripples and an egg-carton pattern, depending on the incubation conditions. An unexpected difference was observed between samples that are hydrated above and below the phase transition temperature. When the lipid is hydrated at low temperature, a sponge-like network of bilayers is formed in the gel state, next to some normal lamellae. The network loses its ripples during cold-incubation, which indicates the formation of a liquid-ordered (lo) gel phase. Ripples re-appear upon warming and the sponge-like network disintegrates spontaneously and irreversibly into small vesicles above the phase transition.
Srinivasan, Mythili; Pruitt, Cassandra; Casey, Erin; Dhaliwal, Keerat; DeSanto, Cori; Markus, Richard; Rosen, Ayelet
2017-08-01
Intravenous (IV) hydration is used primarily in children with bronchiolitis at our institution. Because nasogastric (NG) hydration can provide better nutrition, the goal of our quality improvement (QI) initiative was to increase the rate of NG hydration in eligible children 1 to 23 months old with bronchiolitis by 20% over 6 months. We used Plan-Do-Study-Act cycles to increase the use of NG hydration in eligible children. Interventions included educational and system-based changes and sharing parental feedback with providers. Chart reviews were performed to identify the rates of NG hydration, which were plotted over time in a statistical process control p chart. The balancing measure was the rate of complications in children with NG versus IV hydration. Two hundred and ninety-three children who were hospitalized with bronchiolitis needed supplemental hydration during the QI initiative (January 2016-April 2016). Ninety-one children were candidates for NG hydration, and 53 (58%) received NG hydration. The rates of NG hydration increased from a baseline of 0% pre-QI bronchiolitis season (January 2015-April 2015) to 58% during the initiative. There was no aspiration and no accidental placement of the NG tube into a child's airway. Nine patients (17%) in the NG group had a progression of disease requiring nil per os status, and 6 of these were transferred to the PICU whereas none of those in the IV group were transferred to the PICU. Post-QI initiative, the majority of nurses (63%) and physicians (95%) stated that they are more likely to consider NG hydration in children with bronchiolitis. We successfully increased the rates of NG hydration in eligible children with bronchiolitis by using educational and system-based interventions. Copyright © 2017 by the American Academy of Pediatrics.
Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope
Collett, T.S.; Lee, M.W.; Agena, W.F.; Miller, J.J.; Lewis, K.A.; Zyrianova, M.V.; Boswell, R.; Inks, T.L.
2011-01-01
In the 1960s Russian scientists made what was then a bold assertion that gas hydrates should occur in abundance in nature. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. In 1995, the U.S. Geological Survey made the first systematic assessment of the in-place natural gas hydrate resources of the United States. That study suggested that the amount of gas in the gas hydrate accumulations of northern Alaska probably exceeds the volume of known conventional gas resources on the North Slope. Researchers have long speculated that gas hydrates could eventually become a producible energy resource, yet technical and economic hurdles have historically made gas hydrate development a distant goal. This view began to change in recent years with the realization that this unconventional resource could be developed with existing conventional oil and gas production technology. One of the most significant developments was the completion of the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope, which along with the Mallik project in Canada, have for the first time allowed the rational assessment of gas hydrate production technology and concepts. Almost 40 years of gas hydrate research in northern Alaska has confirmed the occurrence of at least two large gas hydrate accumulations on the North Slope. We have also seen in Alaska the first ever assessment of how much gas could be technically recovered from gas hydrates. However, significant technical concerns need to be further resolved in order to assess the ultimate impact of gas hydrate energy resource development in northern Alaska. ?? 2009 Elsevier Ltd.
Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope
Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.
2011-01-01
In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.
NASA Astrophysics Data System (ADS)
Eichler, Daniel R.; Hamann, Haley A.; Harte, Katherine A.; Papadantonakis, George A.
2017-07-01
Results from DFT calculations indicate that states originating from gas-phase ionization of the phosphate and the base are degenerate in syn-5‧-dGMP- and that bulk hydration lowers the base-localized ionization energy by <0.5 eV. Local ionization maps show that micro-hydration leads to the formation of donor and acceptor hydrogen bonds and the ionization energy decreases or increases in each case respectively. The SN2 transition states of the methylation reactions of guanine with methane diazonium ions are lower at the N7 than at the O6 sites and they are influenced by local ionization energy and steric interference.
Liu, Chang-Ling; Ye, Yu-Guang; Meng, Qing-Guo; Lü, Wan-Jun; Wang, Fei-Fei
2011-06-01
Micro laser Raman spectroscopic technique was used for in situ observation of the micro-processes of methane hydrate formed and decomposed in a high pressure transparent capillary. The changes in clathrate structure of methane hydrate were investigated during these processes. The results show that, during hydrate formation, the Raman peak (2 917 cm(-1)) of methane gas gradually splits into two peaks (2 905 and 2 915 cm(-1)) representing large and small cages, respectively, suggesting that the dissolved methane molecules go into two different chemical environments. In the meantime, the hydrogen bonds interaction is strengthened because water is changing from liquid to solid state gradually. As a result, the O-H stretching vibrations of water shift to lower wavenumber. During the decomposition process of methane hydrates, the Raman peaks of the methane molecules both in the large and small cages gradually clear up, and finally turn into a single peak of methane gas. The experimental results show that laser Raman spectroscopy can accurately demonstrate some relevant information of hydrate crystal structure changes during the formation and dissociation processes of methane hydrate.
NASA Astrophysics Data System (ADS)
Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Waite, W. F.; Jang, J.; Kumar, P.; Tenma, N.
2017-12-01
Pressure coring and analysis technology allows for gas hydrate to be recovered from the deep seabed, transferred to the laboratory and characterized while continuously maintaining gas hydrate stability. For this study, dozens of hydrate-bearing pressure core sediment subsections recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02 were tested with Pressure Core Non-destructive Analysis Tools (PNATs) through a collaboration between Japan and India. PNATs, originally developed by AIST as a part of the Japanese National hydrate research program (MH21, funded by METI) conducted permeability, compression and consolidation tests under various effective stress conditions, including the in situ stress state estimated from downhole bulk density measurements. At the in situ effective stress, gas hydrate-bearing sediments had an effective permeability range of 0.01-10mD even at pore-space hydrate saturations above 60%. Permeability increased by 10 to 100 times after hydrate dissociation at the same effective stress, but these post-dissociation gains were erased when effective stress was increased from in situ values ( 1 MPa) to 10MPa in a simulation of the depressurization method for methane extraction from hydrate. Vertical-to-horizontal permeability anisotropy was also investigated. First-ever multi-stage loading tests and strain-rate alternation compression tests were successfully conducted for evaluating sediment strengthening dependence on the rate and magnitude of effective confining stress changes. In addition, oedometer tests were performed up to 40MPa of consolidation stress to simulate the depressurization method in ultra-deep sea environments. Consolidation curves measured with and without gas hydrate were investigated over a wide range of effective confining stresses. Compression curves for gas hydrate-bearing sediments were convex downward due to high hydrate saturations. Consolidation tests show that, regardless of the consolidation history with hydrate in place, the consolidation behavior after dissociation will first return to, then follow, the original normal consolidation curve for the hydrate-free host sediment.
Body Composition Changes Resulting from Fluid Ingestion and Dehydration
ERIC Educational Resources Information Center
Girandola, Robert N.
1977-01-01
It is recommended that when obtaining measures of body density by hydrostatic weighing, the subjects normal level of hydration be ascertained, since variance in body fat calculation from the hyperhydrated to the hydrated state can amount to twenty percent (two percent in actual body fat). (MB)
PRODUCTION OF HYDRATED ELECTRONS FROM PHOTOIONIZATION OF DISSOLVED ORGANIC MATTER IN NATURAL WATERS
Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection, producing hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh and seawater samples with both steady-state scave...
Evaluation method of the performance of kinetic inhibitor for clathrate hydrate
NASA Astrophysics Data System (ADS)
Muraoka, M.; Susuki, N.; Yamamoto, Y.
2016-12-01
As a part of a Japanese National hydrate research program (MH21, funded by METI), we study the formation of tetrahydrofuran (THF) clathrate hydrate from polyvinylpyrrolidone (PVP) aqueous solution as a function of growth rate V and adsorbed PVP concentration c using the unidirectional growth technique. This study aims to propose a simple method for evaluating the performance of kinetic hydrate inhibitors (KHIs) for the clathrate hydrate-aqueous solution system. The degree of super cooling ΔT calculated from the growth-induced interface shift under steady-state conditions was used for evaluating the KHIs performance. Using this method, a single experimental run can be completed within 3.5 h of the compulsory nucleation by setting V = 5 μm s-1. We believe this method is useful for screening various KHIs and clarifying the inhibition mechanism of KHIs.
Clathrate structure-type recognition: Application to hydrate nucleation and crystallisation
NASA Astrophysics Data System (ADS)
Lauricella, Marco; Meloni, Simone; Liang, Shuai; English, Niall J.; Kusalik, Peter G.; Ciccotti, Giovanni
2015-06-01
For clathrate-hydrate polymorphic structure-type (sI versus sII), geometric recognition criteria have been developed and validated. These are applied to the study of the rich interplay and development of both sI and sII motifs in a variety of hydrate-nucleation events for methane and H2S hydrate studied by direct and enhanced-sampling molecular dynamics (MD) simulations. In the case of nucleation of methane hydrate from enhanced-sampling simulation, we notice that already at the transition state, ˜80% of the enclathrated CH4 molecules are contained in a well-structured (sII) clathrate-like crystallite. For direct MD simulation of nucleation of H2S hydrate, some sI/sII polymorphic diversity was encountered, and it was found that a realistic dissipation of the nucleation energy (in view of non-equilibrium relaxation to either microcanonical (NVE) or isothermal-isobaric (NPT) distributions) is important to determine the relative propensity to form sI versus sII motifs.
Hydration of Portland cement with additions of calcium sulfoaluminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr; Lothenbach, Barbara; Hori, Akihiro
2013-01-15
The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has amore » similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.« less
Dynamic Autoinoculation and the Microbial Ecology of a deep Water Hydrocarbon Irruption
2012-12-11
gas hydrate) likely altered plume com- position near the source, leavrngintruswrscknimatedbythemost soluble compounds, such as gases (2-4, 9, 10, 12...well. These results may reconcile disparate observations of the physical dynamics and microbial community structure of the deep plume . Model...feeds bacterial metabolism and cellular growth. We focused entirely on the deep plume horizon spanning 1,000-1,300 m water depth, applying
Disorders of erythrocyte hydration.
Gallagher, Patrick G
2017-12-21
The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte. © 2017 by The American Society of Hematology.
The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space
NASA Astrophysics Data System (ADS)
Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.
2018-02-01
Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.
Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.
2011-01-01
Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.
Stern, L.A.; Lorenson, T.D.; Pinkston, J.C.
2011-01-01
Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5. m to 760.1. m depth, and sections investigated here were retrieved from 619.9. m and 661.0. m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. ?? 2009.
Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.
Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F
2011-05-31
Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.
Development of hydrate risk quantification in oil and gas production
NASA Astrophysics Data System (ADS)
Chaudhari, Piyush N.
Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in order to reduce the parametric study that may require a long duration of time using The Colorado School of Mines Hydrate Kinetic Model (CSMHyK). The evolution of the hydrate plugging risk along flowline-riser systems is modeled for steady state and transient operations considering the effect of several critical parameters such as oil-hydrate slip, duration of shut-in, and water droplet size on a subsea tieback system. This research presents a novel platform for quantification of the hydrate plugging risk, which in-turn will play an important role in improving and optimizing current hydrate management strategies. The predictive strength of the hydrate risk quantification and hydrate prediction models will have a significant impact on flow assurance engineering and design with respect to building safe and efficient hydrate management techniques for future deep-water developments.
NASA Astrophysics Data System (ADS)
Dallimore, S. R.; Collett, T. S.; Uchida, T.; Weber, M.
2003-04-01
With the completion of scientific studies undertaken as part of the 1998 Mallik 2L-38 gas hydrate research well, an international research site was established for the study of Arctic natural gas hydrates in the Mackenzie Delta of northwestern Canada. Quantitative well log analysis and core studies reveal multiple gas hydrate layers from 890 m to 1106 m depth, exceeding 110 m in total thickness. High gas hydrate saturation values, which in some cases exceed 80% of the pore volume, establish the Mallik gas hydrate field as one of the most concentrated gas hydrate reservoirs in the world. Beginning in December 2001 and continuing to the middle of March 2002, two 1188 m deep science observation wells were drilled and instrumented and a 1166 m deep production research well program was carried out. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. In addition the project has been accepted as part of the International Scientific Continental Drilling Program. The Geological Survey of Canada is coordinating the science program for the project and JAPEX Canada Ltd. acted as the designated operator for the fieldwork. Primary objectives of the research program are to advance fundamental geological, geophysical and geochemical studies of the Mallik gas hydrate field and to undertake advanced production testing of a concentrated gas hydrate reservoir. Full-scale field experiments in the production well monitored the physical behavior of the hydrate deposits in response to depressurization and thermal stimulation. The observation wells facilitated cross-hole tomography and vertical seismic profile experiments (before and after production) as well as the measurement of in situ formation conditions. A wide- ranging science and engineering research program included the collection of gas-hydrate-bearing core samples and downhole geophysical logging. Laboratory and modeling studies undertaken during the field program, and subsequently as part of a post-field research program, will document the sedimentology, physical/petrophysical properties, geochemistry, geophysics, reservoir characteristics and production behavior of the Mallik gas hydrate accumulation. The research team, including some 100 participant scientists from over 20 institutes in 7 countries, expects to publish the scientific results in 2004.
Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo
2012-01-01
We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.
USGS AK Gas Hydrate Assessment Team: Collett, Timothy S.; Agena, Warren F.; Lee, Myung Woong; Lewis, Kristen A.; Zyrianova, Margarita V.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy A.; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.
2014-01-01
Scientists with the U.S. Geological Survey have completed the first assessment of the undiscovered, technically recoverable gas hydrate resources beneath the North Slope of Alaska. This assessment indicates the existence of technically recoverable gas hydrate resources—that is, resources that can be discovered, developed, and produced using current technology. The approach used in this assessment followed standard geology-based USGS methodologies developed to assess conventional oil and gas resources. In order to use the USGS conventional assessment approach on gas hydrate resources, three-dimensional industry-acquired seismic data were analyzed. The analyses indicated that the gas hydrates on the North Slope occupy limited, discrete volumes of rock bounded by faults and downdip water contacts. This assessment approach also assumes that the resource can be produced by existing conventional technology, on the basis of limited field testing and numerical production models of gas hydrate-bearing reservoirs. The area assessed in northern Alaska extends from the National Petroleum Reserve in Alaska on the west through the Arctic National Wildlife Refuge on the east and from the Brooks Range northward to the State-Federal offshore boundary (located 3 miles north of the coastline). This area consists mostly of Federal, State, and Native lands covering 55,894 square miles. Using the standard geology-based assessment methodology, the USGS estimated that the total undiscovered technically recoverable natural-gas resources in gas hydrates in northern Alaska range between 25.2 and 157.8 trillion cubic feet, representing 95 percent and 5 percent probabilities of greater than these amounts, respectively, with a mean estimate of 85.4 trillion cubic feet.
Torgomyan, Heghine; Trchounian, Armen
2013-02-01
Low-intensity electromagnetic field (EMF) of extremely high frequencies is a widespread environmental factor. This field is used in telecommunication systems, therapeutic practices and food protection. Particularly, in medicine and food industries EMF is used for its bactericidal effects. The significant targets of cellular mechanisms for EMF effects at resonant frequencies in bacteria could be water (H(2)O), cell membrane and genome. The changes in H(2)O cluster structure and properties might be leading to increase of chemical activity or hydration of proteins and other cellular structures. These effects are likely to be specific and long-term. Moreover, cell membrane with its surface characteristics, substance transport and energy-conversing processes is also altered. Then, the genome is affected because the conformational changes in DNA and the transition of bacterial pro-phages from lysogenic to lytic state have been detected. The consequences for EMF interaction with bacteria are the changes in their sensitivity to different chemicals, including antibiotics. These effects are important to understand distinguishing role of bacteria in environment, leading to changed metabolic pathways in bacteria and their antibiotic resistance. This EMF may also affect the cell-to-cell interactions in bacterial populations, since bacteria might interact with each other through EMF of sub-extremely high frequency range.
Ogawa, Shigesaburo; Osanai, Shuichi
2007-04-01
DSC and simultaneous XRD-DSC measurements were carried out to clarify the interaction among the ingredients in a ternary aqueous solution composed of NaCl, a sugar-based amphiphile or free sugar, and water. Two aspects of the inhibition of eutectic formation were suggested through the addition of the sugar amphiphile. One was the retention of the glass state of the eutectic phase, and the other was the trapping of NaCl hydrate into the sugar moiety of the amphiphilic aggregate. The difference between the free sugar and the amphiphilic one in terms of the trapping of NaCl hydrate was attributable to their dissimilarity in the dissolution state. The results indicated that the free sugars in water could interact with NaCl hydrate on the basis of their various hydroxyl groups. On the other hand, the sugar-based amphiphiles generated a self-assembly aggregate in the system, and interacted with NaCl hydrate by a salting-in effect with their sugar moiety in the freezing-thawing process. It was confirmed that the number of sugar units played an important role in trapping NaCl hydrate in the system. The effects of the structural isomerism in the sugars were slight with regard to the inhibition of eutectic formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye
2014-02-15
Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape.more » The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.« less
De, Jaysankar
2014-01-01
“Changes in cell hydration” have been hypothesized as an input signal for intracellular metabolic cascade responsible for biological effects of nonionizing radiation (NIR). To test this hypothesis a comparative study on the impacts of different temperature and NIR (infrasound frequency mechanical vibration (MV), static magnetic field (SMF), extremely low frequency electromagnetic field (ELF EMF), and microwave (MW)) pretreated water on the hydration of barley seeds in its dormant and germination periods was performed. In dormant state temperature sensitivity (Q 10) of seed hydration in distilled water (DW) was less than 2, and it was nonsensitive to NIR treated DW, whereas during the germination period (48–72 hours) seeds hydration exhibited temperature sensitivity Q 10 > 2 and higher sensitivity to NIR treated DW. Obtained data allow us to suggest that the metabolic driving of intracellular water dynamics accompanied by hydrogen bonding and breaking is more sensitive to NIR-induced water structure changes in seed bathing aqua medium than the simple thermodynamic processes such as osmotic gradient driven water absorption by seeds in dormant state. Therefore, cell hydration is suggested to be a universal and extrasensitive biomarker for detection of biological effects of NIR on cells and organisms. PMID:25587574
Simulation and Characterization of Methane Hydrate Formation
NASA Astrophysics Data System (ADS)
Dhakal, S.; Gupta, I.
2017-12-01
The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate saturation is followed by decrease in the porosity and permeability of the reservoir rock. Sensitivities on flow rates of gas and water are simulated, using different reservoir properties, fault angles and grid sizes to study the properties of hydrate formation and accumulation in the subsurface.
Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastaldi, D., E-mail: dgastaldi@buzziunicem.it; Paul, G., E-mail: geo.paul@uniupo.it; Marchese, L.
The hydration of four sulfoaluminate cements have been studied: three sulfoaluminate systems, having different content of sulfate and silicate, and one blend Portland-CSA-calcium sulfate binder. Hydration was followed up to 90 days by means of a combination of X-ray diffraction and solid state MAS-NMR; Differential scanning calorimetry and Scanning electron microscopy were also performed in order to help the interpretation of experimental data. High amount of amorphous phases were found in all the four systems: in low-sulfate cements, amorphous part is mainly ascribed to monosulfate and aluminium hydroxide, while strätlingite is observed if belite is present in the cement; inmore » the blend system, C-S-H contributes to the amorphous phase beyond monosulfate.« less
Birkemose, M; Møller, A J; Madsen, M L; Brantlov, S; Sørensen, H; Overgaard, K; Johansen, P
2013-01-01
In order to maintain a homeostatic environment in human cells, the balance between absorption and separation of water must be retained. Imbalance will have consequences on both the cellular and organ levels. Studies performed on athletes have shown coherence between their hydration status and ability to perform. A dehydration of 2-7% of total body weight resulted in a marked decrease in performance. Measurement and monitoring of hydration status may be used to optimize athlete performance. Therefore, in this current study bioimpedance spectroscopy is used to determine the hydration status of athletes. Trials were made to investigate alternative ways of electrode placement when performing bioimpedance spectroscopy in order to measure relative dehydration. A total of 14 test subjects underwent measurements before, during, and after a cycle test of 3×25min. Electrodes where placed to measure body impedance in three different ways: wrist-ankle (recommended method), wrist-wrist, and transthoracic. Furthermore, the relative loss in weight of the subjects during the trial was registered. The study showed no relation between relative weight loss and the wrist-wrist and transthoracic placement method, using bioimpedance spectroscopy to measure relative dehydration. The inability of the method to detect such relative changes in hydration may be due to the bioimpedance spectroscopy technology being extremely sensitive to changes in skin temperature, movement artifacts, thoroughness in placing the electrodes, and the physiological impact on the human body when performing exercise. Therefore, further research into the area of bioimpedance spectroscopy is needed before this methodology can be applied in monitoring active athletes. Hence, a simple weight measurement still seems a more useful way of determining a relative change of hydration in an active setting.
NASA Astrophysics Data System (ADS)
Becker, K.; Davis, E.; Heesemann, M.; McGuire, J. J.; Collins, J. A.; O'Brien, J. K.; von der Heydt, K.
2017-12-01
We report the configuration of and initial results from a 24-thermistor cable installed to 268 m below seafloor (mbsf) in IODP Hole U1364A in the frontal accretionary prism of the Cascadia subduction zone. The thermistor array spans the gas hydrate stability zone and a clear bottom-simulating reflector at 225-230 mbsf. The thermistor string was deployed in July 2016 along with a seismic-strain observatory into the cased section of a pressure-monitoring Advanced CORK (ACORK) that had been installed in 2010 during IODP Expedition 328. Formation pressures are monitored via permeable screens on the outside of solid steel casing that is sealed at the bottom by a bridge plug and cement up to 302 mbsf. All three observatory systems were connected to the Ocean Networks Canada NEPTUNE cabled observatory Clayoquot Slope node in June of 2017, with the thermistor temperatures being logged by ONC every minute. The thermistor array was designed with concentrated vertical spacing around the BSR and two pressure-monitoring screens at 203 and 244 mbsf, with wider thermistor spacing elsewhere to document the geothermal state up to seafloor. The initial six weeks of data logged via the ONC connection show a generally linear temperature gradient, with temperatures of about 15.8°C at the BSR depth, consistent with methane hydrate stability at that depth and pressure. Sensor temperatures at most depths are quite stable over this period, with the exceptions of two sensors at 76 and 256 mbsf that show slowly rising temperatures; these could be due to cellular convection of borehole fluids, sensor degradation, or formation processes, but this requires a longer time series to resolve. We will report updated results after four more months of data recording through November 2017, along with any correlations to the pressure records. The data are freely available to all registered ONC users via the ONC data management and archiving system.
Methane hydrates in nature - Current knowledge and challenges
Collett, Timothy S.
2014-01-01
Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance our understanding of methane hydrates in nature. COL assembled a Methane Hydrate Project Science Team with members from academia, industry, and government. This Science Team worked with COL and DOE to develop and host the Methane Hydrate Community Workshop, which surveyed a substantial cross section of the methane hydrate research community for input on the most important research developments in our understanding of methane hydrates in nature and their potential role as an energy resource, a geohazard, and/or as an agent of global climate change. Our understanding of how methane hydrates occur in nature is still growing and evolving, and it is known with certainty that field, laboratory, and modeling studies have contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information needed to advance our understanding of methane hydrates.
Pérez-Rodríguez, M; Vidal-Vidal, A; Míguez, J M; Blas, F J; Torré, J-P; Piñeiro, M M
2017-01-25
Carbon dioxide (CO 2 ) molecules show a rich orientation landscape when they are enclathrated in type I hydrates. Previous studies have described experimentally their preferential orientations, and some theoretical works have explained, but only partially, these experimental results. In the present paper, we use classical molecular dynamics and electronic density functional theory to advance in the theoretical description of CO 2 orientations within type I hydrates. Our results are fully compatible with those previously reported, both theoretical and experimental, the geometric shape of the cavities in hydrate being, and therefore, the steric constraints, responsible for some (but not all) preferential angles. In addition, our calculations also show that guest-guest interactions in neighbouring cages are a key factor to explain the remaining experimental angles. Besides the implication concerning equation of state hydrate modeling approximations, the conclusion is that these guest-guest interactions should not be neglected, contrary to the usual practice.
NASA Astrophysics Data System (ADS)
Guo, X. X.; Sham, T. K.; Zhu, Y. J.; Hu, Y. F.
2013-04-01
Mesoporous calcium silicate hydrate (CSH) nanostructure has been proven to be bioactive and biocompatible, and has a bright future in the application of bone treatment among other applications. X-ray absorption near edge structure (XANES) is a powerful tool for the study of the interactions of calcium silicate hydrates with drug molecules because it is element specific and it probes the unoccupied electronic states. Herein, we report the use of the calcium, silicon and oxygen K-edge XANES spectroscopy to identify how drug molecules interact with different groups in calcium silicate hydrate mesoporous nano-carriers with different morphologies. Significant changes are observed in XANES spectra after drug loading into the calcium silicate hydrate system, especially at the Si and O K-edge. The implications of these findings are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Jimmy
2014-05-31
In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meantmore » to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.« less
Asada, Toshio; Nagaoka, Masataka; Koseki, Shiro
2011-01-28
Hydrated nitrosonium ion clusters NO(+)(H(2)O)(n) (n = 4 and 5) were investigated by using MP2/aug-cc-pVTZ level of theory to clarify isomeric reaction pathways for formation of HONO and fully hydrated hydride ions. We found some new isomers and transition state structures in each hydration number, whose lowest activation energies of the intracluster reactions were found to be 4.1 and 3.4 kcal mol(-1) for n = 4 and n = 5, respectively. These thermodynamic properties and full quantum mechanical molecular dynamics simulation suggest that product isomers with HONO and fully hydrated hydride ions can be obtained at n = 4 and n = 5 in terms of excess hydration binding energies which can overcome these activation barriers.
Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.
2000-01-01
The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.
Low-frequency Raman scattering in a Xe hydrate.
Adichtchev, S V; Belosludov, V R; Ildyakov, A V; Malinovsky, V K; Manakov, A Yu; Subbotin, O S; Surovtsev, N V
2013-09-12
The physics of gas hydrates are rich in interesting phenomena such as anomalies for thermal conductivity, self-preservation effects for decomposition, and others. Some of these phenomena are presumably attributed to the resonance interaction of the rattling motions of guest molecules or atoms with the lattice modes. This can be expected to induce some specific features in the low-frequency (THz) vibrational response. Here we present results for low-frequency Raman scattering in a Xe hydrate, supported by numerical calculations of vibrational density of states. A number of narrow lines, located in the range from 18 to 90 cm(-1), were found in the Raman spectrum. Numerical calculations confirm that these lines correspond to resonance modes of the Xe hydrate. Also, low-frequency Raman scattering was studied during gas hydrate decomposition, and two scenarios were observed. The first one is the direct decomposition of the Xe hydrate to water and gas. The second one is the hydrate decomposition to ice and gas with subsequent melting of ice. In the latter case, a transient low-frequency Raman band is observed, which is associated with low-frequency bands (e.g., boson peak) of disordered solids.
Scanning electron microscopy of high-pressure-frozen sea urchin embryos.
Walther, P; Chen, Y; Malecki, M; Zoran, S L; Schatten, G P; Pawley, J B
1993-12-01
High-pressure-freezing permits direct cryo-fixation of sea urchin embryos having a defined developmental state without the formation of large ice crystals. We have investigated preparation protocols for observing high-pressure-frozen and freeze-fractured samples in the scanning electron microscope. High-pressure-freezing was superior to other freezing protocols, because the whole bulk sample was reasonably well frozen and the overall three-dimensional shape of the embryos was well preserved. The samples were either dehydrated by freeze-substitution and critical-point-drying, or imaged in the partially hydrated state, using a cold stage in the SEM. During freeze-substitution the samples were stabilized by fixatives. The disadvantage of this method was that shrinking and extraction effects, caused by the removal of the water, could not be avoided. These disadvantages were avoided when the sample was imaged in the frozen-hydrated state using a cold-stage in the SEM. This would be the method of choice for morphometric studies. Frozen-hydrated samples, however, were very beam sensitive and many structures remained covered by the ice and were not visible. Frozen-hydrated samples were partially freeze-dried to make visible additional structures that had been covered by ice. However, this method also caused drying artifacts when too much water was removed.
A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases
NASA Astrophysics Data System (ADS)
Zyvoloski, G.; Lucia, A.; Lewis, K. C.
2011-12-01
The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water, and NaCl in permafrost conditions are presented to illustrate the predictive capabilities of the multi-scale GHC equation. In particular, we show that the GHC equation correctly predicts 1) The density of 1h ice and methane hydrate to within 1%. 2) The melting curve for hexagonal ice. 3) The hydrate-gas phase co-existence curve. 4) Various phase equilibrium involving ice and hydrate phases. We also show that the GHC equation approach can be readily incorporated into subsurface flow simulation programs like FEHM to predict the behavior of permafrost and other reservoirs where ice and/or hydrates are present. Many geometric illustrations are used to elucidate key concepts. References A. Lucia, A Multi-Scale Gibbs Helmholtz Constrained Cubic Equation of State. J. Thermodynamics: Special Issue on Advances in Gas Hydrate Thermodynamics and Transport Properties. Available on-line [doi:10.1155/2010/238365]. A. Lucia, B.M. Bonk, A. Roy and R.R. Waterman, A Multi-Scale Framework for Multi-Phase Equilibrium Flash. Comput. Chem. Engng. In press.
Impact of Compound Hydrate Dynamics on Phase Boundary Changes
NASA Astrophysics Data System (ADS)
Osegovic, J. P.; Max, M. D.
2006-12-01
Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed systems include pipeline blockages and natural hydrate concentrations associated with upwelling fluids in marine sediments. 3) In open systems, mass can either flow into or out of a system. In such situations compound hydrate will form or decompose to re-establish chemical equilibrium. This is accomplished by 1) loading/consuming a preferred hydrate former to/from the surroundings, 2) lowering/raising the temperature of the system, and 3) increasing the local pressure. Examples of this type of system include hydrate produced for low pressure transport, depressurized or superheated hydrate settings (pipeline remediation or energy recovery), or in an industrial process where formation of compound hydrates may be used to separate and concentrate gases from a mixture. The relationship between composition and the phase boundary is as important as pressure and temperature effects. Composition is less significant for simple hydrates where the hydrate behaves as a one-component mineral, but for compound hydrate, feedback between pressure, temperature, and composition can result in complex system behavior.
Dehydration of plutonium or neptunium trichloride hydrate
Foropoulos, Jr., Jerry; Avens, Larry R.; Trujillo, Eddie A.
1992-01-01
A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.
Dehydration of plutonium or neptunium trichloride hydrate
Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.
1992-03-24
A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.
A petroleum system model for gas hydrate deposits in northern Alaska
Lorenson, T.D.; Collett, Timothy S.; Wong, Florence L.
2011-01-01
Gas hydrate deposits are common on the North Slope of Alaska around Prudhoe Bay, however the extent of these deposits is unknown outside of this area. As part of a United States Geological Survey (USGS) and the Bureau of Land Management (BLM) gas hydrate research collaboration, well cutting and mud gas samples have been collected and analyzed from mainly industry-drilled wells on the Alaska North Slope for the purpose of prospecting for gas hydrate deposits. On the Alaska North Slope, gas hydrates are now recognized as an element within a petroleum systems approach or TPS (Total Petroleum System). Since 1979, 35 wells have been samples from as far west as Wainwright to Prudhoe Bay in the east. Geochemical studies of known gas hydrate occurrences on the North Slope have shown a link between gas hydrate and more deeply buried conventional oil and gas deposits. Hydrocarbon gases migrate from depth and charge the reservoir rock within the gas hydrate stability zone. It is likely gases migrated into conventional traps as free gas, and were later converted to gas hydrate in response to climate cooling concurrent with permafrost formation. Gas hydrate is known to occur in one of the sampled wells, likely present in 22 others based gas geochemistry and inferred by equivocal gas geochemistry in 11 wells, and absent in one well. Gas migration routes are common in the North Slope and include faults and widespread, continuous, shallowly dipping permeable sand sections that are potentially in communication with deeper oil and gas sources. The application of this model with the geochemical evidence suggests that gas hydrate deposits may be widespread across the North Slope of Alaska.
Dillon, William P.; Danforth, W.W.; Hutchinson, D.R.; Drury, R.M.; Taylor, M.H.; Booth, J.S.
1998-01-01
This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). An irregular, faulted, collapse depression about 38 x 18 km in extent is located on the crest of the Blake Ridge offshore from the south- eastern United States. Faults disrupt the sea floor and terminate or sole out about 40-500 m below the sea floor at the base of the gas hydrate stable zone, which is identified from the location of the bottom simulating reflection (BSR). Normal faults are common but reverse faults and folds also are widespread. Folds commonly convert upward into faults. Sediment diapirs and deposits of sediments that were erupted onto the sea floor are also present. Sea-floor depressions at faults may represent locations of liquid/gas vents. The collapse was probably caused by overpressures and by the decoupling of the overlying sediments by gassy muds that existed just beneath the zone of gas hydrate stability.
Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.
Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi
2016-07-21
Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (
Physiological functions of the alpha class of carbonic anhydrases.
Frost, Susan C
2014-01-01
Carbonic anhydrases are ubiquitous enzymes that catalyze the reversible hydration of carbon dioxide. These enzymes are of ancient origin as they are found in the deepest of branches of the evolutionary tree. Of the five different classes of carbonic anhydrases, the alpha class has perhaps received the most attention because of its role in human pathology. This review focuses on the physiological function of this class of carbonic anhydrases organized by their cellular location.
Submarine landslides triggered by destabilization of high-saturation hydrate anomalies
NASA Astrophysics Data System (ADS)
Handwerger, Alexander L.; Rempel, Alan W.; Skarbek, Rob M.
2017-07-01
Submarine landslides occur along continental margins at depths that often intersect the gas hydrate stability zone, prompting suggestions that slope stability may be affected by perturbations that arise from changes in hydrate stability. Here we develop a numerical model to identify the conditions under which the destabilization of hydrates results in slope failure. Specifically, we focus on high-saturation hydrate anomalies at fine-grained to coarse-grained stratigraphic boundaries that can transmit bridging stresses that decrease the effective stress at sediment contacts and disrupt normal sediment consolidation. We evaluate slope stability before and after hydrate destabilization. Hydrate anomalies act to significantly increase the overall slope stability due to large increases in effective cohesion. However, when hydrate anomalies destabilize there is a loss of cohesion and increase in effective stress that causes the sediment grains to rapidly consolidate and generate pore pressures that can either trigger immediate slope failure or weaken the surrounding sediment until the pore pressure diffuses away. In cases where failure does not occur, the sediment can remain weakened for months. In cases where failure does occur, we quantify landslide dynamics using a rate and state frictional model and find that landslides can display either slow or dynamic (i.e., catastrophic) motion depending on the rate-dependent properties, size of the stress perturbation, and the size of the slip patch relative to a critical nucleation length scale. Our results illustrate the fundamental mechanisms through which the destabilization of gas hydrates can pose a significant geohazard.
Temperature and pressure correlation for volume of gas hydrates with crystal structures sI and sII
NASA Astrophysics Data System (ADS)
Vinš, Václav; Jäger, Andreas; Hielscher, Sebastian; Span, Roland; Hrubý, Jan; Breitkopf, Cornelia
The temperature and pressure correlations for the volume of gas hydrates forming crystal structures sI and sII developed in previous study [Fluid Phase Equilib. 427 (2016) 268-281], focused on the modeling of pure gas hydrates relevant in CCS (carbon capture and storage), were revised and modified for the modeling of mixed hydrates in this study. A universal reference state at temperature of 273.15 K and pressure of 1 Pa is used in the new correlation. Coefficients for the thermal expansion together with the reference lattice parameter were simultaneously correlated to both the temperature data and the pressure data for the lattice parameter. A two-stage Levenberg Marquardt algorithm was employed for the parameter optimization. The pressure dependence described in terms of the bulk modulus remained unchanged compared to the original study. A constant value for the bulk modulus B0 = 10 GPa was employed for all selected hydrate formers. The new correlation is in good agreement with the experimental data over wide temperature and pressure ranges from 0 K to 293 K and from 0 to 2000 MPa, respectively. Compared to the original correlation used for the modeling of pure gas hydrates the new correlation provides significantly better agreement with the experimental data for sI hydrates. The results of the new correlation are comparable to the results of the old correlation in case of sII hydrates. In addition, the new correlation is suitable for modeling of mixed hydrates.
Acoustical Method of Whole-Body Hydration Status Monitoring.
Sarvazyan, A P; Tsyuryupa, S N; Calhoun, M; Utter, A
2016-07-01
An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.
Acoustical method of whole-body hydration status monitoring
NASA Astrophysics Data System (ADS)
Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.
2016-07-01
An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.
Dissolution of methane bubbles with hydrate armoring in deep ocean conditions
NASA Astrophysics Data System (ADS)
Kovalchuk, Margarita; Socolofsky, Scott
2017-11-01
The deep ocean is a storehouse of natural gas. Methane bubble moving upwards from marine sediments may become trapped in gas hydrates. It is uncertain precisely how hydrate armoring affects dissolution, or mass transfer from the bubble to the surrounding water column. The Texas A&M Oilspill Calculator was used to simulate a series of gas bubble dissolution experiments conducted in the United States Department of Energy National Energy Technology Laboratory High Pressure Water Tunnel. Several variations of the mass transfer coefficient were calculated based on gas or hydrate phase solubility and clean or dirty bubble correlations. Results suggest the mass transfer coefficient may be most closely modeled with gas phase solubility and dirty bubble correlation equations. Further investigation of hydrate bubble dissolution behavior will refine current numeric models which aid in understanding gas flux to the atmosphere and plumes such as oil spills. Research funded in part by the Texas A&M University 2017 Undergraduate Summer Research Grant and a Grant from the Methane Gas Hydrates Program of the US DOE National Energy Technology Laboratory.
Kutikov, Artem B.; Gurijala, Anvesh
2015-01-01
Two major factors hampering the broad use of rapid prototyped biomaterials for tissue engineering applications are the requirement for custom-designed or expensive research-grade three-dimensional (3D) printers and the limited selection of suitable thermoplastic biomaterials exhibiting physical characteristics desired for facile surgical handling and biological properties encouraging tissue integration. Properly designed thermoplastic biodegradable amphiphilic polymers can exhibit hydration-dependent hydrophilicity changes and stiffening behavior, which may be exploited to facilitate the surgical delivery/self-fixation of the scaffold within a physiological tissue environment. Compared to conventional hydrophobic polyesters, they also present significant advantages in blending with hydrophilic osteoconductive minerals with improved interfacial adhesion for bone tissue engineering applications. Here, we demonstrated the excellent blending of biodegradable, amphiphilic poly(D,L-lactic acid)-poly(ethylene glycol)-poly(D,L-lactic acid) (PLA-PEG-PLA) (PELA) triblock co-polymer with hydroxyapatite (HA) and the fabrication of high-quality rapid prototyped 3D macroporous composite scaffolds using an unmodified consumer-grade 3D printer. The rapid prototyped HA-PELA composite scaffolds and the PELA control (without HA) swelled (66% and 44% volume increases, respectively) and stiffened (1.38-fold and 4-fold increases in compressive modulus, respectively) in water. To test the hypothesis that the hydration-induced physical changes can translate into self-fixation properties of the scaffolds within a confined defect, a straightforward in vitro pull-out test was designed to quantify the peak force required to dislodge these scaffolds from a simulated cylindrical defect at dry versus wet states. Consistent with our hypothesis, the peak fixation force measured for the PELA and HA-PELA scaffolds increased 6-fold and 15-fold upon hydration, respectively. Furthermore, we showed that the low-fouling 3D PELA inhibited the attachment of NIH3T3 fibroblasts or bone marrow stromal cells while the HA-PELA readily supported cellular attachment and osteogenic differentiation. Finally, we demonstrated the feasibility of rapid prototyping biphasic PELA/HA-PELA scaffolds for potential guided bone regeneration where an osteoconductive scaffold interior encouraging osteointegration and a nonadhesive surface discouraging fibrous tissue encapsulation is desired. This work demonstrated that by combining facile and readily translatable rapid prototyping approaches with unique biomaterial designs, biodegradable composite scaffolds with well-controlled macroporosities, spatially defined biological microenvironment, and useful handling characteristics can be developed. PMID:25025950
Entropy from State Probabilities: Hydration Entropy of Cations
2013-01-01
Entropy is an important energetic quantity determining the progression of chemical processes. We propose a new approach to obtain hydration entropy directly from probability density functions in state space. We demonstrate the validity of our approach for a series of cations in aqueous solution. Extensive validation of simulation results was performed. Our approach does not make prior assumptions about the shape of the potential energy landscape and is capable of calculating accurate hydration entropy values. Sampling times in the low nanosecond range are sufficient for the investigated ionic systems. Although the presented strategy is at the moment limited to systems for which a scalar order parameter can be derived, this is not a principal limitation of the method. The strategy presented is applicable to any chemical system where sufficient sampling of conformational space is accessible, for example, by computer simulations. PMID:23651109
Hydrates of natural gas in continental margins
Kvenvolden, K.A.; Barnard, L.A.
1982-01-01
Natural gas hydrates in continental margin sediment can be inferred from the widespread occurrence of an anomalous seismic reflector which coincides with the predicted transition boundary at the base of the gas hydrate zone. Direct evidence of gas hydrates is provided by visual observations of sediments from the landward wall of the Mid-America Trench off Mexico and Guatemala, from the Blake Outer Ridge off the southeastern United States, and from the Black Sea in the U.S.S.R. Where solid gas hydrates have been sampled, the gas is composed mainly of methane accompanied by CO2 and low concentrations of ethane and hydrocarbons of higher molecular weight. The molecular and isotopic composition of hydrocarbons indicates that most of the methane is of biolog cal origin. The gas was probably produced by the bacterial alteration of organic matter buried in the sediment. Organic carbon contents of the sediment containing sampled gas hydrates are higher than the average organic carbon content of marine sediments. The main economic importance of gas hydrates may reside in their ability to serve as a cap under which free gas can collect. To be producible, however, such trapped gas must occur in porous and permeable reservoirs. Although gas hydrates are common along continental margins, the degree to which they are associated with significant reservoirs remains to be investigated.
