Science.gov

Sample records for cellular interactions uncouple

  1. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase.

    PubMed

    Ciment, G; de Vellis, J

    1978-11-17

    C6 glioma cells and B104 neuroblastoma cells both possess adenylate cyclase activity, but only C6 cells have beta-adrenergic receptors. However, when cocultured with B104 cells, C6 cells show a marked decrease in their ability to accumulate adenosine 3', 5'-monophosphate upon stimulation with beta receptor agonists. Since both beta receptors and cholera toxin-stimulated adenylate cyclase activities are present in C6/B104 cocultures, we conclude that the beta receptor/adenylate cyclase transduction mechanism in cocultured C6 cells is uncoupled.

  2. Flavivirus Infection Uncouples Translation Suppression from Cellular Stress Responses

    PubMed Central

    Roth, Hanna; Magg, Vera; Uch, Fabian; Mutz, Pascal; Klein, Philipp; Haneke, Katharina; Lohmann, Volker; Bartenschlager, Ralf; Fackler, Oliver T.; Locker, Nicolas; Stoecklin, Georg

    2017-01-01

    ABSTRACT As obligate parasites, viruses strictly depend on host cell translation for the production of new progeny, yet infected cells also synthesize antiviral proteins to limit virus infection. Modulation of host cell translation therefore represents a frequent strategy by which viruses optimize their replication and spread. Here we sought to define how host cell translation is regulated during infection of human cells with dengue virus (DENV) and Zika virus (ZIKV), two positive-strand RNA flaviviruses. Polysome profiling and analysis of de novo protein synthesis revealed that flavivirus infection causes potent repression of host cell translation, while synthesis of viral proteins remains efficient. Selective repression of host cell translation was mediated by the DENV polyprotein at the level of translation initiation. In addition, DENV and ZIKV infection suppressed host cell stress responses such as the formation of stress granules and phosphorylation of the translation initiation factor eIF2α (α subunit of eukaryotic initiation factor 2). Mechanistic analyses revealed that translation repression was uncoupled from the disruption of stress granule formation and eIF2α signaling. Rather, DENV infection induced p38-Mnk1 signaling that resulted in the phosphorylation of the eukaryotic translation initiation factor eIF4E and was essential for the efficient production of virus particles. Together, these results identify the uncoupling of translation suppression from the cellular stress responses as a conserved strategy by which flaviviruses ensure efficient replication in human cells. PMID:28074025

  3. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.

  4. Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro- and Macroenvironments.

    PubMed

    Kamperman, Tom; Henke, Sieger; van den Berg, Albert; Shin, Su Ryon; Tamayol, Ali; Khademhosseini, Ali; Karperien, Marcel; Leijten, Jeroen

    2017-02-01

    Modular bioinks based on single cell microgels within distinct injectable prepolymers enable uncoupling of biomaterials' micro- and macroenvironments. These inks allow biofabrication of 3D constructs that recapitulate the multiscale modular design of native tissues with a single cell resolution. This approach represents a major step forward in endowing engineered constructs with the multifunctionality that underlies the behavior of native tissues.

  5. Uncoupling of oxidative phosphorylation by curcumin: Implication of its cellular mechanism of action

    SciTech Connect

    Lim, Han Wern; Lim, Hwee Ying; Wong, Kim Ping

    2009-11-06

    Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5'-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F{sub 0}F{sub 1}-ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 {mu}M, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F{sub 0}F{sub 1}-ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.

  6. Role of cellular uncoupling in arrhythmogenesis in ischemia phase 1B.

    PubMed

    Jie, Xiao; Rodriguez, Blanca; Trayanova, Natalia

    2006-01-01

    Delayed ventricular arrhythmias during acute myocardial ischemia phase 1B are related to a rise in tissue impedance and are most likely sustained in a thin layer of subepicardium. It has been hypothesized that coupling of depressed midmyocardial tissue to the surviving subepicardial layer sets the conditions for reentrant arrhythmias. This hypothesis was verified by means of bidomain simulations on a 3D slab consisting of a normal subepicardial layer coupled to a depressed depolarized midmyocardial layer. The heterogeneity in the coupling was defined by varying the transmural conductivities between the two layers in a circular centrally-located region. The resulting dispersion of effective refractory period in the subepicardium allows for reentry to occur. As uncoupling increases within the circular island, the vulnerability to reentry increases. A higher degree of depolarization in the midmyocardium inhibits the induction of reentry.

  7. Natural and semisynthetic mammea-type isoprenylated dihydroxycoumarins uncouple cellular respiration.

    PubMed

    Du, Lin; Mahdi, Fakhri; Jekabsons, Mika B; Nagle, Dale G; Zhou, Yu-Dong

    2011-02-25

    In an effort to identify natural product-based molecular-targeted antitumor agents, mammea-type coumarins from the tropical/subtropical plant Mammea americana were found to inhibit the activation of HIF-1 (hypoxia-inducible factor-1) in human breast and prostate tumor cells. In addition to the recently reported mammea E/BB (15), bioassay-guided fractionation of the active extract yielded 14 mammea-type coumarins including three new compounds, mammea F/BB (1), mammea F/BA (2), and mammea C/AA (3). The absolute configuration of C-1' in 1 was determined by the modified Mosher's method on a methylated derivative. These coumarins were evaluated for their effects on mitochondrial respiration, HIF-1 signaling, and tumor cell proliferation/viability. Acetylation of 1 afforded a triacetoxylated product (A-2) that inhibited HIF-1 activation with increased potency in both T47D (IC(50) 0.83 μM for hypoxia-induced) and PC-3 cells (IC(50) 0.94 μM for hypoxia-induced). Coumarins possessing a 6-prenyl-8-(3-methyloxobutyl) substituent pattern exhibited enhanced HIF-1 inhibitory effects. The O-methylated derivatives were less active at inhibiting HIF-1 and suppressing cell proliferation/viability. Mechanistic studies indicate that these compounds act as anionic protonophores that potently uncouple mitochondrial electron transport and disrupt hypoxic signaling.

  8. Natural and Semisynthetic Mammea-Type Isoprenlated Dihydroxycoumarins Uncouple Cellular Respiration

    PubMed Central

    Du, Lin; Mahdi, Fakhri; Jekabsons, Mika B.; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    In an effort to identify natural product-based molecular-targeted antitumor agents, mammea-type coumarins from the tropical/subtropical plant Mammea americana were found to inhibit the activation of HIF-1 (hypoxia-inducible factor-1) in human breast and prostate tumor cells. In addition to the recently reported mammea E/BB (15), bioassay-guided fractionation of the active extract yielded fourteen mammea-type coumarins including three new compounds mammea F/BB 1 (1), mammea F/BA (2), and C/AA (3). The absolute configuration of C-1′ in 1 was determined by the modified Mosher’s method on a methylated derivative. These coumarins were evaluated for their effects on mitochondrial respiration, HIF-1 signaling, and tumor cell proliferation/viability. Acetylation of 1 afforded a triacetoxylated product (A-2) that inhibited HIF-1 activation with increased potency in both T47D (IC50 0.83 μM for hypoxia-induced) and PC3 cells (IC50 0.94 μM for hypoxia-induced). Coumarins possessing a 6-prenyl-8-(3-methyl-oxobutyl)-substituent pattern exhibited enhanced HIF-1 inhibitory effects. The O-methylated derivatives were less active at inhibiting HIF-1 and suppressing cell proliferation/viability. Mechanistic studies indicate that these compounds act as anionic protonophores that potently uncouple mitochondrial electron transport and disrupt hypoxic signaling. PMID:21214226

  9. Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modeling study.

    PubMed

    Lesh, M D; Pring, M; Spear, J F

    1989-11-01

    Although slow conduction is a requirement for the preparation of sustained reentry, it alone is not sufficient for the initiation of reentry. Additionally, unidirectional block and recovery of excitability distal to the site of block must occur. Thus, a comprehensive description of the electrophysiological determinants of reentry must explain both slow conduction and unidirectional block. Although there is a growing body of research exploring the influence of axial resistivity and anisotropy on slow conduction, somewhat less is known about the relation of axial resistivity to spatial dispersion of action potential duration, a condition favorable to the development of unidirectional block. We hypothesized that when cells are well coupled, local differences in intrinsic action potential duration are not evident and that, as axial resistivity increases, local variation in action potential duration becomes manifest. We tested this hypothesis in a numerical model of electrical propagation in a grid of resistively coupled ionic current sources simulating a sheet of ventricular myocardium. Spatial dispersion of intrinsic action potential duration was simulated by varying the magnitude of the fully activated slow inward conductance in Beeler-Reuter membrane ionic kinetics. By then altering coupling resistance, we showed that dispersion of manifest action potential duration is masked in the setting of normal low-resistance cellular coupling and unmasked by increased axial resistance. When nonuniform anisotropy was simulated, dramatic pacing-site-dependent changes in both the pattern of activation and dispersion of action potential duration were noted. These findings may be important in understanding the mechanism of reentrant tachycardia initiation in the border zone of chronic, healed myocardial infarctions where evidence suggests that abnormal cellular coupling is the predominant electrophysiological derangement. In this study, we have shown, using a detailed ionic

  10. Specific Interaction of the Human Mitochondrial Uncoupling Protein 1 with Free Long-Chain Fatty Acid.

    PubMed

    Zhao, Linlin; Wang, Shuqing; Zhu, Qianli; Wu, Bin; Liu, Zhijun; OuYang, Bo; Chou, James J

    2017-09-05

    The mitochondrial uncoupling protein 1 (UCP1) generates heat by causing proton leak across the mitochondrial inner membrane that requires fatty acid (FA). The mechanism by which UCP1 uses FA to conduct proton remains unsolved, and it is also unclear whether a direct physical interaction between UCP1 and FA exists. Here, we have shown using nuclear magnetic resonance that FA can directly bind UCP1 at a helix-helix interface site composed of residues from the transmembrane helices H1 and H6. According to the paramagnetic relaxation enhancement data and molecular dynamics simulation, the FA acyl chain appears to fit into the groove between H1 and H6 while the FA carboxylate group interacts with the basic residues near the matrix side of UCP1. Functional mutagenesis showed that mutating the observed FA binding site severely reduced UCP1-mediated proton flux. Our study identifies a functionally important FA-UCP1 interaction that is potentially useful for mechanistic understanding of UCP1-mediated thermogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Water recycling by Amazonian vegetation: coupled versus uncoupled vegetation-climate interactions.

    PubMed

    Cowling, S A; Shin, Y; Pinto, E; Jones, C D

    2008-05-27

    To demonstrate the relationship between Amazonian vegetation and surface water dynamics, specifically, the recycling of water via evapotranspiration (ET), we compare two general circulation model experiments; one that couples the IS92a scenario of future CO2 emissions to a land-surface scheme with dynamic vegetation (coupled) and the other to fixed vegetation (uncoupled). Because the only difference between simulations involves vegetation coupling, any alterations to surface energy and water balance must be due to vegetation feedbacks. The proportion of water recycled back to the atmosphere is relatively conserved through time for both experiments. Absolute value of recycled water is lower in our coupled relative to our uncoupled simulation as a result of increasing atmospheric CO2 that in turn promotes lowering of stomatal conductance and increase in water-use efficiency. Bowen ratio increases with decreasing per cent broadleaf cover, with the greatest rate of change occurring at high vegetation cover (above 70% broadleaf cover). Over the duration of the climate change simulation, precipitation is reduced by an extra 30% in the coupled relative to the uncoupled simulations. Lifting condensation level (proxy for base height of cumulus cloud formation) is 520m higher in our coupled relative to uncoupled simulations.

  12. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    PubMed Central

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  13. Interaction of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) with lipid membrane systems: a biophysical approach with relevance to mitochondrial uncoupling.

    PubMed

    Monteiro, João P; Martins, André F; Lúcio, Marlene; Reis, Salette; Geraldes, Carlos F G C; Oliveira, Paulo J; Jurado, Amália S

    2011-06-01

    FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), a classical uncoupler of mitochondrial oxidative phosphorylation, is used in this study as a model to clarify how interactions of uncouplers with membrane lipid bilayers may influence membrane biophysics and their protonophoric activity itself. In order to disclose putative effects that may be important when considering using uncouplers for pharmacological purposes, an extensive characterization of FCCP membrane lipid interactions using accurate biophysical approaches and simple model lipid systems was carried out. Differential scanning calorimetry studies showed that FCCP molecules disturb lipid bilayers and favor lateral phase separation in mixed lipid systems. (31)P NMR assays indicated that FCCP alters the curvature elastic properties of membrane models containing non-bilayer lipids, favoring lamellar/H(II) transition, probably by alleviation of hydrocarbon-packing constraints in the inverted hexagonal phase. Taking advantage of FCCP quenching effects on the fluorescent probes DPH (1,6-diphenyl-1,3,5-hexatriene) and DPH-PA (3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid), it is demonstrated that FCCP distributes across the bilayer thickness in both a single and a ternary lipid system mimicking the inner mitochondrial membrane. This behavior is consistent with the ability of the compound to migrate through the thickness of the inner mitochondrial membrane, an event required for its protonophoric activity. Finally, the study of the membrane fluidity in different lipid systems, as reported by the rotational correlation time (θ) of DPH or DPH-PA, showed that the extension at which FCCP disturbs membrane properties associated with the dynamics and the order of lipid molecules depends on the lipid composition of the model lipid system assayed.

  14. The cyanine dye triS-C4(5) as a cationic uncoupler of oxidative phosphorylation: interaction with mitochondria detected by derivative spectrophotometry.

    PubMed

    Terada, H; Nagamune, H; Morikawa, N; Ichikawa, T

    1983-06-01

    Derivative spectrophotometry was used to study the interaction of the cationic uncoupler triS-C4(5) with mitochondria. The uncoupling action of this dye is dependent on the presence of Pi in the incubation medium. The second derivative spectrum of the dye changed with the incubation period, becoming similar to the spectrum in chloroform; but, after a time, the spectral pattern reverted to the original spectrum. The change in the spectrum in the presence of Pi was much more rapid than in its absence. The degree of spectral change agreed with the relative amount of bound dye determined directly. Thus, the spectral change reflects the binding of dye to the mitochondria, dependent on their energy state. The greater binding without Pi does not cause uncoupling but does cause shrinkage. In contrast, the lesser binding in the presence of Pi causes uncoupling and the swelling of mitochondria. These facts indicate that the dye does not penetrate the mitochondrial membrane. This refutes the idea that uncoupling by lipophilic cations is caused by the electrophoretic transfer of the uncoupler to the mitochondrial matrix space.

  15. Cellular Migration and Invasion Uncoupled: Increased Migration Is Not an Inexorable Consequence of Epithelial-to-Mesenchymal Transition

    PubMed Central

    Schaeffer, Daneen; Somarelli, Jason A.; Hanna, Gabi; Palmer, Gregory M.

    2014-01-01

    Metastatic dissemination requires carcinoma cells to detach from the primary tumor and invade through the basement membrane. To acquire these characteristics, epithelial tumor cells undergo epithelial-to-mesenchymal transitions (EMT), whereby cells lose polarity and E-cadherin-mediated cell-cell adhesion. Post-EMT cells have also been shown, or assumed, to be more migratory; however, there have been contradictory reports on an immortalized human mammary epithelial cell line (HMLE) that underwent EMT. In the context of carcinoma-associated EMT, it is not yet clear whether the change in migration and invasion must be positively correlated during EMT or whether enhanced migration is a necessary consequence of having undergone EMT. Here, we report that pre-EMT rat prostate cancer (PC) and HMLE cells are more migratory than their post-EMT counterparts. To determine a mechanism for increased epithelial cell migration, gene expression analysis was performed and revealed an increase in epidermal growth factor receptor (EGFR) expression in pre-EMT cells. Indeed, inhibition of EGFR in PC epithelial cells slowed migration. Importantly, while post-EMT PC and HMLE cell lines are less migratory, both remain invasive in vitro and, for PC cells, in vivo. Our study demonstrates that enhanced migration is not a phenotypic requirement of EMT, and migration and invasion can be uncoupled during carcinoma-associated EMT. PMID:25002532

  16. Structures and Mechanisms of Antitumor Agents - Xestoquinones Uncouple Cellular Respiration and Disrupt HIF Signaling in Human Breast Tumor Cells

    PubMed Central

    Du, Lin; Mahdi, Fakhri; Datta, Sandipan; Jekabsons, Mika B.; Zhou, Yu-Dong; Nagle, Dale G.

    2012-01-01

    The organic extract of a marine sponge Petrosia alfiani selectively inhibited iron chelator-induced hypoxia-inducible factor-1 (HIF-1) activation in a human breast tumor T47D cell-based reporter assay. Bioassay-guided fractionation yielded seven xestoquinones (1 – 7) including three new compounds 14-hydroxymethylxestoquinone (1), 15-hydroxymethylxestoquinone (2), and 14,15-dihydroxestoquinone (3). Compounds 1 – 7 were evaluated for their effects on HIF-1 signaling, mitochondrial respiration, and tumor cell proliferation/viability. The known metabolites adociaquinones A (5) and B (6), that possess a 3,4-dihydro-2H-1,4-thiazine-1,1-dioxide moiety, potently and selectively inhibited iron chelator-induced HIF-1 activation in T47D cells, each with an IC50 value of 0.2 μM. Mechanistic studies revealed that adociaquinones promote oxygen consumption without affecting mitochondrial membrane potential. Compound 1 both enhances respiration and decreases mitochondrial membrane potential, suggesting that it acts as a protonophore that uncouples mitochondrial respiration. PMID:22938093

  17. Intravital microscopy: new insights into cellular interactions.

    PubMed

    Gavins, Felicity N E

    2012-10-01

    Inflammation is the body's way of combating invading pathogens or noxious stimuli. Under normal conditions, the complex host response of rubor, dolor, calor, tumor, and functio laesa is essential for survival and the return to homeostasis. However, unregulated inflammation is all too often observed in diseases such as rheumatoid arthritis, stroke, and cancer. The host inflammatory response is governed by a number of tightly regulated processes that enable cellular trafficking to occur at the sites of damage to ultimately ensure the resolution of inflammation. Intravital microscopy (IVM) provides quantitative, qualitative, and dynamic insights into cell biology and these cellular interactions. This review highlights the pros and cons of this specialized technique and how it has evolved to help understand the physiology and pathophysiology of inflammatory events in a number of different disease states, leading to a number of potential therapeutic targets for drug discovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes

    PubMed Central

    Liu, Longhua; Tao, Zhipeng; Zheng, Louise D; Brooke, Joseph P; Smith, Cayleen M; Liu, Dongmin; Long, Yun Chau; Cheng, Zhiyong

    2016-01-01

    Mitochondrial uncoupling proteins (UCPs) are inducible and play an important role in metabolic and redox homeostasis. Recent studies have suggested that FoxO1 controls mitochondrial biogenesis and morphology, but it remains largely unknown how FoxO1 may regulate mitochondrial UCPs. Here we show that FoxO1 interacted with transcription factor EB (Tfeb), a key regulator of autophagosome and lysosome, and mediated the expression of UCP1, UCP2 and UCP3 differentially via autophagy in adipocytes. UCP1 was down-regulated but UCP2 and UCP3 were upregulated during adipocyte differentiation, which was associated with increased Tfeb and autophagy activity. However, inhibition of FoxO1 suppressed Tfeb and autophagy, attenuating UCP2 and UCP3 but increasing UCP1 expression. Pharmacological blockade of autophagy recapitulated the effects of FoxO1 inhibition on UCPs. Chromatin immunoprecipitation assay demonstrated that FoxO1 interacted with Tfeb by directly binding to its promoter, and silencing FoxO1 led to drastic decrease in Tfeb transcript and protein levels. These data provide the first line of evidence that FoxO1 interacts with Tfeb to regulate autophagy and UCP expression in adipocytes. Dysregulation of FoxO1→autophagy→UCP pathway may account for metabolic changes in obesity. PMID:27777789

  19. Sarcolipin Protein Interaction with Sarco(endo)plasmic Reticulum Ca2+ATPase (SERCA) Is Distinct from Phospholamban Protein, and Only Sarcolipin Can Promote Uncoupling of the SERCA Pump*

    PubMed Central

    Sahoo, Sanjaya K.; Shaikh, Sana A.; Sopariwala, Danesh H.; Bal, Naresh C.; Periasamy, Muthu

    2013-01-01

    Sarco(endo)plasmic reticulum Ca2+ATPase (SERCA) pump activity is modulated by phospholamban (PLB) and sarcolipin (SLN) in cardiac and skeletal muscle. Recent data suggest that SLN could play a role in muscle thermogenesis by promoting uncoupling of the SERCA pump (Lee, A.G. (2002) Curr. Opin. Struct. Biol. 12, 547–554 and Bal, N. C., Maurya, S. K., Sopariwala, D. H., Sahoo, S. K., Gupta, S. C., Shaikh, S. A., Pant, M., Rowland, L. A., Bombardier, E., Goonasekera, S. A., Tupling, A. R., Molkentin, J. D., and Periasamy, M. (2012) Nat. Med. 18, 1575–1579), but the mechanistic details are unknown. To better define how binding of SLN to SERCA promotes uncoupling of SERCA, we compared SLN and SERCA1 interaction with that of PLB in detail. The homo-bifunctional cross-linker (1,6-bismaleimidohexane) was employed to detect dynamic protein interaction during the SERCA cycle. Our studies reveal that SLN differs significantly from PLB: 1) SLN primarily affects the Vmax of SERCA-mediated Ca2+ uptake but not the pump affinity for Ca2+; 2) SLN can bind to SERCA in the presence of high Ca2+, but PLB can only interact to the ATP-bound Ca2+-free E2 state; and 3) unlike PLB, SLN interacts with SERCA throughout the kinetic cycle and promotes uncoupling of the SERCA pump. Using SERCA transmembrane mutants, we additionally show that PLB and SLN can bind to the same groove but interact with a different set of residues on SERCA. These data collectively suggest that SLN is functionally distinct from PLB; its ability to interact with SERCA in the presence of Ca2+ causes uncoupling of the SERCA pump and increased heat production. PMID:23341466

  20. Mitochondrial uncouplers with an extraordinary dynamic range

    PubMed Central

    Lou, Phing-How; Hansen, Birgit S.; Olsen, Preben H.; Tullin, Søren; Murphy, Michael P.; Brand, Martin D.

    2007-01-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 106 in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy. PMID:17608618

  1. Cell surface-mediated cellular interactions: effects of B104 neuroblastoma surface determinants on C6 glioma cellular properties.

    PubMed

    Ciment, G; de Vellis, J

    1982-01-01

    To study the influence of cell surface-associated molecules on intercellular communication, C6 glioma cells were cultured both on plastic and on substrata of paraformaldehyde-fixed B104 neuroblastoma cells. By then comparing the phenotypic expression of these "cocultured" C6 cells with cells cultured on tissue culture plastic, the influence of the cellular substratum was determined. The beta-adrenergic-responsive cyclic AMP-generating system of C6 cells was compared on these various substrata. We found that fixed beds of dibutyryl cyclic AMP (dbcAMP)-treated B104 cells uncoupled beta-receptors from adenylate cyclase, whereas fixed beds of similarly treated C6 cells did not. However, other cellular properties were not affected by growth atop fixed dbcAMP-treated B104 cell beds including the rate of C6 cellular proliferation and their rate of protein synthesis. The cell surface-associated determinant on B104 cells capable of uncoupling the beta-responsive cyclase system of C6 cells is probably a protein, as judged by its susceptibility to protease treatment. Other properties of C6 cells were also affected by the various substrata including basal and hydrocortisone-induced levels of glycerol phosphate dehydrogenase (GPDH; an oligodendroglial marker) and the rate of RNA synthesis in these cells.

  2. The regulation and turnover of mitochondrial uncoupling proteins

    PubMed Central

    Azzu, Vian; Jastroch, Martin; Divakaruni, Ajit S; Brand, Martin D

    2010-01-01

    Uncoupling proteins (UCP1, UCP2 and UCP3) are important in regulating cellular fuel metabolism and as attenuators of reactive oxygen species production, through strong or mild uncoupling. The generic function and broad tissue distribution of the uncoupling protein family means that they are increasingly implicated in a range of pathophysiological processes including obesity, insulin resistance and diabetes mellitus, neurodegeneration, cardiovascular disease, immunity and cancer. The significant recent progress describing the turnover of novel uncoupling proteins, as well as current views on the physiological roles and regulation of UCPs, is outlined. PMID:20211596

  3. Application System Architecture for Cellular Phones by Dividing Interaction Logics

    NASA Astrophysics Data System (ADS)

    Kitamura, Misayo; Todoroki, Nobutoshi; Akiyoshi, Masanori; Kojima, Taizo

    This paper describes application system architecture using cellular phones as user interface devices, which enables users to interact with the system by graphic symbols on a client screen. Our approach has the following features: (i) divided interaction logics running on a server and a Java phone client; both interaction logics cooperate to accomplish a user's operation using a simplified script, (ii) local interaction which enables users to handle figures on a client screen without connecting to a server, and (iii) device-independent script which hides the differences of API sets among various cellular phones. By using this architecture, complicated figures including lots of graphic symbols can be displayed in spite of program-size limitation on a client device, and application programs including same interaction logics are just described once for various cellular phones. Our experiments show the advantage of the local interaction. A client program can respond immediately when handling complicated figures. The ratio of requests to the server is reduced to 23%. It takes less than 9 seconds to display typical contents, which is good enough for practical use. This method also reduces development costs at the second development or later.

  4. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL

    SciTech Connect

    Douette, Pierre; Navet, Rachel; Gerkens, Pascal; Galleni, Moreno; Levy, Daniel; Sluse, Francis E. . E-mail: F.Sluse@ulg.ac.be

    2005-08-05

    Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein.

  5. Control of Cellular Motility by Neuropilin-mediated Physical Interactions

    PubMed Central

    Li, Xiaobo; Parker, Matthew W.; Vander Kooi, Craig W.

    2014-01-01

    The Neuropilin (Nrp) family are multi-functional cell surface receptors with critical roles in a number of different cell and tissue types. A core aspect of Nrp function is in ligand-dependent cellular migration, where it controls the multi-step process of cellular motility through integration of ligand binding and receptor signaling. At a molecular level, Nrp’s role in migration is intimately connected to control of adhesive interactions and cytoskeletal reorganization. Here we review the physiological role of Nrp in cellular adhesion and motility in the cardiovascular and nervous systems. We also discuss the emerging pathological role of Nrp in tumor cell migration and metastasis, providing motivation for continued efforts towards developing Nrp inhibitors. PMID:25018786

  6. Cellular studies and interaction mechanisms of extremely low frequency fields

    NASA Astrophysics Data System (ADS)

    Liburdy, Robert P.

    1995-01-01

    Worldwide interest in the biological effects of ELF (extremely low frequency, <1 kHz) electromagnetic fields has grown significantly. Health professionals and government administrators and regulators, scientists and engineers, and, importantly, an increasing number of individuals in the general public are interested in this health issue. The goal of research at the cellular level is to identify cellular responses to ELF fields, to develop a dose threshold for such interactions, and with such information to formulate and test appropriate interaction mechanisms. This review is selective and will discuss the most recent cellular studies directed at these goals which relate to power line, sinusoidal ELF fields. In these studies an interaction site at the cell membrane is by consensus a likely candidate, since changes in ion transport, ligand-receptor events such as antibody binding, and G protein activation have been reported. These changes strongly indicate that signal transduction (ST) can be influenced. Also, ELF fields are reported to influence enzyme activation, gene expression, protein synthesis, and cell proliferation, which are triggered by earlier ST events at the cell membrane. The concept of ELF fields altering early cell membrane events and thereby influencing intracellular cell function via the ST cascade is perhaps the most plausible biological framework currently being investigated for understanding ELF effects on cells. For example, the consequence of an increase due to ELF fields in mitogenesis, the final endpoint of the ST cascade, is an overall increase in the probability of mutagenesis and consequently cancer, according to the Ames epigenetic model of carcinogenesis. Consistent with this epigenetic mechanism and the ST pathway to carcinogenesis is recent evidence that ELF fields can alter breast cancer cell proliferation and can act as a copromoter in vitro. The most important dosimetric question being addressed currently is whether the electric (E

  7. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics

    PubMed Central

    Barrère, Florence; van Blitterswijk, Clemens A; de Groot, Klaas

    2006-01-01

    Calcium phosphate bioceramics are widely used in orthopedic and dental applications and porous scaffolds made of them are serious candidates in the field of bone tissue engineering. They have superior properties for the stimulation of bone formation and bone bonding, both related to the specific interactions of their surface with the extracellular fluids and cells, ie, ionic exchanges, superficial molecular rearrangement and cellular activity. PMID:17717972

  8. Tuning the Properties of Polymer Capsules for Cellular Interactions.

    PubMed

    Sun, Huanli; Cui, Jiwei; Ju, Yi; Chen, Xi; Wong, Edgar H H; Tran, Jenny; Qiao, Greg G; Caruso, Frank

    2017-07-19

    Particle-cell interactions are governed by, among other factors, the composition and surface properties of the particles. Herein, we report the preparation of various polymer capsules with different compositions and properties via atom transfer radical polymerization mediated continuous assembly of polymers (CAPATRP), where the cellular interactions of these capsules, particularly fouling and specific targeting, are examined by flow cytometry and deconvolution microscopy. Acrylated eight-arm poly(ethylene glycol) (8-PEG) and poly(N-(2-hydroxypropyl)-methacrylamide) (PHPMA) as well as methacrylated hyaluronic acid (HA), poly(glutamic acid) (PGA), and poly(methacrylic acid) (PMA) are used as macro-cross-linkers to obtain a range of polymer capsules with different compositions (PEG, PHPMA, HA, PGA, and PMA). Capsules composed of low-fouling polymers, PEG and PHPMA, show negligible association with macrophage Raw 264.7, monocyte THP-1, and HeLa cells. HA capsules, although moderately low-fouling (<22%) to HeLa, BT474, Raw 264.7, and THP-1 cells, exhibit high targeting specificity to CD44-over-expressing MDA-MB-231 cells. In contrast, PGA and PMA capsules show high cellular association toward phagocytic Raw 264.7 and THP-1 cells. These findings demonstrate the capability of the CAPATRP technique in preparing polymer capsules with specific cellular interactions.

  9. Cellular interactions with tissue-engineered microenvironments and nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Zhi

    Tissue-engineered hydrogels composed of intermolecularlly crosslinked hyaluronan (HA-DTPH) and fibronectin functional domains (FNfds) were applied as a physiological relevant ECM mimic with controlled mechanical and biochemical properties. Cellular interactions with this tissue-engineered environment, especially physical interactions (cellular traction forces), were quantitatively measured by using the digital image speckle correlation (DISC) technique and finite element method (FEM). By correlating with other cell functions such as cell morphology and migration, a comprehensive structure-function relationship between cells and their environments was identified. Furthermore, spatiotemporal redistribution of cellular traction stresses was time-lapse measured during cell migration to better understand the dynamics of cell mobility. The results suggest that the reinforcement of the traction stresses around the nucleus, as well as the relaxation of nuclear deformation, are critical steps during cell migration, serving as a speed regulator, which must be considered in any dynamic molecular reconstruction model of tissue cell migration. Besides single cell migration, en masse cell migration was studied by using agarose droplet migration assay. Cell density was demonstrated to be another important parameter to influence cell behaviors besides substrate properties. Findings from these studies will provide fundamental design criteria to develop novel and effective tissue-engineered constructs. Cellular interactions with rutile and anatase TiO2 nanoparticles were also studied. These particles can penetrate easily through the cell membrane and impair cell function, with the latter being more damaging. The exposure to nanoparticles was found to decrease cell area, cell proliferation, motility, and contractility. To prevent this, a dense grafted polymer brush coating was applied onto the nanoparticle surface. These modified nanoparticles failed to adhere to and penetrate

  10. Investigation of cellular responses upon interaction with silver nanoparticles

    PubMed Central

    Subbiah, Ramesh; Jeon, Seong Beom; Park, Kwideok; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    In order for nanoparticles (NPs) to be applied in the biomedical field, a thorough investigation of their interactions with biological systems is required. Although this is a growing area of research, there is a paucity of comprehensive data in cell-based studies. To address this, we analyzed the physicomechanical responses of human alveolar epithelial cells (A549), mouse fibroblasts (NIH3T3), and human bone marrow stromal cells (HS-5), following their interaction with silver nanoparticles (AgNPs). When compared with kanamycin, AgNPs exhibited moderate antibacterial activity. Cell viability ranged from ≤80% at a high AgNPs dose (40 µg/mL) to >95% at a low dose (10 µg/mL). We also used atomic force microscopy-coupled force spectroscopy to evaluate the biophysical and biomechanical properties of cells. This revealed that AgNPs treatment increased the surface roughness (P<0.001) and stiffness (P<0.001) of cells. Certain cellular changes are likely due to interaction of the AgNPs with the cell surface. The degree to which cellular morphology was altered directly proportional to the level of AgNP-induced cytotoxicity. Together, these data suggest that atomic force microscopy can be used as a potential tool to develop a biomechanics-based biomarker for the evaluation of NP-dependent cytotoxicity and cytopathology. PMID:26346562

  11. Investigation of Cellular Interactions of Nanoparticles by Helium Ion Microscopy

    SciTech Connect

    Arey, Bruce W.; Shutthanandan, V.; Xie, Yumei; Tolic, Ana; Williams, Nolann G.; Orr, Galya

    2011-06-01

    The helium ion mircroscope (HIM) probes light elements (e.g. C, N, O, P) with high contrast due to the large variation in secondary electron yield, which minimizes the necessity of specimen staining. A defining characteristic of HIM is its remarkable capability to neutralize charge by the implementation of an electron flood gun, which eliminates the need for coating non-conductive specimens for imaging at high resolution. In addition, the small convergence angle in HeIM offers a large depth of field (~5x FE-SEM), enabling tall structures to be viewed in focus within a single image. Taking advantage of these capabilities, we investigate the interactions of engineered nanoparticles (NPs) at the surface of alveolar type II epithelial cells grown at the air-liquid interface (ALI). The increasing use of nanomaterials in a wide range of commercial applications has the potential to increase human exposure to these materials, but the impact of such exposure on human health is still unclear. One of the main routs of exposure is the respiratory tract, where alveolar epithelial cells present a vulnerable target at the interface with ambient air. Since the cellular interactions of NPs govern the cellular response and ultimately determine the impact on human health, our studies will help delineating relationships between particle properties and cellular interactions and response to better evaluate NP toxicity or biocompatibility. The Rutherford backscattered ion (RBI) is a helium ions imaging mode, which backscatters helium ions from every element except hydrogen, with a backscatter yield that depends on the atomic number of the target. Energy-sensitive backscatter analysis is being developed, which when combined with RBI image information, supports elemental identification at helium ion nanometer resolution. This capability will enable distinguishing NPs from cell surface structures with nanometer resolution.

  12. Investigation of cellular interactions of nanoparticles by helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Arey, B. W.; Shutthanandan, V.; Xie, Y.; Tolic, A.; Williams, N.; Orr, G.

    2011-06-01

    The helium ion microscope (HIM) probes light elements (e.g. C, N, O, P) with high contrast due to the large variation in secondary electron yield, which minimizes the necessity of specimen staining. A defining characteristic of HIM is its remarkable capability to neutralize charge by the implementation of an electron flood gun, which eliminates the need for coating non-conductive specimens for imaging at high resolution. In addition, the small convergence angle in HeIM offers a large depth of field (~5× FE-SEM), enabling tall structures to be viewed in focus within a single image. Taking advantage of these capabilities, we investigate the interactions of engineered nanoparticles (NPs) at the surface of alveolar type II epithelial cells grown at the airliquid interface (ALI). The increasing use of nanomaterials in a wide range of commercial applications has the potential to increase human exposure to these materials, but the impact of such exposure on human health is still unclear. One of the main routs of exposure is the respiratory tract, where alveolar epithelial cells present a vulnerable target at the interface with ambient air. Since the cellular interactions of NPs govern the cellular response and ultimately determine the impact on human health, our studies will help delineating relationships between particle properties and cellular interactions and response to better evaluate NP toxicity or biocompatibility. The Rutherford backscattered ion (RBI) is a helium ions imaging mode, which backscatters helium ions from every element except hydrogen, with a backscatter yield that depends on the atomic number of the target. Energy-sensitive backscatter analysis is being developed, which when combined with RBI image information, supports elemental identification at helium ion nanometer resolution. This capability will enable distinguishing NPs from cell surface structures with nanometer resolution.

  13. Cellular interactions regulate stem cell differentiation in tri-culture.

    PubMed

    Wang, I-Ning E; Bogdanowicz, Danielle R; Mitroo, Siddarth; Shan, Jing; Kala, Sonam; Lu, Helen H

    2016-11-01

    Currently, the mechanism governing the regeneration of the soft tissue-to-bone interface, such as the transition between the anterior cruciate ligament (ACL) and bone, is not known. Focusing on the ACL-to-bone insertion, this study tests the novel hypothesis that interactions between cells from the ligament (fibroblasts) and bone (osteoblasts) initiate interface regeneration. Specifically, these heterotypic cell interactions direct the fibrochondrogenic differentiation of interface-relevant cell populations, defined here as ligament fibroblasts and bone marrow stromal cells (BMSC). The objective of this study is to examine the effects of heterotypic cellular interactions on BMSC or fibroblast growth and biosynthesis, as well as expression of fibrocartilage-relevant markers in tri-culture. The effects of cell-cell physical contact and paracrine interactions between fibroblasts and osteoblasts were also determined. It was found that, in tri-culture with fibroblasts and osteoblasts, BMSC exhibited greater fibrochondrogenic potential than ligament fibroblasts. The growth of BMSC decreased while proteoglycan production and TGF-β3 expression increased. Moreover, tri-culture regulated BMSC response via paracrine factors, and interestingly, fibroblast-osteoblast contact further promoted proteoglycan and TGF-β1 synthesis as well as induced SOX9 expression in BMSC. Collectively, the findings of this study suggest that fibroblast-osteoblast interactions play an important role in regulating the stem cell niche for fibrocartilage regeneration, and the mechanisms of these interactions are directed by paracrine factors and augmented with direct cell-cell contact.

  14. Transient Uncoupling Induces Synchronization

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Mannattil, Manu; Dutta, Debabrata; Chakraborty, Sagar; Timme, Marc

    2015-07-01

    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. While for many standard systems coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme therefore opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously.

  15. Cellular Organization of Neuroimmune Interactions in the Gastrointestinal Tract

    PubMed Central

    Margolis, Kara Gross; Gershon, Michael David; Bogunovic, Milena

    2016-01-01

    The gastrointestinal (GI) tract is the largest immune organ; in vertebrates, it is the only organ whose function is controlled by its own intrinsic enteric nervous system (ENS), but it is additionally regulated by extrinsic (sympathetic and parasympathetic) innervation. The GI nervous and immune systems are highly integrated in their common goal, which is to unite digestive functions with protection from ingested environmental threats. This review discusses the physiological relevance of enteric neuroimmune integration by summarizing the current knowledge of evolutionary and developmental pathways, cellular organization, and molecular mechanisms of neuroimmune interactions in health and disease. PMID:27289177

  16. An entropic characterization of protein interaction networks and cellular robustness.

    PubMed

    Manke, Thomas; Demetrius, Lloyd; Vingron, Martin

    2006-12-22

    The structure of molecular networks is believed to determine important aspects of their cellular function, such as the organismal resilience against random perturbations. Ultimately, however, cellular behaviour is determined by the dynamical processes, which are constrained by network topology. The present work is based on a fundamental relation from dynamical systems theory, which states that the macroscopic resilience of a steady state is correlated with the uncertainty in the underlying microscopic processes, a property that can be measured by entropy. Here, we use recent network data from large-scale protein interaction screens to characterize the diversity of possible pathways in terms of network entropy. This measure has its origin in statistical mechanics and amounts to a global characterization of both structural and dynamical resilience in terms of microscopic elements. We demonstrate how this approach can be used to rank network elements according to their contribution to network entropy and also investigate how this suggested ranking reflects on the functional data provided by gene knockouts and RNAi experiments in yeast and Caenorhabditis elegans. Our analysis shows that knockouts of proteins with large contribution to network entropy are preferentially lethal. This observation is robust with respect to several possible errors and biases in the experimental data. It underscores the significance of entropy as a fundamental invariant of the dynamical system, and as a measure of structural and dynamical properties of networks. Our analytical approach goes beyond the phenomenological studies of cellular robustness based on local network observables, such as connectivity. One of its principal achievements is to provide a rationale to study proxies of cellular resilience and rank proteins according to their importance within the global network context.

  17. Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

    PubMed Central

    Lin, Tien-Ho; Bar-Joseph, Ziv

    2011-01-01

    Abstract Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. PMID:21999284

  18. Cellular interactions in the pathogenesis of interstitial lung diseases.

    PubMed

    Bagnato, Gianluca; Harari, Sergio

    2015-03-01

    Interstitial lung disease (ILD) encompasses a large and diverse group of pathological conditions that share similar clinical, radiological and pathological manifestations, despite potentially having quite different aetiologies and comorbidities. Idiopathic pulmonary fibrosis (IPF) represents probably the most aggressive form of ILD and systemic sclerosis is a multiorgan fibrotic disease frequently associated with ILD. Although the aetiology of these disorders remains unknown, in this review we analyse the pathogenic mechanisms by cell of interest (fibroblast, fibrocyte, myofibroblast, endothelial and alveolar epithelial cells and immune competent cells). New insights into the complex cellular contributions and interactions will be provided, comparing the role of cell subsets in the pathogenesis of IPF and systemic sclerosis. Copyright ©ERS 2015.

  19. Antiviral and cellular metabolism interactions between Dexelvucitabine and lamivudine.

    PubMed

    Hernandez-Santiago, Brenda I; Mathew, Judy S; Rapp, Kim L; Grier, Jason P; Schinazi, Raymond F

    2007-06-01

    Studies on cellular drug interactions with antiretroviral agents prior to clinical trials are critical to detect possible drug interactions. Herein, we demonstrated that two 2'-deoxycytidine antiretroviral agents, dexelvucitabine (known as beta-d-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine, DFC, d-d4FC, or RVT) and lamivudine (3TC), combined in primary human peripheral blood mononuclear (PBM) cells infected with human immunodeficiency virus 1 strain LAI (HIV-1(LAI)), resulted in additive-to-synergistic effects. The cellular metabolism of DFC and 3TC was studied in human T-cell lymphoma (CEM) and in primary human PBM cells to determine whether this combination caused any reduction in active nucleoside triphosphate (NTP) levels, which could decrease with their antiviral potency. Competition studies were conducted by coincubation of either radiolabeled DFC with different concentrations of 3TC or radiolabeled 3TC with different concentrations of DFC. Coincubation of radiolabeled 3TC with DFC at concentrations up to 33.3 microM did not cause any marked reduction in 3TC-triphosphate (TP) or any 3TC metabolites. However, a reduction in the level of DFC metabolites was noted at high concentrations of 3TC with radiolabeled DFC. DFC-TP levels in CEM and primary human PBM cells decreased by 88% and 94%, respectively, when high concentrations of 3TC (33.3 and 100 microM) were added, which may influence the effectiveness of DFC-5'-TP on the HIV-1 polymerase. The NTP levels remained well above the median (50%) inhibitory concentration for HIV-1 reverse transcriptase. These results suggest that both beta-d- and beta-l-2'-deoxycytidine analogs, DFC and 3TC, respectively, substrates of 2'-deoxycytidine kinase, could be used in a combined therapeutic modality. However, it may be necessary to decrease the dose of 3TC for this combination to prove effective.

  20. Heart development and regeneration via cellular interaction and reprogramming.

    PubMed

    Ieda, Masaki

    2013-01-01

    The heart consists of many types of cells, including cardiomyocytes, vascular cells, neural cells, and cardiac fibroblasts. Adult cardiomyocytes are terminally differentiated cells, and loss of cardiomyocytes as a result of heart damage is irreversible. To regenerate damaged hearts and restore cardiac function, understanding the cellular and molecular basis of heart development is of considerable importance. Although it is well known that heart function is tightly regulated by cell-cell interactions, their roles in heart development are not clear. Recent studies, including ours, identified important roles of cell-cell interactions in heart development and function. The balance between neural chemoattractants and chemorepellents secreted from cardiomyocytes determines cardiac nervous development. Nerve growth factor is a potent chemoattractant synthesized by cardiomyocytes, whereas Sema3a is a neural chemorepellent expressed specifically in the subendocardium. Disruption of this molecular balance induces disorganized cardiac innervation and may lead to sudden cardiac death due to lethal arrhythmias. Cardiac fibroblasts, of which there are large populations in the heart, secrete high levels of specific extracellular matrix and growth factors. Embryonic cardiac fibroblast-specific secreted factors collaboratively promote mitotic activity of embryonic cardiomyocytes and expansion of ventricular chambers during cardiogenesis. More recently, utilizing knowledge of the regulatory mechanisms of heart development, we found that cardiac fibroblasts can be directly reprogrammed into cardiomyocyte-like cells in vitro and in vivo by gene transfer of cardiac-specific transcription factors. Understanding the mechanisms of heart development and cardiac reprogramming technology may provide new therapeutic approaches for heart disease in the future.

  1. Modeling of Fluid-Membrane Interaction in Cellular Microinjection Process

    NASA Astrophysics Data System (ADS)

    Karzar-Jeddi, Mehdi; Diaz, Jhon; Olgac, Nejat; Fan, Tai-Hsi

    2009-11-01

    Cellular microinjection is a well-accepted method to deliver matters such as sperm, nucleus, or macromolecules into biological cells. To improve the success rate of in vitro fertilization and to establish the ideal operating conditions for a novel computer controlled rotationally oscillating intracytoplasmic sperm injection (ICSI) technology, we investigate the fluid-membrane interactions in the ICSI procedure. The procedure consists of anchoring the oocyte (a developing egg) using a holding pipette, penetrating oocyte's zona pellucida (the outer membrane) and the oolemma (the plasma or inner membrane) using an injection micropipette, and finally to deliver sperm into the oocyte for fertilization. To predict the large deformation of the oocyte membranes up to the piercing of the oolemma and the motion of fluids across both membranes, the dynamic fluid-pipette-membrane interactions are formulated by the coupled Stokes' equations and the continuum membrane model based on Helfrich's energy theory. A boundary integral model is developed to simulate the transient membrane deformation and the local membrane stress induced by the longitudinal motion of the injection pipette. The model captures the essential features of the membranes shown on optical images of ICSI experiments, and is capable of suggesting the optimal deformation level of the oolemma to start the rotational oscillations for piercing into the oolemma.

  2. Biophysical responses upon the interaction of nanomaterials with cellular interfaces.

    PubMed

    Wu, Yun-Long; Putcha, Nirupama; Ng, Kee Woei; Leong, David Tai; Lim, Chwee Teck; Loo, Say Chye Joachim; Chen, Xiaodong

    2013-03-19

    The explosion of study of nanomaterials in biological applications (the nano-bio interface) can be ascribed to nanomaterials' growing importance in diagnostics, therapeutics, theranostics (therapeutic diagnostics), and targeted modulation of cellular processes. However, a growing number of critics have raised concerns over the potential risks of nanomaterials to human health and safety. It is essential to understand nanomaterials' potential toxicity before they are tested in humans. These risks are complicated to unravel, however, because of the complexity of cells and their nanoscale macromolecular components, which enable cells to sense and respond to environmental cues, including nanomaterials. In this Account, we explore these risks from the perspective of the biophysical interactions between nanomaterials and cells. Biophysical responses to the uptake of nanomaterials can include conformational changes in biomolecules like DNA and proteins, and changes to the cellular membrane and the cytoskeleton. Changes to the latter two, in particular, can induce changes in cell elasticity, morphology, motility, adhesion, and invasion. This Account reviews what is known about cells' biophysical responses to the uptake of the most widely studied and used nanoparticles, such as carbon-based, metal, metal-oxide, and semiconductor nanomaterials. We postulate that the biophysical structure impairment induced by nanomaterials is one of the key causes of nanotoxicity. The disruption of cellular structures is affected by the size, shape, and chemical composition of nanomaterials, which are also determining factors of nanotoxicity. Currently, popular nanotoxicity characterizations, such as the MTT and lactate dehydrogenase (LDH) assays, only provide end-point results through chemical reactions. Focusing on biophysical structural changes induced by nanomaterials, possibly in real-time, could deepen our understanding of the normal and altered states of subcellular structures and

  3. Charged group surface accessibility determines micelleplexes formation and cellular interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Liu, Yang; Sen, Soumyo; Král, Petr; Gemeinhart, Richard A.

    2015-04-01

    Micelleplexes are a class of nucleic acid carriers that have gained acceptance due to their size, stability, and ability to synergistically carry small molecules. MicroRNAs (miRNAs) are small non-coding RNA gene regulator that is consists of 19-22 nucleotides. Altered expression of miRNAs plays an important role in many human diseases. Using a model 22-nucleotide miRNA sequence, we investigated the interaction between charged groups on the micelle surface and miRNA. The model micelle system was formed from methoxy-poly(ethylene glycol)-b-poly(lactide) (mPEG-PLA) mixed with methoxy-poly(ethylene glycol)-b-poly(lactide)-b-oligoarginine (mPEG-PLA-Rx, x = 8 or 15). Surface properties of the micelles were varied by controlling the oligoarginine block length and conjugation density. Micelles were observed to have a core-shell conformation in the aqueous environment where the PLA block constituted the hydrophobic core, mPEG and oligoarginine formed a hydrophilic corona. Significantly different thermodynamic behaviors were observed during the interaction of single stranded miRNA with micelles of different surface properties, and the resulting micelleplexes mediated substantial cellular association. Depending upon the oligoarginine length and density, micelles exhibited miRNA loading capacity directly related to the presentation of charged groups on the surface. The effect of charged group accessibility of cationic micelle on micelleplex properties provides guidance on future miRNA delivery system design.Micelleplexes are a class of nucleic acid carriers that have gained acceptance due to their size, stability, and ability to synergistically carry small molecules. MicroRNAs (miRNAs) are small non-coding RNA gene regulator that is consists of 19-22 nucleotides. Altered expression of miRNAs plays an important role in many human diseases. Using a model 22-nucleotide miRNA sequence, we investigated the interaction between charged groups on the micelle surface and miRNA. The

  4. Predict drug-protein interaction in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved with many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, GPCRs (G-protein-coupled receptors) are the most frequent targets for drug development: over 50% of all prescription drugs currently on the market are actually acting by targeting GPCRs directly or indirectly. Found in every living thing and nearly all cells, ion channels play crucial roles for many vital functions in life, such as heartbeat, sensory transduction, and central nervous system response. Their dysfunction may have significant impact to human health, and hence ion channels are deemed as "the next GPCRs". To develop GPCR-targeting or ion-channel-targeting drugs, the first important step is to identify the interactions between potential drug compounds with the two kinds of protein receptors in the cellular networking. In this minireview, we are to introduce two predictors. One is called iGPCR-Drug accessible at http://www.jci-bioinfo.cn/iGPCR-Drug/; the other called iCDI-PseFpt at http://www.jci-bioinfo.cn/iCDI-PseFpt. The former is for identifying the interactions of drug compounds with GPCRs; while the latter for that with ion channels. In both predictors, the drug compound was formulated by the two-dimensional molecular fingerprint, and the protein receptor by the pseudo amino acid composition generated with the grey model theory, while the operation engine was the fuzzy K-nearest neighbor algorithm. For the convenience of most experimental pharmaceutical and medical scientists, a step-bystep guide is provided on how to use each of the two web-servers to get the desired results without the need to follow the complicated mathematics involved originally for their establishment.

  5. CELLULAR AND MOLECULAR INTERACTIONS OF PHOSPHOINOSITIDES AND PERIPHERAL PROTEINS

    PubMed Central

    Stahelin, Robert V.; Scott, Jordan L.; Frick, Cary T.

    2015-01-01

    Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection – specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins. PMID:24556335

  6. Functional interactions between polydnavirus and host cellular innexins.

    PubMed

    Marziano, N K; Hasegawa, D K; Phelan, P; Turnbull, M W

    2011-10-01

    Polydnaviruses are double-stranded DNA viruses associated with some subfamilies of ichneumonoid parasitoid wasps. Polydnavirus virions are delivered during wasp parasitization of a host, and virus gene expression in the host induces alterations of host physiology. Infection of susceptible host caterpillars by the polydnavirus Campoletis sonorensis ichnovirus (CsIV) leads to expression of virus genes, resulting in immune and developmental disruptions. CsIV carries four homologues of insect gap junction genes (innexins) termed vinnexins, which are expressed in multiple tissues of infected caterpillars. Previously, we demonstrated that two of these, VinnexinD and VinnexinG, form functional gap junctions in paired Xenopus oocytes. Here we show that VinnexinQ1 and VinnexinQ2, likewise, form junctions in this heterologous system. Moreover, we demonstrate that the vinnexins interact differentially with the Innexin2 orthologue of an ichnovirus host, Spodoptera frugiperda. Cell pairs coexpressing a vinnexin and Innexin2 or pairs in which one cell expresses a vinnexin and the neighboring cell Innexin2 assemble functional junctions with properties that differ from those of junctions composed of Innexin2 alone. These data suggest that altered gap junctional intercellular communication may underlie certain cellular pathologies associated with ichnovirus infection of caterpillar hosts.

  7. Cellular and molecular interactions of phosphoinositides and peripheral proteins.

    PubMed

    Stahelin, Robert V; Scott, Jordan L; Frick, Cary T

    2014-09-01

    Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection-specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins.

  8. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction.

    PubMed

    Hong, Soyoung; Song, Seung-Joon; Lee, Jae Yeon; Jang, Hwanseok; Choi, Jaesoon; Sun, Kyung; Park, Yongdoo

    2013-08-01

    The fabrication of patterned microstructures within three-dimensional (3D) matrices is a challenging subject in tissue engineering and regenerative medicine. A 3D, free-moving bioprinting system was developed and hydrogels were patterned by varying the process parameters of z-axis moving velocity and ejection velocity. The patterning of hydrogel based microfibers in a 3D matrigel was achieved with dimensions of 4.5 mm length and widths from 79 to 200 μm. Hyaluronan-based hydrogels mixed with fibroblasts (L929), mouse endothelial cells (MS1), or human mesenchymal stem cells (hMSCs) were patterned using a 3D moving axis bioprinter and cell behavior was monitored in culture for up to 16 days. L929 and MS1 cells and hMSCs in patterned hydrogel revealed cell-cell interactions and a morphological dependency on cell types. HMSCs formed spheres through cell aggregation, while L929 cells increased in cellular mass without cell aggregation and MS1 dispersed into the matrix instead of aggregating. The aggregation of hMSCs was attenuated by treatment with Rho kinase (ROCK) inhibitor and cadherin antibody. This reflected the close relationship between cell aggregation and migration with RhoA and cell-cell adhesion molecules. Angiogenic-specific gene expression profiles showed that expression of CD105 decreased to 22% in the ROCK inhibitor group compared to control group. These results showed that cell-based patterns in a 3D matrix are highly dependent on both cell aggregation and migration over time.