Giorgini, Elisabetta; Sabbatini, Simona; Rocchetti, Romina; Notarstefano, Valentina; Rubini, Corrado; Conti, Carla; Orilisi, Giulia; Mitri, Elisa; Bedolla, Diana E; Vaccari, Lisa
2018-06-22
In the present study, human primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil were analyzed, for the first time, by in vitro FTIR Microspectroscopy (FTIRM), to improve the knowledge on the biochemical pathways activated by these two chemotherapy drugs. To date, most of the studies regarding FTIRM cellular analysis have been executed on fixed cells from immortalized cell lines. FTIRM analysis performed on primary tumor cells under controlled hydrated conditions provides more reliable information on the biochemical processes occurring in in vivo tumor cells. This spectroscopic analysis allows to get on the same sample and at the same time an overview of the composition and structure of the most remarkable cellular components. In vitro FTIRM analysis of primary oral squamous carcinoma cells evidenced a time-dependent drug-specific cellular response, also including apoptosis triggering. Furthermore, the univariate and multivariate analyses of IR data evidenced meaningful spectroscopic differences ascribable to alterations affecting cellular proteins, lipids and nucleic acids. These findings suggest for the two drugs different pathways and extents of cellular damage, not provided by conventional cell-based assays (MTT assay and image-based cytometry).
Methane Recycling During Burial of Methane Hydrate-Bearing Sediments
NASA Astrophysics Data System (ADS)
You, K.; Flemings, P. B.
2017-12-01
We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with methane recycling, such as the formation of free gas zone, concentrated hydrate zone, bottom simulating reflector, and overpressured zone around the BHSZ, and gas venting at seafloor.
Resolving Nonadiabatic Dynamics of Hydrated Electrons Using Ultrafast Photoemission Anisotropy.
Karashima, Shutaro; Yamamoto, Yo-Ichi; Suzuki, Toshinori
2016-04-01
We have studied ultrafast nonadiabatic dynamics of excess electrons trapped in the band gap of liquid water using time- and angle-resolved photoemission spectroscopy. Anisotropic photoemission from the first excited state was discovered, which enabled unambiguous identification of nonadiabatic transition to the ground state in 60 fs in H_{2}O and 100 fs in D_{2}O. The photoelectron kinetic energy distribution exhibited a rapid spectral shift in ca. 20 fs, which is ascribed to the librational response of a hydration shell to electronic excitation. Photoemission anisotropy indicates that the electron orbital in the excited state is depolarized in less than 40 fs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... Schedule of the United States (``HTSUS'') of a certain CN-9 solution, a hydrated ammonium calcium nitrate..., a hydrated ammonium calcium nitrate double salt that is primarily used as a fertilizer but is also... calcium nitrate and ammonium nitrate.'' Citing Legal Note 2(a)(v) to Chapter 31, HTSUS,\\2\\ the Port of...
Quantifying the effects of hydration on corneal stiffness with optical coherence elastography
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.
2018-02-01
Several methods have been proposed to assess changes in corneal biomechanical properties due to various factors, such as degenerative diseases, intraocular pressure, and therapeutic interventions (e.g. corneal collagen crosslinking). However, the effect of the corneal tissue hydration state on corneal stiffness is not well understood. In this work, we induce low amplitude (< 10 μm) elastic waves with a focused micro air-pulse in fresh in situ rabbit corneas (n = 10) in the whole eye-globe configuration at an artificially controlled intraocular pressure. The waves were then detected with a phase-stabilized swept source optical coherence elastography system. Baseline measurements were taken every 20 minutes for an hour while the corneas were hydrated with 1X PBS. After the measurement at 60 minutes, a 20% dextran solution was topically instilled to dehydrate the corneas. The measurements were repeated every 20 minutes again for an hour. The results showed that the elastic wave velocity decreased as the corneal thickness decreased. Finite element modeling (FEM) was performed using the corneal geometry and elastic wave propagation speed to assess the stiffness of the samples. The results show that the stiffness increased from 430 kPa during hydration with PBS to 500 kPa after dehydration with dextran, demonstrating that corneal hydration state, apart from geometry and intraocular pressure, can change the stiffness of the cornea.
Pina, M Fátima; Pinto, João F; Sousa, João J; Craig, Duncan Q M; Zhao, Min
2015-03-15
In this study, we evaluate the use of theoretical thermodynamic analysis of amorphous paroxetine hydrochloride (HCl) as well as experimental assessment in order to identify the most promising approach to stability and dissolution behaviour prediction, particularly in relation to stoichiometric and nonstoichiometric hydrate formation. Differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared and X-ray diffraction techniques were used. Parameters including heat capacity, configurational thermodynamic quantities, fragility and relaxation time classified amorphous paroxetine HCl as a moderate fragile glass with a considerable degree of molecular mobility. Solubility studies indicated little advantage of the amorphous form over the crystalline due to conversion to the hydrate Form I during equilibration, while the dissolution rate was higher for the amorphous form under sink conditions. A marked difference in the physical stability of amorphous paroxetine HCl was observed between dry and low humidity storage, with the system recrystallizing to the hydrate form. We conclude that, in this particular case (amorphous conversion to the hydrate), water may be playing a dual role in both plasticizing the amorphous form and driving the equilibrium towards the hydrate form, hence prediction of recrystallization behaviour from amorphous characteristics may be confounded by the additional process of hydrate generation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stern, L. A.; Kirby, S. H.
2006-12-01
In the investigation of natural gas hydrates, distinguishing in situ grain textures and microstructures from artifacts produced during retrieval, storage, and examination can be quite challenging. Using cryogenic scanning electron microscopy, we investigated the physical states of gas hydrates produced in our lab as well as of those in drill core of hydrate-bearing sediment from marine and Arctic permafrost environments. Here, we compare grain and pore structures observed in samples from the Cascadia margin (courtesy IODP Expedition 311), McKenzie River Delta (Mallik Well 5L-38), and Gulf of Mexico (RSV Marion Dufresne 2002), with those present in hydrocarbon hydrates grown in our laboratory and subjected to controlled P-T conditions. The following trends are apparent for the natural gas hydrates imaged to-date: (1) Samples typically contain massive domains of polycrystalline gas hydrate that in turn contain isolated gas-filled pores that are sometimes lined with euhedral hydrate crystals. Pores are typically 5 50 microns in diameter and occupy roughly 10-30 percent of the domain. Grain sizes, where visible, are commonly 20 to 50 microns. (2) Hydrate grain boundaries, particularly near the exposed sample surface, are often replaced by a nanoporous material. Based on its location and behavior, this material is presumed to be gas-charged porous ice produced by hydrate decomposition along grain surfaces. In some samples, grains are instead bounded by a framework of dense, tabular material embedded within the sample, best revealed upon sublimation of the hydrate. Their composition is yet unknown but may be salt or carbonate-bearing minerals. (3) Where hydrate grows into clayey sediments, the clays typically arrange with platelets subparallel around the pods or veins of hydrate. (4) Domains of nano-to-micro- porous water ice are also seen in all recovered natural samples, presumed to be hydrate decomposition product produced during drill-core retrieval and handling. Based on lab experiments, we believe the initial liquid product is frozen as a result of the local temperature reduction accompanying the endothermic dissociation reaction. The porous texture is then preserved by liquid nitrogen quenching. (5) Samples from both marine and permafrost environments also display closely juxtaposed regions of dense and porous hydrate and ice. Although the close association of these regions remains puzzling, lab tests verify that dense hydrate can exhibit such porous appearance along it's surface after even minor decomposition at cold conditions (below 273 K). In turn, companion experiments show that nanoporous hydrate anneals to a densely crystalline habit at conditions within the hydrate stability region above 273 K, suggesting that nanoporous gas hydrate is not stable at most in situ natural conditions.
Detecting gas hydrate behavior in crude oil using NMR.
Gao, Shuqiang; House, Waylon; Chapman, Walter G
2006-04-06
Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.
Enkin, R.; Esteban, L.; Haacke, R.; Hamilton, T.S.; Hogg, M.; Lapham, L.; Middleton, G.; Neelands, P.; Pohlman, John W.; Riedel, M; Rose, K.; Schlesinger, A.; Standen, G.; Stephenson, A.; Taylor, S.; Waite, W.; Wang, X.
2008-01-01
During August 2008, a research expedition (2008-007-PGC) was carried out offshore Vancouver Island on the northern Cascadia Margin (Figure 1) to study the role of gas hydrate in slope stability and cold seep biogeochemistry. The cruise was organized by the Geological Survey of Canada (GSC) as part of the Earth Science Sector, Natural Gas Hydrate Program, Natural Resources Canada (NRCan). This international collaboration included McGill University, University of Victoria, the U.S. Geological Survey, Florida State University, and the U.S. Department of Energy.
Cheng, Li-Tien; Wang, Zhongming; Setny, Piotr; Dzubiella, Joachim; Li, Bo; McCammon, J Andrew
2009-10-14
A model nanometer-sized hydrophobic receptor-ligand system in aqueous solution is studied by the recently developed level-set variational implicit solvent model (VISM). This approach is compared to all-atom computer simulations. The simulations reveal complex hydration effects within the (concave) receptor pocket, sensitive to the distance of the (convex) approaching ligand. The ligand induces and controls an intermittent switching between dry and wet states of the hosting pocket, which determines the range and magnitude of the pocket-ligand attraction. In the level-set VISM, a geometric free-energy functional of all possible solute-solvent interfaces coupled to the local dispersion potential is minimized numerically. This approach captures the distinct metastable states that correspond to topologically different solute-solvent interfaces, and thereby reproduces the bimodal hydration behavior observed in the all-atom simulation. Geometrical singularities formed during the interface relaxation are found to contribute significantly to the energy barrier between different metastable states. While the hydration phenomena can thus be explained by capillary effects, the explicit inclusion of dispersion and curvature corrections seems to be essential for a quantitative description of hydrophobically confined systems on nanoscales. This study may shed more light onto the tight connection between geometric and energetic aspects of biomolecular hydration and may represent a valuable step toward the proper interpretation of experimental receptor-ligand binding rates.
Charras, Guillaume T; Mitchison, Timothy J; Mahadevan, L
2009-09-15
Water is the dominant ingredient of cells and its dynamics are crucial to life. We and others have suggested a physical picture of the cell as a soft, fluid-infiltrated sponge, surrounded by a water-permeable barrier. To understand water movements in an animal cell, we imposed an external, inhomogeneous osmotic stress on cultured cancer cells. This forced water through the membrane on one side, and out on the other. Inside the cell, it created a gradient in hydration, that we visualized by tracking cellular responses using natural organelles and artificially introduced quantum dots. The dynamics of these markers at short times were the same for normal and metabolically poisoned cells, indicating that the cellular responses are primarily physical rather than chemical. Our finding of an internal gradient in hydration is inconsistent with a continuum model for cytoplasm, but consistent with the sponge model, and implies that the effective pore size of the sponge is small enough to retard water flow significantly on time scales ( approximately 10-100 seconds) relevant to cell physiology. We interpret these data in terms of a theoretical framework that combines mechanics and hydraulics in a multiphase poroelastic description of the cytoplasm and explains the experimentally observed dynamics quantitatively in terms of a few coarse-grained parameters that are based on microscopically measurable structural, hydraulic and mechanical properties. Our fluid-filled sponge model could provide a unified framework to understand a number of disparate observations in cell morphology and motility.
Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.
Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo
2010-09-09
Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.
Gel phase in hydrated calcium dipicolinate
NASA Astrophysics Data System (ADS)
Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Krishnamoorthy, Aravind; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2017-11-01
The mineralization of dipicolinic acid (DPA) molecules in bacterial spore cores with Ca2+ ions to form Ca-DPA is critical to the wet-heat resistance of spores. This resistance to "wet-heat" also depends on the physical properties of water and DPA in the hydrated Ca-DPA-rich protoplasm. Using reactive molecular dynamics simulations, we have determined the phase diagram of hydrated Ca-DPA as a function of temperature and water concentration, which shows the existence of a gel phase along with distinct solid-gel and gel-liquid phase transitions. Simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing hydration, which explains the experimental trend of wet-heat resistance of bacterial spores. Our observation of different phases of water also reconciles previous conflicting experimental findings on the state of water in bacterial spores. Further comparison with an unmineralized hydrated DPA system allows us to quantify the importance of Ca mineralization in decreasing diffusivity and increasing the heat resistance of the spore.
Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, G.D.; Kamath, V.A.; Godbole, S.P.
1987-10-01
Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future sourcemore » of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.« less
Geotechnical properties of core sample from methane hydrate deposits in Eastern Nankai Trough
NASA Astrophysics Data System (ADS)
Yoneda, J.; Masui, A.; Egawa, K.; Konno, Y.; Ito, T.; Kida, M.; Jin, Y.; Suzuki, K.; Nakatsuka, Y.; Tenma, N.; Nagao, J.
2013-12-01
To date, MH extraction has been simulated in several ways to help ensure the safe and efficient production of gas, with a particular focus on the investigation of landsliding, uneven settlement, and production well integrity. The mechanical properties of deep sea sediments and gas-hydrate-bearing sediments, typically obtained through material tests, are essential for the geomechanical response simulation to hydrate extraction. We conducted triaxial compression tests and the geotechnical properties of the sediments was investigated. Consolidated undrained compression tests were performed for silty sediments. And consolidated drained tests were performed for sandy samples. In addition, permeability was investigated from isotropic consolidation results. These core samples recovered from methane hydrate deposits of Daini Atsumi Knoll in Eastern Nankai Trough during the 2012 JOGMEC/JAPEX Pressure coring operation. The pressure core samples were rapidly depressurized on the ship and it were frozen using liquid nitrogen to prevent MH dissociation. Undrained shear strength of the core samples increase linearly with depth from sea floor. These core samples should be normally consolidated sample in-situ. Drained shear strength increases dramatically with hydrate saturation increases. Peak stress ratio q/p' of the core sample which has 73% of hydrate saturation was approximately 2.0 and it decrease down to 1.3 at the critical state. Dilatancy also changed from compressive tendency to dilative tendency with hydrate saturation increase. This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Dallimore, S. R.; Numasawa, M.; Yasuda, M.; Fujii, T.; Fujii, K.; Wright, J.; Nixon, F.
2007-12-01
Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resource Canada (NRCan) have embarked on a new research program to study the production potential of gas hydrates. The program is being carried out at the Mallik gas hydrate field in the Mackenzie Delta, a location where two previous scientific investigations have been carried in 1998 and 2002. In the 2002 program that was undertaken by seven partners from five countries, 468m3 of gas flow was measured during 124 hours of thermal stimulation using hot warm fluid. Small-scale pressure drawdown tests were also carried out using Schlumberger's Modular Dynamics Tester (MDT) wireline tool, gas flow was observed and the inferred formation permeabilities suggested the possible effectiveness of the simple depressurization method. While the testing undertaken in 2002 can be cited as the first well constrained gas production from a gas hydrate deposit, the results fell short of that required to fully calibrate reservoir simulation models or indeed establish the technical viability of long term production from gas hydrates. The objectives of the current JOGMEC/NRCan/Aurora Mallik production research program are to undertake longer term production testing to further constrain the scientific unknowns and to demonstrate the technical feasibility of sustained gas hydrate production using the depressurization method. A key priority is to accurately measure water and gas production using state-of-art production technologies. The primary production test well was established during the 2007 field season with the re-entry and deepening of JAPEX/JNOC/GSC Mallik 2L-38 well, originally drilled in 1998. Production testing was carried out in April of 2007 under a relatively low drawdown pressure condition. Flow of methane gas was measured from a 12m perforated interval of gas-hydrate-saturated sands from 1093 to 1105m. The results establish the potential of the depressurization method and provide a basis for future prolonged testing planned in the near future. The authors acknowledge the Research Consortium for Methane Hydrate Resources in Japan (MH21), the Ministry of Economy, Trade and Industry (METI) and NRCan for the support and funding. The Mallik 2002 program was undertaken jointly by JNOC, NRCan, GeoForschungsZentrum Potsdam (GFZ), the United State Geological Survey (USGS), the United States Department of Energy (USDOE), the India Ministry of Petroleum and Natural Gas (MOPNG)-Gas Authority of India (GAIL), and the BP-Chevron Texaco Mackenzie Delta Joint Venture.
Electronic spectra and excited-state dynamics of acridine and its hydrated clusters
NASA Astrophysics Data System (ADS)
Harthcock, Colin; Zhang, Jie; Kong, Wei; Mitsui, Masaaki; Ohshima, Yasuhiro
2017-04-01
We combine results from several different experiments to investigate the photophysics of acridine (Ac) and its hydrated clusters in the gas phase. Our findings are also compared with results from condensed phase studies. Similar to measurements of Ac dissolved in hydrocarbons, the lifetime of the first electronically excited state of isolated Ac in vacuum is too short for typical resonantly enhanced multiphoton ionization (REMPI) and laser induced fluorescence (LIF) experiments, hence no signal from REMPI and LIF can be attributed to monomeric Ac. Instead, sensitized phosphorescence emission spectroscopy is more successful in revealing the electronic states of Ac. Upon clustering with water, on the other hand, the lifetimes of the excited states are substantially increased to the nanosecond scale, and with two water molecules attached to Ac, the lifetime of the hydrated cluster is essentially the same as that of Ac in aqueous solutions. Detailed REMPI and ultraviolet-ultraviolet hole-burning experiments are then performed to reveal the structural information of the hydrated clusters. Although the formation of hydrogen bonds results in energy level reversal and energy separation between the first two excited states of Ac, its effect on the internal geometry of Ac is minimal, and all clusters with 1-3 water molecules demonstrate consistent intramolecular vibrational modes. Theoretical calculations reveal just one stable structure for each cluster under supersonic molecular beam conditions. Furthermore, different from mono- and di-water clusters, tri-water clusters consist of a linear chain of three water molecules attached to Ac. Consequently, the fragmentation pattern in the REMPI spectrum of tri-water clusters seems to be dominated by water trimer elimination, since the REMPI spectrum of Ac+.W3 is largely reproduced in the Ac+ mass channel, but not in the Ac+.W1 or Ac+.W2 channel.
Importance of counteranions on the hydration structure of the curium ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atta Fynn, Raymond; Bylaska, Eric J.; De Jong, Wibe A.
2013-07-04
Using density functional theory based ab initio molecular dynamics and metadynamics we show that counter ions can trigger noticeable changes in the hydration shell structure of the curium ion. The free energies of curium-water coordination and the solvent hydrogen bond (HB) lifetimes in the absence and presence the counter anions predict that chloride and bromide counter anions strengthen the first shell and consequently the 8-fold coordination state is dominant by at least 98%. In contrast, the perchlorate counter anions are found to weaken the coordination shell and the HB network, with the 9-fold and 8-fold states existing in an 8:1more » ratio, which is in good agreement with reported 9:1 ratio seen in time resolved fluorescence spectroscopy experiments. To our knowledge this is the first time molecular simulations have shown that counter anions can directly affect the first hydration shell structure of a cation.« less
Influence of smectite hydration and swelling on atrazine sorption behavior.
Chappell, Mark A; Laird, David A; Thompson, Michael L; Li, Hui; Teppen, Brian J; Aggarwal, Vaneet; Johnston, Cliff T; Boyd, Stephen A
2005-05-01
Smectites, clay minerals commonly found in soils and sediments, vary widely in their ability to adsorb organic chemicals. Recent research has demonstrated the importance of surface charge density and properties of exchangeable cations in controlling the affinity of smectites for organic molecules. In this study, we induced hysteresis in the crystalline swelling of smectites to test the hypothesis that the extent of crystalline swelling (or interlayer hydration status) has a large influence on the ability of smectites to adsorb atrazine from aqueous systems. Air-dried K-saturated Panther Creek (PC) smectite swelled less (d(001) = 1.38 nm) than never-dried K-PC (d(001) = 1.7 nm) when rehydrated in 20 mM KCl. Correspondingly, the air-dried-rehydrated K-PC had an order of magnitude greater affinity for atrazine relative to the never-dried K-PC. Both air-dried-rehydrated and never-dried Ca-PC expanded to approximately 2.0 nm in 10 mM CaCl2 and both samples had similar affinities for atrazine that were slightly lower than that of never-dried K-PC. The importance of interlayer hydration status in controlling sorption affinity was confirmed by molecular modeling, which revealed much greater interaction between interlayer water molecules and atrazine in a three-layer hydrate relative to a one-layer hydrate. The entropy change on moving atrazine from a fully hydrated state in the bulk solution to a partially hydrated state in the smectite interlayers is believed to be a major factor influencing sorption affinity. In an application test, choice of background solution (20 mM KCl versus 10 mM CaCl2) and air-drying treatments significantly affected atrazine sorption affinities for three-smectitic soils; however, the trends were not consistent with those observed for the reference smectite. Further, extending the initial rehydration time from 24 to 240 h (prior to adding atrazine) significantly decreased the soil's sorption affinity for atrazine. We conclude that interlayer hydration status has a large influence on the affinity of smectites for atrazine and that air-drying treatments have the potential to modify the sorption affinity of smectitic soils for organic molecules such as atrazine.
Stern, L.A.; Kirby, S.H.; Durham, W.B.
1998-01-01
We describe a new and efficient technique to grow aggregates of pure methane hydrate in quantities suitable for physical and material properties testing. Test specimens were grown under static conditions by combining cold, pressurized CH4 gas with granulated H2O ice, and then warming the reactants to promote the reaction CH4(g) + 6H2O(s???1) ??? CH4??6H2O (methane hydrate). Hydrate formation evidently occurs at the nascent ice/liquid water interface on ice grain surfaces, and complete reaction was achieved by warming the system above the ice melting point and up to 290 K, at 25-30 MPa, for approximately 8 h. The resulting material is pure, cohesive, polycrystalline methane hydrate with controlled grain size and random orientation. Synthesis conditions placed the H2O ice well above its melting temperature while reaction progressed, yet samples and run records showed no evidence for bulk melting of the unreacted portions of ice grains. Control experiments using Ne, a non-hydrate-forming gas, showed that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting are easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably to temperatures well above its ordinary melting point while reacting to form hydrate. Direct observations of the hydrate growth process in a small, high-pressure optical cell verified these conclusions and revealed additional details of the hydrate growth process. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T = 140-200 K, Pc = 50-100 MPa, and ?? = 10-4 10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to an unusually high degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; X-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.
Castro, L E; Guimarães, C C; Faria, J M R
2017-11-01
During germination, orthodox seeds become gradually intolerant to desiccation, and for this reason, they are a good model for recalcitrance studies. In the present work, physiological, biochemical, and ultrastructural aspects of the desiccation tolerance were characterized during the germination process of Anadenanthera colubrina seeds. The seeds were imbibed during zero (control), 2, 8, 12 (no germinated seeds), and 18 hours (germinated seeds with 1 mm protruded radicle); then they were dried for 72 hours, rehydrated and evaluated for survivorship. Along the imbibition, cytometric and ultrastructural analysis were performed, besides the extraction of the heat-stable proteins. Posteriorly to imbibition and drying, the evaluation of ultrastructural damages was performed. Desiccation tolerance was fully lost after root protrusion. There was no increase in 4C DNA content after the loss of desiccation tolerance. Ultrastructural characteristics of cells from 1mm roots resembled those found in the recalcitrant seeds, in both hydrated and dehydrated states. The loss of desiccation tolerance coincided with the reduction of heat-stable proteins.
Yamamoto, Naoki; Ito, Shota; Nakanishi, Masahiro; Chatani, Eri; Inoue, Keiichi; Kandori, Hideki; Tominaga, Keisuke
2018-02-01
To investigate the effects of temperature and hydration on the dynamics of purple membrane (PM), we measured the broadband complex dielectric spectra from 0.5 GHz to 2.3 THz using a vector network analyzer and terahertz time-domain spectroscopy from 233 to 293 K. In the lower temperature region down to 83 K, the complex dielectric spectra in the THz region were also obtained. The complex dielectric spectra were analyzed through curve fitting using several model functions. We found that the hydrated states of one relaxational mode, which was assigned as the coupled motion of water molecules with the PM surface, began to overlap with the THz region at approximately 230 K. On the other hand, the relaxational mode was not observed for the dehydrated state. On the basis of this result, we conclude that the protein-dynamical-transition-like behavior in the THz region is due to the onset of the overlap of the relaxational mode with the THz region. Temperature hysteresis was observed in the dielectric spectrum at 263 K when the hydration level was high. It is suggested that the hydration water behaves similarly to supercooled liquid at that temperature. The third hydration layer may be partly formed to observe such a phenomenon. We also found that the relaxation time is slower than that of a globular protein, lysozyme, and the microscopic environment in the vicinity of the PM surface is suggested to be more heterogeneous than lysozyme. It is proposed that the spectral overlap of the relaxational mode and the low-frequency vibrational mode is necessary for the large conformational change of protein.
NASA Astrophysics Data System (ADS)
Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group
2003-04-01
We present real-time mud gas monitoring data as well as results of noble gas and isotope investigations from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Mud gas monitoring (extraction of gas dissolved in the drill mud followed by real-time analysis) revealed more or less complete gas depth profiles of Mallik 4L-38 and Mallik 5L-38 wells for N_2, O_2, Ar, He, CO_2, H_2, CH_4, C_2H_6, C_3H_8, C_4H10, and 222Rn; both wells are approx. 1150 m deep. Based on the molecular and and isotopic composition, hydrocarbons occurring at shallow depth (down to ˜400 m) are mostly of microbial origin. Below 400 m, the gas wetness parameter (CH_4/(C_2H_6 + C_3H_8)) and isotopes indicate mixing with thermogenic gas. Gas accumulation at the base of permafrost (˜650 m) as well as δ13C and helium isotopic data implies that the permafrost inhibits gas flux from below. Gas hydrate occurrence at Mallik is known in a depth between ˜890 m and 1100 m. The upper section of the hydrate bearing zone (890 m--920 m) consists predominantly of methane bearing gas hydrates. Between 920 m and 1050 m, concentration of C_2H_6, C_3H_8, and C_4H10 increases due to the occurrence of organic rich sediment layers. Below that interval, the gas composition is similar to the upper section of the hydrate zone. At the base of the hydrate bearing zone (˜1100 m), elevated helium and methane concentrations and their isotopic composition leads to the assumption that gas hydrates act as a barrier for gas migration from below. In mud gas samples from the hydrate zone, the concentrations of all noble gases are lower than in air. Using Ne as a tracer for air contamination, the air-normalized abundances of Ar, Ke and Xe in those samples increase with their mass. Non-atmospheric elemental ratios of the heavier noble gases are most possible the result of elemental fractionation during hydrate formation.
Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models
Brendtke, Rico; Wiehl, Michael; Groeber, Florian; Schwarz, Thomas; Walles, Heike; Hansmann, Jan
2016-01-01
Tissue dehydration results in three major types of exsiccosis—hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring. PMID:27046226
Origin of 1/f noise in hydration dynamics on lipid membrane surfaces
Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji
2015-01-01
Water molecules on lipid membrane surfaces are known to contribute to membrane stability by connecting lipid molecules and acting as a water bridge. Although water structures and diffusivities near the membrane surfaces have been extensively studied, hydration dynamics on the surfaces has remained an open question. Here we investigate residence time statistics of water molecules on the surface of lipid membranes using all-atom molecular dynamics simulations. We show that hydration dynamics on the lipid membranes exhibits 1/f noise. Constructing a dichotomous process for the hydration dynamics, we find that residence times in each state follow a power-law with exponential cutoff and that the process can be regarded as a correlated renewal process where interoccurrence times are correlated. The results imply that the origin of the 1/f noise in hydration dynamics on the membrane surfaces is a combination of a power-law distribution with cutoff of interoccurrence times of switching events and a long-term correlation between the interoccurrence times. These results suggest that the 1/f noise attributed to the correlated renewal process may contribute to the stability of the hydration layers and lipid membranes. PMID:25743377
Systemic Hydration: Relating Science to Clinical Practice in Vocal Health
Hartley, Naomi A.; Thibeault, Susan L.
2014-01-01
Objectives To examine the current state of the science regarding the role of systemic hydration in vocal function and health. Study Design Literature Review Methods Literature search spanning multiple disciplines, including speech-language pathology, nutrition and dietetics, medicine, sports and exercise science, physiology and biomechanics. Results The relationship between hydration and physical function is an area of common interest amongst multiple professions. Each discipline provides valuable insight into the connection between performance and water balance, as well as complimentary methods of investigation. Existing voice literature suggests a relationship between hydration and voice production, however the underlying mechanisms are not yet defined and a treatment effect for systemic hydration remains to be demonstrated. Literature from other disciplines sheds light on methodological shortcomings and in some cases offers an alternative explanation for observed phenomena. Conclusions A growing body of literature in the field of voice science is documenting a relationship between hydration and vocal function, however greater understanding is required to guide best practice in the maintenance of vocal health and management of voice disorders. Integration of knowledge and technical expertise from multiple disciplines facilitates analysis of existing literature and provides guidance as to future research. PMID:24880674
Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models.
Brendtke, Rico; Wiehl, Michael; Groeber, Florian; Schwarz, Thomas; Walles, Heike; Hansmann, Jan
2016-01-01
Tissue dehydration results in three major types of exsiccosis--hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.
Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough
Santamarina, J.C.; Dai, Shifeng; Terzariol, M.; Jang, Jeonghwan; Waite, William F.; Winters, William J.; Nagao, J.; Yoneda, J.; Konno, Y.; Fujii, T.; Suzuki, K.
2015-01-01
Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties under in situ pressure, temperature, and restored effective stress conditions. Measurement results, combined with index-property data and analytical physics-based models, provide unique insight into hydrate-bearing sediments in situ. Tested cores contain some silty-sands, but are predominantly sandy- and clayey-silts. Hydrate saturations Sh range from 0.15 to 0.74, with significant concentrations in the silty-sands. Wave velocity and flexible-wall permeameter measurements on never-depressurized pressure-core sediments suggest hydrates in the coarser-grained zones, the silty-sands where Sh exceeds 0.4, contribute to soil-skeletal stability and are load-bearing. In the sandy- and clayey-silts, where Sh < 0.4, the state of effective stress and stress history are significant factors determining sediment stiffness. Controlled depressurization tests show that hydrate dissociation occurs too quickly to maintain thermodynamic equilibrium, and pressure–temperature conditions track the hydrate stability boundary in pure-water, rather than that in seawater, in spite of both the in situ pore water and the water used to maintain specimen pore pressure prior to dissociation being saline. Hydrate dissociation accompanied with fines migration caused up to 2.4% vertical strain contraction. The first-ever direct shear measurements on never-depressurized pressure-core specimens show hydrate-bearing sediments have higher sediment strength and peak friction angle than post-dissociation sediments, but the residual friction angle remains the same in both cases. Permeability measurements made before and after hydrate dissociation demonstrate that water permeability increases after dissociation, but the gain is limited by the transition from hydrate saturation before dissociation to gas saturation after dissociation. In a proof-of-concept study, sediment microbial communities were successfully extracted and stored under high-pressure, anoxic conditions. Depressurized samples of these extractions were incubated in air, where microbes exhibited temperature-dependent growth rates.
Inadequate Hydration, BMI, and Obesity Among US Adults: NHANES 2009-2012.
Chang, Tammy; Ravi, Nithin; Plegue, Melissa A; Sonneville, Kendrin R; Davis, Matthew M
2016-07-01
Improving hydration is a strategy commonly used by clinicians to prevent overeating with the goal of promoting a healthy weight among patients. The relationship between weight status and hydration, however, is unclear. Our objective was to assess the relationship between inadequate hydration and BMI and inadequate hydration and obesity among adults in the United States. Our study used a nationally representative sample from the National Health and Nutrition Examination Survey (NHANES) 2009 to 2012, and included adults aged 18 to 64 years. The primary outcome of interest was body mass index (BMI), measured in continuous values and also categorized as obese (BMI ≥30) or not (BMI <30). Individuals with urine osmolality values of 800 mOsm/kg or greater were considered to be inadequately hydrated. Linear and logistic regressions were performed with continuous BMI and obesity status as the outcomes, respectively. Models were adjusted for known confounders including age, race/ethnicity, sex, and income-to-poverty ratio. In this nationally representative sample (n = 9,528; weighted n = 193.7 million), 50.8% were women, 64.5% were non-Hispanic white, and the mean age was 41 years. Mean urine osmolality was 631.4 mOsm/kg (SD = 236.2 mOsm/kg); 32.6% of the sample was inadequately hydrated. In adjusted models, adults who were inadequately hydrated had higher BMIs (1.32 kg/m(2); 95% CI, 0.85-1.79; P <.001) and higher odds of being obese (OR = 1.59; 95% CI, 1.35-1.88; P <.001) compared with hydrated adults. We found a significant association between inadequate hydration and elevated BMI and inadequate hydration and obesity, even after controlling for confounders. This relationship has not previously been shown on a population level and suggests that water, an essential nutrient, may deserve greater focus in weight management research and clinical strategies. © 2016 Annals of Family Medicine, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Zueqian
2010-01-01
Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-anglemore » X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.« less
Mixtures of Sulfates in Melas Chasma
2017-09-04
In this image from NASA's Mars Reconnaissance Orbiter, layering within the light-toned sulfate deposit is the result of different states of hydration. Some of the layers have sulfates with little water (known as monohydrated sulfates) whereas other layers have higher amounts of water (called polyhydrated sulfates). The different amounts of water within the sulfates may reflect changes in the water chemistry during deposition of the sulfates, or may have occurred after the sulfates were laid down when heat or pressure forced the water out of some layers, causing a decrease in the hydration state. Many locations on Mars have sulfates, which are sedimentary rocks formed in water. Within Valles Marineris, the large canyon system that cuts across the planet, there are big and thick sequences of sulfates. The CRISM instrument on MRO is crucial for telling scientists which type of sulfate is associated with each layer, because each hydration state will produce a spectrum with absorptions at specific wavelengths depending upon the amount of water contained within the sulfate. https://photojournal.jpl.nasa.gov/catalog/PIA21935
Hydrated interfacial ions and electrons.
Abel, Bernd
2013-01-01
Charged particles such as hydrated ions and transient hydrated electrons, the simplest anionic reducing agents in water, and the special hydronium and hydroxide ions at water interfaces play an important role in many fields of science, such as atmospheric chemistry, radiation chemistry, and biology, as well as biochemistry. This article focuses on these species near hydrophobic interfaces of water, such as the air or vacuum interface of water or water protein/membrane interfaces. Ions at interfaces as well as solvated electrons have been reviewed frequently during the past decade. Although all species have been known for some time with seemingly familiar features, recently the picture in all cases became increasingly diffuse rather than clearer. The current account gives a critical state-of-the art overview of what is known and what remains to be understood and investigated about hydrated interfacial ions and electrons.
Massive cisplatin overdose by accidental substitution for carboplatin. Toxicity and management.
Chu, G; Mantin, R; Shen, Y M; Baskett, G; Sussman, H
1993-12-15
Unlike the related drug carboplatin, cisplatin is highly nephrotoxic and must be given with vigorous intravenous hydration at a much lower dose. As the result of an accidental substitution of cisplatin for carboplatin, a 68-year-old woman received a massive overdose of cisplatin without intravenous hydration. Laboratory documentation included measurements of platinum concentrations by atomic absorption spectroscopy and of xeroderma pigmentosum group E (XPE) binding factor, a protein that is involved in the recognition step of DNA repair. Toxicities included severe emesis, myelosuppression, renal failure, and deafness, which are well known. Other toxicities were seizures, hallucinations, loss of vision, and hepatic toxicity, which were unusual and may have been caused by the magnitude of the overdose. As late as day 19, there was a continued cellular response from cisplatin, as evidenced by decreased levels of XPE binding factor in extracts from the patient's peripheral blood lymphocytes. Plasmapheresis was effective in lowering the platinum concentration from greater than 2900 ng/ml to 200 ng/ml and appeared to be of clinical benefit. Even after the onset of renal failure, hydration to increase urine volume resulted in increased urinary excretion of platinum. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was used to ameliorate myelosuppression. The patient received a transplanted kidney from her monozygotic twin sister and survived with no clinically significant deficit except for deafness. No previous reports exist of survival after such a high dose of cisplatin without intravenous hydration. In the future, patients may benefit from similar management and heightened awareness of the possibility of accidental substitution.
Solid-state NMR study of various mono- and divalent cation forms of the natural zeolite natrolite.
Park, Min Bum; Vicente, Aurélie; Fernandez, Christian; Hong, Suk Bong
2013-05-28
Here we present the one-dimensional (29)Si and (27)Al MAS NMR and two-dimensional (27)Al MQMAS and DQF-STMAS NMR spectra of the monovalent (Na(+), K(+), Rb(+), Cs(+) and NH4(+)) and divalent (Ca(2+), Sr(2+) and Ba(2+)) cation forms of the natural zeolite natrolite (framework type NAT) with complete Si-Al ordering over the crystallographically distinct tetrahedral sites and with the same hydration state (hydrated, partially dehydrated or fully dehydrated). In the case of monovalent cation-exchanged natrolites, the differences in their crystal symmetry evidenced by (29)Si MAS NMR were found to be in good agreement with those determined by crystallographic analyses. However, (27)Al DQF-STMAS NMR spectroscopy shows the presence of two distinct Al sites in dehydrated K-NAT, Rb-NAT and NH4-NAT, suggesting that their actual crystal symmetry is lower than the reported one (i.e., orthorhombic Fdd2). The MAS NMR results also show that the space group of hydrated Ca-NAT is lower than that (monoclinic F1d1) of hydrated scolecite, the natural calcium counterpart of natrolite, which is also the case with hydrated Sr-NAT and Ba-NAT. We believe that the unexpected diversity in the crystal symmetry of natrolite caused by exchange of various mono- and divalent ions, as well as by dehydration, may be inherently due to the high framework flexibility of this natural zeolite.
Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell
Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...
2009-11-01
We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.
Non-interacting surface solvation and dynamics in protein-protein interactions.
Visscher, Koen M; Kastritis, Panagiotis L; Bonvin, Alexandre M J J
2015-03-01
Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo binders with preferred interaction properties. At a structural and molecular level, interface and rim regions are not enough to fully account for the energetics of protein-protein binding, even for simple lock-and-key rigid binders. As we have recently shown, properties of the global surface might also play a role in protein-protein interactions. Here, we report on molecular dynamics simulations performed to understand solvent effects on protein-protein surfaces. We compare properties of the interface, rim, and non-interacting surface regions for five different complexes and their free components. Interface and rim residues become, as expected, less mobile upon complexation. However, non-interacting surface appears more flexible in the complex. Fluctuations of polar residues are always lower compared with charged ones, independent of the protein state. Further, stable water molecules are often observed around polar residues, in contrast to charged ones. Our analysis reveals that (a) upon complexation, the non-interacting surface can have a direct entropic compensation for the lower interface and rim entropy and (b) the mobility of the first hydration layer, which is linked to the stability of the protein-protein complex, is influenced by the local chemical properties of the surface. These findings corroborate previous hypotheses on the role of the hydration layer in shielding protein-protein complexes from unintended protein-protein interactions. © 2014 Wiley Periodicals, Inc.
Gamrani, Halima; Elgot, Abdeljalil; El Hiba, Omar; Fèvre-Montange, Michelle
2011-02-23
Supraoptic (SON) and paraventricular (PVN) nuclei are part of the hypothalamic-neurohypophysial system, they constitute the main source for vasopressin and they represent also obvious examples of activity-dependent neuroglial plasticity. Certain physiological conditions such as dehydration are accompanied by a structural remodeling of the neurons, their synaptic inputs and their surrounding glia. In the present work, an adult Meriones shawi (a rodent adapted to desert life) is used as an animal model. Using GFAP and vasopressin expressions as indicators successively of astrocytes and neuronal activations, the effect of a prolonged episode of water deprivation on the SON and PVN, hypothalamus nuclei were examined. We studied the immunoreactivity of GFAP and vasopressin in various hydration states (total deprivation of drinking water for 1 and 2months compared to hydrated animals). Prolonged dehydration produces an important decrease of GFAP immunoreactivity in both SON and PVN after 1 and 2months of water restriction. This decrease is accompanied by increased vasopressin immunoreactivity following the same periods of water deprivation. These findings may explain a real communication between vasopressin neurons and their surrounding astrocytes, thus the retraction of astrocytes and their processes is accompanied by an enhancement of vasopressin neuron density and their projecting fibers in response to this osmotic stress situation. Furthermore, these data could open further investigations concerning the possible involvement of the communication between astrocytes and vasopressin neurons in both PVN and SON in the regulation of Meriones hydrous balance and resistance to dehydration. Copyright © 2010. Published by Elsevier B.V.
Stern, L.A.; Kirby, S.H.; Durham, W.B.
1997-01-01
Test specimens of methane hydrate were grown under static conditions by combining cold, pressurized CH4 gas with H2O ice grains, then warming the system to promote the reaction CH4 (g) + 6H2O (s???l) ??? CH4??6H2O. Hydrate formation evidently occurs at the nascent ice/liquid water interface, and complete reaction was achieved by warming the system above 271.5 K and up to 289 K, at 25-30 MPa, for approximately 8 hours. The resulting material is pure methane hydrate with controlled grain size and random texture. Fabrication conditions placed the H2O ice well above its melting temperature before reaction completed, yet samples and run records showed no evidence for bulk melting of the ice grains. Control experiments using Ne, a non-hydrate-forming gas, verified that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting is easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably at temperatures well above its melting point. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T= 140-200 K, Pc= 50-100 MPa, and ????= 10-4-10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to a higher degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; x-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juanes, Ruben
The overall goals of this research are: (1) to determine the physical fate of single and multiple methane bubbles emitted to the water column by dissociating gas hydrates at seep sites deep within the hydrate stability zone or at the updip limit of gas hydrate stability, and (2) to quantitatively link theoretical and laboratory findings on methane transport to the analysis of real-world field-scale methane plume data placed within the context of the degrading methane hydrate province on the US Atlantic margin. The project is arranged to advance on three interrelated fronts (numerical modeling, laboratory experiments, and analysis of field-basedmore » plume data) simultaneously. The fundamental objectives of each component are the following: Numerical modeling: Constraining the conditions under which rising bubbles become armored with hydrate, the impact of hydrate armoring on the eventual fate of a bubble’s methane, and the role of multiple bubble interactions in survival of methane plumes to very shallow depths in the water column. Laboratory experiments: Exploring the parameter space (e.g., bubble size, gas saturation in the liquid phase, “proximity” to the stability boundary) for formation of a hydrate shell around a free bubble in water, the rise rate of such bubbles, and the bubble’s acoustic characteristics using field-scale frequencies. Field component: Extending the results of numerical modeling and laboratory experiments to the field-scale using brand new, existing, public-domain, state-of-the-art real world data on US Atlantic margin methane seeps, without acquiring new field data in the course of this particular project. This component quantitatively analyzes data on Atlantic margin methane plumes and place those new plumes and their corresponding seeps within the context of gas hydrate degradation processes on this margin.« less
Krakowiak, Joanna; Lundberg, Daniel
2012-01-01
The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen donor solvents water, dimethylsulfoxide (dmso) and N,N′-dimethylpropyleneurea (dmpu) has been studied in solution by EXAFS and large angle X-ray scattering (LAXS) and in solid state by single crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and dimethylsulfoxide solvated oxovanadium(IV) ions vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O=V-Operp bond angle is ca. 98°. In the dmpu solvated oxovanadium(IV) ion, the space demanding properties of the dmpu molecule leaving no solvent molecule in the trans position to the oxo group which reduces the coordination number to 5. The O=V-O bond angle is consequently much larger, 106°, and the mean V=O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and dimethylsulfoxide solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in cis position with mean V=O bond distances of 1.6 Å and a O=V=O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen donor ligands. PMID:22950803
Spectroscopic And Electrochemical Studies Of Electrochromic Hydrated Nickel Oxide Films
NASA Astrophysics Data System (ADS)
Yu, P. C.; Nazri, G.; Lampert, C. M.
1986-09-01
The electrochrcrnic properties of hydrated nickel oxide thin films electrochemically deposited by anodization onto doped tin oxide-coated glass have been studied by transmittance measurements, cyclic voltammetry, Fourier-transform infrared spectroscopy, and ion-backscattering spectrometry. The spectral transmittance is reported for films switched in both the bleached and colored states. The photopic transmittance (Tp) can be switched from T (bleached) = 0.77 to T (colored) = 0.21, and the solar transmittance (Ts) can be switched from Ts(bleached) = 0.73 to TS (colored) = 0.35. Also reported is the near-infrared transmittance (TNIR)which was found to switch fran T N,IR (bleached) = 0.72 to TNIR (colored) = 0.55. The bleached condition is noted to have very low solar absorption in both the visible and solar regions. Ion-backscattering spectrometry was performed on the hydrated nickel oxide film, yielding a camposition of Ni01.0 (dehydrated) and a film thickness of 125 A. Cyclic voltammetry showed that, for films in the bleached or colored state, the reversible reaction is Ni(0H), = NiOOH + H+ + e . Voltammnetry also showed that the switching of the film is controlled by the diffusion or protons, where OH plays a role in the reaction mechanism. Analysis of the hydrated nickel-oxide thin films by Fourier-transform infrared spectroscopy revealed that both the bleached and colored states contain lattice water and hydroxyl groups. The surface hydroxyl groups play an important role in the coloration and bleaching of the anodically deposited nickel oxide thin films.
Li, Xiuying; Chen, Dan; Le, Chaoyi; Zhu, Chunliu; Gan, Yong; Hovgaard, Lars; Yang, Mingshi
2011-01-01
Background The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127). Methods The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry. Results The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells. Conclusion PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery. PMID:22163166
NASA Astrophysics Data System (ADS)
Chuvilin, Evgeny; Bukhanov, Boris; Tumskoy, Vladimir; Istomin, Vladimir; Tipenko, Gennady
2017-04-01
Intra-permafrost gas (mostly methane) is represent a serious geological hazards during exploration and development of oil and gas fields. Special danger is posed by large methane accumulations which usually confined to sandy and silty sand horizons and overlying in the frozen strata on the depth up to 200 meters. Such methane accumulations are widely spread in a number of gas fields in the northern part of Western Siberia. According to indirect indicators this accumulations can be relic gas hydrates, that formed earlier during favorable conditions for hydrate accumulation (1, 2). Until now, they could be preserved in the frozen sediments due to geological manifestation of the self-preservation effect of gas hydrates at temperatures below zero. These gas hydrate formations, which are lying above the gas hydrate stability zone today, are in a metastable state and are very sensitive to various anthropogenic impacts. During drilling and operation of production wells in the areas where the relic of gas hydrates can occur, there are active gas emission and gas explosion, that can lead to various technical complications up to the accident. Mathematical and experimental simulations were were conducted to evaluate the possibility of existence of relic gas hydrates in the northern part of West Siberia. The results of math simulations revealed stages of geological history when the gas hydrate stability zone began virtually from the ground surface and saturated in shallow permafrost horizons. Later permafrost is not completely thaw. Experimental simulations of porous gas hydrate dissociation in frozen soils and evaluation of self-preservation manifestation of gas hydrates at negative temperatures were carried out for identification conditions for relic gas hydrates existence in permafrost of northern part of West Siberia. Sandy and silty sand sediments were used in experimental investigations. These sediments are typical of most gas-seeping (above the gas hydrate stability zone) permafrost horizons. The results show that all investigated frozen hydrate-bearing sandy and silty sand samples in the temperature range from -16 °C to -2 °C are characterized by not complete decomposition of pore hydrate at relieving pressure below the equilibrium. It was observed that at typical north Western Siberian permafrost temperature of -6 ° C the safety of pore hydrate in frozen samples can reach 60% at the pressure reducing below the equilibrium. In was found that with increasing temperature and particle size (dispersity) the efficiency of pore hydrate self-preservation is decreased, but even at the temperature of -2 °C there is residual pore methane hydrate content in non-saline sandy samples. All this suggests about high preservation of methane hydrates in frozen sediments at non-equilibrium thermobaric conditions, close to reservoir conditions. Based on the results of mathematical and experimental simulations about the possibility of relic gas hydrates existence on permafrost depth up to 200 m in the northern part of Western Siberia on the less than 200 m due to geological manifestation of the self-preservation effect of gas hydrates. References. 1.Chuvilin EM, Yakushev VS, Perlova EV. Gas and gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. // Polarforschung 68: 215-219, 1998. (erschienen 2000). 2.Yakushev V.S., Chuvilin E.M. 2000. Natural gas and hydrate accumulation within permafrost in Russia. Cold Regions Science and Technology. 31: 189-197. These researches are supported by grant RSF №16-17-00051.
NASA Astrophysics Data System (ADS)
Meyer, D.
2016-12-01
We generate methane hydrate in a coarse-grained, brine-saturated, vertically-oriented sample through gas injection. From 0 - 80 hours, we estimate a hydrate saturation of 0.56 behind the formation front, using mass balance, indicating that hydrate formation is limited by locally-elevated salinity creating three-phase equilibrium conditions. After 80 hours, the hydrate phase saturation drops to 0.50 and the magnitude of the pressure drop-rebound cycles increases, suggesting temporary reductions in permeability and the development of heterogeneous distributions of free gas in the sample. The sample consists of an industrial, fine sand mixed with a 0.5 wt% fraction of natural, smectitic clay from the Eugene Island region in the Gulf of Mexico (5.08cm diameter, 11.79cm length). The sample is initially saturated with a 7 wt% sodium chloride brine, pressurized to 12.24 MPa, and cooled to 1 degree Celsius, to bring the sample into the hydrate stability zone. Syringe pumps filled with methane gas and brine are connected to the top and bottom of the sample, respectively, to control fluid flow. We withdraw from the base of the sample at a rate of 0.0005 mL/min and inject methane to maintain a constant pressure, initiating hydrate formation. We analyze this experiment, as well as a gas flood experiment executed under the same conditions, using computed-tomography scans and an analytical solution to investigate the formation behavior and thermodynamic state of hydrate in gas-rich, coarse-grained reservoirs.
Genuine binding energy of the hydrated electron
Luckhaus, David; Yamamoto, Yo-ichi; Suzuki, Toshinori; Signorell, Ruth
2017-01-01
The unknown influence of inelastic and elastic scattering of slow electrons in water has made it difficult to clarify the role of the solvated electron in radiation chemistry and biology. We combine accurate scattering simulations with experimental photoemission spectroscopy of the hydrated electron in a liquid water microjet, with the aim of resolving ambiguities regarding the influence of electron scattering on binding energy spectra, photoelectron angular distributions, and probing depths. The scattering parameters used in the simulations are retrieved from independent photoemission experiments of water droplets. For the ground-state hydrated electron, we report genuine values devoid of scattering contributions for the vertical binding energy and the anisotropy parameter of 3.7 ± 0.1 eV and 0.6 ± 0.2, respectively. Our probing depths suggest that even vacuum ultraviolet probing is not particularly surface-selective. Our work demonstrates the importance of quantitative scattering simulations for a detailed analysis of key properties of the hydrated electron. PMID:28508051
Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...
2015-08-27
In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less
Guengerich, F. Peter; Sohl, Christal D.; Chowdhury, Goutam
2010-01-01
Catalysis of sequential oxidation reactions is not unusual in cytochrome P450 (P450) reactions, not only in steroid metabolism but also with many xenobiotics. One issue is how processive/distributive these reactions are, i.e. how much do the “intermediate” products dissociate. Our work with human P450s 2E1, 2A6, and 19A1 on this subject has revealed a mixture of systems, surprisingly with a more distributive mechanism with an endogenous substrate (P450 19A1) than for some xenobiotics (P450s 2E1, 2A6). One aspect of this research involves carbonyl intermediates, and the choice of catalytic mechanism is linked to the hydration state of the aldehyde. The non-enzymatic rates of hydration and dehydration of carbonyls are not rapid and whether P450s catalyze the reversible hydration is unknown. If carbonyl hydration and dehydration are slow, the mechanism may be set by the carbonyl hydration status. PMID:20804723
Thermodynamic properties of water solvating biomolecular surfaces
NASA Astrophysics Data System (ADS)
Heyden, Matthias
Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.
USGS leads United States effort in Mallik Well
2002-01-01
This winter, in the extremely cold, far reaches of the upper Northwest Territory of Canada, there is an international consortium of researchers participating in a program to study methane hydrates. The researchers are currently drilling a 1200 m-deep production research well through the permafrost. It is one of three wells located in the Mackenzie Delta, on the shore of the Beaufort Sea. Two observation wells were drilled adjacent to the main production test well earlier this year.Research objectives for the program focus on two themes: (1) the assessment of the production and properties of gas hydrates, and (2) an assessment of the stability of continental gas hydrates given warming trends predicted by climate change models. Of particular interest is the physical response of the gas hydrate to depressurization and thermal production stimulation. Cores are being taken from the well, and scientists hope to retrieve at least 200 m of core, including all the gas hydrate-rich intervals. Once cored, the samples are transported 200 kilometers over ice roads to Inuvik. Nearly 60 researchers are examining the cores for everything from geophysical parameters to microbiological analyses.
Solvent history dependence of gramicidin A conformations in hydrated lipid bilayers.
LoGrasso, P V; Moll, F; Cross, T A
1988-01-01
Reconstituted lipid bilayers of dimyristoylphosphatidylcholine (DMPC) and gramicidin A' have been prepared by cosolubilizing gramicidin and DMPC in one of three organic solvent systems followed by vacuum drying and hydration. The conformational state of gramicidin as characterized by 23Na NMR, circular dichroism, and solid state 15N NMR is dependent upon the cosolubilizing solvent system. In particular, two conformational states are described; a state in which Na+ has minimal interactions with the polypeptide, referred to as a nonchannel state, and a state in which Na+ interacts very strongly with the polypeptide, referred to as the channel state. Both of these conformations are intimately associated with the hydrophobic core of the lipid bilayer. Furthermore, both of these states are stable in the bilayer at neutral pH and at a temperature above the bilayer phase transition temperature. These results with gramicidin suggest that the conformation of membrane proteins may be dictated by the conformation before membrane insertion and may be dependent upon the mechanism by which the insertion is accomplished. PMID:2462923
Ozaki, Shunsuke; Nakagawa, Yoshiaki; Shirai, Osamu; Kano, Kenji
2014-11-01
Thermodynamic analysis of the solubility of benzoylphenylurea (BPU) derivatives was conducted to investigate the relative importance of crystal packing and hydration for improving solubility with minor structural modification. The contribution of crystal packing to solubility was evaluated from the change in Gibbs energy on the transition from the crystalline to liquid state. Hydration Gibbs energy was estimated using a linear free-energy relationship between octanol-water partition coefficients and gas-water partition coefficients. The established solubility model satisfactorily explained the relative thermodynamic solubility of the model compounds and revealed that crystal packing and hydration equally controlled solubility of the structural analogs. All hydrophobic substituents were undesirable for solubility in terms of hydration, as expected. On the other hand, some of these hydrophobic substituents destabilized crystal packing and improved the solubility of the BPU derivatives when their impact on crystal packing exceeded their negative influence on hydration. The replacement of a single substituent could cause more than a 10-fold enhancement in thermodynamic solubility; this degree of improvement was comparable to that generally achieved by amorphous formulations. Detailed analysis of thermodynamic solubility will allow us to better understand the true substituent effect and design drug-like candidates efficiently. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Liu, C.; Jiang, S. Y.; Su, X.
2017-12-01
Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.
Chekmenev, Eduard Y; Hu, Jun; Gor'kov, Peter L; Brey, William W; Cross, Timothy A; Ruuge, Andres; Smirnov, Alex I
2005-04-01
This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.
Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Mal Soon; McGrail, B. Peter; Glezakou, Vassiliki Alexandra
2014-08-05
We report on ab initio molecular dynamics simulations of Ca-rich montmorillonite systems, in different hydration states in the presence of supercritical CO2. Analysis of the molecular trajectories provides estimates of the relative H2O:CO2 ratio per interspatial cation. The vibrational density of states in direct comparison with dipole moment derived IR spectra for these systems provide unique signatures that can used to follow molecular transformation. In a co-sequestration scenario, these signatures could be used to identify the chemical state and fate of Sulfur compounds. Interpretation of CO2 asymmetric stretch shift is given based on a detailed analysis of scCO2 structure andmore » intermolecular interactions of the intercalated species. Based on our simulations, smectites with higher charge interlayer cations at sub-single to single hydration states should be more efficient in capturing CO2, while maintaining caprock integrity. This research would not have been possible without the support of the office of Fossil Energy, Department of Energy. The computational resources were made available through a user proposal of the EMSL User facility, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
Studies on the cellular and subcellular reactions in epidermis at irritant and allergic dermatitis.
Lindberg, M
1982-01-01
To determine the cellular and subcellular reactions of keratinocytes at contact dermatitis, transmission electron microscopy was used in combination with energy dispersive X-ray microanalysis. Stereology and optical diffraction were used as complements to electron microscopy for studies of the effects of variations in the preparation technique on the ultrastructure of epidermis. The morphological effects of an increased hydration of epidermis were assessed by the use of occlusive patch tests. It was found that the relative volume of the epidermal intercellular space and the ultrastructure of the epidermal cells (keratinocytes and Langerhans' cells) were directly dependent on the osmolality of the fixative vehicle if glutaraldehyde was used as fixative. Cellular volume and morphology did also depend on the fixative used. Variations in the volume of the intercellular space were also detected when the water transport through epidermis was impaired by occlusive treatment. In normal epidermis prolonged fixation times (4 weeks) did not affect the morphology of the keratinocytes. However, if the structure and function of the keratinocytes were affected by the application of a irritant substance (DNCB), a loss of electron dense material from the cells was detected within 3 weeks. The ultrastructural changes in the keratinocytes at the irritant chromate and DNCB reactions were of a non-specific nature and are in accordance with the changes described for other irritant agents in the literature. A few cells with the features of apoptosis were recorded. The allergic chromate reaction was found to be a combination of the irritant reaction and a marked inflammatory response. To correlate the ultrastructural alterations in the keratinocytes with the functional state of the cells, X-ray microanalysis was used to determine the elemental redistribution occurring at the irritant DNCB reaction. The results of the X-ray microanalysis showed a good correlation between dose and time dependent effects and with the ultrastructural changes. Cell injury in the keratinocytes lead to decreases in the cellular content of phosphorous, potassium and magnesium and an increase of cellular calcium. Sodium, chloride, and sulphur were only moderately changed. A stimulation of the basal keratinocytes was detectable when a weak DNCB dose was applied to the skin.
Unique rheological behavior of chitosan-modified nanoclay at highly hydrated state.
Liang, Songmiao; Liu, Linshu; Huang, Qingrong; Yam, Kit L
2009-04-30
This work attempts to explore the dynamic and steady-state rheological properties of chitosan modified clay (CMCs) at highly hydrated state. CMCs with different initial chitosan/clay weight ratios (s) were prepared from pre-exfoliated clay via electrostatic adsorption process. Thermogravimetric analysis and optical microscopy were used to determine the adsorbed content of chitosan (m) in CMCs and the microstructure of CMCs at highly hydrated state, respectively. Dynamic rheological results indicate that both stress-strain behavior and moduli of CMCs exhibit strong dependence on m. Shear-thinning behavior for all of CMCs is observed and further confirmed by steady-state shear test. Interestingly, two unique transitions, denoted as a small peak region of the shear viscosity for CMCs with m > 2.1% and a sharp drop region of the shear viscosity for CMCs with m
LASER BIOLOGY: Optomechanical tests of hydrated biological tissues subjected to laser shaping
NASA Astrophysics Data System (ADS)
Omel'chenko, A. I.; Sobol', E. N.
2008-03-01
The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light.
Folding propensity of intrinsically disordered proteins by osmotic stress
Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; ...
2016-10-11
Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less
Folding propensity of intrinsically disordered proteins by osmotic stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.
Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less
Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans
Russell, Joshua; Vidal-Gadea, Andrés G.; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T.
2014-01-01
All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm’s cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans. PMID:24843133
Electrical measurement of the hydration state of the skin surface in vivo.
Tagami, H
2014-09-01
Healthy skin surface is smooth and soft, because it is covered by the properly hydrated stratum corneum (SC), an extremely thin and soft barrier membrane produced by the underlying normal epidermis. By contrast, the skin surfaces covering pathological lesions exhibit dry and scaly changes and the SC shows poor barrier function. The SC barrier function has been assessed in vivo by instrumentally measuring transepidermal water loss (TEWL). However, there was a lack of any appropriate method for evaluating the hydration state of the skin surface in vivo until 1980 when we reported the feasibility of employing high-frequency conductance or capacitance to evaluate it quickly and accurately. With such measurements, we can assess easily the moisturizing efficacy of various topical agents in vivo as well as the distribution pattern of water in the SC by combining it with a serial tape-stripping procedure of the skin surface. © 2014 The Author BJD © 2014 British Association of Dermatologists.
Hydrophobic Gating of Ion Permeation in Magnesium Channel CorA
Neale, Chris; Chakrabarti, Nilmadhab; Pomorski, Pawel; Pai, Emil F.; Pomès, Régis
2015-01-01
Ion channels catalyze ionic permeation across membranes via water-filled pores. To understand how changes in intracellular magnesium concentration regulate the influx of Mg2+ into cells, we examine early events in the relaxation of Mg2+ channel CorA toward its open state using massively-repeated molecular dynamics simulations conducted either with or without regulatory ions. The pore of CorA contains a 2-nm-long hydrophobic bottleneck which remained dehydrated in most simulations. However, rapid hydration or “wetting” events concurrent with small-amplitude fluctuations in pore diameter occurred spontaneously and reversibly. In the absence of regulatory ions, wetting transitions are more likely and include a wet state that is significantly more stable and more hydrated. The free energy profile for Mg2+ permeation presents a barrier whose magnitude is anticorrelated to pore diameter and the extent of hydrophobic hydration. These findings support an allosteric mechanism whereby wetting of a hydrophobic gate couples changes in intracellular magnesium concentration to the onset of ionic conduction. PMID:26181442
Hydrophobic Gating of Ion Permeation in Magnesium Channel CorA.
Neale, Chris; Chakrabarti, Nilmadhab; Pomorski, Pawel; Pai, Emil F; Pomès, Régis
2015-07-01
Ion channels catalyze ionic permeation across membranes via water-filled pores. To understand how changes in intracellular magnesium concentration regulate the influx of Mg2+ into cells, we examine early events in the relaxation of Mg2+ channel CorA toward its open state using massively-repeated molecular dynamics simulations conducted either with or without regulatory ions. The pore of CorA contains a 2-nm-long hydrophobic bottleneck which remained dehydrated in most simulations. However, rapid hydration or "wetting" events concurrent with small-amplitude fluctuations in pore diameter occurred spontaneously and reversibly. In the absence of regulatory ions, wetting transitions are more likely and include a wet state that is significantly more stable and more hydrated. The free energy profile for Mg2+ permeation presents a barrier whose magnitude is anticorrelated to pore diameter and the extent of hydrophobic hydration. These findings support an allosteric mechanism whereby wetting of a hydrophobic gate couples changes in intracellular magnesium concentration to the onset of ionic conduction.
Moreschi, Carlo; Da Broi, Ugo; Rodriguez, Daniele; Froldi, Rino; Porzionato, Andrea; Macchi, Veronica; De Caro, Raffaele
2013-09-10
A 38-year-old woman, who had been in a permanent vegetative state with quadriplegia for 17 years following a motor vehicle accident, died 87 h after the judicially authorised suspension of artificial nutrition and hydration. Medico-legal investigations, requested by the Judicial Authorities and focusing on the evaluation of clinical and necroscopic data, aimed to explain the cause of death, to exclude any lethal cause other than one deriving from the withdrawal of artificial nutrition and hydration and to verify the level of perceived discomfort and the correctness in the application of the supportive protocol during the end of life phase. The inability of quadriplegic patients to compensate critical hyperthermic and haemodynamic disturbances induced by dehydration was considered to be the cause of a rapid demise after the withdrawal of artificial sustenance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Environmental Scanning Electron Microscope Imaging of Vesicle Systems.
Perrie, Yvonne; Ali, Habib; Kirby, Daniel J; Mohammed, Afzal U R; McNeil, Sarah E; Vangala, Anil
2017-01-01
The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors which can influence this. However, there are few methods which all us to study these systems in their natural hydrated state; commonly the liposomes are visualized after drying, staining, and/or fixation of the vesicles. Environmental Scanning Electron Microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. Within our studies we were the first to use ESEM to study liposomes and niosomes and we have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses on to, or evaporates from, the sample in real time. This provides insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay of liposome formulation and stability.
An improved cryo-FIB method for fabrication of frozen hydrated lamella.
Zhang, Jianguo; Ji, Gang; Huang, Xiaojun; Xu, Wei; Sun, Fei
2016-05-01
Cryo-electron tomography (cryo-ET) provides great insights into the ultrastructure of cells and tissues in their native state and provides a promising way to study the in situ 3D structures of macromolecular complexes. However, this technique has been limited on the very thin specimen, which is not applicable for most cells and tissues. Besides cryo-sectioning approach, cryo focused ion beam (cryo-FIB) appeared recently to achieve 'artifact-free' thin frozen hydrated lamella via fabrication. Considering that the current cryo-FIB methods need modified holders or cartridges, here, with a "D-shaped" molybdenum grid and a specific shutter system, we developed a simple cryo-FIB approach for thin frozen hydrated lamella fabrication, which fits both standard transmission cryo-electron microscopes with side-entry cryo-holders and state-of-the-art ones with AutoGrids. Our approach will expand the usage of cryo-FIB approach in many labs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hydrate Evolution in Response to Ongoing Environmental Shifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempel, Alan
Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project componentmore » concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover, by taking explicit account of anomaly dissociation, project results are designed to help improve forecasts for changes in slope stability that could pose significant threats to energy infrastructure, disrupt hydrate reserves, and pollute the atmosphere with vast quantities of methane. This report presents the details of our work and outlines some of the highlights from our findings.« less
Stern, L.A.; Kirby, S.H.; Durham, W.B.
1996-01-01
Slow, constant-volume heating of water ice plus methane gas mixtures forms methane clathrate hydrate by a progressive reaction that occurs at the nascent ice/liquid water interface. As this reaction proceeds, the rate of melting of metastable water ice may be suppressed to allow short-lived superheating of ice to at least 276 kelvin. Plastic flow properties measured on clathrate test specimens are significantly different from those of water ice; under nonhydrostatic stress, methane clathrate undergoes extensive strain hardening and a process of solid-state disproportionation or exsolution at conditions well within its conventional hydrostatic stability field.
Pollen Acceptance or Rejection: A Tale of Two Pathways.
Doucet, Jennifer; Lee, Hyun Kyung; Goring, Daphne R
2016-12-01
While the molecular and cellular basis of self-incompatibility leading to self-pollen rejection in the Brassicaceae has been extensively studied, relatively little attention has been paid to compatible pollen recognition and the corresponding cellular responses in the stigmatic papillae. This is now changing because research has started to uncover steps in the Brassicaceae 'basal compatible pollen response pathway' in the stigma leading to pollen hydration and germination. Furthermore, recent studies suggest that self-incompatible pollen activates both the basal compatible pathway and the self-incompatibility pathway in the stigma, with the self-incompatibility response ultimately prevailing to reject self-pollen. We review here recent discoveries in both pathways and discuss how compatible pollen is accepted by the stigma versus the rejection of self-incompatible pollen. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pazart, Lionel; Rousseau, Marie-Christine; Noé, Alain; Decavel, Pierre; Chassagne, Aline; Godard-Marceau, Aurélie; Trimaille, Hélène; Mathieu-Nicot, Florence; Beaussant, Yvan; Gabriel, Damien; Daneault, Serge; Aubry, Régis
2017-01-01
The question of withdrawing artificial nutrition and hydration from people in a permanent vegetative state sparks considerable ethical and legal debate. Therefore, understanding the elements that influence such a decision is crucial. However, exploring perceptions of artificial nutrition and hydration is methodologically challenging for several reasons. First, because of the emotional state of the professionals and family members, who are facing an extremely distressing situation; second, because this question mirrors representations linked to a deep-rooted fear of dying of hunger and thirst; and third, because of taboos surrounding death. We sought to determine the best method to explore such complex situations in depth. This article aims to assess the relevance of the photo-elicitation interview method to analyze the perceptions and attitudes of health professionals and families of people in a permanent vegetative state regarding artificial nutrition and hydration. The photo-elicitation interview method consists in inserting one or more photographs into a research interview. An original set of 60 photos was built using Google Images and participants were asked to choose photos (10 maximum) and talk about them. The situations of 32 patients were explored in 23 dedicated centers for people in permanent vegetative state across France. In total, 138 interviews were conducted with health professionals and family members. We found that the photo-elicitation interview method 1) was well accepted by the participants and allowed them to express their emotions constructively, 2) fostered narration, reflexivity and introspection, 3) offered a sufficient "unusual angle" to allow participants to go beyond stereotypes and habits of thinking, and 4) can be replicated in other research areas. The use of visual methods currently constitutes an expanding area of research and this study stressed that this is of special interest to enhance research among populations facing end-of-life and ethical issues. PMID:29073185
Gas-phase hydration of glyoxylic acid: Kinetics and atmospheric implications.
Liu, Ling; Zhang, Xiuhui; Li, Zesheng; Zhang, Yunhong; Ge, Maofa
2017-11-01
Oxocarboxylic acids are one of the most important organic species found in secondary organic aerosols and can be detected in diverse environments. But the hydration of oxocarboxylic acids in the atmosphere has still not been fully understood. Neglecting the hydration of oxocarboxylic acids in atmospheric models may be one of the most important reasons for the significant discrepancies between field measurements and abundance predictions of atmospheric models for oxocarboxylic acids. In the present paper, glyoxylic acid, as the most abundant oxocarboxylic acids in the atmosphere, has been selected as an example to study whether the hydration process can occur in the atmosphere and what the kinetic process of hydration is. The gas-phase hydration of glyoxylic acid to form the corresponding geminal diol and those catalyzed by atmospheric common substances (water, sulfuric acid and ammonia) have been investigated at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(3df,3pd) level of theory. The contour map of electron density difference of transition states have been further analyzed. It is indicated that these atmospheric common substances can all catalyze on the hydration to some extent and sulfuric acid is the most effective reducing the Gibbs free energy of activation to 9.48 kcal/mol. The effective rate constants combining the overall rate constants and concentrations of the corresponding catalysts have shown that water and sulfuric acid are both important catalysts and the catalysis of sulfuric acid is the most effective for the gas-phase hydration of glyoxylic acid. This catalyzed processes are potentially effective in coastal regions and polluted regions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko
2018-04-01
We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.
Abbad, Sarra; Wang, Cheng; Waddad, Ayman Yahia; Lv, Huixia; Zhou, Jianping
2015-01-01
Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH), based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate) (HA-PBCA) block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA “plain” nanoparticle (MH-PNs) and HA-PBCA/TPGS “mixed” nanoparticles (MH-MNs) were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice. Overall, the results imply that the developed nanoparticles are promising vehicles for the targeted delivery of lipophilic anticancer drugs. PMID:25609946
From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces
Kanduč, Matej; Netz, Roland R.
2015-01-01
Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can—if strong enough—give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface–surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles. PMID:26392526
Tolerance of anhydrobiotic eggs of the Tardigrade Ramazzottius varieornatus to extreme environments.
Horikawa, Daiki D; Yamaguchi, Ayami; Sakashita, Tetsuya; Tanaka, Daisuke; Hamada, Nobuyuki; Yukuhiro, Fumiko; Kuwahara, Hirokazu; Kunieda, Takekazu; Watanabe, Masahiko; Nakahara, Yuichi; Wada, Seiichi; Funayama, Tomoo; Katagiri, Chihiro; Higashi, Seigo; Yokobori, Shin-Ichi; Kuwabara, Mikinori; Rothschild, Lynn J; Okuda, Takashi; Hashimoto, Hirofumi; Kobayashi, Yasuhiko
2012-04-01
Tardigrades are tiny (less than 1 mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196°C or +50°C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3×10(-4) Pa to 6.2×10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.
Dąbrowska, Agnieszka K; Adlhart, Christian; Spano, Fabrizio; Rotaru, Gelu-Marius; Derler, Siegfried; Zhai, Lina; Spencer, Nicholas D; Rossi, René M
2016-09-15
The skin properties, structure, and performance can be influenced by many internal and external factors, such as age, gender, lifestyle, skin diseases, and a hydration level that can vary in relation to the environment. The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured with the laser scanning confocal microscopy. By means of this pilot study, the authors have both qualitatively and quantitatively studied the influence of changing the depth-dependent hydration level of the stratum corneum (SC) on the real contact area, surface roughness, and the dimensions of the primary lines and presented a new method for characterizing the contact area for different states of the skin. The hydration level of the skin and the thickness of the SC increased significantly due to uptake of moisture derived from liquid water or, to a much lesser extent, from humidity present in the environment. Hydrated skin was smoother and exhibited higher real contact area values. The highest rates of water uptake were observed for the upper few micrometers of skin and for short exposure times.
Hydration and conformational equilibria of simple hydrophobic and amphiphilic solutes.
Ashbaugh, H S; Kaler, E W; Paulaitis, M E
1998-01-01
We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution. PMID:9675177
Physical properties of pressurized sediment from hydrate ridge
Winters, William J.; Waite, William F.; Mason, David H.; Gilbert, Lauren
2006-01-01
As part of an ongoing laboratory study, preliminary acoustic, triaxial strength, and electrical resistivity results are presented from a test performed on a clayey silt sediment sample recovered from Site 1249 at the summit of southern Hydrate Ridge during Ocean Drilling Program Leg 204. The test specimen was stored and transported in two different methane-charged pressure vessels until it was tested using the Gas Hydrate and Sediment Test Laboratory Instrument (GHASTLI). Although gas hydrate may have existed in the core section immediately after recovery, little (if any) hydrate was present in the specimen during testing. We therefore present background physical property results for sediment that may have hosted gas hydrate in situ. Because we consolidated the test specimen in increments beyond its in situ stress state, we are able to present properties representative of similar but deeper subbottom sediment. The increased consolidation stress also helped to mitigate some, but not all, types of disturbance caused by the recovery process. P-wave velocities from 1.54 to 1.74 km/s varied linearly with consolidation stress, σ′c, up to 970 kPa (equivalent to ~160 meters below seafloor). Electrical resistivity was periodically measured by a Wenner array and varied between 1.0 and 2.8 Ωm. These values reflect both the pore water salinity and soft, fine-grained texture of the sediment. Shear behavior is consistent with the induced normally consolidated behavior of clayey silt.
Lapchak, Paul A.; Boitano, Paul D.; Butte, Pramod V.; Fisher, David J.; Hölscher, Thilo; Ley, Eric J.; Nuño, Miriam; Voie, Arne H.; Rajput, Padmesh S.
2015-01-01
Background and Purpose Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in both acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), and Alzheimer’s disease (AD) patients based upon efficacy in translational animal models. However, there is limited information in the peer-reviewed literature pertaining to transcranial near-infrared laser transmission (NILT) profiles in various species. Thus, in the present study we systematically evaluated NILT characteristics through the skull of 4 different species: mouse, rat, rabbit and human. Results Using dehydrated skulls from 3 animal species, using a wavelength of 800nm and a surface power density of 700 mW/cm2, NILT decreased from 40.10% (mouse) to 21.24% (rat) to 11.36% (rabbit) as skull thickness measured at bregma increased from 0.44 mm in mouse to 0.83 mm in rat and then 2.11 mm in rabbit. NILT also significantly increased (p<0.05) when animal skulls were hydrated (i.e. compared to dehydrated); but there was no measurable change in thickness due to hydration. In human calvaria, where mean thickness ranged from 7.19 mm at bregma to 5.91 mm in the parietal skull, only 4.18% and 4.24% of applied near-infrared light was transmitted through the skull. There was a slight (9.2-13.4%), but insignificant effect of hydration state on NILT transmission of human skulls, but there was a significant positive correlation between NILT and thickness at bregma and parietal skull, in both hydrated and dehydrated states. Conclusion This is the first systematic study to demonstrate differential NILT through the skulls of 4 different species; with an inverse relationship between NILT and skull thickness. With animal skulls, transmission profiles are dependent upon the hydration state of the skull, with significantly greater penetration through hydrated skulls compared to dehydrated skulls. Using human skulls, we demonstrate a significant correlation between thickness and penetration, but there was no correlation with skull density. The results suggest that TLT should be optimized in animals using novel approaches incorporating human skull characteristics, because of significant variance of NILT profiles directly related to skull thickness. PMID:26039354
Boson peak as a probe of quantum effects in a glassy state of biomolecules: the case of L-cysteine.
Lima, T A; Ishikawa, M S; Martinho, H S
2014-02-01
Some physical properties of hydrated biomolecules, e.g., the occurrence of a boson peak, have been recognized to resemble those of glassy states. The present work shows that quantum fluctuations play a fundamental role in describing the glassy state of biomolecules, particularly at lower hydration levels. There is a linear relationship between the quantumness and the slope of the temperature dependence of the boson peak frequency, which is used to classify the extent of quantum contributions to the glassy state of glasses in general. Lastly, we demonstrate that the boson peak two-band spectral structure that is observed in some cases can be directly linked to the anisotropy of the elastic properties of the material. The amino acid L-cysteine is studied in detail. The findings are compared with previously reported data for other macromolecules.
The strength and rheology of methane clathrate hydrate
Durham, W.B.; Kirby, S.H.; Stern, L.A.; Zhang, W.
2003-01-01
Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, ??), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 ?? 10-8 ??? ?? ??? 4.3 ?? 10-4 s-1, temperature 260 ??? T ??? 287 K, and internal methane pressure 10 ??? PCH4 ??? 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, ?? = A??ne-(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa-n s-1, n = 2.2, E* = 90,000 J mol-1, and V* = 19 cm3 mol-1. For comparison at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate-bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100-km-thick near-surface layer of high-strength, low-thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.
Seismic evidence of gas hydrates, multiple BSRs and fluid flow offshore Tumbes Basin, Peru
NASA Astrophysics Data System (ADS)
Auguy, Constance; Calvès, Gérôme; Calderon, Ysabel; Brusset, Stéphane
2017-12-01
Identification of a previously undocumented hydrate system in the Tumbes Basin, localized off the north Peruvian margin at latitude of 3°20'—4°10'S, allows us to better understand gas hydrates of convergent margins, and complement the 36 hydrate sites already identified around the Pacific Ocean. Using a combined 2D-3D seismic dataset, we present a detailed analysis of seismic amplitude anomalies related to the presence of gas hydrates and/or free gas in sediments. Our observations identify the occurrence of a widespread bottom simulating reflector (BSR), under which we observed, at several sites, the succession of one or two BSR-type reflections of variable amplitude, and vertical acoustic discontinuities associated with fluid flow and gas chimneys. We conclude that the uppermost BSR marks the current base of the hydrate stability field, for a gas composition comprised between 96% methane and 4% of ethane, propane and pure methane. Three hypotheses are developed to explain the nature of the multiple BSRs. They may refer to the base of hydrates of different gas composition, a remnant of an older BSR in the process of dispersion/dissociation or a diagenetically induced permeability barrier formed when the active BSR existed stably at that level for an extended period. The multiple BSRs have been interpreted as three events of steady state in the pressure and temperature conditions. They might be produced by climatic episodes since the last glaciation associated with tectonic activity, essentially tectonic subsidence, one of the main parameters that control the evolution of the Tumbes Basin.
Rutqvist, J.; Moridis, G.J.; Grover, T.; Collett, T.
2009-01-01
In this simulation study, we analyzed the geomechanical response during depressurization production from two known hydrate-bearing permafrost deposits: the Mallik (Northwest Territories, Canada) deposit and Mount Elbert (Alaska, USA) deposit. Gas was produced from these deposits at constant pressure using horizontal wells placed at the top of a hydrate layer (HL), located at a depth of about 900??m at the Mallik site and 600??m at the Mount Elbert site. The simulation results show that general thermodynamic and geomechanical responses are similar for the two sites, but with substantially higher production and more intensive geomechanical responses at the deeper Mallik deposit. The depressurization-induced dissociation begins at the well bore and then spreads laterally, mainly along the top of the HL. The depressurization results in an increased shear stress within the body of the receding hydrate and causes a vertical compaction of the reservoir. However, its effects are partially mitigated by the relatively stiff permafrost overburden, and compaction of the HL is limited to less than 0.4%. The increased shear stress may lead to shear failure in the hydrate-free zone bounded by the HL overburden and the downward-receding upper dissociation interface. This zone undergoes complete hydrate dissociation, and the cohesive strength of the sediment is low. We determined that the likelihood of shear failure depends on the initial stress state as well as on the geomechanical properties of the reservoir. The Poisson's ratio of the hydrate-bearing formation is a particularly important parameter that determines whether the evolution of the reservoir stresses will increase or decrease the likelihood of shear failure.
Mihailova, Gergana; Kocheva, Konstantina; Goltsev, Vasilij; Kalaji, Hazem M; Georgieva, Katya
2018-04-01
Haberlea rhodopensis is a chlorophyll-retaining resurrection plant, which can survive desiccation to air dry state under both low light and sunny environments. Maintaining the integrity of the membrane during dehydration of resurrection plants is extremely important. In the present study, the diffusion model was improved and used for a first time to evaluate the changes in ion leakage through different cellular compartments upon desiccation of H. rhodopensis and to clarify the reasons for significant increase of electrolyte leakage from dry leaves. The applied diffusion approach allowed us to distinguish the performance of plants subjected to dehydration and subsequent rehydration under different light intensities. Well-hydrated (control) shade plants had lower and slower electrolyte leakage compared to control sun plants as revealed by lower values of phase amplitudes, lower rate constants and ion concentration. In well-hydrated and moderately dehydrated plants (50% relative water content, RWC) ion efflux was mainly due to leakage from apoplast. The electrolyte leakage sharply increased in severely desiccated leaves (8% RWC) from both sun and shade plants mainly due to ion efflux from symplast. After 1 day of rehydration the electrolyte leakage was close to control values, indicating fast recovery of plants. We suggest that the enhanced leakage in air-dried leaves should not be considered as damage but rather as a survival mechanism based on a reversible modification in the structure of cell wall, plasma membrane and alterations in vacuolar system of the cells. However, further studies should be conducted to investigate the changes in cell wall/plasma membrane to support this conclusion. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Dynamics of lipid saccharide nanoparticles by quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Di Bari, M. T.; Gerelli, Y.; Sonvico, F.; Deriu, A.; Cavatorta, F.; Albanese, G.; Colombo, P.; Fernandez-Alonso, F.
2008-04-01
Nano- and microparticles composed of saccharide and lipid systems are extensively investigated for applications as highly biocompatible drug carriers. A detailed understanding of particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of a quasielastic neutron scattering (QENS) investigation on lecithin/chitosan nanoparticles prepared by autoassembling the two components in an aqueous solution. The measurements were performed at room temperature on lyophilized and H 2O hydrated nanoparticles ( h = 0.47 w H 2O/w hydrated sample). In the latter, hydration water is mostly enclosed inside the nanoparticles; its dynamics is similar to that of bulk water but with a significant decrease in diffusivity. The scattering from the nanoparticles can be described by a simple model of confined diffusion. In the lyophilized state only hydrogens belonging to the polar heads are seen as mobile within the experimental time-window. In the hydrated sample the diffusive dynamics involves also a significant part of the hydrogens in the lipid tails.
The crucial effect of early-stage gelation on the mechanical properties of cement hydrates
NASA Astrophysics Data System (ADS)
Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela
2016-07-01
Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.
The crucial effect of early-stage gelation on the mechanical properties of cement hydrates
Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela
2016-01-01
Gelation and densification of calcium–silicate–hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials. PMID:27417911
PERFORMANCE EVALUATION OF AN AIR COUPLED PHASED ARRAY RADAR FOR NEAR FIELD DETECTION OF STEEL
2015-04-24
sulfur dioxide reacts with the hydrated cement, the surface of the concrete starts to dissolve because it does not diffuse into concrete as quickly...Carbon dioxide begins to diffuse into the concrete and reacts with the hydrated cement to produce calcium carbonate. The presence of sulfur ...its design life. The health and state of the concrete roadways and bridge decks that commuters rely on a daily basis can be efficiently examined and
NASA Astrophysics Data System (ADS)
Fedyaeva, O. A.; Shubenkova, E. G.; Poshelyuzhnaya, E. G.; Lutaeva, I. A.
2016-08-01
The effect the degree of hydration has on optical and electrophysical properties of water/AOT/ n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.
Structure and physical stability of hydrates and thermotropic mesophase of calcium benzoate.
Terakita, Akira; Byrn, Stephen R
2006-05-01
The aim of this study is to investigate the hydration and the dehydration processes of calcium benzoate hydrates (trihydrate and monohydrate), thermotropic mesophases (dehydrated mesophase and lyophilized mesophase) and amorphous state, and the influence of their molecular order on those processes. X-ray analysis revealed that trihydrate has a planar structure composed of two types of planes-one from benzoic acid, water, and calcium ion and another from benzoic acid and water-and that both planes are linked by three water molecules. It was found that calcium benzoate was able to exist as thermotropic mesophases by dehydration of trihydrate and lyophilization. These mesophases were characterized by polarizing-light microscopy (PLM), X-ray powder diffraction (XRPD), differential thermal analysis (DTA), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Both mesophases prepared by two procedures showed some similar physical properties, but lyophilized mesophase seemed to have molecular structure with higher order than dehydrated mesophase. The mesophases exhibited different hydration behavior. The dehydrated mesophase showed a stepwise rehydration process where it became monohydrate first and then trihydrate. The lyophilized mesophase became trihydrate without appearance of monohydrate. An amorphous form could also be prepared and it rehydrated first to the monohydrate and then trihydrate. The results suggest that the more disordered dehydrated mesophase and amorphous state change to monohydrate whereas the more ordered lyophilized mesophase cannot change to monohydrate but only to trihydrate.