  9. Energy conservation and uncoupling in mitochondria.

    PubMed

    Hatefi, Y

    1975-01-01

    Energy conservation and uncoupling in mitochondria are examined in the light of three important new findings: (a) Studies with the photoaffinity-labeling uncoupler 2-azido-4-nitrophenol have shown that mitochondria contain a specific uncoupler binding site (apparently a polypeptide of Mr = 30,000 +/- 10%). (b) This site fractionates into an enzyme complex (complex V), which is capable of oligomycin- and uncoupler-sensitive ATP-Pi exchange. It is absent from electron transfer complexes I, III, and IV, which represent segments of the respiratory chain containing coupling sites 1, 2, and 3, respectively. (c) Trinitrophenol is a membrane-impermeable uncoupler (uncouples submitochondrial particles, but not mitochondria) and a poor protonophore. There is an excellent correlation between the uncoupling potencies and the affinities of uncouplers for the mitochondrial uncoupler-binding site. There is no correlation between uncoupling potency and protonophoric activity of uncouplers when a membrane-permeable uncoupler is compared with a membrane-impermeable one.

  10. A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules

    PubMed Central

    2014-01-01

    Background The various cell types and their relative numbers in multicellular organisms are controlled by growth factors and related extracellular molecules which affect genetic expression pathways. However, these substances may have both/either inhibitory and/or stimulatory effects on cell division and cell differentiation depending on the cellular environment. It is not known how cells respond to these substances in such an ambiguous way. Many cellular effects have been investigated and reported using cell culture from cancer cell lines in an effort to define normal cellular behaviour using these abnormal cells. A model is offered to explain the harmony of cellular life in multicellular organisms involving interacting extracellular substances. Methods A basic model was proposed based on asymmetric cell division and evidence to support the hypothetical model was accumulated from the literature. In particular, relevant evidence was selected for the Insulin-Like Growth Factor system from the published data, especially from certain cell lines, to support the model. The evidence has been selective in an attempt to provide a picture of normal cellular responses, derived from the cell lines. Results The formation of a pair of coupled cells by asymmetric cell division is an integral part of the model as is the interaction of couplet molecules derived from these cells. Each couplet cell will have a receptor to measure the amount of the couplet molecule produced by the other cell; each cell will be receptor-positive or receptor-negative for the respective receptors. The couplet molecules will form a binary complex whose level is also measured by the cell. The hypothesis is heavily supported by selective collection of circumstantial evidence and by some direct evidence. The basic model can be expanded to other cellular interactions. Conclusions These couplet cells and interacting couplet molecules can be viewed as a mechanism that provides a controlled and balanced division

  11. A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules.

    PubMed

    Craven, Cyril J

    2014-09-14

    The various cell types and their relative numbers in multicellular organisms are controlled by growth factors and related extracellular molecules which affect genetic expression pathways. However, these substances may have both/either inhibitory and/or stimulatory effects on cell division and cell differentiation depending on the cellular environment. It is not known how cells respond to these substances in such an ambiguous way. Many cellular effects have been investigated and reported using cell culture from cancer cell lines in an effort to define normal cellular behaviour using these abnormal cells.A model is offered to explain the harmony of cellular life in multicellular organisms involving interacting extracellular substances. A basic model was proposed based on asymmetric cell division and evidence to support the hypothetical model was accumulated from the literature. In particular, relevant evidence was selected for the Insulin-Like Growth Factor system from the published data, especially from certain cell lines, to support the model. The evidence has been selective in an attempt to provide a picture of normal cellular responses, derived from the cell lines. The formation of a pair of coupled cells by asymmetric cell division is an integral part of the model as is the interaction of couplet molecules derived from these cells. Each couplet cell will have a receptor to measure the amount of the couplet molecule produced by the other cell; each cell will be receptor-positive or receptor-negative for the respective receptors. The couplet molecules will form a binary complex whose level is also measured by the cell. The hypothesis is heavily supported by selective collection of circumstantial evidence and by some direct evidence. The basic model can be expanded to other cellular interactions. These couplet cells and interacting couplet molecules can be viewed as a mechanism that provides a controlled and balanced division-of-labour between the two progeny cells

  12. Contributions of host cellular trafficking and organization to the outcomes of plant-pathogen interactions

    USDA-ARS?s Scientific Manuscript database

    In recent years it has become increasingly apparent that dynamic changes in protein localization, membrane trafficking pathways, and cellular organization play a major role in determining the outcome of interactions between plants and pathogenic microorganisms. Plants have evolved sophisticated perc...

  13. Non-Chemical Distant Cellular Interactions as a potential confounder of cell biology experiments

    PubMed Central

    Farhadi, Ashkan

    2014-01-01

    Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism. PMID:25368582

  14. Non-Chemical Distant Cellular Interactions as a potential confounder of cell biology experiments.

    PubMed

    Farhadi, Ashkan

    2014-01-01

    Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  15. Interaction of tea tree oil with model and cellular membranes.

    PubMed

    Giordani, Cristiano; Molinari, Agnese; Toccacieli, Laura; Calcabrini, Annarica; Stringaro, Annarita; Chistolini, Pietro; Arancia, Giuseppe; Diociaiuti, Marco

    2006-07-27

    Tea tree oil (TTO) is the essential oil steam-distilled from Melaleuca alternifolia, a species of northern New South Wales, Australia. It exhibits a broad-spectrum antimicrobial activity and an antifungal activity. Only recently has TTO been shown to inhibit the in vitro growth of multidrug resistant (MDR) human melanoma cells. It has been suggested that the effect of TTO on tumor cells could be mediated by its interaction with the plasma membrane, most likely by inducing a reorganization of lipid architecture. In this paper we report biophysical and structural results obtained using simplified planar model membranes (Langmuir films) mimicking lipid "rafts". We also used flow cytometry analysis (FCA) and freeze-fracturing transmission electron microscopy to investigate the effects of TTO on actual MDR melanoma cell membranes. Thermodynamic (compression isotherms and adsorption kinetics) and structural (Brewster angle microscopy) investigation of the lipid monolayers clearly indicates that TTO interacts preferentially with the less ordered DPPC "sea" and that it does not alter the more ordered lipid "rafts". Structural observations, performed by freeze fracturing, confirm that TTO interacts with the MDR melanoma cell plasma membrane. Moreover, experiments performed by FCA demonstrate that TTO does not interfere with the function of the MDR drug transporter P-gp. We therefore propose that the effect exerted on MDR melanoma cells is mediated by the interaction with the fluid DPPC phase, rather than with the more organized "rafts" and that this interaction preferentially influences the ATP-independent antiapoptotic activity of P-gp likely localized outside "rafts".

  16. Molecular and cellular basis of cannabinoid and opioid interactions.

    PubMed

    Viganò, Daniela; Rubino, Tiziana; Parolaro, Daniela

    2005-06-01

    Cannabinoids and opioids have been shown to possess several similar pharmacological effects, including analgesia and stimulation of brain circuitry that are believed to underlie drug addiction and reward. In recent years, these phenomena have supported the possible existence of functional links in the mechanisms of action of both types of drugs. The present review addresses the recent advances in the study of biochemical and molecular mechanisms underlying opioid and cannabinoid interaction. Several hypothesis have been formulated to explain this cross-modulation including the release of opioid peptides by cannabinoids or endocannabinoids by opioids and interaction at the level of receptor and/or their signal transduction mechanisms. Moreover it is important to consider that the nature of cannabinoid and opioid interaction might differ in the brain circuits mediating reward and in those mediating other pharmacological properties, such as antinociception. While in vitro studies point to the presence of interaction at various steps along the signal transduction pathway, studies in intact animals are frequently contradictory pending on the used species and the adopted protocol. The presence of reciprocal alteration in receptor density and efficiency as well as the modification in opioid/cannabinoid endogenous systems often do not reflect the behavioral results. Further studies are needed since a better knowledge of the opioid-cannabinoid interaction may lead to exciting therapeutic possibilities.

  17. Interactions between cyclodextrins and cellular components: Towards greener medical applications?

    PubMed Central

    2016-01-01

    In the field of host–guest chemistry, some of the most widely used hosts are probably cyclodextrins (CDs). As CDs are able to increase the water solubility of numerous drugs by inclusion into their hydrophobic cavity, they have been widespread used to develop numerous pharmaceutical formulations. Nevertheless, CDs are also able to interact with endogenous substances that originate from an organism, tissue or cell. These interactions can be useful for a vast array of topics including cholesterol manipulation, treatment of Alzheimer’s disease, control of pathogens, etc. In addition, the use of natural CDs offers the great advantage of avoiding or reducing the use of common petroleum-sourced drugs. In this paper, the general features and applications of CDs have been reviewed as well as their interactions with isolated biomolecules leading to the formation of inclusion or exclusion complexes. Finally, some potential medical applications are highlighted throughout several examples. PMID:28144335

  18. Proteomic profiling of cellular proteins interacting with the hepatitis C virus core protein.

    PubMed

    Kang, Su-Min; Shin, Min-Jung; Kim, Jung-Hee; Oh, Jong-Won

    2005-05-01

    Hepatitis C virus (HCV) is a causative agent of chronic hepatitis and hepatocellular carcinoma. The core protein of HCV packages the viral RNA genome to form a nucleocapsid. In addition to its function as a structural protein, core protein is involved in regulation of cellular transcription, virus-induced transformation, and pathogenesis. To gain insights into cellular functions of the core protein by identification of cellular proteins interacting with the core protein, we employed a proteomic approach. Hepatocytes soluble cytoplasmic proteins were applied to the core proteins immobilized on Ni-nitrilotriacetic resin and total bound cellular proteins were resolved by 2-DE. Analyses of interacting proteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry allowed identification of 14 cellular proteins binding to the core protein. These proteins include DEAD-box polypeptide 5, similar in function to a known protein identified previously by yeast two-hybrid screening and 13 newly identified cellular proteins. Interestingly, nine protein spots were identified as intermediate microfilament proteins, including cytokeratins (five spots for cytokeratin 8, two for cytokeratin 19, and one for cytokeratin 18) and vimentin. Cytokeratin 8 and vimentin, which were previously shown to be involved in the infection processes of other viruses, were further analyzed to confirm their in vivo interactions with the core protein by immunoblotting and immunofluorescence microscopy. We discuss the functional implications of the interactions of the core protein with newly identified cellular proteins in HCV infection and pathogenesis.

  19. Cellular interactions of surface modified nanoporous silicon particles

    NASA Astrophysics Data System (ADS)

    Bimbo, Luis M.; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B.; Hirvonen, Jouni; Airaksinen, Anu J.; Santos, Hélder A.

    2012-05-01

    In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi

  20. Uncoupling of the dynamics of host-pathogen interaction uncovers new mechanisms of viral interferon antagonism at the single-cell level.

    PubMed

    Rand, Ulfert; Hillebrand, Upneet; Sievers, Stephanie; Willenberg, Steffi; Köster, Mario; Hauser, Hansjörg; Wirth, Dagmar

    2014-07-01

    Antiviral defence in mammals is mediated through type-I interferons (IFNs). Viruses antagonise this process through expression of IFN antagonist proteins (IAPs). Understanding and modelling of viral escape mechanisms and the dynamics of IAP action has the potential to facilitate the development of specific and safe drugs. Here, we describe the dynamics of interference by selected viral IAPs, NS1 from Influenza A virus and NS3/4A from Hepatitis C virus. We used Tet-inducible IAP gene expression to uncouple this process from virus-driven dynamics. Stochastic activation of the IFN-β gene required the use of single-cell live imaging to define the efficacy of the inhibitors during the virus-induced signalling processes. We found significant correlation between the onset of IAP expression and halted IFN-β expression in cells where IFN-β induction had already occurred. These data indicate that IAPs not only prevent antiviral signalling prior to IFN-β induction, but can also stop the antiviral response even after it has been activated. We found reduced NF-κB activation to be the underlying mechanism by which activated IFN expression can be blocked. This work demonstrates a new mechanism by which viruses can antagonise the IFN response.

  1. Uncoupler-reversible inhibition of mitochondrial ATPase by metal chelates of bathophenanthroline. I. General features.

    PubMed

    Carlsson, C; Ernster, L

    1981-12-14

    (1) Certain metal chelates of 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline, BPh) are potent inhibitors of soluble mitochondrial F1-ATPase. (2) The BPh-metal chelate inhibition of soluble mitochondrial F1-ATPase is relieved by uncouplers of oxidative phosphorylation. (3) The uncouplers appear to interact directly with the inhibitory chelates, forming stoichiometric adducts. (4) A complex between F1 and bPh3Fe2+, containing 3 mol BPh3Fe2+/mol F1, has been isolated. The enzymically inactive F1-BPh3Fe2+ complex binds uncouplers, yielding an enzymically active F1-BPh3Fe2+-uncoupler complex.

  2. Cellular microbiology and molecular ecology of Legionella-amoeba interaction.

    PubMed

    Richards, Ashley M; Von Dwingelo, Juanita E; Price, Christopher T; Abu Kwaik, Yousef

    2013-05-15

    Legionella pneumophila is an aquatic organism that interacts with amoebae and ciliated protozoa as the natural hosts, and this interaction plays a central role in bacterial ecology and infectivity. Upon transmission to humans, L. pneumophila infect and replicate within alveolar macrophages causing pneumonia. Intracellular proliferation of L. pneumophila within the two evolutionarily distant hosts is facilitated by bacterial exploitation of evolutionarily conserved host processes that are targeted by bacterial protein effectors injected into the host cell by the Dot/Icm type VIB translocation system. Although cysteine is semi-essential for humans and essential for amoeba, it is a metabolically favorable source of carbon and energy generation by L. pneumophila. To counteract host limitation of cysteine, L. pneumophila utilizes the AnkB Dot/Icm-translocated F-box effector to promote host proteasomal degradation of polyubiquitinated proteins within amoebae and human cells. Evidence indicates ankB and other Dot/Icm-translocated effector genes have been acquired through inter-kingdom horizontal gene transfer.

  3. Coupled and uncoupled dipole models of nonlinear scattering.

    PubMed

    Balla, Naveen K; Yew, Elijah Y S; Sheppard, Colin J R; So, Peter T C

    2012-11-05

    Dipole models are one of the simplest numerical models to understand nonlinear scattering. Existing dipole model for second harmonic generation, third harmonic generation and coherent anti-Stokes Raman scattering assume that the dipoles which make up a scatterer do not interact with one another. Thus, this dipole model can be called the uncoupled dipole model. This dipole model is not sufficient to describe the effects of refractive index of a scatterer or to describe scattering at the edges of a scatterer. Taking into account the interaction between dipoles overcomes these short comings of the uncoupled dipole model. Coupled dipole model has been primarily used for linear scattering studies but it can be extended to predict nonlinear scattering. The coupled and uncoupled dipole models have been compared to highlight their differences. Results of nonlinear scattering predicted by coupled dipole model agree well with previously reported experimental results.

  4. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes

    PubMed Central

    2004-01-01

    14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s ‘finish the job’ when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival – in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses. PMID:15167810

  5. Interactions of the interferon system with cellular metabolism

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1986-01-01

    The results of studies concerning the interaction of the interferon (Inf) system with the activities of carcinogens, tumor promoters, and cytochrome P-450 are presented. The results show that the addition of a tumor promoter (TPA or 4-O-methyl-TPA) to a tissue culture enhances virus-induced Inf-gamma production, suggesting a potential value of tumor promoters in the biosynthesis of commercial Inf. On the other hand, the carcinogens were reported to inhibit the induction of Inf-alpha/beta in cultured cells and in intact animals (with no effect on the administered or preformed Inf). The demonstration of a correlation between the carcinogenic potential of a compound and its inhibitive effect on Inf production suggests a possible use of the Inf production assay in the evaluation of the carcinogenicity of chemicals. In addition, it was shown that the induction of Inf-alpha/beta as well as the administration of this Inf depresses the levels of rat liver cytochrome P-450 which is responsible for binding lipophilic drugs, steroids, and carcinogens, thus increasing the toxicity of the respective chemical.

  6. Interaction with AKAP79 modifies the cellular pharmacology of PKC.

    PubMed

    Hoshi, Naoto; Langeberg, Lorene K; Gould, Christine M; Newton, Alexandra C; Scott, John D

    2010-02-26

    A-kinase anchoring proteins (AKAPs) coordinate cell signaling events. AKAP79 brings together different combinations of enzyme binding partners to customize the regulation of effector proteins. In neurons, muscarinic agonists mobilize an AKAP79-anchored pool of PKC that phosphorylates the KCNQ2 subunit of the M channel. This inhibits potassium permeability to enhance neuronal excitability. Using a dual fluorescent imaging/patch-clamp technique, we visualized AKAP79-anchored PKC phosphorylation of the kinase activity reporter CKAR concurrently with electrophysiological changes in KCNQ2 channels to show that AKAP79 synchronizes both signaling events to optimize the attenuation of M currents. AKAP79 also protects PKC from certain ATP-competitive inhibitors. Related studies suggest that context-dependent protein-protein interactions alter the susceptibility of another protein kinase, PDK1, to ATP analog inhibitors. This implies that intracellular binding partners not only couple individual molecular events in a cell signaling process but can also change the pharmacological profile of certain protein kinases. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Interactions of the interferon system with cellular metabolism

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1986-01-01

    The results of studies concerning the interaction of the interferon (Inf) system with the activities of carcinogens, tumor promoters, and cytochrome P-450 are presented. The results show that the addition of a tumor promoter (TPA or 4-O-methyl-TPA) to a tissue culture enhances virus-induced Inf-gamma production, suggesting a potential value of tumor promoters in the biosynthesis of commercial Inf. On the other hand, the carcinogens were reported to inhibit the induction of Inf-alpha/beta in cultured cells and in intact animals (with no effect on the administered or preformed Inf). The demonstration of a correlation between the carcinogenic potential of a compound and its inhibitive effect on Inf production suggests a possible use of the Inf production assay in the evaluation of the carcinogenicity of chemicals. In addition, it was shown that the induction of Inf-alpha/beta as well as the administration of this Inf depresses the levels of rat liver cytochrome P-450 which is responsible for binding lipophilic drugs, steroids, and carcinogens, thus increasing the toxicity of the respective chemical.

  8. Cellular regulation and molecular interactions of the ferritins.

    PubMed

    Hintze, K J; Theil, E C

    2006-03-01

    Controlling iron/oxygen chemistry in biology depends on multiple genes, regulatory messenger RNA (mRNA) structures, signaling pathways and protein catalysts. Ferritin, a protein nanocage around an iron/oxy mineral, centralizes the control. Complementary DNA (antioxidant responsive element/Maf recognition element) and mRNA (iron responsive element) responses regulate ferritin synthesis rates. Multiple iron-protein interactions control iron and oxygen substrate movement through the protein cage, from dynamic gated pores to catalytic sites related to di-iron oxygenase cofactor sites. Maxi-ferritins concentrate iron for the bio-synthesis of iron/heme proteins, trapping oxygen; bacterial mini-ferritins, DNA protection during starvation proteins, reverse the substrate roles, destroying oxidants, trapping iron and protecting DNA. Ferritin is nature's unique and conserved approach to controlled, safe use of iron and oxygen, with protein synthesis in animals adjusted by dual, genetic DNA and mRNA sequences that selectively respond to iron or oxidant signals and link ferritin to proteins of iron, oxygen and antioxidant metabolism.

  9. Uncoupling Mitochondrial Respiration for Diabesity.

    PubMed

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2016-08-01

    Until recently, the mechanism of adaptive thermogenesis was ascribed to the expression of uncoupling protein 1 (UCP1) in brown and beige adipocytes. UCP1 is known to catalyze a proton leak of the inner mitochondrial membrane, resulting in uncoupled oxidative metabolism with no production of adenosine triphosphate and increased energy expenditure. Thus increasing brown and beige adipose tissue with augmented UCP1 expression is a viable target for obesity-related disorders. Recent work demonstrates an UCP1-independent pathway to uncouple mitochondrial respiration. A secreted enzyme, PM20D1, enriched in UCP1+ adipocytes, exhibits catalytic and hydrolytic activity to reversibly form N-acyl amino acids. N-acyl amino acids act as endogenous uncouplers of mitochondrial respiration at physiological concentrations. Administration of PM20D1 or its products, N-acyl amino acids, to diet-induced obese mice improves glucose tolerance by increasing energy expenditure. In short-term studies, treated animals exhibit no toxicity while experiencing 10% weight loss primarily of adipose tissue. Further study of this metabolic pathway may identify novel therapies for diabesity, the disease state associated with diabetes and obesity.

  10. Mitochondrial Uncoupling and the Regulation of Glucose Homeostasis.

    PubMed

    Giralt, Marta; Villarroya, Francesc

    2017-01-01

    Mitochondrial uncoupling is a physiological process that has direct and indirect consequences on glucose homeostasis. Non-shivering thermogenesis in brown adipose tissue, which is the most well-recognized biological process related to the physiological uncoupling of mitochondria, is caused by uncoupling protein-1 (UCP1), which mediates a regulated permeabilization of the mitochondrial inner membrane to protons. The uncoupled brown fat mitochondria are specialized to produce heat by oxidizing large amounts of substrates, making brown fat a sink that can actively drain glucose from circulation. This has been confirmed in human studies in which active brown fat was detected by glucose-derivative-based positron emission tomography scans. Thus, UCP1-mediated activation of brown fat appears to be a likely mechanism through which hyperglycemia could be ameliorated. In other tissues, mitochondria are reported to be mildly uncoupled by the UCP1-like proteins, UCP2 and UCP3. The primary role of these other UCPs does not appear to be the oxidation of a metabolic substrate (e.g., glucose) for heat production; instead, they participate in other processes, such as regulating the production of reactive oxygen species and transporting certain metabolites across the mitochondrial membrane. UCP2 activity influences glucose homeostasis by fine tuning intracellular events related to the cellular energy status, thereby controlling insulin secretion, food intake behavior and adiponectin secretion in pancreatic .- cells, brain and white adipose tissue, respectively. UCP3 appears to be more specifically involved in promoting fatty acid oxidation in muscle, and is thus likely to influence glucose metabolism indirectly. Several genetic association studies have related polymorphisms in the genes encoding UCPs with obesity and/or type 2 diabetes phenotypes. In this review, we will focus on what is known about the specific role of mitochondrial uncoupling in glucose metabolism, and its

  11. Metabolic Flux Analysis of Mitochondrial Uncoupling in 3T3-L1 Adipocytes

    PubMed Central

    Si, Yaguang; Shi, Hai; Lee, Kyongbum

    2009-01-01

    Background Increasing energy expenditure at the cellular level offers an attractive option to limit adiposity and improve whole body energy balance. In vivo and in vitro observations have correlated mitochondrial uncoupling protein-1 (UCP1) expression with reduced white adipose tissue triglyceride (TG) content. The metabolic basis for this correlation remains unclear. Methodology/Principal Findings This study tested the hypothesis that mitochondrial uncoupling requires the cell to compensate for the decreased oxidation phosphorylation efficiency by up-regulating lactate production, thus redirecting carbon flux away from TG synthesis. Metabolic flux analysis was used to characterize the effects of non-lethal, long-term mitochondrial uncoupling (up to 18 days) on the pathways of intermediary metabolism in differentiating 3T3-L1 adipocytes. Uncoupling was induced by forced expression of UCP1 and chemical (FCCP) treatment. Chemical uncoupling significantly decreased TG content by ca. 35%. A reduction in the ATP level suggested diminished oxidative phosphorylation efficiency in the uncoupled adipocytes. Flux analysis estimated significant up-regulation of glycolysis and down-regulation of fatty acid synthesis, with chemical uncoupling exerting quantitatively larger effects. Conclusions/Significance The results of this study support our hypothesis regarding uncoupling-induced redirection of carbon flux into glycolysis and lactate production, and suggest mitochondrial proton translocation as a potential target for controlling adipocyte lipid metabolism. PMID:19746157

  12. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif.

    PubMed

    Tesina, Petr; Čermáková, Kateřina; Hořejší, Magdalena; Procházková, Kateřina; Fábry, Milan; Sharma, Subhalakshmi; Christ, Frauke; Demeulemeester, Jonas; Debyser, Zeger; De Rijck, Jan; Veverka, Václav; Řezáčová, Pavlína

    2015-08-06

    Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors.

  13. Synchronizing noisy nonidentical oscillators by transient uncoupling

    SciTech Connect

    Tandon, Aditya Mannattil, Manu; Schröder, Malte; Timme, Marc; Chakraborty, Sagar

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  14. Protein interaction patterns in different cellular environments are revealed by in-cell NMR

    PubMed Central

    Barbieri, Letizia; Luchinat, Enrico; Banci, Lucia

    2015-01-01

    In-cell NMR allows obtaining atomic-level information on biological macromolecules in their physiological environment. Soluble proteins may interact with the cellular environment in different ways: either specifically, with their functional partners, or non-specifically, with other cellular components. Such behaviour often causes the disappearance of the NMR signals. Here we show that by introducing mutations on the human protein profilin 1, used here as a test case, the in-cell NMR signals can be recovered. In human cells both specific and non-specific interactions are present, while in bacterial cells only the effect of non-specific interactions is observed. By comparing the NMR signal recovery pattern in human and bacterial cells, the relative contribution of each type of interaction can be assessed. This strategy allows detecting solution in-cell NMR spectra of soluble proteins without altering their fold, thus extending the applicability of in-cell NMR to a wider range of proteins. PMID:26399546

  15. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  16. Ship interaction in narrow water channels: A two-lane cellular automata approach

    NASA Astrophysics Data System (ADS)

    Sun, Zhuo; Chen, Zhonglong; Hu, Hongtao; Zheng, Jianfeng

    2015-08-01

    In narrow waterways, closed ships might interact due to hydrodynamic forces. To avoid clashes, different lane-changing rules are required. In this paper, a two-lane cellular automata model is proposed to investigate the traffic flow patterns in narrow water channels. Numerical experiments show that ship interaction can form "lumps" in traffic flow which will significantly depress the flux. We suggest that the lane-changing frequency of fast ships should be limited.

  17. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos [Center Moriches, NY; Kayran, Dmitry [Rocky Point, NY; Litvinenko, Vladimir [Mt. Sinai, NY; MacKay, William W [Wading River, NY

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  18. Supramolecular host-guest interaction for labeling and detection of cellular biomarkers.

    PubMed

    Agasti, Sarit S; Liong, Monty; Tassa, Carlos; Chung, Hyun Jung; Shaw, Stanley Y; Lee, Hakho; Weissleder, Ralph

    2012-01-09

    Be my guest: A supramolecular host-guest interaction is utilized for highly efficient bioorthogonal labeling of cellular targets. Antibodies labeled with a cyclodextrin host molecule bind to adamantane-labeled magnetofluorescent nanoparticles (see picture) and provide an amplifiable strategy for biomarker detection that can be adapted to different diagnostic techniques such as molecular profiling or magnetic cell sorting.

  19. A `Clicked' Tetrameric Hydroxamic Acid Glycopeptidomimetic Antagonizes Sugar-Lectin Interactions On The Cellular Level

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Lin; Zang, Yi; Xie, Juan; Li, Jia; Chen, Guo-Rong; He, Xiao-Peng; Tian, He

    2014-07-01

    A tetrameric N-acetyl galactosaminyl (GalNAc) peptidomimetic was constructed by N-acetylation of repeating proline-based hydroxamic acid units, followed by a convergent `click chemistry' coupling. This novel glycopeptidomimetic was determined to effectively antagonize the interaction between a transmembrane hepatic lectin and GalNAc on the cellular level.

  20. Dynamic Circadian Protein–Protein Interaction Networks Predict Temporal Organization of Cellular Functions

    PubMed Central

    Wallach, Thomas; Schellenberg, Katja; Maier, Bert; Kalathur, Ravi Kiran Reddy; Porras, Pablo; Wanker, Erich E.; Futschik, Matthias E.; Kramer, Achim

    2013-01-01

    Essentially all biological processes depend on protein–protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (∼24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner. PMID:23555304

  1. A global genetic interaction network maps a wiring diagram of cellular function.

    PubMed

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D; Pelechano, Vicent; Styles, Erin B; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F; Li, Sheena C; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; San Luis, Bryan-Joseph; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M; Moore, Claire L; Rosebrock, Adam P; Caudy, Amy A; Myers, Chad L; Andrews, Brenda; Boone, Charles

    2016-09-23

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.

  2. ComPPI: a cellular compartment-specific database for protein-protein interaction network analysis.

    PubMed

    Veres, Daniel V; Gyurkó, Dávid M; Thaler, Benedek; Szalay, Kristóf Z; Fazekas, Dávid; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein-protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein-protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein-protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design.

  3. ComPPI: a cellular compartment-specific database for protein–protein interaction network analysis

    PubMed Central

    Veres, Daniel V.; Gyurkó, Dávid M.; Thaler, Benedek; Szalay, Kristóf Z.; Fazekas, Dávid; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein–protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein–protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein–protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design. PMID:25348397

  4. A coarse-grained model for the simulations of biomolecular interactions in cellular environments

    SciTech Connect

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2014-02-07

    The interactions of bio-molecules constitute the key steps of cellular functions. However, in vivo binding properties differ significantly from their in vitro measurements due to the heterogeneity of cellular environments. Here we introduce a coarse-grained model based on rigid-body representation to study how factors such as cellular crowding and membrane confinement affect molecular binding. The macroscopic parameters such as the equilibrium constant and the kinetic rate constant are calibrated by adjusting the microscopic coefficients used in the numerical simulations. By changing these model parameters that are experimentally approachable, we are able to study the kinetic and thermodynamic properties of molecular binding, as well as the effects caused by specific cellular environments. We investigate the volumetric effects of crowded intracellular space on bio-molecular diffusion and diffusion-limited reactions. Furthermore, the binding constants of membrane proteins are currently difficult to measure. We provide quantitative estimations about how the binding of membrane proteins deviates from soluble proteins under different degrees of membrane confinements. The simulation results provide biological insights to the functions of membrane receptors on cell surfaces. Overall, our studies establish a connection between the details of molecular interactions and the heterogeneity of cellular environments.

  5. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.

    PubMed

    Hatefi, Y; Hanstein, W G; Galante, Y; Stiggall, D L

    1975-07-01

    Five enzyme complexes, which are concerned with electron transport and oxidative phosphorylation, have been isolated from beef heart mitochondria. Enzyme complexes I, II, III and IV are the electron transfer complexes discovered in 1961. Complex V is an energy-conserving complex. It catalyzes ATP-Pi exchange and ATP hydrolysis. The exchange reaction is sensitive to uncouplers, rutamycin, valinomycin plus K-+, dicyclorexylcarboditmide, arsenate, azide, and adenylyl imidodiphosphate. It is also specific for ATP; ITP, GTP and UTP are essentially ineffective. Studies with the photoaffinity labeling uncoupler, 2-azido-4-nitrophenol (NPA), have shown that the mitochondrial uncoupler-binding sites are located exclusively in complex V. Complexes I, III and IV, which carry the three coupling sites of the respiratory chain, had negligible capacity for the binding of NPA, whereas the uncoupler-binding capacity of complex V appeared to be increased two- to threefold as compared to mitochondria. Complexes I, II, III, IV and V are obtained from the same batch of mitochondria by a simple fractionation procedure, which employs cholate, deoxycholate, ammonium acetate and ammonium sulfate. Studies with NPA have shown that mitochondria contain per milligram protein about 0.6 nmole of uniformly reacting uncoupler binding site. All of the uncouplers tested appeared to interact competitively with this site. Photoaffinity labeling with tritiated NPA has shown that a major portion of NPA binds to a polypeptide of molecular weight between 26,000 and 30,000. Other studies on the mechanism of uncoupling have shown that picrate is a membrane-impermeable uncoupler. It cannot uncouple mitochondria. However, it is an effective uncoupler of ATP synthesis and ATP-induced transhydrogenation or reverse electron transfer when used in conjunction with sonicated submitochondrial particles, which have an inside-out orientation of the inner membrane with respect to the medium. In these particles, picrate

  6. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction

    PubMed Central

    Hoshyar, Nazanin; Gray, Samantha; Han, Hongbin; Bao, Gang

    2016-01-01

    Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed. PMID:27003448

  7. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    PubMed

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR

  8. Nanoparticle–Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes

    PubMed Central

    2015-01-01

    Conspectus The use of nanoparticles (NPs) in biology and medicine requires a molecular-level understanding of how NPs interact with cells in a physiological environment. A critical difference between well-controlled in vitro experiments and in vivo applications is the presence of a complex mixture of extracellular proteins. It has been established that extracellular serum proteins present in blood will adsorb onto the surface of NPs, forming a “protein corona”. Our goal was to understand how this protein layer affected cellular-level events, including NP binding, internalization, and transport. A combination of microscopy, which provides spatial resolution, and spectroscopy, which provides molecular information, is necessary to probe protein–NP–cell interactions. Initial experiments used a model system composed of polystyrene NPs functionalized with either amine or carboxylate groups to provide a cationic or anionic surface, respectively. Serum proteins adsorb onto the surface of both cationic and anionic NPs, forming a net anionic protein–NP complex. Although these protein–NP complexes have similar diameters and effective surface charges, they show the exact opposite behavior in terms of cellular binding. In the presence of bovine serum albumin (BSA), the cellular binding of BSA–NP complexes formed from cationic NPs is enhanced, whereas the cellular binding of BSA–NP complexes formed from anionic NPs is inhibited. These trends are independent of NP diameter or cell type. Similar results were obtained for anionic quantum dots and colloidal gold nanospheres. Using competition assays, we determined that BSA–NP complexes formed from anionic NPs bind to albumin receptors on the cell surface. BSA–NP complexes formed from cationic NPs are redirected to scavenger receptors. The observation that similar NPs with identical protein corona compositions bind to different cellular receptors suggested that a difference in the structure of the adsorbed protein

  9. Protein-protein interactions within the ensemble, eukaryotic V-ATPase, and its concerted interactions with cellular machineries.

    PubMed

    Balakrishna, Asha Manikkoth; Manimekalai, Malathy Sony Subramanian; Grüber, Gerhard

    2015-10-01

    The V1VO-ATPase (V-ATPase) is the important proton-pump in eukaryotic cells, responsible for pH-homeostasis, pH-sensing and amino acid sensing, and therefore essential for cell growths and metabolism. ATP-cleavage in the catalytic A3B3-hexamer of V1 has to be communicated via several so-called central and peripheral stalk units to the proton-pumping VO-part, which is membrane-embedded. A unique feature of V1VO-ATPase regulation is its reversible disassembly of the V1 and VO domain. Actin provides a network to hold the V1 in proximity to the VO, enabling effective V1VO-assembly to occur. Besides binding to actin, the 14-subunit V-ATPase interacts with multi-subunit machineries to form cellular sensors, which regulate the pH in cellular compartments or amino acid signaling in lysosomes. Here we describe a variety of subunit-subunit interactions within the V-ATPase enzyme during catalysis and its protein-protein assembling with key cellular machineries, essential for cellular function.

  10. Uncouple my heart: the benefits of inefficiency.

    PubMed

    Modrianský, Martin; Gabrielová, Eva

    2009-04-01

    Myocardial ischemia/reperfusion (IR) injury leads to structural changes in the heart muscle later followed by functional decline due to progressive fibrous replacement. Hence approaches to minimize IR injury are devised, including ischemic pre-and postconditioning. Mild uncoupling of oxidative phosphorylation is one of the mechanisms suggested to be cardioprotective as chemical uncoupling mimics ischemic preconditioning. Uncoupling protein 2 is proposed to be the physiological counterpart of chemical uncouplers and is thought to be a part of the protective machinery of cardiomyocytes. Morphological changes in the mitochondrial network likely accompany the uncoupling with mitochondrial fission dampening the signals leading to cardiomyocyte death. Here we review recent data on the role of uncoupling in cardioprotection and propose that low concentrations of dietary polyphenols may elicit the same cardioprotective effect as dinitrophenol and FCCP, perhaps accounting for the famed "French paradox".

  11. Cellular versus viral microRNAs in host–virus interaction

    PubMed Central

    Ghosh, Zhumur; Mallick, Bibekanand; Chakrabarti, Jayprokas

    2009-01-01

    MicroRNAs (miRNAs) mark a new paradigm of RNA-directed gene expression regulation in a wide spectrum of biological systems. These small non-coding RNAs can contribute to the repertoire of host-pathogen interactions during viral infection. This interplay has important consequences, both for the virus and the host. There have been reported evidences of host-cellular miRNAs modulating the expression of various viral genes, thereby playing a pivotal role in the host–pathogen interaction network. In the hide-and-seek game between the pathogens and the infected host, viruses have evolved highly sophisticated gene-silencing mechanisms to evade host-immune response. Recent reports indicate that virus too encode miRNAs that protect them against cellular antiviral response. Furthermore, they may exploit the cellular miRNA pathway to their own advantage. Nevertheless, our increasing knowledge of the host–virus interaction at the molecular level should lead us toward possible explanations to viral tropism, latency and oncogenesis along with the development of an effective, durable and nontoxic antiviral therapy. Here, we summarize the recent updates on miRNA-induced gene-silencing mechanism, modulating host–virus interactions with a glimpse of the miRNA-based antiviral therapy for near future. PMID:19095692

  12. SARS-CoV nucleocapsid protein interacts with cellular pyruvate kinase protein and inhibits its activity.

    PubMed

    Wei, Wei-Yen; Li, Hui-Chun; Chen, Chiung-Yao; Yang, Chee-Hing; Lee, Shen-Kao; Wang, Chia-Wen; Ma, Hsin-Chieh; Juang, Yue-Li; Lo, Shih-Yen

    2012-04-01

    The pathogenesis of SARS-CoV remains largely unknown. To study the function of the SARS-CoV nucleocapsid protein, we have conducted a yeast two-hybrid screening experiment to identify cellular proteins that may interact with the SARS-CoV nucleocapsid protein. Pyruvate kinase (liver) was found to interact with SARS-CoV nucleocapsid protein in this experiment. The binding domains of these two proteins were also determined using the yeast two-hybrid system. The physical interaction between the SARS-CoV nucleocapsid and cellular pyruvate kinase (liver) proteins was further confirmed by GST pull-down assay, co-immunoprecipitation assay and confocal microscopy. Cellular pyruvate kinase activity in hepatoma cells was repressed by SARS-CoV nucleocapsid protein in either transiently transfected or stably transfected cells. PK deficiency in red blood cells is known to result in human hereditary non-spherocytic hemolytic anemia. It is reasonable to assume that an inhibition of PKL activity due to interaction with SARS-CoV N protein is likely to cause the death of the hepatocytes, which results in the elevation of serum alanine aminotransferase and liver dysfunction noted in most SARS patients. Thus, our results suggest that SARS-CoV could reduce pyruvate kinase activity via its nucleocapsid protein, and this may in turn cause disease.

  13. Hepatitis C Virus Core Protein Interacts with Cellular Putative RNA Helicase

    PubMed Central

    You, Li-Ru; Chen, Chun-Ming; Yeh, Tien-Shun; Tsai, Tzung-Yuan; Mai, Ru-Tsun; Lin, Chi-Hung; Lee, Yan-Hwa Wu

    1999-01-01

    The nucleocapsid core protein of hepatitis C virus (HCV) has been shown to trans-act on several viral or cellular promoters. To get insight into the trans-action mechanism of HCV core protein, a yeast two-hybrid cloning system was used for identification of core protein-interacting cellular protein. One such cDNA clone encoding the DEAD box family of putative RNA helicase was obtained. This cellular putative RNA helicase, designated CAP-Rf, exhibits more than 95% amino acid sequence identity to other known RNA helicases including human DBX and DBY, mouse mDEAD3, and PL10, a family of proteins generally involved in translation, splicing, development, or cell growth. In vitro binding or in vivo coimmunoprecipitation studies demonstrated the direct interaction of the full-length/matured form and C-terminally truncated variants of HCV core protein with this targeted protein. Additionally, the protein’s interaction domains were delineated at the N-terminal 40-amino-acid segment of the HCV core protein and the C-terminal tail of CAP-Rf, which encompassed its RNA-binding and ATP hydrolysis domains. Immunoblotting or indirect immunofluorescence analysis revealed that the endogenous CAP-Rf was mainly localized in the nucleus and to a lesser extent in the cytoplasm, and when fused with FLAG tag, it colocalized with the HCV core protein either in the cytoplasm or in the nucleus. Similar to other RNA helicases, this cellular RNA helicase has nucleoside triphosphatase-deoxynucleoside triphosphatase activity, but this activity is inhibited by various forms of homopolynucleotides and enhanced by the HCV core protein. Moreover, transient expression of HCV core protein in human hepatoma HuH-7 cells significantly potentiated the trans-activation effect of FLAG-tagged CAP-Rf or untagged CAP-Rf on the luciferase reporter plasmid activity. All together, our results indicate that CAP-Rf is involved in regulation of gene expression and that HCV core protein promotes the trans

  14. Applying Attractor Dynamics to Infer Gene Regulatory Interactions Involved in Cellular Differentiation.

    PubMed

    Ghaffarizadeh, Ahmadreza; Podgorski, Gregory J; Flann, Nicholas S

    2017-02-27

    The dynamics of gene regulatory networks (GRNs) guide cellular differentiation. Determining the ways regulatory genes control expression of their targets is essential to understand and control cellular differentiation. The way a regulatory gene controls its target can be expressed as a gene regulatory function. Manual derivation of these regulatory functions is slow, error-prone and difficult to update as new information arises. Automating this process is a significant challenge and the subject of intensive effort. This work presents a novel approach to discovering biologically plausible gene regulatory interactions that control cellular differentiation. This method integrates known cell type expression data, genetic interactions, and knowledge of the effects of gene knockouts to determine likely GRN regulatory functions. We employ a genetic algorithm to search for candidate GRNs that use a set of transcription factors that control differentiation within a lineage. Nested canalyzing functions are used to constrain the search space to biologically plausible networks. The method identifies an ensemble of GRNs whose dynamics reproduce the gene expression pattern for each cell type within a particular lineage. The method's effectiveness was tested by inferring consensus GRNs for myeloid and pancreatic cell differentiation and comparing the predicted gene regulatory interactions to manually derived interactions. We identified many regulatory interactions reported in the literature and also found differences from published reports. These discrepancies suggest areas for biological studies of myeloid and pancreatic differentiation. We also performed a study that used defined synthetic networks to evaluate the accuracy of the automated search method and found that the search algorithm was able to discover the regulatory interactions in these defined networks with high accuracy. We suggest that the GRN functions derived from the methods described here can be used to fill

  15. ELF (extremely-low-frequency) field interactions at the animal, tissue and cellular levels

    SciTech Connect

    Tenforde, T.S.

    1990-10-01

    A description is given of the fundamental physical properties of extremely-low-frequency (ELF) electromagnetic fields, and the mechanisms through which these fields interact with the human body at a macroscopic level. Biological responses to ELF fields at the tissue, cellular and molecular levels are summarized, including new evidence that ELF field exposure produces alterations in gene expression and the cytoplasmic concentrations of specific proteins.

  16. Rearrangements of DNA-protein interactions in animal cells coupled with cellular growth-quiescence transitions.

    PubMed Central

    Lichtenstein, A V; Sjakste, N I; Zaboykin, M M; Shapot, V S

    1982-01-01

    Overall DNA-protein interactions in animal cells undergo drastic changes coupled with cellular transitions from quiescence to growth and reversely as revealed by nucleoprotein-Celite chromatography. DNA of chromatin was found to exist in one of the two sharply distinct alternative forms, namely, either tightly or weakly bound to protein moiety. These forms are specific for cycling and quiescent cells, respectively. The tight DNA-protein interactions characterize all cycling cells independent of the cell cycle phase. Transition of DNA of cycling cells from one form to another was observed as a result of treatment of isolated nuclei with DNase I. PMID:7063419

  17. The evolution of early cellular systems viewed through the lens of biological interactions.

    PubMed

    Poole, Anthony M; Lundin, Daniel; Rytkönen, Kalle T

    2015-01-01

    The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored. In this paper, we consider the biological context from which minimal genomes have been removed. For instance, some of the most reduced genomes are from endosymbionts and are the result of coevolutionary interactions with a host; few such organisms are "free-living." As few, if any, biological systems exist in complete isolation, we expect that, as with modern life, early biological systems were part of an ecosystem, replete with organismal interactions. We favor refocusing discussions of the evolution of cellular systems on processes rather than gene counts. We therefore draw a distinction between a pragmatic minimal cell (an interesting engineering problem), a distributed genome (a system resulting from an evolutionary transition involving more than one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems. Finally, we consider the distributed genome and coevolutionary interactions between genomic entities in the context of early evolution.

  18. The evolution of early cellular systems viewed through the lens of biological interactions

    PubMed Central

    Poole, Anthony M.; Lundin, Daniel; Rytkönen, Kalle T.

    2015-01-01

    The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored. In this paper, we consider the biological context from which minimal genomes have been removed. For instance, some of the most reduced genomes are from endosymbionts and are the result of coevolutionary interactions with a host; few such organisms are “free-living.” As few, if any, biological systems exist in complete isolation, we expect that, as with modern life, early biological systems were part of an ecosystem, replete with organismal interactions. We favor refocusing discussions of the evolution of cellular systems on processes rather than gene counts. We therefore draw a distinction between a pragmatic minimal cell (an interesting engineering problem), a distributed genome (a system resulting from an evolutionary transition involving more than one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems. Finally, we consider the distributed genome and coevolutionary interactions between genomic entities in the context of early evolution. PMID:26539175

  19. Interactions between tobamovirus replication proteins and cellular factors: their impacts on virus multiplication.

    PubMed

    Ishibashi, Kazuhiro; Nishikiori, Masaki; Ishikawa, Masayuki

    2010-11-01

    Most viral gene products function inside cells in the presence of various host proteins, nucleic acids, and lipids. Thus, viral gene products come into direct contact with these molecules. The replication proteins of tobamovirus participate not only in viral genome replication but also in counterdefense mechanisms against RNA silencing and other plant defense systems. Accumulating evidence indicates that these functions are carried out through interactions with specific host components. Interactions with some cellular factors, however, are inhibitory to virus multiplication and contribute to host range restriction of tobamovirus. The interactions that have positive and negative impacts on virus multiplication should have been maintained and lost, respectively, during adaptation of the viruses to their respective natural hosts. This review lists the host factors that interact with the replication proteins of tobamovirus and discusses how they influence multiplication of the virus.

  20. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  1. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution

    PubMed Central

    2013-01-01

    Background The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. Description We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. Conclusion The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses. PMID:23714426

  2. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution.

    PubMed

    Eames, B Frank; DeLaurier, April; Ullmann, Bonnie; Huycke, Tyler R; Nichols, James T; Dowd, John; McFadden, Marcie; Sasaki, Mark M; Kimmel, Charles B

    2013-05-28

    The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses.

  3. HIV-1 p6-Another viral interaction partner to the host cellular protein cyclophilin A.

    PubMed

    Solbak, Sara M Ø; Reksten, Tove R; Röder, Rene; Wray, Victor; Horvli, Ole; Raae, Arnt J; Henklein, Petra; Henklein, Peter; Fossen, Torgils

    2012-04-01

    The 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation. 2D (1)H nuclear magnetic resonance analysis of full-length HIV-1 p6 and p6 peptides established that cyclophilin A (CypA) interacts as a peptidyl-prolyl cis/trans isomerase with all proline residues of p6. Only catalytic amounts of CypA were necessary for the interaction with p6 to occur, strongly suggesting that the observed interaction is highly relevant in vivo. In addition, surface plasmon resonance studies revealed binding of full-length p6 to CypA, and that this binding was significantly stronger than any of its N- or C-terminal peptides. This study demonstrates the first identification of an interaction between HIV-1 p6 and the host cellular protein CypA. The mode of interaction involves both transient enzyme-substrate interactions and a more stable binding. The binding motifs of p6 to Tsg-101, ALIX and Vpr coincide with binding regions and catalytic sites of p6 to CypA, suggesting a potential role of CypA in modulating functional interactions of HIV-1.

  4. Delineating the Tes Interaction Site in Zyxin and Studying Cellular Effects of Its Disruption

    PubMed Central

    Hadzic, Ermin; Catillon, Marie; Halavatyi, Aliaksandr; Medves, Sandrine; Van Troys, Marleen; Moes, Michèle; Baird, Michelle A.; Davidson, Michael W.; Schaffner-Reckinger, Elisabeth; Ampe, Christophe; Friederich, Evelyne

    2015-01-01

    Focal adhesions are integrin-based structures that link the actin cytoskeleton and the extracellular matrix. They play an important role in various cellular functions such as cell signaling, cell motility and cell shape. To ensure and fine tune these different cellular functions, adhesions are regulated by a large number of proteins. The LIM domain protein zyxin localizes to focal adhesions where it participates in the regulation of the actin cytoskeleton. Because of its interactions with a variety of binding partners, zyxin has been proposed to act as a molecular scaffold. Here, we studied the interaction of zyxin with such a partner: Tes. Similar to zyxin, Tes harbors three highly conserved LIM domains of which the LIM1 domain directly interacts with zyxin. Using different zyxin variants in pull-down assays and ectopic recruitment experiments, we identified the Tes binding site in zyxin and showed that four highly conserved amino acids are crucial for its interaction with Tes. Based upon these findings, we used a zyxin mutant defective in Tes-binding to assess the functional consequences of abrogating the zyxin-Tes interaction in focal adhesions. Performing fluorescence recovery after photobleaching, we showed that zyxin recruits Tes to focal adhesions and modulates its turnover in these structures. However, we also provide evidence for zyxin-independent localization of Tes to focal adhesions. Zyxin increases focal adhesion numbers and reduces focal adhesion lifetimes, but does so independent of Tes. Quantitative analysis showed that the loss of interaction between zyxin and Tes affects the process of cell spreading. We conclude that zyxin influences focal adhesion dynamics, that it recruits Tes and that this interaction is functional in regulating cell spreading. PMID:26509500

  5. Exploring Cellular Interactions of Liposomes Using Protein Corona Fingerprints and Physicochemical Properties.

    PubMed

    Bigdeli, Arafeh; Palchetti, Sara; Pozzi, Daniela; Hormozi-Nezhad, Mohammad Reza; Baldelli Bombelli, Francesca; Caracciolo, Giulio; Mahmoudi, Morteza

    2016-03-22

    To control liposomes fate and transport upon contact with biofluids, it is essential to consider several parameters affecting the synthetic and biological identity of liposomes, as well as liposome-protein corona (PC) aspects. As a powerful tool in this data mining adventure, quantitative structure-activity relationship (QSAR) approach is used to correlate physicochemical properties of liposomes and their PC fingerprints to multiple quantified biological responses. In the present study, the relationship between cellular interactions of a set of structurally diverse liposomal formulations and their physicochemical and PC properties has been investigated via linear and nonlinear QSAR models. Significant parameters affecting cellular uptake and cell viability of liposomes in two important cancer cell lines (PC3 and HeLa) have been identified. The developed QSARs have the capacity to be implemented in advanced targeted delivery of liposomal drugs.

  6. Memo interacts with c-Src to control Estrogen Receptor alpha sub-cellular localization.

    PubMed

    Frei, Anna; MacDonald, Gwen; Lund, Ingrid; Gustafsson, Jan-Åke; Hynes, Nancy E; Nalvarte, Ivan

    2016-08-30

    Understanding the complex interaction between growth factor and steroid hormone signaling pathways in breast cancer is key to identifying suitable therapeutic strategies to avoid progression and therapy resistance. The interaction between these two pathways is of paramount importance for the development of endocrine resistance. Nevertheless, the molecular mechanisms behind their crosstalk are still largely obscure. We previously reported that Memo is a small redox-active protein that controls heregulin-mediated migration of breast cancer cells. Here we report that Memo sits at the intersection between heregulin and estrogen signaling, and that Memo controls Estrogen Receptor alpha (ERα) sub-cellular localization, phosphorylation, and function downstream of heregulin and estrogen in breast cancer cells. Memo facilitates ERα and c-Src interaction, ERα Y537 phosphorylation, and has the ability to control ERα extra-nuclear localization. Thus, we identify Memo as an important key mediator between the heregulin and estrogen signaling pathways, which affects both breast cancer cell migration and proliferation.

  7. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction

    NASA Astrophysics Data System (ADS)

    Yeger-Lotem, Esti; Sattath, Shmuel; Kashtan, Nadav; Itzkovitz, Shalev; Milo, Ron; Pinter, Ron Y.; Alon, Uri; Margalit, Hanah

    2004-04-01

    Genes and proteins generate molecular circuitry that enables the cell to process information and respond to stimuli. A major challenge is to identify characteristic patterns in this network of interactions that may shed light on basic cellular mechanisms. Previous studies have analyzed aspects of this network, concentrating on either transcription-regulation or protein-protein interactions. Here we search for composite network motifs: characteristic network patterns consisting of both transcription-regulation and protein-protein interactions that recur significantly more often than in random networks. To this end we developed algorithms for detecting motifs in networks with two or more types of interactions and applied them to an integrated data set of protein-protein interactions and transcription regulation in Saccharomyces cerevisiae. We found a two-protein mixed-feedback loop motif, five types of three-protein motifs exhibiting coregulation and complex formation, and many motifs involving four proteins. Virtually all four-protein motifs consisted of combinations of smaller motifs. This study presents a basic framework for detecting the building blocks of networks with multiple types of interactions.

  8. Conjugation of spermine enhances cellular uptake of the stapled peptide-based inhibitors of p53-Mdm2 interaction.

    PubMed

    Muppidi, Avinash; Li, Xiaolong; Chen, Jiandong; Lin, Qing

    2011-12-15

    We report the first synthesis of the C-terminally spermine-conjugated stapled peptide-based inhibitors of the p53-Mdm2 interaction. Subsequent biological, biophysical and cellular uptake assays with the spermine-conjugated stapled peptides revealed that spermine conjugation minimally affects biological activity while significantly increases peptide helicity and cellular uptake without apparent cytotoxicity.

  9. The influence of silkworm species on cellular interactions with novel PVA/silk sericin hydrogels.

    PubMed

    Lim, Khoon S; Kundu, Joydip; Reeves, April; Poole-Warren, Laura A; Kundu, Subhas C; Martens, Penny J

    2012-03-01

    Sericin peptides and PVA are chemically modified with methacrylate groups to produce a covalent PVA/sericin hydrogel. Preservation of the sericin bioactivity following methacrylation is confirmed, and PVA/sericin hydrogels are fabricated for both B. mori and A. mylitta sericin. Cell adhesion studies confirm the preservation of sericin bioactivity post incorporation in PVA gels. PVA/A. mylitta gels are observed to facilitate cell adhesion to a significantly greater degree than PVA/B. mori gels. Overall, the incorporation of sericin does not alter the physical properties of the PVA hydrogels but does result in significantly improved cellular interaction, particularly from A. mylitta gels.

  10. Protein-protein interactions and human cellular cofactors as new targets for HIV therapy.

    PubMed

    Tintori, Cristina; Brai, Annalaura; Fallacara, Anna Lucia; Fazi, Roberta; Schenone, Silvia; Botta, Maurizio

    2014-10-01

    Two novel approaches for the development of new drugs against AIDS are summarized each leading to the achievement of important discoveries in anti-HIV therapy. Despite the success of HAART in reducing mortality, resistant strains continue to emerge in the clinic, underscoring the importance of developing next-generation drugs. Protein-protein interactions and human cellular cofactors represent the new targets of tomorrow in HIV research. The most relevant results obtained in the last few years by the two new strategies are described herein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Uncoupling protein-2 regulates lifespan in mice

    PubMed Central

    Andrews, Zane B.; Horvath, Tamas L.

    2009-01-01

    The long-term effects of uncoupled mitochondrial respiration by uncoupling protein-2 (UCP2) in mammalian physiology remain controversial. Here we show that increased mitochondrial uncoupling activity of different tissues predicts longer lifespan of rats compared with mice. UCP2 reduces reactive oxygen species (ROS) production and oxidative stress throughout the aging process in different tissues in mice. The absence of UCP2 shortens lifespan in wild-type mice, and the level of UCP2 positively correlates with the postnatal survival of superoxide dismutase-2 mutant animals. Thus UCP2 has a beneficial influence on cell and tissue function leading to increased lifespan. PMID:19141680

  12. Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells.

    PubMed

    Desquiret, Valérie; Loiseau, Dominique; Jacques, Caroline; Douay, Olivier; Malthièry, Yves; Ritz, Patrick; Roussel, Damien

    2006-01-01

    Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.

  13. The "resident's dilemma"? Values and strategies of medical residents for education interactions: a cellular automata simulation.

    PubMed

    Heckerling, P S; Gerber, B S; Weiner, S J

    2006-01-01

    Medical residents engage in formal and informal education interactions with fellow residents during the working day, and can choose whether to spend time and effort on such interactions. Time and effort spent on such interactions can bring learning and personal satisfaction to residents, but may also delay completion of clinical work. Using hypothetical cases, we assessed the values and strategies of internal medicine residents at one hospital for both cooperative and non-cooperative education interactions with fellow residents. We then used these data and cellular automata models of two-person games to simulate repeated interactions between residents, and to determine which strategies resulted in greatest accrued value. We conducted sensitivity analyses on several model parameters, to test the robustness of dominant strategies to model assumptions. Twenty-nine of the 57 residents (50.9%) valued cooperation more than non-cooperation no matter what the other resident did during the current interaction. Similarly, thirty-six residents (63.2%) endorsed an unconditional always-cooperate strategy no matter what the other resident had done during their previous interaction. In simulations, an always-cooperate strategy accrued more value (776.42 value units) than an aggregate of strategies containing non-cooperation components (675.0 value units, p = 0.052). Only when the probability of strategy errors reached 50%, or when values were re-ordered to match those of a Prisoner's Dilemma, did non-cooperation-based strategies accrue the most value. Cooperation-based values and strategies were most frequent among our residents, and dominated in simulations of repeated education interactions between them.

  14. Interactions between Glucocorticoid Treatment and Cis-Regulatory Polymorphisms Contribute to Cellular Response Phenotypes

    PubMed Central

    Richards, Allison L.; Wen, Xiaoquan; Witonsky, David B.; Baxter, Shaneen; Stephens, Matthew; Di Rienzo, Anna

    2011-01-01

    Glucocorticoids (GCs) mediate physiological responses to environmental stress and are commonly used as pharmaceuticals. GCs act primarily through the GC receptor (GR, a transcription factor). Despite their clear biomedical importance, little is known about the genetic architecture of variation in GC response. Here we provide an initial assessment of variability in the cellular response to GC treatment by profiling gene expression and protein secretion in 114 EBV-transformed B lymphocytes of African and European ancestry. We found that genetic variation affects the response of nearby genes and exhibits distinctive patterns of genotype-treatment interactions, with genotypic effects evident in either only GC-treated or only control-treated conditions. Using a novel statistical framework, we identified interactions that influence the expression of 26 genes known to play central roles in GC-related pathways (e.g. NQO1, AIRE, and SGK1) and that influence the secretion of IL6. PMID:21750684

  15. Interaction of E2 Glycoprotein with Heparan Sulfate Is Crucial for Cellular Infection of Sindbis Virus

    PubMed Central

    Yang, Yiliang; Jia, Juan; Fu, Shihong; Feng, Yun; He, Ying; Li, Jin-Ping; Liang, Guodong

    2010-01-01

    Cell culture-adapted strains of Sindbis virus (SINV) initially attach to cells by the ability to interact with heparan sulfate (HS) through selective mutation for positively charged amino acid (aa) scattered in E2 glycoprotein (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72: 7357–7366, 1998). Here we have further confirmed that interaction of E2 protein with HS is crucial for cellular infection of SINV based on the reverse genetic system of XJ-160 virus, a Sindbis-like virus (SINLV). Both SINV YN87448 and SINLV XJ-160 displayed similar infectivity on BHK-21, Vero, or C6/36 cells, but XJ-160 failed to infect mouse embryonic fibroblast (MEF) cells. The molecular mechanisms underlying the selective infectivity of XJ-160 were approached by substituting the E1, E2, or both genes of XJ-160 with that of YN87448, and the chimeric virus was denominated as XJ-160/E1, XJ-160/E2, or XJ-160/E1E2, respectively. In contrast to the parental XJ-160, all chimeric viruses became infectious to wild-type MEF cells (MEF-wt). While MEF-Ext−/− cells, producing shortened HS chains, were resistant not only to XJ-160, but also to YN87448 as well as the chimeric viruses, indicating that the inability of XJ-160 to infect MEF-wt cells likely due to its incompetent discrimination of cellular HS. Treatment with heparin or HS-degrading enzyme resulted in a substantial decrease in plaque formation by YN87448, XJ-160/E2, and XJ-160/E1E2, but had marginal effect on XJ-160 and XJ-160/E1, suggesting that E2 glycoprotein from YN87448 plays a more important role than does E1 in mediating cellular HS-related cell infection. In addition, the peptide containing 145–150 aa from E2 gene of YN87448 specifically bound to heparin, while the corresponding peptide from the E2 gene of XJ-160 essentially showed no binding to heparin. As a new dataset, these results clearly confirm an essential role of E2 glycoprotein, especially the domain of 145–150 aa, in SINV cellular infection through

  16. Diacetyl and related flavorant α-Diketones: Biotransformation, cellular interactions, and respiratory-tract toxicity.

    PubMed

    Anders, M W

    2017-02-05

    Exposure to diacetyl and related α-diketones causes respiratory-tract damage in humans and experimental animals. Chemical toxicity is often associated with covalent modification of cellular nucleophiles by electrophilic chemicals. Electrophilic α-diketones may covalently modify nucleophilic arginine residues in critical proteins and, thereby, produce the observed respiratory-tract pathology. The major pathway for the biotransformation of α-diketones is reduction to α-hydroxyketones (acyloins), which is catalyzed by NAD(P)H-dependent enzymes of the short-chain dehydrogenase/reductase (SDR) and the aldo-keto reductase (AKR) superfamilies. Reduction of α-diketones to the less electrophilic acyloins is a detoxication pathway for α-diketones. The pyruvate dehydrogenase complex may play a significant role in the biotransformation of diacetyl to CO2. The interaction of toxic electrophilic chemicals with cellular nucleophiles can be predicted by the hard and soft, acids and bases (HSAB) principle. Application of the HSAB principle to the interactions of electrophilic α-diketones with cellular nucleophiles shows that α-diketones react preferentially with arginine residues. Furthermore, the respiratory-tract toxicity and the quantum-chemical reactivity parameters of diacetyl and replacement flavorant α-diketones are similar. Hence, the identified replacement flavorant α-diketones may pose a risk of flavorant-induced respiratory-tract toxicity. The calculated indices for the reaction of α-diketones with arginine support the hypothesis that modification of protein-bound arginine residues is a critical event in α-diketone-induced respiratory-tract toxicity.

  17. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression.

  18. Reduced native state stability in crowded cellular environment due to protein-protein interactions

    PubMed Central

    Harada, Ryuhei; Tochio, Naoya; Kigawa, Takanori; Sugita, Yuji; Feig, Michael

    2013-01-01

    The effect of cellular crowding environments on protein structure and stability is a key issue in molecular and cellular biology. The classical view of crowding emphasizes the volume exclusion effect that generally favors compact, native states. Here, results from molecular dynamics simulations and NMR experiments show that protein crowders may destabilize native states via protein-protein interactions. In the model system considered here, mixtures of villin head piece and protein G at high concentrations, villin structures become increasingly destabilized upon increasing crowder concentrations. The denatured states observed in the simulation involve partial unfolding as well as more subtle conformational shifts. The unfolded states remain overall compact and only partially overlap with unfolded ensembles at high temperature and in the presence of urea. NMR measurements on the same systems confirm structural changes upon crowding based on changes of chemical shifts relative to dilute conditions. An analysis of protein-protein interactions and energetic aspects suggests the importance of enthalpic and solvation contributions to the crowding free energies that challenge an entropic-centered view of crowding effects. PMID:23402619

  19. Depression uncouples brain hate circuit

    PubMed Central

    Tao, H; Guo, S; Ge, T; Kendrick, K M; Xue, Z; Liu, Z; Feng, J

    2013-01-01

    It is increasingly recognized that we need a better understanding of how mental disorders such as depression alter the brain's functional connections to improve both early diagnosis and therapy. A new holistic approach has been used to investigate functional connectivity changes in the brains of patients suffering from major depression using resting-state functional magnetic resonance imaging (fMRI) data. A canonical template of connectivity in 90 different brain regions was constructed from healthy control subjects and this identified a six-community structure with each network corresponding to a different functional system. This template was compared with functional networks derived from fMRI scans of both first-episode and longer-term, drug resistant, patients suffering from severe depression. The greatest change in both groups of depressed patients was uncoupling of the so-called ‘hate circuit' involving the superior frontal gyrus, insula and putamen. Other major changes occurred in circuits related to risk and action responses, reward and emotion, attention and memory processing. A voxel-based morphometry analysis was also carried out but this revealed no evidence in the depressed patients for altered gray or white matter densities in the regions showing altered functional connectivity. This is the first evidence for the involvement of the ‘hate circuit' in depression and suggests a potential reappraisal of the key neural circuitry involved. We have hypothesized that this may reflect reduced cognitive control over negative feelings toward both self and others. PMID:21968929

  20. Cellular metabolism as a basis for immune privilege.

    PubMed

    Newell, M Karen; Villalobos-Menuey, Elizabeth; Schweitzer, Susan C; Harper, Mary-Ellen; Camley, Robert E

    2006-03-17

    We hypothesize that the energy strategy of a cell is a key factor for determining how, or if, the immune system interacts with that cell. Cells have a limited number of metabolic states, in part, depending on the type of fuels the cell consumes. Cellular fuels include glucose (carbohydrates), lipids (fats), and proteins. We propose that the cell's ability to switch to, and efficiently use, fat for fuel confers immune privilege. Additionally, because uncoupling proteins are involved in the fat burning process and reportedly in protection from free radicals, we hypothesize that uncoupling proteins play an important role in immune privilege. Thus, changes in metabolism (caused by oxidative stresses, fuel availability, age, hormones, radiation, or drugs) will dictate and initiate changes in immune recognition and in the nature of the immune response. This has profound implications for controlling the symptoms of autoimmune diseases, for preventing graft rejection, and for targeting tumor cells for destruction.

  1. Clathrin self-assembly involves coordinated weak interactions favorable for cellular regulation.

    PubMed

    Wakeham, Diane E; Chen, Chih-Ying; Greene, Barrie; Hwang, Peter K; Brodsky, Frances M

    2003-10-01

    The clathrin triskelion self-assembles into a polyhedral coat surrounding membrane vesicles that sort receptor cargo to the endocytic pathway. A triskelion comprises three clathrin heavy chains joined at their C-termini, extending into proximal and distal leg segments ending in a globular N-terminal domain. In the clathrin coat, leg segments entwine into parallel and anti-parallel interactions. Here we define the contributions of segmental interactions to the clathrin assembly reaction and measure the strength of their interactions. Proximal and distal leg segments were found to lack sufficient affinity to form stable homo- or heterodimers under assembly conditions. However, chimeric constructs of proximal or distal leg segments, trimerized by replacement of the clathrin trimerization domain with that of the invariant chain protein, were able to self-assemble in reversible reactions. Thus clathrin assembly occurs because weak leg segment affinities are coordinated through trimerization, sharing a dependence on multiple weak interactions with other biopolymers. Such polymerization is sensitive to small environmental changes and is therefore compatible with cellular regulation of assembly, disassembly and curvature during formation of clathrin-coated vesicles.

  2. Cadmium and cellular signaling cascades: interactions between cell death and survival pathways.

    PubMed

    Thévenod, Frank; Lee, Wing-Kee

    2013-10-01

    Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival

  3. Biochemical and cellular characterization of lipophorin-midgut interaction in the hematophagous Panstrongylus megistus (Hemiptera: Reduviidae).

    PubMed

    Fruttero, Leonardo L; Rubiolo, Edilberto R; Canavoso, Lilián E

    2009-01-01

    In order to better understand the metabolism of dietary lipids in hematophagous insects, we have performed a biochemical and cellular characterization of lipophorin (Lp)-midgut interaction in Panstrongylus megistus, a vector of Chagas' disease. The study was accomplished by solid-phase binding assays or with iodinated Lp ((125)I-Lp), using midgut membranes from fifth instar nymphs after ecdysis and after insects received a blood meal. Results obtained from both physiological conditions indicated that Lp interacted specifically with the midgut, implying the participation of receptors. Binding capacity of lipophorin to membranes was dependent on the amount of membranes added in the system, reaching saturation at 0.1 microg/ml. However, membranes obtained after a blood meal exhibited higher binding activity. Saturation kinetics results using (125)I-Lp suggested a single binding site with high affinity for Lp in the midgut membranes (K(d) = 5.1 +/- 3.6 x 10(-8) M). The unrelated lipoprotein, human LDL, did not compete with Lp for its binding site in the midgut. The binding was dependent on pH and the treatment of membranes with trypsin or heat causes a significant inhibition of the binding. Midgut-Lp interaction was affected by changes in ionic strength and by suramin, but showed no requirement of calcium. Ligand blotting assays revealed two membrane proteins that specifically bound Lp (61 and 45 kDa). At cellular level, Lp binding sites were located mainly at the basal plasma membrane of isolated enterocytes. Labeled Lp with fluorescent probes directed to its proteins or its phospholipids fraction co-localized mainly at the basement membrane of the midgut. In addition, no intracellular Lp was observed at any condition. The lack of an endocytic pathway for Lp in the midgut of P. megistus is analyzed in the context of insect physiology.

  4. Chimera states in uncoupled neurons induced by a multilayer structure

    NASA Astrophysics Data System (ADS)

    Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar

    2016-12-01

    Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence of chimera states in uncoupled neurons, similar to the quorum sensing transition to a synchronized state. Finally, we examine the impact of both homogeneous and heterogeneous inter-layer information transmission delays on the observed chimera states over a wide parameter space.

  5. Chimera states in uncoupled neurons induced by a multilayer structure.

    PubMed

    Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar

    2016-12-13

    Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence of chimera states in uncoupled neurons, similar to the quorum sensing transition to a synchronized state. Finally, we examine the impact of both homogeneous and heterogeneous inter-layer information transmission delays on the observed chimera states over a wide parameter space.

  6. Chimera states in uncoupled neurons induced by a multilayer structure

    PubMed Central

    Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar

    2016-01-01

    Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence of chimera states in uncoupled neurons, similar to the quorum sensing transition to a synchronized state. Finally, we examine the impact of both homogeneous and heterogeneous inter-layer information transmission delays on the observed chimera states over a wide parameter space. PMID:27958355

  7. Ras transformation uncouples the kinesin-coordinated cellular nutrient response

    PubMed Central

    Zaganjor, Elma; Weil, Lauren M.; Gonzales, Joshua X.; Minna, John D.; Cobb, Melanie H.

    2014-01-01

    The kinesin family members (KIFs) KIF2A and KIF2C depolymerize microtubules, unlike the majority of other kinesins, which transport cargo along microtubules. KIF2A regulates the localization of lysosomes in the cytoplasm, which assists in activation of the mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface. We find that the closely related kinesin KIF2C also influences lysosomal organization in immortalized human bronchial epithelial cells (HBECs). Expression of KIF2C and, to a lesser extent, KIF2A in untransformed and mutant K-Ras–transformed cells is regulated by ERK1/2. Prolonged inhibition of ERK1/2 activation with PD0325901 mimics nutrient deprivation by disrupting lysosome organization and decreasing mTORC1 activity in HBEC, suggesting a long-term mechanism for optimization of mTORC1 activity by ERK1/2. We tested the hypothesis that up-regulation of KIF2C and KIF2A by ERK1/2 caused aberrant lysosomal positioning and mTORC1 activity in a mutant K-Ras–dependent cancer and cancer model. In Ras-transformed cells, however, mTORC1 activity and lysosome organization appear independent of ERK1/2 and these kinesins although ERK1/2 activity and the kinesins are required for Ras-dependent proliferation and migration. We conclude that mutant K-Ras repurposes these signaling and regulatory proteins to support the transformed phenotype. PMID:25002494

  8. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages.

    PubMed

    Wagner, Andrew J; Bleckmann, Charles A; Murdock, Richard C; Schrand, Amanda M; Schlager, John J; Hussain, Saber M

    2007-06-28

    Nanomaterials, with dimensions in the 1-100 nm range, possess numerous potential benefits to society. However, there is little characterization of their effects on biological systems, either within the environment or on human health. The present study examines cellular interaction of aluminum oxide and aluminum nanomaterials, including their effect on cell viability and cell phagocytosis, with reference to particle size and the particle's chemical composition. Experiments were performed to characterize initial in vitro cellular effects of rat alveolar macrophages (NR8383) after exposure to aluminum oxide nanoparticles (Al2O3-NP at 30 and 40 nm) and aluminum metal nanoparticles containing a 2-3 nm oxide coat (Al-NP at 50, 80, and 120 nm). Characterization of the nanomaterials, both as received and in situ, was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and/or CytoViva150 Ultra Resolution Imaging (URI)). Particles showed significant agglomeration in cell exposure media using DLS and the URI as compared to primary particle size in TEM. Cell viability assay results indicate a marginal effect on macrophage viability after exposure to Al2O3-NP at doses of 100 microg/mL for 24 h continuous exposure. Al-NP produced significantly reduced viability after 24 h of continuous exposure with doses from 100 to 250 microg/mL. Cell phagocytotic ability was significantly hindered by exposure to 50, 80, or 120 nm Al-NP at 25 microg/mL for 24 h, but the same concentration (25 microg/mL) had no significant effect on the cellular viability. However, no significant effect on phagocytosis was observed with Al2O3-NP. In summary, these results show that Al-NP exhibit greater toxicity and more significantly diminish the phagocytotic ability of macrophages after 24 h of exposure when compared to Al2O3-NP.

  9. In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons.

    PubMed

    Brom, S; García-de los Santos, A; Cervantes, L; Palacios, R; Romero, D

    2000-07-01

    Bacteria belonging to the genus Rhizobium are able to develop two different lifestyles, in symbiotic association with plant roots or through saprophytic growth. The genome of Rhizobium strains is constituted by a chromosome and several large plasmids, one of them containing most of the genes involved in symbiosis (symbiotic plasmid or pSym). Our model strain Rhizobium etli CFN42 contains six plasmids. We have constructed multiple plasmid-cured derivatives of this strain and used them to analyze the contribution of these plasmids to free-living cellular viability, competitivity for nodulation, plasmid transfer, and utilization of diverse carbon sources. Our results show that the transfer of the pSym is strictly dependent on the presence of another plasmid; consequently under conditions where pSym transfer is required, nodulation relies on the presence of a plasmid devoid of nodulation genes. We also found a drastic decrease in competitivity for nodulation in multiple plasmid-cured derivatives when compared with single plasmid-cured strains. Cellular growth and viability were greatly diminished in some multiple plasmid-cured strains. The utilization of a number of carbon sources depends on the presence of specific plasmids. The results presented in this work indicate that functional interactions among sequences scattered in the different plasmids are required for successful completion of both lifestyles. Copyright 2000 Academic Press.

  10. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions

    PubMed Central

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E. S.; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998

  11. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.

    PubMed

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E S; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection.

  12. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    SciTech Connect

    Tang, Zhaohua; Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse; Lin, Ren-Jang; Murray, Johanne; Carr, Antony

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  13. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein

    SciTech Connect

    Garcia, C.C.; Topisirovic, I.; Djavani, M.; Borden, K.L.B.; Damonte, E.B.; Salvato, M.S.

    2010-03-19

    The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.

  14. Virus and host genomic, molecular, and cellular interactions during Marek's disease pathogenesis and oncogenesis

    PubMed Central

    McPherson, M. C.; Delany, M. E.

    2016-01-01

    Marek's Disease Virus (MDV) is a chicken alphaherpesvirus that causes paralysis, chronic wasting, blindness, and fatal lymphoma development in infected, susceptible host birds. This disease and its protective vaccines are highly relevant research targets, given their enormous impact within the poultry industry. Further, Marek's disease (MD) serves as a valuable model for the investigation of oncogenic viruses and herpesvirus patterns of viral latency and persistence—as pertinent to human health as to poultry health. The objectives of this article are to review MDV interactions with its host from a variety of genomic, molecular, and cellular perspectives. In particular, we focus on cytogenetic studies, which precisely assess the physical status of the MDV genome in the context of the chicken host genome. Combined, the cytogenetic and genomic research indicates that MDV-host genome interactions, specifically integration of the virus into the host telomeres, is a key feature of the virus life cycle, contributing to the viral achievement of latency, transformation, and reactivation of lytic replication. We present a model that outlines the variety of virus-host interactions, at the multiple levels, and with regard to the disease states. PMID:26755654

  15. Glycan-dependent and -independent Interactions Contribute to Cellular Substrate Recruitment by Calreticulin*

    PubMed Central

    Wijeyesakere, Sanjeeva J.; Rizvi, Syed M.; Raghavan, Malini

    2013-01-01

    Calreticulin is an endoplasmic reticulum chaperone with specificity for monoglucosylated glycoproteins. Calreticulin also inhibits precipitation of nonglycosylated proteins and thus contains generic protein-binding sites, but their location and contributions to substrate folding are unknown. We show that calreticulin binds glycosylated and nonglycosylated proteins with similar affinities but distinct interaction kinetics. Although both interactions involve the glycan-binding site or its vicinity, the arm-like proline-rich (P-) domain of calreticulin contributes to binding non/deglycosylated proteins. Correspondingly, ensemble FRET spectroscopy measurements indicate that glycosylated and nonglycosylated proteins induce “open” and “closed” P-domain conformations, respectively. The co-chaperone ERp57 influences substrate-binding kinetics and induces a closed P-domain conformation. Together with analysis of the interactions of calreticulin with cellular proteins, these findings indicate that the recruitment of monoglucosylated proteins to calreticulin is kinetically driven, whereas the P-domain and co-chaperone contribute to stable substrate binding. Substrate sequestration in the cleft between the glycan-binding site and P-domain is a likely mechanism for calreticulin-assisted protein folding. PMID:24100026

  16. Molecular and Cellular Mechanisms of Sperm-Oocyte Interactions Opinions Relative to in Vitro Fertilization (IVF)

    PubMed Central

    Anifandis, George; Messini, Christina; Dafopoulos, Konstantinos; Sotiriou, Sotiris; Messinis, Ioannis

    2014-01-01

    One of the biggest prerequisites for pregnancy is the fertilization step, where a human haploid spermatozoon interacts and penetrates one haploid oocyte in order to produce the diploid zygote. Although fertilization is defined by the presence of two pronuclei and the extraction of the second polar body the process itself requires preparation of both gametes for fertilization to take place at a specific time. These preparations include a number of consecutive biochemical and molecular events with the help of specific molecules and with the consequential interaction between the two gametes. These events take place at three different levels and in a precise order, where the moving spermatozoon penetrates (a) the outer vestments of the oocyte, known as the cumulus cell layer; (b) the zona pellucida (ZP); where exocytosis of the acrosome contents take place and (c) direct interaction of the spermatozoon with the plasma membrane of the oocyte, which involves a firm adhesion of the head of the spermatozoon with the oocyte plasma membrane that culminates with the fusion of both sperm and oocyte membranes (Part I). After the above interactions, a cascade of molecular signal transductions is initiated which results in oocyte activation. Soon after the entry of the first spermatozoon into the oocyte and oocyte activation, the oocyte’s coat (the ZP) and the oocyte’s plasma membrane seem to change quickly in order to initiate a fast block to a second spermatozoon (Part II). Sometimes, two spermatozoa fuse with one oocyte, an incidence of 1%–2%, resulting in polyploid fetuses that account for up to 10%–20% of spontaneously aborted human conceptuses. The present review aims to focus on the first part of the human sperm and oocyte interactions, emphasizing the latest molecular and cellular mechanisms controlling this process. PMID:25054321

  17. Evolution of altruism in spatial prisoner's dilemma: Intra- and inter-cellular interactions

    NASA Astrophysics Data System (ADS)

    Yokoi, Hiroki; Uehara, Takashi; Sakata, Tomoyuki; Naito, Hiromi; Morita, Satoru; Tainaka, Kei-ichi

    2014-12-01

    Iterated prisoner's dilemma game is carried out on lattice with “colony” structure. Each cell is regarded as a colony which contains plural players with an identical strategy. Both intra- and inter-cellular interactions are assumed. In the former a player plays with all other players in the same colony, while in the latter he plays with one player each from adjacent colonies. Spatial patterns among four typical strategies exhibit various dynamics and winners. Both theory and simulation reveal that All Cooperation (AC) wins, when the members of colony or the intensity of noise increases. This result explains the evolution of altruism in animal societies, even though errors easily occur in animal communications.

  18. Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells.

    PubMed

    V G, Reshma; P V, Mohanan

    2017-09-01

    Zinc oxide nanoparticles (ZnO NPs) have potential biomedical, industrial and commercial applications. So they constantly come into contact with the body parts during applications. Safety concerns about ZnO NPs are increasing today and yet only few reports are available about their toxicity in kidney cells. It is very essential to analyze the toxicity on kidney because kidney plays a decisive role in nanoparticles excretion. Therefore, the present study focuses on the interaction of ZnO NPs with human embryonic kidney 293 (HEK 293) cells in vitro. The results showed that the cellular viability was much affected by ZnO NPs in a dose and time dependent manner. Oxidative stress increased the formation of reactive oxygen species (ROS), was found to be the prime mechanism of cytotoxicity. Formation of ROS eventually induced loss of mitochondrial membrane potential, lysosomal activity and nuclear condensation, which ultimately leads to apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems

    SciTech Connect

    Tenforde, T.S.

    1992-06-01

    There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.

  20. Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems

    SciTech Connect

    Tenforde, T.S.

    1992-06-01

    There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.

  1. Targeting the Molecular and Cellular Interactions of the Bone Marrow Niche in Immunologic Disease

    PubMed Central

    Brozowski, Jaime M.; Billard, Matthew J.

    2014-01-01

    Recent investigations have expanded our knowledge of the regulatory bone marrow (BM) niche, which is critical in maintaining and directing hematopoietic stem cell (HSC) self-renewal and differentiation. Osteoblasts, mesenchymal stem cells (MSCs), and CXCL12-abundant reticular (CAR) cells are niche components in close association with HSCs and have been more clearly defined in immune cell function and homeostasis. Importantly, cellular inhabitants of the BM niche signal through G protein-coupled surface receptors (GPCRs) for various appropriate immune functions. In this article, recent literature on BM niche inhabitants (HSCs, osteoblasts, MSCs, CAR cells) and their GPCR mechanistic interactions are reviewed for better understanding of the BM cells involved in immune development, immunologic disease, and current immune reconstitution therapies. PMID:24408534

  2. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    NASA Astrophysics Data System (ADS)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  3. Special issue: redox active natural products and their interaction with cellular signalling pathways.

    PubMed

    Jacob, Claus

    2014-11-26

    During the last decade, research into natural products has experienced a certain renaissance. The urgent need for more and more effective antibiotics in medicine, the demand for ecologically friendly plant protectants in agriculture, "natural" cosmetics and the issue of a sustainable and healthy nutrition in an ageing society have fuelled research into Nature's treasure chest of "green gold". Here, redox active secondary metabolites from plants, fungi, bacteria and other (micro-)organisms often have been at the forefront of the most interesting developments. These agents provide powerful means to interfere with many, probably most cellular signaling pathways in humans, animals and lower organisms, and therefore can be used to protect, i.e., in form of antioxidants, and to frighten off or even kill, i.e., in form of repellants, antibiotics, fungicides and selective, often catalytic "sensor/effector" anticancer agents. Interestingly, whilst natural product research dates back many decades, in some cases even centuries, and compounds such as allicin and various flavonoids have been investigated thoroughly in the past, it has only recently become possible to investigate their precise interactions and mode(s) of action inside living cells. Here, fluorescent staining and labelling on the one side, and appropriate detection, either qualitatively under the microscope or quantitatively in flow cytometers and plate readers, on the other, enable researchers to obtain the various pieces of information necessary to construct a fairly complete puzzle of how such compounds act and interact in living cells. Complemented by the more traditional activity assays and Western Blots, and increasingly joined by techniques such as proteomics, chemogenetic screening and mRNA profiling, these cell based bioanalytical techniques form a powerful platform for "intracellular diagnostics". In the case of redox active compounds, especially of Reactive Sulfur Species (RSS), such techniques have

  4. EFFECT OF UNCOUPLING PROTEIN–1 EXPRESSION ON 3T3-L1 ADIPOCYTE GENE EXPRESSION

    PubMed Central

    Senocak, Fatih S.; Si, Yaguang; Moya, Colby; Russell, William K.; Russell, David H.; Lee, Kyongbum; Jayaraman, Arul

    2008-01-01

    The mitochondrial respiratory uncoupling protein 1 (UCP1) partially uncouples substrate oxidation and oxidative phosphorylation to promote the dissipation of cellular biochemical energy as heat in brown adipose tissue. We have recently shown that expression of UCP1 in 3T3-L1 white adipocytes reduces the accumulation of triglycerides. Here, we investigated the molecular basis underlying UCP1 expression in 3T3-L1 adipocytes. Gene expression data show that forced UCP1 expression down-regulated several energy metabolism pathways; but ATP levels were constant. A metabolic flux analysis model was used to reflect the gene expression changes onto metabolic processes and concordance was observed in the down-regulation of energy consuming pathways. Our data suggest that adipocytes respond to long-term mitochondrial uncoupling by minimizing ATP utilization. PMID:18061577

  5. Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin.

    PubMed Central

    Waltz, D A; Natkin, L R; Fujita, R M; Wei, Y; Chapman, H A

    1997-01-01

    The urokinase receptor (uPAR) coordinates plasmin-mediated cell-surface proteolysis and promotes cellular adhesion via a binding site for vitronectin on uPAR. Because vitronectin also binds plasminogen activator inhibitor type 1 (PAI-1), and plasmin cleavage of vitronectin reduces PAI-1 binding, we explored the effects of plasmin and PAI-1 on the interaction between uPAR and vitronectin. PAI-1 blocked cellular binding of and adhesion to vitronectin by over 80% (IC50 approximately 5 nM), promoted detachment of uPAR-bearing cells from vitronectin, and increased cellular migration on vitronectin. Limited cleavage of vitronectin by plasmin also abolished cellular binding and adhesion and induced cellular detachment. A series of peptides surrounding a plasmin cleavage site (arginine 361) near the carboxy-terminal end of vitronectin were synthesized. Two peptides spanning res 364-380 blocked binding of uPAR to vitronectin (IC50 approximately 8-25 microM) identifying this region as an important site of uPAR-vitronectin interaction. These data illuminate a complex regulatory scheme for uPAR-dependent cellular adhesion to vitronectin: Active urokinase promotes adhesion and also subsequent detachment through activation of plasmin or complex formation with PAI-1. Excess PAI-1 may also promote migration by blocking cellular adhesion and/or promoting detachment, possibly accounting in part for the strong correlation between PAI-1 expression and tumor cell metastasis. PMID:9202057

  6. Mitochondrial uncoupling proteins--facts and fantasies.

    PubMed

    Jezek, P; Zácková, M; Růzicka, M; Skobisová, E; Jabůrek, M

    2004-01-01

    Instead of a comprehensive review, we describe the basic undisputed facts and a modest contribution of our group to the fascinating area of the research on mitochondrial uncoupling proteins. After defining the terms uncoupling, leak, protein-mediated uncoupling, we discuss the assumption that due to their low abundance the novel mitochondrial uncoupling proteins (UCP2 to UCP5) can provide only a mild uncoupling, i.e. can decrease the proton motive force by several mV only. Contrary to this, the highly thermogenic role of UCP1 in brown adipose tissue is not given only by its high content (approximately 5 % of mitochondrial proteins) but also by the low ATP synthase content and high capacity respiratory chain. Fatty acid cycling mechanism as a plausible explanation for the protonophoretic function of all UCPs and some other mitochondrial carriers is described together with the experiments supporting it. The phylogenesis of all UCPs, estimated UCP2 content in several tissues, and details of UCP2 activation are described on the basis of our experiments. Functional activation of UCP2 is proposed to decrease reactive oxygen species (ROS) production. Moreover, reaction products of lipoperoxidation such as cleaved hydroperoxy-fatty acids and hydroxy-fatty acid can activate UCP2 and promote feedback down-regulation of mitochondrial ROS production.

  7. Cellular DDX3 regulates Japanese encephalitis virus replication by interacting with viral un-translated regions.

    PubMed

    Li, Chen; Ge, Ling-ling; Li, Peng-peng; Wang, Yue; Dai, Juan-juan; Sun, Ming-xia; Huang, Li; Shen, Zhi-qiang; Hu, Xiao-chun; Ishag, Hassan; Mao, Xiang

    2014-01-20

    Japanese encephalitis virus is one of the most common causes for epidemic viral encephalitis in humans and animals. Herein we demonstrated that cellular helicase DDX3 is involved in JEV replication. DDX3 knockdown inhibits JEV replication. The helicase activity of DDX3 is crucial for JEV replication. GST-pulldown and co-immunoprecipitation experiments demonstrated that DDX3 could interact with JEV non-structural proteins 3 and 5. Co-immunoprecipitation and confocal microscopy analysis confirmed that DDX3 interacts and colocalizes with these viral proteins and viral RNA during the infection. We determined that DDX3 binds to JEV 5' and 3' un-translated regions. We used a JEV-replicon system to demonstrate that DDX3 positively regulates viral RNA translation, which might affect viral RNA replication at the late stage of virus infection. Collectively, we identified that DDX3 is necessary for JEV infection, suggesting that DDX3 might be a novel target to design new antiviral agents against JEV or other flavivirus infections.

  8. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    NASA Astrophysics Data System (ADS)

    Alizadeh, Elahe; Sanche, Léon

    2014-04-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.

  9. Characterizing Protein Interactions Employing a Genome-Wide siRNA Cellular Phenotyping Screen

    PubMed Central

    Suratanee, Apichat; Schaefer, Martin H.; Betts, Matthew J.; Soons, Zita; Mannsperger, Heiko; Harder, Nathalie; Oswald, Marcus; Gipp, Markus; Ramminger, Ellen; Marcus, Guillermo; Männer, Reinhard; Rohr, Karl; Wanker, Erich; Russell, Robert B.; Andrade-Navarro, Miguel A.; Eils, Roland; König, Rainer

    2014-01-01

    Characterizing the activating and inhibiting effect of protein-protein interactions (PPI) is fundamental to gain insight into the complex signaling system of a human cell. A plethora of methods has been suggested to infer PPI from data on a large scale, but none of them is able to characterize the effect of this interaction. Here, we present a novel computational development that employs mitotic phenotypes of a genome-wide RNAi knockdown screen and enables identifying the activating and inhibiting effects of PPIs. Exemplarily, we applied our technique to a knockdown screen of HeLa cells cultivated at standard conditions. Using a machine learning approach, we obtained high accuracy (82% AUC of the receiver operating characteristics) by cross-validation using 6,870 known activating and inhibiting PPIs as gold standard. We predicted de novo unknown activating and inhibiting effects for 1,954 PPIs in HeLa cells covering the ten major signaling pathways of the Kyoto Encyclopedia of Genes and Genomes, and made these predictions publicly available in a database. We finally demonstrate that the predicted effects can be used to cluster knockdown genes of similar biological processes in coherent subgroups. The characterization of the activating or inhibiting effect of individual PPIs opens up new perspectives for the interpretation of large datasets of PPIs and thus considerably increases the value of PPIs as an integrated resource for studying the detailed function of signaling pathways of the cellular system of interest. PMID:25255318

  10. GP96 Interacts with HHV-6 during Viral Entry and Directs It for Cellular Degradation

    PubMed Central

    Prusty, Bhupesh K.; Siegl, Christine; Gulve, Nitish; Mori, Yasuko; Rudel, Thomas

    2014-01-01

    CD46 and CD134 mediate attachment of Human Herpesvirus 6A (HHV-6A) and HHV-6B to host cell, respectively. But many cell types interfere with viral infection through rapid degradation of viral DNA. Hence, not all cells expressing these receptors are permissive to HHV-6 DNA replication and production of infective virions suggesting the involvement of additional factors that influence HHV-6 propagation. Here, we used a proteomics approach to identify other host cell proteins necessary for HHV-6 binding and entry. We found host cell chaperone protein GP96 to interact with HHV-6A and HHV-6B and to interfere with virus propagation within the host cell. In human peripheral blood mononuclear cells (PBMCs), GP96 is transported to the cell surface upon infection with HHV-6 and interacts with HHV-6A and -6B through its C-terminal end. Suppression of GP96 expression decreased initial viral binding but increased viral DNA replication. Transient expression of human GP96 allowed HHV-6 entry into CHO-K1 cells even in the absence of CD46. Thus, our results suggest an important role for GP96 during HHV-6 infection, which possibly supports the cellular degradation of the virus. PMID:25470779

  11. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways

    PubMed Central

    Taipale, Mikko; Tucker, George; Peng, Jian; Krykbaeva, Irina; Lin, Zhen-Yuan; Larsen, Brett; Choi, Hyungwon; Berger, Bonnie; Gingras, Anne-Claude; Lindquist, Susan

    2014-01-01

    Chaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of co-factors (co-chaperones) that regulate their specificity and function. However, how these co-chaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We have combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone/co-chaperone/client interaction network in human cells. We uncover hundreds of novel chaperone clients, delineate their participation in specific co-chaperone complexes, and establish a surprisingly distinct network of protein/protein interactions for co-chaperones. As a salient example of the power of such analysis, we establish that NUDC family co-chaperones specifically associate with structurally related but evolutionarily distinct β-propeller folds. We provide a framework for deciphering the proteostasis network, its regulation in development and disease, and expand the use of chaperones as sensors for drug/target engagement. PMID:25036637

  12. Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions

    NASA Astrophysics Data System (ADS)

    Uriu, Koichiro; Ares, Saúl; Oates, Andrew C.; Morelli, Luis G.

    2012-06-01

    Cell movement and intercellular signaling occur simultaneously during the development of tissues, but little is known about how movement affects signaling. Previous theoretical studies have shown that faster moving cells favor synchronization across a population of locally coupled genetic oscillators. An important assumption in these studies is that cells can immediately interact with their new neighbors after arriving at a new location. However, intercellular interactions in cellular systems may need some time to become fully established. How movement affects synchronization in this situation has not been examined. Here, we develop a coupled phase oscillator model in which we consider cell movement and the gradual recovery of intercellular coupling experienced by a cell after movement, characterized by a moving rate and a coupling recovery rate, respectively. We find (1) an optimal moving rate for synchronization and (2) a critical moving rate above which achieving synchronization is not possible. These results indicate that the extent to which movement enhances synchrony is limited by a gradual recovery of coupling. These findings suggest that the ratio of time scales of movement and signaling recovery is critical for information transfer between moving cells.

  13. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    SciTech Connect

    Kazil, J.; Feingold, G.; Wang, Hailong; Yamaguchi, T.

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. It is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have

  14. Social interactions of eating behaviour among high school students: a cellular automata approach.

    PubMed

    Dabbaghian, Vahid; Mago, Vijay K; Wu, Tiankuang; Fritz, Charles; Alimadad, Azadeh

    2012-10-09

    Overweight and obesity in children and adolescents is a global epidemic posing problems for both developed and developing nations. The prevalence is particularly alarming in developed nations, such as the United States, where approximately one in three school-aged adolescents (ages 12-19) are overweight or obese. Evidence suggests that weight gain in school-aged adolescents is related to energy imbalance exacerbated by the negative aspects of the school food environment, such as presence of unhealthy food choices. While a well-established connection exists between the food environment, presently there is a lack of studies investigating the impact of the social environment and associated interactions of school-age adolescents. This paper uses a mathematical modelling approach to explore how social interactions among high school adolescents can affect their eating behaviour and food choice. In this paper we use a Cellular Automata (CA) modelling approach to explore how social interactions among school-age adolescents can affect eating behaviour, and food choice. Our CA model integrates social influences and transition rules to simulate the way individuals would interact in a social community (e.g., school cafeteria). To replicate these social interactions, we chose the Moore neighbourhood which allows all neighbours (eights cells in a two-dimensional square lattice) to influence the central cell. Our assumption is that individuals belong to any of four states; Bring Healthy, Bring Unhealthy, Purchase Healthy, and Purchase Unhealthy, and will influence each other according to parameter settings and transition rules. Simulations were run to explore how the different states interact under varying parameter settings. This study, through simulations, illustrates that students will change their eating behaviour from unhealthy to healthy as a result of positive social and environmental influences. In general, there is one common characteristic of changes across time

  15. Social interactions of eating behaviour among high school students: a cellular automata approach

    PubMed Central

    2012-01-01

    Background Overweight and obesity in children and adolescents is a global epidemic posing problems for both developed and developing nations. The prevalence is particularly alarming in developed nations, such as the United States, where approximately one in three school-aged adolescents (ages 12-19) are overweight or obese. Evidence suggests that weight gain in school-aged adolescents is related to energy imbalance exacerbated by the negative aspects of the school food environment, such as presence of unhealthy food choices. While a well-established connection exists between the food environment, presently there is a lack of studies investigating the impact of the social environment and associated interactions of school-age adolescents. This paper uses a mathematical modelling approach to explore how social interactions among high school adolescents can affect their eating behaviour and food choice. Methods In this paper we use a Cellular Automata (CA) modelling approach to explore how social interactions among school-age adolescents can affect eating behaviour, and food choice. Our CA model integrates social influences and transition rules to simulate the way individuals would interact in a social community (e.g., school cafeteria). To replicate these social interactions, we chose the Moore neighbourhood which allows all neighbours (eights cells in a two-dimensional square lattice) to influence the central cell. Our assumption is that individuals belong to any of four states; Bring Healthy, Bring Unhealthy, Purchase Healthy, and Purchase Unhealthy, and will influence each other according to parameter settings and transition rules. Simulations were run to explore how the different states interact under varying parameter settings. Results This study, through simulations, illustrates that students will change their eating behaviour from unhealthy to healthy as a result of positive social and environmental influences. In general, there is one common characteristic of

  16. Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions.

    PubMed

    Ramljak, Sanja; Schmitz, Matthias; Zafar, Saima; Wrede, Arne; Schenkel, Sara; Asif, Abdul R; Carimalo, Julie; Doeppner, Thorsten R; Schulz-Schaeffer, Walter J; Weise, Jens; Zerr, Inga

    2015-09-01

    Although a physiological function of the cellular prion protein (PrP(c)) is still not fully clarified, a PrP(c)-mediated neuroprotection against hypoxic/ischemic insult is intriguing. After ischemic stroke prion protein knockout mice (Prnp(0/0)) display significantly greater lesions as compared to wild-type (WT) mice. Earlier reports suggested an interaction between the glycolytic enzyme lactate dehydrogenase (LDH) and PrP(c). Since hypoxic environment enhances LDH expression levels and compels neurons to rely on lactate as an additional oxidative substrate for energy metabolism, we examined possible differences in LDH protein expression in WT and Prnp(0/0) knockout models under normoxic/hypoxic conditions in vitro and in vivo, as well as in a HEK293 cell line. While no differences are observed under normoxic conditions, LDH expression is markedly increased after 60-min and 90-min of hypoxia in WT vs. Prnp(0/0) primary cortical neurons with concurrent less hypoxia-induced damage in the former group. Likewise, cerebral ischemia significantly increases LDH levels in WT vs. Prnp(0/0) mice with accompanying smaller lesions in the WT group. HEK293 cells overexpressing PrP(c) show significantly higher LDH expression/activity following 90-min of hypoxia as compared to control cells. Moreover, a cytoplasmic co-localization of LDH and PrP(c) was recorded under both normoxic and hypoxic conditions. Interestingly, an expression of monocarboxylate transporter 1, responsible for cellular lactate uptake, increases with PrP(c)-overexpression under normoxic conditions. Our data suggest LDH as a direct PrP(c) interactor with possible physiological relevance under low oxygen conditions.

  17. Bronchial mucosa produced by tissue engineering: a new tool to study cellular interactions in asthma.

    PubMed

    Chakir, J; Pagé, N; Hamid, Q; Laviolette, M; Boulet, L P; Rouabhia, M

    2001-01-01

    The use of fiberoptic bronchial biopsies has improved our understanding of the immunopathology of asthma. However, this approach offers a limited ability to perform mechanistic studies observing cell-cell and cell-matrix interactions, which are a key issue in the study of airway remodeling. Tissue engineering is a technique that combines the use of biology and engineering expertise to generate a limitless amount of tissue from small samples. This technology allows for the study of cell interactions under conditions as close as possible to the natural environment. The aim of this study was to evaluate the feasibility of an engineered human bronchial mucosa as a model to study cellular interactions in asthma. Human bronchial fibroblasts from normal and asthmatic donors were incorporated into collagen gel. Bronchial epithelial cells were seeded over this gel and then cultured in an air-liquid interface in the presence or the absence of T lymphocytes. Biopsy specimens from these engineered mucosa were taken for structural and ultrastructural analysis, and T lymphocytes were harvested and used to localize IL-5. Histologic analysis showed that engineered mucosa with normal bronchial cells presented a pseudostratified ciliated epithelium with the presence of mucus secretory cells. The electron microscopy analysis confirmed these histologic results. These features were comparable with those observed in normal bronchial tissues. However, in engineered mucosa from asthmatic subjects, the tissue structure was disorganized, particularly the epithelial cell arrangement. The percentage of IL-5(+) lymphocytes was significantly (P =.03) higher in engineered bronchial mucosa from asthmatic subjects (87% +/- 2%) compared with mucosa from normal volunteers (2% +/- 0.3%). Using tissue engineering, we produced an in vitro model of bronchial mucosa from normal and asthmatic subjects. These models could be a valuable tool to better understand key mechanisms involved in inflammation and

  18. A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast.

    PubMed Central

    Stuart, J A; Harper, J A; Brindle, K M; Jekabsons, M B; Brand, M D

    2001-01-01

    Uncoupling protein 1 (UCP1) from mouse was expressed in yeast and the specific (GDP-inhibitable) and artifactual (GDP-insensitive) effects on mitochondrial uncoupling were assessed. UCP1 provides a GDP-inhibitable model system to help interpret the uncoupling effects of high expression in yeast of other members of the mitochondrial carrier protein family, such as the UCP1 homologues UCP2 and UCP3. Yeast expressing UCP1 at modest levels (approx. 1 microg/mg of mitochondrial protein) showed no growth defect, normal rates of chemically uncoupled respiration and an increased non-phosphorylating proton conductance that was completely GDP-sensitive. The catalytic-centre activity of UCP1 in these yeast mitochondria was similar to that in mammalian brown-adipose-tissue mitochondria. However, yeast expressing UCP1 at higher levels (approx. 11 microg/mg of mitochondrial protein) showed a growth defect. Their mitochondria had depressed chemically uncoupled respiration rates and an increased proton conductance that was partly GDP-insensitive. Thus, although UCP1 shows native behaviour at modest levels of expression in yeast, higher levels (or rates) of expression can lead to an uncoupling that is not a physiological property of the native protein and is therefore artifactual. This observation might be important in the interpretation of results from experiments in which the functions of UCP1 homologues are verified by their ability to uncouple yeast mitochondria. PMID:11389685

  19. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia

    NASA Astrophysics Data System (ADS)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  20. Mechanisms of Assembly and Cellular Interactions for the Bacterial Genotoxin CDT

    PubMed Central

    Nesic, Dragana; Stebbins, C. Erec

    2005-01-01

    Many bacterial pathogens that cause different illnesses employ the cytolethal distending toxin (CDT) to induce host cell DNA damage, leading to cell cycle arrest or apoptosis. CDT is a tripartite holotoxin that consists of a DNase I family nuclease (CdtB) bound to two ricin-like lectin domains (CdtA and CdtC). Through the use of structure-based mutagenesis, biochemical and cellular toxicity assays, we have examined several key structural elements of the CdtA and CdtC subunits for their importance to toxin assembly, cell surface binding, and activity. CdtA and CdtC possess N- and C-terminal nonglobular polypeptides that extensively interact with each other and CdtB, and we have determined the contribution of each to toxin stability and activity. We have also functionally characterized two key binding elements of the holotoxin revealed from its crystal structure. One is an aromatic cluster in CdtA, and the other is a long and deep groove that is formed at the interface of CdtA and CdtC. We demonstrate that mutations of the aromatic patch or groove residues impair toxin binding to HeLa cells and that cell surface binding is tightly correlated with intoxication of cultured cells. These results establish several structure-based hypotheses for the assembly and function of this toxin family. PMID:16304609

  1. Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2017-07-01

    The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.

  2. Age affects reciprocal cellular interactions in neuromuscular synapses following peripheral nerve injury.

    PubMed

    Kawabuchi, Masaru; Tan, Huibing; Wang, Songyan

    2011-01-01

    Studies of the influence of age on regeneration and reinnervation in the peripheral nervous system (PNS) and neuromuscular junction (NMJ) are reviewed, with a particular focus on aged and denervated skeletal muscles. The morphological and functional features of incomplete regeneration and reinnervation are compared between adult and aged animals. In addition, some possible mechanisms of the age-related defects will be discussed. Increased fragmentation or damage in individual components of the NMJ (terminal Schwann cells (TSCs), axon terminals and acetylcholine receptor sites occurs during muscle reinnervation following PNS injury in the aged animals. The capacity to produce ultraterminal sprouting or multiple innervation secondary to PNS injury is maintained, but not the capacity to eliminate such anomalous axonal profiles. The frequency and accuracy of reoccupation of the synaptic sites by TSCs and axon terminals are impaired. Thus, despite the capability of extending neural processes, the rate at which regenerating nerve fibers grow, mature and precisely appose the postsynaptic muscle fiber is impaired, resulting in the failure of re-establishment of the normal single motor innervation in the NMJ. A complex set of cellular interactions in the NMJ are known to participate in the neurotrophism and neurotrophism to support growth of the regenerating and sprouting axons and their pathfinding to direct the target muscle fiber. Besides the capability of α-motoneurons, signaling originating from the TSCs and muscle may be impaired during aging. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  3. EphB4 cellular kinase activity assayed using an enzymatic protein interaction system.

    PubMed

    Wehrman, Tom; Nguyen, Mimi; Feng, Wei; Bader, Benjamin

    2013-05-01

    Receptor tyrosine kinases (RTKs) are important players in various cellular processes, including proliferation, migration, metabolism, and neuronal development. EphB4 RTK is essential for the development of a functional arterial-venous network in embryonic and adult neoangiogenesis. To develop novel inhibitors of EphB4 that might have applications in severe diseases like cancer and retinopathies, assays need to be in place that resemble, in a most physiological fashion, the activation and downstream function of the kinase. In addition, such assays need to be amenable to high-throughput screening to serve efficiently the modern drug discovery processes in the pharmaceutical industry. The authors have developed an enzyme fragment complementation assay that measures the interaction of a downstream docking protein to the activated and phosphorylated full-length EphB4 kinase in cells. The assay is specific, robust, and amenable to miniaturization and high-throughput screening. It covers most steps in the activation process of EphB4, including ligand binding, autophosphorylation, and docking of a downstream interactor. This assay format can be transferred to other RTKs and adds an important cell-based kinase assay option to researchers in the field.

  4. Intracellular localization and cellular factors interaction of HTLV-1 and HTLV-2 Tax proteins: similarities and functional differences.

    PubMed

    Bertazzoni, Umberto; Turci, Marco; Avesani, Francesca; Di Gennaro, Gianfranco; Bidoia, Carlo; Romanelli, Maria Grazia

    2011-05-01

    Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity.

  5. Intracellular Localization and Cellular Factors Interaction of HTLV-1 and HTLV-2 Tax Proteins: Similarities and Functional Differences

    PubMed Central

    Bertazzoni, Umberto; Turci, Marco; Avesani, Francesca; Di Gennaro, Gianfranco; Bidoia, Carlo; Romanelli, Maria Grazia

    2011-01-01

    Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity. PMID:21994745

  6. The PDZ3 domain of the cellular scaffolding protein MAGI-1 interacts with the Coxsackievirus and adenovirus receptor (CAR).