Dehydration of planetary ices at high pressure; the role of analogue materials (Invited)
NASA Astrophysics Data System (ADS)
Fortes, A. D.
2013-12-01
Many planet-forming compounds become unstable with respect to their components under conditions of high pressure. In the Earth, for example, Mg2SiO4 breaks down to MgSiO3 + MgO at ~ 25 GPa, a pressure corresponding to the 670 km seismic discontinuity, with significance for the dynamics of convective flow in the mantle. A similar phenomenon occurs with many hydrate compounds thought to be major ';rock forming minerals' inside outer Solar System bodies, undoubtedly with important consequences for the structure and dynamics of icy worlds. It is well known that clathrates tend to form denser polymorphs with an incrementally greater concentration of the guest molecule, exsolving high-pressure phases of water ice in the process, or else (in the case of CO2), break down to entirely to their component molecular solids. My own recent work using high-pressure neutron powder diffraction has explored not only the behaviour of methane clathrates but also the exsolution of water from ammonia dihydrate and monohydrate, both of which break down eventually to ammonia hemihydrate + ice. In some cases, understanding the sequence of changes in both crystal structure and composition at high pressure is challenging, particularly when the starting materials have a complex crystal structure. Some years ago, I identified a high-pressure phase boundary where MgSO4.11H2O (meridianiite) appeared to break down to another hydrate and high-pressure ice VI. However, the powder diffraction pattern of the hydrate formed under these conditions resembled nothing encountered previously in my high-pressure studies of the next lowest hydrate, MgSO4.7H2O (epsomite). This led me to search for hydration states between 7 and 11 which might have escaped detection over several centuries of study of simple divalent metal sulfates. A wide-ranging systematic study of M2+X6+O4.nH2O compounds at low temperatures uncovered two new hydrates, an 8-hydrate and a 9-hydrate, the former occurring only in NiSO4 solutions, and the latter being found in Ni-, Zn-, Cu-, and Fe-doped MgSO4 solutions. Indeed, I determined that small quantities of pure MgSO4.9H2O can co-crystallise at ambient pressure with meridianiite. However, these all appear to be metastable states, and further work was necessary to try and discover stable forms of these hydrates for further study. In experiments carried out earlier this year, evidence has emerged not only that MgMoO4 can form a (possibly) stable 8-hydrate but also that MgSeO4 can form a 9-hydrate that exists in equilibrium with liquid near the eutectic. These apparently esoteric compounds (from a planetary perspective) may yet hold the key to understanding the high-pressure behaviour of true planetary materials. Just as the search for analogue materials over many decades has substantially advanced our knowledge of Earth materials, similar analogue studies are poised to unlock the mysteries of these planetary ices.
Harvey, John C
2006-04-01
In this article, Harvey notes the initial confusion about the statement made by the pope concerning artificial nutrition and hydration on patients suffering persistent vegetative states (PVS) due to misunderstanding through the translation of the pope's words. He clarifies and assesses what was meant by the statement. He also discusses the problems of terminology concerned with the subject of PVS. Harvey concludes that the papal allocution was in line with traditional Catholic bioethics, and that while maintaining the life of a patient is favorable, in particular cases this presumption wanes when it is clear that this treatment modality would be futile or very burdensome.
NASA Astrophysics Data System (ADS)
Osegovic, J. P.; Max, M. D.
2012-12-01
Saturn's moon Enceladus appear to have liquid water under its thin icy surface that has venting water and complex hydrocarbons. Jupiter's moon Europa is locked under a very thick layer of surface ice. Because Saturn's moon Titan contains abundant hydrocarbon gasses and liquids and both Saturn and Jupiter contain abundant hydrocarbon gases, it is likely that Europa also may have significant quantities of hydrocarbon gases in their water-ice systems. Both of these moons have the potential for life. We have begun to explore the impact that gas hydrate, which is a crystalline material composed of water and gas molecules, has on the availability of liquid water on a planet's surface: what conditions need to be present to initiate hydrate formation from a primordial selection of gases, salts, and water, how isolated hydrate systems evolve under the condition of mass transfer from ex-hydrate stability conditions to pro-hydrate stability conditions, the timespan of conditions that hydrate formation can host liquid solutions in an otherwise cooling regime; and the impact that additional chemistry, such as primitive chemosynthesis, may have on the sequestered hydrocarbon gases in hydrate. The analog for gas hydrate on these moons is the Permafrost hydrate system of Earth. Gas hydrate and water ice are stable in a compound cryosphere with ice extending downward from cold surface conditions to about the 273 K isotherm. Hydrate, depending on the mixture of gases in it, is stable from some depth below the surface to some isotherm that could be considerably in excess of 273 K. Salinity may strongly affect stability conditions. In order to estimate the thickness of the gas hydrate stability zone and its effect on 'planetary' heat flow, we model heat production as a function of mass flow. Variables are gravity, ice thickness, temperature of the surrounding medium (space, ice, and water), the thickness of the "ocean", the and the thermophysical properties of the gas being transferred. The model is constrained by the molecular diffusion rate of gas approaching the hydrate phase boundary. The heat produced or consumed by the hydrate system will affect the ice system and phase boundary. Fick's law can be used to model steady state diffusion. Flux is related to the diffusivity of the component and as a function of concentration and the distance over which the reactions take place. Initial model calculations indicate that in some cases, methane (ΔH = -56 kJ/mol for small molecules (CH4, N2, CO2, H2S) may affect the water-ice energy balance sufficiently to contribute to the maintenance of a deep ocean below ice. The effect of the presence of higher density hydrocarbons (ΔH = -72 kJ/mol for ethane and -126 kJ/mol for propane) accentuate the thermal transfer effect but may diffuse too slowly to be a thermal forcing agent in the hydrate system.
Opdahl, Aric; Kim, Seong H; Koffas, Telly S; Marmo, Chris; Somorjai, Gabor A
2003-10-01
The surface mechanical properties of poly(hydroxyethyl)methacrylate (pHEMA)-based contact lenses were monitored as a function of humidity by atomic force microscopy (AFM). Surface viscoelastic and adhesion values were extracted from AFM force versus distance interaction curves and were found to be strongly dependent on the bulk water content of the lens and on the relative humidity. At low relative humidity, 40-50%, the dehydration rate from the surface is faster than the hydration rate from the bulk, leading to a rigid surface region that has mechanical properties similar to those measured on totally dehydrated lenses. At relative humidity values > 60%, the dehydration rate from the lens surface rapidly decreases, leading to higher surface water content and a softer surface region. The results indicate that, in an ocular environment, although the bulk of the pHEMA contact lens is hydrated, the surface region may be in a transition between a dehydrated glassy state and a hydrated rubbery state. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 350-356, 2003
Sarimov, R M; Matveyeva, T A; Binhi, V N
2018-05-11
Using an original laser interferometer of enhanced sensitivity, an increase in the refractive index of a protein solution was observed during the reaction of proteolysis catalyzed by pepsin. The increase in the refractive index of the protein solution at a concentration of 4 mg/ml was [Formula: see text] for bovine serum albumin and [Formula: see text] for lysozyme. The observed effect disproves the existing idea that the refractive index of protein solutions is determined only by their amino acid composition and concentration. It is shown that the refractive index also depends on the state of protein fragmentation. A mathematical model of proteolysis and a real-time method for estimating the state of protein hydration based on the measurement of refractive index during the reaction are proposed. A good agreement between the experimental and calculated time dependences of the refractive index shows that the growth of the surface of protein fragments and the change in the number of hydration cavities during proteolysis can be responsible for the observed effect.
Lau, Edmond Y.; Wong, Sergio E.; Baker, Sarah E.; Bearinger, Jane P.; Koziol, Lucas; Valdez, Carlos A.; Satcher, Joseph H.; Aines, Roger D.; Lightstone, Felice C.
2013-01-01
In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO2) to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn2+ or the Co2+ ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts. PMID:23840420
Lau, E. Y.; Wong, S. E.; Baker, S. E.; ...
2013-06-20
In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO 2) to bicarbonate under physiological conditions. Efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn 2+ or the Co 2+ ion and studied their reaction coordinate for CO 2 hydration. These calculations demonstrated that the ability of the complexmore » to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Moreover, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.« less
Describing excited state relaxation and localization in TiO 2 nanoparticles using TD-DFT
Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; ...
2014-02-26
We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to bemore » the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes’ shift.« less
Describing excited state relaxation and localization in TiO 2 nanoparticles using TD-DFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.
We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to bemore » the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes’ shift.« less
NASA Astrophysics Data System (ADS)
García-Salaberri, P. A.; Sánchez, D. G.; Boillat, P.; Vera, M.; Friedrich, K. A.
2017-08-01
Proper water management plays an essential role in the performance and durability of Polymer Electrolyte Fuel Cells (PEFCs), but it is challenged by the variety of water transport phenomena that take place in these devices. Previous experimental work has shown the existence of fluctuations between low and high current density levels in PEFCs operated with wet hydrogen and dry air feed. The alternation between both performance states is accompanied by strong changes in the high frequency resistance, suggesting a cyclic hydration and dehydration of the membrane. This peculiar scenario is examined here considering liquid water distributions from neutron imaging and predictions from a 3D two-phase non-isothermal model. The results show that the hydration-dehydration cycles are triggered by the periodic condensation and shedding of liquid water at the anode inlet. The input of liquid water humidifies the anode channel and offsets the membrane dry-out induced by the dry air stream, thus leading to the high-performance state. When liquid water is flushed out of the anode channel, the dehydration process takes over, and the cell comes back to the low-performance state. The predicted amplitude of the current oscillations grows with decreasing hydrogen and increasing air flow rates, in agreement with previous experimental data.
Controls on methane expulsion during melting of natural gas hydrate systems. Topic area 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flemings, Peter
1.1. Project Goal The project goal is to predict, given characteristic climate-induced temperature change scenarios, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the up dip limit of the stability zone on continental margins. The behavior shall be explored in response to two warming scenarios: longer term change due tomore » sea level rise (e.g. 20 thousand years) and shorter term due to atmospheric warming by anthropogenic forcing (decadal time scale). 1.2. Project Objectives During the first budget period, the objectives are to review and categorize the stability state of existing well-studied hydrate reservoirs, develop conceptual and numerical models of the melting process, and to design and conduct laboratory experiments that dissociate methane hydrate in a model sediment column by systematically controlling the temperature profile along the column. The final objective of the first budget period shall be to validate the models against the experiments. In the second budget period, the objectives are to develop a model of gas flow into sediment in which hydrate is thermodynamically stable, and conduct laboratory experiments of this process to validate the model. The developed models shall be used to quantify the rate and volume of gas that escapes from dissociating hydrate accumulations. In addition, specific scaled simulations characteristic of Arctic regions and regions near the stability limit at continental margins shall be performed. 1.3. Project Background and Rationale The central hypothesis proposed is that hydrate melting (dissociation) due to climate change generates free gas that can, under certain conditions, propagate through the gas hydrate stability zone and vent at the seafloor. Gas venting through the regional hydrate stability zone is accomplished by alteration of the regional equilibrium conditions (creation of three phase conditions) by increased salinity and heat due to hydrate formation, due to gas fracturing, or a combination of both. This research will explore the controls on whether methane reaches the seafloor (or atmosphere) as the original hydrate deposit dissociates and what the magnitude of these fluxes are. This hypothesis has significant implications for the forcings and feedbacks associated with climate change. It is described below the observations and models that have led to formulating this hypothesis.« less
Abramczyk, Halina; Brozek-Pluska, Beata; Krzesniak, Marta; Kopec, Monika; Morawiec-Sztandera, Alina
2014-08-14
Despite a large number of publications, the role of water in the cellular environment of biological tissue has not been clarified. Characterizing the biological interface is a key challenge in understanding the interactions of water in the tissue. Although we often assume that the properties of the bulk water can be translated to the crowded biological environment, this approach must be considerably revised when considering the biological interface. To our knowledge, few studies have directly monitored the interactions and accumulation of water in the restricted environments of the biological tissue upon realistic crowding conditions. The present study focuses on a molecular picture of water molecules at the biological interface, or specifically, water molecules adjacent to the hydrophobic and hydrophilic surfaces of normal and cancerous tissues. We recorded and analyzed the IR and Raman spectra of the νs(OH) stretching modes of water at the biological interfaces of the human breast and neck tissues. The results revealed dramatic changes in the water content in the tissue and are potentially relevant to both the fundamental problems of interfacial water modeling and the molecular diagnostics of cancer as a 'hydration fingerprint'. Herein, we will discuss the origin of the vibrational substructures observed for the νs(OH) stretching modes of water, showing that the interfacial water interacting via H-bond with other water molecules and biomolecules at the biological surface and free OH vibration of the dangling water are sensitive indicators of the pathology between the normal (noncancerous) and cancerous tissue and cancer types. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bauer, K.; Haberland, Ch.; Pratt, R. G.; Ryberg, T.; Weber, M. H.; Mallik Working Group
2003-04-01
We present crosswell seismic data from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. The crosswell seismic measurements were carried out by making use of two 1160 m deep observation wells (Mallik 3L-38 and 4L-38) both 45 m from and co-planar with the 1188 m deep production research well (5L-38). A high power piezo-ceramic source was used to generate sweeped signals with frequencies between 100 and 2000 Hz recorded with arrays of 8 hydrophones per depth level. A depth range between 800 and 1150 m was covered, with shot and receiver spacings of 0.75 m. High quality data could be collected during the survey which allow for application of a wide range of crosswell seismic methods. The initial data analysis included suppression of tube wave energy and picking of first arrivals. A damped least-squares algorithm was used to derive P-wave velocities from the travel time data. Next, t* values were derived from the decay of the amplitude spectra, which served as input parameters for a damped least-squares attenuation tomography. The initial results of the P-wave velocity and attenuation tomography reveal significant features reflecting the stratigraphic environment and allow for detection and eventually quantification of gas hydrate bearing sediments. A prominent correlation between P velocity and attenuation was found for the gas hydrate layers. This contradicts to the apparently more meaningful inverse correlation as it was determined for the gas hydrates at the Blake Ridge but supports the results from the Mallik 2L-38 sonic log data. The P velocities and attenuation values, if combined with other information can be important for the quantitative evaluation of the gas hydrate saturation, and may further constrain petrophysical models of the hydrate bearing sediment formation.
Undiscovered Arctic gas hydrates: permafrost relationship and resource evaluation.
NASA Astrophysics Data System (ADS)
Cherkashov, G. A.; Matveeva, T.
2011-12-01
Though ice-core studies show that multidecadal-scale methane variability is only weakly correlated with reconstructed temperature variations (Mitchell et al., 2010) methane emission to the atmosphere still consider as the most significant contributions to the global warming processes. Pockmarks, seeps, mud volcanoes and other features associated with methane fluxes from the seabed have been widely reported, particularly during the last three decades. On continental margins, seepage of hydrocarbon gases from shallow sedimentary layers is a common phenomenon, resulting either from in situ formation of gases (mainly methane) by bacterial decomposition of organic matter within rapidly accumulated upper sediments or from upward migration of gases formed at greater depths. Furthermore, processes associated with seabed fluid flow have been shown to affect benthic ecology and to supply methane to the hydrosphere and the atmosphere (Judd, 2003; Hovland and Judd, 2007). The most recent investigations testified that revaluation of the role of gas seeps and related gas hydrate formation processes in the Arctic environment is necessary for the understanding of global methane balance and global climate changes (Westbrook et al., 2009; Shahova and Semiletov, 2010). With respect to gas hydrate formation, due to the presence of relict permafrost the Arctic submarine environment holds a specific place that is distinct from the rest of the Ocean. Submarine gas hydrates in the Arctic may be confined to (1) relict permafrost occurrences on the shelf; (2) concentrated methane infiltration toward the seafloor (shallow-seated gas hydrates); (3) dissipated methane infiltration from great depths (deep-seated gas hydrates). Permafrost-related or cryogenic gas hydrates form due to exogenous cooling of sediment (intra- and sub-permafrost gas hydrates). It is also suggested that some parts of hydrates may be preserved owing to a self-preservation effect above the gas hydrate stability zone (GHSZ), which is shifted downwards due to permafrost degradation (Istomin et al., 2006; Dallimore and Collett, 1995). It is also believed that thermal conditions favourable to the formation of gas hydrates within permafrost have existed since the end of the Pliocene (about 1.88 Ma) (Collet and Dallimore, 2000). We estimate the total area of the distribution of GHSZ in the Arctic Ocean (including shelf areas, continental slope, and deep-sea troughs) to be as much as four million km2. Assuming the average gas amount per unit area in a separate gas hydrate accumulation to be 5x106 m3/km2 (Soloviev et al., 1999), it can be estimated that Arctic hydrates contain about 20 billion m3 of methane. The total area of GHSZ distribution within the Arctic seas off Russia is estimated to be about 1 million km2, with potential resources of gas in the hydrate state of about 2.36 billion m3. It should be noted, however, that field data are sparse and investigations are still producing surprising results, indicating that our understanding of gas hydrate formation and distribution within and out of sub-sea permafrost is incomplete. Estimates of the current and future release of methane from still undiscovered hydrates require particularly knowledge of the recent geological history of Polar Regions.
Direct characterization of hydrophobic hydration during cold and pressure denaturation.
Das, Payel; Matysiak, Silvina
2012-05-10
Cold and pressure denaturation are believed to have their molecular origin in hydrophobic interactions between nonpolar groups and water. However, the direct characterization of the temperature- and pressure-dependent variations of those interactions with atomistic simulations remains challenging. We investigated the role of solvent in the cold and pressure denaturation of a model hydrophobic 32-mer polymer by performing extensive coarse-grained molecular dynamics simulations including explicit solvation. Our simulations showed that the water-excluded folded state of this polymer is marginally stable and can be unfolded by heating or cooling, as well as by applying pressure, similar to globular proteins. We further detected essential population of a hairpin-like configuration prior to the collapse, which is consistently accompanied by a vapor bubble at the elbow of the kink. Increasing pressure suppresses formation of this vapor bubble by reducing water fluctuations in the hydration shell of the polymer, thus promoting unfolding. Further analysis revealed a slight reduction of water tetrahedrality in the polymer hydration shell compared to the bulk. Cold denaturation is driven by an enhanced tetrahedral ordering of hydration shell water than bulk water. At elevated pressures, the strikingly reduced fluctuations combined with the increase in interstitial water molecules in the polymer hydration shell contribute to weakening of hydrophobic interactions, thereby promoting pressure unfolding. These findings provide critical molecular insights into the changes in hydrophobic hydration during cold and pressure unfolding of a hydrophobic polymer, which is strongly related to the cold and pressure denaturation of globular proteins.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
Hydration status affects urea transport across rat urothelia.
Spector, David A; Deng, Jie; Stewart, Kerry J
2011-12-01
Although mammalian urinary tract epithelium (urothelium) is generally considered impermeable to water and solutes, recent data suggest that urine constituents may be reabsorbed during urinary tract transit and storage. To study water and solute transport across the urothelium in an in vivo rat model, we instilled urine (obtained during various rat hydration conditions) into isolated in situ rat bladders and, after a 1-h dwell, retrieved the urine and measured the differences in urine volume and concentration and total quantity of urine urea nitrogen and creatinine between instilled and retrieved urine in rat groups differing by hydration status. Although urine volume did not change >1.9% in any group, concentration (and quantity) of urine urea nitrogen in retrieved urine fell significantly (indicating reabsorption of urea across bladder urothelia), by a mean of 18% (489 mg/dl, from an instilled 2,658 mg/dl) in rats receiving ad libitum water and by a mean of 39% (2,544 mg/dl, from an instilled 6,204 mg/dl) in water-deprived rats, but did not change (an increase of 15 mg/dl, P = not significant, from an instilled 300 mg/dl) in a water-loaded rat group. Two separate factors affected urea nitrogen reabsorption rates, a urinary factor related to hydration status, likely the concentration of urea nitrogen in the instilled urine, and a bladder factor(s), also dependent on the animal's state of hydration. Urine creatinine was also absorbed during the bladder dwell, and hydration group effects on the concentration and quantity of creatinine reabsorbed were qualitatively similar to the hydration group effect on urea transport. These findings support the notion(s) that urinary constituents may undergo transport across urinary tract epithelia, that such transport may be physiologically regulated, and that urine is modified during transit and storage through the urinary tract.
Historical methane hydrate project review
Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta
2013-01-01
In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-‐lattice holds gas molecules in a cage-‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated effort, the U.S. Congress enacted Public Law 106-‐193, the Methane Hydrate Research and Development Act of 2000. This Act called for the Secretary of Energy to begin a methane hydrate research and development program in consultation with other U.S. federal agencies. At the same time a new methane hydrate research program had been launched in Japan by the Ministry of International Trade and Industry to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. Since this early start we have seen other countries including India, China, Canada, and the Republic of Korea establish large gas hydrate research and development programs. These national led efforts have also included the investment in a long list of important scientific research drilling expeditions and production test studies that have provided a wealth of information on the occurrence of methane hydrate in nature. The most notable expeditions and projects have including the following:-‐Ocean Drilling Program Leg 164 (1995)-‐Japan Nankai Trough Project (1999-‐2000)-‐Ocean Drilling Program Leg 204 (2004)-‐Japan Tokai-‐oki to Kumano-‐nada Project (2004)-‐Gulf of Mexico JIP Leg I (2005)-‐Integrated Ocean Drilling Program Expedition 311 (2005)-‐Malaysia Gumusut-‐Kakap Project (2006)-‐India NGHP Expedition 01 (2006)-‐China GMGS Expedition 01 (2007)-‐Republic of Korea UBGH Expedition 01 (2007)-‐Gulf of Mexico JIP Leg II (2009)-‐Republic of Korea UBGH Expedition 02 (2010)-‐MH-‐21 Nankai Trough Pre-‐Production Expedition (2012-‐2013)-‐Mallik Gas Hydrate Testing Projects (1998/2002/2007-‐2008)-‐Alaska Mount Elbert Stratigraphic Test Well (2007)-‐Alaska Iġnik Sikumi Methane Hydrate Production Test Well (2011-‐2012)Research coring and seismic programs carried out by the Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP), starting with the ODP Leg 164 drilling of the Blake Ridge in the Atlantic Ocean in 1995, have also contributed greatly to our understanding of the geologic controls on the formation, occurrence, and stability of gas hydrates in marine environments. For the most part methane hydrate research expeditions carried out by the ODP and IODP provided the foundation for our scientific understanding of gas hydrates. The methane hydrate research efforts under ODP-‐IODP have mostly dealt with the assessment of the geologic controls on the occurrence of gas hydrate, with a specific goal to study the role methane hydrates may play in the global carbon cycle.Over the last 10 years, national led methane hydrate research programs, along with industry interest have led to the development and execution of major methane hydrate production field test programs. Two of the most important production field testing programs have been conducted at the Mallik site in the Mackenzie River Delta of Canada and in the Eileen methane hydrate accumulation on the North Slope of Alaska. Most recently we have also seen the completion of the world’s first marine methane hydrate production test in the Nankai Trough in the offshore of Japan. Industry interest in gas hydrates has also included important projects that have dealt with the assessment of geologic hazards associated with the presence of hydrates.The scientific drilling and associated coring, logging, and borehole monitoring technologies developed in the long list of methane hydrate related field studies are one of the most important developments and contributions associated with methane hydrate research and development activities. Methane hydrate drilling has been conducted from advanced scientific drilling platforms like the JOIDES Resolution and the D/V Chikyu, which feature highly advanced integrated core laboratories and borehole logging capabilities. Hydrate research drilling has also included the use of a wide array of industry, geotechnical and multi-‐service ships. All of which have been effectively used to collect invaluable geologic and engineering data on the occurrence of methane hydrates throughout the world. Technologies designed specifically for the collection and analysis of undisturbed methane hydrate samples have included the development of a host of pressure core systems and associated specialty laboratory apparatus. The study and use of both wireline conveyed and logging-‐while-‐drilling technologies have also contributed greatly to our understanding of the in-‐situ nature of hydrate-‐bearing sediments. Recent developments in borehole instrumentation specifically designed to monitor changes associated with hydrates in nature through time or to evaluate the response of hydrate accumulations to production have also contributed greatly to our understanding of the complex nature and evolution of methane hydrate systems.Our understanding of how methane hydrates occur and behave in nature is still growing and evolving – we do not yet know if methane hydrates can be economically produced, nor do we know fully the role of hydrates as an agent of climate change or as a geologic hazard. But it is known for certain that scientific drilling has contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information to advance our understanding of methane hydrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, Marta
2014-01-31
In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling effortsmore » that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct graduate students (OSU and UW) as well as DOE staff from the NETL lab in Albany on the use of Crunch Flow for geochemical applications.« less
Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working
NASA Astrophysics Data System (ADS)
Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana
2017-11-01
Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.
Hydration measured by doubly labeled water in ALS and its effects on survival.
Scagnelli, Connor N; Howard, Diantha B; Bromberg, Mark B; Kasarskis, Edward J; Matthews, Dwight E; Mitsumoto, Hiroshi M; Simmons, Zachary; Tandan, Rup
2018-05-01
We present a study of hydration in ALS patients and its effects on survival. This was a multicenter study over 48 weeks in 80 ALS patients who underwent 250 individual measurements using doubly labeled water (DLW). Total body water (TBW) and water turnover (a surrogate for water intake) were 3.4% and 8.6% lower, respectively, in patients compared to age- and gender-matched healthy controls, and both significantly decreased over study duration. In 20% of patients, water turnover measured over 10 d was 2 standard deviations below the mean value in healthy controls. In a separate clinic cohort of 208 patients, water intake estimated from a de novo equation created from common clinical endpoints was a prognostic indicator of survival. Regardless of nutritional state assessed by BMI, survival was two-fold longer in the group above the median for estimated water intake, suggesting that hydration may be a more important predictor of survival than malnutrition. Risk factors for poor hydration were identified. Water intake equations recommended by US Centers for Medicare and Medicaid Services in healthy elderly were inaccurate for use in ALS patients. We developed equations to estimate TBW and water intake in ALS patients for use in clinics to accurately estimate hydration and improve clinical care.
The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.
Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos
2014-10-21
Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.
Radiation tolerance in the tardigrade Milnesium tardigradum.
Horikawa, Daiki D; Sakashita, Tetsuya; Katagiri, Chihiro; Watanabe, Masahiko; Kikawada, Takahiro; Nakahara, Yuichi; Hamada, Nobuyuki; Wada, Seiichi; Funayama, Tomoo; Higashi, Seigo; Kobayashi, Yasuhiko; Okuda, Takashi; Kuwabara, Mikinori
2006-12-01
Tardigrades are known to survive high doses of ionizing radiation. However, there have been no reports about radiation effects in tardigrades under culture conditions. In this study, we investigated tolerance of the tardigrade, Milnesium tardigradum, against gamma-rays and heavy ions by determining short-term or long-term survival, and reproductive ability after irradiation. Hydrated and anhydrobiotic animals were exposed to gamma-rays (1000 - 7000 Gy) or heavy ions (1000 - 8000 Gy) to evaluate short-term survival at 2, 24 and 48 h post-irradiation. Long-term survival and reproduction were observed up to 31 days after irradiation with gamma-rays (1000 - 4000 Gy). At 48 h after irradiation, median lethal doses were 5000 Gy (gamma-rays) and 6200 Gy (heavy ions) in hydrated animals, and 4400 Gy (gamma-rays) and 5200 Gy (heavy ions) in anhydrobiotic ones. Gamma-irradiation shortened average life span in a dose-dependent manner both in hydrated and anhydrobiotic groups. No irradiated animals laid eggs with one exception in which a hydrated animal irradiated with 2000 Gy of gamma-rays laid 3 eggs, and those eggs failed to hatch, whereas eggs produced by non-irradiated animals hatched successfully. M. tardigradum survives high doses of ionizing radiation in both hydrated and anhydrobiotic states, but irradiation with >1000 Gy makes them sterile.
In silico studies of the properties of water hydrating a small protein
NASA Astrophysics Data System (ADS)
Sinha, Sudipta Kumar; Jana, Madhurima; Chakraborty, Kausik; Bandyopadhyay, Sanjoy
2014-12-01
Atomistic molecular dynamics simulation of an aqueous solution of the small protein HP-36 has been carried out with explicit solvent at room temperature. Efforts have been made to explore the influence of the protein on the relative packing and ordering of water molecules around its secondary structures, namely, three α-helices. The calculations reveal that the inhomogeneous water ordering and density distributions around the helices are correlated with their relative hydrophobicity. Importantly, we have identified the existence of a narrow relatively dehydrated region containing randomly organized "quasi-free" water molecules beyond the first layer of "bound" waters at the protein surface. These water molecules with relatively weaker binding energies form the transition state separating the "bound" and "free" water molecules at the interface. Further, increased contribution of solid-like caging motions of water molecules around the protein is found to be responsible for reduced fluidity of the hydration layer. Interestingly, we notice that the hydration layer of helix-3 is more fluidic with relatively higher entropy as compared to the hydration layers of the other two helical segments. Such characteristics of helix-3 hydration layer correlate well with the activity of HP-36, as helix-3 contains the active site of the protein.
Recent changes to the Gulf Stream causing widespread gas hydrate destabilization.
Phrampus, Benjamin J; Hornbach, Matthew J
2012-10-25
The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its impact on climate--remains uncertain.
Effect of Hydration and Confinement on Micro-Structure of Calcium-Silicate-Hydrate Gels
NASA Astrophysics Data System (ADS)
Gadde, Harish Kumar
Calcium-silicate-hydrate(C-S-H) gel is a primary nano-crystalline phase present in hydrated Ordinary Portland Cement (OPC) responsible for its strength and creep behavior. Our reliance on cement for infrastructure is global, and there is a need to improve infrastructure life-times. A way forward is to engineer the cement with more durability and long-term strength. The main purpose of this research is to quantify the micro-structure of C-S-H to see if cement can be engineered at various length scales to improve long-term behavior by spatial arrangement. We investigate the micro-structure evolution of C-S-H in cement as a function of hydration time and confinement. Scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to quantify the material and spatial properties of C-S-H as a function of hydration time. The data obtained from these experiments was used to identify C-S-H phases in cement sample. Pair Distribution Function (PDF) analysis of HD C-S-H phase with different hydration times was done at Advanced Photon Source, Argonne National Laboratory, beamline 11-ID-B. Only nonlinear trends in the atomic ordering of C-S-H gel as a function of hydration time were observed. Solid state 29Si Nuclear Magnetic Resonance (NMR) was used to quantify the effect of confinement on two types of C-S-H: white cement C-S-H and synthetic C-S-H. NMR spectra revealed that there is no significant difference in the structure of C-S-H due to confinement when compared with unconfined C-S-H. It is also found that there is significant difference in the Si environments of these two types of C-S-H. Though it does seem possible to engineer the cement on atomic scales, all these studies reveal that engineering cement on such a scale requires a more statistically accurate understanding of intricate structure of C-S-H than is currently available.
Schrader, Alex M.; Donaldson, Stephen H.; Song, Jinsuk; Cheng, Chi-Yuan; Lee, Dong Woog; Han, Songi; Israelachvili, Jacob N.
2015-01-01
Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO–lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO–water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems. PMID:26261313
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenné, T.; Kent, B.; Koster, K.L.
Small angle X-ray scattering is used to study the effects of sugars on membranes during dehydration. Previous work has shown that the bilayer and chain-chain repeat spacings of DPPC bilayers are relatively unaffected by the presence of sugars. In this work we present a preliminary analysis of the electron density profiles of DPPC in the presence of sugars at low hydration. The difficulties of determining the correct phasing are discussed. Sugars and other small solutes have been shown to have an important role in improving the tolerance of a range of species to desiccation and freezing. In particular it hasmore » been shown that sugars can stabilize membranes in the fluid membrane phase during dehydration, and in the fully dehydrated state. Equivalently, at a particular hydration, the presence of sugars lowers the transition temperature between the fluid and gel phases. There are two competing models for explaining the effects of sugars on membrane phase transition temperatures. One, designated the water replacement hypothesis (WRH) states that sugars hydrogen bond to phospholipid headgroups, thus hindering the fluid-gel phase transition. One version of this model suggests that certain sugars (such as trehalose) achieve the measured effects by inserting between the phospholipid head groups. An alternative model explains the observed effects of sugars in terms of the sugars effect on the hydration repulsion that develops between opposing membranes during dehydration. The hydration repulsion leads to a lateral compressive stress in the bilayer which squeezes adjacent lipids more closely together, resulting in a transition to the gel phase. When sugars are present, their osmotic and volumetric effects reduce the hydration repulsion, reduce the compressive stress in the membranes, and therefore tend to maintain the average lateral separation between lipids. This model is called the hydration forces explanation (HFE). We recently showed that neither mono- nor di-saccharides affect the average distance between lipid chains in the bilayer, supporting the predictions of the HFE. In this paper we further investigate the effects of sugars on membrane structure by conducting electron density analysis of recent data. This preliminary analysis sheds additional light onto the effects of sugars on membrane structure.« less
Effects of exercise in the heat on thermoregulation of Japanese and Malaysian males.
Saat, Mohamed; Tochihara, Yutaka; Hashiguchi, Nobuko; Sirisinghe, Roland Gamini; Fujita, Mizuho; Chou, Chin Mei
2005-07-01
The effect of low-intensity exercise in the heat on thermoregulation and certain biochemical changes in temperate and tropical subjects under poorly and well-hydrated states was examined. Two VO2max matched groups of subjects consisting of 8 Japanese (JS) and 8 Malaysians (MS) participated in this study under two conditions: poorly-hydrated (no water was given) and well-hydrated (3 mL x Kg(-1) body weight of water was provided at onset of exercise, and the 15th, 35th and 55th min of exercise). The experimental room in both countries was adjusted to a constant level (Ta: 31.6+/-0.03 degrees C, rh: 72.3+/-0.13%). Subjects spent an initial 10 min rest, 60 min of cycling at 40% VO2max and then 40 min recovery in the experimental room. Rectal temperatures (Tre) skin temperatures (Tsk), heart rate (HR), heat-activated sweat glands density (HASG), local sweat rate (M sw-back) and percent dehydration were recorded during the test. Blood samples were analysed for plasma glucose and lactate levels.The extent of dehydration was significantly higher in the combined groups of JS (1.43+/-0.08%) compared to MS (1.15+/-0.05%). During exercise M sw-back was significantly higher in JS compared to MS in the well-hydrated condition. The HASG was significantly more in JS compared to MS at rest and recovery. Tre was higher in MS during the test. Tsk was significantly higher starting at the 5th min of exercise until the end of the recovery period in MS compared to JS. In conclusion, tropical natives have lower M sw-back associated with higher Tsk and Tre during the rest, exercise and recovery periods. However, temperate natives have higher M sw-back and lower Tsk and Tre during experiments in a hot environment. This phenomenon occurs in both poorly-hydrated and well-hydrated states with low intensity exercise. The differences in M sw-back, Tsk and Tre are probably due to a setting of the core temperature at a higher level and enhancement of dry heat loss, which occurred during passive heat exposure.
Tonelli, M; Martini, F; Calucci, L; Fratini, E; Geppi, M; Ridi, F; Borsacchi, S; Baglioni, P
2016-02-28
Magnesium-based cement is one of the most interesting eco-sustainable alternatives to standard cementitious binders. The reasons for the interest towards this material are twofold: (i) its production process, using magnesium silicates, brine or seawater, dramatically reduces CO2 emissions with respect to Portland cement production, and (ii) it is very well suited to applications in radioactive waste encapsulation. In spite of its potential, assessment of the structural properties of its binder phase (magnesium silicate hydrate or M-S-H) is far from complete, especially because of its amorphous character. In this work, a comprehensive structural characterization of M-S-H was obtained using a multi-technique approach, including a detailed solid-state NMR investigation and, in particular, for the first time, quantitative (29)Si solid-state NMR data. M-S-H was prepared through room-temperature hydration of highly reactive MgO and silica fume and was monitored for 28 days. The results clearly evidenced the presence in M-S-H of "chrysotile-like" and "talc-like" sub-nanometric domains, which are approximately in a 1 : 1 molar ratio after long-time hydration. Both these kinds of domains have a high degree of condensation, corresponding to the presence of a small amount of silanols in the tetrahedral sheets. The decisive improvement obtained in the knowledge of M-S-H structure paves the way for tailoring the macroscopic properties of eco-sustainable cements by means of a bottom-up approach.
Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.
Sepehr, Fatemeh; Paddison, Stephen J
2015-06-04
Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.
NASA Astrophysics Data System (ADS)
Zhu, F.; Kotanko, P.; Handelman, G. J.; Raimann, J.; Liu, L.; Carter, M.; Kuhlmann, M. K.; Siebert, E.; Leonard, E. F.; Levin, N. W.
2010-04-01
Prescription of an appropriate post hemodialysis (HD) dialysis target weight requires accurate evaluation of the degree of hydration. The aim of this study was to investigate whether a state of normal hydration as defined by calf bioimpedance spectroscopy (cBIS) could be characterized in HD and normal subjects (NS). cBIS was performed in 62 NS (33 m/29 f) and 30 HD patients (16 m /14 f) pre- and post-dialysis to measure extracellular resistance. Normalized calf resistivity at 5 kHz (ρN,5) was defined as resistivity divided by body mass index. Measurements were made at baseline (BL) and at a state of normal hydration (NH) established following the progressive reduction of post-HD weight over successive dialysis treatments until the ρN,5 was in the range of NS. Blood pressures were measured pre- and post-HD treatment. ρN,5 in males and females differed significantly in NS (20.5±1.99 vs 21.7±2.6 10-2 Ωm3/kg, p>0.05). In patients, ρN,5 notably increased and reached NH range due to progressive decrease in body weight, and systolic blood pressure (SBP) significantly decreased pre- and post-HD between BL and NBH respectively. This establishes the use of ρN,5 as a new comparator allowing the clinician to incrementally monitor the effect of removal of extracellular fluid from patients over a course of dialysis treatments.
Surface Relaxation in Protein Crystals
NASA Technical Reports Server (NTRS)
Boutet, S.; Robinson, I. K.; Hu, Z. W.; Thomas, B. R.; Chernov, A. A.
2002-01-01
Surface X-ray diffraction measurements were performed on (111) growth faces of crystals of the Cellular iron-storage protein horse spleen ferritin. Crystal Trunkation Rods (CTR) were measured. A fit of the measured profile of the CTR revealed a surface roughness of 48 +/- 4.5 A and a top layer spacing contraction of 3.9 +/- 1.5%. In addition to the peak from the CTR, the rocking curves of the crystals displayed unexpected extra peaks. Multiple-scattering is demonstrated to account for them. Future applications of the method could allow the exploration of hydration effects on the growth of protein crystals.
The Effect of Compaction Force on the Transition to Hydrate of Anhydrous Aripiprazole.
Togo, Taichiro; Taniguchi, Toshiya; Nakata, Yoshitaka
2018-01-01
Aripiprazole (APZ) is used to treat schizophrenia and is administered as a tablet containing the anhydrous form of APZ. In this study, the effect of compaction force on the crystal form transition was investigated. The crystalline state was observed by X-ray diffraction (XRD). APZ Anhydrous Form II was compacted into tablets. The XRD intensity of anhydrous APZ became lower with higher compressive force. The degree of crystallinity decreased with the compaction force. The powder and the compacted tablets of anhydrous APZ were stored for one week under 60°C and 75% relative humidity. The powder showed no crystal form transition after storage. For the tablets, however, XRD peaks of APZ hydrate were observed after storage. The tablets compacted with higher force showed the higher XRD diffraction intensity of hydrate form. We concluded that the crystallinity reduction of APZ Anhydrous Form II by compaction caused and accelerated the transition to hydrate under high temperature and humidity conditions. In order to manufacture crystallographically stable tablets containing anhydrous APZ, it is important to prevent this crystallinity reduction during compaction.
The effect of temperature and moisture on the amorphous-to-crystalline transformation of stavudine.
Strydom, Schalk; Liebenberg, Wilna; Yu, Lian; de Villiers, Melgardt
2009-09-08
Stavudine is a nucleoside reverse transcriptase inhibitor active against HIV, and is known to exist in two polymorphic forms designated as forms I and II, and a hydrate form III. An amorphous solid of stavudine was successfully prepared and characterized during this investigation. A comprehensive evaluation of the stability of this amorphous solid showed that the amorphous solid transforms to either form II (anhydrous) or form III (hydrate) when exposed to temperature, in the absence or presence of moisture, respectively. The amorphous-to-hydrate transformation occurred at relatively low RH (>32%) and led to the formation of crystal aggregates of the hydrated form. Steady state growth rate analyses also showed that the amorphous-to-crystalline transformation occurs at a greater rate in the presence of moisture, compared to the transformation at the same temperature in a dry environment. Crystal growth studies showed that it is possible to stabilize the amorphous solid of stavudine against crystal transformations in the absence of moisture by coating it with poly(methyl methacrylate). However, this polymer coating could not prevent crystal growth from the amorphous solid during exposure to moisture.
The Exchange Reaction Between Methane Hydrate and Carbon Dioxide: An Oceanic Feasibility Test
NASA Astrophysics Data System (ADS)
Dunk, R. M.; Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Hester, K. C.; Sloan, E. D.
2006-12-01
The conversion of CH4 hydrate to CO2 hydrate offers, in principle, a way of sequestering CO2, with the additional recovery of CH4 gas as an energy source. We report results from the first in-situ oceanic experiment on this reaction, carried out in August 2006 at the massive thermogenic hydrate mounds in 850 m water depth, Barkley Canyon, offshore from Vancouver Island (48° 18.642' N, 126° 3.903' W), using MBARI's ROV Tiburon deployed from the R/V Western Flyer. Two small cores (10 cm length, 4 cm diameter) of white hydrate were collected from exposed outcrops using an ROV operated tool and hydraulically ejected into a glass walled, closed top, reaction chamber. Approximately 2 L of liquid CO2 were dispensed into the chamber, and the chamber transferred to an aluminium base plate to seal the system. Under ambient conditions (P = 870 dbar, T = 4.0 °C, S = 34.2), the densities of natural gas hydrate and liquid CO2 are closely matched and less than that of seawater, where the hydrate cores floated at the top of the chamber fully immersed within the buoyant liquid CO2. Over the following ~48 hours, the system was inspected periodically with the ROV HDTV camera prior to examination with the sea-going laser Raman spectrometer, DORISS II. For this, the chamber was transferred to a Precision Underwater Positioner (PUP) that enabled focusing of the laser beam with sub- mm precision. Our choice of where to focus the laser was based upon the need to explore all phases the cored natural gas hydrate, liquid CO2, any created CO2 hydrate, and any liberated CH4 gas. The natural gas hydrate was composed primarily of CH4, with minor amounts of C2H6 and C3H8, indicating the presence of Structure II hydrate. To date, laboratory experiments have focused on the reaction between pure Structure I CH4 hydrate and CO2 vapour, where the difference in free energy between the CH4 and CO2 hydrate states provides a thermodynamic argument in favour of conversion. However for a Structure II hydrate with a complex guest gas composition immersed in liquid CO2 there are multiple pathways for the reaction to proceed. If the hydrate cage occupancy is 100% then we suspect on thermodynamic grounds that the reaction may proceed slowly; nevertheless if cage occupancy is <100%, and/or a mixture of Structure I and II is present, then substitution could occur rapidly. In addition, dissolution of the natural gas hydrate in the unsaturated liquid CO2 will liberate water molecules that are then available to form CO2 hydrate. Obviously, grain size and porosity (surface area) will have profound effects on reaction rate and extent. We also note that the solubility of CH4 in CO2 is significant, and we may not expect liberation of a free CH4 gas phase until the saturation condition has been met. Given the complexity of this system, the only way to know what will occur is to do the experiment. Indeed, spectra were obtained of a commingled CO2 and CH4 hydrate. The CO2 fermi-diad peaks in the hydrate phase are distinguishable from the liquid, and are shifted to lower wavenumbers by ~~3 cm-1. We also observed the presence of dissolved CH4 within the liquid CO2, and free CH4 gas in a small but visually identifiable bubble layer at the top of the chamber. The initial success of this pilot study bodes well for future investigations both in the laboratory and in ROV based experiments.