    PubMed

    Yan, Ran; Sharma, Priyanka; Kolawole, Abimbola O; Martin, Sterling C T; Readler, James M; Kotha, Poornima L N; Hostetler, Heather A; Excoffon, Katherine J D A

    2015-04-01

    The Coxsackievirus and adenovirus receptor (CAR) is an essential cellular protein that is involved in cell-cell adhesion, protein trafficking, and viral infection. The major isoform of CAR is selectively sorted to the basolateral membrane of polarized epithelial cells where it co-localizes with the cellular scaffolding protein membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1). Previously, we demonstrated CAR interacts with MAGI-1 through a PDZ-domain dependent interaction. Here, we show that the PDZ3 domain of MAGI-1 is exclusively responsible for the high affinity interaction between the seven exon isoform of CAR and MAGI-1 using yeast-two-hybrid analysis and confirming this interaction biochemically and in cellular lysates by in vitro pull down assay and co-immunoprecipitation. The high affinity interaction between the PDZ3 domain and CAR C-terminus was measured by fluorescence resonance energy transfer. Further, we investigated the biological relevance of this high affinity interaction between CAR and the PDZ3 domain of MAGI-1 and found that it does not alter CAR-mediated adenovirus infection. By contrast, interruption of this high affinity interaction altered the localization of MAGI-1 indicating that CAR is able to traffic MAGI-1 to cell junctions. These data deepen the molecular understanding of the interaction between CAR and MAGI-1 and indicate that although CAR plays a role in trafficking PDZ-based scaffolding proteins to cellular junctions, association with a high affinity intracellular binding partner does not significantly alter adenovirus binding and entry via CAR.

  7. Interaction between core protein of classical swine fever virus with cellular IQGAP1 proetin appears essential for virulence in swine

    USDA-ARS?s Scientific Manuscript database

    Here we show that IQGAP1, a cellular protein that plays a pivotal role as a regulator of the cytoskeleton affecting cell adhesion, polarization and migration, interacts with Classical Swine Fever Virus (CSFV) Core protein. Sequence analyses identified a defined set of residues within CSFV Core prote...

  8. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses.

    PubMed

    Radauer-Preiml, Isabella; Andosch, Ancuela; Hawranek, Thomas; Luetz-Meindl, Ursula; Wiederstein, Markus; Horejs-Hoeck, Jutta; Himly, Martin; Boyles, Matthew; Duschl, Albert

    2016-01-16

    Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule 'corona'. Hence, the 'corona' defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated

  9. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  10. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  11. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  12. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  13. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  14. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  15. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  16. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  17. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  18. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coupling or uncoupling cars. 57.14215 Section... and Equipment Safety Practices and Operational Procedures § 57.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and...

  19. Potassium channel openers are uncoupling protonophores: implication in cardioprotection.

    PubMed

    Holmuhamedov, Ekhson L; Jahangir, Arshad; Oberlin, Andrew; Komarov, Alexander; Colombini, Marco; Terzic, Andre

    2004-06-18

    Excessive build-up of mitochondrial protonic potential is harmful to cellular homeostasis, and modulation of inner membrane permeability a proposed countermeasure. Here, we demonstrate that structurally distinct potassium channel openers, diazoxide and pinacidil, facilitated transmembrane proton translocation generating H(+)-selective current through planar phospholipid membrane. Both openers depolarized mitochondria, activated state 4 respiration and reduced oxidative phosphorylation, recapitulating the signature of mitochondrial uncoupling. This effect was maintained in K(+)-free conditions and shared with the prototypic protonophore 2,4-dinitrophenol. Diazoxide, pinacidil and 2,4-dinitrophenol, but not 2,4-dinitrotoluene lacking protonophoric properties, preserved functional recovery of ischemic heart. The identified protonophoric property of potassium channel openers, thus, implicates a previously unrecognized component in their mechanism of cardioprotection.

  20. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    PubMed

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  1. Hydrogels with Spatially and Temporally Controlled Properties to Control Cellular Interactions

    NASA Astrophysics Data System (ADS)

    Burdick, Jason

    2011-03-01

    Stem cells (e.g., mesenchymal stem cells, MSCs) respond to many cues from their microenvironment, which may include chemical signals, mechanics, and topography. Importantly, these cues may be incorporated into scaffolding to control stem cell differentiation and optimize their ability to produce tissues in regenerative medicine. Despite the significant amount of work in this area, the materials have been primarily static and uniform. To this end, we have developed a sequential crosslinking process that relies on our ability to crosslinked functional biopolymers (e.g., methacrylated hyaluronic acid, HA) in two steps, namely a Michael-type addition reaction to partially consume reactive groups and then a light-initiated free-radical polymerization to further crosslink the material. With light exposure during the second step comes control over the material in space (via masks and lasers) and time (via intermittent light exposure). We are applying this technique for numerous applications. For example, when the HA hydrogels are crosslinked with MMP degradable peptides with thiol termini during the first step, a material that can be degraded by cells is obtained. However, cell-mediated degradation is obstructed with the introduction of kinetic chains during the second step, leading to spatially controlled cell degradability. Due to the influence of cellular spreading on MSC differentiation, we have controlled cell fates by controlling their spread ability, for instance towards osteoblasts in spread areas and adipocytes when cell remained rounded. We are also using the process of stiffening with time to investigate mechanically induced differentiation, particularly in materials with evolving mechanics. Overall, these advanced HA hydrogels provide us the opportunity to investigate diverse and controlled material properties on MSC interactions.

  2. Adoptive transfer of experimental autoimmune hepatitis in mice: cellular interaction between donor and recipient mice

    PubMed Central

    Ogawa, M.; Mori, Y.; Mori, T.; Ueda, S.; Yoshida, H.; Kato, I.; Iesato, K.; Wakashin, Y.; Azemoto, R.; Wakashin, M.; Okuda, K.; Ohto, M.

    1988-01-01

    This report extends our previous study on experimental autoimmune hepatitis in C57BL/6 (B6) mice. Cellular immunity involved in the induction of liver injury in this model was studied by transfer of primed spleen cells from hepatitis donor mice to syngeneic normal recipient mice. The most prominent liver damage in recipient B6 mice was induced by transfer of nylon wool adherent spleen cells from hepatitis donor mice, and T cells in this fraction were the essential requirement for the liver damage in the recipient mice. Nylon wool adherent spleen cells from hepatitis donor mice after depletion of the suppressor T-cell function by low-dose (300 rad) irradiation induced more severe liver injury compared to the same cells without irradiation. When the recipient mice were depleted of lymphocytes by low or high dose (700 rad) whole body irradiation, transfer of primed spleen cells from hepatitis donor mice did not induce liver lesion in the lymphocyte-depleted mice. This low susceptibility of lymphocyte-depleted recipient mice to primed spleen cells of hepatitis mice was no longer demonstrated after reconstitution with normal spleen cells. In a cell-migration study using 51Cr-labelled spleen cells, it was shown that a considerable number of infiltrating cells in the liver of recipient mice were derived from recipient mice themselves. These results seem to indicate that cell-to-cell interaction between radiosensitive precursor cells of recipient mice and liver-antigen-primed T cells from hepatitis donor mice play an essential role in the induction of liver injury in the recipient mice. ImagesFig. 1 PMID:3052945

  3. Cellular Interactions and Immune Response of Spherical Nucleic Acid (SNA) Nanoconjugates

    NASA Astrophysics Data System (ADS)

    Massich, Matthew David

    Spherical nucleic acid (SNA) nanoconjugates consist of a densely packed monolayer shell of highly-oriented oligonucleotides covalently bound to a gold nanoparticle core. The nanoconjugates exhibit several important qualities, which make them useful for various biological applications, such as antisense gene regulation strategies and the intracellular detection of biomolecules. The focus of this thesis was to characterize the nanoconjugates interaction with cultured cells and specifically the immune response to their intracellular presence. The immune response of macrophage cells to internalized nanoconjugates was studied, and due to the dense functionalization of oligonucleotides on the surface of the nanoparticle and the resulting high localized salt concentration the innate immune response to the nanoconjugates is ˜25-fold less when compared to a lipoplex carrying the same sequence. Additionally, genome-wide expression profiling was used to study the biological response of cultured cells to the nanoconjugates. The biological response of HeLa cells to gold nanoparticles stabilized by weakly bound ligands was significant, yet when these same nanoparticles were stably functionalized with covalently attached oligonucleotides the cells showed no measurable response. In human keratinocytes, the oligonucleotide sequences caused 427 genes to be differentially expressed when complexed with Dharmafect, but when the oligonucleotides were conjugated to nanoparticles only 7 genes were differentially expressed. Beyond characterizing the cellular interactions and immune response of the nanoconjugates, the optimal length of siRNA (from 19--34 base pairs) that induces the most gene knockdown while maintaining limited immune activation was determined to be 24 base pairs. Further, the SNAs were shown to be useful as a potential antiviral gene therapy by demonstrating approximately 50% knockdown of the Ebola VP35 gene. Lastly, a scanning probe-enabled method was used to rapidly

  4. A cellular automaton to model magma/crust interactions and volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; Shcherbakov, R.

    2012-12-01

    Volcanic eruptions are the outcomes of complex dynamical interactions between magma and the Earth's crust and are characterized by non-trivial temporal correlations. It is of major importance to study the processes involved in magma ascent within the crust which can lead to a better under-standing of the failure mechanism that leads to an eruption. In a previous study, we showed that the interevent time distributions of volcanic eruptions were characterized by a universal behavior, independent of the type of volcanism and geographical location. The distribution for interevent times between successive eruptions were shown to deviate from the simple Poisson statistics. Instead, occurrence of volcanic eruptions can be modeled by a log-normal distribution. In the present work, we investigate the interactions between the magma and the host rock at the microscopic level using a cellular automaton approach. We consider a two-dimensional system on a rectangular lattice consisting of the magma chamber and the overlying crust. The magma particles coming from the chamber rise through the crust by damaging it to its failure point, and eventually reach the surface resulting in an eruption. While not damaged by magma, the crust can heal with time and fractures will close. The amount of damage that a particle can afflict on a crustal site and the healing capability of the crust are two model parameters and mimic various crustal settings. We consider two different definitions of the eruption sizes: i) only the magma in the vertical fractures directly under the eruption point is considered to define the eruption; ii) the entire fracture network (vertical and horizontal) filled with magma and connected to the eruption point is considered to define the eruption. In order to investigate further what controls the explosivity of eruptions, we introduce a binary system to model the magma and dissolved gases: magma and dissolved gases which are characterized by dierent damage capacities

  5. On the use of cellular telephony for audio interaction with animals.

    PubMed

    Joachim, Dale; Goodale, Eben

    2007-12-22

    Playback is an important method of surveying animals, assessing habitats and studying animal communication. However, conventional playback methods require on-site observers and therefore become labour-intensive when covering large areas. Such limitations could be circumvented by the use of cellular telephony, a ubiquitous technology with increasing biological applications. In addressing concerns about the low audio quality of cellular telephones, this paper presents experimental data to show that owls of two species (Strix varia and Megascops asio) respond similarly to calls played through cellular telephones as to calls played through conventional playback technology. In addition, the telephone audio recordings are of sufficient quality to detect most of the two owl species' responses. These findings are a first important step towards large-scale applications where networks of cellular phones conduct real-time monitoring tasks.

  6. Impact of poly(lactic-co-glycolic acid) nanoparticle surface charge on protein, cellular and haematological interactions.

    PubMed

    Pillai, Gopikrishna J; Greeshma, M M; Menon, Deepthy

    2015-12-01

    The initial interactions of nanoparticles with biomolecules have a great influence on its toxicity, efficacy, biodistribution and clearance. The present work is an attempt to understand the impact of surface charge of polymeric nanoparticles on its plasma protein and cellular interactions. Negative, near-neutral and positively charged poly(lactic-co-glycolic acid) [PLGA] nanoparticles were prepared using casein, poly(vinyl alcohol) and poly(ethylene imine) respectively, as surface stabilizers. A significant temporal variation in the hydrodynamic diameter of PLGA nanoparticles was observed in the presence of plasma proteins, which correlated with the amount of proteins adsorbed to each surface. Positively charged particles displayed the maximum size variation and protein adsorption. Cellular uptake of differentially charged nanoparticles was also concurrent with the quantity of adsorbed proteins, though there was no significant difference in their cytotoxicity. Haematological interactions (haemolysis and plasma coagulation times) of positively charged nanoparticles were considerably different from near-neutral and negative nanoparticles. Collectively, the results point to the interplay between plasma protein adsorption and cellular interactions of PLGA nanoparticles, which is governed by its surface charge, thereby necessitating a rational design of nanoparticles.

  7. Adaptive Cellular Interactions in the Immune System: The Tunable Activation Threshold and the Significance of Subthreshold Responses

    NASA Astrophysics Data System (ADS)

    Grossman, Zvi; Paul, William E.

    1992-11-01

    A major challenge for immunologists is to explain how the immune system adjusts its responses to the microenvironmental context in which antigens are recognized. We propose that lymphocytes achieve this by tuning and updating their responsiveness to recurrent signals. In particular, cellular anergy in vivo is a dynamic state in which the threshold for a stereotypic mode of activation has been elevated. Anergy is associated with other forms of cellular activity, not paralysis. Cells engaged in such subthreshold interactions mediate functions such as maintenance of immunological memory and control of infections. In such interactions, patterns of signals are recognized and classified and evoke selective responses. The robust mechanism proposed for segregation of suprathreshold and subthreshold immune responses allows lymphocytes to use recognition of self-antigens in executing physiological functions. Autoreactivity is allowed where it is dissociated from uncontrolled aggression.

  8. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  9. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    PubMed Central

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-01-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases. PMID:26608097

  10. Cellular prion protein localizes to the nucleus of endocrine and neuronal cells and interacts with structural chromatin components.

    PubMed

    Strom, Alexander; Wang, Gen-Sheng; Picketts, David J; Reimer, Rudolph; Stuke, Andreas W; Scott, Fraser W

    2011-05-01

    Several physiological processes have been purported for cellular prion protein (PrP(C)). However, the physiological function of PrP(C) is still unclear and the cellular localization of PrP(C) remains a subject of debate. PrP(C) is expressed in a wide range of tissues including islets of Langerhans. We previously demonstrated that the function of PrP(C) is associated with blood glucose regulation. Little is known of the function of PrP(C) in islet cells and specifically in β-cells. To get first insight into the putative role of PrP(C) in β-cells, we used far-Western immunoblotting and MS to identify candidate PrP(C)-interacting proteins. We also used Western blot, immunofluorescence (IF) and protein overlay IF to characterize the sub-cellular localization of PrP(C). Here we demonstrate in vivo that PrP(C) is abundant in the nuclear lamina of endocrine and neuronal cells and interacts with histone H1(0), histone H3 and lamin B1. The interaction of PrP(C) with histone H3 suggests that it is involved in transcriptional regulation in the nucleus. This study reveals new avenues for the elucidation of the physiological function of PrP(C) in endocrine and neuronal cells as well as the molecular mechanisms leading to prion diseases.

  11. Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus.

    PubMed

    Garcia, Nathan S; Bonachela, Juan A; Martiny, Adam C

    2016-11-01

    The factors that control elemental ratios within phytoplankton, like carbon:nitrogen:phosphorus (C:N:P), are key to biogeochemical cycles. Previous studies have identified relationships between nutrient-limited growth and elemental ratios in large eukaryotes, but little is known about these interactions in small marine phytoplankton like the globally important Cyanobacteria. To improve our understanding of these interactions in picophytoplankton, we asked how cellular elemental stoichiometry varies as a function of steady-state, N- and P-limited growth in laboratory chemostat cultures of Synechococcus WH8102. By combining empirical data and theoretical modeling, we identified a previously unrecognized factor (growth-dependent variability in cell size) that controls the relationship between nutrient-limited growth and cellular elemental stoichiometry. To predict the cellular elemental stoichiometry of phytoplankton, previous theoretical models rely on the traditional Droop model, which purports that the acquisition of a single limiting nutrient suffices to explain the relationship between a cellular nutrient quota and growth rate. Our study, however, indicates that growth-dependent changes in cell size have an important role in regulating cell nutrient quotas. This key ingredient, along with nutrient-uptake protein regulation, enables our model to predict the cellular elemental stoichiometry of Synechococcus across a range of nutrient-limited conditions. Our analysis also adds to the growth rate hypothesis, suggesting that P-rich biomolecules other than nucleic acids are important drivers of stoichiometric variability in Synechococcus. Lastly, by comparing our data with field observations, our study has important ecological relevance as it provides a framework for understanding and predicting elemental ratios in ocean regions where small phytoplankton like Synechococcus dominates.

  12. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    PubMed Central

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  13. Mystery of the Toxic Flea Dip: An Interactive Approach to Teaching Aerobic Cellular Respiration

    ERIC Educational Resources Information Center

    Baines, A. T.; McVey, M.; Rybarczyk, B.; Thompson, J. T.; Wilkins, H. R.

    2004-01-01

    We designed an interrupted case study to teach aerobic cellular respiration to major and nonmajor biology students. The case is based loosely on a real-life incident of rotenone poisoning. It places students in the role of a coroner who must determine the cause of death of the victim. The case is presented to the students in four parts. Each part…

  14. Mystery of the Toxic Flea Dip: An Interactive Approach to Teaching Aerobic Cellular Respiration

    ERIC Educational Resources Information Center

    Baines, A. T.; McVey, M.; Rybarczyk, B.; Thompson, J. T.; Wilkins, H. R.

    2004-01-01

    We designed an interrupted case study to teach aerobic cellular respiration to major and nonmajor biology students. The case is based loosely on a real-life incident of rotenone poisoning. It places students in the role of a coroner who must determine the cause of death of the victim. The case is presented to the students in four parts. Each part…

  15. A general formalism for tissue morphogenesis based on cellular dynamics and control system interactions.

    PubMed

    Forest, Loïc; Demongeot, Jacques

    2008-06-01

    Morphogenesis is a key process in developmental biology. An important issue is the understanding of the generation of shape and cellular organisation in tissues. Despite of their great diversity, morphogenetic processes share common features. This work is an attempt to describe this diversity using the same formalism based on a cellular description. Tissue is seen as a multi-cellular system whose behaviour is the result of all constitutive cells dynamics. Morphogenesis is then considered as a spatiotemporal organization of cells activities. We show how this formalism relies on Reaction-Diffusion/Positional Information approach and how it permits to generalize its modelling possibilities. Three quite different applications for concrete morphogenetic processes are presented. The first one is a model for epithelial invagination, the second is a model of cellular differentiation by local cell-cell signalling. The last example is the secondary radial growth of conifer trees. From the mathematical point of view, different modelling tools are used according to the specificity of each process.

  16. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2013-09-16

    Won't let you go! A strategy is described to design small molecules that react with their cellular RNA targets. This approach not only improves the activity of compounds targeting RNA in cell culture by a factor of about 2500 but also enables cell-wide profiling of its RNA targets.

  17. The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex.

    PubMed

    Liu, Baoyu; Chen, Wei; Natarajan, Kannan; Li, Zhenhai; Margulies, David H; Zhu, Cheng

    2015-07-01

    T cells recognize antigens at the two-dimensional (2D) interface with antigen-presenting cells (APCs), which trigger T-cell effector functions. T-cell functional outcomes correlate with 2D kinetics of membrane-embedded T-cell receptors (TCRs) binding to surface-tethered peptide-major histocompatibility complex molecules (pMHCs). However, most studies have measured TCR-pMHC kinetics for recombinant TCRs in 3D by surface plasmon resonance, which differs drastically from 2D measurements. Here, we compared pMHC dissociation from native TCR on the T-cell surface to recombinant TCR immobilized on glass surface or in solution. Force on TCR-pMHC bonds regulated their lifetimes differently for native than recombinant TCRs. Perturbing the cellular environment suppressed 2D on-rates but had no effect on 2D off-rate regardless of whether force was applied. In contrast, for the TCR interacting with its monoclonal antibody, the 2D on-rate was insensitive to cellular perturbations and the force-dependent off-rates were indistinguishable for native and recombinant TCRs. These data present novel features of TCR-pMHC kinetics that are regulated by the cellular environment, underscoring the limitations of 3D kinetics in predicting T-cell functions and calling for further elucidation of the underlying molecular and cellular mechanisms that regulate 2D kinetics in physiological settings.

  18. The Interaction of the Gammaherpesvirus 68 orf73 Protein with Cellular BET Proteins Affects the Activation of Cell Cycle Promoters▿

    PubMed Central

    Ottinger, Matthias; Pliquet, Daniel; Christalla, Thomas; Frank, Ronald; Stewart, James P.; Schulz, Thomas F.

    2009-01-01

    Infection of mice with murine gammaherpesvirus 68 (MHV-68) provides a valuable animal model for gamma-2 herpesvirus (rhadinovirus) infection and pathogenesis. The MHV-68 orf73 protein has been shown to be required for the establishment of viral latency in vivo. This study describes a novel transcriptional activation function of the MHV-68 orf73 protein and identifies the cellular bromodomain containing BET proteins Brd2/RING3, Brd3/ORFX, and BRD4 as interaction partners for the MHV-68 orf73 protein. BET protein members are known to interact with acetylated histones, and Brd2 and Brd4 have been implicated in fundamental cellular processes, including cell cycle regulation and transcriptional regulation. Using MHV-68 orf73 peptide array assays, we identified Brd2 and Brd4 interaction sites in the orf73 protein. Mutation of one binding site led to a loss of the interaction with Brd2/4 but not the retinoblastoma protein Rb, to impaired chromatin association, and to a decreased ability to activate the BET-responsive cyclin D1, D2, and E promoters. The results therefore pinpoint the binding site for Brd2/4 in a rhadinoviral orf73 protein and suggest that the recruitment of a member of the BET protein family allows the MHV-68 orf73 protein to activate the promoters of G1/S cyclins. These findings point to parallels between the transcriptional activator functions of rhadinoviral orf73 proteins and papillomavirus E2 proteins. PMID:19244327

  19. JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells.

    PubMed

    Boeckel, Jes-Niels; Derlet, Anja; Glaser, Simone F; Luczak, Annika; Lucas, Tina; Heumüller, Andreas W; Krüger, Marcus; Zehendner, Christoph M; Kaluza, David; Doddaballapur, Anuradha; Ohtani, Kisho; Treguer, Karine; Dimmeler, Stefanie

    2016-07-01

    Jumonji C (JmjC) domain-containing proteins modify histone and nonhistone proteins thereby controlling cellular functions. However, the role of JmjC proteins in angiogenesis is largely unknown. Here, we characterize the expression of JmjC domain-containing proteins after inducing endothelial differentiation of murine embryonic stem cells and study the function of JmjC domain-only proteins in endothelial cell (EC) functions. We identified a large number of JmjC domain-containing proteins regulated by endothelial differentiation of murine embryonic stem cells. Among the family of JmjC domain-only proteins, Jmjd8 was significantly upregulated on endothelial differentiation. Knockdown of Jmjd8 in ECs significantly decreased in vitro network formation and sprouting in the spheroid assay. JMJD8 is exclusively detectable in the cytoplasm, excluding a function as a histone-modifying enzyme. Mass spectrometry analysis revealed JMJD8-interacting proteins with known functions in cellular metabolism like pyruvate kinase M2. Accordingly, knockdown of pyruvate kinase M2 in human umbilical vein ECs decreased endothelial sprouting in the spheroid assay. Knockdown of JMJD8 caused a reduction of EC metabolism as measured by Seahorse Bioscience extracellular flux analysis. Conversely, overexpression of JMJD8 enhanced cellular oxygen consumption rate of ECs, reflecting an increased mitochondrial respiration. Jmjd8 is upregulated during endothelial differentiation and regulates endothelial sprouting and metabolism by interacting with pyruvate kinase M2. © 2016 American Heart Association, Inc.

  20. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation

    PubMed Central

    Stojanova, Angelina; Tu, William B.; Ponzielli, Romina; Kotlyar, Max; Chan, Pak-Kei; Boutros, Paul C.; Khosravi, Fereshteh; Jurisica, Igor; Raught, Brian; Penn, Linda Z.

    2016-01-01

    ABSTRACT MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions. PMID:27267444

  1. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation.

    PubMed

    Stojanova, Angelina; Tu, William B; Ponzielli, Romina; Kotlyar, Max; Chan, Pak-Kei; Boutros, Paul C; Khosravi, Fereshteh; Jurisica, Igor; Raught, Brian; Penn, Linda Z

    2016-07-02

    MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions.

  2. Fipronil is a powerful uncoupler of oxidative phosphorylation that triggers apoptosis in human neuronal cell line SHSY5Y.

    PubMed

    Vidau, Cyril; González-Polo, Rosa A; Niso-Santano, Mireia; Gómez-Sánchez, Rubén; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Blasco, Rafael; Brunet, Jean-Luc; Belzunces, Luc P; Fuentes, José M

    2011-12-01

    Fipronil is a phenylpyrazole insecticide known to elicit neurotoxicity via an interaction with ionotropic receptors, namely GABA and glutamate receptors. Recently, we showed that fipronil and other phenylpyrazole compounds trigger cell death in Caco-2 cells. In this study, we investigated the mode of action and the type of cell death induced by fipronil in SH-SY5Y human neuroblastoma cells. Flow cytometric and western blot analyses demonstrated that fipronil induces cellular events belonging to the apoptosis process, such as mitochondrial potential collapse, cytochrome c release, caspase-3 activation, nuclear condensation and phosphatidylserine externalization. In addition, fipronil induces a rapid ATP depletion with concomitant activation of anaerobic glycolysis. This cellular response is characteristic of mitochondrial injury associated with a defect of the respiration process. Therefore, we also investigated the effect of fipronil on the oxygen consumption in isolated mitochondria. Interestingly, we show for the first time that fipronil is a strong uncoupler of oxidative phosphorylation at relative low concentrations. Thus in this study, we report a new mode of action by which the insecticide fipronil could triggers apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways

    PubMed Central

    Reyniers, Lauran; Del Giudice, Maria Grazia; Civiero, Laura; Belluzzi, Elisa; Lobbestael, Evy; Beilina, Alexandra; Arrigoni, Giorgio; Derua, Rita; Waelkens, Etienne; Li, Yan; Crosio, Claudia; Iaccarino, Ciro; Cookson, Mark R.; Baekelandt, Veerle; Greggio, Elisa; Taymans, Jean-Marc

    2014-01-01

    Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson’s disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins. PMID:24947832

  4. mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging

    PubMed Central

    2013-01-01

    Background The mammalian target of rapamycin (mTOR) signalling pathway has a key role in cellular regulation and several diseases. While it is thought that Rheb GTPase regulates mTOR, acting immediately upstream, while raptor is immediately downstream of mTOR, direct interactions have yet to be verified in living cells, furthermore the localisation of Rheb has been reported to have only a cytoplasmic cellular localization. Results In this study a cytoplasmic as well as a significant sub-cellular nuclear mTOR localization was shown , utilizing green and red fluorescent protein (GFP and DsRed) fusion and highly sensitive single photon counting fluorescence lifetime imaging microscopy (FLIM) of live cells. The interaction of the mTORC1 components Rheb, mTOR and raptor, tagged with EGFP/DsRed was determined using fluorescence energy transfer-FLIM. The excited-state lifetime of EGFP-mTOR of ~2400 ps was reduced by energy transfer to ~2200 ps in the cytoplasm and to 2000 ps in the nucleus when co-expressed with DsRed-Rheb, similar results being obtained for co-expressed EGFP-mTOR and DsRed-raptor. The localization and distribution of mTOR was modified by amino acid withdrawal and re-addition but not by rapamycin. Conclusions The results illustrate the power of GFP-technology combined with FRET-FLIM imaging in the study of the interaction of signalling components in living cells, here providing evidence for a direct physical interaction between mTOR and Rheb and between mTOR and raptor in living cells for the first time. PMID:23311891

  5. Cellular interactions of doxorubicin-loaded DNA-modified halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Yeonju; Jung, Goo-Eun; Cho, Sang Joon; Geckeler, Kurt E.; Fuchs, Harald

    2013-08-01

    Halloysite nanotube (HNT)-based supramolecular complexes are synthesized and evaluated with respect to their cytotoxicity and effects on cellular structures. As HNTs are water-insoluble, DNA is applied for wrapping the surface of HNTs to enhance their water-dispersibility. To investigate the potential of DNA-wrapped HNTs (HD) as a promising drug delivery carrier, doxorubicin (DOX) is introduced as a model anticancer agent and loaded onto HD. The DOX-loaded, DNA-wrapped HNTs (HDD) show sustained DOX release over two weeks without initial burst of DOX indicating delayed DOX release inside cells. In addition, effects of DNA-wrapped HNTs (HD) or HDD on the cytoskeleton organization of A549 cells are studied by visualizing the distribution of F-actin filaments using confocal laser scanning microscopy, and cellular morphological changes are observed by scanning electron microscopy and scanning ion conductance microscopy.Halloysite nanotube (HNT)-based supramolecular complexes are synthesized and evaluated with respect to their cytotoxicity and effects on cellular structures. As HNTs are water-insoluble, DNA is applied for wrapping the surface of HNTs to enhance their water-dispersibility. To investigate the potential of DNA-wrapped HNTs (HD) as a promising drug delivery carrier, doxorubicin (DOX) is introduced as a model anticancer agent and loaded onto HD. The DOX-loaded, DNA-wrapped HNTs (HDD) show sustained DOX release over two weeks without initial burst of DOX indicating delayed DOX release inside cells. In addition, effects of DNA-wrapped HNTs (HD) or HDD on the cytoskeleton organization of A549 cells are studied by visualizing the distribution of F-actin filaments using confocal laser scanning microscopy, and cellular morphological changes are observed by scanning electron microscopy and scanning ion conductance microscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02665e

  6. Cellular interaction influenced by surface modification strategies of gelatin-based nanoparticles.

    PubMed

    Tse, Wai Hei; Gyenis, Laszlo; Litchfield, David W; Zhang, Jin

    2017-02-01

    Theranostic applications of gelatin nanospheres require two major components, a method of detection and good biocompatibility. We characterized the response of UTA-6 human osteosarcoma cells to the introduction of functionalized 90 bloom-based gelatin nanospheres (158 ± 49 nm) modified with three elements in different order: (a) hybridization with cadmium-based quantum dots for optical detection, (b) bioconjugation with anti-human IgG FAB (anti-IgG) for cell targeting, with/without (c) capping with polyethylene glycol on the surface for enhanced biocompatibility. A one-pot process is developed for incorporating quantum dots and antibody with gelatin nanospheres. Path A of modifying gelatin nanospheres with quantum dots first followed by anti-IgG resulted in a significantly greater cellular viability than Path B with anti-IgG first followed by quantum dots. Capping with polyethylene glycol as the final step in modification yielded significantly opposing results with decreases in Path A and increases in Path B. Three-dimensional z-stacking fluorescent images of hybrid gelatin nanospheres with anti-IgG is observed to have an increase in cellular association. The observed results suggest the modification order for building hybrid nanospheres may have an impact on cellular response.

  7. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Deng, Jun; Gao, Changyou

    2016-10-01

    The unique features of nanomaterials have led to their rapid development in the biomedical field. In particular, functionalized nanoparticles (NPs) are extensively used in the delivery of drugs and genes, bio-imaging and diagnosis. Hence, the interaction between NPs and cells is one of the most important issues towards understanding the true nature of the NP-mediated biological effects. Moreover, the intracellular safety concern of the NPs as a result of intracellular NP degradation remains to be clarified in detail. This review presents recent advances in the interactions of designed NPs and cells. The focus includes the governing factors on cellular uptake and the intracellular fate of NPs, and the degradation of NPs and its influence on nanotoxicity. Some basic consideration is proposed for optimizing the NP-cell interaction and designing NPs of better biocompatiblity for biomedical application.

  8. Towards Inter- and Intra- Cellular Protein Interaction Analysis: Applying the Betweenness Centrality Graph Measure for Node Importance

    NASA Astrophysics Data System (ADS)

    Barton, Alan J.; Haqqani, Arsalan S.

    2011-11-01

    Three public biological network data sets (KEGG, GeneRIF and Reactome) are collected and described. Two problems are investigated (inter- and intra- cellular interactions) via augmentation of the collected networks to the problem specific data. Results include an estimate of the importance of proteins for the interaction of inflammatory cells with the blood-brain barrier via the computation of Betweenness Centrality. Subsequently, the interactions may be validated from a number of differing perspectives; including comparison with (i) existing biological results, (ii) the literature, and (iii) new hypothesis driven biological experiments. Novel therapeutic and diagnostic targets for inhibiting inflammation at the blood-brain barrier in a number of brain diseases including Alzheimer's disease, stroke and multiple sclerosis are possible. In addition, this methodology may also be applicable towards investigating the breast cancer tumour microenvironment.

  9. Constitutive activation of T cells by γ2-herpesviral GPCR through the interaction with cellular CXCR4.

    PubMed

    Kwon, Eun-Kyung; Min, Chan-Ki; Kim, Yuri; Lee, Jae-Won; Aigerim, Abdimadiyeva; Schmidt, Sebastian; Nam, Hyun-Jun; Han, Seong Kyu; Kim, Kuglae; Cha, Jeong Seok; Kim, Hoyoung; Kim, Sanguk; Cho, Hyun-Soo; Choi, Myung-Sik; Cho, Nam-Hyuk

    2017-01-01

    Members of the herpesviral family use multiple strategies to hijack infected host cells and exploit cellular signaling for their pathogenesis and latent infection. Among the most intriguing weapons in the arsenal of pathogenic herpesviruses are the constitutively active virally-encoded G protein-coupled receptors (vGPCRs). Even though vGPCRs contribute to viral pathogenesis such as immune evasion and proliferative disorders, the molecular details of how vGPCRs continuously activate cellular signaling are largely unknown. Here, we report that the vGPCR of Herpesvirus saimiri (HVS), an oncogenic γ2-herpesvirus, constitutively activates T cells via a heteromeric interaction with cellular CXCR4. Constitutive T cell activation also occurs with expression of the vGPCR of Kaposi's sarcoma-associated herpesvirus (KSHV), but not the vGPCR of Epstein-Barr virus. Expression of HVS vGPCR down-regulated the surface expression of CXCR4 but did not induce the degradation of the chemokine receptor, suggesting that vGPCR/CXCR4 signaling continues in cytosolic compartments. The physical association of vGPCR with CXCR4 was demonstrated by proximity ligation assay as well as immunoprecipitation. Interestingly, the constitutive activation of T cells by HVS vGPCR is independent of proximal T cell receptor (TCR) signaling molecules, such as TCRβ, Lck, and ZAP70, whereas CXCR4 silencing by shRNA abolished T cell activation by vGPCRs of HVS and KSHV. Furthermore, previously identified inactive vGPCR mutants failed to interact with CXCR4. These findings on the positive cooperativity of vGPCR with cellular CXCR4 in T cell activation extend our current understanding of the molecular mechanisms of vGPCR function and highlight the importance of heteromerization for GPCR activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Optimal parameters uncoupling vibration modes of oscillators

    NASA Astrophysics Data System (ADS)

    Le, K. C.; Pieper, A.

    2017-07-01

    This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.

  11. The role of biological fluid and dynamic flow in the behavior and cellular interactions of gold nanoparticles.

    PubMed

    Breitner, Emily K; Hussain, Saber M; Comfort, Kristen K

    2015-09-05

    of the system was verified to ensure cellular health following AAF exposure and fluid dynamics. This study confirmed the feasibility of improving standard in vitro models through the incorporation of physiological variables. Utilization of this enhanced system demonstrated that to elucidate true NP behavior and accurately gauge their cellular interactions, assessments should be carried out in a more complex and relevant biological exposure model.

  12. Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations.

    PubMed

    Lalonde, Sylvie; Ehrhardt, David W; Loqué, Dominique; Chen, Jin; Rhee, Seung Y; Frommer, Wolf B

    2008-02-01

    Homotypic and heterotypic protein interactions are crucial for all levels of cellular function, including architecture, regulation, metabolism, and signaling. Therefore, protein interaction maps represent essential components of post-genomic toolkits needed for understanding biological processes at a systems level. Over the past decade, a wide variety of methods have been developed to detect, analyze, and quantify protein interactions, including surface plasmon resonance spectroscopy, NMR, yeast two-hybrid screens, peptide tagging combined with mass spectrometry and fluorescence-based technologies. Fluorescence techniques range from co-localization of tags, which may be limited by the optical resolution of the microscope, to fluorescence resonance energy transfer-based methods that have molecular resolution and can also report on the dynamics and localization of the interactions within a cell. Proteins interact via highly evolved complementary surfaces with affinities that can vary over many orders of magnitude. Some of the techniques described in this review, such as surface plasmon resonance, provide detailed information on physical properties of these interactions, while others, such as two-hybrid techniques and mass spectrometry, are amenable to high-throughput analysis using robotics. In addition to providing an overview of these methods, this review emphasizes techniques that can be applied to determine interactions involving membrane proteins, including the split ubiquitin system and fluorescence-based technologies for characterizing hits obtained with high-throughput approaches. Mass spectrometry-based methods are covered by a review by Miernyk and Thelen (2008; this issue, pp. 597-609). In addition, we discuss the use of interaction data to construct interaction networks and as the basis for the exciting possibility of using to predict interaction surfaces.

  13. HIC1 controls cellular- and HIV-1- gene transcription via interactions with CTIP2 and HMGA1

    PubMed Central

    Le Douce, Valentin; Forouzanfar, Faezeh; Eilebrecht, Sebastian; Van Driessche, Benoit; Ait-Ammar, Amina; Verdikt, Roxane; Kurashige, Yoshihito; Marban, Céline; Gautier, Virginie; Candolfi, Ermanno; Benecke, Arndt G.; Van Lint, Carine; Rohr, Olivier; Schwartz, Christian

    2016-01-01

    Among many cellular transcriptional regulators, Bcl11b/CTIP2 and HGMA1 have been described to control the establishment and the persistence of HIV-1 latency in microglial cells, the main viral reservoir in the brain. In this present work, we identify and characterize a transcription factor i.e. HIC1, which physically interacts with both Bcl11b/CTIP2 and HMGA1 to co-regulate specific subsets of cellular genes and the viral HIV-1 gene. Our results suggest that HIC1 represses Tat dependent HIV-1 transcription. Interestingly, this repression of Tat function is linked to HIC1 K314 acetylation status and to SIRT1 deacetylase activity. Finally, we show that HIC1 interacts and cooperates with HGMA1 to regulate Tat dependent HIV-1 transcription. Our results also suggest that HIC1 repression of Tat function happens in a TAR dependent manner and that this TAR element may serve as HIC1 reservoir at the viral promoter to facilitate HIC1/TAT interaction. PMID:27725726

  14. Plant-Herbivore Interaction: Dissection of the Cellular Pattern of Tetranychus urticae Feeding on the Host Plant

    PubMed Central

    Bensoussan, Nicolas; Santamaria, M. Estrella; Zhurov, Vladimir; Diaz, Isabel; Grbić, Miodrag; Grbić, Vojislava

    2016-01-01

    The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most polyphagous herbivores feeding on cell contents of over 1100 plant species including more than 150 crops. It is being established as a model for chelicerate herbivores with tools that enable tracking of reciprocal responses in plant-spider mite interactions. However, despite their important pest status and a growing understanding of the molecular basis of interactions with plant hosts, knowledge of the way mites interface with the plant while feeding and the plant damage directly inflicted by mites is lacking. Here, utilizing histology and microscopy methods, we uncovered several key features of T. urticae feeding. By following the stylet path within the plant tissue, we determined that the stylet penetrates the leaf either in between epidermal pavement cells or through a stomatal opening, without damaging the epidermal cellular layer. Our recordings of mite feeding established that duration of the feeding event ranges from several minutes to more than half an hour, during which time mites consume a single mesophyll cell in a pattern that is common to both bean and Arabidopsis plant hosts. In addition, this study determined that leaf chlorotic spots, a common symptom of mite herbivory, do not form as an immediate consequence of mite feeding. Our results establish a cellular context for the plant-spider mite interaction that will support our understanding of the molecular mechanisms and cell signaling associated with spider mite feeding. PMID:27512397

  15. Plant-Herbivore Interaction: Dissection of the Cellular Pattern of Tetranychus urticae Feeding on the Host Plant.

    PubMed

    Bensoussan, Nicolas; Santamaria, M Estrella; Zhurov, Vladimir; Diaz, Isabel; Grbić, Miodrag; Grbić, Vojislava

    2016-01-01

    The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most polyphagous herbivores feeding on cell contents of over 1100 plant species including more than 150 crops. It is being established as a model for chelicerate herbivores with tools that enable tracking of reciprocal responses in plant-spider mite interactions. However, despite their important pest status and a growing understanding of the molecular basis of interactions with plant hosts, knowledge of the way mites interface with the plant while feeding and the plant damage directly inflicted by mites is lacking. Here, utilizing histology and microscopy methods, we uncovered several key features of T. urticae feeding. By following the stylet path within the plant tissue, we determined that the stylet penetrates the leaf either in between epidermal pavement cells or through a stomatal opening, without damaging the epidermal cellular layer. Our recordings of mite feeding established that duration of the feeding event ranges from several minutes to more than half an hour, during which time mites consume a single mesophyll cell in a pattern that is common to both bean and Arabidopsis plant hosts. In addition, this study determined that leaf chlorotic spots, a common symptom of mite herbivory, do not form as an immediate consequence of mite feeding. Our results establish a cellular context for the plant-spider mite interaction that will support our understanding of the molecular mechanisms and cell signaling associated with spider mite feeding.

  16. A genetic modifier screen identifies multiple genes that interact with Drosophila Rap/Fzr and suggests novel cellular roles.

    PubMed

    Kaplow, Margarita E; Mannava, Laura J; Pimentel, Angel C; Fermin, Hector A; Hyatt, Vanetta J; Lee, John J; Venkatesh, Tadmiri R

    2007-01-01

    In the developing Drosophila eye, Rap/Fzr plays a critical role in neural patterning by regulating the timely exit of precursor cells. Rap/Fzr (Retina aberrant in pattern/Fizzy related) is an activator of the E3 Ubiquitin ligase, the APC (Anaphase Promoting Complex-cyclosome) that facilitates the stage specific proteolytic destruction of mitotic regulators, such as cyclins and cyclin-dependent kinases. To identify novel functional roles of Rap/Fzr, we conducted an F(1) genetic modifier screen to identify genes which interact with the partial-loss-function mutations in rap/fzr. We screened 2741 single P-element, lethal insertion lines and piggyBac lines on the second and third chromosome for dominant enhancers and suppressors of the rough eye phenotype of rap/fzr. From this screen, we have identified 40 genes that exhibit dosage-sensitive interactions with rap/fzr; of these, 31 have previously characterized cellular functions. Seven of the modifiers identified in this study are regulators of cell cycle progression with previously known interactions with rap/fzr. Among the remaining modifiers, 27 encode proteins involved in other cellular functions not directly related to cell-cycle progression. The newly identified variants fall into at least three groups based on their previously known cellular functions: transcriptional regulation, regulated proteolysis, and signal transduction. These results suggest that, in addition to cell cycle regulation, rap/fzr regulates ubiquitin-ligase-mediated protein degradation in the developing nervous system as well as in other tissues.

  17. Identification of Cellular Proteins that Interact with Human Cytomegalovirus Immediate-Early Protein 1 by Protein Array Assay

    PubMed Central

    Puerta Martínez, Francisco; Tang, Qiyi

    2013-01-01

    Human cytomegalovirus (HCMV) gene expression during infection is characterized as a sequential process including immediate-early (IE), early (E), and late (L)-stage gene expression. The most abundantly expressed gene at the IE stage of infection is the major IE (MIE) gene that produces IE1 and IE2. IE1 has been the focus of study because it is an important protein, not only for viral gene expression but also for viral replication. It is believed that IE1 plays important roles in viral gene regulation by interacting with cellular proteins. In the current study, we performed protein array assays and identified 83 cellular proteins that interact with IE1. Among them, seven are RNA-binding proteins that are important in RNA processing; more than half are nuclear proteins that are involved in gene regulations. Tumorigenesis-related proteins are also found to interact with IE1, implying that the role of IE1 in tumorigenesis might need to be reevaluated. Unexpectedly, cytoplasmic proteins, such as Golgi autoantigen and GGA1 (both related to the Golgi trafficking protein), are also found to be associated with IE1. We also employed a coimmunoprecipitation assay to test the interactions of IE1 and some of the proteins identified in the protein array assays and confirmed that the results from the protein array assays are reliable. Many of the proteins identified by the protein array assay have not been previously reported. Therefore, the functions of the IE1-protein interactions need to be further explored in the future. PMID:24385082

  18. Interaction between basic residues of Epstein-Barr virus EBNA1 protein and cellular chromatin mediates viral plasmid maintenance.

    PubMed

    Kanda, Teru; Horikoshi, Naoki; Murata, Takayuki; Kawashima, Daisuke; Sugimoto, Atsuko; Narita, Yohei; Kurumizaka, Hitoshi; Tsurumi, Tatsuya

    2013-08-16

    The Epstein-Barr virus (EBV) genome is episomally maintained in latently infected cells. The viral protein EBNA1 is a bridging molecule that tethers EBV episomes to host mitotic chromosomes as well as to interphase chromatin. EBNA1 localizes to cellular chromosomes (chromatin) via its chromosome binding domains (CBDs), which are rich in glycine and arginine residues. However, the molecular mechanism by which the CBDs of EBNA1 attach to cellular chromatin is still under debate. Mutation analyses revealed that stepwise substitution of arginine residues within the CBD1 (amino acids 40-54) and CBD2 (amino acids 328-377) regions with alanines progressively impaired chromosome binding activity of EBNA1. The complete arginine-to-alanine substitutions within the CBD1 and -2 regions abolished the ability of EBNA1 to stably maintain EBV-derived oriP plasmids in dividing cells. Importantly, replacing the same arginines with lysines had minimal effect, if any, on chromosome binding of EBNA1 as well as on its ability to stably maintain oriP plasmids. Furthermore, a glycine-arginine-rich peptide derived from the CBD1 region bound to reconstituted nucleosome core particles in vitro, as did a glycine-lysine rich peptide, whereas a glycine-alanine rich peptide did not. These results support the idea that the chromosome binding of EBNA1 is mediated by electrostatic interactions between the basic amino acids within the CBDs and negatively charged cellular chromatin.

  19. Interaction between Basic Residues of Epstein-Barr Virus EBNA1 Protein and Cellular Chromatin Mediates Viral Plasmid Maintenance*

    PubMed Central

    Kanda, Teru; Horikoshi, Naoki; Murata, Takayuki; Kawashima, Daisuke; Sugimoto, Atsuko; Narita, Yohei; Kurumizaka, Hitoshi; Tsurumi, Tatsuya

    2013-01-01

    The Epstein-Barr virus (EBV) genome is episomally maintained in latently infected cells. The viral protein EBNA1 is a bridging molecule that tethers EBV episomes to host mitotic chromosomes as well as to interphase chromatin. EBNA1 localizes to cellular chromosomes (chromatin) via its chromosome binding domains (CBDs), which are rich in glycine and arginine residues. However, the molecular mechanism by which the CBDs of EBNA1 attach to cellular chromatin is still under debate. Mutation analyses revealed that stepwise substitution of arginine residues within the CBD1 (amino acids 40–54) and CBD2 (amino acids 328–377) regions with alanines progressively impaired chromosome binding activity of EBNA1. The complete arginine-to-alanine substitutions within the CBD1 and -2 regions abolished the ability of EBNA1 to stably maintain EBV-derived oriP plasmids in dividing cells. Importantly, replacing the same arginines with lysines had minimal effect, if any, on chromosome binding of EBNA1 as well as on its ability to stably maintain oriP plasmids. Furthermore, a glycine-arginine-rich peptide derived from the CBD1 region bound to reconstituted nucleosome core particles in vitro, as did a glycine-lysine rich peptide, whereas a glycine-alanine rich peptide did not. These results support the idea that the chromosome binding of EBNA1 is mediated by electrostatic interactions between the basic amino acids within the CBDs and negatively charged cellular chromatin. PMID:23836915

  20. Interaction of SDF-1alpha and CXCR4 plays an important role in pulmonary cellular infiltration in differentiation syndrome.

    PubMed

    Zhou, Jin; Hu, Longhu; Cui, Zhe; Jiang, Xian; Wang, Guifang; Krissansen, Geoffrey W; Sun, Xueying

    2010-03-01

    This study aims to investigate the role of stromal cell-derived factor 1alpha (SDF-1alpha) and its receptor CXCR4 in cellular infiltration of the lung in differentiation syndrome (DS). The acute promyelocytic leukemia (APL) NB4 cells and freshly prepared APL cells from the patients were differentiated by all-trans retinoic acid (ATRA). The expression of SDF-1alpha in human lung tissues was examined by RT-PCR and Western blot analysis. The cells were subjected to adhesion, migration or invasion assays, and co-cultured with human lung tissues in a microgravity rotary cell culture system to examine cellular infiltration in situ. ATRA-differentiated cells expressed high levels of CXCR4, and adhered more strongly to matrigel. Their ability to migrate and invade was enhanced by SDF-1alpha and lung homogenate, and diminished by pre-treatment with an anti-CXCR4 blocking antibody. SDF-1alpha was expressed in the lung tissues of all seven human donors. ATRA-differentiated NB4 cells infiltrated into lung tissues, and this was reduced by pre-treatment with an anti-CXCR4 blocking antibody. The interaction of SDF-1alpha and CXCR4 plays an important role in pulmonary cellular infiltration during DS, suggesting that targeting SDF-1alpha and CXCR4 may provide the basis for potential treatments in the management of DS.

  1. Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking.

    PubMed

    Li, Xiaoyu; Song, Jinghui; Yi, Chengqi

    2014-04-01

    RNA-protein interactions influence many biological processes. Identifying the binding sites of RNA-binding proteins (RBPs) remains one of the most fundamental and important challenges to the studies of such interactions. Capturing RNA and RBPs via chemical crosslinking allows stringent purification procedures that significantly remove the non-specific RNA and protein interactions. Two major types of chemical crosslinking strategies have been developed to date, i.e., UV-enabled crosslinking and enzymatic mechanism-based covalent capture. In this review, we compare such strategies and their current applications, with an emphasis on the technologies themselves rather than the biology that has been revealed. We hope such methods could benefit broader audience and also urge for the development of new methods to study RNA-RBP interactions. Copyright © 2014. Production and hosting by Elsevier Ltd.

  2. Multiphysics computations on cellular interaction in complex geometries and vortex-accelerated vorticity deposition in Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Peng, Gaozhu

    The cellular interactions during leukocyte margination and adhesion cascade in cardiovascular microcirculations are multi-scale and multiphysics phenomena, involving fluid flow, cell mechanics, chemical reaction kinetics and transport, fluid structure interaction. The vascular network in vivo has rather complicated topology unlike straight and flat channels and pipes where most biological experiments in vitro and numerical simulations are carried. A computational framework is formulated towards a goal of building a virtual blood vessel system to simulate the hydrodynamic and kinetic interactions of blood cells in complex vascular geometries, including vascular network bifurcations and irregular shapes of the endothelial monolayer lining the blood vessel lumen in vivo. Mixed front tracking, immersed boundary and ghost cell methods are applied. The codes are benchmarked and validated with five selected problems. We find that the erythrocyte-leukocyte interaction, leukocyte-leukocyte interaction, and vascular geometries play important roles in leukocyte margination, initial tethering and adhesion to the vascular endothelium. In part II of the dissertation, we studied the two-dimensional microscale Richtmyer-Meshkov interfaces and discovered the self-driven vortex-accelerated vorticity deposition (VAVD) process. Opposite-signed secondary vorticity deposited by the VAVD is rolled into vortex double layers which are extremely unstable and lead to enhanced fluid mixing. The VAVD process examined and the new quantification procedure, the circulation rate of change, comprise a new vortex paradigm for examining the effect of specific initial conditions on the evolution of Richtmyer-Meshkov and Rayleigh-Taylor interfaces through intermediate times.

  3. Lactose-Functionalized Dendrimers Arbitrate the Interaction of Galectin-3/MUC1 Mediated Cancer Cellular Aggregation

    PubMed Central

    Michel, Anna K.; Nangia-Makker, Pratima; Raz, Avraham

    2015-01-01

    By using lactose-functionalized poly(amidoamine) dendrimers as a tunable multivalent platform, we studied cancer cell aggregation in three different cell lines (A549, DU-145, and HT-1080) with galectin-3. We found that small lactose-functionalized G(2)-dendrimer 1 inhibited galectin-3-induced aggregation of the cancer cells. In contrast, dendrimer 4 (a larger, generation 6 dendrimer with 100 carbohydrate end groups) caused cancer cells to aggregate through a galectin-3 pathway. This study indicates that inhibition of cellular aggregation occurred because 1 provided competitive binding sites for galectin-3 (compared to its putative cancer cell ligand, TF-antigen on MUC1). Dendrimer 4, in contrast, provided an excess of ligands for galectin-3 binding; this caused crosslinking and aggregation of cells to be increased. PMID:25138772

  4. An immunomodulatory protein, Ling Zhi-8, facilitates cellular interaction through modulation of adhesion molecules.

    PubMed

    Miyasaka, N; Inoue, H; Totsuka, T; Koike, R; Kino, K; Tsunoo, H

    1992-07-15

    Ling Zhi-8 (LZ-8), a novel immunomodulatory protein, markedly enhanced the expression of CD11b, but not CD11a, CD13, CD14, CD18, CD33 or HLA-DR, on the U937 cell line in a dose-dependent fashion. It also induced ICAM-1 expression on vascular endothelial cells and significantly augmented gamma - interferon-induced cellular binding between vascular endothelial cells and U937. Furthermore, LZ-8 increased the expression of CD2, but not VLA4, VLA5 or LFA3, on MOLT4 and enhanced rosette formation between human T cells and sheep red blood cells. These data suggest that LZ-8 exerts its pharmacological effect by modulating adhesion molecules on immunocompetent cells.

  5. Influence of surface passivation of 2-Methoxyestradiol loaded PLGA nanoparticles on cellular interactions, pharmacokinetics and tumour accumulation.