Sections | Alaska Division of Geological & Geophysical Surveys
State Employees DGGS State of Alaska search Department of Natural Resources, Division of Geological & Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP
Hard X-ray Ptychography: Making It Cool, Colorful and Fast
NASA Astrophysics Data System (ADS)
Deng, Junjing
Ptychography is a recently developed coherent imaging technique for extended objects, with a resolution not limited by the lens. Because X-rays have short wavelengths and high penetration ability, X-ray ptychography provides a powerful and unique tool for studying thick samples at high spatial resolution. We have advanced X-ray ptychography by making it cool, colorful, and fast. We make it cool by carrying out ptychography experiments at cryogenic conditions to image frozen-hydrated specimens. This largely removes the limitations of radiation damage on the achievable resolution, and allows one to obtain excellent preservation of structure and chemistry in biological specimens. We make it colorful by combining it with X-ray fluorescence measurements of chemical element distributions. In studies of biological specimens, this means that ptychography can reveal cellular ultrastructure at high contrast and at a resolution well beyond that of X-ray focusing optics, while X-ray fluorescence is used to simultaneously image the distribution of trace elements in cells (such as metals that play key roles in cell functions and which can be used in various disease therapeutic agents). Because X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular materials, this combined approach provides the unique tool to obtain simultaneous views of ultrastructure and elemental compositions of specimens. We make it fast by using continuous-scan (or "fly-scan") methods. Conventional ptychography is implemented in a move-settle-measure approach, which is slow due to the positioning overheads. To overcome this bottleneck, we have developed fly-scan ptychography that is able to speed up the data collection, and real time on-site data analysis can be achieved by using a parallelized reconstruction code. With these advances, we conducted combined cryo X-ray ptychography and fluorescence imaging at 5.2 keV in a more practical way using fly scan, well-preserved cryogenic samples and rapid reconstructions, and obtained images of a whole frozen-hydrated eukaryotic cell at 18 nm resolution which we believe to be the highest spatial resolution obtained in X-ray imaging of frozen-hydrated biological samples to date. After a successful demonstration of fly-scan 3D ptychography on a gold test sample, we also obtained fly-scan 3D ptychography and fluorescence data on frozen-hydrated cells with an imaging speedup of factor more than 7. Finally, we applied fly-scan X-ray ptychography on un-thinned integrated circuits (ICs) using 10 keV X-rays, and were able to see the circuit details within the thick IC chips with a high resolution of 11.6 nm. All of these achievements point the way toward high-speed X-ray imaging without lens-imposed resolution limit.
NASA Astrophysics Data System (ADS)
Kiselev, M. A.; Zemlyanaya, E. V.; Ryabova, N. Y.; Hauss, T.; Almasy, L.; Funari, S. S.; Zbytovska, J.; Lombardo, D.
2014-07-01
Small angle neutron scattering (SANS), neutron diffraction and X-ray powder diffraction were used to investigate influence of N-stearoyl phytosphingosine (CER[NP]) and α-hydroxy- N-stearoyl phytosphingosine (CER[AP]) on the internal structure and hydration of DMPC membrane in fully and partly hydrated states at T = 30 °C. Application of Fourier analysis for diffraction data and model calculations for the SANS data evidence that addition of both CER[NP] and CER[AP] in small concentrations promotes significant changes in the organization of DMPC bilayers, such as the increase of the hydrophobic core region. SANS data evidence a decrease in the average radius and polydispersity of the vesicles that can be ascribed to hydrogen bonds interactions that favor tight lipid packing with a compact, more rigid character.
NASA Astrophysics Data System (ADS)
Nishida, Takamasa; Eda, Kazuo
2018-02-01
Hydrothermal syntheses of alkali-metal blue molybdenum bronze nanoribbons, which are expected to exhibit unique properties induced by a combined effect of extrinsic and intrinsic low-dimensionalities, from hydrated-alkali-metal molybdenum bronzes were investigated. Nanoribbons grown along the quasi-one-dimensional (1D) conductive direction of Cs0.3MoO3, which is difficult to prepare by the conventional methods, were first synthesized. The nanomorphology formation is achieved by a solid-state conversion (or crystallite splitting) and subsequent crystallite growth, and the structural changes of the starting material related to the conversion were first observed by powder X-ray diffraction and scanning transmission electron microscopy as a result of finely tuned reaction system and preparation conditions. The structural changes were analyzed by model simulations and were attributed to the structural modulations that were concerned with the intralayer packing disorder and with two-dimensional long-range ordered structure, formed in MoO3 sheets of the hydrated molybdenum bronze. Moreover, the modulations were related to displacement defects of the Mo-O framework units generated along the [100] direction in the hydrated molybdenum bronze. Then, it was suggested that the solid-state conversion into blue molybdenum bronze and the crystallite splitting to nanomorphology were initiated by the breaking of the Mo-O-Mo bonds at the defects. [Figure not available: see fulltext.
Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo
2015-01-01
Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.
NASA Astrophysics Data System (ADS)
Małolepsza, Edyta; Kim, Jaegil; Keyes, Tom
2015-05-01
Metastable β ice holds small guest molecules in stable gas hydrates, so its solid-liquid equilibrium is of interest. However, aqueous crystal-liquid transitions are very difficult to simulate. A new molecular dynamics algorithm generates trajectories in a generalized N P T ensemble and equilibrates states of coexisting phases with a selectable enthalpy. With replicas spanning the range between β ice and liquid water, we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.
Clathrate hydrate formation in amorphous cometary ice analogs in vacuo
NASA Technical Reports Server (NTRS)
Blake, David; Allamandola, Louis; Sandford, Scott; Hudgins, Doug; Freund, Friedemann
1991-01-01
Experiments conducted in clathrate hydrates with a modified electron microscope have demonstrated the possibility of such compounds' formation during the warming of vapor-deposited amorphous ices in vacuo, through rearrangements in the solid state. Subsolidus crystallization of compositionally complex amorphous ices may therefore be a general and ubiquitous process. Phase separations and microporous textures thus formed may be able to account for such anomalous cometary phenomena as the release of gas at large radial distances from the sun and the retention of volatiles to elevated temperatures.
Malolepsza, Edyta; Kim, Jaegil; Keyes, Tom
2015-04-28
Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. Furthermore, with replicas spanning the range between β ice and liquid water we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.
Hedley, Pete; Cock, Peter J.A.; Morris, Jenny A.; Jones, John T.; Blok, Vivian C.
2016-01-01
Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules). PMID:26870612
Palomares-Rius, Juan Emilio; Hedley, Pete; Cock, Peter J A; Morris, Jenny A; Jones, John T; Blok, Vivian C
2016-01-01
Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).
Liu, Fangwei; Liu, Jianbo
2015-06-25
We report an in-depth study on the gas-phase reactions of singlet O2[a(1)Δg] with methionine (Met) at different ionization and hydration states (including deprotonated [Met - H](-), hydrated deprotonated [Met - H](-)(H2O)1,2, and hydrated protonated MetH(+)(H2O)1,2), using guided-ion-beam scattering mass spectrometry. The measurements include the effects of collision energy (Ecol) on reaction cross sections over a center-of-mass Ecol range from 0.05 to 1.0 eV. The aim of this study is to probe the influences of Met ionization and hydration on its oxidation mechanism and dynamics. Density functional theory calculations, Rice-Ramsperger-Kassel-Marcus modeling, and quasi-classical, direct dynamics trajectory simulations were performed to examine the properties of various complexes and transition states that might be important along reaction coordinates, probe reaction potential energy surfaces, and to establish the atomic-level mechanism for the Met oxidation process. No oxidation products were observed for the reaction of [Met - H](-) with (1)O2 due to the high-energy barriers located in the product channels for this system. However, this nonreactive property was altered by the microsolvation of [Met - H](-); as a result, hydroperoxides were captured as the oxidation products for [Met - H](-)(H2O)1,2 + (1)O2. For the reaction of MetH(+)(H2O)1,2 + (1)O2, besides formation of hydroperoxides, an H2O2 elimination channel was observed. The latter channel is similar to what was found in the reaction of dehydrated MetH(+) with (1)O2 (J. Phys. Chem. B 2011, 115, 2671). The reactions of hydrated protonated and deprotonated Met are all inhibited by Ecol, becoming negligible at Ecol ≥ 0.5 eV. The kinetic and dynamical consequences of microsolvation on Met oxidation and their biological implications are discussed.
Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advanced Light Source; Schwartz, Craig P.; Uejio, Janel S.
Near edge x-ray absorption fine structure (NEXAFS) spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffectedmore » by both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.« less
Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.
Near edge x-ray absorption fine structure spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffected bymore » both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.« less
NASA Astrophysics Data System (ADS)
Zimakova, G. A.; Solonina, V. A.; Zelig, M. P.
2017-01-01
The article describes the experimental research of cement stone. Cement stone forming involves highly dispersive mineral additive - ground ash. It is stated that the substitution of some part of cement with activated ash leaves cement strength high. This is possible due to the activity of ash in structure forming processes. Activation of ash provides the increase in its puzzolanic activity, complete hydration processes. it is stated that ash grinding leads to a selective crystallization hydrated neoformations. Their morthology is different on outer and inner surfaces of ash spheres. The usage of ash can provide cement economy on condition that rheological characteristics of concrete stay constant. Besides, the usage of ash will improve physical and mechanic characteristics of cement stone and concrete.
Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M
2016-04-01
The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries. Copyright © 2016 Elsevier Inc. All rights reserved.
Tannier, C; Crozier, S; Zuber, M; Constantinides, Y; Delezie, E; Gisquet, E; Grignoli, N; Lamy, C; Louvet, F; Pinel, J-F
2015-02-01
In the majority of cases, severe stroke is accompanied by difficulty in swallowing and an altered state of consciousness requiring artificial nutrition and hydration. Because of their artificial nature, nutrition and hydration are considered by law as treatment rather basic care. Withdrawal of these treatments is dictated by the refusal of unreasonable obstinacy enshrined in law and is justified by the risk of severe disability and very poor quality of life. It is usually the last among other withholding and withdrawal decisions which have already been made during the long course of the disease. Reaching a collegial consensus on a controversial decision such as artificial nutrition and hydration withdrawal is a difficult and complex process. The reluctance for such decisions is mainly due to the symbolic value of food and hydration, to the fear of "dying badly" while suffering from hunger and thirst, and to the difficult distinction between this medical act and euthanasia. The only way to overcome such reluctance is to ensure flawless accompaniment, associating sedation and appropriate comfort care with a clear explanation (with relatives but also caregivers) of the rationale and implications of this type of decision. All teams dealing with this type of situation must have thoroughly thought through the medical, legal and ethical considerations involved in making this difficult decision. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Physical and chemical characteristics of mucin secreted by pseudomyxoma peritonei (PMP)
Pillai, Krishna; Akhter, Javed; Mekkawy, Ahmed; Chua, Terence C; Morris, David L
2017-01-01
Background: Pseudomyxoma peritonei (PMP) is a rare disease with excess intraperitoneal mucin secretion. Treatment involves laparotomy, cytoreduction and chemotherapy that is very invasive with patients often acquiring numerous compromises. Hence a mucolytic comprising of bromelain and N-acetyl cystein has been developed to solubilise mucin in situ for removal by catherization. Owing to differences in mucin appearance and hardness, dissolution varies. Therefore the current study investigates the inter-mucin physical and chemical characteristics, in order to reformulate an effective mucolytic for all mucin. Method: PMP mucin, from the three categories (soft, semi hard and hard mucin) was solubilised and then various physical characteristics such as turbidity, density, kinematic viscosity were measured. The water content and the density of solid mucin were also determined. This was followed by the determination of sialic acid, glucose, lipid, Thiol (S-S and S-H) content of the samples. Lastly, the distribution of MUC2, MUC5B and MUC5AC was determined using western blot technique. Results: Both turbidity and kinematic viscosity and sialic acid content increased linearly as the hardness of mucin increased. However, density, hydration, protein, glucose, lipid and sulfhydryl and disulphide content decreased linearly as hardness of mucin increased. The distribution ratio of mucins (MUC2:MUC5B:MUC5AC) in soft mucin is 2.25:1.5:1.0, semi hard mucin is 1:1:1 and hard mucin is 3:2:1. Conclusion: The difference in texture and hardness of mucin may be due to cellular content, hydration, glucose, protein, lipids, thiol and MUC distribution. Soft mucin is solely made of glycoprotein whilst the others contained cellular materials. PMID:28138305
Lerch, Michael T.; López, Carlos J.; Yang, Zhongyu; Kreitman, Margaux J.; Horwitz, Joseph; Hubbell, Wayne L.
2015-01-01
Application of hydrostatic pressure shifts protein conformational equilibria in a direction to reduce the volume of the system. A current view is that the volume reduction is dominated by elimination of voids or cavities in the protein interior via cavity hydration, although an alternative mechanism wherein cavities are filled with protein side chains resulting from a structure relaxation has been suggested [López CJ, Yang Z, Altenbach C, Hubbell WL (2013) Proc Natl Acad Sci USA 110(46):E4306–E4315]. In the present study, mechanisms for elimination of cavities under high pressure are investigated in the L99A cavity mutant of T4 lysozyme and derivatives thereof using site-directed spin labeling, pressure-resolved double electron–electron resonance, and high-pressure circular dichroism spectroscopy. In the L99A mutant, the ground state is in equilibrium with an excited state of only ∼3% of the population in which the cavity is filled by a protein side chain [Bouvignies et al. (2011) Nature 477(7362):111–114]. The results of the present study show that in L99A the native ground state is the dominant conformation to pressures of 3 kbar, with cavity hydration apparently taking place in the range of 2–3 kbar. However, in the presence of additional mutations that lower the free energy of the excited state, pressure strongly populates the excited state, thereby eliminating the cavity with a native side chain rather than solvent. Thus, both cavity hydration and structure relaxation are mechanisms for cavity elimination under pressure, and which is dominant is determined by details of the energy landscape. PMID:25918400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandiver, Melissa A.; Caire, Benjamin R.; Pandey, Tara P.
Anion exchange m em branes (AEM )are prom ising solid polym er electrolytes utilized in alkalifuelcells and electrochem icalenergy conversion devices.AEM s m ust ef ciently conductions w hile m aintaining chem icaland m echanicalstability undera range ofoperating conditions.The ionicnature ofAEM sleads to stiffand brittle m em branesunderdry conditions w hile athigher hydrations,w ater sorption causes signi cant softening and w eakening of the m em brane.In this w ork,a new polyethylene-b-poly(vinylbenzyltrim ethylam m onium ) polym er (70 kg/m ol) w as cast into large (300 cm 2),thin (127 3 m ) m em branes.These m em branes exhibitedmore » im proved elasticity over previously tested AEM s,m inim aldim ensional sw elling,and m oderate ionic conductivity (57 2 m S/cm at 50 °C,95% RH in the brom ide form ).Extensional testing indicated a 95% reduction in Young's m odulus betw een dry and hydrated states.Furtherinvestigation ofthe com plex m odulusasa function ofhydration,by dynam ic m echanical analysis,revealed a sharp decrease in m odulusbetw een dry and hydrated states.M echanicalsoftening w as reversible,but the location ofthe transition displayed hysteresis betw een hum idi cation and dehum idi cation.Conductivity increased after m em brane softening;suggesting bulk m echanicalpropertiescan identify thehydration levelrequired forim proved ion transport.Understanding the relationship betw een ion conduction and m echanical properties w illhelp guide AEM developm ent and identify operating conditions for sustained perform ance.« less
Chemistry and Spectroscopy of Frozen Chloride Salts on Icy Bodies
NASA Astrophysics Data System (ADS)
Johnson, P. V.; Thomas, E. C.; Hodyss, R. P.; Vu, T. H.; Choukroun, M.
2016-12-01
Understanding the habitability of Europa's ocean is of great interest to astrobiology and is the focus of missions currently being considered to explore Europa. Currently, our best means of constraining the subsurface ocean composition and its subsequent habitability is by further study of Europa's surface chemical composition. Analysis of existing (and future) remote sensing data is limited by the availability of spectral libraries of candidate materials under relevant conditions (temperature, thermal/radiation history, etc.). Geochemical predictions of Europa's ocean composition suggest that chloride salts are likely to exist on the surface of Europa as well as other ocean worlds. We have conducted a study of frozen chloride-salt brines prepared at temperatures, pressures and radiation conditions (UV) in order to simulate conditions on the surface of Europa and other airless bodies. Hydration states of various chloride salts as a function of temperature were determined using Raman spectroscopy. Near IR reflectance spectra of identically prepared samples were measured to provide reference spectra of the identified hydrated salts. We find that the freezing of NaCl at temperatures ranging from 80 K to 233 K forms hydrohalite. In contrast, KCl hydrates are not formed from the freezing of KCl brines. In addition, a stable hexahydrate forms from the freezing of MgCl2 solutions, while a hexahydrate, a tetrahydrate, and a dihydrate, form upon freezing of CaCl2 solutions. Salts were observed to dehydrated with increasing temperatures, leading to a succession of hydration states in the case of CaCl2. Irradiation with vacuum ultraviolet light was observed to lead to dehydration as well.
Chemistry and Spectroscopy of Frozen Chloride Salts on Icy Bodies
NASA Astrophysics Data System (ADS)
Johnson, Paul; Thomas, Elena C.; Hodyss, Robert; Vu, Tuan; Choukroun, Mathieu
2016-10-01
Currently, our understanding of the chemical composition of Europa's surface is our best means of inferring constraints on the subsurface ocean composition and its subsequent habitability. The bulk of our knowledge of Europa surface chemistry can be traced to near infrared spectra recorded by the Near Infrared Mapping Spectrometer on the Galileo spacecraft. However, the usefulness of this and other remote sensing data is limited by the availability of spectral libraries of candidate materials under relevant conditions (temperature, thermal/radiation history, etc.). Chloride salts are expected to exist on the surface of Europa, and other icy bodies, based on geochemical predictions of the ocean composition. In order to help improve our understanding of Europa's surface composition, we have conducted a study of frozen chloride-salt brines prepared under simulated Europa surface conditions (vacuum, temperature, and UV irradiation) using both near IR and Raman spectroscopies. Specifically, Raman spectroscopy was used to determine the hydration states of various chloride salts as a function of temperature. Near IR spectroscopy of identically prepared samples was used to provide reference reflectance spectra of the identified hydrated salts. Our results indicate that at temperatures ranging from 80 K to 233 K, hydrohalite is formed from the freezing of NaCl brines, while the freezing of KCl solutions does not form KCl hydrates. In addition, the freezing of MgCl2 solutions forms a stable hexahydrate, and the freezing of CaCl2 solutions forms a hexahydrate, a tetrahydrate, and a dihydrate. Dehydration of the salts was observed as temperatures were increased, leading to a succession of hydration states in the case of CaCl2.
Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations
2017-01-01
This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute–water and water–water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy. PMID:28783431
Heat injury prevention practices in high school football.
Luke, Anthony C; Bergeron, Michael F; Roberts, William O
2007-11-01
To survey high school American football programs regarding current prevention measures for reducing heat injuries during the football season. Web-based survey of 27 questions based on consensus statement guidelines by the American College of Sports Medicine on reducing heat injury risk in youth football. National (United States) and community-based. High school programs receiving survey distribution from their state athletic association and the National Federation of State High School Associations. Responses (percentage and incidence) to questions on preseason acclimatization procedures, practice modification protocols, preparticipation risk factors, hydration management strategies, rest period strategies, heat injury education and policies, and preparation for heat-related emergency care. A total of 540 high school football programs from 26 states completed the survey. The reported number of preseason heat injuries per program (1.38+/-2.08) was greater (P<0.001) compared to during the regular season (0.98+/-1.84). Programs modified equipment configurations during preseason (no helmets or pads, 31.3%; just helmets, 57.0%; helmets and shoulder pads only, 33.5%) or altered the practice schedule when there was excessive heat. Hydration management, education, and preparation for dealing with an acute heat injury varied among programs. Greater implementation of effective prevention measures to reduce the incidence of heat-related injury and death in high school American football is needed. Strategies should focus on modifying practices appropriately on a day-to-day basis to minimize heat strain and optimize hydration, identifying and educating at-risk individuals during the preparticipation period, and developing an emergency action plan for effectively managing heat injuries.
Bardhan, Jaydeep P; Knepley, Matthew G
2014-10-07
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, "Charge asymmetries in hydration of polar solutes," J. Phys. Chem. B 112, 2405-2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning
Deng, Junjing; Vine, David J.; Chen, Si; ...
2017-03-27
X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. Here, by working with cells that have been rapidly frozen without the use of chemicalmore » fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.« less
Bardhan, Jaydeep P.; Knepley, Matthew G.
2014-01-01
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley “bracelet” and “rod” test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, “Charge asymmetries in hydration of polar solutes,” J. Phys. Chem. B 112, 2405–2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry. PMID:25296776
Chalikian, T V; Plum, G E; Sarvazyan, A P; Breslauer, K J
1994-07-26
We use high-precision acoustic and densimetric techniques to determine, at 25 degrees C, the changes in volume, delta V, and adiabatic compressibility, delta Ks, that accompany the binding of netropsin to the poly(dAdT).poly(dAdT) and poly(dA).poly(dT) duplexes, as well as to the poly(dT).poly(dA).poly(dT) triplex. We find that netropsin binding to the heteropolymeric poly(dAdT).poly(dAdT) duplex is accompanied by negative changes in volume, delta V, and small positive changes in compressibility, delta Ks. By contrast, netropsin binding to the homopolymeric poly(dA).poly(dT) duplex is accompanied by large positive changes in both volume, delta V, and compressibility, delta Ks. Furthermore, netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes changes in both volume and compressibility that are nearly twice as large as those observed when netropsin binds to the poly(dA).poly(dT) duplex. We interpret these macroscopic data in terms of binding-induced microscopic changes in the hydration of the DNA structures and the drug. Specifically, we find that netropsin binding induces the release of approximately 22 waters from the hydration shell of the poly(dAdT).poly(dAdT) heteropolymeric duplex, approximately 40 waters from the hydration shell of the poly(dA).poly(dT) homopolymeric duplex, and about 53 waters from the hydration shell of the poly(dA).poly(dT), induces the release of 18 more water molecules than netropsin binding to the heteropolymeric duplex, poly(dAdT).poly(dAdT). On the basis of apparent molar volume, phi V, and apparent molar adiabatic compressibility, phi Ks, values for the initial drug-free and final drug-bound states of the two all-AT duplexes, we propose that the larger dehydration of the poly(dA).poly(dT) duplex reflects, in part, the formation of a less hydrated poly(dA).poly(dT)-netropsin complex compared with the corresponding poly(dAdT).poly(dAdT)-netropsin complex. In conjunction with our previously published entropy data [Marky, L. A., & Breslauer, K. J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4359-4363], we calculate that each water of hydration released to the bulk solvent by ligand binding contributes 1.6 cal K-1 mol-1 to the entropy of binding. This value corresponds to the average difference between the partial molar entropy of water in the bulk state and water in the hydration shells of the two all-AT duplexes. When netropsin binds to the poly(dT).poly(dA).poly(dT) triplex, the changes in both volume and compressibility suggest that the binding event induces more dehydration of the triplex than of the duplex state. Specifically, we calculate that netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes the release of 13 more waters than netropsin binding to the poly(dA).poly(dT) duplex.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Vieillard, Philippe; Blanc, Philippe; Fialips, Claire I.; Gailhanou, Hélène; Gaboreau, Stéphane
2011-10-01
The aim of the present work was to study the thermodynamic equilibria between water and a homo-ionic montmorillonite SWy-1 saturated by different cations. The choice of this smectite is justified by the large set of experimental data available from the literature for eight different interlayer cations: Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, Sr 2+, and Ba 2+. In particular, studies by Cases et al. (1992, 1997) and Bérend et al. (1995) are providing heat of adsorption data, pairs of desorption-adsorption isotherms, and information about the partition of adsorption-desorption water molecules between external surfaces and internal spaces. By calculating the effective amount of hydration water as the difference between the so-called gravimetric water and the surface covering water, a thermodynamic model was then developed, based on the concept of Ransom and Helgeson (1994) considering an asymmetric subregular binary solid solution between a fully hydrated and a anhydrous smectite. A set of six thermodynamic parameters ( ΔH∘hyd,S∘hyd and four Margules parameters) was extracted by a least square method from measurements of enthalpies of adsorption and paired adsorption-desorption isotherms for each interlayer cation. These six initial parameters were then used to determine a complete set of standard thermodynamic hydration parameters ( ΔH∘hyd,ΔG∘hyd,ΔS∘hyd, heat capacity, molar volume, and number of interlayer H 2O) and quantify, for each cation, the number of moles of hydration water molecules as a function of relative humidity and temperature. The validation of the standard state thermodynamic properties of hydration for each end member was carried out using three approaches: (1) a comparison with experimental isotherms obtained on hetero-ionic and homo-ionic SWy-1 smectite at different temperatures; (2) a comparison with the experimental integral enthalpy and entropy of hydration of the SWy-1 smectite; and (3) a comparison with experimental isotherms acquired on various smectites (Upton, MX80, Arizona) with different layer charges. Eventually, the present work demonstrates that, from a limited number of measurements, it is possible to provide the hydration thermodynamic parameters for hydrated smectites with different compositions and under different conditions of temperature and relative humidity, using the newly developed predictive model.
Effect of gas hydrates melting on seafloor slope stability
NASA Astrophysics Data System (ADS)
Sultan, N.; Cochonat, P.; Foucher, J. P.; Mienert, J.; Haflidason, H.; Sejrup, H. P.
2003-04-01
Quantitative studies of kinetics of gas hydrate formation and dissociation is of a particular concern to the petroleum industry for an evaluation of environmental hazards in deep offshore areas. Gas hydrate dissociation can generate excess pore pressure that considerably decreases the strength of the soil. In this paper, we present a theoretical study of the thermodynamic chemical equilibrium of gas hydrate in soil, which is based on models previously reported by Handa (1989), Sloan (1998) and Henry (1999). Our study takes into account the influence of temperature, pressure, pore water chemistry, and the pore size distribution of the sediment. This model fully accounts for the latent heat effects, as done by Chaouch and Briaud (1997) and Delisle et al. (1998). It uses a new formulation based on the enthalpy form of the law of conservation of energy. The model allows for the evaluation of the excess pore pressure generated during gas hydrate dissociation using the Soave’s (1972) equation of state. Fluid flow in response to the excess pore pressure is simulated using the finite element method. In the second part of the paper, we present and discuss an application of the model through a back-analysis of the case of the giant Storegga slide on the Norwegian margin. Two of the most important changes during and since the last deglaciation (hydrostatic pressure due to the change of the sea level and the increase of the sea water temperature) were considered in the calculation. Simulation results are presented and discussed. Chaouch, A., &Briaud, J.-L., 1997. Post melting behavior of gas hydrates in soft ocean sediments, OTC-8298, in 29th offshore technology conference proceedings, v. 1, Geology, earth sciences and environmental factors: Society of Petroleum Engineers, p. 217-224. Delisle, G.; Beiersdorf, H.; Neben, S.; Steinmann, D., 1998. The geothermal field of the North Sulawesi accretionary wedge and a model on BSR migration in unstable depositional environments. in Henriet, J.-P.; Mienert, J. (Ed.): Gas hydrates: relevance to world margin stability and climate change. Geological Society Special Publication, 137. The Geological Society: London, UK, p. 267-274. Handa,Y.P., 1989. Effect of Hydrostatic Pressure and Salinity on the Stability of Gas Hydrates. J.Phys.Chem., Vol.94, p.2652-2657. Henry, P., Thomas, M.; Clennell, M.B., 1999. Formation of Natural Gas Hydrates in Marine Sediments 2. Thermodynamic Calculations of Stability Conditions in Porous Sediments,” J. Geophys. Res., 104, p. 23005. Sloan, E.D. Jr., 1998. Clathrate hydrates of natural gases. Marcel Dekker Inc., 2nd edition, New York, pp. 705. Soave G, 1972. Equilibrium
Peculiarities of CO2 sequestration in the Permafrost area
NASA Astrophysics Data System (ADS)
Guryeva, Olga; Chuvilin, Evgeny; Moudrakovski, Igor; Lu, Hailong; Ripmeester, John; Istomin, Vladimir
2010-05-01
Natural gas and gas-condensate accumulations in North of Western Siberia contain an admixture of CO2 (about 0.5-1.0 mol.%). Recently, the development and transportation of natural gas in the Yamal peninsula has become of interest to Russian scientists. They suggest liquifaction of natural gas followed by delivery to consumers using icebreaking tankers. The technique of gas liquefaction requires CO2 to be absent from natural gas, and therefore the liquefaction technology includes the amine treatment of gas. This then leads to a problem with utilization of recovered CO2. It is important to note, that gas reservoirs in the northern part of Russia are situated within the Permafrost zone. The thickness of frozen sediment reaches 500 meters. That is why one of the promising places for CO2 storage can be gas-permeable collectors in under-permafrost horizons. The favorable factors for preserving CO2 in these places are as follows: low permeability of overlying frozen sediments, low temperatures, the existence of a CO2 hydrate stability zone, and the possibility of sequestration at shallow depths (less then 800-1000 meters). When CO2 (in liquid or gas phase) is pumped into the under-permafrost collectors it is possible that some CO2 migrates towards the hydrate stability zone and hydrate-saturated horizons can be formed. This can result on the one hand in the increase of effective capacity of the collector, and on the other hand, in the increase of isolating properties of cap rock. Therefore, CO2 injection sometimes can be performed without a good cap rock. In connection with the abovementioned, to elaborate an effective technology for CO2 injection it is necessary to perform a comprehensive experimental investigation with computer simulation of different utilization schemes, including the process of CO2 hydrate formation in porous media. There are two possible schemes of hydrate formation in pore medium of sediments: from liquid CO2 or the gas. The pore water in the sediment may be either in frozen or liquid states. To study these processes, an experimental investigation of hydrate formation kinetics from liquid and gaseous CO2 has been performed using the method of NMR imaging*. Experiments were made with samples of quartz sand (particles' diameter 0,21-0,297mm) with different water saturation in the range of temperatures between -3 and +8oC and pressures between 3 and 6 MPa. The experiments performed revealed the main regularities of hydrate accumulation from liquid CO2 in sediment. The influence of temperature on the rate of pore hydrate growth was analyzed. For example, the rate of hydrate growth at +7.2oC was 6 times smaller then at -3 оС. Fast hydrate formation from liquid CO2 was observed in sand samples with water saturation below 20-30%. With an increase in water saturation to 50%, the rate of hydrate formation decreased significantly, and when water saturation was 60% or more, nucleation was not observed during the time of the experiment (1-3 days). Experimental results revealed that pressure variation in the range between 4 and 6 MPa does not have any influence on the kinetics of hydrate formation from liquid CO2. Comparison of kinetics of hydrate formation from liquid and gas CO2 showed that hydrate accumulation is faster from gas CO2 then from liquid CO2. Thus, 50% of pore water that reacted with liquid CO2 transformed into hydrate in 0.8 hours after nucleation, and when reacted with CO2-gas, it transformed in 0.3 hours. The completed experiments allowed us to consider the peculiarities of hydrate formation and filtration of liquid and gaseous CO2 towards the hydrate stability zone, which is important to take into account during the elaboration of industrial techniques of CO2 injection in under-permafrost collectors. * Experiments have been made in the laboratory of NRC of Canada.
Consensus conference on the management of tumor lysis syndrome.
Tosi, Patrizia; Barosi, Giovanni; Lazzaro, Carlo; Liso, Vincenzo; Marchetti, Monia; Morra, Enrica; Pession, Andrea; Rosti, Giovanni; Santoro, Antonio; Zinzani, Pier Luigi; Tura, Sante
2008-12-01
Tumor lysis syndrome is a potentially life threatening complication of massive cellular lysis in cancers. Identification of high-risk patients and early recognition of the syndrome is crucial in the institution of appropriate treatments. Drugs that act on the metabolic pathway of uric acid to allantoin, like allopurinol or rasburicase, are effective for prophylaxis and treatment of tumor lysis syndrome. Sound recommendations should regulate diagnosis and drug application in the clinical setting. The current article reports the recommendations on the management of tumor lysis syndrome that were issued during a Consensus Conference project, and which were endorsed by the Italian Society of Hematology (SIE), the Italian Association of Pediatric Oncologists (AIEOP) and the Italian Society of Medical Oncology (AIOM). Current concepts on the pathophysiology, clinical features, and therapy of tumor lysis syndrome were evaluated by a Panel of 8 experts. A consensus was then developed for statements regarding key questions on tumor lysis syndrome management selected according to the criterion of relevance by group discussion. Hydration and rasburicase should be administered to adult cancer patients who are candidates for tumor-specific therapy and who carry a high risk of tumor lysis syndrome. Cancer patients with a low-risk of tumor lysis syndrome should instead receive hydration along with oral allopurinol. Hydration and rasburicase should also be administered to patients with clinical tumor lysis syndrome and to adults and high-risk children who develop laboratory tumor lysis syndrome. In conclusion, the Panel recommended rasburicase for tumor lysis syndrome prophylaxis in selected patients based on the drug efficacy profile. Methodologically rigorous studies are needed to clarify its cost-effectiveness profile.
Awile, Omar; Krisko, Anita; Sbalzarini, Ivo F; Zagrovic, Bojan
2010-07-15
The proteome of the radiation- and desiccation-resistant bacterium D. radiodurans features a group of proteins that contain significant intrinsically disordered regions that are not present in non-extremophile homologues. Interestingly, this group includes a number of housekeeping and repair proteins such as DNA polymerase III, nudix hydrolase and rotamase. Here, we focus on a member of the nudix hydrolase family from D. radiodurans possessing low-complexity N- and C-terminal tails, which exhibit sequence signatures of intrinsic disorder and have unknown function. The enzyme catalyzes the hydrolysis of oxidatively damaged and mutagenic nucleotides, and it is thought to play an important role in D. radiodurans during the recovery phase after exposure to ionizing radiation or desiccation. We use molecular dynamics simulations to study the dynamics of the protein, and study its hydration free energy using the GB/SA formalism. We show that the presence of disordered tails significantly decreases the hydration free energy of the whole protein. We hypothesize that the tails increase the chances of the protein to be located in the remaining water patches in the desiccated cell, where it is protected from the desiccation effects and can function normally. We extrapolate this to other intrinsically disordered regions in proteins, and propose a novel function for them: intrinsically disordered regions increase the "surface-properties" of the folded domains they are attached to, making them on the whole more hydrophilic and potentially influencing, in this way, their localization and cellular activity.
2014-01-01
Morphine, codeine, and ethylmorphine are important drug compounds whose free bases and hydrochloride salts form stable hydrates. These compounds were used to systematically investigate the influence of the type of functional groups, the role of water molecules, and the Cl– counterion on molecular aggregation and solid state properties. Five new crystal structures have been determined. Additionally, structure models for anhydrous ethylmorphine and morphine hydrochloride dihydrate, two phases existing only in a very limited humidity range, are proposed on the basis of computational dehydration modeling. These match the experimental powder X-ray diffraction patterns and the structural information derived from infrared spectroscopy. All 12 structurally characterized morphinane forms (including structures from the Cambridge Structural Database) crystallize in the orthorhombic space group P212121. Hydrate formation results in higher dimensional hydrogen bond networks. The salt structures of the different compounds exhibit only little structural variation. Anhydrous polymorphs were detected for all compounds except ethylmorphine (one anhydrate) and its hydrochloride salt (no anhydrate). Morphine HCl forms a trihydrate and dihydrate. Differential scanning and isothermal calorimetry were employed to estimate the heat of the hydrate ↔ anhydrate phase transformations, indicating an enthalpic stabilization of the respective hydrate of 5.7 to 25.6 kJ mol–1 relative to the most stable anhydrate. These results are in qualitative agreement with static 0 K lattice energy calculations for all systems except morphine hydrochloride, showing the need for further improvements in quantitative thermodynamic prediction of hydrates having water···water interactions. Thus, the combination of a variety of experimental techniques, covering temperature- and moisture-dependent stability, and computational modeling allowed us to generate sufficient kinetic, thermodynamic and structural information to understand the principles of hydrate formation of the model compounds. This approach also led to the detection of several new crystal forms of the investigated morphinanes. PMID:25036525
Smaby, J M; Brockman, H L
1985-11-01
The miscibility of 1-palmitoyl-2-oleoyl phosphatidylcholine with triolein, 1,2-diolein, 1,3-diolein, 1(3)-monoolein, oleyl alcohol, methyl oleate, oleic acid, and oleyl cyanide (18:1 lipids) was studied at the argon-water interface. The isothermal phase diagrams for the mixtures at 24 degrees were characterized by two compositional regions. At the limit of miscibility with lower mol fractions of 18:1 lipid, the surface pressure was composition-independent, but above a mixture-specific stoichiometry, surface pressure at the limit of miscibility was composition-dependent. From the two-dimensional phase rule, it was determined that at low mol fractions of 18:1 lipids, the surface consisted of phospholipid and a preferred packing array or complex of phospholipid and 18:1 lipid, whereas, above the stoichiometry of the complex, the surface phase consisted of complex and excess 18:1 lipids. In both regions of the phase diagram, mixing along the phase boundary was apparently ideal allowing application of an equation of state described earlier (J. M. Smaby and H. L. Brockman, 1984, Biochemistry, 23:3312-3316). From such analysis, apparent partial molecular areas and hydrations for phospholipid, complex, and 18:1 lipid were obtained. Comparison of these calculated parameters for the complexed and uncomplexed states shows that the aliphatic moieties behave independently of polar head group. The transition of each 18:1 chain to the complexed state involves the loss of about one interfacial water molecule and its corresponding area. For 18:1 lipids with more than one chain another two water molecules per additional chain are present in both states but contribute little to molecular area. In contrast to 18:1 lipids, the phospholipid area and hydration change little upon complexation. The uniformity of chain packing and hydration behavior among 18:1 lipid species contrasts with complex stoichiometries that vary from 0.04 to 0.65. This suggests that the stoichiometry of the preferred packing array is determined by interactions involving the more polar moieties of the 18:1 lipids and the phospholipid.
Bia, Daniel; Valtuille, Rodolfo; Galli, Cintia; Wray, Sandra; Armentano, Ricardo; Zócalo, Yanina; Cabrera-Fischer, Edmundo
2017-03-01
The etiology of the end-stage renal disease (ESRD) and the hydration status may be involved in the arterial stiffening process observed in hemodialyzed patients. The ratio between carotid-femoral and carotid-radial pulse wave velocity (PWV ratio) was recently proposed to characterize the patient-specific stiffening process. to analyze: (1) the PWV-ratio in healthy and hemodialyzed subjects, analyzing potential changes associated to etiologies of the ESRD, (2) the PWV-ratio and hydration status using multiple-frequency bioimpedance and, (3) the effects of hemodialysis on PWV-ratio in a 5-year follow-up. PWV-ratio was evaluated in 151 patients differentiated by the pathology determining their ESRD. Total body fluid (TBF), intra and extra cellular fluid (ICF, ECF) were measured in 65 of these patients using bioelectrical-impedance. The association between arterial, hemodynamic or fluid parameters was analyzed. PWV-ratio was evaluated in a group of patients (n = 25) 5 years later (follow-up study). PWV-ratio increased in the ESRD cohort with respect to the control group (1.03 ± 0.23 vs. 1.31 ± 0.37; p < 0.001). PWV-ratio in the diabetic nephropathy group was higher than in all other etiological groups (1.61 ± 0.33; p < 0.05). PWV-ratio was associated with TBF (r = -0.238; p < 0.05), ICF (r = -0.323; p < 0.01), ECF/ICF (r = 0.400; p < 0.001) and ECF/TBF (r = 0.403; p < 0.001). PWV-ratio calculated in ESRD patients in 2007 increased 5 years later (1.14 ± 0.32 vs. 1.43 ± 0.44; p < 0.005). PWV-ratio increased the most in patients with diabetic nephropathy. PWV ratio was significantly associated with age and body hydration status, but not with the blood pressure. PWV-ratio could be considered a blood pressure-independent parameter, associated with the age and hydration status of the patient.
The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT
Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.
2008-01-01
This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389
Strengthening of the Coordination Shell by Counter Ions in Aqueous Th 4+ Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atta-Fynn, Raymond; Bylaska, Eric J.; de Jong, Wibe A.
The presence of counter ions in solutions containing highly charged metal cations can trigger processes such as ion-pair formation, hydrogen bond breakages and subsequent reformation, and ligand exchanges. In this work, it is shown how halide (Cl-, Br-) and perchlorate (ClO4-) anions affect the strength of the primary solvent coordination shells around Th4+ using explicit solvent and finite temperature ab initio molecular dynamics modeling methods. The 9-fold solvent geometry was found to be the most stable hydration structure in each aqueous solution. Relative to the dilute aqueous solution, the presence of the counter ions did not significantly alter the geometrymore » of the primary hydration shell. However, the free energy analyses indicated that the 10-fold hydrated states were thermodynamically accessible in dilute and bromide aqueous solutions within 1 kcal/mol. Analysis of the results showed that the hydrogen bond lifetimes were longer and solvent exchange energy barriers were larger in solutions with counter ions in comparison with the solution with no counter ions. This implies that the presence of the counter ions induces a strengthening of the Th4+ hydration shell.« less
Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum.
Jones, Michael W M; Dearnley, Megan K; van Riessen, Grant A; Abbey, Brian; Putkunz, Corey T; Junker, Mark D; Vine, David J; McNulty, Ian; Nugent, Keith A; Peele, Andrew G; Tilley, Leann
2014-08-01
Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rock, B. N.; Vogelmann, J. E.
1985-01-01
The effects of acid deposition on Picea rubens are studied. The Picea rubens located at Camels Hump Mt., Mt. Ascutney, and Ripton, VT were analyzed using stress level evaluations, in situ spectral data, pressure bomb analysis, and aircraft sensors. Spruce stress per circular plot and percent spruce mortality are calculated. The relation between stress levels and elevation and exposure and weather patterns is examined. It is observed that variations in the reflectance curves of the foliage and branches are related to cellular health, the type of cellular arrangement, and the degree of leaf tissue hydration; the leaf and twig specimens from high stress sites are more reflective in the red portion of the visible and less reflective in the NIR portion of the spectrum. The pressure bomb data reveal that the xylem water tension is higher in specimens from high stress sites. It is noted that remote sensing permits discrimination and mapping of suspected acid deposition damage.
3D Structure Determination of Native Mammalian Cells using Cryo-FIB and Cryo-electron Tomography
Wang, Ke; Strunk, Korrinn; Zhao, Gongpu; Gray, Jennifer L.; Zhang, Peijun
2012-01-01
Cryo-electron tomography (cryo-ET) has enabled high resolution three-dimensional (3D) structural analysis of virus and host cell interactions and many cell signaling events; these studies, however, have largely been limited to very thin, peripheral regions of eukaryotic cells or to small prokaryotic cells. Recent efforts to make thin, vitreous sections using cryo-ultramicrotomy have been successful, however, this method is technically very challenging and with many artifacts. Here, we report a simple and robust method for creating in situ, frozen-hydrated cell lamellas using a focused ion beam at cryogenic temperature (cryo-FIB), allowing access to any interior cellular regions of interest. We demonstrate the utility of cryo-FIB with high resolution 3D cellular structures from both bacterial cells and large mammalian cells. The method will not only facilitate high-throughput 3D structural analysis of biological specimens, but is also broadly applicable to sample preparation of thin films and surface materials without the need for FIB “lift-out”. PMID:22796867
Dureckova, Hana; Woo, Tom K; Udachin, Konstantin A; Ripmeester, John A; Alavi, Saman
2017-10-13
Clathrate hydrate phases of Cl 2 and Br 2 guest molecules have been known for about 200 years. The crystal structure of these phases was recently re-determined with high accuracy by single crystal X-ray diffraction. In these structures, the water oxygen-halogen atom distances are determined to be shorter than the sum of the van der Waals radii, which indicates the action of some type of non-covalent interaction between the dihalogens and water molecules. Given that in the hydrate phases both lone pairs of each water oxygen atom are engaged in hydrogen bonding with other water molecules of the lattice, the nature of the oxygen-halogen interactions may not be the standard halogen bonds characterized recently in the solid state materials and enzyme-substrate compounds. The nature of the halogen-water interactions for the Cl 2 and Br 2 molecules in two isolated clathrate hydrate cages has recently been studied with ab initio calculations and Natural Bond Order analysis (Ochoa-Resendiz et al. J. Chem. Phys. 2016, 145, 161104). Here we present the results of ab initio calculations and natural localized molecular orbital analysis for Cl 2 and Br 2 guests in all cage types observed in the cubic structure I and tetragonal structure I clathrate hydrates to characterize the orbital interactions between the dihalogen guests and water. Calculations with isolated cages and cages with one shell of coordinating molecules are considered. The computational analysis is used to understand the nature of the halogen bonding in these materials and to interpret the guest positions in the hydrate cages obtained from the X-ray crystal structures.
UV-CD12: synchrotron radiation circular dichroism beamline at ANKA
Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S.
2015-01-01
Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts. PMID:25931105
Guimberteau, J-C; Delage, J-P; Wong, J
2010-08-01
As the follow up article to "Introduction to the knowledge of subcutaneous sliding system in humans" published in the "Annales de chirurgie plastique" we further investigate the architecture of the skin and comment on the subcutaneous multifibrillar and microvacuolar arrangements that provide form, mobility, adaptability and resistance to force of gravity. The study aimed to highlight the direct link between the skin and subcutaneous environment in dynamic living tissue. Through high resolution endoscopic observations made during live surgery it is revealed how microvacuoles and microspaces can provide dynamic structure and form during movement between the epidermis, dermis and hypodermis. The study reveals intriguing morphodynamics which are necessary to maintain mobility and continuity to neighboring tissues. The polyhedric design of the skin surface directly relates to multifibrillar pillars beneath the skin which dictate their patterning and movement. The concept of tissue continuity is realised by the chaotic and fractal organisation of multifibrils interlaced with cellular components which characteristics alter depending on the state of hydration. Understanding the integral arrangement that provides continuity of all the structures below the skin provides an appreciation to how skin behaves in relation to movement of the rest of the body. 2009. Published by Elsevier SAS.
Lea, A P; Bryson, H M
1996-08-01
Cidofovir is a nucleotide analogue which inhibits viral DNA polymerase and is effective against human cytomegalovirus (CMV) infection. It is phosphorylated to its active form by cellular enzymes. With the long intracellular half-life of its metabolites, cidofovir can be administered weekly during induction and every other week during maintenance therapy. Viral resistance has not been documented in patients treated with cidofovir to date, but has developed in vitro. Immediate cidofovir therapy delayed progression of CMV retinitis compared with deferred treatment in patients with AIDS. Cidofovir also delayed the progression of CMV retinitis relapsing after previous treatment. To avoid nephrotoxicity, probenecid and intravenous saline hydration must be administered with each dose of cidofovir.
Finnerty, Justin John
2015-01-01
Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores. PMID:26460827
Extracellular DNA in single- and multiple-species unsaturated biofilms.
Steinberger, R E; Holden, P A
2005-09-01
The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.
Nasogastric Hydration in Infants with Bronchiolitis Less Than 2 Months of Age.
Oakley, Ed; Bata, Sonny; Rengasamy, Sharmila; Krieser, David; Cheek, John; Jachno, Kim; Babl, Franz E
2016-11-01
To determine whether nasogastric hydration can be used in infants less than 2 months of age with bronchiolitis, and characterize the adverse events profile of these infants compared with infants given intravenous (IV) fluid hydration. A descriptive retrospective cohort study of children with bronchiolitis under 2 months of age admitted for hydration at 3 centers over 3 bronchiolitis seasons was done. We determined type of hydration (nasogastric vs IV fluid hydration) and adverse events, intensive care unit admission, and respiratory support. Of 491 infants under 2 months of age admitted with bronchiolitis, 211 (43%) received nonoral hydration: 146 (69%) via nasogastric hydration and 65 (31%) via IV fluid hydration. Adverse events occurred in 27.4% (nasogastric hydration) and 23.1% (IV fluid hydration), difference of 4.3%; 95%CI (-8.2 to 16.9), P = .51. The majority of adverse events were desaturations (21.9% nasogastric hydration vs 21.5% IV fluid hydration, difference 0.4%; [-11.7 to 12.4], P = .95). There were no pulmonary aspirations in either group. Apneas and bradycardias were similar in each group. IV fluid hydration use was positively associated with intensive care unit admission (38.5% IV fluid hydration vs 19.9% nasogastric hydration; difference 18.6%, [5.1-32.1], P = .004); and use of ventilation support (27.7% IV fluid hydration vs 15.1% nasogastric hydration; difference 12.6 [0.3-23], P = .03). Fewer infants changed from nasogastric hydration to IV fluid hydration than from IV fluid hydration to nasogastric hydration (12.3% vs 47.7%; difference -35.4% [-49 to -22], P < .001). Nasogastric hydration can be used in the majority of young infants admitted with bronchiolitis. Nasogastric hydration and IV fluid hydration had similar rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.
Chierotti, Michele R; Gobetto, Roberto; Nervi, Carlo; Bacchi, Alessia; Pelagatti, Paolo; Colombo, Valentina; Sironi, Angelo
2014-01-06
The hydrogen bond network of three polymorphs (1α, 1β, and 1γ) and one solvate form (1·H2O) arising from the hydration-dehydration process of the Ru(II) complex [(p-cymene)Ru(κN-INA)Cl2] (where INA is isonicotinic acid), has been ascertained by means of one-dimensional (1D) and two-dimensional (2D) double quantum (1)H CRAMPS (Combined Rotation and Multiple Pulses Sequences) and (13)C CPMAS solid-state NMR experiments. The resolution improvement provided by homonuclear decoupling pulse sequences, with respect to fast MAS experiments, has been highlighted. The solid-state structure of 1γ has been fully characterized by combining X-ray powder diffraction (XRPD), solid-state NMR, and periodic plane-wave first-principles calculations. None of the forms show the expected supramolecular cyclic dimerization of the carboxylic functions of INA, because of the presence of Cl atoms as strong hydrogen bond (HB) acceptors. The hydration-dehydration process of the complex has been discussed in terms of structure and HB rearrangements.
Ghosh, Arunava; Boucher, R.C.; Tarran, Robert
2015-01-01
Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443
Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin.
Schrader, A; Siefken, W; Kueper, T; Breitenbach, U; Gatermann, C; Sperling, G; Biernoth, T; Scherner, C; Stäb, F; Wenck, H; Wittern, K-P; Blatt, T
2012-01-01
Aquaporins (AQPs) present in the epidermis are essential hydration-regulating elements controlling cellular water and glycerol transport. In this study, the potential of glyceryl glucoside [GG; alpha-D-glucopyranosyl-alpha-(1->2)-glycerol], an enhanced glycerol derivative, to increase the expression of AQP3 in vitro and ex vivo was evaluated. In vitro studies with real-time RT-PCR and FACS measurements were performed to test the induction by GG (3% w/v) of AQP3 mRNA and protein in cultured human keratinocytes. GG-containing formulations were applied topically to volunteer subjects and suction blister biopsies were analyzed to assess whether GG (5%) could penetrate the epidermis of intact skin, and subsequently upregulate AQP3 mRNA expression and improve barrier function. AQP3 mRNA and protein levels were significantly increased in cultured human keratinocytes. In the studies on volunteer subjects, GG significantly increased AQP3 mRNA levels in the skin and reduced transepidermal water loss compared with vehicle-controlled areas. GG promotes AQP3 mRNA and protein upregulation and improves skin barrier function, and may thus offer an effective treatment option for dehydrated skin. Copyright © 2012 S. Karger AG, Basel.
Changing attitudes and practices in foregoing life-sustaining treatments.
Sprung, C L
1990-04-25
Advances in medical technology and practices have been associated with improved patient outcomes. At times, the price of this progress has included great financial costs and human suffering. During the last two decades, there have been significant changes in medical practices in America. In the late 1960s and early 1970s, the removal of a respirator or hydration or nutrition from a patient who was not brain dead was considered a deviation from accepted medical practices. In 1976, the Quinlan case allowed the removal of a ventilator from a patient in a persistent vegetative state. Subsequent court decisions in the 1980s have equated hydration and artificial feeding with other forms of life-sustaining treatments and have allowed their withdrawal in patients who were not terminally ill. Prominent physicians have recently stated that it is not immoral for a physician to assist in the rational suicide of a terminally ill patient. Active euthanasia programs in the United States are likely in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Jong-Ho; Seol, Yongkoo
We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydratemore » turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.« less
Li, Jiayao; Zheng, Changxi; Liu, Boyin; Chou, Tsengming; Kim, Yeonuk; Qiu, Shi; Li, Jian; Yan, Wenyi; Fu, Jing
2018-06-11
High-resolution single-cell imaging in their native or near-native state has received considerable interest for decades. In this research, we present an innovative approach that can be employed to study both morphological and nano-mechanical properties of hydrated single bacterial cells. The proposed strategy is to encapsulate wet cells with monolayer graphene with a newly developed water membrane approach, followed by imaging with both electron microscopy (EM) and atomic force microscopy (AFM). A computational framework was developed to provide additional insights, with the detailed nanoindentation process on graphene modeled based on finite element method. The model was first validated by calibration with polymer materials of known properties, and the contribution of graphene was then studied and corrected to determine the actual moduli of the encapsulated hydrated sample. Aapplication of the proposed approach was performed on hydrated bacterial cells (Klebsiella pneumoniae) to correlate the structural and mechanical information. EM and EDS (energy-dispersive X-ray spectroscopy) imaging confirmed that the cells in their near-native stage can be studied inside the miniatured environment enabled with graphene encapsulation. The actual moduli of the encapsulated hydrated cells were determined based on the developed computational model in parallel, with results comparable with those acquired with Wet-AFM. It is expected that the successful establishment of controlled graphene encapsulation offers a new route for probing liquid/live cells with scanning probe microscopy, as well as correlative imaging of hydrated samples for both biological and material sciences. © 2018 IOP Publishing Ltd.
Pf1 bacteriophage hydration by magic angle spinning solid-state NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergeyev, Ivan V.; Bahri, Salima; McDermott, Ann E., E-mail: aem5@columbia.edu
2014-12-14
High resolution two- and three-dimensional heteronuclear correlation spectroscopy ({sup 1}H–{sup 13}C, {sup 1}H–{sup 15}N, and {sup 1}H–{sup 13}C–{sup 13}C HETCOR) has provided a detailed characterization of the internal and external hydration water of the Pf1 virion. This long and slender virion (2000 nm × 7 nm) contains highly stretched DNA within a capsid of small protein subunits, each only 46 amino acid residues. HETCOR cross-peaks have been unambiguously assigned to 25 amino acids, including most external residues 1–21 as well as residues 39–40 and 43–46 deep inside the virion. In addition, the deoxyribose rings of the DNA near the virionmore » axis are in contact with water. The sets of cross-peaks to the DNA and to all 25 amino acid residues were from the same hydration water {sup 1}H resonance; some of the assigned residues do not have exchangeable side-chain protons. A mapping of the contacts onto structural models indicates the presence of water “tunnels” through a highly hydrophobic region of the capsid. The present results significantly extend and modify results from a lower resolution study, and yield a comprehensive hydration surface map of Pf1. In addition, the internal water could be distinguished from external hydration water by means of paramagnetic relaxation enhancement. The internal water population may serve as a conveniently localized magnetization reservoir for structural studies.« less
NASA Astrophysics Data System (ADS)
Bajwa, Neha; Nowroozi, Bryan; Sung, Shijun; Garritano, James; Maccabi, Ashkan; Tewari, Priyamvada; Culjat, Martin; Singh, Rahul; Alger, Jeffry; Grundfest, Warren; Taylor, Zachary
2012-10-01
Terahertz (THz) imaging is an expanding area of research in the field of medical imaging due to its high sensitivity to changes in tissue water content. Previously reported in vivo rat studies demonstrate that spatially resolved hydration mapping with THz illumination can be used to rapidly and accurately detect fluid shifts following induction of burns and provide highly resolved spatial and temporal characterization of edematous tissue. THz imagery of partial and full thickness burn wounds acquired by our group correlate well with burn severity and suggest that hydration gradients are responsible for the observed contrast. This research aims to confirm the dominant contrast mechanism of THz burn imaging using a clinically accepted diagnostic method that relies on tissue water content for contrast generation to support the translation of this technology to clinical application. The hydration contrast sensing capabilities of magnetic resonance imaging (MRI), specifically T2 relaxation times and proton density values N(H), are well established and provide measures of mobile water content, lending MRI as a suitable method to validate hydration states of skin burns. This paper presents correlational studies performed with MR imaging of ex vivo porcine skin that confirm tissue hydration as the principal sensing mechanism in THz burn imaging. Insights from this preliminary research will be used to lay the groundwork for future, parallel MRI and THz imaging of in vivo rat models to further substantiate the clinical efficacy of reflective THz imaging in burn wound care.
NASA Astrophysics Data System (ADS)
Marchetti, Paul S.; Bhattacharyya, Lokesh; Ellis, Paul D.; Brewer, C. Fred
Solid-state 113Cd NMR spectroscopy of static powder samples of 113Cd-substituted metalloproteins, parvalbumin, concanavalin A, and pea and lentil lectins, was carried out. Cross polarization followed by application of a train of uniformly spaced π pulses was employed to investigate the origin of residual cadmium NMR linewidths observed previously in these proteins. Fourier transformation of the resulting spin-echo train yielded spectra consisting of uniformly spaced lines having linewidths of the order of 1-2 ppm. The observed linewidths were not influenced by temperature as low as -50°C or by extent of protein hydration. Since the echo-train pulse sequence is able to eliminate inhomogeneous but not homogeneous contributions to the linewidths, there is a predominant inhomogeneous contribution to cadmium linewidths in the protein CP/MAS spectra. However, significant changes in spectral intensities were observed with change in temperature and extent of protein hydration. These intensity changes are attributed for parvalbumin and concanavalin A to changes in cross-polarization efficiency with temperature and hydration. For pea and lentil lectins, this effect is attributed to the elimination of static disorder at the pea and lentil S2 metal-ion sites due to sugar binding.
Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers
Sun, Jing; Jiang, Xi; Siegmund, Aaron; ...
2016-04-04
Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this study, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (Φ Npm) values ranging from 0.13 to 0.44 and dispersity (¯D) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Drymore » samples with Φ Npm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. Finally, we demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers.« less
Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water
Athawale, Manoj V.; Goel, Gaurav; Ghosh, Tuhin; Truskett, Thomas M.; Garde, Shekhar
2007-01-01
We present results from extensive molecular dynamics simulations of collapse transitions of hydrophobic polymers in explicit water focused on understanding effects of lengthscale of the hydrophobic surface and of attractive interactions on folding. Hydrophobic polymers display parabolic, protein-like, temperature-dependent free energy of unfolding. Folded states of small attractive polymers are marginally stable at 300 K and can be unfolded by heating or cooling. Increasing the lengthscale or decreasing the polymer–water attractions stabilizes folded states significantly, the former dominated by the hydration contribution. That hydration contribution can be described by the surface tension model, ΔG = γ(T)ΔA, where the surface tension, γ, is lengthscale-dependent and decreases monotonically with temperature. The resulting variation of the hydration entropy with polymer lengthscale is consistent with theoretical predictions of Huang and Chandler [Huang DM, Chandler D (2000) Proc Natl Acad Sci USA 97:8324–8327] that explain the blurring of entropy convergence observed in protein folding thermodynamics. Analysis of water structure shows that the polymer–water hydrophobic interface is soft and weakly dewetted, and is characterized by enhanced interfacial density fluctuations. Formation of this interface, which induces polymer folding, is strongly opposed by enthalpy and favored by entropy, similar to the vapor–liquid interface. PMID:17215352
Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers
2016-01-01
Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this paper, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (ϕNpm) values ranging from 0.13 to 0.44 and dispersity (Đ) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Dry samples with ϕNpm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. We demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers. PMID:27134312
NASA Astrophysics Data System (ADS)
Kida, Masato; Jin, Yusuke; Watanabe, Mizuho; Murayama, Tetsuro; Nagao, Jiro
2017-09-01
In this report, we describe the dissociation behavior of gas hydrate grains pressed at 1 and 6 MPa. Certain simple gas hydrates in powder form show anomalous preservation phenomenon under their thermodynamic unstable condition. Investigation of simple hydrates of methane, ethane, and propane reveals that high pressure applied to the gas hydrate particles enhances their preservation effects. Application of high pressure increases the dissociation temperature of methane hydrate and has a restrictive effect against the dissociation of ethane and propane hydrate grains. These improvements of gas hydrate preservation by increasing pressure to the initial gas hydrate particles imply that appropriate pressure applied to gas hydrate particles enhances gas hydrate preservation effects.
Direct measurements of the interactions between clathrate hydrate particles and water droplets.
Liu, Chenwei; Li, Mingzhong; Zhang, Guodong; Koh, Carolyn A
2015-08-14
Clathrate hydrate particle agglomeration is often considered to be one of the key limiting factors in plug formation. The hydrate particle-water interaction can play a critical role in describing hydrate agglomeration, yet is severely underexplored. Therefore, this work investigates the interactions between water droplets and cyclopentane hydrate particles using a micromechanical force (MMF) apparatus. Specifically, the effect of contact time, temperature/subcooling, contact area, and the addition of Sorbitane monooleate (Span 80) surfactant on the water droplet-hydrate particle interaction behavior are studied. The measurements indicate that hydrate formation during the measurement would increase the water-hydrate interaction force significantly. The results also indicate that the contact time, subcooling and concentration of cyclopentane, which determine the hydrate formation rate and hydrate amount, will affect the hydrate-water interaction force. In addition, the interaction forces also increase with the water-hydrate contact area. The addition of Span 80 surfactant induces a change in the hydrate morphology and renders the interfaces stable versus unstable (leading to coalescence), and the contact force can affect the hydrate-water interaction behavior significantly. Compared with the hydrate-hydrate cohesion force (measured in cyclopentane), the hydrate-water adhesion force is an order of magnitude larger. These new measurements can help to provide new and critical insights into the hydrate agglomeration process and potential strategies to control this process.
Case, Ryan; Schollmeyer, Hauke; Kohl, Phillip; Sirota, Eric B; Pynn, Roger; Ewert, Kai E; Safinya, Cyrus R; Li, Youli
2017-12-01
Hydration forces between DNA molecules in the A- and B-Form were studied using a newly developed technique enabling simultaneous in situ control of temperature and relative humidity. X-ray diffraction data were collected from oriented calf-thymus DNA fibers in the relative humidity range of 98%-70%, during which DNA undergoes the B- to A-form transition. Coexistence of both forms was observed over a finite humidity range at the transition. The change in DNA separation in response to variation in humidity, i.e. change of chemical potential, led to the derivation of a force-distance curve with a characteristic exponential decay constant of∼2Å for both A- and B-DNA. While previous osmotic stress measurements had yielded similar force-decay constants, they were limited to B-DNA with a surface separation (wall-to-wall distance) typically>5Å. The current investigation confirms that the hydration force remains dominant even in the dry A-DNA state and at surface separation down to∼1.5Å, within the first hydration shell. It is shown that the observed chemical potential difference between the A and B states could be attributed to the water layer inside the major and minor grooves of the A-DNA double helices, which can partially interpenetrate each other in the tightly packed A phase. The humidity-controlled X-ray diffraction method described here can be employed to perform direct force measurements on a broad range of biological structures such as membranes and filamentous protein networks. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamical properties of the hydration shell of fully deuterated myoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achterhold, Klaus; Parak, Fritz G.; Ostermann, Andreas
2011-10-15
Freeze-dried perdeuterated sperm whale myoglobin was kept in a water-saturated atmosphere in order to obtain a hydration degree of 335 {sup 1}H{sub 2}O molecules per one myoglobin molecule. Incoherent neutron scattering was performed at the neutron spectrometer TOFTOF at the FRM II in an angular range of q from 0.6 to 1.8 A{sup -1} and a temperature range from 4 to 297 K. We used neutrons with a wavelength of {lambda}{alpha}E 6 A and an energy resolution of about 65 {mu}eV corresponding to motions faster than 10 ps. At temperatures above 225 K, broad lines appear in the spectra causedmore » by quasielastic scattering. For an explanation of these lines, we assumed that there are only two types of protons, those that are part of the hydration water (72%) and those that belong to the protein (28%). The protons of the hydration water were analyzed with the diffusion model of Singwi and Sjoelander [Phys. Rev. 119, 863 (1960)]. In this model, a water molecule stays for a time {tau}{sub 0} in a bound state performing oscillatory motions. Thereafter, the molecule performs free diffusion for the time {tau}{sub 1} in a nonbound state followed again by the oscillatory motions for {tau}{sub 0} and so forth. We used the general formulation with no simplifications as {tau}{sub 0}>>{tau}{sub 1} or {tau}{sub 1}>>{tau}{sub 0}. At room temperature, we obtained {tau}{sub 0} {alpha}E 104 ps and {tau}{sub 1} {alpha}E 37 ps. For the protein bound hydrogen, the dynamics is described by a Brownian oscillator where the protons perform overdamped motions in limited space.« less
Xiao, Hang; Shi, Xiaoyang; Zhang, Yayun; Liao, Xiangbiao; Hao, Feng; Lackner, Klaus S; Chen, Xi
2017-10-18
The hydration of ions in nanoscale hydrated clusters is ubiquitous and essential in many physical and chemical processes. Here we show that the hydrolysis reaction is strongly affected by relative humidity. The hydrolysis of CO 3 2- with n = 1-8 water molecules is investigated using an ab initio method. For n = 1-5 water molecules, all the reactants follow a stepwise pathway to the transition state. For n = 6-8 water molecules, all the reactants undergo a direct proton transfer to the transition state with overall lower activation free energy. The activation free energy of the reaction is dramatically reduced from 10.4 to 2.4 kcal mol -1 as the number of water molecules increases from 1 to 6. Meanwhile, the degree of hydrolysis of CO 3 2- is significantly increased compared to the bulk water solution scenario. Incomplete hydration shells facilitate the hydrolysis of CO 3 2- with few water molecules to be not only thermodynamically favorable but also kinetically favorable. We showed that the chemical kinetics is not likely to constrain the speed of CO 2 air capture driven by the humidity-swing. Instead, the pore-diffusion of ions is expected to be the time-limiting step in the humidity driven CO 2 air capture. The effect of humidity on the speed of CO 2 air capture was studied by conducting a CO 2 absorption experiment using IER with a high ratio of CO 3 2- to H 2 O molecules. Our result is able to provide valuable insights into designing efficient CO 2 air-capture sorbents.
Choudhury, Mahua G.; Saha, Nirmalendu
2016-01-01
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment. PMID:26950213
Choudhury, Mahua G; Saha, Nirmalendu
2016-01-01
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornbach, Matthew J; Colwell, Frederick S; Harris, Robert
Methane Hydrates, a solid form of methane and water, exist at high pressures and low temperatures, occurs on every continental margin on Earth, represents one of the largest reservoirs of carbon on the planet, and, if destabilized, may play an important role in both slope stability and climate change. For decades, researchers have studied methane hydrates with the hope of determining if methane hydrates are destabilizing, and if so, how this destabilization might impact slope stability and ocean/atmosphere carbon budgets. In the past ~5 years, it has become well established that the upper “feather-edge” of methane hydrate stability (intermediate watermore » depths of ~200-500 meters below sea level) represents an important frontier for methane hydrates stability research, as this zone is most susceptible to destabilization due to minor fluctuations in ocean temperature in space and time. The Arctic Ocean—one of the fastest warming regions on Earth—is perhaps the best place to study possible changes to methane hydrate stability due to ocean warming. To address the stability of methane hydrates at intermediate ocean depths, Southern Methodist University in partnership with Oregon State University and The United State Geological Survey at Woods Hole began investigating methane hydrate stability in intermediate water depths below both the US Beaufort Sea and the Atlantic Margin, from 2012-2017. The work was funded by the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). The key goal of the SMU component of this study was to collect the first ever heat flow data in the Beaufort Sea and compare measured shallow (probe-based1) heat flow values with deeper (BSR-derived2) heat flow values, and from this, determine whether hydrates were in thermal equilibrium. In September 2016, SMU/OSU collected the first ever heat flow measurements in the US Beaufort Sea. Despite poor weather and rough seas, the cruise was a success, with 116 heat flow measurements acquired across the margin, spanning 4 transects separated by more than 400 km. Useable heat flow data exists for 97% (113) of probe heat flow measurements, revealing a clear picture of regional heat flow across the basin. During the past 8 months since the cruise, SMU researchers have processed the heat flow and thermal conductivity measurements and compared results to deeper heat flow estimates obtained from seismic data. The analysis reveals clear, consistent trends: All probe heat flow measurements in depths greater than 800 mbsl are consistent with BSR-derived values; heat flow measurements obtained in water depths between ~250-750 mbsl are systematically lower than those estimated from BSRs; and heat flow estimates in water depths shallower than ~250 mbsl are systematically warmer than deeper estimates. The consistency between shallow (probe) and deep (BSR) heat flow measurements at depths greater than ~750 m where ocean temperature changes are minimal supports the premise that the hydrates consist primarily of methane and represent a valuable tool for estimating heat flow. The anomalous cooling trend observed in the upper 250 m is consistent with expected seasonal effects observed in shallow ocean buoy measurements in the arctic, when cold, less dense melting sea ice cools the upper 200 m of the ocean during the summer as ice melting occurs. The discrepancy in heat flow at intermediate water depths is best explained via recent intermediate ocean temperature warming, where long-term (annual or longer) warming intermediate ocean bottom waters result in an anomalously low heat flow in shallow heat flow measurements. Using the characteristic 1D time-length scale for diffusion, we estimate that ocean temperature warming began no later than ~1200 years ago but arguably much more recently as results are limited by seismic resolution. More importantly, our analysis indicates methane hydrate is destabilizing not only in the upper feather edge (200-500 mbsl) but at depths as great as 750 mbsl. The intermediate ocean warming rate supports previous studies suggesting geologically rapid warming (>0.1 deg C/decade) at intermediate ocean depths in the Beaufort Sea. Assuming no further changes or additional warming, our analysis indicates methane hydrates will destabilize at seafloor depths shallower than 750 mbsl in the Beaufort Sea within the next ~3000 years. 1 Probe outfitted with sensors inserted into the seafloor sediment 2 Bottom-simulating reflector (BSR) seismic data indicates presence of hydrate deposits« less
Kim, Jakyung; Shin, Kyuchul; Seo, Yutaek; Cho, Seong Jun; Lee, Ju Dong
2014-07-31
This study investigates the hydrate inhibition performance of monoethylene glycol (MEG) with poly(vinylcaprolactam) (PVCap) for retarding the hydrate onset as well as preventing the agglomeration of hydrate particles. A high-pressure autoclave was used to determine the hydrate onset time, subcooling temperature, hydrate fraction in the liquid phase, and torque changes during hydrate formation in pure water, 0.2 wt % PVCap solution, and 20 and 30 wt % MEG solutions. In comparison to water with no inhibitors, the addition of PVCap delays the hydrate onset time but cannot reduce the hydrate fraction, leading to a sharp increase in torque. The 20 and 30 wt % MEG solutions also delay the hydrate onset time slightly and reduce the hydrate fraction to 0.15. The addition of 0.2 wt % PVCap to the 20 wt % MEG solution, however, delays the hydrate onset time substantially, and the hydrate fraction was less than 0.19. The torque changes were negligible during the hydrate formation, suggesting the homogeneous dispersion of hydrate particles in the liquid phase. The well-dispersed hydrate particles do not agglomerate or deposit under stirring. Moreover, when 0.2 wt % PVCap was added to the 30 wt % MEG solution, no hydrate formation was observed for at least 24 h. These results suggest that mixing of MEG with a small amount of PVCap in underinhibited conditions will induce the synergistic inhibition of hydrate by delaying the hydrate onset time as well as preventing the agglomeration and deposition of hydrate particles. Decreasing the hydrate fraction in the liquid phase might be the reason for negligible torque changes during the hydrate formation in the 0.2 wt % PVCap and 20 wt % MEG solution. Simple structure II was confirmed by in situ Raman spectroscopy for the synergistic inhibition system, while coexisting structures I and II are observed in 0.2 wt % PVCap solution.
NASA Astrophysics Data System (ADS)
Hiruta, A.; Matsumoto, R.
2015-12-01
We trapped gas bubbles emitted from the seafloor into oil-containing collector and observed an unique phenomena. Gas hydrate formation needs water for the crystal lattice; however, gas hydrates in some areas are associated with hydrophobic crude oil or asphalt. In order to understand gas hydrate growth in oil-bearing sediments, an experiment with cooking oil was made at gas hydrate stability condition. We collected venting gas bubbles into a collector with canola oil during ROV survey at a gas hydrate area in the eastern margin of the Sea of Japan. When the gas bubbles were trapped into collector with oil, gas phase appeared above the oil and gas hydrates, between oil and gas phase. At this study area within gas hydrate stability condition, control experiment with oil-free collector suggested that gas bubbles emitted from the seafloor were quickly covered with gas hydrate film. Therefore it is improbable that gas bubbles entered into the oil phase before hydrate skin formation. After the gas phase formation in oil-containing collector, the ROV floated outside of hydrate stability condition for gas hydrate dissociation and re-dived to the venting site. During the re-dive within hydrate stability condition, gas hydrate was not formed. The result suggests that moisture in the oil is not enough for hydrate formation. Therefore gas hydrates that appeared at the oil/gas phase boundary were already formed before bubbles enter into the oil. Hydrate film is the only possible origin. This observation suggests that hydrate film coating gas hydrate was broken at the sea water/oil boundary or inside oil. Further experiments may contribute for revealing kinetics of hydrate film and formation. This work was a part of METI (Ministry of Economy, Trade and Industry)'s project entitled "FY2014 Promoting research and development of methane hydrate". We also appreciate support of AIST (National Institute of Advanced Industrial Science and Technology).
Noskov, V B; Nikolaev, D V; Tuĭkin, S A; Kozharinov, V I; Grachev, V A
2007-01-01
A portable two-frequency tetrapolar impedance meter was developed to study the state of liquid compartments of human body under zero-gravity conditions. The portable impedance meter makes it possible to monitor the hydration state of human body under conditions of long-term space flight on board international space station.
Erythrocyte disorders leading to potassium loss and cellular dehydration.
Glader, B E; Sullivan, D W
1979-01-01
RBC K loss and cellular dehydration are associated with a variety of normal and abnormal erythrocyte conditions. In some cases (normal RBC aging, pyruvate-kinase-deficient RBCs and irreversibly sickled cells) cation and water changes are related to adenosine triphosphate (ATP) depletion and to increased RBC calcium content. In other disorders, such as hereditary xerocytosis, cation depletion and cellular hydration are not related to altered energy or calcium metabolism. Rather, this condition is thought to be due to a structural membrane defect which is manifested by imbalanced cation leaks (K less greater than Na gain) for which the active cation transport is unable to compensate. None of the disorders described here are associated with known structural membrane alterations. The fact that K loss and cellular dehydration are common to several RBC disorders suggests that this phenomenon may have a direct role in membrane injury. This hypothesis is supported by two separate observations: 1)Formation of irreversible sickled cells in vitro is prevented if K and water loss are inhibited, and these effects are independent of ATP depletion and calcium accumulation; 2) the mean critical hemolytic volume is markedly reduced in K- and water-depleted normal RBCs. RBC dehydration without intracellular cation depletion, however, is not associated with changes in mean critical hemolytic volume. These data thus indicate that K loss may have a direct role in RBC membrane injury. The mechanism by which this occurs and the associated alterations in membrane structure, however, remain to be identified.
Waite, William F.; Osegovic, J.P.; Winters, William J.; Max, M.D.; Mason, David H.
2008-01-01
An isobaric flow loop added to the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) is being investigated as a means of rapidly forming methane hydrate in watersaturated sand from methane dissolved in water. Water circulates through a relatively warm source chamber, dissolving granular methane hydrate that was pre-made from seed ice, then enters a colder hydrate growth chamber where hydrate can precipitate in a water-saturated sand pack. Hydrate dissolution in the source chamber imparts a known methane concentration to the circulating water, and hydrate particles from the source chamber entrained in the circulating water can become nucleation sites to hasten the onset of hydrate formation in the growth chamber. Initial results suggest hydrate grows rapidly near the growth chamber inlet. Techniques for establishing homogeneous hydrate formation throughout the sand pack are being developed.
NASA Technical Reports Server (NTRS)
Moroz, L. V.; Schmidt, M.; Schade, U.; Hiroi, T.; Ivanova, M. A.
2005-01-01
The meteorites Dho 225 and Dho 735 were recently found in Oman. Studies of their mineralogical and chemical composition suggest that these unusual meteorites are thermally metamorphosed CM2 chondrites [1,2,3]. Similar to Antarctic metamorphosed carbonaceous chondrites, the Dho 225 and Dho 735 are enriched in heavy oxygen compared to normal CMs [1,2]. However, IR studies indicating dehydration of matrix phyllosilicates are needed to confirm that the two new meteorites from Oman are thermally metamorphosed [4]. Synchrotron-based IR microspectroscopy is a new promising technique which allows the acquisition of IR spectra from extremely small samples. Here we demonstrate that this non-destructive technique is a useful tool to study hydration states of carbonaceous chondrites in situ. In addition, we acquired reflectance spectra of bulk powders of the Dho 225 and Dho 735 in the range of 0.3-50 microns.
NASA Astrophysics Data System (ADS)
Elsenousy, Amira; Hanley, Jennifer; Chevrier, Vincent F.
2015-07-01
The WCL (Wet Chemistry Lab) instrument on board the Phoenix Lander identified the soluble ionic composition of the soil at the landing site. However, few studies have been conducted to understand the parent salts of these soluble ions. Here we studied the possible salt assemblages at the Phoenix landing site using two different thermodynamic models: FREZCHEM and Geochemist's Workbench (GWB). Two precipitation pathways were used: evaporation (T > 0 °C using both FREZCHEM and GWB) and freezing (T < 0 °C using only FREZCHEM). Through applying three different models of initial ionic concentrations (from sulfate to chlorate/perchlorate dominated), we calculated the resulting precipitated minerals. The results-through both freezing and evaporation-showed some common minerals that precipitated regardless of the ionic initial concentration. These ubiquitous minerals are magnesium chlorate hexahydrate Mg(ClO3)2ṡ6H2O, potassium perchlorate (KClO4) and gypsum (CaSO4ṡ2H2O). Other minerals evidence specific precipitation pathway. Precipitation of highly hydrated salts such as meridianiite (MgSO4ṡ11H2O) and MgCl2ṡ12H2O indicate freezing pathway, while precipitation of the low hydrated salts (anhydrite, kieserite and epsomite) indicate evaporation. The present hydration states of the precipitated hydrated minerals probably reflect the ongoing thermal processing and recent seasonally varying humidity conditions at the landing site, but these hydration states might not reflect the original depositional conditions. The simulations also showed the absence of Ca-perchlorate in all models, mainly because of the formation of two main salts: KClO4 and gypsum which are major sinks for ClO-4 and Ca2+ respectively. Finally, in consideration to the Martian life, it might survive at the very low temperatures and low water activities of the liquids formed. However, besides the big and widely recognized challenges to life posed by those extreme environmental parameters (especially low water activity), another main challenge for any form of life in such an environment is to maintain contact with the small droplets of the stable liquids in the regolith and to interact with life in other isolated droplets.
Wood, Bayden R
2016-04-07
Since Watson and Crick's historical papers on the structure and function of DNA based on Rosalind Franklin's and Maurice Wilkin's X-ray diffraction patterns tremendous scientific curiosity has been aroused by the unique and dynamic structure of the molecule of life. A-DNA and B-DNA represent different conformations of the DNA molecule, which is stabilised by hydrogen interactions between base pairs, stacking interactions between neighboring bases and long-range intra- and inter-backbone forces. This review highlights the contribution Fourier transform infrared (FTIR) spectroscopy has made to the understanding of DNA conformation in relation to hydration and its potential role in clinical diagnostics. The review will first begin by elucidating the main forms of DNA conformation found in nature and the general structures of the A, B and Z forms. This is followed by a detailed critique on infrared spectroscopy applied to DNA conformation highlighting pivotal studies on isolated DNA, polynucleotides, nucleoprotein and nucleohistone complexes. A discussion on the potential of diagnosing cancer using FTIR spectroscopy based on the detection of DNA bands in cells and tissues will ensue, highlighting the recent studies investigating the conformation of DNA in hydrated and dehydrated cells. The method of hydration as a way to facilitate DNA conformational band assignment will be discussed and the conformational change to the A-form upon dehydration will be used to explain the reason for the apparent lack of FTIR DNA signals observed in fixed or air-dried cells and tissues. The advantages of investigating B-DNA in the hydrated state, as opposed to A-DNA in the dehydrated state, are exemplified in a series of studies that show: (1) improved quantification of DNA in cells; (2) improved discrimination and reproducibility of FTIR spectra recorded of cells progressing through the cell cycle; (3) insights into the biological significance of A-DNA as evidenced by an interesting study on bacteria, which can survive desiccation and at the same time undergo the B-A-B transition. Finally, the importance of preserving the B-DNA conformation for the diagnosis of cancer is put forward as way to improve the sensitivity of this powerful technique.
Interaction of water vapor with silicate glass surfaces: Mass-spectrometric investigations
NASA Astrophysics Data System (ADS)
Kudriavtsev, Yu.; Asomoza-Palacio, R.; Manzanilla-Naim, L.
2017-05-01
The secondary ion mass-spectroscopy technique was used to study the results of hydration of borosilicate, aluminosilicate, and soda-lime silicate glasses in 1H2 18O water vapor containing 97% of the isotope 18O. It is shown that hydration of the surface of the soda-lime silicate glass occurs as a result of the ion-exchange reaction with alkali metals. In the case of borosilicate and aluminosilicate glasses, water molecules decompose on the glass surface, with the observed formation of hydrogenated layer in the glass being the result of a solid-state chemical reaction—presumably, with the formation of hydroxides from aluminum and boron oxides.
Getting water from the water of hydration on Mars
NASA Technical Reports Server (NTRS)
Gwynne, O.; Cozzatti, J. P.; Zent, A. P.; Mckay, C. P.
1991-01-01
Both Viking landers found evidence of water in small concentration in the soils of Mars. Using the gas chromatograph mass spectrometer the soil samples on Mars were heated to 500 C to release the water. This result lead researchers to believe that the water in the soil of Mars was tightly bound in a hydration state. In the laboratory several Mars analog soils and a few bench mark soils were run through a microwave to determine the amount of water released using this method. The results suggest that sufficient water can be obtained using this method to augment the activities of a human base on Mars.
Wolenberg, Kelly M; Yoon, John D; Rasinski, Kenneth A; Curlin, Farr A
2013-12-01
This study surveyed 1,156 practicing US physicians to examine the relationship between physicians' religious characteristics and their approaches to artificial nutrition and hydration (ANH). Forty percent of physicians believed that unless a patient is imminently dying, the patient should always receive nutrition and fluids; 75 % believed that it is ethically permissible for doctors to withdraw ANH. The least religious physicians were less likely to oppose withholding or withdrawing ANH. Compared to non-evangelical Protestant physicians, Jews and Muslims were significantly more likely to oppose withholding ANH, and Muslims were significantly more likely to oppose withdrawing ANH.
NASA Astrophysics Data System (ADS)
Rudakov, A. M.; Sergievskii, V. V.
2008-05-01
Equations relating osmotic, mean ionic activity, and water activity coefficients to electrolyte concentrations in binary aqueous solutions were substantiated within the framework of cluster concepts. The model includes the contribution to solution nonideality of electrostatic interactions in terms of the Debye-Hückel theory along with hydration and association of salts via relations containing hydration and association numbers in the standard states. According to the description of data on 54 aqueous solutions of 1-1 electrolytes, this model should be given preference compared with the most extensively used NRTL, NRTL-NRF, Wilson, and Pitzer models.