    PubMed

    Pillai, Gopikrishna J; Paul-Prasanth, Bindhu; Nair, Shantikumar V; Menon, Deepthy

    2017-02-01

    In the present work, 2-Methoxyestradiol [2ME2] loaded PLGA nanoparticles [NPs] were stabilized with Casein or poly(ethylene glycol) [PEG] and evaluated for its cellular interactions, pharmacokinetics and tumour accumulation. Surface stabilized PLGA nanoparticles prepared through a modified emulsion route possessed similar size, surface charge, drug loading and release characteristics. Particle-cell interactions as well as the anti-angiogenesis activity were similar for both nanoformulations in vitro. However, in vivo pharmacokinetics and tumour accumulation of the drug were substantially improved for the PEGylated nanoformulation. Reduced protein binding was observed for PEG stabilized PLGA NPs. Thus, it was demonstrated that nanoencapsulation of 2-ME2 within PEGylated PLGA nanocarrier could improve its half-life and plasma concentration and thereby increase the tumour accumulation.

  6. The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence

    PubMed Central

    Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio

    2016-01-01

    AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. PMID:27512140

  7. The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence.

    PubMed

    Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio; Saggio, Isabella

    2016-08-01

    AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. © 2016 The Authors.

  8. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells.

    PubMed

    Machiguchi, Toshihiko; Nakamura, Tatsuo

    2013-06-07

    There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues.

  9. An intramolecular interaction within the lipid kinase Fab1 regulates cellular phosphatidylinositol 3,5-bisphosphate lipid levels.

    PubMed

    Lang, Michael J; Strunk, Bethany S; Azad, Nadia; Petersen, Jason L; Weisman, Lois S

    2017-04-01

    Phosphorylated phosphoinositide lipids (PPIs) are low-abundance signaling molecules that control signal transduction pathways and are necessary for cellular homeostasis. The PPI phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P2) is essential in multiple organ systems. PI(3,5)P2 is generated from PI3P by the conserved lipid kinase Fab1/PIKfyve. Defects in the dynamic regulation of PI(3,5)P2 are linked to human diseases. However, few mechanisms that regulate PI(3,5)P2 have been identified. Here we report an intramolecular interaction between the yeast Fab1 kinase region and an upstream conserved cysteine-rich (CCR) domain. We identify mutations in the kinase domain that lead to elevated levels of PI(3,5)P2 and impair the interaction between the kinase and CCR domain. We also identify mutations in the CCR domain that lead to elevated levels of PI(3,5)P2 Together these findings reveal a regulatory mechanism that involves the CCR domain of Fab1 and contributes to dynamic control of cellular PI(3,5)P2 synthesis.

  10. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    SciTech Connect

    Machiguchi, Toshihiko Nakamura, Tatsuo

    2013-06-07

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues.

  11. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles.

    PubMed

    Walkey, Carl D; Olsen, Jonathan B; Song, Fayi; Liu, Rong; Guo, Hongbo; Olsen, D Wesley H; Cohen, Yoram; Emili, Andrew; Chan, Warren C W

    2014-03-25

    Using quantitative models to predict the biological interactions of nanoparticles will accelerate the translation of nanotechnology. Here, we characterized the serum protein corona 'fingerprint' formed around a library of 105 surface-modified gold nanoparticles. Applying a bioinformatics-inspired approach, we developed a multivariate model that uses the protein corona fingerprint to predict cell association 50% more accurately than a model that uses parameters describing nanoparticle size, aggregation state, and surface charge. Our model implicates a set of hyaluronan-binding proteins as mediators of nanoparticle-cell interactions. This study establishes a framework for developing a comprehensive database of protein corona fingerprints and biological responses for multiple nanoparticle types. Such a database can be used to develop quantitative relationships that predict the biological responses to nanoparticles and will aid in uncovering the fundamental mechanisms of nano-bio interactions.

  12. Uncoupling of Longevity and Telomere Length in C. elegans

    PubMed Central

    Raices, Marcela; Maruyama, Hugo; Dillin, Andrew; Karlseder, Jan

    2005-01-01

    The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging. PMID:16151516

  13. Uncoupling of longevity and telomere length in C. elegans.

    PubMed

    Raices, Marcela; Maruyama, Hugo; Dillin, Andrew; Karlseder, Jan

    2005-09-01

    The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging.

  14. The Rift Valley Fever virus protein NSm and putative cellular protein interactions.

    PubMed

    Engdahl, Cecilia; Näslund, Jonas; Lindgren, Lena; Ahlm, Clas; Bucht, Göran

    2012-07-28

    Rift Valley Fever is an infectious viral disease and an emerging problem in many countries of Africa and on the Arabian Peninsula. The causative virus is predominantly transmitted by mosquitoes and high mortality and abortion rates characterize outbreaks in animals while symptoms ranging from mild to life-threatening encephalitis and hemorrhagic fever are noticed among infected humans. For a better prevention and treatment of the infection, an increased knowledge of the infectious process of the virus is required. The focus of this work was to identify protein-protein interactions between the non-structural protein (NSm), encoded by the M-segment of the virus, and host cell proteins. This study was initiated by screening approximately 26 million cDNA clones of a mouse embryonic cDNA library for interactions with the NSm protein using a yeast two-hybrid system. We have identified nine murine proteins that interact with NSm protein of Rift Valley Fever virus, and the putative protein-protein interactions were confirmed by growth selection procedures and β-gal activity measurements. Our results suggest that the cleavage and polyadenylation specificity factor subunit 2 (Cpsf2), the peptidyl-prolyl cis-trans isomerase (cyclophilin)-like 2 protein (Ppil2), and the synaptosome-associated protein of 25 kDa (SNAP-25) are the most promising targets for the NSm protein of the virus during an infection.

  15. Features of the Chaperone Cellular Network Revealed through Systematic Interaction Mapping.

    PubMed

    Rizzolo, Kamran; Huen, Jennifer; Kumar, Ashwani; Phanse, Sadhna; Vlasblom, James; Kakihara, Yoshito; Zeineddine, Hussein A; Minic, Zoran; Snider, Jamie; Wang, Wen; Pons, Carles; Seraphim, Thiago V; Boczek, Edgar Erik; Alberti, Simon; Costanzo, Michael; Myers, Chad L; Stagljar, Igor; Boone, Charles; Babu, Mohan; Houry, Walid A

    2017-09-12

    A comprehensive view of molecular chaperone function in the cell was obtained through a systematic global integrative network approach based on physical (protein-protein) and genetic (gene-gene or epistatic) interaction mapping. This allowed us to decipher interactions involving all core chaperones (67) and cochaperones (15) of Saccharomyces cerevisiae. Our analysis revealed the presence of a large chaperone functional supercomplex, which we named the naturally joined (NAJ) chaperone complex, encompassing Hsp40, Hsp70, Hsp90, AAA+, CCT, and small Hsps. We further found that many chaperones interact with proteins that form foci or condensates under stress conditions. Using an in vitro reconstitution approach, we demonstrate condensate formation for the highly conserved AAA+ ATPases Rvb1 and Rvb2, which are part of the R2TP complex that interacts with Hsp90. This expanded view of the chaperone network in the cell clearly demonstrates the distinction between chaperones having broad versus narrow substrate specificities in protein homeostasis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. The Rift Valley Fever virus protein NSm and putative cellular protein interactions

    PubMed Central

    2012-01-01

    Rift Valley Fever is an infectious viral disease and an emerging problem in many countries of Africa and on the Arabian Peninsula. The causative virus is predominantly transmitted by mosquitoes and high mortality and abortion rates characterize outbreaks in animals while symptoms ranging from mild to life-threatening encephalitis and hemorrhagic fever are noticed among infected humans. For a better prevention and treatment of the infection, an increased knowledge of the infectious process of the virus is required. The focus of this work was to identify protein-protein interactions between the non-structural protein (NSm), encoded by the M-segment of the virus, and host cell proteins. This study was initiated by screening approximately 26 million cDNA clones of a mouse embryonic cDNA library for interactions with the NSm protein using a yeast two-hybrid system. We have identified nine murine proteins that interact with NSm protein of Rift Valley Fever virus, and the putative protein-protein interactions were confirmed by growth selection procedures and β-gal activity measurements. Our results suggest that the cleavage and polyadenylation specificity factor subunit 2 (Cpsf2), the peptidyl-prolyl cis-trans isomerase (cyclophilin)-like 2 protein (Ppil2), and the synaptosome-associated protein of 25 kDa (SNAP-25) are the most promising targets for the NSm protein of the virus during an infection. PMID:22838834

  17. Uncoupling proteins of invertebrates: A review.

    PubMed

    Slocinska, Malgorzata; Barylski, Jakub; Jarmuszkiewicz, Wieslawa

    2016-09-01

    Uncoupling proteins (UCPs) mediate inducible proton conductance in the mitochondrial inner membrane. Herein, we summarize our knowledge regarding UCPs in invertebrates. Since 2001, the presence of UCPs has been demonstrated in nematodes, mollusks, amphioxi, and insects. We discuss the following important issues concerning invertebrate UCPs: their evolutionary relationships, molecular and functional properties, and physiological impact. Evolutionary analysis indicates that the branch of vertebrate and invertebrate UCP4-5 diverged early in the evolutionary process prior to the divergence of the animal groups. Several proposed physiological roles of invertebrate UCPs are energy control, metabolic balance, and preventive action against oxidative stress. © 2016 IUBMB Life, 68(9):691-699, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  18. Ageing, oxidative stress, and mitochondrial uncoupling.

    PubMed

    Harper, M-E; Bevilacqua, L; Hagopian, K; Weindruch, R; Ramsey, J J

    2004-12-01

    Mitochondria are a cell's single greatest source of reactive oxygen species. Reactive oxygen species are important for many life sustaining processes of cells and tissues, but they can also induce cell damage and death. If their production and levels within cells is not effectively controlled, then the detrimental effects of oxidative stress can accumulate. Oxidative stress is widely thought to underpin many ageing processes, and the oxidative stress theory of ageing is one of the most widely acknowledged theories of ageing. As well as being the major source of reactive oxygen species, mitochondria are also a major site of oxidative damage. The purpose of this review is a concise and current review of the effects of oxidative stress and ageing on mitochondrial function. Emphasis is placed upon the roles of mitochondrial proton leak, the uncoupling proteins, and the anti-ageing effects of caloric restriction.

  19. Seismic coupling and uncoupling at subduction zones

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Kanamori, H.

    1983-01-01

    Some of the correlations concerning the properties of subduction zones are reviewed. A quantitative global comparison of many subduction zones reveals that the largest earthquakes occur in zones with young lithosphere and fast convergence rates. Maximum earthquake size is directly related to the asperity distribution on the fault plane. This observation can be translated into a simple model of seismic coupling where the horizontal compressive stress between two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. Plate age and rate can control asperity distribution directly through the horizontal compressive stress associated with the vertical and horizontal velocities of subducting slabs. The basalt to eclogite phase change in the down-going oceanic crust may be largely responsible for the uncoupling of subduction zones below a depth of about 40 km.

  20. Effects of surface chemistry on the optical properties and cellular interaction of lanthanide-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco J.; Avalos, Julio C.; Mimun, Lawrence C.; Yust, Brian G.; Tsin, Andrew; Sardar, Dhiraj K.

    2015-03-01

    Fluorescent nanoparticles (NPs) such as KYb2F7:Tm3+ potential in biomedical applications due to their ability to absorb and emit within the biological window, where near infrared light is less attenuated by soft tissue. This results in less tissue damage and deeper tissue penetration making it a viable candidate in biological imaging. Another big factor in determining their ability to perform in a biological setting is the surface chemistry. Biocompatible coatings, including polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), pluronic and folic acid are commonly used because they pose several advantages such as ease of functionalization, better dispersion, and higher cellular uptake. To study the effects of the NP surface chemistry, KYb2F7:Tm3+ a solvothermal method using PEG, PVP, pluronic acid, and folic acid as a capping agent, followed by thorough optical characterizations. Optical changes were thoroughly studied and compared using absorption, emission, and quantum yield data. Cell viability was obtained by treating Rhesus Monkey Retinal Endothelial cells (RhREC) with KYb2F7:Tm3+ and counting viable cells following a 24 hour uptake period. The work presented will compare the optical properties and toxicity dependency on the surface chemistry on KYb2F7:Tm3+. The results will also indicate that KYb2F7:Tm3+ nanoparticles are viable candidates for various biomedical applications.

  1. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    PubMed Central

    Simón-Vázquez, Rosana; Lozano-Fernández, Tamara; Dávila-Grana, Angela; González-Fernández, Africa

    2016-01-01

    Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps) was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO) to study the three most relevant mitogen-activated protein kinase subfamilies and the nuclear factor kappa-light-chain-enhancer of the activated B-cell inhibitor, IκBα, as well as the expression of several genes by immune cells incubated with these Nps. The moNps activated different signaling pathways and altered the gene expression in human lymphocyte cells. The ZnO Nps were the most active and the release of Zn2+ ions was the main mechanism of toxicity. CeO2 Nps induced the smallest changes in gene expression and in the IκBα protein. The effects of the particles were strongly dependent on the type and concentration of the Nps and on the cell activation status prior to Np exposure. PMID:27695324

  2. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology

    PubMed Central

    Hou, Tim Y.; Davidson, Laurie A.; Kim, Eunjoo; Fan, Yang-Yi; Fuentes, Natividad R.; Triff, Karen; Chapkin, Robert S.

    2016-01-01

    The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as “carcinogenic to humans” on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer. PMID:27431370

  3. Interaction of cellular and network mechanisms for efficient pheromone coding in moths

    PubMed Central

    Belmabrouk, Hana; Nowotny, Thomas; Rospars, Jean-Pierre; Martinez, Dominique

    2011-01-01

    Sensory systems, both in the living and in machines, have to be optimized with respect to their environmental conditions. The pheromone subsystem of the olfactory system of moths is a particularly well-defined example in which rapid variations of odor content in turbulent plumes require fast, concentration-invariant neural representations. It is not clear how cellular and network mechanisms in the moth antennal lobe contribute to coding efficiency. Using computational modeling, we show that intrinsic potassium currents (IA and ISK) in projection neurons may combine with extrinsic inhibition from local interneurons to implement a dual latency code for both pheromone identity and intensity. The mean latency reflects stimulus intensity, whereas latency differences carry concentration-invariant information about stimulus identity. In accordance with physiological results, the projection neurons exhibit a multiphasic response of inhibition–excitation–inhibition. Together with synaptic inhibition, intrinsic currents IA and ISK account for the first and second inhibitory phases and contribute to a rapid encoding of pheromone information. The first inhibition plays the role of a reset to limit variability in the time to first spike. The second inhibition prevents responses of excessive duration to allow tracking of intermittent stimuli. PMID:22109556

  4. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes

    PubMed Central

    Weiss, Greta E.; Gilson, Paul R.; Taechalertpaisarn, Tana; Tham, Wai-Hong; de Jong, Nienke W. M.; Harvey, Katherine L.; Fowkes, Freya J. I.; Barlow, Paul N.; Rayner, Julian C.; Wright, Gavin J.; Cowman, Alan F.; Crabb, Brendan S.

    2015-01-01

    During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite’s life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite’s actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1–RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine. PMID:25723550

  5. Lethal and mutagenic interactions between γ-rays, cisplatin and etoposide at the cellular and molecular levels.

    PubMed

    Lillo, Olga; Bracesco, Nelson; Nunes, Elia

    2011-02-01

    We analysed the lethal and mutagenic interactions between γ-rays, cisplatin (Pt) and etoposide (E), three agents used in tumour chemoradiotherapy. Corresponding results at cellular and molecular levels could provide additional elements on involved mechanisms and, on antitumour activity and toxicity in combined cancer treatments. The yeast Saccharomyces cerevisiae SC7K(lys2-3) (auxotrophic for lysine) was used as eukaryotic model. Exponential growing cells were exposed to the mentioned agents, as single and combined treatments. Lethal and mutation interaction equations were determined as a function of doses according to quantitative models. DNA double-strand breaks were evaluated immediately after treatments, through pulsed-field electrophoresis and laser densitometry. All three agents induced significant mutant frequency. The γ +Pt + E combination determined maximal lethal and mutagenic synergism, followed by γ + Pt and γ + E combinations. Meanwhile, Pt + E combination showed lethal additivity and very low mutagenic synergism. Pt + E double combination determined moderate DNA degradation. DNA degradation after γ-exposure, was similar to that of γ + Pt, γ + E and γ + Pt + E combinations. Synergistic lethal and mutagenic interactions indicate crosstalk between non-homologous end joining, homologous recombination and postreplicative repair pathways. Pt + E additivity indicate independence of involved repair pathways. Furthermore, the quantification of interactive events may be an additional suitable tool in tumour therapy planning.

  6. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-08-01

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  7. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction.

    PubMed

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-09-07

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  8. Uncoupling of sarcoplasmic reticulum Ca2+-ATPase by N-arachidonoyl dopamine. Members of the endocannabinoid family as thermogenic drugs

    PubMed Central

    Mahmmoud, YA; Gaster, M

    2012-01-01

    BACKGROUND AND PURPOSE The sarcoplasmic reticulum Ca2+-ATPase (SERCA) plays a role in thermogenesis. The exogenous compound capsaicin increased SERCA-mediated ATP hydrolysis not coupled to Ca2+ transport. Here, we have sought to identify endogenous compounds that may function as SERCA uncoupling agents. EXPERIMENTAL APPROACH Using isolated SR vesicles from rabbits, we have screened for endogenous compounds that uncouple SERCA. We have also studied their ability to deplete cytoplasmic ATP from human skeletal muscle cells in culture. KEY RESULTS Studies on SR vesicles showed that the endogenous lipid metabolite N-arachidonoyl dopamine (NADA) was a potent stimulator of SERCA uncoupling. NADA stabilized an E1-like pump conformation that had a lower dephosphorylation rate, low affinity for Ca2+ at the luminal sites and a specific proteinase K cleavage pattern involving protection of the C-terminal p83C fragment from further cleavage. Moreover, we found a significantly decreased cytoplasmic ATP levels following treatment of skeletal muscle cells with 100 nM NADA. This effect was dependent on the presence of glucose and abolished by pretreatment with the specific SERCA inhibitor thapsigargin, regardless of the presence of glucose. CONCLUSIONS AND IMPLICATIONS NADA is an endogenous molecule that may function as SERCA uncoupling agent in vivo. Members of the endocannabinoid family exert concerted actions on several Ca2+-handling proteins. Uncoupling of SERCA by exogenous compounds could be a novel post-mitochondrial strategy for reduction of cellular ATP levels. In addition, signalling networks leading to SERCA uncoupling can be explored to study the importance of this ion pump in pathophysiological conditions related to metabolism. PMID:22335600

  9. Pig has no uncoupling protein 1.

    PubMed

    Hou, Lianjie; Shi, Jia; Cao, Lingbo; Xu, Guli; Hu, Chingyuan; Wang, Chong

    2017-06-10

    Brown adipose tissue (BAT) is critical for mammal's survival in the cold environment. Uncoupling protein 1 (UCP1) is responsible for the non-shivering thermogenesis in the BAT. Pig is important economically as a meat-producing livestock. However, whether BAT or more precisely UCP1 protein exists in pig remains a controversy. The objective of this study was to ascertain whether pig has UCP1 protein. In this study, we used rapid amplification of cDNA ends (RACE) technique to obtain the UCP1 mRNA 3' end sequence, confirmed only exons 1 and 2 of the UCP1 gene are transcribed in the pig. Then we cloned the pig UCP1 gene exons 1 and 2, and expressed the UCP1 protein from the truncated pig gene using E. coli BL21. We used the expressed pig UCP1 protein as antigen for antibody production in a rabbit. We could not detect any UCP1 protein expression in different pig adipose tissues by the specific pig UCP1 antibody, while our antibody can detect the cloned pig UCP1 as well as the mice adipose UCP1 protein. This result shows although exons 1 and 2 of the pig UCP1 gene were transcribed but not translated in the pig adipose tissue. Furthermore, we detected no uncoupled respiration in the isolated pig adipocytes. Thus, these results unequivocally demonstrate that pig has no UCP1 protein. Our results have resolved the controversy of whether pigs have the brown adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Examination of the requirement for ucp-4, a putative homolog of mammalian uncoupling proteins, for stress tolerance and longevity in C. elegans.

    PubMed

    Iser, Wendy B; Kim, Daemyung; Bachman, Eric; Wolkow, Catherine

    2005-10-01

    Reactive oxygen species (ROS) are generated by mitochondrial respiration and can react with and damage cellular components. According to the free radical theory of aging, oxidative damage from mitochondrial ROS is a major cause of cellular decline during aging. Mitochondrial uncoupling proteins (UCPs) uncouple ATP production from electron transport and can be stimulated by free radicals, suggesting UCPs may perform a cytoprotective function. The nematode, Caenorhabditis elegans, contains one UCP-like protein, encoded by the ucp-4 gene. We have investigated the genetic requirement for ucp-4 in normal aging and stress resistance. Consistent with the hypothesis that ucp-4 encodes a putative uncoupling protein, animals lacking ucp-4 function contained elevated ATP levels. However, the absence of ucp-4 function did not affect adult lifespan or survival in the presence of thermal or oxidative stress. Together, these results demonstrate that ucp-4 is a negative regulator of ATP production in C. elegans, but is not required for normal lifespan.

  11. Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells.

    PubMed

    Corby, M J; Stoneman, Michael R; Biener, Gabriel; Paprocki, Joel D; Kolli, Rajesh; Raicu, Valerica; Frick, David N

    2017-07-07

    Human cells detect RNA viruses through a set of helicases called RIG-I-like receptors (RLRs) that initiate the interferon response via a mitochondrial signaling complex. Many RNA viruses also encode helicases, which are sometimes covalently linked to proteases that cleave signaling proteins. One unresolved question is how RLRs interact with each other and with viral proteins in cells. This study examined the interactions among the hepatitis C virus (HCV) helicase and RLR helicases in live cells with quantitative microspectroscopic imaging (Q-MSI), a technique that determines FRET efficiency and subcellular donor and acceptor concentrations. HEK293T cells were transfected with various vector combinations to express cyan fluorescent protein (CFP) or YFP fused to either biologically active HCV helicase or one RLR (i.e. RIG-I, MDA5, or LGP2), expressed in the presence or absence of polyinosinic-polycytidylic acid (poly(I:C)), which elicits RLR accumulation at mitochondria. Q-MSI confirmed previously reported RLR interactions and revealed an interaction between HCV helicase and LGP2. Mitochondria in CFP-RIG-I:YFP-RIG-I cells, CFP-MDA5:YFP-MDA5 cells, and CFP-MDA5:YFP-LGP2 cells had higher FRET efficiencies in the presence of poly(I:C), indicating that RNA causes these proteins to accumulate at mitochondria in higher-order complexes than those formed in the absence of poly(I:C). However, mitochondria in CFP-LGP2:YFP-LGP2 cells had lower FRET signal in the presence of poly(I:C), suggesting that LGP2 oligomers disperse so that LGP2 can bind MDA5. Data support a new model where an LGP2-MDA5 oligomer shuttles NS3 to the mitochondria to block antiviral signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Wang, Pu; Chou, Kuo-Chen

    2013-01-01

    Involved in many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, G-protein-coupled receptors (GPCRs) are among the most frequent targets of therapeutic drugs. It is time-consuming and expensive to determine whether a drug and a GPCR are to interact with each other in a cellular network purely by means of experimental techniques. Although some computational methods were developed in this regard based on the knowledge of the 3D (dimensional) structure of protein, unfortunately their usage is quite limited because the 3D structures for most GPCRs are still unknown. To overcome the situation, a sequence-based classifier, called "iGPCR-drug", was developed to predict the interactions between GPCRs and drugs in cellular networking. In the predictor, the drug compound is formulated by a 2D (dimensional) fingerprint via a 256D vector, GPCR by the PseAAC (pseudo amino acid composition) generated with the grey model theory, and the prediction engine is operated by the fuzzy K-nearest neighbour algorithm. Moreover, a user-friendly web-server for iGPCR-drug was established at http://www.jci-bioinfo.cn/iGPCR-Drug/. For the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated math equations presented in this paper just for its integrity. The overall success rate achieved by iGPCR-drug via the jackknife test was 85.5%, which is remarkably higher than the rate by the existing peer method developed in 2010 although no web server was ever established for it. It is anticipated that iGPCR-Drug may become a useful high throughput tool for both basic research and drug development, and that the approach presented here can also be extended to study other drug - target interaction networks.

  13. miR-122-SOCS1-JAK2 axis regulates allergic inflammation and allergic inflammation-promoted cellular interactions

    PubMed Central

    Kim, Hanearl; Kim, Hyuna; Byun, Jaehwan; Park, Yeongseo; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2017-01-01

    The regulatory role of suppressor of cytokine signaling 1 (SOCS1) in inflammation has been reported. However, its role in allergic inflammation has not been previously reported. SOCS1 mediated in vitro and in vivo allergic inflammation. Histone deacetylase-3 (HDAC3), a mediator of allergic inflammation, interacted with SOCS1, and miR-384 inhibitor, a positive regulator of HDAC3, induced features of allergic inflammation in an SOCS1-dependent manner. miRNA array analysis showed that the expression of miR-122 was decreased by antigen-stimulation. TargetScan analysis predicted the binding of miR-122 to the 3′-UTR of SOCS1. miR-122 inhibitor induced in vitro and in vivo allergic features in SOCS1-dependent manner. SOCS1 was necessary for allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. SOCS1 and miR-122 regulated cellular interactions involving cancer cells, mast cells and macrophages during allergic inflammation. SOCS1 mimetic peptide, D-T-H-F-R-T-F-R-S-H-S-D-Y-R-R-I, inhibited in vitro and in vivo allergic inflammation, allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells, and cellular interactions during allergic inflammation. Janus kinase 2 (JAK2) exhibited binding to SOCS1 mimetic peptide and mediated allergic inflammation. Transforming growth factor- Δ1 (TGF-Δ1) was decreased during allergic inflammation and showed an anti-allergic effect. SOCS1 and JAK2 regulated the production of anti-allergic TGF-Δ1. Taken together, our results show that miR-122-SOCS1 feedback loop can be employed as a target for the development of anti-allergic and anti-cancer drugs. PMID:28968979

  14. Biophysical characterization of quaternary pyridinium functionalized polynorbornenes for DNA complexation and their cellular interactions.

    PubMed

    Guler Gokce, Zeliha; Zuhal Birol, Semra; Eren, Tarık; Ercelen Ceylan, Sebnem

    2017-04-01

    Cationic polymers with hydrophobic side chains have gained great interest as DNA carriers since they form a compact complex with negatively charged DNA phosphate groups and interact with the cell membrane. Amphiphilic polyoxanorbornenes with different quaternary alkyl pyridinium side chains with ethyl-p(OPy2) and hexyl units-p(OPy6) bearing 10 kDa MWT were synthesized by living Ring-Opening Metathesis Polymerization method. The physicochemical characteristics: critical micellar concentration, size distribution, surface charge, and condensation of polymer/DNA complex were investigated. Morphology of complexes was monitored by Atomic force microscopy. Cytotoxicity and interaction of these complexes with model lipid vesicles mimicking the cell membrane were examined. These polymers were enabled to form small sized complexes of DNA, which interact with model membrane vesicles. It was found that the nature of hydrophobicity of the homopolymers significantly impacts rates of DNA complexation and the surface charge of the resulting complexes. These results highlight the prospect of the further examinations of these polymers as gene carriers. © 2016 Wiley Periodicals, Inc.

  15. Experimental and computational analysis of cellular interactions with nylon-3-bearing substrates.

    PubMed

    Liu, Runhui; Vang, Kang Z; Kreeger, Pamela K; Gellman, Samuel H; Masters, Kristyn S

    2012-10-01

    The ability to design biomaterials that interact with biological environments in a predictable manner necessitates an improved understanding of how surface chemistry influences events such as protein adsorption and cell adhesion. In this work, we examined mechanisms governing the interactions between 3T3 fibroblasts and nylon-3 polymers, which have a protein-like polyamide backbone and are highly amenable to tuning of chemical and physical properties. Protein adsorption and cell adhesion to a library of nylon-3 polymers were characterized and analyzed by partial least squares regression. This analysis revealed that specific chemical features of the nylon-3 polymers correlated with the extent of protein adsorption, which, in turn, correlated with cell adhesion in a serum-containing environment. In contrast, in a serum-free environment, cell adhesion could be predicted solely from chemical properties. Enzymatic treatments of 3T3 cells before plating indicated that proteins bound to the cell surface mediated cell-nylon-3 polymer interactions under serum-free conditions, with additional analysis suggesting that cell-associated fibronectin played a dominant role in adhesion in the absence of serum. The mechanistic insight gained from these studies can be used to inform the design of new polymer structures in addition to providing a basis for continued development of nylon-3 copolymers for tissue engineering applications. Copyright © 2012 Wiley Periodicals, Inc.

  16. Experimental and Computational Analysis of Cellular Interactions with Nylon-3-Bearing Substrates

    PubMed Central

    Liu, Runhui; Vang, Kang Z.; Kreeger, Pamela K.; Gellman, Samuel H.; Masters, Kristyn S.

    2012-01-01

    The ability to design biomaterials that interact with biological environments in a predictable manner necessitates an improved understanding of how surface chemistry influences events such as protein adsorption and cell adhesion. In this work, we examined mechanisms governing the interactions between 3T3 fibroblasts and nylon-3 polymers, which have a protein-like polyamide backbone and are highly amenable to tuning of chemical and physical properties. Protein adsorption and cell adhesion to a library of nylon-3 polymers were characterized and analyzed by partial least squares regression. This analysis revealed that specific chemical features of the nylon-3 polymers correlated with the extent of protein adsorption, which, in turn, correlated with cell adhesion in a serum-containing environment. In contrast, in a serum-free environment, cell adhesion could be predicted solely from chemical properties. Enzymatic treatments of 3T3 cells prior to plating indicated that proteins bound to the cell surface mediated cell-nylon-3 polymer interactions under serum-free conditions, with additional analysis suggesting that cell-associated fibronectin played a dominant role in adhesion in the absence of serum. The mechanistic insight gained from these studies can be used to inform the design of new polymer structures in addition to providing a basis for continued development of nylon-3 copolymers for tissue engineering applications. PMID:22623026

  17. Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dwaipayan; Leo, Bey Fen; Royce, Steven G.; Porter, Alexandra E.; Ryan, Mary P.; Schwander, Stephan; Chung, Kian Fan; Tetley, Teresa D.; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-10-01

    Engineered nanomaterials (ENMs) possess unique characteristics affecting their interactions in biological media and biological tissues. Systematic investigation of the effects of particle properties on biological toxicity requires a comprehensive modeling framework which can be used to predict ENM particokinetics in a variety of media. The Agglomeration-diffusion-sedimentation-reaction model (ADSRM) described here is stochastic, using a direct simulation Monte Carlo method to study the evolution of nanoparticles in biological media, as they interact with each other and with the media over time. Nanoparticle diffusion, gravitational settling, agglomeration, and dissolution are treated in a mechanistic manner with focus on silver ENMs (AgNPs). The ADSRM model utilizes particle properties such as size, density, zeta potential, and coating material, along with medium properties like density, viscosity, ionic strength, and pH, to model evolving patterns in a population of ENMs along with their interaction with associated ions and molecules. The model predictions for agglomeration and dissolution are compared with in vitro measurements for various types of ENMs, coating materials, and incubation media, and are found to be overall consistent with measurements. The model has been implemented for an in vitro case in cell culture systems to inform in vitro dosimetry for toxicology studies, and can be directly extended to other biological systems, including in vivo tissue sub-systems by suitably modifying system geometry.

  18. Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver

    PubMed Central

    Mukherjee, Dwaipayan; Leo, Bey Fen; Royce, Steven G.; Porter, Alexandra E.; Ryan, Mary P.; Schwander, Stephan; Chung, Kian Fan; Tetley, Teresa D.; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-01-01

    Engineered nanomaterials (ENMs) possess unique characteristics affecting their interactions in biological media and biological tissues. Systematic investigation of the effects of particle properties on biological toxicity requires a comprehensive modeling framework which can be used to predict ENM particokinetics in a variety of media. The Agglomeration-diffusion-sedimentation-reaction model (ADSRM) described here is stochastic, using a direct simulation Monte Carlo method to study the evolution of nanoparticles in biological media, as they interact with each other and with the media over time. Nanoparticle diffusion, gravitational settling, agglomeration, and dissolution are treated in a mechanistic manner with focus on silver ENMs (AgNPs). The ADSRM model utilizes particle properties such as size, density, zeta potential, and coating material, along with medium properties like density, viscosity, ionic strength, and pH, to model evolving patterns in a population of ENMs along with their interaction with associated ions and molecules. The model predictions for agglomeration and dissolution are compared with in vitro measurements for various types of ENMs, coating materials, and incubation media, and are found to be overall consistent with measurements. The model has been implemented for an in vitro case in cell culture systems to inform in vitro dosimetry for toxicology studies, and can be directly extended to other biological systems, including in vivo tissue subsystems by suitably modifying system geometry. PMID:25598696

  19. Cooperative interactions of LPPR family members in membrane localization and alteration of cellular morphology

    PubMed Central

    Yu, Panpan; Agbaegbu, Chinyere; Malide, Daniela A.; Wu, Xufeng; Katagiri, Yasuhiro; Hammer, John A.; Geller, Herbert M.

    2015-01-01

    ABSTRACT The lipid phosphate phosphatase-related proteins (LPPRs), also known as plasticity-related genes (PRGs), are classified as a new brain-enriched subclass of the lipid phosphate phosphatase (LPP) superfamily. They induce membrane protrusions, neurite outgrowth or dendritic spine formation in cell lines and primary neurons. However, the exact roles of LPPRs and the mechanisms underlying their effects are not certain. Here, we present the results of a large-scale proteome analysis to determine LPPR1-interacting proteins using co-immunoprecipitation coupled to mass spectrometry. We identified putative LPPR1-binding proteins involved in various biological processes. Most interestingly, we identified the interaction of LPPR1 with its family member LPPR3, LPPR4 and LPPR5. Their interactions were characterized by co-immunoprecipitation and colocalization analysis using confocal and super-resolution microscopy. Moreover, co-expressing two LPPR members mutually elevated their protein levels, facilitated their plasma membrane localization and resulted in an increased induction of membrane protrusions as well as the phosphorylation of S6 ribosomal protein. Taken together, we revealed a new functional cooperation between LPPR family members and discovered for the first time that LPPRs likely exert their function through forming complex with its family members. PMID:26183180

  20. Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver.

    PubMed

    Mukherjee, Dwaipayan; Leo, Bey Fen; Royce, Steven G; Porter, Alexandra E; Ryan, Mary P; Schwander, Stephan; Chung, Kian Fan; Tetley, Teresa D; Zhang, Junfeng; Georgopoulos, Panos G

    2014-10-01

    Engineered nanomaterials (ENMs) possess unique characteristics affecting their interactions in biological media and biological tissues. Systematic investigation of the effects of particle properties on biological toxicity requires a comprehensive modeling framework which can be used to predict ENM particokinetics in a variety of media. The Agglomeration-diffusion-sedimentation-reaction model (ADSRM) described here is stochastic, using a direct simulation Monte Carlo method to study the evolution of nanoparticles in biological media, as they interact with each other and with the media over time. Nanoparticle diffusion, gravitational settling, agglomeration, and dissolution are treated in a mechanistic manner with focus on silver ENMs (AgNPs). The ADSRM model utilizes particle properties such as size, density, zeta potential, and coating material, along with medium properties like density, viscosity, ionic strength, and pH, to model evolving patterns in a population of ENMs along with their interaction with associated ions and molecules. The model predictions for agglomeration and dissolution are compared with in vitro measurements for various types of ENMs, coating materials, and incubation media, and are found to be overall consistent with measurements. The model has been implemented for an in vitro case in cell culture systems to inform in vitro dosimetry for toxicology studies, and can be directly extended to other biological systems, including in vivo tissue subsystems by suitably modifying system geometry.

  1. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure.

    PubMed

    Bourgeois, Jeffrey S; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE.

  2. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure

    PubMed Central

    Bourgeois, Jeffrey S.; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE. PMID:27649082

  3. Molecular and Cellular Interactions between Mother and Fetus. Pregnancy as a Rejuvenating Factor.

    PubMed

    Popkov, V A; Silachev, D N; Jankauskas, S S; Zorova, L D; Pevzner, I B; Babenko, V A; Plotnikov, E Y; Zorov, D B

    2016-12-01

    Aging is associated with a decline of various body functions, including ability to regenerate. Over recent decades, it has been demonstrated that some of these changes could be reversed in response to factors originating from a young organism, for example, fetal stem cells or "young blood" in models of heterochronic parabiosis. Pregnancy might be considered as parabiotic model of the interaction between two organisms of different age. In this work, we analyzed and summarized data on the effects of pregnancy on the maternal organism that confirm the hypothesis that pregnancy rejuvenates the mother's organism or slows its aging.

  4. Identification of host cellular proteins that interact with the M protein of a highly pathogenic porcine reproductive and respiratory syndrome virus vaccine strain.

    PubMed

    Wang, Qian; Li, Yanwei; Dong, Hong; Wang, Li; Peng, Jinmei; An, Tongqing; Yang, Xufu; Tian, Zhijun; Cai, Xuehui

    2017-02-22

    The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) continues to pose one of the greatest threats to the swine industry. M protein is the most conserved and important structural protein of PRRSV. However, information about the host cellular proteins that interact with M protein remains limited. Host cellular proteins that interact with the M protein of HP-PRRSV were immunoprecipitated from MARC-145 cells infected with PRRSV HuN4-F112 using the M monoclonal antibody (mAb). The differentially expressed proteins were identified by LC-MS/MS. The screened proteins were used for bioinformatics analysis including Gene Ontology, the interaction network, and the enriched KEGG pathways. Some interested cellular proteins were validated to interact with M protein by CO-IP. The PRRSV HuN4-F112 infection group had 10 bands compared with the control group. The bands included 219 non-redundant cellular proteins that interact with M protein, which were identified by LC-MS/MS with high confidence. The gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway bioinformatic analyses indicated that the identified proteins could be assigned to several different subcellular locations and functional classes. Functional analysis of the interactome profile highlighted cellular pathways associated with protein translation, infectious disease, and signal transduction. Two interested cellular proteins-nuclear factor of activated T cells 45 kDa (NF45) and proliferating cell nuclear antigen (PCNA)-that could interact with M protein were validated by Co-IP and confocal analyses. The interactome data between PRRSV M protein and cellular proteins were identified and contribute to the understanding of the roles of M protein in the replication and pathogenesis of PRRSV. The interactome of M protein will aid studies of virus/host interactions and provide means to decrease the threat of PRRSV to the swine industry in the future.

  5. Photoaffinity labeling of uncoupler binding sites on mitochondrial membrane.

    PubMed

    Kurup, C K; Sanadi, D R

    1977-02-01

    3H 2-azido-4-nitrophenol, a photoactive uncoupler, has been synthesized, and its uncoupling action on oxidative phosphorylation and its binding to the mitochondrial membrane have been studied. The uncoupler bound covalently to the mitochondrial membrane on photoirradiation was 3-4 times that bound reversibly in the absence of light. When irradiation was carried out in the presence of serum albumin, covalent binding was significantly depressed. The pattern of loss of ATP-Pi exchange activity with increasing amounts of the uncoupler suggests that serum albumin prevents the binding of the uncoupler to the functional sites as well. Polyacrylamide gel electrophoresis of photoaffinity labeled submitochondrial particles in the presence of sodium dodecyl sulfate revealed that a 9000 dalton peptide bound high levels of uncoupler. Other proteins in the molecular weight range of 20,000-40,000 and 55,000 were also labeled. Photolysis in the presence of serum albumin or ATP decreased the covalent binding of the uncoupler to all the proteins, but particularly to the 20,000 dalton component. Soluble ATPase and the mitochondrial proteolipid purified from labeled mitochondria showed the presence of label.

  6. iNR-Drug: Predicting the Interaction of Drugs with Nuclear Receptors in Cellular Networking

    PubMed Central

    Fan, Yue-Nong; Xiao, Xuan; Min, Jian-Liang; Chou, Kuo-Chen

    2014-01-01

    Nuclear receptors (NRs) are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called “iNR-Drug” was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional) vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine) algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well. PMID:24651462

  7. iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking.

    PubMed

    Fan, Yue-Nong; Xiao, Xuan; Min, Jian-Liang; Chou, Kuo-Chen

    2014-03-19

    Nuclear receptors (NRs) are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called "iNR-Drug" was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional) vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine) algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well.

  8. New cellular tools reveal complex epithelial–mesenchymal interactions in hepatocarcinogenesis

    PubMed Central

    Sagmeister, S; Eisenbauer, M; Pirker, C; Mohr, T; Holzmann, K; Zwickl, H; Bichler, C; Kandioler, D; Wrba, F; Mikulits, W; Gerner, C; Shehata, M; Majdic, O; Streubel, B; Berger, W; Micksche, M; Zatloukal, K; Schulte-Hermann, R; Grasl-Kraupp, B

    2008-01-01

    To enable detailed analyses of cell interactions in tumour development, new epithelial and mesenchymal cell lines were established from human hepatocellular carcinoma by spontaneous outgrowth in culture. We obtained several hepatocarcinoma (HCC)-, B-lymphoblastoid (BLC)-, and myofibroblastoid (MF)-lines from seven cases. In-depth characterisation included cell kinetics, genotype, tumourigenicity, expression of cell-type specific markers, and proteome patterns. Many functions of the cells of origin were found to be preserved. We studied the impact of the mesenchymal lines on hepatocarcinogenesis by in vitro assays. BLC- and MF-supernatants strongly increased the DNA replication of premalignant hepatocytes. The stimulation by MF-lines was mainly attributed to HGF secretion. In HCC-cells, MF-supernatant had only minor effects on cell growth but enhanced migration. MF-lines also stimulated neoangiogenesis through vEGF release. BLC-supernatant dramatically induced death of HCC-cells, which could be largely abrogated by preincubating the supernatant with TNFβ-antiserum. Thus, the new cell lines reveal stage-specific stimulatory and inhibitory interactions between mesenchymal and epithelial tumour cells. In conclusion, the new cell lines provide unique tools to analyse essential components of the complex interplay between the microenvironment and the developing liver cancer, and to identify factors affecting proliferation, migration and death of tumour cells, neoangiogenesis, and outgrowth of additional malignancy. PMID:18594539

  9. Structure and Dynamics of Drug Carriers and Their Interaction with Cellular Receptors: Focus on Serum Transferrin#

    PubMed Central

    Luck, Ashley N.; Mason, Anne B.

    2012-01-01

    Highly proliferative cells have a dramatically increased need for iron which results in the expression of an increased number of transferrin receptors (TFR). This insight makes the transferrin receptor on these cells an excellent candidate for targeted therapeutics. In this regard, it is critical to understand at a molecular level exactly how the TFR interacts with its ligand, hTF. Understanding of the hTF/TFR pathway could, in theory, maximize the use of this system for development of more effective small molecules or toxin-conjugates to specifically target cancer cells. Many strategies have been attempted with the objective of utilizing the hTF/TFR system to deliver drugs; these include conjugation of a toxin or drug to hTF or direct targeting of the TFR by antibodies. To date, in spite of all of the effort, there is a conspicuous absence of any successful candidate drugs reaching the clinic. We suggest that a lack of quantitative data to determine the basic biochemical properties of the drug carrier and the effects of drug-conjugation on the hTF-TFR interaction may have contributed to the failure to realize the full potential of this system. This review provides some guidelines for developing a more quantitative approach for evaluation of current and future hTF-drug conjugates. PMID:23183585

  10. Structure and dynamics of drug carriers and their interaction with cellular receptors: focus on serum transferrin.

    PubMed

    Luck, Ashley N; Mason, Anne B

    2013-07-01

    Highly proliferative cells have a dramatically increased need for iron which results in the expression of an increased number of transferrin receptors (TFR). This insight makes the transferrin receptor on these cells an excellent candidate for targeted therapeutics. In this regard, it is critical to understand at a molecular level exactly how the TFR interacts with its ligand, hTF. Understanding of the hTF/TFR pathway could, in theory, maximize the use of this system for development of more effective small molecules or toxin-conjugates to specifically target cancer cells. Many strategies have been attempted with the objective of utilizing the hTF/TFR system to deliver drugs; these include conjugation of a toxin or drug to hTF or direct targeting of the TFR by antibodies. To date, in spite of all of the effort, there is a conspicuous absence of any successful candidate drugs reaching the clinic. We suggest that a lack of quantitative data to determine the basic biochemical properties of the drug carrier and the effects of drug-conjugation on the hTF-TFR interaction may have contributed to the failure to realize the full potential of this system. This review provides some guidelines for developing a more quantitative approach for evaluation of current and future hTF-drug conjugates. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A set of descriptors for identifying the protein-drug interaction in cellular networking.

    PubMed

    Nanni, Loris; Lumini, Alessandra; Brahnam, Sheryl

    2014-10-21

    The study of protein-drug interactions is a significant issue for drug development. Unfortunately, it is both expensive and time-consuming to perform physical experiments to determine whether a drug and a protein are interacting with each other. Some previous attempts to design an automated system to perform this task were based on the knowledge of the 3D structure of a protein, which is not always available in practice. With the availability of protein sequences generated in the post-genomic age, however, a sequence-based solution to deal with this problem is necessary. Following other works in this area, we propose a new machine learning system based on several protein descriptors extracted from several protein representations, such as, variants of the position specific scoring matrix (PSSM) of proteins, the amino-acid sequence, and a matrix representation of a protein. The prediction engine is operated by an ensemble of support vector machines (SVMs), with each SVM trained on a specific descriptor and the results of each SVM combined by sum rule. The overall success rate achieved by our final ensemble is notably higher than previous results obtained on the same datasets using the same testing protocols reported in the literature. MATLAB code and the datasets used in our experiments are freely available for future comparison at http://www.dei.unipd.it/node/2357.

  12. Interactions between ingested kaolinite and the intestinal mucosa in rat: proteomic and cellular evidences.

    PubMed

    Reichardt, François; Habold, Caroline; Chaumande, Bertrand; Ackermann, Alain; Ehret-Sabatier, Laurence; Le Maho, Yvon; Angel, Fabielle; Liewig, Nicole; Lignot, Jean-Hervé

    2009-02-01

    Although some of the effects of clay ingestion by humans and animals, such as gastrointestinal wellness and the increase in food efficiency are well known, the underlying mechanisms are not yet fully understood. Therefore, the interactions between the intestinal mucosa and kaolinite particles and their effects on mucosal morphology were observed using light microscopy (LM), transmission electron microscopy (TEM), conventional (CSEM) and environmental (ESEM) scanning electron microscopy combined with an EDX micro-analysis system. Kaolinite consumption, given with free access to rats, varied considerably from one animal to the other but was regular through time for each individual. Some kaolinite particles appeared chemically dissociated in the lumen and within the mucus barrier. Aluminium (Al) originating from ingested clay and present in the mucus layer could directly cross the intestinal mucosa. A significant increase in the thickness of the villi with large vacuoles at the base of the mucosal cells and a decrease in the length of enterocyte microvilli characterized complemented animals. The proteomic analyses of the intestinal mucosa of complemented rats also revealed several modifications in the expression level of cytoskeleton proteins. In summary, kaolinite particles ingested as food complement interact with the intestinal mucosa and modify nutrient absorption. However, these data, together with the potential neurotoxicity of Al, need further investigation.

  13. Use of Human Neurons Derived via Cellular Reprogramming Methods to Study Host-Parasite Interactions of Toxoplasma gondii in Neurons.

    PubMed

    Halonen, Sandra K

    2017-09-23

    Toxoplasma gondii is an intracellular protozoan parasite, with approximately one-third of the worlds' population chronically infected. In chronically infected individuals, the parasite resides in tissue cysts in neurons in the brain. The chronic infection in immunocompetant individuals has traditionally been considered to be asymptomatic, but increasing evidence indicates that chronic infection is associated with diverse neurological disorders such as schizophrenia, cryptogenic epilepsy, and Parkinson's Disease. The mechanisms by which the parasite exerts affects on behavior and other neuronal functions are not understood. Human neurons derived from cellular reprogramming methods offer the opportunity to develop better human neuronal models to study T. gondii in neurons. Results from two studies using human neurons derived via cellular reprogramming methods indicate these human neuronal models provide better in vitro models to study the effects of T. gondii on neurons and neurological functions. In this review, an overview of the current neural reprogramming methods will be given, followed by a summary of the studies using human induced pluripotent stem cell (hiPSC)-derived neurons and induced neurons (iNs) to study T. gondii in neurons. The potential of these neural reprogramming methods for further study of the host-parasite interactions of T. gondii in neurons will be discussed.

  14. Analyses of Dynein Heavy Chain Mutations Reveal Complex Interactions Between Dynein Motor Domains and Cellular Dynein Functions

    PubMed Central

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Razafsky, David S.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2012-01-01

    Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies. PMID:22649085

  15. Cellular automata (CA) simulation of the interaction of vehicle flows and pedestrian crossings on urban low-grade uncontrolled roads

    NASA Astrophysics Data System (ADS)

    Chen, Qun; Wang, Yan

    2015-08-01

    This paper discusses the interaction of vehicle flows and pedestrian crossings on uncontrolled low-grade roads or branch roads without separating barriers in cities where pedestrians may cross randomly from any location on both sides of the road. The rules governing pedestrian street crossings are analyzed, and a cellular automata (CA) model to simulate the interaction of vehicle flows and pedestrian crossings is proposed. The influence of the interaction of vehicle flows and pedestrian crossings on the volume and travel time of the vehicle flow and the average wait time for pedestrians to cross is investigated through simulations. The main results of the simulation are as follows: (1) The vehicle flow volume decreases because of interruption from pedestrian crossings, but a small number of pedestrian crossings do not cause a significant delay to vehicles. (2) If there are many pedestrian crossings, slow vehicles will have little chance to accelerate, causing travel time to increase and the vehicle flow volume to decrease. (3) The average wait time for pedestrians to cross generally decreases with a decrease in vehicle flow volume and also decreases with an increase in the number of pedestrian crossings. (4) Temporal and spatial characteristics of vehicle flows and pedestrian flows and some interesting phenomena such as "crossing belt" and "vehicle belt" are found through the simulations.

  16. KIR/HLA interactions negatively affect rituximab- but not GA101 (obinutuzumab)-induced antibody-dependent cellular cytotoxicity.

    PubMed

    Terszowski, Grzegorz; Klein, Christian; Stern, Martin

    2014-06-15

    Ab-dependent cellular cytotoxicity (ADCC) mediated by NK cells is regulated by inhibitory killer cell Ig-like receptors (KIRs), which interact with target cell HLA class I. We analyzed how KIR/HLA interactions influence ADCC induced by rituximab and by GA101, a novel type II CD20 Ab glycoengineered for increased FcgRIII binding and ADCC capacity. We found that KIR/HLA interactions strongly and selectively inhibit rituximab-induced in vitro ADCC toward target cells expressing cognate HLA KIR ligands. NK cells of donors carrying all three ligands to inhibitory KIR showed weak activation and target cell depletion capacity when incubated with rituximab and KIR-ligand matched target B cells. In contrast, NK cells from individuals missing one or more KIR ligands activated more strongly and depleted KIR ligand-matched target B cells more efficiently in the presence of rituximab. NK cells expressing a KIR for which the ligand was absent were the main effectors of ADCC in these donors. Notably, the influence of KIR/HLA interactions on NK cell activation was synergistic with the effect of the V158F FCGR3A single nucleotide polymorphism. In contrast, GA101 induced activation of NK cells irrespective of inhibitory KIR expression, and efficiency of target cell depletion was not negatively affected by KIR/HLA interactions. These data show that modification of the Fc fragment to enhance ADCC can be an effective strategy to augment the efficacy of therapeutic mAbs by recruiting NK cells irrespective of their inhibitory KIR expression.

  17. Cellular Barriers after Extravasation: Leukocyte Interactions with Polarized Epithelia in the Inflamed Tissue

    PubMed Central

    Reglero-Real, Natalia; García-Weber, Diego; Millán, Jaime

    2016-01-01

    During the inflammatory response, immune cells egress from the circulation and follow a chemotactic and haptotactic gradient within the tissue, interacting with matrix components in the stroma and with parenchymal cells, which guide them towards the sites of inflammation. Polarized epithelial cells compartmentalize tissue cavities and are often exposed to inflammatory challenges such as toxics or infections in non-lymphoid tissues. Apicobasal polarity is critical to the specialized functions of these epithelia. Indeed, a common feature of epithelial dysfunction is the loss of polarity. Here we review evidence showing that apicobasal polarity regulates the inflammatory response: various polarized epithelia asymmetrically secrete chemotactic mediators and polarize adhesion receptors that dictate the route of leukocyte migration within the parenchyma. We also discuss recent findings showing that the loss of apicobasal polarity increases leukocyte adhesion to epithelial cells and the consequences that this could have for the inflammatory response towards damaged, infected or transformed epithelial cells. PMID:26941485

  18. Interactions between Cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) Lead to Alterations in Toluene Disposition and P450 Uncoupling

    PubMed Central

    Reed, James R.; Cawley, George F.; Backes, Wayne L.

    2013-01-01

    The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450•P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450•P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450•P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771

  19. Multi-cellular interactions sustain long-term contractility of human pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Burridge, Paul W; Metzler, Scott A; Nakayama, Karina H; Abilez, Oscar J; Simmons, Chelsey S; Bruce, Marc A; Matsuura, Yuka; Kim, Paul; Wu, Joseph C; Butte, Manish; Huang, Ngan F; Yang, Phillip C

    2014-01-01

    Therapeutic delivery of cardiomyocytes derived from human pluripotent stem cells (hPSC-CMs) represents a novel clinical approach to regenerate the injured myocardium. However, poor survival and contractility of these cells are a significant bottleneck to their clinical use. To better understand the role of cell-cell communication in enhancing the phenotype and contractile properties of hPSC-CMs, we developed a three-dimensional (3D) hydrogel composed of hPSC-CMs, human pluripotent stem cell-derived endothelial cells (hPSC-ECs), and/or human amniotic mesenchymal stem cells (hAMSCs). The objective of this study was to examine the role of multi-cellular interactions among hPSC-ECs and hAMSCs on the survival and long-term contractile phenotype of hPSC-CMs in a 3D hydrogel. Quantification of spontaneous contractility of hPSC-CMs in tri-culture demonstrated a 6-fold increase in the area of contractile motion after 6 weeks with characteristic rhythmic contraction frequency, when compared to hPSC-CMs alone (P < 0.05). This finding was supported by a statistically significant increase in cardiac troponin T protein expression in the tri-culture hydrogel construct at 6 weeks, when compared to hPSC-CMs alone (P < 0.001). The sustained hPSC-CM survival and contractility in tri-culture was associated with a significant upregulation in the gene expression of L-type Ca2+ ion channel, Cav1.2, and the inward-rectifier potassium channel, Kir2.1 (P < 0.05), suggesting a role of ion channels in mediating these processes. These findings demonstrate that multi-cellular interactions modulate hPSC-CM phenotype, function, and survival, and they will have important implications in engineering cardiac tissues for treatment of cardiovascular diseases. PMID:25628783

  20. Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology.