Hydration Resistance of Y2O3 Doped CaO and Its Application to Melting Titanium Alloys
NASA Astrophysics Data System (ADS)
Fanlong, Meng; Zhiwei, Cheng; Guangyao, Chen; Xionggang, Lu; Chonghe, Li
Various amount Y2O3(1-8 mol%) doped CaO powder was synthesized by the solid state reaction method, the pellete and crucible were fabricated by the cold isostatic pressing and were sintered at 1750°C for 4h. The microstructural characterization was revealed by X-ray diffraction(XRD) and scanning electron microscopy(SEM).The XRD results showed that when Y2O3 doped 2 mol%, metastable CaY2O4 phase existed in CaO grain boundary, when Y2O3 doped 3 mol%-8 mol%, in addition to the above structure, Y2O3 phase also be found in CaO grain boundary. Hydration experiment results showed when Y2O3 doped 0 mol%-4 mol%, CaO had excellent hydration resistance performance, Y2O3 doped 2 mol% had the best hydration resistance, its weight addition stored after 7 weeks (49 days) was only about 0.2 wt%. Melting experiment results showed that it was no reaction between crucible and alloy layer. Oxygen, calcium, titanium, nickle and yttrium element not diffusion between the CaO crucible and TiNi alloy, it was no oxygen content increase after melting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying
The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill throughmore » the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.« less
A computational study of systemic hydration in vocal fold collision.
Bhattacharya, Pinaki; Siegmund, Thomas
2014-01-01
Mechanical stresses develop within vocal fold (VF) soft tissues due to phonation-associated vibration and collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper, high-fidelity numerical computations are described, taking into account fully 3D geometry, realistic tissue and air properties, and high-amplitude vibration and collision. A segregated solver approach is employed, using sophisticated commercial solvers for both the VF tissue and glottal airflow domains. The tissue viscoelastic properties were derived from a biphasic formulation. Two cases were considered, whereby the tissue viscoelastic properties corresponded to two different volume fractions of the fluid phase of the VF tissue. For each case, hydrostatic stresses occurring as a result of vibration and collision were investigated. Assuming the VF tissue to be poroelastic, interstitial fluid movement within VF tissue was estimated from the hydrostatic stress gradient. Computed measures of overall VF dynamics (peak airflow velocity, magnitude of VF deformation, frequency of vibration and contact pressure) were well within the range of experimentally observed values. The VF motion leading to mechanical stresses within the VFs and their effect on the interstitial fluid flux is detailed. It is found that average deformation and vibration of VFs tend to increase the state of hydration of the VF tissue, whereas VF collision works to reduce hydration.
NASA Astrophysics Data System (ADS)
Scherwath, M.; Heesemann, M.; Riedel, M.; Thomsen, L.; Roemer, M.; Chatzievangelou, D.; Purser, A.
2017-12-01
Since 2009 Ocean Networks Canada provides permanent access and continuous data in near real-time from two prominent gas hydrates research sites at the Northern Cascadia Margin, Barkley Canyon and Clayoquot Slope off Vancouver Island, through power and communication cables directly from shore. We show data highlights from the seafloor crawler Wally, the world's first internet operated vehicle, in a field of hydrate mounds and outcropping gas hydrates, and its co-located sonars and state-of-the-ocean sensors and Barkley Canyon. For example, spectacular views from the benthic communities and their changes over time are captured by video. At Clayoquot Slope highly active gas seep fields are monitored with a rotating multibeam sonar and various other environmental sensors. In addition, newly installed geodetic sensors as well as an instrumented borehole in that area are now online and provide additional data on subduction-related deformation and potential links to gas discharge. These show-case examples highlight the benefits of co-located experiments that enable interdisciplinary research and also the ability for high-power and -bandwidth long-term monitoring at remote seafloor locations, that over time will provide baselines for environmental monitoring together with natural variability and potential long-term trends.
Normalization of urinary drug concentrations with specific gravity and creatinine.
Cone, Edward J; Caplan, Yale H; Moser, Frank; Robert, Tim; Shelby, Melinda K; Black, David L
2009-01-01
Excessive fluid intake can substantially dilute urinary drug concentrations and result in false-negative reports for drug users. Methods for correction ("normalization") of drug/metabolite concentrations in urine have been utilized by anti-doping laboratories, pain monitoring programs, and in environmental monitoring programs to compensate for excessive hydration, but such procedures have not been used routinely in workplace, legal, and treatment settings. We evaluated two drug normalization procedures based on specific gravity and creatinine. These corrections were applied to urine specimens collected from three distinct groups (pain patients, heroin users, and marijuana/ cocaine users). Each group was unique in characteristics, study design, and dosing conditions. The results of the two normalization procedures were highly correlated (r=0.94; range, 0.78-0.99). Increases in percent positives by specific gravity and creatinine normalization were small (0.3% and -1.0%, respectively) for heroin users (normally hydrated subjects), modest (4.2-9.8%) for pain patients (unknown hydration state), and substantial (2- to 38-fold increases) for marijuana/cocaine users (excessively hydrated subjects). Despite some limitations, these normalization procedures provide alternative means of dealing with highly dilute, dilute, and concentrated urine specimens. Drug/metabolite concentration normalization by these procedures is recommended for urine testing programs, especially as a means of coping with dilute specimens.
Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio
2011-10-01
The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.
NASA Astrophysics Data System (ADS)
Iomdina, Elena N.; Goltsman, Gregory N.; Seliverstov, Sergey V.; Sianosyan, Alisa A.; Teplyakova, Kseniya O.; Rusova, Anastasia A.
2016-09-01
An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application.
Soltani, Amin; Gebauer, Denis; Duschek, Lennart; Fischer, Bernd M; Cölfen, Helmut; Koch, Martin
2017-10-12
Crystal formation is a highly debated problem. This report shows that the crystallization of l-(+)-tartaric acid from water follows a non-classical path involving intermediate hydrated states. Analytical ultracentrifugation indicates solution clusters of the initial stages aggregate to form an early intermediate. Terahertz spectroscopy performed during water evaporation highlights a transient increase in the absorption during nucleation; this indicates the recurrence of water molecules that are expelled from the intermediate phase. Besides, a transient resonance at 750 GHz, which can be assigned to a natural vibration of large hydrated aggregates, vanishes after the final crystal has formed. Furthermore, THz data reveal the vibration of nanosized clusters in the dilute solution indicated by analytical ultracentrifugation. Infrared spectroscopy and wide-angle X-ray scattering highlight that the intermediate is not a crystalline hydrate. These results demonstrate that nanoscopic intermediate units assemble to form the first solvent-free crystalline nuclei upon dehydration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mapping hydration dynamics and coupled water-protein fluctuations around a protein surface
NASA Astrophysics Data System (ADS)
Zhang, Luyuan; Wang, Lijuan; Kao, Ya-Ting; Qiu, Weihong; Yang, Yi; Okobiah, Oghaghare; Zhong, Dongping
2009-03-01
Elucidation of the molecular mechanism of water-protein interactions is critical to understanding many fundamental aspects of protein science, such as protein folding and misfolding and enzyme catalysis. We recently carried out a global mapping of protein-surface hydration dynamics around a globular α-helical protein apomyoglobin. The intrinsic optical probe tryptophan was employed to scan the protein surface one at a time by site-specific mutagenesis. With femtosecond resolution, we mapped out the dynamics of water-protein interactions with more than 20 mutants and for two states, native and molten globular. A robust bimodal distribution of time scales was observed, representing two types of water motions: local relaxation and protein-coupled fluctuations. The time scales show a strong correlation with the local protein structural rigidity and chemical identity. We also resolved two distinct contributions to the overall Stokes-shifts from the two time scales. These results are significant to understanding the role of hydration water on protein structural stability, dynamics and function.
Haberler, Michael; Steinhauser, Othmar
2011-10-28
The solvation of the protein ubiquitin (PDB entry "1UBQ") in hydrated molecular ionic liquids was studied for varying water content or, equivalently, a diversity of ionic strengths. The cations and anions were 1-ethyl-3-methylimidazolium and trifluoromethanesulfonate, respectively. The protein's shape and stability as well as the solvation structure, the shell dynamics and the shell resolved dielectric properties were investigated by means of molecular dynamics simulations. The respective simulation trajectories covered 200 nanoseconds. Besides the characteristic point already found for the zinc finger motif at the transition from the pure aqueous environment to the ionic solution an even more pronounced state is found where several properties show extremal behaviour (maximum or minimum). This second characteristic point occurs at the transition from the ionic solution to the hydrated ionic melt where water changes its role from a solvent to a co-solvent. Most of the data analysis presented here is based on the Voronoi decomposition of space. This journal is © the Owner Societies 2011
Wan, Fang; Zhang, Linlin; Dai, Xi; Wang, Xinyu; Niu, Zhiqiang; Chen, Jun
2018-04-25
Rechargeable aqueous zinc-ion batteries are promising energy storage devices due to their high safety and low cost. However, they remain in their infancy because of the limited choice of positive electrodes with high capacity and satisfactory cycling performance. Furthermore, their energy storage mechanisms are not well established yet. Here we report a highly reversible zinc/sodium vanadate system, where sodium vanadate hydrate nanobelts serve as positive electrode and zinc sulfate aqueous solution with sodium sulfate additive is used as electrolyte. Different from conventional energy release/storage in zinc-ion batteries with only zinc-ion insertion/extraction, zinc/sodium vanadate hydrate batteries possess a simultaneous proton, and zinc-ion insertion/extraction process that is mainly responsible for their excellent performance, such as a high reversible capacity of 380 mAh g -1 and capacity retention of 82% over 1000 cycles. Moreover, the quasi-solid-state zinc/sodium vanadate hydrate battery is also a good candidate for flexible energy storage device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardhan, Jaydeep P.; Knepley, Matthew G.
2014-10-07
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley “bracelet” and “rod” test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, “Charge asymmetries in hydration of polar solutes,” J. Phys.more » Chem. B 112, 2405–2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.« less
Structure and hydration of membranes embedded with voltage-sensing domains.
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J
2009-11-26
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.
Structure and hydration of membranes embedded with voltage-sensing domains
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J. Alfredo; Schow, Eric V.; Worcester, David L.; Gawrisch, Klaus; Tobias, Douglas; White, Stephen H.; Swartz, Kenton J.
2009-01-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1–S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field. PMID:19940918
NASA Astrophysics Data System (ADS)
Moser, R. D.; Allison, P. G.; Chandler, M. Q.
2013-12-01
Little work has been done to study the fundamental material behaviors and failure mechanisms of cement-based materials including ordinary Portland cement concrete and ultra-high performance concretes (UHPCs) under high strain impact and penetration loads at lower length scales. These high strain rate loadings have many possible effects on UHPCs at the microscale and nanoscale, including alterations in the hydration state and bonding present in phases such as calcium silicate hydrate, in addition to fracture and debonding. In this work, the possible chemical and physical changes in UHPCs subjected to high strain rate impact and penetration loads were investigated using a novel technique wherein nanoindentation measurements were spatially correlated with images using scanning electron microscopy and chemical composition using energy dispersive x-ray microanalysis. Results indicate that impact degrades both the elastic modulus and indentation hardness of UHPCs, and in particular hydrated phases, with damage likely occurring due to microfracturing and debonding.
Kylin, Henrik; Bouwman, Henk
2012-10-16
The partitioning of α- and γ-hexachlorocyclohexane between air and the moss Hylocomium splendens and the lichen Cladina stellaris were studied under laboratory conditions. After cultivation of the sample material to obtain a common starting point free from outside influence, the material was divided into four different treatment categories with different hydration/desiccation regimes. The concentrations of the analytes were 3-5 times higher in the hydrated moss or lichen than in the desiccated material. The results are in contrast to how these compounds are taken up by pine needles in which there is a continuous accumulation, more rapid during periods with high temperatures and dry weather. In general, the different adaptations to water economy is a more important explanatory factor for the concentration of airborne hydrophobic pollutants in mosses, lichens, and vascular plants than their designation as "plants" in a broad sense. It is, therefore, not advisible to mix data from different organism groups for monitoring or modeling purposes.
Quantifying Hydrate Formation in Gas-rich Environments Using the Method of Characteristics
NASA Astrophysics Data System (ADS)
You, K.; Flemings, P. B.; DiCarlo, D. A.
2015-12-01
Methane hydrates hold a vast amount of methane globally, and have huge energy potential. Methane hydrates in gas-rich environments are the most promising production targets. We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation in such environments (Figure 1). Our solution shows that hydrate saturation is constant with time and space in a homogeneous system. Hydrate saturation is controlled by the initial thermodynamic condition of the system, and changed by the gas fractional flow. Hydrate saturation increases with the initial distance from the hydrate phase boundary. Different gas fractional flows behind the hydrate solidification front lead to different gas saturations at the hydrate solidification front. The higher the gas saturation at the front, the less the volume available to be filled by hydrate, and hence the lower the hydrate saturation. The gas fractional flow depends on the relative permeability curves, and the forces that drive the flow. Viscous forces (the drive for flow induced from liquid pressure gradient) dominate the flow, and hydrate saturation is independent on the gas supply rates and the flow directions at high gas supply rates. Hydrate saturation can be estimated as one minus the ratio of the initial to equilibrium salinity. Gravity forces (the drive for flow induced from the gravity) dominate the flow, and hydrate saturation depends on the flow rates and the flow directions at low gas supply rates. Hydrate saturation is highest for upward flow, and lowest for downward flow. Hydrate saturation decreases with the flow rate for upward flow, and increases with the flow rate for downward flow. This analytical solution illuminates how hydrate is formed by gas (methane, CO2, ethane, propane) flowing into brine-saturated sediments at both the laboratory and geological scales (Figure 1). It provides an approach to generalize the understanding of hydrate solidification in gas-rich environments, although complicated numerical models have been developed previously. Examples of gas expulsion into hydrate stability zones and the associated hydrate formation in both laboratory and geological scales, and CO2 sequestration into CO2-hydrates near the seafloor and under the permafrost will be presented.
Some thermodynamical aspects of protein hydration water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallamace, Francesco, E-mail: francesco.mallamace@unime.it; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
2015-06-07
We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.
The Role of Natural Hydrate on the Strength of Sands: Load-bearing or Cementing?
NASA Astrophysics Data System (ADS)
Priest, J. A.; Hayley, J. L.
2017-12-01
The strength of hydrate bearing sands is a key parameter for simulating the long-term performance of hydrate reservoirs during gas production and assessing reservoir and wellbore stability. Historically this parameter has been determined from testing synthesized hydrate sand samples, which has led to significant differences in measured strength that appears to reflect different formation methods adopted. At present, formation methods can be grouped into either those that form hydrate at grain contacts leading to a high strength `cemented' sand, or those where the hydrate forms a `load-bearing' structure in which the hydrate grains reside in the pore space resulting in more subtle changes in strength. Recovered natural hydrate-bearing cores typically exhibit this `load-bearing' behavior, although these cores have generally undergone significant changes in temperature and pressure during recovery, which may have altered the structure of the hydrate and sediment. Recent drilling expeditions using pressure coring, such as NGHP2 offshore India, have enabled intact hydrate bearing sediments to be recovered that have maintained hydrostatic stresses minimizing any changes in the hydrate structure within the core. Triaxial testing on these samples highlight enhanced strength even at zero effective stresses. This suggests that the hydrate forms a connected framework within the pore space apparently `cementing' the sand grains in place: we differentiate here between true cementation where hydrate is sintered onto the sand grains and typical observed behavior for cemented sands (cohesion, peak strength, post-peak strain softening). This inter-connected hydrate, and its ability to increase strength of the sands, appears to occur even at hydrate saturations as low as 30%, where typical `load-bearing' hydrates just start to increase strength. The results from pressure cores suggest that hydrate formation techniques that lead to `load-bearing' behavior may not capture the true interaction between the hydrate and sand and thus further research is needed to form synthesized hydrate bearing samples that more realistically mimic the observed strength behavior of natural hydrate bearing cores.
Lee, J.Y.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.
2010-01-01
The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, δ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate stability field.
Effects of hydration on mitral valve prolapse.
Lax, D; Eicher, M; Goldberg, S J
1993-08-01
We investigated the effect of hydration on mitral valve prolapse (MVP). Ten subjects with documented diagnosis of MVP were studied before and after oral hydration with 1 L of fluid. Increased weight and cardiac output were present after hydration. Results showed that all 10 subjects with diagnosis of MVP before hydration continued to have MVP after hydration; however, subtle changes were detected, especially on auscultation. Seven of 9 subjects (with cardiac examination recorded before and after hydration) had auscultatory findings of MVP before hydration. No detectable auscultatory change after hydration was present in one subject; in six subjects a loss of either a click or a murmur was detected after hydration. All subjects had echocardiographically detected MVP before hydration; evidence of MVP on two-dimensional or M-mode examination persisted after hydration in all 10 subjects. Minor changes in the echocardiographic examination (M-mode n = 2, Doppler n = 1) were detected in three subjects. Thus we found that hydration of subjects with MVP did not alter the overall diagnosis; however, changes occurred, especially on auscultation. This suggests that alterations in hydration may affect auscultatory expression of MVP and could explain, in part, the variable auscultatory findings in patients with MVP.
Evaluation of Three Hydration Strategies in Detection Dogs Working in a Hot Environment.
Otto, Cynthia M; Hare, Elizabeth; Nord, Jess L; Palermo, Shannon M; Kelsey, Kathleen M; Darling, Tracy A; Schmidt, Kasey; Coleman, Destiny
2017-01-01
Physical activity in hot environments can increase the risk of heat stress or heat stroke in dogs. Heat tolerance is influenced by acclimatization to the environment, physical fitness, and hydration state. Three common strategies to promote hydration in working dogs are free access to water (W), oral electrolyte solutions (OESs), and administration of subcutaneous fluids (SQs). None of these methods have been compared for safety or efficacy in a working environment. In a cross-over design, seven vehicle-screening canines were randomly assigned to each of the three hydration strategies during working shifts at the Sarita, TX checkpoint. Physical, behavioral, and biochemical parameters were collected before, during, and after a work shift (mean 5.7 ± 0.8 h). Dogs were given 10 mL/kg oral W, 10 mL/kg chicken flavored OES, or 15 mL/kg of SQs initially followed by controlled access to W or OES. The dogs drank 15.61 ± 4.47 mL/kg/h of W and OES when in the OES group, compared to 7.04 ± 3.42 and 5.56 ± 4.40 mL of W, for the W and SQ groups, respectively. The median environmental temperature was 84.8°F (29.3°C). The median humidity was 70%. Based on mixed effects linear modeling, dogs in the OES and SQ groups had significantly higher total CO 2 , and lower packed cell volume and total plasma protein at the end of the day. Creatinine increased a small but significant amount in the SQ group and decreased in the OES group. Searching behaviors were independent of hydration strategy but highly related to the dog specific factors of sex, breed, and activity level. Under conditions of controlled activity in moderate heat and humidity, dogs accustomed to the work and the environment were more likely to increase fluid consumption and hydration when provided a flavored OES. Potential benefits of OES and SQ were indirect and no adverse effects were documented for any of the hydration strategies tested.
Evaluation of Three Hydration Strategies in Detection Dogs Working in a Hot Environment
Otto, Cynthia M.; Hare, Elizabeth; Nord, Jess L.; Palermo, Shannon M.; Kelsey, Kathleen M.; Darling, Tracy A.; Schmidt, Kasey; Coleman, Destiny
2017-01-01
Physical activity in hot environments can increase the risk of heat stress or heat stroke in dogs. Heat tolerance is influenced by acclimatization to the environment, physical fitness, and hydration state. Three common strategies to promote hydration in working dogs are free access to water (W), oral electrolyte solutions (OESs), and administration of subcutaneous fluids (SQs). None of these methods have been compared for safety or efficacy in a working environment. In a cross-over design, seven vehicle-screening canines were randomly assigned to each of the three hydration strategies during working shifts at the Sarita, TX checkpoint. Physical, behavioral, and biochemical parameters were collected before, during, and after a work shift (mean 5.7 ± 0.8 h). Dogs were given 10 mL/kg oral W, 10 mL/kg chicken flavored OES, or 15 mL/kg of SQs initially followed by controlled access to W or OES. The dogs drank 15.61 ± 4.47 mL/kg/h of W and OES when in the OES group, compared to 7.04 ± 3.42 and 5.56 ± 4.40 mL of W, for the W and SQ groups, respectively. The median environmental temperature was 84.8°F (29.3°C). The median humidity was 70%. Based on mixed effects linear modeling, dogs in the OES and SQ groups had significantly higher total CO2, and lower packed cell volume and total plasma protein at the end of the day. Creatinine increased a small but significant amount in the SQ group and decreased in the OES group. Searching behaviors were independent of hydration strategy but highly related to the dog specific factors of sex, breed, and activity level. Under conditions of controlled activity in moderate heat and humidity, dogs accustomed to the work and the environment were more likely to increase fluid consumption and hydration when provided a flavored OES. Potential benefits of OES and SQ were indirect and no adverse effects were documented for any of the hydration strategies tested. PMID:29124059
Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C
2012-06-01
Anterior stromal pocket hydration was compared with conventional hydration for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional hydration involves hydration of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket hydration technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then hydrated instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket hydration technique was significantly better than conventional hydration in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Utter, Alan C; Lambeth, Pamela G
2010-02-01
To evaluate the accuracy of multifrequency bioelectrical impedance analysis (MFBIA) in assessing fat-free mass (FFM) in comparison with hydrostatic weighing (HW) and skinfolds (SK) in high school wrestlers in a hydrated state. Body composition was determined by MFBIA, HW, and three-site SK in 72 high school wrestlers (mean +/- SD; age = 15.3 +/- 1.4 yr, height = 1.71 +/- 0.08 m, body mass = 67.3 +/- 13.4 kg). Hydration state was quantified by evaluating urine specific gravity. There were no significant differences for estimated FFM between MFBIA (57.2 +/- 9.5 kg) and HW (57.0 +/- 10.1 kg) or SK (56.4 +/- 8.8 kg). The SEE for FFM with HW as the reference method were 2.73 kg for MFBIA and 2.66 kg for SK. Correlations were found for FFM between HW and MFBIA (r = 0.96, P < 0.001) and between HW and SK (r = 0.97, P < 0.001). A systematic bias was found for MFBIA because the difference between MFBIA and HW correlated with the FFM average of the two methods (r = -0.22, P < 0.001). A bias was also seen between SK and HW and correlated with the FFM average (r = -0.47, P < 0.001). This study demonstrates that MFBIA provides similar estimates of FFM when compared with HW in a heterogeneous high school wrestling population during a hydrated state. MFBIA is an attractive assessment tool, easy to use, and may be considered as an alternative field-based method of estimating the FFM of high school wrestlers.
Evaluation of ultrasound in assessing body composition of high school wrestlers.
Utter, Alan C; Hager, Marion E
2008-05-01
To evaluate the accuracy of ultrasound (ULTRA) in assessing fat-free mass (FFM) in comparison with hydrostatic weighing (HW) and skinfolds (SK) in high school wrestlers in a hydrated state. Body composition was determined by ULTRA, HW, and three-site SK in 70 high school wrestlers (mean +/- SD: age, 15.5 +/- 1.5; height, 1.60 +/- 0.08 m; body mass, 65.8 +/- 12.7 kg). For all methods, body density (Db) was converted to percent body fat (%BF) using the Brozek equation. Hydration state was quantified by evaluating urine specific gravity. There were no significant differences for estimated FFM between ULTRA (57.2 +/- 9.7 kg) and HW (57.0 +/- 9.9 kg); however, SK (54.9 +/- 8.8 kg) were significantly different from HW. The standard errors of estimate for FFM with HW as the reference method were 2.40 kg for ULTRA and 2.74 kg for SK. Significant correlations were found for FFM between HW and ULTRA (r = 0.97, P < 0.001) and between HW and SK (r = 0.96, P < 0.001). A systematic bias was found for SK, as the difference between SK and HW significantly correlated with the FFM average of the two methods (r = -0.38, P < 0.001). This systematic bias was not found for ULTRA (r = - 0.07). This study demonstrates that ULTRA provides similar estimates of FFM when compared with HW in a heterogeneous high school wrestling population during a hydrated state. ULTRA should be considered as an alternative field-based method of estimating the FFM of high school wrestlers.
Buchanan, Piers; Soper, Alan K; Thompson, Helen; Westacott, Robin E; Creek, Jefferson L; Hobson, Greg; Koh, Carolyn A
2005-10-22
Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.
Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Yanxin; Cheng Yipik; Xu Xiaomin
Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wavemore » velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.« less
NASA Astrophysics Data System (ADS)
Ke, Haochen; van der Linde, Christian; Lisy, James M.
2014-06-01
Alkali metal cations play vital roles in chemical and biochemical systems. Lithium is widely used in psychiatric treatment of manic states and bipolar disorder; Sodium and potassium are essential elements, having major biological roles as electrolytes, balancing osmotic pressure on body cells and assisting the electroneurographic signal transmission; Rubidium has seen increasing usage as a supplementation for manic depression and depression treatment; Cesium doped compounds are used as essential catalysts in chemical production and organic synthesis. Since hydrated alkali metal cations are ubiquitous and the basic form of the alkali metal cations in chemical and biochemical systems, their structural and thermodynamic properties serve as the foundation for modeling more complex chemical and biochemical processes, such as ion transport and ion size-selectivity of ionophores and protein channels. By combining mass spectrometry and infrared photodissociation spectroscopy, we have characterized the structures and thermodynamic properties of the hydrated alkali metal cations, i.e. M+(H2O)nAr, (M = Li, Na, K, Rb and Cs, n = 3-5). Ab initio calculations and RRKM-EE (evaporative ensemble) calculations were used to assist in the spectral assignments and thermodynamic analysis. Results showed that the structures of hydrated alkali metal cations were determined predominantly by the competition between non-covalent interactions, i.e. the water---water hydrogen bonding interactions and the water---cation electrostatic interactions. This balance, however, is very delicate and small changes, i.e. different cations, different levels of hydration and different effective temperatures clearly impact the balance.
Luis, Daniel Porfirio; García-González, Alcione; Saint-Martin, Humberto
2016-01-01
Monte Carlo and molecular dynamics simulations were done with three recent water models TIP4P/2005 (Transferable Intermolecular Potential with 4 Points/2005), TIP4P/Ice (Transferable Intermolecular Potential with 4 Points/ Ice) and TIP4Q (Transferable Intermolecular Potential with 4 charges) combined with two models for methane: an all-atom one OPLS-AA (Optimal Parametrization for the Liquid State) and a united-atom one (UA); a correction for the C–O interaction was applied to the latter and used in a third set of simulations. The models were validated by comparison to experimental values of the free energy of hydration at 280, 300, 330 and 370 K, all under a pressure of 1 bar, and to the experimental radial distribution functions at 277, 283 and 291 K, under a pressure of 145 bar. Regardless of the combination rules used for σC,O, good agreement was found, except when the correction to the UA model was applied. Thus, further simulations of the sI hydrate were performed with the united-atom model to compare the thermal expansivity to the experiment. A final set of simulations was done with the UA methane model and the three water models, to study the sI hydrate-liquid water-gas coexistence at 80, 230 and 400 bar. The melting temperatures were compared to the experimental values. The results show the need to perform simulations with various different models to attain a reliable and robust molecular image of the systems of interest. PMID:27240339
NASA Astrophysics Data System (ADS)
Feucht, D. W.; Sheehan, A. F.; Bedrosian, P. A.
2017-12-01
We present an electrical resistivity model of the crust and upper mantle from two-dimensional (2-D) anisotropic inversion of magnetotelluric data collected along a 450 km transect of the Rio Grande rift, southern Rocky Mountains, and High Plains in Colorado, USA. Our model provides a window into the modern-day lithosphere beneath the Rocky Mountain Front to depths in excess of 150 km. Two key features of the 2-D resistivity model are (1) a broad zone ( 200 km wide) of enhanced electrical conductivity (<20 Ωm) in the midcrust to lower crust that is centered beneath the highest elevations of the southern Rocky Mountains and (2) hydrated lithospheric mantle beneath the Great Plains with water content in excess of 100 ppm. We interpret the high conductivity region of the lower crust as a zone of partially molten basalt and associated deep-crustal fluids that is the result of recent (less than 10 Ma) tectonic activity in the region. The recent supply of volatiles and/or heat to the base of the crust in the late Cenozoic implies that modern-day tectonic activity in the western United States extends to at least the western margin of the Great Plains. The transition from conductive to resistive upper mantle is caused by a gradient in lithospheric modification, likely including hydration of nominally anhydrous minerals, with maximum hydration occurring beneath the Rocky Mountain Front. This lithospheric "hydration front" has implications for the tectonic evolution of the continental interior and the mechanisms by which water infiltrates the lithosphere.
NASA Astrophysics Data System (ADS)
Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao
2018-02-01
Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.
NASA Astrophysics Data System (ADS)
Kim, H.; Kwon, T.; Cho, G.
2012-12-01
Synthesizing gas hydrate in a fine-grained natural seabed sediment sample, mainly composed of silty-to-clayey soils, has been hardly attempted due to the low permeability. It has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in core-scale play a critical role in determining physical properties of hydrate-bearing sediments. In the presented study, we attempted to identify the effect of hydrate growth morphology on seismic velocities in natural fine-grained sediments sampled from the Ulleung Basin in East Sea. We synthesized CO2 hydrate in clayey silt sediments in an instrumented oedometric cell and measured seismic velocities during hydrate formation and loading processes. Herein, we present the experiment results on P-wave and S-wave velocities of gas hydrate-bearing fine-grained sediments. It is found that the geophysical properties of gas hydrate-bearing sediments are governed by hydrate saturation and effective stress as well as morphological feature of hydrate formation in sediments.
NASA Astrophysics Data System (ADS)
Treude, Tina; Krause, Stefan; Bertics, Victoria; Steinle, Lea; Niemann, Helge; Liebetrau, Volker; Feseker, Tomas; Burwicz, Ewa; Krastel, Sebastian; Berndt, Christian
2015-04-01
In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. d18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity, and sediment surface concentrations of CH4, SO4, DIC, and POC) were able to show that the observed twin sulfate-methane transition zones are an ephemeral phenomenon occurring during increase of methane production in the sediment, which can be introduced by, e.g., gas hydrate dissociation. References Berndt, C., T. Feseker, T. Treude, S. Krastel, V. Liebetrau, H. Niemann, V. J. Bertics, I. Dumke, K. Dunnbier, B. Ferre, C. Graves, F. Gross, K. Hissmann, V. Huhnerbach, S. Krause, K. Lieser, J. Schauer and L. Steinle (2014). "Temporal constraints on hydrate-controlled methane seepage off svalbard." Science 343: 284-287. Westbrook, G. K., K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoiselle, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt and A. Aquilina (2009). "Escape of methane gas from the seabed along the West Spitsbergen continental margin." Geophys. Res. Let. 36: doi:10.1029/2009GL039191.
Atmospheric-pressure guided streamers for liposomal membrane disruption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.
2012-12-24
The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterizationmore » including gas temperature calculation.« less
NASA Astrophysics Data System (ADS)
Mountjoy, Joshu J.; Pecher, Ingo; Henrys, Stuart; Crutchley, Gareth; Barnes, Philip M.; Plaza-Faverola, Andreia
2014-11-01
Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow-like deformation within gas hydrate-bearing sediment. This "creeping" deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement of gas hydrates. We present evidence that, contrary to conventional views, gas hydrates can directly destabilize the seafloor. Three mechanisms could explain how the shallow gas hydrate system could control these landslides. (1) Gas hydrate dissociation could result in excess pore pressure within the upper reaches of the landslide. (2) Overpressure below low-permeability gas hydrate-bearing sediments could cause hydrofracturing in the gas hydrate zone valving excess pore pressure into the landslide body. (3) Gas hydrate-bearing sediment could exhibit time-dependent plastic deformation enabling glacial-style deformation. We favor the final hypothesis that the landslides are actually creeping seafloor glaciers. The viability of rheologically controlled deformation of a hydrate sediment mix is supported by recent laboratory observations of time-dependent deformation behavior of gas hydrate-bearing sands. The controlling hydrate is likely to be strongly dependent on formation controls and intersediment hydrate morphology. Our results constitute a paradigm shift for evaluating the effect of gas hydrates on seafloor strength which, given the widespread occurrence of gas hydrates in the submarine environment, may require a reevaluation of slope stability following future climate-forced variation in bottom-water temperature.
[Progress in Raman spectroscopic measurement of methane hydrate].
Xu, Feng; Zhu, Li-hua; Wu, Qiang; Xu, Long-jun
2009-09-01
Complex thermodynamics and kinetics problems are involved in the methane hydrate formation and decomposition, and these problems are crucial to understanding the mechanisms of hydrate formation and hydrate decomposition. However, it was difficult to accurately obtain such information due to the difficulty of measurement since methane hydrate is only stable under low temperature and high pressure condition, and until recent years, methane hydrate has been measured in situ using Raman spectroscopy. Raman spectroscopy, a non-destructive and non-invasive technique, is used to study vibrational modes of molecules. Studies of methane hydrate using Raman spectroscopy have been developed over the last decade. The Raman spectra of CH4 in vapor phase and in hydrate phase are presented in this paper. The progress in the research on methane hydrate formation thermodynamics, formation kinetics, decomposition kinetics and decomposition mechanism based on Raman spectroscopic measurements in the laboratory and deep sea are reviewed. Formation thermodynamic studies, including in situ observation of formation condition of methane hydrate, analysis of structure, and determination of hydrate cage occupancy and hydration numbers by using Raman spectroscopy, are emphasized. In the aspect of formation kinetics, research on variation in hydrate cage amount and methane concentration in water during the growth of hydrate using Raman spectroscopy is also introduced. For the methane hydrate decomposition, the investigation associated with decomposition mechanism, the mutative law of cage occupancy ratio and the formulation of decomposition rate in porous media are described. The important aspects for future hydrate research based on Raman spectroscopy are discussed.
Lee, Myung W.; Collett, Timothy S.
2005-01-01
Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.
NASA Astrophysics Data System (ADS)
Jin, Y.; Konno, Y.; Kida, M.; Nagao, J.
2014-12-01
Hydrate saturation of gas-hydrate bearing sediment is a key of gas production from natural gas-hydrate reservoir. Developable natural gas-hydrates by conventional gas/oil production apparatus almost exist in unconsolidated sedimental layer. Generally, hydrate saturations of sedimental samples are directly estimated by volume of gas generated from dissociation of gas hydrates in pore spaces, porosity data and volume of the sediments. Furthermore, hydrate saturation can be also assessed using velocity of P-wave through sedimental samples. Nevertheless, hydrate saturation would be changed by morphological variations (grain-coating, cementing and pore-filling model) of gas hydrates in pore spaces. Jin et al.[1,2] recently observed the O-H stretching bands of H2O molecules of methane hydrate in porous media using an attenuated total reflection IR (ATR-IR) spectra. They observed in situ hydrate formation/dissociation process in sandy samples (Tohoku Keisya number 8, grain size of ca. 110 μm). In this presentation, we present IR spectroscopy approach to in situ evaluation of hydrate saturation of pressured gas-hydrate sediments. This work was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI), Japan. [1] Jin, Y.; Konno, Y.; Nagao, J. Energy Fules, 2012, 26, 2242-2247. [2] Jin, Y.; Oyama, H.; Nagao, J. Jpn. J. Appl. Phys. 2009, 48, No. 108001.
Methane hydrate formation in partially water-saturated Ottawa sand
Waite, W.F.; Winters, W.J.; Mason, D.H.
2004-01-01
Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Santamarina, J. Carlos
Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate naturalmore » hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.« less
Evaluation of Gas Hydrate at Alaminos Canyon 810, Northern Gulf of Mexico Slope
NASA Astrophysics Data System (ADS)
Yang, C.; Cook, A.; Sawyer, D.; Hillman, J. I. T.
2016-12-01
We characterize the gas hydrate reservoir in Alaminos Canyon Block 810 (AC810) on the northern Gulf of Mexico slope, approximately 400 km southeast of Houston, Texas, USA. Three-dimensional seismic data shows a bottom-simulating-reflection (BSR), over 30 km2, which suggests that a significant gas hydrate accumulation may occur at AC810. Furthermore, logging while drilling (LWD) data acquired from a Statoil well located that penetrated the BSR near the crest of the regional anticline indicates two possible gas hydrate units (Hydrate Unit A and Hydrate Unit B). LWD data in this interval are limited to gamma ray and resistivity only. Resistivity curve separations are observed in Hydrate Unit A (131 to 253 mbsf) suggesting hydrate-filled fractures in marine mud. A spiky high resistivity response in Hydrate Unit B (308 to 354 mbsf) could either be a marine mud or a sand-prone interval. The abrupt decrease (from 7 to 1 Ωm) in resistivity logs at 357 mbsf generally corresponds with the interpreted base of hydrate stability, as the BSR is observed near 350 mbsf on the seismic data. To further investigate the formation characteristics, we generate synthetic traces using general velocity and density trends for marine sediments to match the seismic trace extracted at the Statoil well. We consider models with 1) free gas and 2) water only below the base of hydrate stability. In our free gas-below models, we find the velocity of Hydrate Unit A and Hydrate Unit B is generally low and does not deviate significantly from the general velocity trends, suggesting that gas hydrate is present in a marine mud. In the water-below model, the compressional velocity of Hydrate Unit B ranges from 2450 m/s to 3150 m/s. This velocity is similar to the velocity of high hydrate saturation in sand; typically greater than 2500 m/s. This may indicate that Hydrate Unit B is sand with high hydrate saturation; however, to achieve a suitable match between the water-below synthetic seismogram and the trace, a high velocity layer was required below the base of hydrate stability, which is not indicated by the well logs. Our models indicate that at AC810, Hydrate Unit A probably contains hydrate filled fractures in a marine mud. For Hydrate Unit B, our models suggest hydrate may occur in a sand-prone interval, but is more likely to be gas hydrate filled fractures in marine mud.
Ab initio investigation of the first hydration shell of protonated glycine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhichao; Chen, Dong, E-mail: dongchen@henu.edu.cn, E-mail: boliu@henu.edu.cn; Zhao, Huiling
2014-02-28
The first hydration shell of the protonated glycine is built up using Monte Carlo multiple minimum conformational search analysis with the MMFFs force field. The potential energy surfaces of the protonated glycine and its hydration complexes with up to eight water molecules have been scanned and the energy-minimized structures are predicted using the ab initio calculations. First, three favorable structures of protonated glycine were determined, and the micro-hydration processes showed that water can significantly stabilize the unstable conformers, and then their first hydration shells were established. Finally, we found that seven water molecules are required to fully hydrate the firstmore » hydration shell for the most stable conformer of protonated glycine. In order to analyse the hydration process, the dominant hydration sites located around the ammonium and carboxyl groups are studied carefully and systemically. The results indicate that, water molecules hydrate the protonated glycine in an alternative dynamic hydration process which is driven by the competition between different hydration sites. The first three water molecules are strongly attached by the ammonium group, while only the fourth water molecule is attached by the carboxyl group in the ultimate first hydration shell of the protonated glycine. In addition, the first hydration shell model has predicted most identical structures and a reasonable accord in hydration energy and vibrational frequencies of the most stable conformer with the conductor-like polarizable continuum model.« less
Microstructural characteristics of natural gas hydrates hosted in various sand sediments.
Zhao, Jiafei; Yang, Lei; Liu, Yu; Song, Yongchen
2015-09-21
Natural gas hydrates have aroused worldwide interest due to their energy potential and possible impact on climate. The occurrence of natural gas hydrates hosted in the pores of sediments governs the seismic exploration, resource assessment, stability of deposits, and gas production from natural gas hydrate reserves. In order to investigate the microstructure of natural gas hydrates occurring in pores, natural gas hydrate-bearing sediments were visualized using microfocus X-ray computed tomography (CT). Various types of sands with different grain sizes and wettability were used to study the effect of porous materials on the occurrence of natural gas hydrates. Spatial distributions of methane gas, natural gas hydrates, water, and sands were directly identified. This work indicates that natural gas hydrates tend to reside mainly within pore spaces and do not come in contact with adjacent sands. Such an occurring model of natural gas hydrates is termed the floating model. Furthermore, natural gas hydrates were observed to nucleate at gas-water interfaces as lens-shaped clusters. Smaller sand grain sizes contribute to higher hydrate saturation. The wetting behavior of various sands had little effect on the occurrence of natural gas hydrates within pores. Additionally, geometric properties of the sediments were collected through CT image reconstructions. These findings will be instructive for understanding the microstructure of natural gas hydrates within major global reserves and for future resource utilization of natural gas hydrates.
Thermodynamic properties of methane hydrate in quartz powder.
Voronov, Vitaly P; Gorodetskii, Evgeny E; Safonov, Sergey S
2007-10-04
Using the experimental method of precision adiabatic calorimetry, the thermodynamic (equilibrium) properties of methane hydrate in quartz sand with a grain size of 90-100 microm have been studied in the temperature range of 260-290 K and at pressures up to 10 MPa. The equilibrium curves for the water-methane hydrate-gas and ice-methane hydrate-gas transitions, hydration number, latent heat of hydrate decomposition along the equilibrium three-phase curves, and the specific heat capacity of the hydrate have been obtained. It has been experimentally shown that the equilibrium three-phase curves of the methane hydrate in porous media are shifted to the lower temperature and high pressure with respect to the equilibrium curves of the bulk hydrate. In these experiments, we have found that the specific heat capacity of the hydrate, within the accuracy of our measurements, coincides with the heat capacity of ice. The latent heat of the hydrate dissociation for the ice-hydrate-gas transition is equal to 143 +/- 10 J/g, whereas, for the transition from hydrate to water and gas, the latent heat is 415 +/- 15 J/g. The hydration number has been evaluated in the different hydrate conditions and has been found to be equal to n = 6.16 +/- 0.06. In addition, the influence of the water saturation of the porous media and its distribution over the porous space on the measured parameters has been experimentally studied.
NASA Astrophysics Data System (ADS)
Henninges, J.; Huenges, E.; Mallik Working Group
2003-04-01
Both the size and the distribution of natural methane hydrate occurrences, as well as the release of gaseous methane through the dissociation of methane hydrate, are affected by the subsurface pressure and temperature conditions. During a field experiment, which was carried out in the Mackenzie Delta, NWT, Canada, within the framework of the Mallik 2002 Production Research Well Program*, the variation of temperature within three 40 m spaced, 1200 m deep wells was measured deploying the Distributed Temperature Sensing (DTS) technology. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions. A special feature is the placement of the fibre-optic sensor cable inside the cement annulus between the casing and the wall of the borehole. Temperature profiles were recorded with a sampling interval of 0.25 m and 5 min, and temperatures can be determined with a resolution of 0.3 °C. The observed variation of temperature over time shows the decay of the thermal disturbances caused by the drilling and construction of the wells. An excellent indicator for the location of the base of the ice-bonded permafrost layer, which stands out as a result of the latent heat of the frozen pore fluid, is a sharp rise in temperature at 604 m depth during the period of equilibration. A similar effect can be detected in the depth interval between 1105 m and 1110 m, which is interpreted as an indicator for the depth to the base of the methane hydrate stability zone. Nine months after the completion of the wells the measured borehole temperatures are close to equilibrium. The mean temperature gradient rises from 9.4 K/km inside the permafrost to 25.4 K/km in the ice-free sediment layers underneath. The zone of the gas hydrate occurrences between 900 m and 1100 m shows distinct variations of the geothermal gradient, which locally rises up to 40 K/km. At the lower boundary of the methane hydrate stability zone a temperature of 12.2 °C was measured. (*) The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group.