    PubMed

    Liu, Long; Lear, Zoe; Hughes, David J; Wu, Weining; Zhou, En-min; Whitehouse, Adrian; Chen, Hongying; Hiscox, Julian A

    2015-03-23

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to the swine industry and food security worldwide. The nucleocapsid (N) protein is a major structural protein of PRRSV. The primary function of this protein is to encapsidate the viral RNA genome, and it is also thought to participate in the modulation of host cell biology and recruitment of cellular factors to facilitate virus infection. In order to the better understand these latter roles the cellular interactome of PRRSV N protein was defined using label free quantitative proteomics. This identified several cellular factors that could interact with the N protein including poly [ADP-ribose] polymerase 1 (PARP-1), a cellular protein, which can add adenosine diphosphate ribose to a protein. Use of the PARP-1 small molecule inhibitor, 3-AB, in PRRSV infected cells demonstrated that PARP-1 was required and acted as an enhancer factor for virus biology. Serial growth of PRRSV in different concentrations of 3-AB did not yield viruses that were able to grow with wild type kinetics, suggesting that by targeting a cellular protein crucial for virus biology, resistant phenotypes did not emerge. This study provides further evidence that cellular proteins, which are critical for virus biology, can also be targeted to ablate virus growth and provide a high barrier for the emergence of drug resistance.

  1. Identification of Links Between Cellular Pathways by Genetic Interaction Mapping (GIM).

    PubMed

    Malabat, Christophe; Saveanu, Cosmin

    2016-01-01

    The yeast systematic deletion collection offered the basis for a number of different strategies that establish functional links between genes by analyzing the phenotype of cells that combine two different deletions or mutations. A distinguishing feature of the collection is the presence of molecular barcodes at each deleted locus, which can be used to quantify the presence and abundance of cells bearing a given allele in a complex mix. As a result, a large number of mutants can be tested in batch cultures, replacing tedious manipulation of thousands of individual strains with a barcode microarray readout. Barcode-based genetic screens like Genetic Interaction Mapping (GIM) thus require little investment in terms of specific equipment, are fast to perform, and allow precise measurements of double mutant growth rates for both aggravating (synthetic sick) and alleviating (epistatic) effects. We describe here protocols for preparing the pools of haploid double mutant S. cerevisiae cells, testing their composition with barcode microarrays, and analyzing the results to extract useful functional information.

  2. Cellular migration, transition and interaction during regeneration of the sponge Hymeniacidon heliophila.

    PubMed

    Coutinho, Cristiano C; Rosa, Ivone de Andrade; Teixeira, John Douglas de Oliveira; Andrade, Leonardo R; Costa, Manoel Luis; Mermelstein, Claudia

    2017-01-01

    Sponges have a high capacity for regeneration and this process improves biomass production in some species, thus contributing to a solution for the biomass supply problem for biotechnological applications. The aim of this work is to characterize the dynamics of cell behavior during the initial stages of sponge regeneration, using bright-field microscopy, confocal microscopy and SEM. We focused on the first 20 h of regeneration, during which blastema formation and epithelium initialization occur. An innovative sponge organotypic culture of the regenerating internal region is described and investigated by confocal microscopy, cell transplantation and vital staining. Cell-cell interaction and cell density are shown to affect events in morphogenesis such as epithelial/mesenchymal and mesenchymal/epithelial transitions as well as distinct cell movements required for regeneration. Extracellular matrix was organized according to the morphogenetic process observed, with evidence for cell-signaling instructions and remodeling. These data and the method of organotypic culture described here provide support for the development of viable sponge biomass production.

  3. Cellular Interactions and Formation of an Epithelial "Nanocoating-Like Barrier" with Mesoporous Silica Nanoparticles.

    PubMed

    Li, Xuan; Pang, Ka Yan; Ng, Tsz Wing; Leung, Ping Chung; Zhang, Cheng Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-10-27

    Oral mucosa as the front-line barrier in the mouth is constantly exposed to a complex microenvironment with multitudinous microbes. In this study, the interactions of mesoporous silica nanoparticles (MSNs) with primary human gingival epithelial cells were analyzed for up to 72 h, and their diffusion capacity in the reconstructed human gingival epithelia (RHGE) and porcine ear skin models was further assessed at 24 h. It was found that the synthesized fluorescent mesoporous silica nanoparticles (RITC-NPs) with low cytotoxicity could be uptaken, degraded, and/or excreted by the human gingival epithelial cells. Moreover, the RITC-NPs penetrated into the stratum corneum of RHGE in a time-dependent manner, while they were unable to get across the barrier of stratum corneum in the porcine ear skins. Consequently, the penetration and accumulation of RITC-NPs at the corneum layers of epithelia could form a "nanocoating-like barrier". This preliminary proof-of-concept study suggests the feasibility of developing nanoparticle-based antimicrobial and anti-inflammatory agents through topical application for oral healthcare.

  4. Cellular Interactions and Formation of an Epithelial “Nanocoating-Like Barrier” with Mesoporous Silica Nanoparticles

    PubMed Central

    Li, Xuan; Pang, Ka Yan; Ng, Tsz Wing; Leung, Ping Chung; Zhang, Cheng Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-01-01

    Oral mucosa as the front-line barrier in the mouth is constantly exposed to a complex microenvironment with multitudinous microbes. In this study, the interactions of mesoporous silica nanoparticles (MSNs) with primary human gingival epithelial cells were analyzed for up to 72 h, and their diffusion capacity in the reconstructed human gingival epithelia (RHGE) and porcine ear skin models was further assessed at 24 h. It was found that the synthesized fluorescent mesoporous silica nanoparticles (RITC-NPs) with low cytotoxicity could be uptaken, degraded, and/or excreted by the human gingival epithelial cells. Moreover, the RITC-NPs penetrated into the stratum corneum of RHGE in a time-dependent manner, while they were unable to get across the barrier of stratum corneum in the porcine ear skins. Consequently, the penetration and accumulation of RITC-NPs at the corneum layers of epithelia could form a “nanocoating-like barrier”. This preliminary proof-of-concept study suggests the feasibility of developing nanoparticle-based antimicrobial and anti-inflammatory agents through topical application for oral healthcare. PMID:28335320

  5. Delineating cellular interactions between ciliates and fish by co-culturing Tetrahymena thermophila with fish cells.

    PubMed

    Pinheiro, Marcel D O; Bols, Niels C

    2014-10-01

    Although several species of Tetrahymena are often described as histophagous and opportunistic pathogens of fish, little is known about ciliate/fish cell interactions, but one approach for studying these is in vitro with cell lines. In this study, T. thermophila, B1975 (wild type) and NP1 (temperature sensitive mutant for phagocytosis) were cultured on monolayers of 3 fish epithelial cell lines, CHSE-214, RTgill-W1, and ZEB2J, and the rabbit kidney epithelial cell line, RK-13. Generally the ciliates flourished, whereas the monolayers died, being completely consumed over several days. The destruction of monolayers required that the ciliates could make contact with the animal cells through swimming, which appeared to dislodge or loosen cells so that they could be phagocytosed. The ciliates internalized into food vacuoles ZEB2J from cell monolayers as well as from cell suspensions. Phagocytosis was essential for monolayer destruction as monolayers remained intact under conditions where phagocytosis was impeded, such as 37°C for NP1 and 4°C for B1975. Monolayers of fish cells supported the proliferation of ciliates. Thus T. thermophila can 'eat' animal cells or be histophagous in vitro, with the potential to be histophagous in vivo.

  6. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain

    NASA Astrophysics Data System (ADS)

    Salari, V.; Tuszynski, J.; Bokkon, I.; Rahnama, M.; Cifra, M.

    2011-12-01

    The subject of Ultraweak Photon Emission (UPE) by biological systems is very fascinating, and both evidence of its effects and applications are growing rapidly due to improvements in experimental techniques. Since the relevant equipment should be ultrasensitive with high quantum efficiencies and very low noise levels, the subject of UPE is still hotly debated and some of the interpretations need stronger empirical evidence to be accepted at face value. In this paper we first review different types of interactions between light and living systems based on recent publications. We then discuss the feasibility of UPE production in the human brain. The subject of UPE in the brain is still in early stages of development and needs more accurate experimental methods for proper analysis. In this work we also discuss a possible role of mitochondria in the production of UPE in the neurons of the brain and the plausibility of their effects on microtubules (MTs). MTs have been implicated as playing an important role in the signal and information processing taking place in the mammalian (especially human) brain. Finally, we provide a short discussion about the feasible effects of MTs on electric neural activity in the human brain.

  7. High-Aspect Ratio Bio-Metallic Nanocomposites for Cellular Interactions

    NASA Astrophysics Data System (ADS)

    Deodhar, Sneha; Huckaby, Justin; Delahoussaye, Miles; DeCoster, Mark A.

    2014-08-01

    We synthesized high aspect ratio composites with biological and metal components. Scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) revealed linear morphology and smooth surface texture. SEM, TEM and light microscopy showed that composites have scalable dimensions from nano- to micro-, with diameters as low as 60 nm, lengths exceeding 150 pm, and average aspect ratio of 100. The structures are stable, remaining intact for over one year in dried form and in liquid, and did not aggregate, in contrast to metal nanoparticles such as iron and copper. Many metal nanoparticles are toxic to cells, limiting their use for biological applications. The bio-metallic composites characterized here showed lower toxicity compared to their precursor metal nanoparticles in brain tumor cell cultures. Due to these more biocompatible properties, we tested the ability of the composites to interact with cells. Zeta potential analysis indicated that composites carry a net negative charge (-24.3 ± 2.2 mV), while the starting metal nanoparticles measured (43.3 ± 2.4 mV). We labeled the composites with poly-l-lysine fluorescein isothiocyanate (PLL-FITC), which shifted the potential to 3.5 ± 2.9 mV. It was observed by fluorescence microscopy that composites smaller than cells were internalized by some cells and larger composites remained outside. Cells became fluorescent over time due to leakage of PLL-FITC from the composites which lost fluorescence over time. Higher biocompatibility, low aggregation, and ability to control size distribution of the linear composites may make them ideal vehicles to deliver drugs or other materials to cells, and may be used as a scaffolding material for cells.

  8. An inhibitory interaction between viral and cellular proteins underlies the resistance of tomato to nonadapted tobamoviruses.

    PubMed

    Ishibashi, Kazuhiro; Naito, Satoshi; Meshi, Tetsuo; Ishikawa, Masayuki

    2009-05-26

    Any individual virus can infect only a limited range of hosts, and most plant species are "nonhosts" to a given virus; i.e., all members of the species are insusceptible to the virus. In nonhost plants, the factors that control virus resistance are not genetically tractable, and how the host range of a virus is determined remains poorly understood. Tomato (Solanum lycopersicum) is a nonhost species for Tobacco mild green mosaic virus (TMGMV) and Pepper mild mottle virus (PMMoV), members of the genus Tobamovirus. Previously, we identified Tm-1, a resistance gene of tomato to another tobamovirus, Tomato mosaic virus (ToMV), and found that Tm-1 binds to ToMV replication proteins to inhibit RNA replication. Tm-1 is derived from a wild tomato species, S. habrochaites, and ToMV-susceptible tomato cultivars have the allelic gene tm-1. The tm-1 protein can neither bind to ToMV replication proteins nor inhibit ToMV multiplication. Here, we show that transgenic tobacco plants expressing tm-1 exhibit resistance to TMGMV and PMMoV. The tm-1 protein bound to the replication proteins of TMGMV and PMMoV and inhibited their RNA replication in vitro. In one of the tm-1-expressing tobacco plants, a tm-1-insensitive TMGMV mutant emerged. In tomato protoplasts, this mutant TMGMV multiplied as efficiently as ToMV. However, in tomato plants, the mutant TMGMV multiplied with lower efficiency compared to ToMV and caused systemic necrosis. These results suggest that an inhibitory interaction between the replication proteins and tm-1 underlies a multilayered resistance mechanism to TMGMV in tomato.

  9. Cellular interactions of the cytolethal distending toxins from Escherichia coli and Haemophilus ducreyi.

    PubMed

    Gargi, Amandeep; Tamilselvam, Batcha; Powers, Brendan; Prouty, Michael G; Lincecum, Tommie; Eshraghi, Aria; Maldonado-Arocho, Francisco J; Wilson, Brenda A; Bradley, Kenneth A; Blanke, Steven R

    2013-03-15

    The cytolethal distending toxins (CDTs) compose a subclass of intracellularly acting genotoxins produced by many Gram-negative pathogenic bacteria that disrupt the normal progression of the eukaryotic cell cycle. Here, the intoxication mechanisms of CDTs from Escherichia coli (Ec-CDT) and Haemophilus ducreyi (Hd-CDT), which share limited amino acid sequence homology, were directly compared. Ec-CDT and Hd-CDT shared comparable in vitro DNase activities of the CdtB subunits, saturable cell surface binding with comparable affinities, and the requirement for an intact Golgi complex to induce cell cycle arrest. In contrast, disruption of endosome acidification blocked Hd-CDT-mediated cell cycle arrest and toxin transport to the endoplasmic reticulum and nucleus, while having no effects on Ec-CDT. Phosphorylation of the histone protein H2AX, as well as nuclear localization, was inhibited for Hd-CdtB, but not Ec-CdtB, in cells expressing dominant negative Rab7 (T22N), suggesting that Hd-CDT, but not Ec-CDT, is trafficked through late endosomal vesicles. In support of this idea, significantly more Hd-CdtB than Ec-CdtB co-localized with Rab9, which is enriched in late endosomal compartments. Competitive binding studies suggested that Ec-CDT and Hd-CDT bind to discrete cell surface determinants. These results suggest that Ec-CDT and Hd-CDT are transported within cells by distinct pathways, possibly mediated by their interaction with different receptors at the cell surface.

  10. Cellular and molecular interactions of thymus with endocrine organs and nervous system.

    PubMed

    Kinoshita, Y; Hato, F

    2001-02-01

    T-cell ontogenesis has been disclosed to depend on the interactions of thymus with endocrine glands and nervous system as follows: i/ Thymic deprivation not only impaired the immunological development but also brought about the dysgenesis of pituitary anterior lobe. Conversely, hypophysectomy resulted in thymus atrophy with the disturbed immune responses. ii/ Binding of pituitary acidophilic cell hormones to their receptors on thymus epithelial cells (TECs) augmented the release of thymic hormonal peptides (THPs) in vitro. iii/ Elevation of blood glucocorticoid level after stress caused atrophy of thymus cortex through double positive thymocyte apoptosis. Morpho-molecular alterations of cytoplasm preceded nuclear damage in the apoptotic thymocytes. iv/ Administration of thymosin to the streptozotocin-induced diabetic mice repressed mononuclear cell infiltration to the pancreatic islets. v/ Autonomic nerve fibers innervate thymic parenchyma. Binding of acetylcholines (Achs) to Ach receptors on TECs enhanced protein synthetic activity which seemed to connect with THP production. vi/ Thymectomy not only depressed the immune responses but also accelerated the reduction of leaming and memory ability with aging. The operation appears to disturb the brain adrenoceptor functions and to suppress the regulatory roles of hypothalamus to other nervous tissues. vii/ Several kinds of THPs, separated from the culture supernatant of TEC line by high performance liquid chromatography, showed a favorable effect on the thymocytes at different stage of differentiation and maturation. viii/ Thymosin, thymulin and THPs were capable of proliferating and differentiating thymocytes in vitro. However, the administration of each thymic product to the thymus-deprived animals could not restore from their "wasting disease". Since TECs are composed of a heterogeneous population, it would be one of essential ways for isolating "true thymus hormone" (TTH) to use the material which consists of

  11. Molecular studies of the uncoupling protein

    SciTech Connect

    Ricquier, D.; Casteilla, L.; Bouillaud, F. )

    1991-06-01

    The uncoupling protein (UCP) is a proton/anion transporter found in the inner mitochondrial membrane of brown adipocyte. Although UCP has nor been detected in mitochondria from any other tissue, it shares structural and catalytic properties with several other mitochondrial carrier proteins. Although UCP was discovered only recently it is one of the most extensively studied mitochondrial carrier proteins.More recently, the mouse, rat, and human genes encoding for UCP have been isolated and sequenced. The availability of these various tools has led to several significant observations. UCP gene expression is strongly controlled at the level of transcription by signals that are activated after the stimulation of brown adipocytes by norepinephrine. The comparison of UCP gene with the genes encoding the adenine nucleotide translocator revealed the existence of structural and evolutionary homologies. Moreover, in humans the UCP gene and one form of adenine nucleotide translocator gene are located on the same chromosome. Recently, the expression of functional UCp in various heterologous systems was achieved (Xenopus oocytes, CHO cells, yeasts). These data will facilitate studies of the structure/function relationship in UCP (identification of residues involved in H{sup +} transport, Cl{sup {minus}} transport, nucleotide binding, mitochondrial targeting). Another aspect of the present research on UCP is the understanding of mechanisms that control UCP gene and the differentiated commitment of adipose precursor cells to thermogenic brown adipocytes.

  12. Rapid turnover of mitochondrial uncoupling protein 3

    PubMed Central

    Azzu, Vian; Mookerjee, Shona A.; Brand, Martin D.

    2013-01-01

    UCP3 (uncoupling protein 3) and its homologues UCP2 and UCP1 are regulators of mitochondrial function. UCP2 is known to have a short half-life of approx. 1 h, owing to its rapid degradation by the cytosolic 26S proteasome, whereas UCP1 is turned over much more slowly by mitochondrial autophagy. In the present study we investigate whether UCP3 also has a short half-life, and whether the proteasome is involved inUCP3 degradation. UCP3 half-life was examined in the mouse C2C12 myoblast cell line by inhibiting protein synthesis with cycloheximide and monitoring UCP3 protein levels by immunoblot analysis. We show that UCP3 has a short half-life of 0.5–4 h. Rapid degradation was prevented by a cocktail of proteasome inhibitors, supporting a proteasomal mechanism for turnover. In addition, this phenotype is recapitulated in vitro: UCP3 was degraded in mitochondria isolated from rat skeletal muscle or brown adipose tissue with a half-life of 0.5–4 h, but only in the presence of a purified 26S proteasomal fraction. This in vitro proteolysis was also sensitive to proteasome inhibition. This phenotype is in direct contrast with the related proteins UCP1 and the adenine nucleotide translocase, which have long half-lives. Therefore UCP3 is turned over rapidly in multiple cell types in a proteasome-dependent manner. PMID:19954423

  13. Airway-parenchyma uncoupling in nocturnal asthma.

    PubMed

    Irvin, C G; Pak, J; Martin, R J

    2000-01-01

    Airway flow resistance is well known to be dependent upon lung volume. The rise in lung volume that occurs in asthma is therefore thought to be an important mechanism that defends airway patency. The purpose of the current study was to investigate the interdependence or mechanical coupling between airways and lung parenchyma during the inflammatory processes that occur in the patient with nocturnal asthma. Five patients with documented nocturnal asthma were studied in both a vertical and a horizontal body plethysmograph. Lung volume was altered with continuous negative pressure as applied to the chest wall with a poncho cuirass in different postures and during sleep. We found during the awake phase that an increase in lung volume decreased lower pulmonary resistance (Rlp); however, within 30 min of sleep onset, functional residual capacity (FRC) fell and Rlp rose more than would be expected for the fall in FRC. Restoring FRC to presleep values either at an early (half-hour) or a late (3-h) time point did not cause Rlp to significantly fall. A second phase of the study showed that the loss of Rlp dependence on lung volume was not due to the assumption of the supine posture. Indirect measurements of lung compliance were consistent with a stiffening of the lung. We conclude that with sleep there is an immediate uncoupling of the parenchyma to the airway, resulting in a loss of interdependence that persists throughout sleep and may contribute to the morbidity and mortality associated with nocturnal asthma.

  14. The HTLV-1 HBZ protein inhibits cyclin D1 expression through interacting with the cellular transcription factor CREB.

    PubMed

    Ma, Yunyun; Zheng, Shangen; Wang, Yuanyuan; Zang, Wenqiao; Li, Min; Wang, Na; Li, Ping; Jin, Jing; Dong, Ziming; Zhao, Guoqiang

    2013-10-01

    Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that can cause adult T-cell leukemia (ATL) and other diseases. The HTLV-1 bZIP factor (HBZ), which is encoded by an mRNA of the opposite polarity of the viral genomic RNA, interacts with several transcription factors and is involved in T cell proliferation, viral gene transcription and cellular transformation. Cyclin D1 is a pivotal regulatory protein involved in cell cycle progression, and its depressed expression correlates with cell cycle prolongation or arrested at the G1/S transition. In our present study, we observed that HBZ expression suppressed cyclin D1 level. To investigate the role of HBZ on cyclin D1 depression, we transduced HBZ with lentivirus vector into 293T cells, CEM cells and Jurkat cells. The results of Western blot, RT-PCR and luciferase assays showed that transcriptional activity of the cyclin D1 promoter was suppressed by the bZIP domain of HBZ (HBZ-bZIP) through cyclic AMP response element (CRE) site. Immunoprecipitation and GST pull-down assays showed the binding of HBZ-bZIP to CRE-binding protein (CREB), which confirmed that the cyclin D1 promoter activity inhibition via the CRE-site was mediated by HBZ-bZIP. The results suggested that HBZ suppressed cyclin D1 transcription through interactions with CREB and along with other viral protein, HBZ may play a causal role for leukemogenesis.

  15. The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates.

    PubMed

    Pitek, Andrzej S; Wen, Amy M; Shukla, Sourabh; Steinmetz, Nicole F

    2016-04-06

    Biomolecules in bodily fluids such as plasma can adsorb to the surface of nanoparticles and influence their biological properties. This phenomenon, known as the protein corona, is well established in the field of synthetic nanotechnology but has not been described in the context of plant virus nanoparticles (VNPs). The interaction between VNPs derived from Tobacco mosaic virus (TMV) and plasma proteins is investigated, and it is found that the VNP protein corona is significantly less abundant compared to the corona of synthetic particles. The formed corona is dominated by complement proteins and immunoglobulins, the binding of which can be reduced by PEGylating the VNP surface. The impact of the VNP protein corona on molecular recognition and cell targeting in the context of cancer and thrombosis is investigated. A library of functionalized TMV rods with polyethylene glycol (PEG) and peptide ligands targeting integrins or fibrin(ogen) show different dispersion properties, cellular interactions, and in vivo fates depending on the properties of the protein corona, influencing target specificity, and non-specific scavenging by macrophages. Our results provide insight into the in vivo properties of VNPs and suggest that the protein corona effect should be considered during the development of efficacious, targeted VNP formulations.

  16. Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response

    PubMed Central

    Bale, Shyam Sundhar; Geerts, Sharon; Jindal, Rohit; Yarmush, Martin L.

    2016-01-01

    The liver is a central organ in the human body, and first line of defense between host and external environment. Liver response to any external perturbation is a collective reaction of resident liver cells. Most of the current in vitro liver models focus on hepatocytes, the primary metabolic component, omitting interactions and cues from surrounding environment and non-parenchymal cells (NPCs). Recent studies suggest that contributions of NPCs are vital, particularly in disease conditions, and outcomes of drugs and their metabolites. Along with hepatocytes, NPCs–Kupffer (KC), sinusoidal endothelial (LSEC) and stellate cells (SC) are major cellular components of the liver. Incorporation of primary cells in in vitro liver platforms is essential to emulate the functions of the liver, and its overall response. Herein, we isolate individual NPC cell fractions from rat livers and co-culture them in a transwell format incorporating primary rat hepatocytes with LSECs, SCs, and KCs. Our results indicate that the presence and contributions of multiple cells within the co-culture capture the interactions between hepatocytes and NPC, and modulates the responses to inflammatory stimulus such as LPS. The isolation and co-culture methods could provide a stable platform for creating in vitro liver models that provide defined functionality beyond hepatocytes alone. PMID:27142224

  17. Interaction of cellular proteins with BCL-xL targeted to cytoplasmic inclusion bodies in adenovirus infected cells.

    PubMed

    Subramanian, T; Vijayalingam, S; Kuppuswamy, M; Chinnadurai, G

    2015-09-01

    Adenovirus-mediated apoptosis was suppressed when cellular anti-apoptosis proteins (BCL-2 and BCL-xL) were substituted for the viral E1B-19K. For unbiased proteomic analysis of proteins targeted by BCL-xL in adenovirus-infected cells and to visualize the interactions with target proteins, BCL-xL was targeted to cytosolic inclusion bodies utilizing the orthoreovirus µNS protein sequences. The chimeric protein was localized in non-canonical cytosolic factory-like sites and promoted survival of virus-infected cells. The BCL-xL-associated proteins were isolated from the cytosolic inclusion bodies in adenovirus-infected cells and analyzed by LC-MS. These proteins included BAX, BAK, BID, BIK and BIM as well as mitochondrial proteins such as prohibitin 2, ATP synthase and DNA-PKcs. Our studies suggested that in addition to the interaction with various pro-apoptotic proteins, the association with certain mitochondrial proteins such as DNA-PKcs and prohibitins might augment the survival function of BCL-xL in virus infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Probing the Dynamic Interaction between Damaged DNA and a Cellular Responsive Protein Using a Piezoelectric Mass Biosensor.

    PubMed

    Jin, Yulong; Xie, Yunfeng; Wu, Kui; Huang, Yanyan; Wang, Fuyi; Zhao, Rui

    2017-03-15

    The binding events between damaged DNA and recognition biomolecules are of great interest for understanding the activity of DNA-damaging drugs and the related DNA repair networks. Herein, a simple and sensitive sensor system was tailored for real-time probing of the dynamic molecular recognition between cisplatin-damaged-DNA (cisPt-DNA) and a cellular responsive protein, high-mobility-group box 1 (HMGB1). By integration of flow injection analysis (FIA) with quartz crystal microbalance (QCM), the interaction time-course of cisPt-DNA and HMGB1 domain A (HMGB1a) was investigated. The highly specific sensing interface was carefully designed and fabricated using cisPt-DNA as recognition element. A hybrid self-assembled monolayer consisting of cysteamine and mercaptohexanol was introduced to resist nonspecific adsorption. The calculated kinetic parameters (kass and kdiss) and the dissociation constant (KD) demonstrated the rapid recognition and tight binding of HMGB1a toward cisPt-DNA. Molecular docking was employed to simulate the complex formed by cisPt-DNA and HMGB1a. The tight binding of such a DNA-damage responsive complex is appealing for the downstream molecular recognition event related to the resistance to DNA repair. This continuous-flow QCM biosensor is an ideal tool for studying specific interactions between drug-damaged-DNAs and their recognition proteins in a physiological-relevant environment, and will provide a potential sensor platform for rapid screening and evaluating metal anticancer drugs.

  19. Inhibition of photosynthetic oxygen evolution by protonophoric uncouplers.

    PubMed

    Samuilov, V D; Renger, G; Paschenko, V Z; Oleskin, A V; Gusev, M V; Gubanova, O N; Vasil'ev, S S; Barsky, E L

    1995-01-01

    The protonophoric uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2,3,4,5,6-pentachlorophenol (PCP) and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) inhibited the Hill reaction with K3[Fe(CN)6] (but not with SiMo) in chloroplast and cyanobacterial membranes (the I50 values were approx. 1-2, 4-6 and 0.04-0.10 μM, respectively). The inhibition is due to oxidation of the uncouplers on the Photosystem II donor side (ADRY effect) and their subsequent reduction on the acceptor side, ie. to the formation of a cyclic electron transfer chain around Photosystem II involving the uncouplers as redox carriers. The relative amplitude of nanosecond chlorophyll fluorescence in chloroplasts was increased by DCMU or HQNO and did not change upon addition of uncouplers, DBMIB or DNP-INT; the HQNO effect was not removed by the uncouplers. The uncouplers did not inhibit the electron transfer from reduced TMPD or duroquinol to methylviologen which is driven by Photosystem I. These data show that CCCP, PCP and TTFB oxidized on the Photosystem II donor side are reduced by the membrane pool of plastoquinone (Qp) which is also the electron donor for K3 [Fe(CN)6] in the Hill reaction as deduced from the data obtained in the presence of inhibitors. Inhibition of the Hill reaction by the uncouplers was maximum at the pH values corresponding to the pK of these compounds. It is suggested that the tested uncouplers serve as proton donors, and not merely as electron donors on the oxidizing side of Photosystem II.

  20. Specific Human and Candida Cellular Interactions Lead to Controlled or Persistent Infection Outcomes during Granuloma-Like Formation

    PubMed Central

    Misme-Aucouturier, Barbara; Albassier, Marjorie

    2016-01-01

    ABSTRACT A delayed type of multicellular process could be crucial during chronic candidiasis in determining the course of infection. This reaction, consisting of organized immune cells surrounding the pathogen, initiates an inflammatory response to avoid fungal dissemination. The goal of the present study was to examine, at an in vitro cellular scale, Candida and human immune cell interaction dynamics during a long-term period. By challenging human peripheral blood immune cells from 10 healthy donors with 32 Candida albicans and non-albicans (C. glabrata, C. tropicalis, C. parapsilosis, C. dubliniensis, C. lusitaniae, C. krusei, and C. kefyr) clinical isolates, we showed that Candida spp. induced the formation of granuloma-like structures within 6 days after challenge, but their sizes and the respective fungal burdens differed according to the Candida species. These two parameters are positively correlated. Phenotypic characteristics, such as hypha formation and higher axenic growth rate, seem to contribute to yeast persistence within granuloma-like structures. We showed an interindividual variability of the human response against Candida spp. Higher proportions of neutrophils and elevated CD4+/CD8+ T cell ratios during the first days after challenge were correlated with early production of gamma interferon (IFN-γ) and associated with controlled infection. In contrast, the persistence of Candida could result from upregulation of proinflammatory cytokines such as interleukin-6 (IL-6), IFN-γ, and tumor necrosis factor alpha (TNF-α) and a poor anti-inflammatory negative feedback (IL-10). Importantly, regulatory subsets of NK cells and CD4lo CD8hi doubly positive (DP) lymphocytes at late stage infiltrate granuloma-like structures and could correlate with the IL-10 and TNF-α production. These data offer a base frame to explain cellular events that guide infection control or fungal persistence. PMID:27799331

  1. Specific Human and Candida Cellular Interactions Lead to Controlled or Persistent Infection Outcomes during Granuloma-Like Formation.

    PubMed

    Misme-Aucouturier, Barbara; Albassier, Marjorie; Alvarez-Rueda, Nidia; Le Pape, Patrice

    2017-01-01

    A delayed type of multicellular process could be crucial during chronic candidiasis in determining the course of infection. This reaction, consisting of organized immune cells surrounding the pathogen, initiates an inflammatory response to avoid fungal dissemination. The goal of the present study was to examine, at an in vitro cellular scale, Candida and human immune cell interaction dynamics during a long-term period. By challenging human peripheral blood immune cells from 10 healthy donors with 32 Candida albicans and non-albicans (C. glabrata, C. tropicalis, C. parapsilosis, C. dubliniensis, C. lusitaniae, C. krusei, and C. kefyr) clinical isolates, we showed that Candida spp. induced the formation of granuloma-like structures within 6 days after challenge, but their sizes and the respective fungal burdens differed according to the Candida species. These two parameters are positively correlated. Phenotypic characteristics, such as hypha formation and higher axenic growth rate, seem to contribute to yeast persistence within granuloma-like structures. We showed an interindividual variability of the human response against Candida spp. Higher proportions of neutrophils and elevated CD4(+)/CD8(+) T cell ratios during the first days after challenge were correlated with early production of gamma interferon (IFN-γ) and associated with controlled infection. In contrast, the persistence of Candida could result from upregulation of proinflammatory cytokines such as interleukin-6 (IL-6), IFN-γ, and tumor necrosis factor alpha (TNF-α) and a poor anti-inflammatory negative feedback (IL-10). Importantly, regulatory subsets of NK cells and CD4(lo) CD8(hi) doubly positive (DP) lymphocytes at late stage infiltrate granuloma-like structures and could correlate with the IL-10 and TNF-α production. These data offer a base frame to explain cellular events that guide infection control or fungal persistence. Copyright © 2016 Misme-Aucouturier et al.

  2. NMDA and PACAP Receptor Signaling Interact to Mediate Retinal-Induced SCN Cellular Rhythmicity in the Absence of Light

    PubMed Central

    Webb, Ian C.; Coolen, Lique M.; Lehman, Michael N.

    2013-01-01

    The “core” region of the suprachiasmatic nucleus (SCN), a central clock responsible for coordinating circadian rhythms, shows a daily rhythm in phosphorylation of extracellular regulated kinase (pERK). This cellular rhythm persists under constant darkness and, despite the absence of light, is dependent upon inputs from the eye. The neural signals driving this rhythmicity remain unknown and here the roles of glutamate and PACAP are examined. First, rhythmic phosphorylation of the NR1 NMDA receptor subunit (pNR1, a marker for receptor activation) was shown to coincide with SCN core pERK, with a peak at circadian time (CT) 16. Enucleation and intraocular TTX administration attenuated the peak in the pERK and pNR1 rhythms, demonstrating that activation of the NMDA receptor and ERK in the SCN core at CT16 are dependent on retinal inputs. In contrast, ERK and NR1 phosphorylation in the SCN shell region were unaffected by these treatments. Intraventricular administration of the NMDA receptor antagonist MK-801 also attenuated the peak in SCN core pERK, indicating that ERK phosphorylation in this region requires NMDA receptor activation. As PACAP is implicated in photic entrainment and is known to modulate glutamate signaling, the effects of a PAC1 receptor antagonist (PACAP 6-38) on SCN core pERK and pNR1 also were examined. PACAP 6-38 administration attenuated SCN core pERK and pNR1, suggesting that PACAP induces pERK directly, and indirectly via a modulation of NMDA receptor signaling. Together, these data indicate that, in the absence of light, retinal-mediated NMDA and PAC1 receptor activation interact to induce cellular rhythms in the SCN core. These results highlight a novel function for glutamate and PACAP release in the hamster SCN apart from their well-known roles in the induction of photic circadian clock resetting. PMID:24098484

  3. Micropatterned co-culture of hepatocyte spheroids layered on non-parenchymal cells to understand heterotypic cellular interactions

    NASA Astrophysics Data System (ADS)

    Otsuka, Hidenori; Sasaki, Kohei; Okimura, Saya; Nagamura, Masako; Nakasone, Yuichi

    2013-12-01

    Microfabrication and micropatterning techniques in tissue engineering offer great potential for creating and controlling cellular microenvironments including cell-matrix interactions, soluble stimuli and cell-cell interactions. Here, we present a novel approach to generate layered patterning of hepatocyte spheroids on micropatterned non-parenchymal feeder cells using microfabricated poly(ethylene glycol) (PEG) hydrogels. Micropatterned PEG-hydrogel-treated substrates with two-dimensional arrays of gelatin circular domains (ϕ = 100 μm) were prepared by photolithographic method. Only on the critical structure of PEG hydrogel with perfect protein rejection, hepatocytes were co-cultured with non-parenchymal cells to be led to enhanced hepatocyte functions. Then, we investigated the mechanism of the functional enhancement in co-culture with respect to the contributions of soluble factors and direct cell-cell interactions. In particular, to elucidate the influence of soluble factors on hepatocyte function, hepatocyte spheroids underlaid with fibroblasts (NIH/3T3 mouse fibroblasts) or endothelial cells (BAECs: bovine aortic endothelial cells) were compared with physically separated co-culture of hepatocyte monospheroids with NIH3T3 or BAEC using trans-well culture systems. Our results suggested that direct heterotypic cell-to-cell contact and soluble factors, both of these between hepatocytes and fibroblasts, significantly enhanced hepatocyte functions. In contrast, direct heterotypic cell-to-cell contact between hepatocytes and endothelial cells only contributed to enhance hepatocyte functions. This patterning technique can be a useful experimental tool for applications in basic science, drug screening and tissue engineering, as well as in the design of artificial liver devices.

  4. Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels.

    PubMed

    Migliorini, Elisa; Thakar, Dhruv; Sadir, Rabia; Pleiner, Tino; Baleux, Françoise; Lortat-Jacob, Hugues; Coche-Guerente, Liliane; Richter, Ralf P

    2014-10-01

    Glycosaminoglycans (GAGs) are ubiquitously present at the cell surface and in extracellular matrix, and crucial for matrix assembly, cell-cell and cell-matrix interactions. The supramolecular presentation of GAG chains, along with other matrix components, is likely to be functionally important but remains challenging to control and to characterize, both in vivo and in vitro. We present a method to create well-defined biomimetic surfaces that display GAGs, either alone or together with other cell ligands, in a background that suppresses non-specific binding. Through the design of the immobilization platform - a streptavidin monolayer serves as a molecular breadboard for the attachment of various biotinylated ligands - and a set of surface-sensitive in situ analysis techniques (including quartz crystal microbalance and spectroscopic ellipsometry), the biomimetic surfaces are tailor made with tight control on biomolecular orientation, surface density and lateral mobility. Analysing the interactions between a selected GAG (heparan sulphate, HS) and the HS-binding chemokine CXCL12α (also called SDF-1α), we demonstrate that these surfaces are versatile for biomolecular and cellular interaction studies. T-lymphocytes are found to adhere specifically to surfaces presenting CXCL12α, both when reversibly bound through HS and when irreversibly immobilized on the inert surface, even in the absence of any bona fide cell adhesion ligand. Moreover, surfaces which present both HS-bound CXCL12α and the intercellular adhesion molecule 1 (ICAM-1) synergistically promote cell adhesion. Our surface biofunctionalization strategy should be broadly applicable for functional studies that require a well-defined supramolecular presentation of GAGs along with other matrix or cell-surface components.

  5. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification

    PubMed Central

    Dejonghe, Wim; Kuenen, Sabine; Mylle, Evelien; Vasileva, Mina; Keech, Olivier; Viotti, Corrado; Swerts, Jef; Fendrych, Matyáš; Ortiz-Morea, Fausto Andres; Mishev, Kiril; Delang, Simon; Scholl, Stefan; Zarza, Xavier; Heilmann, Mareike; Kourelis, Jiorgos; Kasprowicz, Jaroslaw; Nguyen, Le Son Long; Drozdzecki, Andrzej; Van Houtte, Isabelle; Szatmári, Anna-Mária; Majda, Mateusz; Baisa, Gary; Bednarek, Sebastian York; Robert, Stéphanie; Audenaert, Dominique; Testerink, Christa; Munnik, Teun; Van Damme, Daniël; Heilmann, Ingo; Schumacher, Karin; Winne, Johan; Friml, Jiří; Verstreken, Patrik; Russinova, Eugenia

    2016-01-01

    ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane. PMID:27271794

  6. Uncoupling protein homologs may provide a link between mitochondria, metabolism and lifespan.

    PubMed

    Wolkow, Catherine A; Iser, Wendy B

    2006-05-01

    Uncoupling proteins (UCPs), which dissipate the mitochondrial proton gradient, have the ability to decouple mitochodrial respiration from ATP production. Since mitochondrial electron transport is a major source of free radical production, it is possible that UCP activity might impact free radical production. Free radicals can react with and damage cellular proteins, DNA and lipids. Accumulated damage from oxidative stress is believed to be a major contributor to cellular decline during aging. If UCP function were to impact mitochondrial free radical production, then one would expect to find a link between UCP activity and aging. This theory has recently been tested in a handful of organisms whose genomes contain UCP1 homologs. Interestingly, these experiments indicate that UCP homologs can affect lifespan, although they do not support a simple relationship between UCP activity and aging. Instead, UCP-like proteins appear to have a variety of effects on lifespan, and on pathways implicated in lifespan regulation. One possible explanation for this complex picture is that UCP homologs may have tissue-specific effects that complicate their effects on aging. Furthermore, the functional analysis of UCP1 homologs is incomplete. Thus, these proteins may perform functions in addition to, or instead of, mitochondrial uncoupling. Although these studies have not revealed a clear picture of UCP effects on aging, they have contributed to the growing knowledge base for these interesting proteins. Future biochemical and genetic investigation of UCP-like proteins will do much to clarify their functions and to identify the regulatory networks in which they are involved.

  7. Mitochondrial Hormesis in Pancreatic β Cells: Does Uncoupling Protein 2 Play a Role?

    PubMed Central

    Li, Ning; Stojanovski, Suzana; Maechler, Pierre

    2012-01-01

    In pancreatic β cells, mitochondrial metabolism translates glucose sensing into signals regulating insulin secretion. Chronic exposure of β cells to excessive nutrients, namely, glucolipotoxicity, impairs β-cell function. This is associated with elevated ROS production from overstimulated mitochondria. Mitochondria are not only the major source of cellular ROS, they are also the primary target of ROS attacks. The mitochondrial uncoupling protein UCP2, even though its uncoupling properties are debated, has been associated with protective functions against ROS toxicity. Hormesis, an adaptive response to cellular stresses, might contribute to the protection against β-cell death, possibly limiting the development of type 2 diabetes. Mitochondrial hormesis, or mitohormesis, is a defense mechanism observed in ROS-induced stress-responses by mitochondria. In β cells, mitochondrial damages induced by sublethal exogenous H2O2 can induce secondary repair and defense mechanisms. In this context, UCP2 is a marker of mitohormesis, being upregulated following stress conditions. When overexpressed in nonstressed naïve cells, UCP2 confers resistance to oxidative stress. Whether treatment with mitohormetic inducers is sufficient to restore or ameliorate secretory function of β cells remains to be determined. PMID:23029600

  8. Simulations of reduced conduction reserve in the diabetic rat heart: response to uncoupling and reduced excitability.

    PubMed

    Ghaly, Haisam A; Boyle, Patrick M; Vigmond, Edward J; Shimoni, Yakhin; Nygren, Anders

    2010-04-01

    Experimental results have shown that action potential (AP) conduction in ventricular tissue from streptozotocin-diabetic (STZ) rats is compromised. This was manifest as increased sensitivity of conduction velocity (CV) to the gap junction uncoupler heptanol, as well as increased sensitivity of CV to reduced cellular excitability due to elevated extracellular K(+) concentration, in the STZ hearts. This "reduced conduction reserve" has been suggested to be due to lateralization of connexin43 (Cx43) proteins, rendering them nonfunctional, resulting in compromised intercellular electrical coupling. In this study, we have used computer simulations of one-dimensional AP conduction in a model of rat ventricular myocytes to verify this interpretation. Our results show that compromised intercellular coupling indeed reduces conduction reserve and predict a response to gap junction uncoupling with heptanol that is consistent with experiments. However, our simulations also show that compromised intercellular coupling is insufficient to explain the increased sensitivity to reduced cellular excitability. A thorough investigation of possible underlying mechanisms, suggests that subtle alterations in the voltage-dependence of steady-state gating for the Na(+) current (I (Na)), combined with compromised intercellular coupling, is a likely mechanism for these observations.

  9. The insensitivity to uncouplers of testis mitochondrial ATPase.

    PubMed

    Vázquez-Memije, M E; Izquierdo-Reyes, V; Delhumeau-Ongay, G

    1988-01-01

    Albumin-free testis mitochondrial ATPase activity failed to be stimulated by either 2,4-dinitrophenol (DNP) or carbonyl cyanide rho-trifluoromethoxyphenylhydrazone (FCCP). DNP scarcely enhanced the state 4 respiration and mitochondria proved to be poorly coupled. When 1% bovine serum albumin was added to the isolation medium, DNP or FCCP stimulated ATPase nearly twofold and the dose-response curves for the uncouplers on the QO2 reached a plateau at five- to sixfold. The DNP coupling index (q) also showed a 30-40% improvement. A dose-response curve for oligomycin on the rate of [gamma-32P]ATP synthesis showed a stimulation of ATP synthase activity by 10-100 ng inhibitor/mg protein, suggesting a possible blockade of "open" F0 channels. In the albumin preparation oligomycin inhibited ATP synthesis in the range 10-100 ng/mg protein. Since testis ATPase is known to be loosely bound to the membrane, an effect of albumin, improving tightness in the interaction of the F1 and the F0 sectors of the ATPase, is suggested.

  10. Uncoupled thermoelasticity solutions applied on beam dumps

    NASA Astrophysics Data System (ADS)

    Ouzia, A.; Antonakakis, T.

    2016-06-01

    In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at energies of the order of TeV. In the event of a system failure or following collisions, the beam needs to be safely absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition. These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can be analytically modeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere. The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions, which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the potential formulation where the shear potential is assumed to be nil due to the source being a gradient and the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the compressive potential and optimized using standard analytical optimization methods. An alternative algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a case study concerning the proton synchrotron booster dump is presented where the aforementioned analytical solutions are used and the preceding assumptions

  11. Uncoupling protein-1 is not leaky.

    PubMed

    Shabalina, Irina G; Ost, Mario; Petrovic, Natasa; Vrbacky, Marek; Nedergaard, Jan; Cannon, Barbara

    2010-01-01

    The activity of uncoupling protein-1 (UCP1) is rate-limiting for nonshivering thermogenesis and diet-induced thermogenesis. Characteristically, this activity is inhibited by GDP experimentally and presumably mainly by cytosolic ATP within brown-fat cells. The issue as to whether UCP1 has a residual proton conductance even when fully saturated with GDP/ATP (as has recently been suggested) has not only scientific but also applied interest, since a residual proton conductance would make overexpressed UCP1 weight-reducing even without physiological/pharmacological activation. To examine this question, we have here established optimal conditions for studying the bioenergetics of wild-type and UCP1-/- brown-fat mitochondria, analysing UCP1-mediated differences in parallel preparations of brown-fat mitochondria from both genotypes. Comparing different substrates, we find that pyruvate (or palmitoyl-L-carnitine) shows the largest relative coupling by GDP. Comparing albumin concentrations, we find the range 0.1-0.6% optimal; higher concentrations are inhibitory. Comparing basic medium composition, we find 125 mM sucrose optimal; an ionic medium (50-100 mM KCl) functions for wild-type but is detrimental for UCP1-/- mitochondria. Using optimal conditions, we find no evidence for a residual proton conductance (not a higher post-GDP respiration, a lower membrane potential or an altered proton leak at highest common potential) with either pyruvate or glycerol-3-phosphate as substrates, nor by a 3-4-fold alteration of the amount of UCP1. We could demonstrate that certain experimental conditions, due to respiratoty inhibition, could lead to the suggestion that UCP1 possesses a residual proton conductance but find that under optimal conditions our experiments concur with implications from physiological observations that in the presence of inhibitory nucleotides, UCP1 is not leaky.

  12. Human microvascular endothelial cellular interaction with atomic N-doped DLC compared with Si-doped DLC thin films.

    PubMed

    Okpalugo, T I T; Murphy, H; Ogwu, A A; Abbas, G; Ray, S C; Maguire, P D; McLaughlin, J; McCullough, R W

    2006-08-01

    This article reports results of endothelial cell interaction with atom beam source N-doped a-C:H (diamond-like carbon, DLC) as it compares with that of Si-doped DLC thin films. The RF plasma source exhibits up to 40% N-dissociation and N-atomic fluxes of approximately 0.85 x 10(18) atoms/s, which ensures better atomic nitrogen incorporation. Two different types of nitrogen species (with and without the use of sweep plates to remove charged ions) were employed for nitrogen doping. The number of attached endothelial cells is highest on Si-DLC, followed by the N-DLC (where the sweep plates were used to remove ions), the N-DLC (without the use of sweep plates), undoped DLC, and finally the uncoated sample. The contact angle values for these films suggest that water contact angle is higher in the atomic nitrogen neutral films and Si-DLC films compared to the ionized-nitrogen specie doped films and undoped DLC thin films, suggesting that the more hydrophobic films, semiconducting films, and film with relieved stress have better interaction with human microvascular endothelial cells. It seems evident that N-doping increases the Raman I(D)/I(G) ratios, whereas N-neutral doping decreases it slightly and Si-doping decreases it even further. In this study, lower Raman I(D)/I(G) ratios are associated with increased sp(3)/sp(2) ratio, an increased H concentration, photoluminescence intensity, and a higher endothelial cellular adhesion. These investigations could be relevant to biocompatibility assessment of nanostructured biomaterials and tissue engineering.

  13. Modelling the interaction of aeolian and fluvial processes with a combined cellular model of sand dunes and river systems

    NASA Astrophysics Data System (ADS)

    Liu, Baoli; Coulthard, Tom J.

    2017-09-01

    Aeolian and fluvial processes are important agents for shaping the surface of the Earth, but are largely studied in isolation despite there being many locations where both processes are acting together and influencing each other. Using field data to investigate fluvial-aeolian interactions is, however, hampered by our short length of record and low temporal resolution of observations. Here we use numerical modelling to investigate, for the first time, the interplay between aeolian (sand dunes) and fluvial (river channel) processes. This modelling is carried out by combining two existing cellular models of aeolian and fluvial processes that requires considerable consideration of the different process representation and time stepping used. The result is a fully coupled (in time and space) sand dune - river model. Over a thousand-year simulation the model shows how the migration of sand dunes is readily blocked by rivers, yet aeolian processes can push the channel downwind. Over time cyclic channel avulsions develop indicating that aeolian action on fluvial systems may play an important part in governing avulsion frequency, and thus alluvial architecture.

  14. Bivalent Compound 17MN Exerts Neuroprotection through Interaction at Multiple Sites in a Cellular Model of Alzheimer's Disease.

    PubMed

    Liu, Kai; Chojnacki, Jeremy E; Wade, Emily E; Saathoff, John M; Lesnefsky, Edward J; Chen, Qun; Zhang, Shijun

    2015-01-01

    Multiple pathogenic factors have been suggested to play a role in the development of Alzheimer's disease (AD). The multifactorial nature of AD also suggests the potential use of compounds with polypharmacology as effective disease-modifying agents. Recently, we have developed a bivalent strategy to include cell membrane anchorage into the molecular design. Our results demonstrated that the bivalent compounds exhibited multifunctional properties and potent neuroprotection in a cellular AD model. Herein, we report the mechanistic exploration of one of the representative bivalent compounds, 17MN, in MC65 cells. Our results established that MC65 cells die through a necroptotic mechanism upon the removal of tetracycline (TC). Furthermore, we have shown that mitochondrial membrane potential and cytosolic Ca2+ levels are increased upon removal of TC. Our bivalent compound 17MN can reverse such changes and protect MC65 cells from TC removal induced cytotoxicity. The results also suggest that 17MN may function between the Aβ species and RIPK1 in producing its neuroprotection. Colocalization studies employing a fluorescent analog of 17MN and confocal microscopy demonstrated the interactions of 17MN with both mitochondria and endoplasmic reticulum, thus suggesting that 17MN exerts its neuroprotection via a multiple-site mechanism in MC65 cells. Collectively, these results strongly support our original design rationale of bivalent compounds and encourage further optimization of this bivalent strategy to develop more potent analogs as novel disease-modifying agents for AD.

  15. In vitro biocompatibility and cellular interactions of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention.

    PubMed

    Aziz, Manal A; Cabral, Jaydee D; Brooks, Heather J L; McConnell, Michelle A; Fitzpatrick, Clare; Hanton, Lyall R; Moratti, Stephen C

    2015-02-01

    In this paper, we report the in vitro biocompatibility and cellular interactions of a chitosan/dextran-based (CD) hydrogel and its components as determined by mutagenicity, cytotoxicity, cytokine/chemokine response, and wound healing assays. The CD hydrogel, developed for postsurgical adhesion prevention in ear, nose, and throat surgeries, was shown by previously published experiments in animal and human trials to be effective. The hydrogel was synthesized from the reaction between succinyl chitosan (SC) and oxidized dextran (DA). Cytotoxicity was assessed in an xCELLigence system and cytokine/chemokine responses were measured by ELISA in human macrophage, nasopharyngeal epithelial, and dermal fibroblast cells. A wound healing model utilized nasopharyngeal epithelial cells. CD hydrogel and DA were nonmutagenic in the Ames test. CD hydrogel showed moderate cytotoxicity for the cell lines, DA being the cytotoxic component. Some inhibition of wound healing occurred due to the cytotoxic nature of DA. Cells cultured with CD hydrogel showed no increase in TNF-α, IL-10, and IL-8 levels. It is hypothesized that the cytotoxicity of DA is moderated when reacted with SC and that CD hydrogel inhibits unwanted fibroblastic invasion preventing scarring and adhesions. Together with the previously published human and animal trial data, the results indicate CD hydrogel is biocompatible in the setting of endoscopic sinus surgery. This work represents the first study of CD hydrogel with human cell lines and provides essential information for its future application in biomedicine.

  16. Stress modulation of cellular metabolic sensors: interaction of stress from temperature and rainfall on the intertidal limpet Cellana toreuma.

    PubMed

    Dong, Yun-Wei; Han, Guo-Dong; Huang, Xiong-Wei

    2014-09-01

    In the natural environment, organisms are exposed to large variations in physical conditions. Quantifying such physiological responses is, however, often performed in laboratory acclimation studies, in which usually only a single factor is varied. In contrast, field acclimatization may expose organisms to concurrent changes in several environmental variables. The interactions of these factors may have strong effects on organismal function. In particular, rare events that occur stochastically and have relatively short duration may have strong effects. The present experiments studied levels of expression of several genes associated with cellular stress and metabolic regulation in a field population of limpet Cellana toreuma that encountered a wide range of temperatures plus periodic rain events. Physiological responses to these variable conditions were quantified by measuring levels of mRNA of genes encoding heat-shock proteins (Hsps) and metabolic sensors (AMPKs and Sirtuin 1). Our results reveal high ratios of individuals in upregulation group of stress-related gene expression at high temperature and rainy days, indicating the occurrence of stress from both prevailing high summer temperatures and occasional rainfall during periods of emersion. At high temperature, stress due to exposure to rainfall may be more challenging than heat stress alone. The highly variable physiological performances of limpets in their natural habitats indicate the possible differences in capability for physiological regulation among individuals. Our results emphasize the importance of studies of field acclimatization in unravelling the effects of environmental change on organisms, notably in the context of multiple changes in abiotic factors that are accompanying global change.

  17. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii.

    PubMed

    Qiu, Rong-Liang; Thangavel, Palaniswamy; Hu, Peng-Jie; Senthilkumar, Palaninaicker; Ying, Rong-Rong; Tang, Ye-Tao

    2011-02-28

    Potentilla griffithii Hook is a newly found hyperaccumulator plant capable of high tolerance and accumulation of Zn and Cd. We investigated the interactive effects between Cd and Zn on accumulation and vacuolar sequestration in P. griffithii. Stimulatory effect of growth was noted at 0.2 mM Cd and 1.25 and 2.5 mM Zn tested. Accumulation of Zn and Cd in roots, petioles and leaves were increased significantly with addition of these metals individually. However, the Zn supplement decreased root Cd accumulation but increased the concentration of Cd in petioles and leaves. The results from sub-cellular distribution showed that up to 94% and 70% of the total Zn and Cd in the leaves were present in the protoplasts, and more than 90% Cd and Zn in the protoplasts were localized in the vacuoles. Nearly, 88% and 85% of total Cd and Zn were extracted in the cell sap of the leaves suggesting that most of the Cd and Zn in the leaves were available in soluble form. The present results indicate that Zn supplement significantly enhanced the petiole accumulation of Cd and further vacuolar sequestration plays an important role in tolerance, detoxification and hyperaccumulation of these metals in P. griffithii. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Cellular Human CLE/C14orf166 Protein Interacts with Influenza Virus Polymerase and Is Required for Viral Replication ▿

    PubMed Central

    Rodriguez, Ariel; Pérez-González, Alicia; Nieto, Amelia

    2011-01-01

    The influenza A virus polymerase associates with a number of cellular transcription-related factors, including RNA polymerase II. We previously described the interaction of influenza virus polymerase subunit PA with human CLE/C14orf166 protein (hCLE), a positive modulator of this cellular RNA polymerase. Here, we show that hCLE also interacts with the influenza virus polymerase complex and colocalizes with viral ribonucleoproteins. Silencing of hCLE causes reduction of viral polymerase activity, viral RNA transcription and replication, virus titer, and viral particle production. Altogether, these findings indicate that the cellular transcription factor hCLE is an important protein for influenza virus replication. PMID:21900157

  19. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    EPA Science Inventory

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  20. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    EPA Science Inventory

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  1. Transcriptional regulation of the uncoupling protein-1 gene.

    PubMed

    Villarroya, Francesc; Peyrou, Marion; Giralt, Marta

    2017-03-01

    Regulated transcription of the uncoupling protein-1 (UCP1) gene, and subsequent UCP1 protein synthesis, is a hallmark of the acquisition of the differentiated, thermogenically competent status of brown and beige/brite adipocytes, as well as of the responsiveness of brown and beige/brite adipocytes to adaptive regulation of thermogenic activity. The 5' non-coding region of the UCP1 gene contains regulatory elements that confer tissue specificity, differentiation dependence, and neuro-hormonal regulation to UCP1 gene transcription. Two main regions-a distal enhancer and a proximal promoter region-mediate transcriptional regulation through interactions with a plethora of transcription factors, including nuclear hormone receptors and cAMP-responsive transcription factors. Co-regulators, such as PGC-1α, play a pivotal role in the concerted regulation of UCP1 gene transcription. Multiple interactions of transcription factors and co-regulators at the promoter region of the UCP1 gene result in local chromatin remodeling, leading to activation and increased accessibility of RNA polymerase II and subsequent gene transcription. Moreover, a commonly occurring A-to-G polymorphism in close proximity to the UCP1 gene enhancer influences the extent of UCP1 gene transcription. Notably, it has been reported that specific aspects of obesity and associated metabolic diseases are associated with human population variability at this site. On another front, the unique properties of the UCP1 promoter region have been exploited to develop brown adipose tissue-specific gene delivery tools for experimental purposes. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Membrane Surface-Associated Helices Promote Lipid Interactions and Cellular Uptake of Human Calcitonin-Derived Cell Penetrating Peptides

    PubMed Central

    Herbig, Michael E.; Weller, Kathrin; Krauss, Ulrike; Beck-Sickinger, Annette G.; Merkle, Hans P.; Zerbe, Oliver

    2005-01-01

    hCT(9-32) is a human calcitonin (hCT)-derived cell-penetrating peptide that has been shown to translocate the plasma membrane of mammalian cells. It has been suggested as a cellular carrier for drugs, green fluorescent protein, and plasmid DNA. Because of its temperature-dependent cellular translocation resulting in punctuated cytoplasmatic distribution, its uptake is likely to follow an endocytic pathway. To gain insight into the molecular orientation of hCT(9-32) when interacting with lipid models, and to learn more about its mode of action, various biophysical techniques from liposome partitioning to high-resolution NMR spectroscopy were utilized. Moreover, to establish the role of individual residues for the topology of its association with the lipid membrane, two mutants of hCT(9-32), i.e., W30-hCT(9-32) and A23-hCT(9-32), were also investigated. Although unstructured in aqueous solution, hCT(9-32) adopted two short helical stretches when bound to dodecylphosphocholine micelles, extending from Thr10 to Asn17 and from Gln24 to Val29. A23-hCT(9-32), in which the helix-breaking Pro23 was replaced by Ala, displayed a continuous α-helix extending from residue 12 to 26. Probing with the spin label 5-doxylstearate revealed that association with dodecylphosphocholine micelles was such that the helix engaged in parallel orientation to the micelle surface. Moreover, the Gly to Trp exchange in W30-hCT(9-32) resulted in a more stable anchoring of the C-terminal segment close to the interface, as reflected by a twofold increase in the partition coefficient in liposomes. Interestingly, tighter binding to model membranes was associated with an increase in the in vitro uptake in human cervix epithelial andenocarcinoma cell line cells. Liposome leakage studies excluded pore formation, and the punctuated fluorescence pattern of internalized peptide indicated vesicular localization and, in conclusion, strongly suggested an endocytic pathway of translocation. PMID:16183886

  3. Uncoupled Cardiac Nitric Oxide Synthase Mediates Diastolic Dysfunction

    PubMed Central

    Silberman, Gad A.; Fan, Tai-Hwang M.; Liu, Hong; Jiao, Zhe; Xiao, Hong D.; Lovelock, Joshua D.; Boulden, Beth M.; Widder, Julian; Fredd, Scott; Bernstein, Kenneth E.; Wolska, Beata M.; Dikalov, Sergey; Harrison, David G.; Dudley, Samuel C.

    2010-01-01

    Background Heart failure with preserved ejection fraction is one consequence of hypertension and caused by impaired cardiac diastolic relaxation. Nitric oxide (NO) is a known modulator of cardiac relaxation. Hypertension can lead to a reduction in vascular NO, in part because nitric oxide synthase (NOS) becomes uncoupled when oxidative depletion of its co-factor tetrahydrobiopterin (BH4) occurs.Similar events may occur in the heart leading to uncoupled NOS and diastolic dysfunction. Methods and Results In a hypertensive mouse model, diastolic dysfunction was accompanied by cardiac oxidation, a reduction in cardiac BH4, and uncoupled NOS. Compared to sham-operated animals, male mice with unilateral nephrectomy, with subcutaneous implantation of a controlled release deoxycorticosterone acetate (DOCA) pellet, and given 1% saline to drink were mildly hypertensive and had diastolic dysfunction in the absence of systolic dysfunction or cardiac hypertrophy. The hypertensive mouse hearts showed increased oxidized biopterins, NOS-dependent superoxide production, reduced NO production, and phosphorylated phospholamban. Feeding hypertensive mice BH4 (5 mg/day), but not treating with hydralazine or tetrahydroneopterin, improved cardiac BH4 stores, phosphorylated phospholamban levels, and diastolic dysfunction. Isolated cardiomyocyte experiments revealed impaired relaxation that was normalized with acute BH4 treatment. Targeted cardiac overexpression of angiotensin converting enzyme also resulted in cardiac oxidation, NOS uncoupling, and diastolic dysfunction in the absence of hypertension. Conclusions Cardiac oxidation, independent of vascular changes, can lead to uncoupled cardiac NOS and diastolic dysfunction. BH4 may represent a possible treatment for diastolic dysfunction. PMID:20083682

  4. Triclosan is a mitochondrial uncoupler in live zebrafish.

    PubMed

    Shim, Juyoung; Weatherly, Lisa M; Luc, Richard H; Dorman, Maxwell T; Neilson, Andy; Ng, Ryan; Kim, Carol H; Millard, Paul J; Gosse, Julie A

    2016-12-01

    Triclosan (TCS) is a synthetic antimicrobial agent used in many consumer goods at millimolar concentrations. As a result of exposure, TCS has been detected widely in humans. We have recently discovered that TCS is a proton ionophore mitochondrial uncoupler in multiple types of living cells. Here, we present novel data indicating that TCS is also a mitochondrial uncoupler in a living organism: 24-hour post-fertilization (hpf) zebrafish embryos. These experiments were conducted using a Seahorse Bioscience XF(e) 96 Extracellular Flux Analyzer modified for bidirectional temperature control, using the XF96 spheroid plate to position and measure one zebrafish embryo per well. Using this method, after acute exposure to TCS, the basal oxygen consumption rate (OCR) increases, without a decrease in survival or heartbeat rate. TCS also decreases ATP-linked respiration and spare respiratory capacity and increases proton leak: all indicators of mitochondrial uncoupling. Our data indicate, that TCS is a mitochondrial uncoupler in vivo, which should be taken into consideration when assessing the toxicity and/or pharmaceutical uses of TCS. This is the first example of usage of a Seahorse Extracellular Flux Analyzer to measure bioenergetic flux of a single zebrafish embryo per well in a 96-well assay format. The method developed in this study provides a high-throughput tool to identify previously unknown mitochondrial uncouplers in a living organism. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction.

    PubMed

    Silberman, Gad A; Fan, Tai-Hwang M; Liu, Hong; Jiao, Zhe; Xiao, Hong D; Lovelock, Joshua D; Boulden, Beth M; Widder, Julian; Fredd, Scott; Bernstein, Kenneth E; Wolska, Beata M; Dikalov, Sergey; Harrison, David G; Dudley, Samuel C

    2010-02-02

    Heart failure with preserved ejection fraction is 1 consequence of hypertension and is caused by impaired cardiac diastolic relaxation. Nitric oxide (NO) is a known modulator of cardiac relaxation. Hypertension can lead to a reduction in vascular NO, in part because NO synthase (NOS) becomes uncoupled when oxidative depletion of its cofactor tetrahydrobiopterin (BH(4)) occurs. Similar events may occur in the heart that lead to uncoupled NOS and diastolic dysfunction. In a hypertensive mouse model, diastolic dysfunction was accompanied by cardiac oxidation, a reduction in cardiac BH(4), and uncoupled NOS. Compared with sham-operated animals, male mice with unilateral nephrectomy, with subcutaneous implantation of a controlled-release deoxycorticosterone acetate pellet, and given 1% saline to drink were mildly hypertensive and had diastolic dysfunction in the absence of systolic dysfunction or cardiac hypertrophy. The hypertensive mouse hearts showed increased oxidized biopterins, NOS-dependent superoxide production, reduced NO production, and dephosphorylated phospholamban. Feeding hypertensive mice BH(4) (5 mg/d), but not treating with hydralazine or tetrahydroneopterin, improved cardiac BH(4) stores, phosphorylated phospholamban levels, and diastolic dysfunction. Isolated cardiomyocyte experiments revealed impaired relaxation that was normalized with short-term BH(4) treatment. Targeted cardiac overexpression of angiotensin-converting enzyme also resulted in cardiac oxidation, NOS uncoupling, and diastolic dysfunction in the absence of hypertension. Cardiac oxidation, independently of vascular changes, can lead to uncoupled cardiac NOS and diastolic dysfunction. BH(4) may represent a possible treatment for diastolic dysfunction.

  6. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  7. Sludge reduction by uncoupling metabolism: SBR tests with para-nitrophenol and a commercial uncoupler.

    PubMed

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Amorós-Muñoz, I

    2016-11-01

    Nowadays cost reduction is a very important issue in wastewater treatment plants. One way, is to minimize the sludge production. Microorganisms break down the organic matter into inorganic compounds through catabolism. Uncoupling metabolism is a method which promote catabolism reactions instead of anabolism ones, where adenosine triphosphate synthesis is inhibited. In this work, the influence of the addition of para-nitrophenol and a commercial reagent to a sequencing batch reactor (SBR) on sludge production and process performance has been analyzed. Three laboratory SBRs were operated in parallel to compare the effect of the addition of both reagents with a control reactor. SBRs were fed with synthetic wastewater and were operated with the same conditions. Results showed that sludge production was slightly reduced for the tested para-nitrophenol concentrations (20 and 25 mg/L) and for a LODOred dose of 1 mL/day. Biological process performance was not influenced and high COD removals were achieved.

  8. Endothelin uncouples gap junctions in sustentacular cells and olfactory ensheathing cells of the olfactory mucosa.

    PubMed

    Le Bourhis, Mikaël; Rimbaud, Stéphanie; Grebert, Denise; Congar, Patrice; Meunier, Nicolas

    2014-09-01

    Several factors modulate the first step of odour detection in the rat olfactory mucosa (OM). Among others, vasoactive peptides such as endothelin might play multifaceted roles in the different OM cells. Like their counterparts in the central nervous system, the olfactory sensory neurons are encompassed by different glial-like non-neuronal OM cells; sustentacular cells (SCs) surround their cell bodies, whereas olfactory ensheathing cells (OECs) wrap their axons. Whereas SCs maintain both the structural and ionic integrity of the OM, OECs assure protection, local blood flow control and guiding of olfactory sensory neuron axons toward the olfactory bulb. We previously showed that these non-neuronal OM cells are particularly responsive to endothelin in vitro. Here, we confirmed that the endothelin system is strongly expressed in the OM using in situ hybridization. We then further explored the effects of endothelin on SCs and OECs using electrophysiological recordings and calcium imaging approaches on both in vitro and ex vivo OM preparations. Endothelin induced both robust calcium signals and gap junction uncoupling in both types of cells. This latter effect was mimicked by carbenoxolone, a known gap junction uncoupling agent. However, although endothelin is known for its antiapoptotic effect in the OM, the uncoupling of gap junctions by carbenoxolone was not sufficient to limit the cellular death induced by serum deprivation in OM primary culture. The functional consequence of the endothelin 1-induced reduction of the gap junctional communication between OM non-neuronal cells thus remains to be elucidated. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Bacterium-host cell interactions at the cellular level: fluorescent labeling of bacteria and analysis of short-term bacterium-phagocyte interaction by flow cytometry.

    PubMed Central

    Raybourne, R B; Bunning, V K

    1994-01-01

    Flow cytometry is a potentially powerful tool for analyzing the interactions of facultative intracellular bacteria and macrophages on a cellular level, particularly when fluorochromes are used to label the bacteria. We labeled Listeria monocytogenes and Salmonella typhimurium with a lipophilic dye, PKH-2, and used flow cytometry to investigate phagocytosis by J774A.1 cells and short-term bacterial survival. Labeled and unlabeled bacteria were identical in terms of viability, growth kinetics, and survival within macrophages, although recovery per macrophage was much greater for L. monocytogenes than for S. typhimurium. Using L. monocytogenes as a prototypical facultative intracellular bacterium, we estimated bacterial survival during phagocytosis on the basis of linear fluorescence measurements of infected J774A.1 cells and recovery of L. monocytogenes from sorted cells. The lower percentage of surviving L. monocytogenes in macrophages containing higher bacterial loads indicated the accumulation of nonviable bacteria within phagocytes. Removal of the external source of viable bacteria by washes and gentamicin treatment reduced the percentage of surviving intracellular L. monocytogenes to a baseline level, and all baseline levels were similar, regardless of bacterial load. Listeria enrichment recoveries, derived from individually sorted J774A.1 cells, demonstrated the heterogeneity of macrophages in intracellular bacterial survival, especially within heavily infected cells. These results indicated that survival of L. monocytogenes was dependent on the adaptations of a small fraction of bacteria within a population of macrophages which permit intracellular growth. PMID:8300223

  10. Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression

    SciTech Connect

    Lee, Jun Han; Kim, Sung-Hak; Pascua, Philippe Noriel Q.; Song, Min-Suk; Baek, Yun Hee; Jin, Xun; Choi, Joong-Kook; Kim, Chul-Joong; Kim, Hyunggee; Choi, Young Ki

    2010-02-05

    To investigate novel NS1-interacting proteins, we conducted a yeast two-hybrid analysis, followed by co-immunoprecipitation assays. We identified heterogeneous nuclear ribonucleoprotein F (hnRNP-F) as a cellular protein interacting with NS1 during influenza A virus infection. Co-precipitation assays suggest that interaction between hnRNP-F and NS1 is a common and direct event among human or avian influenza viruses. NS1 and hnRNP-F co-localize in the nucleus of host cells, and the RNA-binding domain of NS1 directly interacts with the GY-rich region of hnRNP-F determined by GST pull-down assays with truncated proteins. Importantly, hnRNP-F expression levels in host cells indicate regulatory role on virus replication. hnRNP-F depletion by small interfering RNA (siRNA) shows 10- to 100-fold increases in virus titers corresponding to enhanced viral RNA polymerase activity. Our results delineate novel mechanism of action by which NS1 accelerates influenza virus replication by modulating normal cellular mRNA processes through direct interaction with cellular hnRNP-F protein.

  11. Interactions between 7-hydroxymethotrexate and methotrexate at the cellular level in the Ehrlich ascites tumor in vitro.

    PubMed

    Fabre, G; Matherly, L H; Fabre, I; Cano, J P; Goldman, I D

    1984-03-01

    Studies were undertaken to characterize the cellular pharmacology of 7-hydroxymethotrexate (7-OH-MTX) in Ehrlich ascites tumor cells, compare it to that of methotrexate (MTX), and define the interactions between the parent compound and its catabolite. Transport of 7-OH-MTX is mediated by the MTX-tetrahydrofolate cofactor carrier, with a Km of 9 microM in comparison to the MTX Km of 5 microM. Both compounds mutually inhibit their influx and steady-state levels of free drug accumulated. While influx of 7-OH-MTX is slower than influx of MTX, 7-OH-MTX efflux is likewise slower, so that the steady-state level of 7-OH-MTX achieved is comparable to that of MTX. Influx of 7-OH-MTX is inhibited by extracellular 5-formyltetrahydrofolate and trans-stimulated in cells preloaded with this tetrahydrofolate cofactor. The energetics of 7-OH-MTX transport is similar to that of MTX in the influx and net transport are stimulated by sodium azide, while net transport is reduced by glucose. As observed for MTX, 7-OH-MTX transport is sensitive to the anionic composition of the extracellular compartment and was shown to be inhibited by organic and inorganic phosphates. 7-OH-MTX does not, alone, inhibit [3H]deoxyuridine incorporation into DNA at concentrations of up to 50 microM. However, the catabolite reduces MTX inhibition of deoxyuridine metabolism, presumably due to the reduction in the free level of intracellular MTX achieved. These findings support the possibility that when 7-OH-MTX accumulates to high levels relative to MTX in clinical regimens, it may modulate the pharmacological effects of MTX.

  12. Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system

    SciTech Connect

    Chen, Kun; Sun, Guoxun; Lv, Zhiyuan; Wang, Chen; Jiang, Xueyuan; Li, Donghai; Zhang, Chenyu

    2010-10-01

    Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.

  13. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    SciTech Connect

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R.; Katzenellenbogen, Rachel A.

    2015-04-15

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.

  14. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export.

    PubMed

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P; Sandri-Goldin, Rozanne M

    2013-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.

  15. The Interaction between the Fiber Knob Domain and the Cellular Attachment Receptor Determines the Intracellular Trafficking Route of Adenoviruses

    PubMed Central

    Shayakhmetov, Dmitry M.; Li, Zong-Yi; Ternovoi, Vladimir; Gaggar, Anuj; Gharwan, Helen; Lieber, André

    2003-01-01

    Most of the presently used adenovirus (Ad) vectors are based on serotype 5. However, the application of these vectors is limited by the native tropism of Ad5. To address this problem, a series of fiber chimeric vectors were produced to take advantage of the different cellular receptors used by Ad of different subgroups. In this study we utilize an Ad5-based chimeric vector containing sequences encoding the Ad35 fiber knob domain instead of the Ad5 knob (Ad5/35L) to analyze factors responsible for selection of intracellular trafficking routes by Ads. By competition analysis with recombinant Ad5 and Ad35 knobs we showed that the Ad5/35L vector infected cells through a receptor different from the Ad5 receptor. Intracellular trafficking of Ad5 and Ad5/35L viruses was analyzed in HeLa cells by tracking fluorophore-conjugated Ad particles, by immunostaining for capsid hexon protein, by electron microscopy, and by Southern blotting for viral DNA. These studies showed that the interaction with the Ad35 receptor(s) predestines Ad5/35L vector to intracellular trafficking pathways different from those of Ad5. Ad5 efficiently escaped from the endosomes early after infection. In contrast, Ad5/35L remained longer in late endosomal/lysosomal compartments and used them to achieve localization to the nucleus. However, a significant portion of Ad5/35L particles appeared to be recycled back to the cell surface. This phenomenon resulted in significantly less efficient Ad5/35L-mediated gene transfer compared to that of Ad5. We also demonstrated that the selection of intracellular trafficking routes was determined by the fiber knob domain and did not depend on the length of the fiber shaft. This study contributes to a better understanding of the mechanisms that govern the infection of retargeted, capsid-modified vectors which have potential application for hematopoietic stem cell and tumor gene therapy. PMID:12610146

  16. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP.

    PubMed Central

    Ricquier, D; Bouillaud, F

    2000-01-01

    Animal and plant uncoupling protein (UCP) homologues form a subfamily of mitochondrial carriers that are evolutionarily related and possibly derived from a proton/anion transporter ancestor. The brown adipose tissue (BAT) UCP1 has a marked and strongly regulated uncoupling activity, essential to the maintenance of body temperature in small mammals. UCP homologues identified in plants are induced in a cold environment and may be involved in resistance to chilling. The biochemical activities and biological functions of the recently identified mammalian UCP2 and UCP3 are not well known. However, recent data support a role for these UCPs in State 4 respiration, respiration uncoupling and proton leaks in mitochondria. Moreover, genetic studies suggest that UCP2 and UCP3 play a part in energy expenditure in humans. The UCPs may also be involved in adaptation of cellular metabolism to an excessive supply of substrates in order to regulate the ATP level, the NAD(+)/NADH ratio and various metabolic pathways, and to contain superoxide production. A major goal will be the analysis of mice that either lack the UCP2 or UCP3 gene or overexpress these genes. Other aims will be to investigate the possible roles of UCP2 and UCP3 in response to oxidative stress, lipid peroxidation, inflammatory processes, fever and regulation of temperature in certain specific parts of the body. PMID:10620491

  17. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  18. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  19. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  20. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  1. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Defective uncoupling device. 215.125 Section 215.125 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components...

  2. Inhibitors of V-ATPase Proton Transport Reveal Uncoupling Functions of Tether Linking Cytosolic and Membrane Domains of V0 Subunit a (Vph1p)*

    PubMed Central

    Chan, Chun-Yuan; Prudom, Catherine; Raines, Summer M.; Charkhzarrin, Sahba; Melman, Sandra D.; De Haro, Leyma P.; Allen, Chris; Lee, Samuel A.; Sklar, Larry A.; Parra, Karlett J.

    2012-01-01

    Vacuolar ATPases (V-ATPases) are important for many cellular processes, as they regulate pH by pumping cytosolic protons into intracellular organelles. The cytoplasm is acidified when V-ATPase is inhibited; thus we conducted a high-throughput screen of a chemical library to search for compounds that acidify the yeast cytosol in vivo using pHluorin-based flow cytometry. Two inhibitors, alexidine dihydrochloride (EC50 = 39 μm) and thonzonium bromide (EC50 = 69 μm), prevented ATP-dependent proton transport in purified vacuolar membranes. They acidified the yeast cytosol and caused pH-sensitive growth defects typical of V-ATPase mutants (vma phenotype). At concentrations greater than 10 μm the inhibitors were cytotoxic, even at the permissive pH (pH 5.0). Membrane fractions treated with alexidine dihydrochloride and thonzonium bromide fully retained concanamycin A-sensitive ATPase activity despite the fact that proton translocation was inhibited by 80–90%, indicating that V-ATPases were uncoupled. Mutant V-ATPase membranes lacking residues 362–407 of the tether of Vph1p subunit a of V0 were resistant to thonzonium bromide but not to alexidine dihydrochloride, suggesting that this conserved sequence confers uncoupling potential to V1V0 complexes and that alexidine dihydrochloride uncouples the enzyme by a different mechanism. The inhibitors also uncoupled the Candida albicans enzyme and prevented cell growth, showing further specificity for V-ATPases. Thus, a new class of V-ATPase inhibitors (uncouplers), which are not simply ionophores, provided new insights into the enzyme mechanism and original evidence supporting the hypothesis that V-ATPases may not be optimally coupled in vivo. The consequences of uncoupling V-ATPases in vivo as potential drug targets are discussed. PMID:22215674

  3. A novel chemical uncoupler ameliorates obesity and related phenotypes in mice with diet-induced obesity by modulating energy expenditure and food intake.

    PubMed

    Fu, Y-Y; Zhang, M; Turner, N; Zhang, L-N; Dong, T-C; Gu, M; Leslie, S J; Li, J-Y; Nan, F-J; Li, J

    2013-10-01

    Decreasing mitochondrial coupling efficiency has been shown to be an effective therapy for obesity and related metabolic symptoms. Here we identified a novel mitochondrial uncoupler that promoted uncoupled respiration in a cell type-specific manner and investigated its effects on modulation of energy metabolism in vivo and in vitro. We screened a collection of mitochondrial membrane potential depolarising compounds for a novel chemical uncoupler on isolated skeletal muscle mitochondria using a channel oxygen system. The effect on respiration of metabolic cells (L6 myotubes, 3T3-L1 adipocytes and rat primary hepatocytes) was examined and metabolic pathways sensitive to cellular ATP content were also evaluated. The chronic metabolic effects were investigated in high-fat diet-induced obese mice and standard diet-fed (SD) lean mice. The novel uncoupler, CZ5, promoted uncoupled respiration in a cell type-specific manner. It stimulated fuel oxidation in L6 myotubes and reduced lipid accumulation in 3T3-L1 adipocytes but did not affect gluconeogenesis or the triacylglycerol content in hepatocytes. The administration of CZ5 to SD mice increased energy expenditure (EE) but did not affect body weight or adiposity. Chronic studies in mice on high-fat diet showed that CZ5 reduced body weight and improved glucose and lipid metabolism via both increased EE and suppressed energy intake. The reduced adiposity was associated with the restoration of expression of key metabolic genes in visceral adipose tissue. This work demonstrates that a cell type-specific mitochondrial chemical uncoupler may have therapeutic potential for treating high-fat diet-induced metabolic diseases.

  4. Uncoupling apical constriction from tissue invagination.

    PubMed

    Chung, SeYeon; Kim, Sangjoon; Andrew, Deborah J

    2017-03-06

    Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG.

  5. Vaccinia virus K1L protein mediates host-range function in RK-13 cells via ankyrin repeat and may interact with a cellular GTPase-activating protein.

    PubMed

    Bradley, Ritu R; Terajima, Masanori

    2005-12-01

    The K1L protein of vaccinia virus is required for its growth in certain cell lines (RK-13 and human). The cowpox host-range protein CP77 has been shown to complement K1L function in RK-13 cells, despite a lack of homology between the two proteins except for ankyrin repeats. We investigated the role of ankyrin repeats of K1L protein in RK-13 cells. The growth of a recombinant vaccinia virus, with K1L gene mutated in the most conserved ankyrin repeat, was severely impaired. Infection with the mutant virus caused shutdown of cellular and viral protein synthesis early in infection. We also investigated the interaction of K1L protein with cellular proteins and found that K1L interacts with the rabbit homologue of human ACAP2, a GTPase-activating protein with ankyrin repeats. Our result suggests the importance of ankyrin repeat for host-range function of K1L in RK-13 cells and identifies ACAP2 as a cellular protein, which may be interacting with K1L.

  6. Low resistance junctions in crayfish. Structural changes with functional uncoupling

    PubMed Central

    1976-01-01

    Electrical uncoupling of crayfish septate lateral giant axons is paralleled by structural changes in the gap junctions. The changes are characterized by a tighter aggregation of the intramembrane particles and a decrease in the overall width of the junction and the thickness of the gap. Preliminary measurements indicate also a decrease in particle diameter. The uncoupling is produced by in vitro treatment of crayfish abdominal cords either with a Ca++, Mg++-free solution containing EDTA, followed by return to normal saline (Van Harreveld's solution), or with VAn Harreveld's solution containing dinitrophenol (DNP). The uncoupling is monitored by the intracellular recording of the electrical resistance at a septum between lateral giant axons. The junctions of the same septum are examined in thin sections; those of other ganglia of the same chain used for the electrical measurements are studied by freeze-fracture. In controls, most junctions contain a more or less regular array of particles repeating at a center to center distance of approximately 200 A. The overall width of the junctions is approximately 200 A and the gap thickness is 40-50 A. Vesicles (400-700 A in diameter) are closely apposed to the junctional membranes. In uncoupled axons, most junctions contain a hexagonal array of particles repeating at a center to center distance of 150-155 A. The overall width of the junctions is approximately 180 A and the gap thickness is 20-30 A. These junctions are usually curved and are rarely associated with vesicles. Isolated, PTA-stained junctions, also believed to be uncoupled, display similar structural features. There are reasons to believe that the changes in structure and permeability are triggered by an increase in the intracellular free Ca++ concentration. Most likely, the changes in permeability are caused by conformational changes in some components of the intramembrane particles at the gap junctions. PMID:820701

  7. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    PubMed

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response.

  8. Cellular Up-regulation of Nedd4 Family Interacting Protein 1 (Ndfip1) using Low Levels of Bioactive Cobalt Complexes*

    PubMed Central

    Schieber, Christine; Howitt, Jason; Putz, Ulrich; White, Jonathan M.; Parish, Clare L.; Donnelly, Paul S.; Tan, Seong-Seng

    2011-01-01

    The delivery of metal ions using cell membrane-permeable metal complexes represents a method for activating cellular pathways. Here, we report the synthesis and characterization of new [CoIII(salen)(acac)] complexes capable of up-regulating the ubiquitin ligase adaptor protein Ndfip1. Ndfip1 is a neuroprotective protein that is up-regulated in the brain after injury and functions in combination with Nedd4 ligases to ubiquitinate harmful proteins for removal. We previously showed that Ndfip1 can be increased in human neurons using CoCl2 that is toxic at high concentration. Here we demonstrate a similar effect can be achieved by low concentrations of synthetic CoIII complexes that are non-toxic and designed to be activated following cellular entry. Activation is achieved by intracellular reduction of CoIII to CoII leading to release of CoII ions for Ndfip1 up-regulation. The cellular benefit of Ndfip1 up-regulation by CoIII complexes includes demonstrable protection against cell death in SH-SY5Y cells during stress. In vivo, focal delivery of CoIII complexes into the adult mouse brain was observed to up-regulate Ndfip1 in neurons. These results demonstrate that a cellular response pathway can be advantageously manipulated by chemical modification of metal complexes, and represents a significant step of harnessing low concentration metal complexes for therapeutic benefit. PMID:21187286

  9. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles

    PubMed Central

    Bewersdorff, Tony; Vonnemann, Jonathan; Kanik, Asiye; Haag, Rainer; Haase, Andrea

    2017-01-01

    Nanoparticles (NPs) have gained huge interest in the medical field, in particular for drug delivery purposes. However, binding of proteins often leads to fast NP uptake and rapid clearance, thereby hampering medical applications. Thus, it is essential to determine and control the bio–nano interface. This study investigated the serum protein interactions of dendritic polyglycerols (dPGs), which are promising drug delivery candidates by means of two dimensional gel electrophoresis (2DE) in combination with mass spectrometry. In order to investigate the influence of surface charge, sulfated (sulfated dendritic polyglycerol [dPGS]) and non-sulfated (dPGOH) surfaces were applied, which were synthesized on a gold core allowing for easier separation from unbound biomolecules through centrifugation. Furthermore, two different sizes for dPGS were included. Although size had only a minor influence, considerable differences were detected in protein affinity for dPGS versus dPGOH surfaces, with dPGOH binding much less proteins. Cellular uptake into human CD14+ monocytes was analyzed by flow cytometry, and dPGOH was taken up to a much lower extent compared to dPGS. By using a pull-down approach, possible cellular interaction partners of serum pre-incubated dPGS-Au20 NPs from the membrane fraction of THP-1 cells could be identified such as for instance the transferrin receptor or an integrin. Clathrin-mediated endocytosis was further investigated using chlorpromazine as an inhibitor, which resulted in a 50% decrease of the cellular uptake of dPGS. This study could confirm the influence of surface charge on protein interactions and cellular uptake of dPGS. Furthermore, the approach allowed for the identification of possible uptake receptors and insights into the uptake mechanism. PMID:28352171

  10. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles.

    PubMed

    Bewersdorff, Tony; Vonnemann, Jonathan; Kanik, Asiye; Haag, Rainer; Haase, Andrea

    2017-01-01

    Nanoparticles (NPs) have gained huge interest in the medical field, in particular for drug delivery purposes. However, binding of proteins often leads to fast NP uptake and rapid clearance, thereby hampering medical applications. Thus, it is essential to determine and control the bio-nano interface. This study investigated the serum protein interactions of dendritic polyglycerols (dPGs), which are promising drug delivery candidates by means of two dimensional gel electrophoresis (2DE) in combination with mass spectrometry. In order to investigate the influence of surface charge, sulfated (sulfated dendritic polyglycerol [dPGS]) and non-sulfated (dPGOH) surfaces were applied, which were synthesized on a gold core allowing for easier separation from unbound biomolecules through centrifugation. Furthermore, two different sizes for dPGS were included. Although size had only a minor influence, considerable differences were detected in protein affinity for dPGS versus dPGOH surfaces, with dPGOH binding much less proteins. Cellular uptake into human CD14(+) monocytes was analyzed by flow cytometry, and dPGOH was taken up to a much lower extent compared to dPGS. By using a pull-down approach, possible cellular interaction partners of serum pre-incubated dPGS-Au20 NPs from the membrane fraction of THP-1 cells could be identified such as for instance the transferrin receptor or an integrin. Clathrin-mediated endocytosis was further investigated using chlorpromazine as an inhibitor, which resulted in a 50% decrease of the cellular uptake of dPGS. This study could confirm the influence of surface charge on protein interactions and cellular uptake of dPGS. Furthermore, the approach allowed for the identification of possible uptake receptors and insights into the uptake mechanism.

  11. Uncoupling apical constriction from tissue invagination

    PubMed Central

    Chung, SeYeon; Kim, Sangjoon; Andrew, Deborah J

    2017-01-01

    Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG. DOI: http://dx.doi.org/10.7554/eLife.22235.001 PMID:28263180

  12. O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence

    PubMed Central

    Lee, Jong-Sun; Zhang, Zhiguo

    2016-01-01

    The histone chaperone HIRA complex, consisting of histone cell cycle regulator (HIRA), Ubinuclein1 (UBN1), and calcineurin binding protein 1 (CABIN1), deposits histone variant H3.3 to genic regions and regulates gene expression in various cellular processes, including cellular senescence. How HIRA-mediated nucleosome assembly of H3.3–H4 is regulated remains not well understood. Here, we show that O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), an enzyme that catalyzes O-GlcNAcylation of serine or threonine residues, interacts with UBN1, modifies HIRA, and promotes nucleosome assembly of H3.3. Depletion of OGT or expression of the HIRA S231A O-GlcNAcylation–deficient mutant compromises formation of the HIRA–H3.3 complex and H3.3 nucleosome assembly. Importantly, OGT depletion or expression of the HIRA S231A mutant delays premature cellular senescence in primary human fibroblasts, whereas overexpression of OGT accelerates senescence. Taken together, these results support a model in which OGT modifies HIRA to regulate HIRA–H3.3 complex formation and H3.3 nucleosome assembly and reveal the mechanism by which OGT functions in cellular senescence. PMID:27217568

  13. Early Steps of Jaagsiekte Sheep Retrovirus-Mediated Cell Transformation Involve the Interaction between Env and the RALBP1 Cellular Protein

    PubMed Central

    Monot, Margaux; Erny, Alexandra; Gineys, Barbara; Desloire, Sophie; Dolmazon, Christine; Aublin-Gex, Anne; Lotteau, Vincent; Archer, Fabienne

    2015-01-01

    ABSTRACT Ovine pulmonary adenocarcinoma is a naturally occurring lung cancer in sheep induced by the Jaagsiekte sheep retrovirus (JSRV). Its envelope glycoprotein (Env) carries oncogenic properties, and its expression is sufficient to induce in vitro cell transformation and in vivo lung adenocarcinoma. The identification of cellular partners of the JSRV envelope remains crucial for deciphering mechanisms leading to cell transformation. We initially identified RALBP1 (RalA binding protein 1; also known as RLIP76 or RIP), a cellular protein implicated in the ras pathway, as a partner of JSRV Env by yeast two-hybrid screening and confirmed formation of RALBP1/Env complexes in mammalian cells. Expression of the RALBP1 protein was repressed in tumoral lungs and in tumor-derived alveolar type II cells. Through its inhibition using specific small interfering RNA (siRNA), we showed that RALBP1 was involved in envelope-induced cell transformation and in modulation of the mTOR (mammalian target of rapamycin)/p70S6K pathway by the retroviral envelope. IMPORTANCE JSRV-induced lung adenocarcinoma is of importance for the sheep industry. While the envelope has been reported as the oncogenic determinant of the virus, the cellular proteins directly interacting with Env are still not known. Our report on the formation of RALBP/Env complexes and the role of this interaction in cell transformation opens up a new hypothesis for the dysregulation observed upon virus infection in sheep. PMID:26041289

  14. Modularity analysis based on predicted protein-protein interactions provides new insights into pathogenicity and cellular process of Escherichia coli O157:H7

    PubMed Central

    2011-01-01

    Background With the development of experimental techniques and bioinformatics, the quantity of data available from protein-protein interactions (PPIs) is increasing exponentially. Functional modules can be identified from protein interaction networks. It follows that the investigation of functional modules will generate a better understanding of cellular organization, processes, and functions. However, experimental PPI data are still limited, and no modularity analysis of PPIs in pathogens has been published to date. Results In this study, we predict and analyze the functional modules of E. coli O157:H7 systemically by integrating several bioinformatics methods. After evaluation, most of the predicted modules are found to be biologically significant and functionally homogeneous. Six pathogenicity-related modules were discovered and analyzed, including novel modules. These modules provided new information on the pathogenicity of O157:H7. The modularity of cellular function and cooperativity between modules are also discussed. Moreover, modularity analysis of O157:H7 can provide possible candidates for biological pathway extension and clues for discovering new pathways of cross-talk. Conclusions This article provides the first modularity analysis of a pathogen and sheds new light on the study of pathogens and cellular processes. Our study also provides a strategy for applying modularity analysis to any sequenced organism. PMID:22188601

  15. The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave

    SciTech Connect

    Botros, Barbara B.; Zhu, YuJian; Lee, John H.S.; Ng, Hoi Dick; Ju, Yiguang

    2007-12-15

    This paper analyzes the results of a head-on collision between a detonation and a planar shock wave. The evolution of the detonation cellular structure subsequent to the frontal collision was examined through smoked foil experiments. It is shown that a large reduction in cell size is observed following the frontal collision, and that the detonation cell widths are correlated well with the chemical kinetic calculations from the ZND model. From chemical kinetic calculations, the density increase caused by shock compression appears to be the main factor leading to the significant reduction in cell size. It was found that depending on the initial conditions, the transition to the final cellular pattern can be either smooth or spotty. This phenomenon appears to be equivalent to Oppenheim's strong and mild reflected shock ignition experiments. The difference between these two transitions is, however, more related to the stability of the incident detonation and the strength of the perturbation generated by the incident shock. (author)

  16. Lipid-modified oligonucleotide conjugates: Insights into gene silencing, interaction with model membranes and cellular uptake mechanisms.

    PubMed

    Ugarte-Uribe, Begoña; Grijalvo, Santiago; Pertíñez, Samuel Núñez; Busto, Jon V; Martín, César; Alagia, Adele; Goñi, Félix M; Eritja, Ramón; Alkorta, Itziar

    2017-01-01

    The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid-oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3'- and 5'-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5'-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies.

  17. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles

    PubMed Central

    Peetla, Chiranjeevi; Rao, Kavitha S.; Labhasetwar, Vinod

    2009-01-01

    The aim of the study was to test the hypothesis that the biophysical interactions of the trans-activating transcriptor (TAT) peptide-conjugated nanoparticles (NPs) with a model cell membrane could predict the cellular uptake of the encapsulated therapeutic agent. To test the above hypothesis, the biophysical interactions of ritonavir-loaded poly (L-lactide) nanoparticles (RNPs), either conjugated to a TAT peptide (TAT-RNPs) or scrambled TAT peptide (sc-TAT-RNPs), were studied with an endothelial cell model membrane (EMM) using a Langmuir film balance, and the corresponding human vascular endothelial cells (HUVECs) were used to study the uptake of the encapsulated therapeutic. Biophysical interactions were determined from the changes in surface pressure (SP) of the EMM as a function of time following interaction with NPs, and the compression isotherm (π–A) of the EMM lipid mixture in the presence of NPs. In addition, the EMMs were transferred onto a silicon substrate following interactions with NPs using the Langmuir–Schaeffer (LS) technique. The transferred LS films were imaged by atomic force microscopy (AFM) to determine the changes in lipid morphology and to characterize the NP–membrane interactions. TAT-RNPs showed an increase in SP of the EMM, which was dependent upon the amount of the peptide bound to NPs and the concentration of NPs, whereas sc-TAT-RNPs and RNPs did not show any significant change in SP. The isotherm experiment showed a shift towards higher mean molecular area (mmA) in the presence of TAT-RNPs, indicating their interactions with the lipids of the EMM, whereas sc-TAT-RNPs and RNPs did not show any significant change. The AFM images showed condensation of the lipids following interaction with TAT-RNPs, indicating their penetration into the EMM, whereas RNPs did not cause any change. Surface analysis and 3-D AFM images of the EMM further confirmed penetration of TAT-RNPs into the EMM whereas RNPs were seen anchored loosely to the

  18. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations

    PubMed Central

    Waadt, Rainer; Schlücking, Kathrin; Schroeder, Julian I.; Kudla, Jörg

    2014-01-01

    Summary The analyses of protein-protein interactions is crucial for understanding cellular processes including signal transduction, protein trafficking and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo. Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms, and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further we discuss different BiFC applications and provide examples for proper BiFC analyses in planta. PMID:24057390

  19. Coordinated Rhythmic Motion by Uncoupled Neuronal Oscillators with Sensory Feedback

    NASA Astrophysics Data System (ADS)

    Iwasaki, Tetsuya

    This paper explores the potential of biological oscillators as a basic unit for feedback control to achieve rhythmic motion of locomotory systems. Among those properties of biological control systems that are useful for engineering applications, we focus on decentralized coordination, that is, the ability of uncoupled neuronal oscillators to coordinate rhythmic body movements to achieve locomotion with the aid of local sensory feedback. We will consider the reciprocal inhibition oscillator (RIO) as a candidate for the basic control unit, and show that uncoupled RIOs can achieve decentralized coordination of a prototype mechanical rectifier (PMR) that captures essential dynamics underlying animal locomotion by a simple arm-disk configuration. Optimality of the induced locomotion is studied in comparison with analytical results we derive for statically optimal PMR locomotion.

  20. Involvement of Drosophila uncoupling protein 5 in metabolism and aging.

    PubMed

    Sánchez-Blanco, Adolfo; Fridell, Yih-Woei C; Helfand, Stephen L

    2006-03-01

    A novel uncoupling protein, UCP5, has recently been characterized as a functional mitochondrial uncoupler in Drosophila. Here we demonstrate that UCP5 knockout (UCP5KO) flies are highly sensitive to starvation stress, a phenotype that can be reversed by ectopic neuronal expression of UCP5. UCP5KO flies live longer than controls on low-calorie diets, have a decreased level of fertility, and gain less weight than controls on high-calorie diets. However, isolated mitochondria from UCP5KO flies display the same respiration patterns as controls. Furthermore, total ATP levels in both UCP5KO and control flies are comparable. UCP5KO flies have a lower body composition of sugars, and during starvation stress their triglyceride reserves are depleted more rapidly than controls. Taken together, these data indicate that UCP5 is important to maintain metabolic homeostasis in the fly. We hypothesize that UCP5 influences hormonal control of metabolism.

  1. Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection.

    PubMed

    Cardoso, Susana; Correia, Sónia; Carvalho, Cristina; Candeias, Emanuel; Plácido, Ana I; Duarte, Ana I; Seiça, Raquel M; Moreira, Paula I

    2015-04-01

    The integrity of mitochondrial function is essential to cell life. It follows that disturbances of mitochondrial function will lead to disruption of cell function, expressed as disease or even death. Considering that neuronal uncoupling proteins (UCPs) decrease reactive oxygen species (ROS) production at the expense of energy production, it is important to understand the underlying mechanisms by which UCPs control the balance between the production of adenosine triphosphate (ATP) and ROS in the context of normal physiological activity and in pathological conditions. Here we review the current understanding of neuronal UCPs-mediated respiratory uncoupling process by performing a survey in their physiology and regulation. The latest findings regarding neuronal UCPs physiological roles and their involvement and interest as potential targets for therapeutic intervention in brain diseases will also be exploited.

  2. Glyoxalate reductase/hydroxypyruvate reductase interacts with the sodium-dependent vitamin C transporter-1 to regulate cellular vitamin C homeostasis

    PubMed Central

    Nabokina, Svetlana M.; Patton, Joseph R.; Marchant, Jonathan S.; Moradi, Hamid; Said, Hamid M.

    2013-01-01

    The human sodium-dependent vitamin C transporter 1 (hSVCT1) contributes to cellular uptake of ascorbic acid (AA). Although different aspects of hSVCT1 cell biology have been extensively studied, nothing is currently known about the broader hSVCT1 interactome that modulates its role in cellular physiology. Here, we identify the enzyme human glyoxalate reductase/hydroxypyruvate reductase (hGR/HPR) as an hSVCT1 associated protein by yeast two-hybrid (Y2H) screening of a human liver cDNA library. The interaction between hSVCT1 and hGR/HPR was further confirmed by in vitro GST pull-down assay, in vivo coimmunoprecipitation and mammalian two-hybrid firefly luciferase assays. This interaction had functional significance as coexpression of hGR/HPR with hSVCT1 led to an increase in AA uptake. Reciprocally, siRNA-mediated knockdown of endogenous hGR/HPR led to an inhibition of AA uptake. Given that oxalate is a degradation product of vitamin C and hGR/HPR acts to limit cellular oxalate levels, this association physically couples two independent regulators of cellular oxalate production. Furthermore, confocal imaging of human liver HepG2 cells coexpressing GFP-hSVCT1 and hGR/HPR-mCherry demonstrated that these two proteins colocalize within a subpopulation of intracellular organelles. This provides a possible molecular basis for organellar AA transport and regulation of local glyoxylate/glycolate concentration in the vicinity of organelle membranes. PMID:23599041

  3. Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria

    PubMed Central

    Fedorenko, Andriy; Lishko, Polina V.

    2013-01-01

    Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). Upon activation by long-chain fatty acids (LCFAs), UCP1 increases the conductance of the inner mitochondrial membrane (IMM) to make BAT mitochondria generate heat rather than ATP. Despite being a member of the family of mitochondrial anion carriers (SLC25), UCP1 is believed to transport H+ by an unusual mechanism that has long remained unresolved. Here, we achieved direct patch-clamp measurements of UCP1 currents from the IMM of BAT mitochondria. We show that UCP1 is an LCFA anion/H+ symporter. However, the LCFA anions cannot dissociate from UCP1 due to hydrophobic interactions established by their hydrophobic tails, and UCP1 effectively operates as an H+ carrier activated by LCFA. A similar LCFA-dependent mechanism of transmembrane H+ transport may be employed by other SLC25 members and be responsible for mitochondrial uncoupling and regulation of metabolic efficiency in various tissues. PMID:23063128

  4. Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII

    PubMed Central

    Schlau-Cohen, Gabriela S.; Calhoun, Tessa R.; Ginsberg, Naomi S.; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2010-01-01

    Electrostatic couplings between chromophores in photosynthetic pigment–protein complexes, and interactions of pigments with the surrounding protein environment, produce a complicated energy landscape of delocalized excited states. The resultant electronic structure absorbs light and gives rise to energy transfer steps that direct the excitation toward a site of charge separation with near unity quantum efficiency. Knowledge of the transition energies of the uncoupled chromophores is required to describe how the wave functions of the individual pigments combine to form this manifold of delocalized excited states that effectively harvests light energy. In an investigation of the major light-harvesting complex of photosystem II (LHCII), we develop a method based on polarized 2D electronic spectroscopy to experimentally access the energies of the S0–S1 transitions in the chromophore site basis. Rotating the linear polarization of the incident laser pulses reveals previously hidden off-diagonal features. We exploit the polarization dependence of energy transfer peaks to find the angles between the excited state transition dipole moments. We show that these angles provide a spectroscopic method to directly inform on the relationship between the delocalized excitons and the individual chlorophylls through the site energies of the uncoupled chromophores. PMID:20622154

  5. Robots Would Couple And Uncouple Fluid And Electrical Lines

    NASA Technical Reports Server (NTRS)

    Del Castillo, Eduardo Lopez; Davis, Virgil; Ferguson, Bob; Reichle, Garland

    1992-01-01

    Robots make and break connections between umbilical plates and mating connectors on rockets about to be launched. Sensing and control systems include vision, force, and torque subsystems. Enhances safety by making it possible to couple and uncouple umbilical plates quickly, without exposing human technicians to hazards of leaking fuels and oxidizers. Significantly reduces time spent to manually connect umbilicals. Robots based on similar principles used in refueling of National AeroSpace Plane (NASP) and satellites and orbital transfer vehicles in space.

  6. Uncoupling of Vascular Nitric Oxide Synthase Caused by Intermittent Hypoxia.

    PubMed

    Badran, Mohammad; Abuyassin, Bisher; Golbidi, Saeid; Ayas, Najib; Laher, Ismail

    2016-01-01

    Objective. Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is often present in diabetic (DB) patients. Both conditions are associated with endothelial dysfunction and cardiovascular disease. We hypothesized that diabetic endothelial dysfunction is further compromised by CIH. Methods. Adult male diabetic (BKS.Cg-Dock7(m) +/+ Lepr(db) /J) (db/db) mice (10 weeks old) and their heterozygote littermates were subjected to CIH or intermittent air (IA) for 8 weeks. Mice were separated into 4 groups: IA (intermittent air nondiabetic), IH (intermittent hypoxia nondiabetic), IADB (intermittent air diabetic), and IHDB (intermittent hypoxia diabetic) groups. Endothelium-dependent and endothelium-independent relaxation and modulation by basal nitric oxide (NO) were analyzed using wire myograph. Plasma 8-isoprostane, interleukin-6 (IL-6), and asymmetric dimethylarginine (ADMA) were measured using ELISA. Uncoupling of eNOS was measured using dihydroethidium (DHE) staining. Results. Endothelium-dependent vasodilation and basal NO production were significantly impaired in the IH and IADB group compared to IA group but was more pronounced in IHDB group. Levels of 8-isoprostane, IL-6, ADMA, and eNOS uncoupling were ≈2-fold higher in IH and IADB groups and were further increased in the IHDB group. Conclusion. Endothelial dysfunction is more pronounced in diabetic mice subjected to CIH compared to diabetic or CIH mice alone. Oxidative stress, ADMA, and eNOS uncoupling were exacerbated by CIH in diabetic mice.

  7. Uncoupling of Vascular Nitric Oxide Synthase Caused by Intermittent Hypoxia

    PubMed Central

    Ayas, Najib

    2016-01-01

    Objective. Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is often present in diabetic (DB) patients. Both conditions are associated with endothelial dysfunction and cardiovascular disease. We hypothesized that diabetic endothelial dysfunction is further compromised by CIH. Methods. Adult male diabetic (BKS.Cg-Dock7m +/+ Leprdb/J) (db/db) mice (10 weeks old) and their heterozygote littermates were subjected to CIH or intermittent air (IA) for 8 weeks. Mice were separated into 4 groups: IA (intermittent air nondiabetic), IH (intermittent hypoxia nondiabetic), IADB (intermittent air diabetic), and IHDB (intermittent hypoxia diabetic) groups. Endothelium-dependent and endothelium-independent relaxation and modulation by basal nitric oxide (NO) were analyzed using wire myograph. Plasma 8-isoprostane, interleukin-6 (IL-6), and asymmetric dimethylarginine (ADMA) were measured using ELISA. Uncoupling of eNOS was measured using dihydroethidium (DHE) staining. Results. Endothelium-dependent vasodilation and basal NO production were significantly impaired in the IH and IADB group compared to IA group but was more pronounced in IHDB group. Levels of 8-isoprostane, IL-6, ADMA, and eNOS uncoupling were ≈2-fold higher in IH and IADB groups and were further increased in the IHDB group. Conclusion. Endothelial dysfunction is more pronounced in diabetic mice subjected to CIH compared to diabetic or CIH mice alone. Oxidative stress, ADMA, and eNOS uncoupling were exacerbated by CIH in diabetic mice. PMID:27840666

  8. Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia*

    PubMed Central

    ROSENBERGER, DOROTHEA; MOSHAL, KARNI S.; KARTHA, GANESH K.; TYAGI, NEETU; SEN, UTPAL; LOMINADZE, DAVID; MALDONADO, CLAUDIO; ROBERTS, ANDREW M.; TYAGI, SURESH C.