USDA-ARS?s Scientific Manuscript database
Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to ‘resurrect’ from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/de...
Inhibition of Radiolytic Molecular Hydrogen Formation by Quenching of Excited State Water
Horne, Gregory P.; Pimblott, Simon M.; LaVerne, Jay A.
2017-05-11
Comparison of experimental measurements of the yield of molecular hydrogen produced in the gamma radiolysis of water and aqueous nitrate solutions with predictions of a Monte Carlo track chemistry model shows that the nitrate anion scavenging of the hydrated electron, its precursor, and hydrogen atom cannot account for the observed decrease in the yield at high nitrate anion concentrations. Inclusion of the quenching of excited states of water (formed by either direct excitation or reaction of the water radical cation with the precursor to the hydrated electron) by the nitrate anion into the reaction scheme provides excellent agreement between themore » stochastic calculations and experiment demonstrating the existence of this short-lived species and its importance in water radiolysis. Energy transfer from the excited states of water to the nitrate anion producing an excited state provides an additional pathway for the production of nitrogen containing products not accounted for in traditional radiation chemistry scenarios. Such reactions are of central importance in predicting the behavior of liquors common in the reprocessing of spent nuclear fuel and the storage of highly radioactive liquid waste prior to vitrification.« less
"Cooking the sample": radiofrequency induced heating during solid-state NMR experiments.
d'Espinose de Lacaillerie, Jean-Baptiste; Jarry, Benjamin; Pascui, Ovidiu; Reichert, Detlef
2005-09-01
Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time-temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as "microwave" heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR.
Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.
2007-01-01
The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.
2011-01-01
Background Dengue fever is one of the most common tropical diseases worldwide. Early detection of the disease, followed by intravenous fluid therapy in patients with dengue hemorrhagic fever (DHF) or with warning signs of dengue has a major impact on the prognosis. The purpose of this study is to describe the care provided in a hydration tent, including early detection, treatment, and serial follow-up of patients with dengue fever. Findings The analysis included all patients treated in the hydration tent from April 8 to May 9, 2008. The tent was set up inside the premises of the 2nd Military Firemen Group, located in Meier, a neighborhood in Rio de Janeiro, Brazil. The case form data were stored in a computerized database for subsequent assessment. Patients were referred to the tent from primary care units and from secondary city and state hospitals. The routine procedure consisted of an initial screening including vital signs (temperature, blood pressure, heart rate, and respiratory rate), tourniquet test and blood sampling for complete blood count. Over a 31-day period, 3,393 case recordings were seen at the hydration tent. The mean was 109 patients per day. A total of 2,102 initial visits and 1,291 return visits were conducted. Of the patients who returned to the hydration tent for reevaluation, 850 returned once, 230 returned twice, 114 returned three times, and 97 returned four times or more. Overall, 93 (5.3%) patients with DHF seen at the tent were transferred to a tertiary hospital. There were no deaths among these patients. Discussion As the epidemics were already widespread and there were no technical conditions for routine serology, all cases of suspected dengue fever were treated as such. Implementing hydration tents decrease the number of dengue fever hospitalizations. PMID:21902823
Malisova, Olga; Athanasatou, Adelais; Pepa, Alex; Husemann, Marlien; Domnik, Kirsten; Braun, Hans; Mora-Rodriguez, Ricardo; Ortega, Juan F; Fernandez-Elias, Valentin E; Kapsokefalou, Maria
2016-04-06
Hydration status is linked with health, wellness, and performance. We evaluated hydration status, water intake, and urine output for seven consecutive days in healthy adults. Volunteers living in Spain, Germany, or Greece (n = 573, 39 ± 12 years (51.1% males), 25.0 ± 4.6 kg/m² BMI) participated in an eight-day study protocol. Total water intake was estimated from seven-day food and drink diaries. Hydration status was measured in urine samples collected over 24 h for seven days and in blood samples collected in fasting state on the mornings of days 1 and 8. Total daily water intake was 2.75 ± 1.01 L, water from beverages 2.10 ± 0.91 L, water from foods 0.66 ± 0.29 L. Urine parameters were: 24 h volume 1.65 ± 0.70 L, 24 h osmolality 631 ± 221 mOsmol/kg Η2Ο, 24 h specific gravity 1.017 ± 0.005, 24 h excretion of sodium 166.9 ± 54.7 mEq, 24 h excretion of potassium 72.4 ± 24.6 mEq, color chart 4.2 ± 1.4. Predictors for urine osmolality were age, country, gender, and BMI. Blood indices were: haemoglobin concentration 14.7 ± 1.7 g/dL, hematocrit 43% ± 4% and serum osmolality 294 ± 9 mOsmol/kg Η2Ο. Daily water intake was higher in summer (2.8 ± 1.02 L) than in winter (2.6 ± 0.98 L) (p = 0.019). Water intake was associated negatively with urine specific gravity, urine color, and urine sodium and potassium concentrations (p < 0.01). Applying urine osmolality cut-offs, approximately 60% of participants were euhydrated and 20% hyperhydrated or dehydrated. Most participants were euhydrated, but a substantial number of people (40%) deviated from a normal hydration level.
Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media
NASA Astrophysics Data System (ADS)
Seol, Yongkoo; Kneafsey, Timothy J.
2011-08-01
An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.
Zhao, Wenchang; Song, Lijun; Deng, Hongzhu; Yao, Hui
2009-05-01
It is a challenge to deliver water-soluble drug based on hydrophilic matrix to colon because of swelling and erosion of polysaccharides in contact with media. In our study, guar-based hydrophilic matrix tablets containing water-soluble total alkaloids of Sophora alopecuroides prepared by wet granulation technique were evaluated. A novel method was established to investigate the changes of swelling and volume for guar-based tablets in undynamic state, which generally showed a rapid swelling and volume change in the first 9 h, then the hydrated speed slowed down. On the other hand, the influence of different pH of the media on water uptake and erosion of various guar-based formulations in dynamic state indicated that the hydrated constants in simulated gastric fluid (SGF) was higher than that in SIF, which followed varied mechanism of water penetration by fitting Davidson and Peppas model. The extent of erosion was between 22.4 and 32.6% in SIF within 360 min. In vitro sophoridine release studies in successive different mimicking media showed that the guar matrix tablets released 13.5-25.6% of sophoridine in the first 6 h; therefore it was necessary to develop the bilayer matrix tablet by direct-compressing coating 100 mg guar granula on core tablet. The initial release of coated tablet was retarded and the bilayer matrix tablet was suitable for colon target.
Elastic properties of gas hydrate-bearing sediments
Lee, M.W.; Collett, T.S.
2001-01-01
Downhole-measured compressional- and shear-wave velocities acquired in the Mallik 2L-38 gas hydrate research well, northwestern Canada, reveal that the dominant effect of gas hydrate on the elastic properties of gas hydrate-bearing sediments is as a pore-filling constituent. As opposed to high elastic velocities predicted from a cementation theory, whereby a small amount of gas hydrate in the pore space significantly increases the elastic velocities, the velocity increase from gas hydrate saturation in the sediment pore space is small. Both the effective medium theory and a weighted equation predict a slight increase of velocities from gas hydrate concentration, similar to the field-observed velocities; however, the weighted equation more accurately describes the compressional- and shear-wave velocities of gas hydrate-bearing sediments. A decrease of Poisson's ratio with an increase in the gas hydrate concentration is similar to a decrease of Poisson's ratio with a decrease in the sediment porosity. Poisson's ratios greater than 0.33 for gas hydrate-bearing sediments imply the unconsolidated nature of gas hydrate-bearing sediments at this well site. The seismic characteristics of gas hydrate-bearing sediments at this site can be used to compare and evaluate other gas hydrate-bearing sediments in the Arctic.
Lorenson, T.D.
1999-01-01
Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.
Economic geology of natural gas hydrate
Max, M.D.; Johnson, A.H.; Dillon, William P.
2006-01-01
This is the first book that attempts to broadly integrate the most recent knowledge in the fields of hydrate nucleation and growth in permafrost regions and marine sediments. Gas hydrate reactant supply, growth models, and implications for pore fill by natural gas hydrate are discussed for both seawater precursors in marine sediments and for permafrost hydrate. These models for forming hydrate concentrations that will constitute targets for exploration are discussed, along with exploration methods. Thermodynamic models for the controlled conversion of hydrate to natural gas, which can be recovered using conventional industry practices, suggest that a number of different types of hydrate occurrence are likely to be practical sources of hydrate natural gas. Current progress in the various aspects of commercial development of hydrate gas deposits are discussed, along with the principal extractive issues that have yet to be resolved.
The Potential Socio-economic Impacts of Gas Hydrate Exploitation
NASA Astrophysics Data System (ADS)
Riley, David; Schaafsma, Marije; Marin-Moreno, Héctor; Minshull, Tim A.
2017-04-01
Gas hydrate has garnered significant interest as a possible clean fossil fuel resource, especially in countries with limited energy supplies. Whilst the sector is still in its infancy, there has been escalating development towards commercial production. To the best of our knowledge it appears that, despite its potential, existing analyses of the social and economic impacts of hydrate exploitation have been very limited. Before any viable commercial production commences, the potential impacts across society must be considered. It is likely that such impact assessments will become a legislative requirement for hydrate exploitation, similar to their requirement in conventional oil and gas projects. Social impact analysis should guide hydrate development to have the highest possible net benefits to the human and natural environment. Without active commercial hydrate operations, potential socio-economic impacts can only be inferred from other fossil fuel resource focused communities, including those directly or indirectly affected by the oil and gas industry either in the vicinity of the well or further afield. This review attempts to highlight potential impacts by synthesising current literature, focusing on social impacts at the extraction stage of operation, over time. Using a DPSIR (Driving forces; Pressures; States; Impacts; Responses) framework, we focus on impacts upon: health and wellbeing, land use and access, services and infrastructure, population, employment opportunities, income and lifestyles. Human populations directly or indirectly related with fossil fuel extraction activities often show boom and bust dynamics, and so any impacts may be finite or change temporally. Therefore potential impacts have to be reassessed throughout the lifetime of the exploitation. Our review shows there are a wide range of possible positive and negative socio-economic impacts from hydrate development. Exploitation can bring jobs and infrastructure to remote areas, although the labour supply may not fit with the labour demand. In regions with an existing strong fossil fuel energy sector, hydrate development would prolong the timeframe for which this sector could significantly contribute to the local and wider economy. In unexploited areas the industry can provide considerable income to an otherwise undeveloped region. Industrialisation tends to increase regional population, pressuring existing public services, such as healthcare and transport infrastructure. Immigrant fossil fuel sector workers are predominantly young, male and single. Their presence may be linked to elevated levels of certain social issues seen as undesirable problems by the community at large, such as drug usage or alcoholism. Hydrate development provides limited benefit to indigenous communities who are still following a traditional cultural lifestyle in the proposed development area, as many opportunities are not compatible with their way of life. Additionally, industry associated infrastructure can reduce the ability of the indigenous population to utilise the land directly, or as an access route elsewhere. The range of possible impacts show that any hydrate development must be carefully managed to maximise its potential, whether this takes the form of using the revenue from hydrate exploitation to try and counter the associated issues, or whether there needs to be specific limits placed on locations where extraction can occur.
Experimental Work Conducted on MgO Inundated Hydration in WIPP-Relevant Brines
NASA Astrophysics Data System (ADS)
Deng, H.; Xiong, Y.; Nemer, M. B.; Johnsen, S.
2009-12-01
Magnesium oxide (MgO) is being emplaced in the Waste Isolation Pilot Plant (WIPP) as an engineered barrier to mitigate the effect of microbial CO2 generation on actinide mobility in a postclosure repository environment. MgO will sequester CO2 and consume water in brine or water vapor in the gaseous phase. Martin Marietta (MM) MgO is currently being emplaced in the WIPP. A fractional-factorial experiment has been performed to study the inundated-hydration of MM MgO as a function of its particle size, solid-to-liquid ratio, and brine type. MgO hydration experiments have been carried out with three MgO particle sizes and two solid-to-liquid ratios in three WIPP-related brines: ERDA-6, GWB and simplified GWB. ERDA-6 is a synthetic NaCl-rich brine typical of a Castile brine reservoir below the repository. GWB is a synthetic MgCl2- and NaCl-rich brine representative of intergranular brines from the Salado Formation at or near the stratigraphic horizon of the repository. Simplified GWB contains amounts of Mg, Na, and Cl similar to those in GWB without other minor constituents. The hydration products include brucite (Mg(OH)2) and phase 5 (Mg3(OH)5Cl4H2O). In addition to phase 5, MgO hydration in GWB or simplified GWB produces brucite, whereas MgO hydrated in ERDA-6 only produces brucite. The MgO particle size has had a significant effect on the formation of hydration products: small MgO particles have hydrated before the large particles. MgO has hydrated faster in simplified GWB than in the other two brines. In ERDA-6, the solid-to-liquid ratio has affected the brine pH due to the presence of CaO (~1 wt %) as an impurity in MM MgO. GWB has sufficient dissolved Mg to buffer pH despite small amounts of CaO. Both our results and thermodynamic modeling indicate that phase-5 is the stable Mg-OH-Cl phase in Mg-Na-Cl-dominated brines with ionic strengths and chemical compositions similar to that of GWB. In contrast, phase-3 (Mg2(OH)3Cl4H2O) is the stable phase in the MgCl2-saturated Q-brine, a high-ionic-strength (up to 15 m) brine from Asse, Germany. We used EQ3/6 to simulate MgO hydration and carbonation in a closed system containing brine and CO2 at atmospheric concentration by titrating periclase into the system. (EQ3/6 is a geochemical software package for speciation, solubility calculations and reaction path modeling.) EQ3/6 predicted Mg and Cl concentrations and pH similar to the experimentally observed values. EQ3/6 also predicted hydration products similar to thsoe observed experimentally. * This research is funded by WIPP programs administered by the U.S. Department of Energy. ** Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Environmental Research At The Advanced Photon Source
Because of the importance of probing molecular-scale chemical and physical structure of environmental samples in their natural and often hydrated state, synchrotron radiation has been a powerful tool for environmental scientists for decades. Thus, the crucial role that a highly ...
Lanthanide Diphthalocyanines. Electrochemistry and Display Applications.
1982-01-01
transients, cyclic voltametry (Nicholson and Galiardi, 1977, 1978; Noskalev and Shapkin, 1978). and a novel solid-state moving-boundary technique...was confirmed for the reverse process by linear potential- sweep voltammetry. Although the hydrazine hydrate my not have been simply an inert solvent
Schicks, J M; Luzi, M; Beeskow-Strauch, B
2011-11-24
Microscopy, confocal Raman spectroscopy and powder X-ray diffraction (PXRD) were used for in situ investigations of the CO(2)-hydrocarbon exchange process in gas hydrates and its driving forces. The study comprises the exposure of simple structure I CH(4) hydrate and mixed structure II CH(4)-C(2)H(6) and CH(4)-C(3)H(8) hydrates to gaseous CO(2) as well as the reverse reaction, i.e., the conversion of CO(2)-rich structure I hydrate into structure II mixed hydrate. In the case of CH(4)-C(3)H(8) hydrates, a conversion in the presence of gaseous CO(2) from a supposedly more stable structure II hydrate to a less stable structure I CO(2)-rich hydrate was observed. PXRD data show that the reverse process requires longer initiation times, and structural changes seem to be less complete. Generally, the exchange process can be described as a decomposition and reformation process, in terms of a rearrangement of molecules, and is primarily induced by the chemical potential gradient between hydrate phase and the provided gas phase. The results show furthermore the dependency of the conversion rate on the surface area of the hydrate phase, the thermodynamic stability of the original and resulting hydrate phase, as well as the mobility of guest molecules and formation kinetics of the resulting hydrate phase.
Hofer, Thomas S; Hünenberger, Philippe H
2018-06-14
The absolute intrinsic hydration free energy G H + ,wat ◦ of the proton, the surface electric potential jump χ wat ◦ upon entering bulk water, and the absolute redox potential V H + ,wat ◦ of the reference hydrogen electrode are cornerstone quantities for formulating single-ion thermodynamics on absolute scales. They can be easily calculated from each other but remain fundamentally elusive, i.e., they cannot be determined experimentally without invoking some extra-thermodynamic assumption (ETA). The Born model provides a natural framework to formulate such an assumption (Born ETA), as it automatically factors out the contribution of crossing the water surface from the hydration free energy. However, this model describes the short-range solvation inaccurately and relies on the choice of arbitrary ion-size parameters. In the present study, both shortcomings are alleviated by performing first-principle calculations of the hydration free energies of the sodium (Na + ) and potassium (K + ) ions. The calculations rely on thermodynamic integration based on quantum-mechanical molecular-mechanical (QM/MM) molecular dynamics (MD) simulations involving the ion and 2000 water molecules. The ion and its first hydration shell are described using a correlated ab initio method, namely resolution-of-identity second-order Møller-Plesset perturbation (RIMP2). The next hydration shells are described using the extended simple point charge water model (SPC/E). The hydration free energy is first calculated at the MM level and subsequently increased by a quantization term accounting for the transformation to a QM/MM description. It is also corrected for finite-size, approximate-electrostatics, and potential-summation errors, as well as standard-state definition. These computationally intensive simulations provide accurate first-principle estimates for G H + ,wat ◦ , χ wat ◦ , and V H + ,wat ◦ , reported with statistical errors based on a confidence interval of 99%. The values obtained from the independent Na + and K + simulations are in excellent agreement. In particular, the difference between the two hydration free energies, which is not an elusive quantity, is 73.9 ± 5.4 kJ mol -1 (K + minus Na + ), to be compared with the experimental value of 71.7 ± 2.8 kJ mol -1 . The calculated values of G H + ,wat ◦ , χ wat ◦ , and V H + ,wat ◦ (-1096.7 ± 6.1 kJ mol -1 , 0.10 ± 0.10 V, and 4.32 ± 0.06 V, respectively, averaging over the two ions) are also in remarkable agreement with the values recommended by Reif and Hünenberger based on a thorough analysis of the experimental literature (-1100 ± 5 kJ mol -1 , 0.13 ± 0.10 V, and 4.28 ± 0.13 V, respectively). The QM/MM MD simulations are also shown to provide an accurate description of the hydration structure, dynamics, and energetics.
Graphene liquid cells for multi-technique analysis of biological cells in water environment
NASA Astrophysics Data System (ADS)
Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.
2018-05-01
In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.
Damer, Bruce; Deamer, David
2015-01-01
Hydrothermal fields on the prebiotic Earth are candidate environments for biogenesis. We propose a model in which molecular systems driven by cycles of hydration and dehydration in such sites undergo chemical evolution in dehydrated films on mineral surfaces followed by encapsulation and combinatorial selection in a hydrated bulk phase. The dehydrated phase can consist of concentrated eutectic mixtures or multilamellar liquid crystalline matrices. Both conditions organize and concentrate potential monomers and thereby promote polymerization reactions that are driven by reduced water activity in the dehydrated phase. In the case of multilamellar lipid matrices, polymers that have been synthesized are captured in lipid vesicles upon rehydration to produce a variety of molecular systems. Each vesicle represents a protocell, an “experiment” in a natural version of combinatorial chemistry. Two kinds of selective processes can then occur. The first is a physical process in which relatively stable molecular systems will be preferentially selected. The second is a chemical process in which rare combinations of encapsulated polymers form systems capable of capturing energy and nutrients to undergo growth by catalyzed polymerization. Given continued cycling over extended time spans, such combinatorial processes will give rise to molecular systems having the fundamental properties of life. PMID:25780958
Micro-mechanical modelling of cellulose aerogels from molten salt hydrates.
Rege, Ameya; Schestakow, Maria; Karadagli, Ilknur; Ratke, Lorenz; Itskov, Mikhail
2016-09-14
In this paper, a generalised micro-mechanical model capable of capturing the mechanical behaviour of polysaccharidic aerogels, in particular cellulose aerogels, is proposed. To this end, first the mechanical structure and properties of these highly nanoporous cellulose aerogels prepared from aqueous salt hydrate melts (calcium thiocyanate, Ca(SCN)2·6H2O and zinc chloride, ZnCl2·4H2O) are studied. The cellulose content within these aerogels is found to have a direct relation to the microstructural quantities such as the fibril length and diameter. This, along with porosity, appears to influence the resulting mechanical properties. Furthermore, experimental characterisation of cellulose aerogels was done using scanning electron microscopy (SEM), pore-size data analysis, and compression tests. Cellulose aerogels are of a characteristic cellular microstructures and accordingly a network formed by square shaped cells is considered in the micro-mechanical model proposed in this paper. This model is based on the non-linear bending and collapse of such cells of varying pore sizes. The extended Euler-Bernoulli beam theory for large deflections is used to describe the bending in the cell walls. The proposed model is physically motivated and demonstrates a good agreement with our experimental data of both ZnCl2 and Ca(SCN)2 based cellulose aerogels with different cellulose contents.
NASA Astrophysics Data System (ADS)
Tyler, Bonnie J.; Rangaranjan, Srinath; Möller, Jörg; Beumer, Andre'; Arlinghaus, Heinrich F.
2006-07-01
The diffusion of the anti-microbial chlorhexidine digluconate (CHG) has been studied in C. albicans biofilms by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). C. albicans has been shown to become resistant to common anti-microbial agents, including CHG, when growing as a biofilm. Mass transport resistance within biofilms has commonly been suggested as a resistance mechanism, but measurement of transport for most anti-microbial agents in biofilms has proven extremely difficult because of the heterogeneity of the biofilms and the difficulty in detecting these agents within an intact biofilm. In this study, TOF-SIMS has been used to study the transport of CHG and glucose in a frozen hydrated biofilm. The TOF-SIMS images reveal a progression of CHG from the top of the biofilm to its base with time. Images suggest that there are channels within the biofilm and show preferential binding of CHG to cellular components of the biofilm. Additionally, both living and dead cells can be identified in the TOF-SIMS images by the sequestration of K + and the presence of cell markers. This study demonstrates that TOF-SIMS has the unique potential to simultaneously observe the presence of an antimicrobial agent, concentration of nutrients, and the viability of the cell population.
Physiochemical properties and application of hyaluronic acid: a systematic review.
Salwowska, Natalia M; Bebenek, Katarzyna A; Żądło, Dominika A; Wcisło-Dziadecka, Dominika L
2016-12-01
Hyaluronic acid is a widely available, biocompatible, polysaccharide with distinguishing physiochemical properties which inspire its application throughout several fields of medicine. We aim to investigate the application of hyaluronic acid and its effectiveness throughout several fields of medicine, including several therapies administered and prescribed by general health practitioners. We conducted a systematic review on randomized controlled trials about the physiochemical properties of hyaluronic acid and its application through primary care. Studies included in this review were peer reviewed and met our inclusion criteria. Factors were clustered into the following: uses throughout several fields of medicine, physiochemical properties, bioavailability, tolerance, effectiveness, and adverse effects. Therapies with hyaluronic acid provided long-lasting, pain relieving, moisturizing, lubricating, and dermal filling effect. Tissue hydration, elasticity, and durability improved. Adjunct therapy with hyaluronic acid provides longer-lasting therapeutic effect when compared to the use of glucocorticosteroids and NSAIDs in osteoarthritic chronic diseases, is well-established in ophthalmology due to its lubricating properties for the corneal endothelium, and improves tissue hydration and cellular resistance to mechanical damage in aesthetic dermatology, and has marginal adverse effects. Several trials indicated its role in tumor markers, liver diseases, and in pharmaceuticals, but further research would be necessary to draw conclusive results in those fields. © 2016 Wiley Periodicals, Inc.
He, Zhongjin; Linga, Praveen; Jiang, Jianwen
2017-10-31
Microsecond simulations have been performed to investigate CH 4 hydrate formation from gas/water two-phase systems between silica and graphite surfaces, respectively. The hydrophilic silica and hydrophobic graphite surfaces exhibit substantially different effects on CH 4 hydrate formation. The graphite surface adsorbs CH 4 molecules to form a nanobubble with a flat or negative curvature, resulting in a low aqueous CH 4 concentration, and hydrate nucleation does not occur during 2.5 μs simulation. Moreover, an ordered interfacial water bilayer forms between the nanobubble and graphite surface thus preventing their direct contact. In contrast, the hydroxylated-silica surface prefers to be hydrated by water, with a cylindrical nanobubble formed in the solution, leading to a high aqueous CH 4 concentration and hydrate nucleation in the bulk region; during hydrate growth, the nanobubble is gradually covered by hydrate solid and separated from the water phase, hence slowing growth. The silanol groups on the silica surface can form strong hydrogen bonds with water, and hydrate cages need to match the arrangements of silanols to form more hydrogen bonds. At the end of the simulation, the hydrate solid is separated from the silica surface by liquid water, with only several cages forming hydrogen bonds with the silica surface, mainly due to the low CH 4 aqueous concentrations near the surface. To further explore hydrate formation between graphite surfaces, CH 4 /water homogeneous solution systems are also simulated. CH 4 molecules in the solution are adsorbed onto graphite and hydrate nucleation occurs in the bulk region. During hydrate growth, the adsorbed CH 4 molecules are gradually converted into hydrate solid. It is found that the hydrate-like ordering of interfacial water induced by graphite promotes the contact between hydrate solid and graphite. We reveal that the ability of silanol groups on silica to form strong hydrogen bonds to stabilize incipient hydrate solid, as well as the ability of graphite to adsorb CH 4 molecules and induce hydrate-like ordering of the interfacial water, are the key factors to affect CH 4 hydrate formation between silica and graphite surfaces.
Yan, Ke-Feng; Li, Xiao-Sen; Chen, Zhao-Yang; Xia, Zhi-Ming; Xu, Chun-Gang; Zhang, Zhiqiang
2016-08-09
The behavior of hydrate formation in porous sediment has been widely studied because of its importance in the investigation of reservoirs and in the drilling of natural gas hydrate. However, it is difficult to understand the hydrate nucleation and growth mechanism on the surface and in the nanopores of porous media by experimental and numerical simulation methods. In this work, molecular dynamics simulations of the nucleation and growth of CH4 hydrate in the presence of the surface and nanopores of clay are carried out. The molecular configurations and microstructure properties are analyzed for systems containing one H2O hydrate layer (System A), three H2O hydrate layers (System B), and six H2O hydrate layers (System C) in both clay and the bulk solution. It is found that hydrate formation is more complex in porous media than in the pure bulk solution and that there is cooperativity between hydrate growth and molecular diffusion in clay nanopores. The hydroxylated edge sites of the clay surface could serve as a source of CH4 molecules to facilitate hydrate nucleation. The diffusion velocity of molecules is influenced by the growth of the hydrate that forms a block in the throats of the clay nanopore. Comparing hydrate growth in different clay pore sizes reveals that the pore size plays an important role in hydrate growth and molecular diffusion in clay. This simulation study provides the microscopic mechanism of hydrate nucleation and growth in porous media, which can be favorable for the investigation of the formation of natural gas hydrate in sediments.
Xu, Jiafang; Li, Liwen; Liu, Jinxiang; Wang, Xiaopu; Yan, Youguo; Zhang, Jun
2018-03-28
The inhibition properties of kinetic hydrate inhibitor (KHI) molecules on the dynamic growth of a hydrate/water interface are investigated by using molecular dynamics simulations. The shape of the hydrate interface is transformed from laminar to funnel by PVCaps. Results indicate that the inhibition effects not only depend on the adsorption capacity which was believed to determine inhibition, but also on the fact that PVCaps must have some non-binding-hydrate sites that don't tend to combine with hydrate. By observing the time evolution of the distance between each component of PVCaps and hydrate, the heterocyclic ring of PVCaps mainly contributes to adsorption and can preferentially adjust itself to come into contact with a hydrate semi-large-cage. The distance between the amide of PVCaps and hydrate is about 4 Å and exceeds the range of a general hydrogen bond (3.5 Å), which proves that the non-binding-hydrate sites of PVCaps exist. On the other hand, the amide of PVCaps is at the intersection of the solid-liquid interface but has no adsorption affinity for hydrate, so this adsorption pattern indicates that the PVCaps at the hydrate interface are not stable. Due to this unstable adsorption, a repeated hydrate destruction phenomenon was revealed by the identification algorithm of hydrate and the calculation of the local number density of methane. The statistical evolution of water rings further proved the existence of non-binding-hydrate sites in PVCaps and the inhibition mechanism to destroy the hydrate cages by PVCaps. This unstable adsorption mechanism may shed light on the development of novel efficient KHIs.
NASA Astrophysics Data System (ADS)
Gao, H.; Lu, H.; Lu, Z.
2014-12-01
Gas hydrates were found in the permafrost of Qilian Mountain, Qinghai- Tibet Plateau, China in 2008. It has been found that gas hydrates occur in Jurassic sedimentary rocks, and the hydrated gases are mainly thermogenic. Different from the gas hydrates existing in loose sands in Mallik, Mackenzie Delta, Canada and North Slope, Alaska, USA, the gas hydrates in Qilian Mountain occurred in hard rocks. For understanding the occurrence and formation mechanism of gas hydrate in hard rcok, extensive experimental investigations have been conducted to study the pore features and hydrate formation in the rocks recovered from the hydrate layers in Qilian Mountain. The structures of sedimentary rock were observed by high-resolution X-ray CT, and pore size distribution of a rock specimen was measured with the mercury-injection method. Methane hydrate was synthesized in water-saturated rocks, and the saturations of hydrate in sedimentary rocks of various types were estimated from the amount of gas released from certain volume of rock. X-ray CT observation revealed that fractures were developed in the rocks associated with faults, while those away from faults were generally with massive structure. The mercury-injection analysis of pore features found that the porosities of the hydrate-existing rocks were generally less than 3%, and the pore sizes were generally smaller than 100 nm. The synthesizing experiments found that the saturation of methane hydrate were generally lower than 6% of pore space in rocks, but up to 16% when fractures developed. The low hydrate saturation in Qilian sedimentary rocks has been found mainly due to the small pore size of rock. The low hydrate saturation in the rocks might be the reason for the failure of regional seismic and logging detections of gas hydrates in Qilian Mountain.
NASA Astrophysics Data System (ADS)
Chand, Shyam; Minshull, Tim A.; Priest, Jeff A.; Best, Angus I.; Clayton, Christopher R. I.; Waite, William F.
2006-08-01
The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L-38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.
Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.
2006-01-01
The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.
Dielectric method of high-resolution gas hydrate estimation
NASA Astrophysics Data System (ADS)
Sun, Y. F.; Goldberg, D.
2005-02-01
In-situ dielectric properties of natural gas hydrate are measured for the first time in the Mallik 5L-38 Well in the Mackenzie Delta, Canada. The average dielectric constant of the hydrate zones is 9, ranging from 5 to 20. The average resistivity is >5 ohm.m in the hydrate zones, ranging from 2 to 10 ohm.m at a 1.1 GHz dielectric tool frequency. The dielectric logs show similar trends with sonic and induction resistivity logs, but exhibits inherently higher vertical resolution (<5 cm). The average in-situ hydrate saturation in the well is about 70%, ranging from 20% to 95%. The dielectric estimates are overall in agreement with induction estimates but the induction log tends to overestimate hydrate content up to 15%. Dielectric estimates could be used as a better proxy of in-situ hydrate saturation in modeling hydrate dynamics. The fine-scale structure in hydrate zones could help reveal hydrate formation history.
Winters, W.J.
1999-01-01
As part of an ongoing laboratory study, preliminary acoustic, strength, and hydraulic conductivity results are presented from a suite of tests conducted on four natural-gas-hydrate-containing samples from the Mackenzie Delta JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The gas hydrate samples were preserved in pressure vessels during transport from the Northwest Territories to Woods Hole, Massachusetts, where multistep tests were performed using GHASTLI (Gas Hydrate And Sediment Test Laboratory Instrument), which recreates pressure and temperature conditions that are stable for gas hydrate. Properties and changes in sediment behaviour were measured before, during, and after controlled gas hydrate dissociation. Significant amounts of gas hydrate occupied the sample pores and substantially increased acoustic velocity and shear strength.
Surfactant process for promoting gas hydrate formation and application of the same
Rogers, Rudy E.; Zhong, Yu
2002-01-01
This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.
Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates.
Holzammer, Christine; Schicks, Judith M; Will, Stefan; Braeuer, Andreas S
2017-09-07
We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO 2 ) gas hydrates using Raman spectroscopy. The CO 2 hydrates were formed from sodium chloride/water solutions with salinities of 0-10 wt %, which were pressurized with liquid CO 2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO 2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, x H , and the fraction of the dispersed liquid water-rich phase, x L , from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate x H contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO 2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO 2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO 2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect.
Probing methane hydrate nucleation through the forward flux sampling method.
Bi, Yuanfei; Li, Tianshu
2014-11-26
Understanding the nucleation of hydrate is the key to developing effective strategies for controlling methane hydrate formation. Here we present a computational study of methane hydrate nucleation, by combining the forward flux sampling (FFS) method and the coarse-grained water model mW. To facilitate the application of FFS in studying the formation of methane hydrate, we developed an effective order parameter λ on the basis of the topological analysis of the tetrahedral network. The order parameter capitalizes the signature of hydrate structure, i.e., polyhedral cages, and is capable of efficiently distinguishing hydrate from ice and liquid water while allowing the formation of different hydrate phases, i.e., sI, sII, and amorphous. Integration of the order parameter λ with FFS allows explicitly computing hydrate nucleation rates and obtaining an ensemble of nucleation trajectories under conditions where spontaneous hydrate nucleation becomes too slow to occur in direct simulation. The convergence of the obtained hydrate nucleation rate was found to depend crucially on the convergence of the spatial distribution for the spontaneously formed hydrate seeds obtained from the initial sampling of FFS. The validity of the approach is also verified by the agreement between the calculated nucleation rate and that inferred from the direct simulation. Analyzing the obtained large ensemble of hydrate nucleation trajectories, we show hydrate formation at 220 K and 500 bar is initiated by the nucleation events occurring in the vicinity of water-methane interface, and facilitated by a gradual transition from amorphous to crystalline structure. The latter provides the direct support to the proposed two-step nucleation mechanism of methane hydrate.
Thompson, Helen; Soper, Alan K; Buchanan, Piers; Aldiwan, Nawaf; Creek, Jefferson L; Koh, Carolyn A
2006-04-28
Neutron diffraction studies with hydrogen/deuterium isotope substitution measurements are performed to investigate the water structure at the early, medium, and late periods of methane clathrate hydrate formation and decomposition. These measurements are coupled with simultaneous gas consumption measurements to track the formation of methane hydrate from a gas/water mixture, and then the complete decomposition of hydrate. Empirical potential structure refinement computer simulations are used to analyze the neutron diffraction data and extract from the data the water structure in the bulk methane hydrate solution. The results highlight the significant changes in the water structure of the remaining liquid at various stages of hydrate formation and decomposition, and give further insight into the way in which hydrates form. The results also have important implications on the memory effect, suggesting that the water structure in the presence of hydrate crystallites is significantly different at equivalent stages of forming compared to decomposing. These results are in sharp contrast to the previously reported cases when all remaining hydrate crystallites are absent from the solution. For these systems there is no detectable change in the water structure or the methane hydration shell before hydrate formation and after decomposition. Based on the new results presented in this paper, it is clear that the local water structure is affected by the presence of hydrate crystallites, which may in turn be responsible for the "history" or "memory" effect where the production of hydrate from a solution of formed and then subsequently melted hydrate is reportedly much quicker than producing hydrate from a fresh water/gas mixture.
Yang, Mingjun; Song, Yongchen; Jiang, Lanlan; Zhu, Ningjun; Liu, Yu; Zhao, Yuechao; Dou, Binlin; Li, Qingping
2013-09-03
The purpose of this study was to investigate the hydrate formation and dissociation with CO2 flowing through cooled porous media at different flow rates, pressures, temperatures, and flow directions. CO2 hydrate saturation was quantified using the mean intensity of water. The experimental results showed that the hydrate block appeared frequently, and it could be avoided by stopping CO2 flooding early. Hydrate formed rapidly as the temperature was set to 274.15 or 275.15 K, but the hydrate formation delayed when it was 276.15 K. The flow rate was an important parameter for hydrate formation; a too high or too low rate was not suitable for CO2 hydration formation. A low operating pressure was also unacceptable. The gravity made hydrate form easily in the vertically upward flow direction. The pore water of the second cycle converted to hydrate more completely than that of the first cycle, which was a proof of the hydrate "memory effect". When the pressure was equal to atmospheric pressure, hydrate did not dissociate rapidly and abundantly, and a long time or reduplicate depressurization should be used in industrial application.
Thermodynamic properties of hydrate phases immersed in ice phase
NASA Astrophysics Data System (ADS)
Belosludov, V. R.; Subbotin, O. S.; Krupskii, D. S.; Ikeshoji, T.; Belosludov, R. V.; Kawazoe, Y.; Kudoh, J.
2006-01-01
Thermodynamic properties and the pressure of hydrate phases immersed in the ice phase with the aim to understand the nature of self-preservation effect of methane hydrate in the framework of macroscopic and microscopic molecular models was studied. It was show that increasing of pressure is happen inside methane hydrate phases immersed in the ice phase under increasing temperature and if the ice structure does not destroy, the methane hydrate will have larger pressure than ice phase. This is because of the thermal expansion of methane hydrate in a few times larger than ice one. The thermal expansion of the hydrate is constrained by the thermal expansion of ice because it can remain in a region of stability within the methane hydrate phase diagram. The utter lack of preservation behavior in CS-II methane- ethane hydrate can be explain that the thermal expansion of ethane-methane hydrate coincide with than ice one it do not pent up by thermal expansion of ice. The pressure and density during the crossing of interface between ice and hydrate was found and dynamical and thermodynamic stability of this system are studied in accordance with relation between ice phase and hydrate phase.
Qu, Feini; Pintauro, Michael P.; Haughan, Joanne; Henning, Elizabeth A.; Esterhai, John L.; Schaer, Thomas P.; Mauck, Robert L.; Fisher, Matthew B.
2014-01-01
Repair of dense connective tissues in adults is limited by their intrinsic hypocellularity and is exacerbated by a dense extracellular matrix (ECM) that impedes cellular migration to and local proliferation at the wound site. Conversely, healing in fetal tissues occurs due in part to an environment conducive to cell mobility and division. Here, we investigated whether the application of a degradative enzyme, collagenase, could reprogram the adult wound margin to a more fetal-like state, and thus abrogate the biophysical impediments that hinder migration and proliferation. We tested this concept using the knee meniscus, a commonly injured structure for which few regenerative approaches exist. To focus delivery and degradation to the wound interface, we developed a system in which collagenase was stored inside poly(ethylene oxide) (PEO) electrospun nanofibers and released upon hydration. Through a series of in vitro and in vivo studies, our findings show that partial digestion of the wound interface improves repair by creating a more compliant and porous microenvironment that expedites cell migration to and/or proliferation at the wound margin. This innovative approach of targeted manipulation of the wound interface, focused on removing the naturally occurring barriers to adult tissue repair, may find widespread application in the treatment of injuries to a variety of dense connective tissues. PMID:25477175
Choudhary, Nilesh; Hande, Vrushali R; Roy, Sudip; Chakrabarty, Suman; Kumar, Rajnish
2018-06-28
In experimental studies, it has been observed that the presence of sodium dodecyl sulfate (SDS) significantly increases the kinetics of hydrate formation and the final water-to-hydrate conversion ratio. In this study, we intend to understand the molecular mechanism behind the effect of SDS on the formation of methane hydrate through molecular dynamics simulation. Hydrate formation conditions similar to that of laboratory experiments were chosen to study hydrate growth kinetics in 1 wt % SDS solution. We also investigate the effect of interactions with isolated SDS molecules on methane hydrate growth. It was observed that the hydrophobic tail part of the SDS molecule favorably interacts with the growing hydrate surface and may occupy the partial hydrate cages while the head groups remain exposed to water.
Estimating pore-space gas hydrate saturations from well log acoustic data
NASA Astrophysics Data System (ADS)
Lee, Myung W.; Waite, William F.
2008-07-01
Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate-bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.
Equilibrium, Kinetics, and Spectroscopic Studies of SF6 Hydrate in NaCl Electrolyte Solution.
Seo, Youngrok; Moon, Donghyun; Lee, Changho; Park, Jeong-Woo; Kim, Byeong-Soo; Lee, Gang-Woo; Dotel, Pratik; Lee, Jong-Won; Cha, Minjun; Yoon, Ji-Ho
2015-05-19
Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems.
Lee, Bo Ram; Sum, Amadeu K
2015-04-07
To prevent hydrate plugging conditions in the transportation of oil/gas in multiphase flowlines, one of the key processes to control is the agglomeration/deposition of hydrate particles, which are determined by the cohesive/adhesive forces. Previous studies reporting measurements of the cohesive/adhesive force between hydrate particles used cyclopentane hydrate particles in a low-pressure micromechanical force apparatus. In this study, we report the cohesive forces of particles measured in a new high-pressure micromechanical force (MMF) apparatus for ice particles, mixed (methane/ethane, 74.7:25.3) hydrate particles (Structure II), and carbon dioxide hydrate particles (Structure I). The cohesive forces are measured as a function of the contact time, contact force, temperature, and pressure, and determined from pull-off measurements. For the measurements performed of the gas hydrate particles in the gas phase, the determined cohesive force is about 30-35 mN/m, about 8 times higher than the cohesive force of CyC5 hydrates in the liquid CyC5, which is about 4.3 mN/m. We show from our results that the hydrate structure (sI with CO2 hydrates and sII with CH4/C2H6 hydrates) has no influence on the cohesive force. These results are important in the deposition of a gas-dominated system, where the hydrate particles formed in the liquid phase can then stick to the hydrate deposited in the wall exposed to the gas phase.
NASA Astrophysics Data System (ADS)
Mahabadi, Nariman; Dai, Sheng; Seol, Yongkoo; Sup Yun, Tae; Jang, Jaewon
2016-08-01
The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.
Efficacy of road bond and condor as soil stabilizers : final report.
DOT National Transportation Integrated Search
2013-08-01
The Oklahoma Department of Transportation (ODOT) uses lime-based stabilizers including quick lime, hydrated lime, Class C fly ash (CFA) and cement kiln dust (CKD) to increase bearing capacity of fine-grained subgrade soils within the state of Oklahom...