    2011-01-01

    Elevated levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy) are associated with arrhythmogenesis and sudden cardiac death (SCD). Hcy decreases constitutive neuronal and endothelial nitric oxide (NO), and cardiac diastolic relaxation. Hcy increases the iNOS/NO, peroxynitrite, mitochondrial NADPH oxidase, and suppresses superoxide dismutase (SOD) and redoxins. Hcy activates matrix metalloproteinase (MMP), disrupts connexin-43 and increases collagen/elastin ratio. The disruption of connexin-43 and accumulation of collagen (fibrosis) disrupt the normal pattern of cardiac conduction and attenuate NO transport from endothelium to myocyte (E-M) causing E-M uncoupling, leading to a pro-arrhythmic environment. The goal of this review is to elaborate the mechanism of Hcy-mediated iNOS/NO in E-M uncoupling and SCD. It is known that Hcy creates arrhythmogenic substrates (i.e. increase in collagen/elastin ratio and disruption in connexin-43) and exacerbates heart failure during chronic volume overload. Also, Hcy behaves as an agonist to N-methyl-D-aspartate (NMDA, an excitatory neurotransmitter) receptor-1, and blockade of NMDA-R1 reduces the increase in heart rate-evoked by NMDA-analog and reduces SCD. This review suggest that Hcy increases iNOS/NO, superoxide, metalloproteinase activity, and disrupts connexin-43, exacerbates endothelial-myocyte uncoupling and cardiac failure secondary to inducing NMDA-R1. PMID:17178594

  9. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics

    PubMed Central

    2012-01-01

    Background Polymer nanoparticles (PNP) are becoming increasingly important in nanomedicine and food-based applications. Size and surface characteristics are often considered to be important factors in the cellular interactions of these PNP, although systematic investigations on the role of surface properties on cellular interactions and toxicity of PNP are scarce. Results Fluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm) and surface charges (positive and negative) were synthesized, characterized and studied for uptake and cytotoxicity in NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP45 (45 nm) showed a higher cytotoxicity compared to the positive bigger PNP90 (90 nm) particles including reduction in mitochondrial membrane potential (ΔΨm), induction of reactive oxygen species (ROS) production, ATP depletion and TNF-α release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential (ΔΨm), uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning microscopy (CLSM). Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP), caveolin (for negative PNP) and mannose receptors (for hydroxylated PNP) were found with smaller PNP45 showing stronger interactions with the receptors than bigger PNP90. Conclusions The size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different surface charges) play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors (clathrin, caveolin and mannose) leading to cellular internalization were observed to depend on size and surface

  10. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation.

    PubMed

    Almeida, Luciana O; Garcia, Cristiana B; Matos-Silva, Flavia A; Curti, Carlos; Leopoldino, Andréia M

    2014-02-28

    SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET-hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  11. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    PubMed

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  12. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants

    PubMed Central

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-01-01

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1–296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs. PMID:26359114

  13. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation

    SciTech Connect

    Almeida, Luciana O.; Garcia, Cristiana B.; Matos-Silva, Flavia A.; Curti, Carlos; Leopoldino, Andréia M.

    2014-02-28

    Highlights: • hnRNPK is a new target of SET. • SET regulates hnRNPK. • SET and hnRNPK accumulation promotes tumorigenesis. • SET accumulation is a potential model to study genes regulated by SET-hnRNPK. - Abstract: SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  14. Interaction of Iron II Complexes with B-DNA. Insights from Molecular Modeling, Spectroscopy and Cellular Biology.

    NASA Astrophysics Data System (ADS)

    Gattuso, Hugo; Duchanois, Thibaut; Besancenot, Vanessa; Barbieux, Claire; Assfeld, Xavier; Becuwe, Philippe; Gros, Philippe; Grandemange, Stephanie; Monari, Antonio

    2015-12-01

    We report the characterization of the interaction between B-DNA and three terpyridin iron II complexes. Relatively long time-scale molecular dynamics is used in order to characterize the stable interaction modes. By means of molecular modeling and UV-vis spectroscopy, we prove that they may lead to stable interactions with the DNA duplex. Furthermore, the presence of larger π-conjugated moieties also leads to the appearance of intercalation binding mode. Non-covalent stabilizing interactions between the iron complexes and the DNA are also characterized and evidenced by the analysis of the gradient of the electronic density. Finally, the structural deformations induced on the DNA in the different binding modes are also evidenced. The synthesis and chemical characterization of the three complexes is reported, as well as their absorption spectra in presence of DNA duplexes to prove the interaction with DNA. Finally, their effects on human cell cultures have also been evidenced to further enlighten their biological effects.

  15. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1.

    PubMed

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    Prion diseases involve the conversion of the endogenous cellular prion protein, PrP(C), into a misfolded infectious isoform, PrP(Sc). Several functions have been attributed to PrP(C), and its role has also been investigated in the olfactory system. PrP(C) is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp(-/-) mice showed impaired behavior in olfactory tests. Given the high PrP(C) expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrP(C)-binding partners. Ten different putative PrP(C) ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrP(C) with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrP(C)-Stub1 interaction are under investigation. The PrP(C)-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrP(C) is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein.

  16. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    SciTech Connect

    Hals, Ingrid K.; Ogata, Hirotaka; Pettersen, Elin; Ma, Zuheng; Bjoerklund, Anneli; Skorpen, Frank; Egeberg, Kjartan Wollo; Grill, Valdemar

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the

  17. Effects of crab halophytic plant interactions on creek growth in a S.W. Atlantic salt marsh: A Cellular Automata model

    NASA Astrophysics Data System (ADS)

    Minkoff, Darío R.; Escapa, Mauricio; Ferramola, Félix E.; Maraschín, Silvio D.; Pierini, Jorge O.; Perillo, Gerardo M. E.; Delrieux, Claudio

    2006-09-01

    The Bahía Blanca Estuary (38° 50' S, and 62° 30' W) presents salt marshes where interactions between the local flora ( Sarcocornia perennis) and fauna ( Chasmagnathus granulatus) generate some kind of salt pans that alter the normal water circulation and condition its flow and course towards tidal creeks. The crab-vegetation dynamics in the salt marsh presents variations that cannot be quantified in a reasonable period of time. The interaction between S. perennis plant and C. granulatus crab is based on simple laws, but its result is a complex biological mechanism that causes an erosive process on the salt marsh and favors the formation of tidal creeks. To study it, a Cellular Automata model is proposed, based on the laws deduced from the observation of these phenomena in the field, and then verified with measurable data within macroscale time units. Therefore, the objective of this article is to model how the interaction between C. granulatus and S. perennis modifies the landscape of the salt marsh and influences the path of tidal creeks. The model copies the basic laws that rule the problem based on purely biological factors. The Cellular Automata model proved capable of reproducing the effects of the interaction between plants and crabs in the salt marsh. A study of the water drainage of the basins showed that this interaction does indeed modify the development of tidal creeks. Model dynamics would likewise follow different laws, which would provide a different formula for the probability of patch dilation. The patch shape can be obtained changing the pattern that dilates.

  18. Optical forced oscillation for the study of lectin-glycoprotein interaction at the cellular membrane of a Chinese hamster ovary cell

    NASA Astrophysics Data System (ADS)

    Liu, Shang-Ling; Karmenyan, Artashes; Wei, Ming-Tzo; Huang, Chun-Chieh; Lin, Chi-Hung; Chiou, Arthur

    2007-03-01

    We report the application of a set of twin optical tweezers to trap and oscillate a ConA (lectin)- coated polystyrene particle and to measure its interaction with glycoprotein receptors at the cellular plasma membrane of a Chinese hamster ovary (CHO) cell. The particle was trapped between two quadratic potential wells defined by a set of twin optical tweezers and was forced to oscillate by chopping on and off one of the trapping beams. We tracked the oscillatory motion of the particle via a quadrant photodiode and measured with a lock-in amplifier the amplitude of the oscillation as a function of frequency at the fundamental component of the driving frequency over a frequency range from 10Hz to 600Hz. By analyzing the amplitude as a function of frequency for a free particle suspended in buffer solution without the presence of the CHO cell and compared with the corresponding data when the particle was interacting with the CHO cell, we deduced the transverse force constant associated with the optical trap and that associated with the interaction by treating both the optical trap and the interaction as linear springs. The force constants were determined to be approximately 2.15pN/μm for the trap and 2.53pN/μm for the lectin-glycoprotein interaction. When the CHO cell was treated with lantrunculin A, a drug that is known to destroy the cytoskeleton of the cell, the oscillation amplitude increased with time, indicating the softening of the cellular membrane, until a steady state with a smaller force constant was reached. The steady state value of the force constant depended on the drug concentration.

  19. Effect of mitochondrial uncoupling and glycolysis inhibition on ram sperm functionality.

    PubMed

    Losano, Jda; Angrimani, Dsr; Dalmazzo, A; Rui, B R; Brito, M M; Mendes, C M; Kawai, Gkv; Vannucchi, C I; Assumpção, Meoa; Barnabe, V H; Nichi, M

    2017-04-01

    Studies have demonstrated the importance of mitochondria to sperm functionality, as the main source of ATP for cellular homoeostasis and motility. However, the role of mitochondria on sperm metabolism is still controversial. Studies indicate that, for some species, glycolysis may be the main mechanism for sperm energy production. For ram sperm, such pathway is not clear. Thus, we evaluated ram sperm in response to mitochondrial uncoupling and glycolysis inhibition aiming to assess the importance of each pathway for sperm functionality. Statistical analysis was performed by the SAS System for Windows, using the General Linear Model Procedure. Data were tested for residue normality and variance homogeneity. A p < .05 was considered significant. Groups treated with the mitochondrial uncoupler Carbonyl cyanide 3 chlorophenylhydrazone (CCCP) showed a decrease in the percentage of cells with low mitochondrial activity and high mitochondrial membrane potential. We also observed that the highest CCCP concentration promotes a decrease in sperm susceptibility to lipid peroxidation. Regardless the lack of effect of CCCP on total motility, this substance induced significant alterations on sperm kinetics. Besides the interference of CCCP on spermatic movement patterns, it was also possible to observe such an effect in samples treated with the inhibitor of glycolysis (2-deoxy-d-glucose, DOG). Furthermore, treatment with DOG also led to a dose-dependent increase in sperm susceptibility to lipid peroxidation. Based on our results, we suggest that the glycolysis appears to be as important as oxidative phosphorylation for ovine sperm kinetics as this mechanism is capable of maintaining full motility when most of the cells have a low mitochondrial membrane potential. Furthermore, we found that changes in the glycolytic pathway trough glycolysis inhibition are likely involved in mitochondrial dysfunction and sperm oxidative unbalance. © 2017 Blackwell Verlag GmbH.

  20. Mitochondrial uncoupling protein 2 induces cell cycle arrest and necrotic cell death.

    PubMed

    Palanisamy, Arun P; Cheng, Gang; Sutter, Alton G; Evans, Zachary P; Polito, Carmen C; Jin, Lan; Liu, John; Schmidt, Michael G; Chavin, Kenneth D

    2014-03-01

    Uncoupling protein 2 (UCP2) is a mitochondrial membrane protein that regulates energy metabolism and reactive oxygen species (ROS) production. We generated mouse carboxy- and amino-terminal green fluorescent protein (GFP)-tagged UCP2 constructs to investigate the effect of UCP2 expression on cell proliferation and viability. UCP2-transfected Hepa 1-6 cells did not show reduced cellular adenosine triphosphate (ATP) but showed increased levels of glutathione. Flow cytometry analysis indicated that transfected cells were less proliferative than nontransfected controls, with most cells blocked at the G1 phase. The effect of UCP2 on cell cycle arrest could not be reversed by providing exogenous ATP or oxidant supply, and was not affected by the chemical uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP). However, this effect of UCP2 was augmented by treatment with genistein, a tyrosine kinase inhibitor, which by itself did not affect cell proliferation on control hepatocytes. Western blotting analysis revealed decreased expression levels of CDK6 but not CDK2 and D-type cyclins. Examination of cell viability in UCP2-transfected cells with Trypan Blue and Annexin-V staining revealed that UCP2 transfection led to significantly increased cell death. However, characteristics of apoptosis were absent in UCP2-transfected Hepa 1-6 cells, including lack of oligonucleosomal fragmentation (laddering) of chromosomal DNA, release of cytochrome c from mitochondria, and cleavage of caspase-3. In conclusion, our results indicate that UCP2 induces cell cycle arrest at G1 phase and causes nonapoptotic cell death, suggesting that UCP2 may act as a powerful influence on hepatic regeneration and cell death in the steatotic liver.

  1. Human Immunodeficiency Virus Type 1 Employs the Cellular Dynein Light Chain 1 Protein for Reverse Transcription through Interaction with Its Integrase Protein

    PubMed Central

    Jayappa, Kallesh Danappa; Ao, Zhujun; Wang, Xiaoxia; Mouland, Andrew J.; Shekhar, Sudhanshu; Yang, Xi

    2015-01-01

    ABSTRACT In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150Glued in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150Glued, resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs 52GQVD and 250VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1INQ53A/Q252A) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1INQ53A/Q252A mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE Host cellular DYNLL1, DYNLT1, and p150Glued proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral

  2. Application of a personal computer for the uncoupled vibration analysis of wind turbine blade and counterweight assemblies

    NASA Technical Reports Server (NTRS)

    White, P. R.; Little, R. R.

    1985-01-01

    A research effort was undertaken to develop personal computer based software for vibrational analysis. The software was developed to analytically determine the natural frequencies and mode shapes for the uncoupled lateral vibrations of the blade and counterweight assemblies used in a single bladed wind turbine. The uncoupled vibration analysis was performed in both the flapwise and chordwise directions for static rotor conditions. The effects of rotation on the uncoupled flapwise vibration of the blade and counterweight assemblies were evaluated for various rotor speeds up to 90 rpm. The theory, used in the vibration analysis codes, is based on a lumped mass formulation for the blade and counterweight assemblies. The codes are general so that other designs can be readily analyzed. The input for the codes is generally interactive to facilitate usage. The output of the codes is both tabular and graphical. Listings of the codes are provided. Predicted natural frequencies of the first several modes show reasonable agreement with experimental results. The analysis codes were originally developed on a DEC PDP 11/34 minicomputer and then downloaded and modified to run on an ITT XTRA personal computer. Studies conducted to evaluate the efficiency of running the programs on a personal computer as compared with the minicomputer indicated that, with the proper combination of hardware and software options, the efficiency of using a personal computer exceeds that of a minicomputer.

  3. A novel Gs alpha mutant in a patient with Albright hereditary osteodystrophy uncouples cell surface receptors from adenylyl cyclase.

    PubMed

    Schwindinger, W F; Miric, A; Zimmerman, D; Levine, M A

    1994-10-14

    Albright hereditary osteodystrophy (AHO) is an autosomal-dominant disorder characterized by decreased expression of Gs alpha and widespread tissue resistance to hormones that activate adenylyl cyclase. We identified a single mutation, R385H, in the Gs alpha gene of a subject with AHO who had evidence for a dysfunctional Gs alpha protein. The R385H substitution is near the carboxyl terminus of the Gs alpha protein and is located five amino acids upstream of the R389P mutation that uncouples Gs alpha from cell surface receptors in the unc clone of S49 murine lymphoma. To test the biological activity of the R385H mutant, we transiently expressed wild type, R385H, and R389P Gs alpha cDNAs in COS-1 cells. Neither of the mutant Gs alpha proteins stimulated adenylyl cyclase in response to l-isoproterenol (1 to 30 microM). By contrast, both mutant Gs alpha proteins showed activation of adenylyl cyclase in response to forskolin (10 microM) and fluoroaluminate (10 mM). We propose that the R385H mutation produces a Gs alpha molecule that is unable to interact with hormone receptors and results in uncoupling of adenylyl cyclase from cell surface receptors. This uncoupling mutation represents a new type of molecular defect that can result in AHO.

  4. Hypoxia and Reoxygenation Induce Endothelial Nitric Oxide Synthase Uncoupling in Endothelial Cells through Tetrahydrobiopterin Depletion and S-Glutathionylation

    PubMed Central

    2015-01-01

    Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather than NO. Recently, it has also been shown that oxidative stress can induce eNOS S-glutathionylation at critical cysteine residues of the reductase site that serves as a redox switch to control eNOS coupling. While superoxide can deplete tetrahydrobiopterin and induce eNOS S-glutathionylation, the extent of and interaction between these processes in the pathogenesis of eNOS dysfunction in endothelial cells following hypoxia and reoxygenation remain unknown. Therefore, studies were performed on endothelial cells subjected to hypoxia and reoxygenation to determine the severity of eNOS uncoupling and the role of cofactor depletion and S-glutathionylation in this process. Hypoxia and reoxygenation of aortic endothelial cells triggered xanthine oxidase-mediated superoxide generation, causing both tetrahydrobiopterin depletion and S-glutathionylation with resultant eNOS uncoupling. Replenishing cells with tetrahydrobiopterin along with increasing intracellular levels of glutathione greatly preserved eNOS activity after hypoxia and reoxygenation, while targeting either mechanism alone only partially ameliorated the decrease in NO. Endothelial oxidative stress, secondary to hypoxia and reoxygenation, uncoupled eNOS with an altered ratio of oxidized to reduced glutathione inducing eNOS S-glutathionylation. These mechanisms triggered by oxidative stress combine to cause eNOS dysfunction with shift of the enzyme from NO to superoxide production. Thus, in endothelial reoxygenation injury, normalization of both tetrahydrobiopterin levels and the glutathione pool are needed for maximal

  5. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

    PubMed

    Wu, Feng; Szczepaniak, William S; Shiva, Sruti; Liu, Huanbo; Wang, Yinna; Wang, Ling; Wang, Ying; Kelley, Eric E; Chen, Alex F; Gladwin, Mark T; McVerry, Bryan J

    2014-12-15

    Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

  6. Selective Uncoupling of P120ctn from E-Cadherin Disrupts Strong Adhesion

    PubMed Central

    Thoreson, Molly A.; Anastasiadis, Panos Z.; Daniel, Juliet M.; Ireton, Reneé C.; Wheelock, Margaret J.; Johnson, Keith R.; Hummingbird, Diana K.; Reynolds, Albert B.

    2000-01-01

    p120ctn is a catenin whose direct binding to the juxtamembrane domain of classical cadherins suggests a role in regulating cell–cell adhesion. The juxtamembrane domain has been implicated in a variety of roles including cadherin clustering, cell motility, and neuronal outgrowth, raising the possibility that p120 mediates these activities. We have generated minimal mutations in this region that uncouple the E-cadherin–p120 interaction, but do not affect interactions with other catenins. By stable transfection into E-cadherin–deficient cell lines, we show that cadherins are both necessary and sufficient for recruitment of p120 to junctions. Detergent-free subcellular fractionation studies indicated that, in contrast to previous reports, the stoichiometry of the interaction is extremely high. Unlike α- and β-catenins, p120 was metabolically stable in cadherin-deficient cells, and was present at high levels in the cytoplasm. Analysis of cells expressing E-cadherin mutant constructs indicated that p120 is required for the E-cadherin–mediated transition from weak to strong adhesion. In aggregation assays, cells expressing p120-uncoupled E-cadherin formed only weak cell aggregates, which immediately dispersed into single cells upon pipetting. As an apparent consequence, the actin cytoskeleton failed to insert properly into peripheral E-cadherin plaques, resulting in the inability to form a continuous circumferential ring around cell colonies. Our data suggest that p120 directly or indirectly regulates the E-cadherin–mediated transition to tight cell–cell adhesion, possibly blocking subsequent events necessary for reorganization of the actin cytoskeleton and compaction. PMID:10629228

  7. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.

    PubMed

    Xiao, Xuan; Min, Jian-Liang; Lin, Wei-Zhong; Liu, Zi; Cheng, Xiang; Chou, Kuo-Chen

    2015-01-01

    Information about the interactions of drug compounds with proteins in cellular networking is very important for drug development. Unfortunately, all the existing predictors for identifying drug-protein interactions were trained by a skewed benchmark data-set where the number of non-interactive drug-protein pairs is overwhelmingly larger than that of the interactive ones. Using this kind of highly unbalanced benchmark data-set to train predictors would lead to the outcome that many interactive drug-protein pairs might be mispredicted as non-interactive. Since the minority interactive pairs often contain the most important information for drug design, it is necessary to minimize this kind of misprediction. In this study, we adopted the neighborhood cleaning rule and synthetic minority over-sampling technique to treat the skewed benchmark datasets and balance the positive and negative subsets. The new benchmark datasets thus obtained are called the optimized benchmark datasets, based on which a new predictor called iDrug-Target was developed that contains four sub-predictors: iDrug-GPCR, iDrug-Chl, iDrug-Ezy, and iDrug-NR, specialized for identifying the interactions of drug compounds with GPCRs (G-protein-coupled receptors), ion channels, enzymes, and NR (nuclear receptors), respectively. Rigorous cross-validations on a set of experiment-confirmed datasets have indicated that these new predictors remarkably outperformed the existing ones for the same purpose. To maximize users' convenience, a public accessible Web server for iDrug-Target has been established at http://www.jci-bioinfo.cn/iDrug-Target/ , by which users can easily get their desired results. It has not escaped our notice that the aforementioned strategy can be widely used in many other areas as well.

  8. Allosteric changes in the TCR/CD3 structure upon interaction with extra- or intra-cellular ligands.

    PubMed

    Rubin, B; Knibiehler, M; Gairin, J E

    2007-01-01

    T lymphocytes are activated by the interaction between the T-cell antigen receptor (TCR) and peptides presented by major histocompatibility complex (MHC) molecules. The avidity of this TCR-pMHC interaction is very low. Therefore, several hypotheses have been put forward to explain how T cells become specifically activated despite this handicap: conformational change model, aggregation model, kinetic segregation model, sequential interaction model and permissive geometry model. In the present paper, we conducted experiments to distinguish between the TCR-aggregation model and the TCR-conformational change model. The results obtained using a TCR capture ELISA with Brij 98-solubilized TCR molecules from normal or activated T cells showed that the ligand-TCR interaction causes structural changes in the CD3 epsilon cytoplasmic tail as well as in the extracellular TCR beta FG loop region. Size-fractionation experiments with Brij 98-solubilized TCR/CD3/co-receptor complexes from naïve or activated CD4(+) or CD8(+) T cells demonstrated that such complexes are found as either dimers or tetramers. No monomers or multimers were detected. We propose that: (1) ligand-TCR interaction results in conformational changes in the CD3 epsilon cytoplasmic tail leading to T-cell activation; (2) CD3 epsilon cytoplasmic tail interaction with intracellular proteins may dissociate pMHC and co-receptors (CD4 or CD8) from TCR/CD3 complexes, thus leading to the arrest of T-cell activation; and (3) T-cell activation appears to occur among dimers or tetramers of TCR/CD3/co-receptor complexes interacting with self and non-self (foreign) peptide-MHC complexes.

  9. Microbial Protein-Protein Interactions (MiPPI) Data from the Genomics: GTL Center for Molecular and Cellular Systems (CMCS)

    DOE Data Explorer

    The Genomic Science Center for Molecular and Cellular Systems (CMCS), established in 2002, seeks to identify and characterize the complete set of protein complexes within a cell to provide a mechanistic basis for the understanding of biochemical functions. The CMCS is anchored at ORNL and PNNL. CMCS initially focused on the identification and characterization of protein complexes in two microbial systems,Rhodopseudomonas palustris (R. palustris) and Shewanella oneidensis (S. oneidensis). These two organisms have also been the focus of major DOE Genomic Science/Microbial Cell Program (MCP) projects. To develop an approach for identifying the diverse types of complexes present in microbial organisms, CMCS incorporates a number of molecular biology, microbiology, analytical and computational tools in an integrated pipeline.

  10. Docking studies and network analyses reveal capacity of compounds from Kandelia rheedii to strengthen cellular immunity by interacting with host proteins during tuberculosis infection

    PubMed Central

    Zaman, Aubhishek

    2012-01-01

    Kandelia rheedii (locally known as Guria or Rasunia), widely found and used in Indian subcontinent, is a well-known herbal cure to tuberculosis. However, neither the mechanism nor the active components of the plant extract responsible for mediating this action has yet been confirmed. Here in this study, molecular interactions of three compounds (emodin, fusaric acid and skyrin) from the plant extract with the host protein targets (casein kinase (CSNK), estrogen receptor (ERBB), dopamine β-hydroxylase (DBH) and glucagon receptor (Gcgr)) has been found. These protein targets are known to be responsible for strengthening cellular immunity against Mycobacteria tuberculosis. The specific interactions of these three compounds with the respective protein targets have been discussed here. The insights from study should further help us designing molecular medicines against tuberculosis. PMID:23275699

  11. Distinct interactions with cellular E-cadherin of the two virulent metalloproteinases encoded by a Bacteroides fragilis pathogenicity island.

    PubMed

    Remacle, Albert G; Shiryaev, Sergey A; Strongin, Alex Y

    2014-01-01

    Bacteroides fragilis causes the majority of Gram-negative anaerobic infections in the humans. The presence of a short, 6-kb, pathogenicity island in the genome is linked to enterotoxigenic B. fragilis (ETBF). The role of the enterotoxin in B. fragilis virulence, however, remains to be determined, as the majority of clinical isolates lack ETBF genes and healthy individuals carry enterotoxin-positive B. fragilis. The island encodes secretory metalloproteinase II (MPII) and one of three homologous enterotoxigenic fragilysin isoenzymes (FRA; also termed B. fragilis toxin or BFT). The secretory metalloproteinases expressed from the genes on the B. fragilis pathogenicity island may have pathological importance within the gut, not linked to diarrhea. MPII and FRA are counter-transcribed in the bacterial genome, implying that regardless of their structural similarity and overlapping cleavage preferences these proteases perform distinct and highly specialized functions in the course of B. fragilis infection. The earlier data by us and others have demonstrated that FRA cleaves cellular E-cadherin, an important adherens junction protein, and weakens cell-to-cell contacts. Using E-cadherin-positive and E-cadherin-deficient cancer cells, and the immunostaining, direct cell binding and pull-down approaches, we, however, demonstrated that MPII via its catalytic domain efficiently binds, rather than cleaves, E-cadherin. According to our results, E-cadherin is an adherens junction cellular receptor, rather than a proteolytic target, of the B. fragilis secretory MPII enzyme. As a result of the combined FRA and MPII proteolysis, cell-to-cell contacts and adherens junctions are likely to weaken further.

  12. Distinct Interactions with Cellular E-Cadherin of the Two Virulent Metalloproteinases Encoded by a Bacteroides fragilis Pathogenicity Island

    PubMed Central

    Remacle, Albert G.; Shiryaev, Sergey A.; Strongin, Alex Y.

    2014-01-01

    Bacteroides fragilis causes the majority of Gram-negative anaerobic infections in the humans. The presence of a short, 6-kb, pathogenicity island in the genome is linked to enterotoxigenic B. fragilis (ETBF). The role of the enterotoxin in B. fragilis virulence, however, remains to be determined, as the majority of clinical isolates lack ETBF genes and healthy individuals carry enterotoxin-positive B. fragilis. The island encodes secretory metalloproteinase II (MPII) and one of three homologous enterotoxigenic fragilysin isoenzymes (FRA; also termed B. fragilis toxin or BFT). The secretory metalloproteinases expressed from the genes on the B. fragilis pathogenicity island may have pathological importance within the gut, not linked to diarrhea. MPII and FRA are counter-transcribed in the bacterial genome, implying that regardless of their structural similarity and overlapping cleavage preferences these proteases perform distinct and highly specialized functions in the course of B. fragilis infection. The earlier data by us and others have demonstrated that FRA cleaves cellular E-cadherin, an important adherens junction protein, and weakens cell-to-cell contacts. Using E-cadherin-positive and E-cadherin–deficient cancer cells, and the immunostaining, direct cell binding and pull-down approaches, we, however, demonstrated that MPII via its catalytic domain efficiently binds, rather than cleaves, E-cadherin. According to our results, E-cadherin is an adherens junction cellular receptor, rather than a proteolytic target, of the B. fragilis secretory MPII enzyme. As a result of the combined FRA and MPII proteolysis, cell-to-cell contacts and adherens junctions are likely to weaken further. PMID:25411788

  13. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication

    PubMed Central

    Taylor, Kathryne E.

    2015-01-01

    ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both

  14. Interaction of Iron II Complexes with B-DNA. Insights from Molecular Modeling, Spectroscopy, and Cellular Biology

    PubMed Central

    Gattuso, Hugo; Duchanois, Thibaut; Besancenot, Vanessa; Barbieux, Claire; Assfeld, Xavier; Becuwe, Philippe; Gros, Philippe C.; Grandemange, Stephanie; Monari, Antonio

    2015-01-01

    We report the characterization of the interaction between B-DNA and three terpyridin iron II complexes. Relatively long time-scale molecular dynamics (MD) is used in order to characterize the stable interaction modes. By means of molecular modeling and UV-vis spectroscopy, we prove that they may lead to stable interactions with the DNA duplex. Furthermore, the presence of larger π-conjugated moieties also leads to the appearance of intercalation binding mode. Non-covalent stabilizing interactions between the iron complexes and the DNA are also characterized and evidenced by the analysis of the gradient of the electronic density. Finally, the structural deformations induced on the DNA in the different binding modes are also evidenced. The synthesis and chemical characterization of the three complexes is reported, as well as their absorption spectra in presence of DNA duplexes to prove the interaction with DNA. Finally, their effects on human cell cultures have also been evidenced to further enlighten their biological effects. PMID:26734600

  15. The linker histone in Saccharomyces cerevisiae interacts with actin-related protein 4 and both regulate chromatin structure and cellular morphology.

    PubMed

    Georgieva, Milena; Staneva, Dessislava; Uzunova, Katya; Efremov, Toni; Balashev, Konstantin; Harata, Masahiko; Miloshev, George

    2015-02-01

    Chromatin structure promotes important epigenetic mechanisms that regulate cellular fate by organizing, preserving and controlling the way by which the genetic information works. Our understanding of chromatin and its functions is sparse and not yet well defined. The uncertainty comes from the complexity of chromatin and is induced by the existence of a large number of nuclear proteins that influence it. The intricate interaction among all these structural and functional nuclear proteins has been under extensive study in the recent years. Here, we show that Saccharomyces cerevisiae linker histone physically interacts with Arp4p (actin-related protein 4) which is a key subunit of three chromatin modifying complexes - INO80, SWR1 and NuA4. A single - point mutation in the actin - fold domain of Arp4p together with the knock-out of the gene for the linker histone in S. cerevisiae severely abrogates cellular and nuclear morphology and leads to complete disorganizing of the higher levels of chromatin organization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Matrix Metalloproteinase 3 Promotes Cellular Anti-Dengue Virus Response via Interaction with Transcription Factor NFκB in Cell Nucleus

    PubMed Central

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation. PMID:24416274

  17. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    SciTech Connect

    Changotra, Harish; Turk, Susan M.; Artigues, Antonio; Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I.; Hutt-Fletcher, Lindsey M.

    2016-02-15

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  18. S100A6 binding protein and Siah-1 interacting protein (CacyBP/SIP): spotlight on properties and cellular function.

    PubMed

    Schneider, Gabriela; Filipek, Anna

    2011-10-01

    The CacyBP/SIP protein (S100A6 binding protein and Siah-1 interacting protein) was originally discovered in Ehrlich ascites tumor cells as a S100A6 (calcyclin) target (Filipek and Wojda in Biochem J 320:585-587, 1996; Filipek and Kuźnicki in J Neurochem 70(5):1793-1798, 1998) and later on as a Siah-1 interacting protein (Matsuzawa and Reed in Mol Cell 7(5):915-926, 2001). CacyBP/SIP binds several target proteins such as some calcium binding proteins of the S100 family (Filipek et al. in J Biol Chem 277(32):28848-28852, 2002), Skp1 (Matsuzawa and Reed in Mol Cell 7(5):915-926, 2001), tubulin (Schneider et al. in Biochim Biophys Acta 1773(11):1628-1636, 2007) and ERK1/2 (Kilanczyk et al. in Biochem Biophys Res Commun 380:54-59, 2009). Studies concerning distribution of CacyBP/SIP show that it is present in various tissues and that a particularly high level of CacyBP/SIP is observed in brain (Jastrzebska et al. in J Histochem Cytochem 48(9):1195-1202, 2000). Regarding the function of CacyBP/SIP, there are some reports suggesting its role in cellular processes such as ubiquitination, proliferation, differentiation, tumorigenesis, cytoskeletal rearrangement or regulation of transcription. This review describes the properties of CacyBP/SIP and summarizes all findings concerning its cellular function.

  19. Matrix metalloproteinase 3 promotes cellular anti-dengue virus response via interaction with transcription factor NFκB in cell nucleus.

    PubMed

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation.

  20. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

    SciTech Connect

    Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss

    2006-03-28

    Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

  1. Stress-induced protein CSP 310: a third uncoupling system in plants.

    PubMed

    Kolesnichenko, A V; Pobezhimova, T P; Grabelnych, O I; Voinikov, V K

    2002-06-01

    Addition of the cold-stress-related protein CSP 310 to mitochondria isolated from winter wheat ( Triticum aestivum L. cv. Zalarinka), winter rye ( Secale cereale L. cv. Dymka), maize ( Zea mays L. cv. VIR 36) and pea ( Pisum sativum L. cv. Marat) caused an increase in non-phosphorylative respiration. This increase was inhibited by KCN, indicating that the protein is not a CN-resistant alternative oxidase. Unlike plant mitochondrial uncoupling proteins such as PUMP, the uncoupling action of CSP 310 did not depend on the presence of free fatty acids in the incubation medium. We propose that the mechanism of the uncoupling action of CSP 310 differs from that of other known plant uncoupling systems and that the CSP 310 uncoupling system is a third uncoupling system in cereals.

  2. Semen modulated secretory activity of oviductal epithelial cells is linked to cellular proteostasis network remodeling: Proteomic insights into the early phase of interaction in the oviduct in vivo.

    PubMed

    Steinberger, Birgit; Yu, Hans; Brodmann, Theodor; Milovanovic, Daniela; Reichart, Ursula; Besenfelder, Urban; Artemenko, Konstantin; Razzazi-Fazeli, Ebrahim; Brem, Gottfried; Mayrhofer, Corina

    2017-06-23

    The oviductal epithelium is crucial for the integrity of the female organ. Previously we got evidence that the surface proteome of oviductal epithelial cells (Oecs) is promptly altered in response to insemination and thus suggested that this early phase plays a notable regulatory role in maintaining cellular function. This study further aimed to assess the effect of semen on the cellular and molecular mechanisms in rabbit Oecs. A quantitative gel-based proteomic approach was applied to analyze changes at three time points (0h, 1h, 2h) after intrauterine insemination (IUI) compared to time matched controls. Within two hours the abundance of 22 protein species was evidently altered in the intracellular fraction. Functional analysis revealed that the proteins were primarily involved in proteostasis as well as metabolic processes. The analysis of phosphoproteins specified a role of mitogen-activated protein kinase (MAPK) signaling molecules. Concurrently, semen increased oviduct-specific glycoprotein (OVGP1) secretion. A correlation between OVGP1 abundance and microtubule-associated proteins 1A/1B-light chain 3 lipidation was observed. The localization and changes in abundance of selected proteins were corroborated by antibody-based methods. These results clearly show that the early phase of interaction acts as a trigger for cellular adaptation to meet an altered demand in the female organ. The oviductal epithelium and its secreted proteins exert a pivotal role in reproductive processes, including the final maturation of male gametes. Thereby, the regulation and subsequently the functionality of the oviductal epithelial cell layer are important factors for the establishment of the appropriate milieu in the female reproductive tract. Notably, male gametes themselves have been shown to be an extrinsic modulatory factor of the oviductal epithelium. Accordingly a comprehensive knowledge about the underlying cellular and molecular mechanisms in the epithelial cells is of

  3. Targeted mitochondrial uncoupling beyond UCP1 - The fine line between death and metabolic health.

    PubMed

    Ost, Mario; Keipert, Susanne; Klaus, Susanne

    2017-03-01

    In the early 1930s, the chemical uncoupling agent 2,4-dinitrophenol (DNP) was promoted for the very first time as a powerful and effective weight loss pill but quickly withdrawn from the market due to its lack of tissue-selectivity with resulting dangerous side effects, including hyperthermia and death. Today, novel mitochondria- or tissue-targeted chemical uncouplers with higher safety and therapeutic values are under investigation in order to tackle obesity, diabetes and fatty liver disease. Moreover, in the past 20 years, transgenic mouse models were generated to understand the molecular and metabolic consequences of targeted uncoupling, expressing functional uncoupling protein 1 (UCP1) ectopically in white adipose tissue or skeletal muscle. Similar to the action of chemical mitochondrial uncouplers, UCP1 protein dissipates the proton gradient across the inner mitochondrial membrane, thus allowing maximum activity of the respiratory chain and compensatory increase in oxygen consumption, uncoupled from ATP synthesis. Consequently, targeted mitochondrial uncoupling in adipose tissue and skeletal muscle of UCP1-transgenic mice increased substrate metabolism and ameliorates obesity, hypertriglyceridemia and insulin resistance. Further, muscle-specific decrease in mitochondrial efficiency promotes a cell-autonomous and cell-non-autonomous adaptive metabolic remodeling with increased oxidative stress tolerance. This review provides an overview of novel chemical uncouplers as well as the metabolic consequences and adaptive processes of targeted mitochondrial uncoupling on metabolic health and survival.

  4. Systematic Cellular Disease Models Reveal Synergistic Interaction of Trisomy 21 and GATA1 Mutations in Hematopoietic Abnormalities.

    PubMed

    Banno, Kimihiko; Omori, Sayaka; Hirata, Katsuya; Nawa, Nobutoshi; Nakagawa, Natsuki; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Sakuma, Tetsushi; Yamamoto, Takashi; Toki, Tsutomu; Ito, Etsuro; Yamamoto, Toshiyuki; Kokubu, Chikara; Takeda, Junji; Taniguchi, Hidetoshi; Arahori, Hitomi; Wada, Kazuko; Kitabatake, Yasuji; Ozono, Keiichi

    2016-05-10

    Chromosomal aneuploidy and specific gene mutations are recognized early hallmarks of many oncogenic processes. However, the net effect of these abnormalities has generally not been explored. We focused on transient myeloproliferative disorder (TMD) in Down syndrome, which is characteristically associated with somatic mutations in GATA1. To better understand functional interplay between trisomy 21 and GATA1 mutations in hematopoiesis, we constructed cellular disease models using human induced pluripotent stem cells (iPSCs) and genome-editing technologies. Comparative analysis of these engineered iPSCs demonstrated that trisomy 21 perturbed hematopoietic development through the enhanced production of early hematopoietic progenitors and the upregulation of mutated GATA1, resulting in the accelerated production of aberrantly differentiated cells. These effects were mediated by dosage alterations of RUNX1, ETS2, and ERG, which are located in a critical 4-Mb region of chromosome 21. Our study provides insight into the genetic synergy that contributes to multi-step leukemogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. "Sickle cell anemia: tracking down a mutation": an interactive learning laboratory that communicates basic principles of genetics and cellular biology.

    PubMed

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J Michael

    2016-03-01

    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients have the sickle cell genotype/phenotype using DNA and blood samples from wild-type and transgenic mice that carry a sickle cell mutation. The inquiry-based, problem-solving approach facilitates the students' understanding of the basic concepts of genetics and cellular and molecular biology and provides experience with contemporary tools of biotechnology. It also leads to students' appreciation of the causes and consequences of this genetic disease, which is relatively common in individuals of African descent, and increases their understanding of the first principles of genetics. This protocol provides optimal learning when led by well-trained facilitators (including the classroom teacher) and carried out in small groups (6:1 student-to-teacher ratio). This high-quality experience can be offered to a large number of students at a relatively low cost, and it is especially effective in collaboration with a local science museum and/or university. Over the past 15 yr, >12,000 students have completed this inquiry-based learning experience and demonstrated a consistent, substantial increase in their understanding of the disease and genetics in general. Copyright © 2016 The American Physiological Society.

  6. The Hd, Hj, and Hz66 flagella variants of Salmonella enterica serovar Typhi modify host responses and cellular interactions.

    PubMed

    Schreiber, Fernanda; Kay, Sally; Frankel, Gad; Clare, Simon; Goulding, David; van de Vosse, Esther; van Dissel, Jaap T; Strugnell, Richard; Thwaites, Guy; Kingsley, Robert A; Dougan, Gordon; Baker, Stephen

    2015-01-22

    Salmonella Typhi, the causative agent of typhoid fever, is a monophyletic, human-restricted bacterium that exhibits limited phenotypic variation. S. Typhi from Indonesia are a notable exception, with circulating strains expressing diverse flagella antigens including Hj, Hd and Hz66. Hypothesizing that S. Typhi flagella plays a key role during infection, we constructed an S. Typhi fliC mutant and otherwise isogenic S. Typhi strains expressing the Hj, Hd, Hz66 flagella antigens. Phenotyping revealed differences in flagellum structure, strain motility and immunogenicity, but not in the ability of flagellated isolates to induce TLR5 activity. Invasion assays using epithelial and macrophage cell lines revealed differences in the ability of these S. Typhi derivatives to invade cells or induce cellular restructuring in the form of ruffles. Notably, the Hj variant induced substantial ruffles that were not fully dependent on the GTPases that contribute to this process. These data highlight important differences in the phenotypic properties of S. Typhi flagella variation and how they impact on the pathogenesis of S. Typhi.

  7. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design.

    PubMed

    Li, Ruibin; Ji, Zhaoxia; Chang, Chong Hyun; Dunphy, Darren R; Cai, Xiaoming; Meng, Huan; Zhang, Haiyuan; Sun, Bingbing; Wang, Xiang; Dong, Juyao; Lin, Sijie; Wang, Meiying; Liao, Yu-Pei; Brinker, C Jeffrey; Nel, Andre; Xia, Tian

    2014-02-25

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use.

  8. Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design

    PubMed Central

    2014-01-01

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use. PMID:24417322

  9. Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low dose radiation-induced adaptive radioprotection

    PubMed Central

    Eldridge, Angela; Fan, Ming; Woloschak, Gayle; Grdina, David J.; Chromy, Brett A.; Li, Jian Jian

    2012-01-01

    Cellular adaptive response to certain low level genotoxic stresses including the exposure to low dose ionizing radiation (LDIR) shows promise as a tool to enhance radioprotection in normal cells but not in tumor cells. Manganese superoxide dismutase (MnSOD), a fundamental mitochondrial antioxidant in mammalian cells plays a key role in LDIR-induced adaptive response. In this study, we aim to elucidate the signaling network associated with the MnSOD-induced radiation protection. A MnSOD-interacting protein profile was established in LDIR-treated human skin cells. Human skin keratinocytes (HK18) were irradiated with a single dose LDIR (10 cGy x-ray) and the cell lysates were immunoprecipitated using α-MnSOD and applied to two different gel-based proteomics followed by mass spectrometry for protein identification. Analysis of the profiles of MnSOD interacting partners before and after LDIR detected different patterns of MnSOD protein-protein interactions in response to LDIR. Interestingly, many of the MnSOD interacting proteins are known to have functions related to mitochondrial regulations on cell metabolism, apoptosis and DNA repair. These results provide the evidence indicating that in addition to the enzymatic action detoxifying superoxide, the antioxidant MnSOD may function as a signaling regulator in stress induced adaptive protection through cell survival pathways. PMID:23000060

  10. Interaction with polyglutamine-expanded huntingtin alters cellular distribution and RNA processing of huntingtin yeast two-hybrid protein A (HYPA).

    PubMed

    Jiang, Ya-Jun; Che, Mei-Xia; Yuan, Jin-Qiao; Xie, Yuan-Yuan; Yan, Xian-Zhong; Hu, Hong-Yu

    2011-07-15

    Huntington disease (HD) is an autosomal inherited disorder that causes the deterioration of brain cells. The polyglutamine (polyQ) expansion of huntingtin (Htt) is implicated in the pathogenesis of HD via interaction with an RNA splicing factor, Htt yeast two-hybrid protein A/forming-binding protein 11 (HYPA/FBP11). Besides the pathogenic polyQ expansion, Htt also contains a proline-rich region (PRR) located exactly in the C terminus to the polyQ tract. However, how the polyQ expansion influences the PRR-mediated protein interaction and how this abnormal interaction leads to the biological consequence remain elusive. Our NMR structural analysis indicates that the PRR motif of Htt cooperatively interacts with the tandem WW domains of HYPA through domain chaperoning effect of WW1 on WW2. The polyQ-expanded Htt sequesters HYPA to the cytosolic location and then significantly reduces the efficiency of pre-mRNA splicing. We propose that the toxic gain-of-function of the polyQ-expanded Htt that causes dysfunction of cellular RNA processing contributes to the pathogenesis of HD.

  11. Analysis of A549 cell proteome alteration in response to recombinant influenza A virus nucleoprotein and its interaction with cellular proteins, a preliminary study.

    PubMed

    Kumar, D; Tiwari, K; Rajala, M S

    2017-01-01

    Influenza A virus undergoes frequent changes of antigenicity and contributes to seasonal epidemics or unpredictable pandemics. Nucleoprotein, encoded by gene segment 5, is an internal protein of the virus and is conserved among strains of different host origins. In the current study, we analyzed the differentially expressed proteins in A549 cells transiently transfected with the recombinant nucleoprotein of influenza A virus by 2D gel electrophoresis. The resolved protein spots on gel were identified by MALDI-TOF/Mass spectrometry analysis. The majority of the host proteins detected to be differentially abundant in recombinant nucleoprotein-expressing cells as compared to vector-transfected cells are the proteins of metabolic pathways, glycolytic enzymes, molecular chaperones and cytoskeletal proteins. We further demonstrated the interaction of virus nucleoprotein with some of the identified host cellular proteins. In vitro binding assay carried out using the purified recombinant nucleoprotein (pET29a+NP-His) and A549 cell lysate confirmed the interaction between nucleoprotein and host proteins, such as alpha enolase 1, pyruvate kinase and β-actin. The preliminary data of our study provides the information on virus nucleoprotein interaction with proteins involved in glycolysis. However, studies are ongoing to understand the significance of these interactions in modulating the host factors during virus replication.

  12. Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low-dose radiation-induced adaptive radioprotection.

    PubMed

    Eldridge, Angela; Fan, Ming; Woloschak, Gayle; Grdina, David J; Chromy, Brett A; Li, Jian Jian

    2012-11-15

    The cellular adaptive response to certain low-level genotoxic stresses, including exposure to low-dose ionizing radiation (LDIR), shows promise as a tool to enhance radioprotection in normal cells but not in tumor cells. Manganese superoxide dismutase (MnSOD), a fundamental mitochondrial antioxidant in mammalian cells, plays a key role in the LDIR-induced adaptive response. In this study, we aimed to elucidate the signaling network associated with MnSOD-induced radiation protection. A MnSOD-interacting protein profile was established in LDIR-treated human skin cells. Human skin keratinocytes (HK18) were irradiated with a single dose of LDIR (10 cGy X-ray) and the cell lysates were immunoprecipitated using α-MnSOD and applied to two different gel-based proteomic experiments followed by mass spectrometry for protein identification. Analysis of the profiles of MnSOD-interacting partners before and after LDIR detected various patterns of MnSOD protein-protein interactions in response to LDIR. Interestingly, many of the MnSOD-interacting proteins are known to have functions related to mitochondrial regulation of cell metabolism, apoptosis, and DNA repair. These results provide evidence indicating that in addition to the enzymatic action of detoxifying superoxide, the antioxidant MnSOD may function as a signaling regulator in stress-induced adaptive protection through cell survival pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The cellular response to neuregulins is governed by complex interactions of the erbB receptor family.

    PubMed Central

    Riese, D J; van Raaij, T M; Plowman, G D; Andrews, G C; Stern, D F

    1995-01-01

    Deregulated signaling by the four members of the epidermal growth factor receptor tyrosine kinase family (erbB family) is implicated in the genesis or progression of human cancers. However, efforts to analyze signaling by these receptors have been hampered by the diversity of ligands and extensive interreceptor cross talk. We have expressed the four human erbB family receptors, singly and in pairwise combinations, in a pro-B-lymphocyte cell line (Ba/F3) and investigated the range of interactions activated by the epidermal growth factor homology domain of the agonist neuregulin beta. The results provide the first comprehensive analysis of the response of this receptor family to a single peptide agonist. This peptide induced complex patterns of receptor tyrosine phosphorylation and regulation of Ba/F3 cell survival and proliferation. These data demonstrate the existence of several previously undocumented receptor interactions driven by neuregulin. PMID:7565730

  14. The Interaction of Pseudomonas Toxins with Epithelial Cell Membranes: A Primary Stage in the Pathogenesis Sequence of Cellular Intoxication

    DTIC Science & Technology

    1978-08-01

    fragment of the PE peptide and its ability to gain ontry into a host cell. The turtle bladder was chosen as the host cell aystem because its major...to gain entry into the cells of the isolated turtle bladder epithelium. The measured signals of these interactions are changes in the transepithelial...membrane of the turtle bladder to discriminate between the pro- enzymatic and enzymatically-activated forms of the same PE molecule; from (b) the

  15. Quantitative Proteomics Reveals Dynamic Interactions of the Minichromosome Maintenance Complex (MCM) in the Cellular Response to Etoposide Induced DNA Damage.

    PubMed

    Drissi, Romain; Dubois, Marie-Line; Douziech, Mélanie; Boisvert, François-Michel

    2015-07-01

    The minichromosome maintenance complex (MCM) proteins are required for processive DNA replication and are a target of S-phase checkpoints. The eukaryotic MCM complex consists of six proteins (MCM2-7) that form a heterohexameric ring with DNA helicase activity, which is loaded on chromatin to form the pre-replication complex. Upon entry in S phase, the helicase is activated and opens the DNA duplex to recruit DNA polymerases at the replication fork. The MCM complex thus plays a crucial role during DNA replication, but recent work suggests that MCM proteins could also be involved in DNA repair. Here, we employed a combination of stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics with immunoprecipitation of green fluorescent protein-tagged fusion proteins to identify proteins interacting with the MCM complex, and quantify changes in interactions in response to DNA damage. Interestingly, the MCM complex showed very dynamic changes in interaction with proteins such as Importin7, the histone chaperone ASF1, and the Chromodomain helicase DNA binding protein 3 (CHD3) following DNA damage. These changes in interactions were accompanied by an increase in phosphorylation and ubiquitination on specific sites on the MCM proteins and an increase in the co-localization of the MCM complex with γ-H2AX, confirming the recruitment of these proteins to sites of DNA damage. In summary, our data indicate that the MCM proteins is involved in chromatin remodeling in response to DNA damage. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A cellular automaton simulation model for pedestrian and vehicle interaction behaviors at unsignalized mid-block crosswalks.

    PubMed

    Lu, Lili; Ren, Gang; Wang, Wei; Chan, Ching-Yao; Wang, Jian

    2016-10-01

    At unsignalized crosswalks, interactions between pedestrians and vehicles often lead to traffic safety hazards due to absence of traffic control and unclear right-of-ways. To address this safety problem, there is a need to understand the interaction behaviors of pedestrians and vehicles that are complicated by a variety of traffic and roadway attributes. The prime objective of this study is to establish a reliable simulation model to represent the vehicle yielding and pedestrian crossing behaviors at unsignalized crosswalks in a realistic way. The model is calibrated with detailed behavioral data collected and extracted from field observations. The capability of the calibrated model in predicting the pedestrian-interaction events as well as estimating the driver yielding rate and pedestrian delay are also tested and demonstrated. Meanwhile, the traffic dynamics in the vicinity of the crosswalk can be meaningfully represented with simulation results based on the model. Moreover, with the definitions of the vehicle-pedestrian conflicts, the proposed model is capable to evaluate the pedestrian safety. Thereby, the simulation model has the potential to serve as a useful tool for assessing safety performance and traffic operations at existing facilities. Furthermore, the model can enable the evaluation of policy effectiveness and the selection of engineering treatments at unsignalized crosswalks to improve safety and efficiency of pedestrian crossing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cellular interactions in bovine tuberculosis: release of active mycobacteria from infected macrophages by antigen‐stimulated T cells

    PubMed Central

    Liébana, E; Aranaz, A; Aldwell, F E; McNair, J; Neill, S D; Smyth, A J; Pollock, J M

    2000-01-01

    The outcome of Mycobacterium bovis infections depends on the interactions of infected macrophages with T lymphocytes. Several studies in humans and in mouse models have suggested an important role for cytotoxicity in the protective immune response to mycobacterial infections, and both CD4+ and CD8+ T cells have been shown to elicit appropriate cytolytic activity. The present study investigated in vitro interactions of T cells with M. bovis‐infected macrophages in bovine tuberculosis. The results showed that following interaction with antigen‐stimulated peripheral blood mononuclear cells (PBMC) from infected cattle, there was an increased presence of M. bovis in the extracellular compartment of infected macrophage cultures, as measured by incorporation of [3H]uracil into mycobacterial RNA. Furthermore, out of a panel of T‐cell clones from infected cattle, it was found that a higher proportion of CD8+ clones produced an increase in the number of metabolically active extracellular M. bovis organisms compared with CD4+ clones. Finally, a positive correlation between percentage of antigen‐dependent release of mycobacteria and total uracil uptake by M. bovis within culture systems was detected. This could be regarded as an indication of preferential intracellular control of mycobacteria by activated macrophages. PMID:10651937

  18. Sulforaphane inhibits damage-induced poly (ADP-ribosyl)ation via direct interaction of its cellular metabolites with PARP-1.

    PubMed

    Piberger, Ann Liza; Keil, Claudia; Platz, Stefanie; Rohn, Sascha; Hartwig, Andrea

    2015-11-01

    The isothiocyanate sulforaphane, a major breakdown product of the broccoli glucosinolate glucoraphanin, has frequently been proposed to exert anticarcinogenic properties. Potential underlying mechanisms include a zinc release from Kelch-like ECH-associated protein 1 followed by the induction of detoxifying enzymes. This suggests that sulforaphane may also interfere with other zinc-binding proteins, e.g. those essential for DNA repair. Therefore, we explored the impact of sulforaphane on poly (ADP-ribose)polymerase-1 (PARP-1), poly (ADP-ribosyl)ation (PARylation), and DNA single-strand break repair (SSBR) in cell culture. Immunofluorescence analyses showed that sulforaphane diminished H2 O2 -induced PARylation in HeLa S3 cells starting from 15 μM despite increased lesion induction under these conditions. Subcellular experiments quantifying the damage-induced incorporation of (32) P-ADP-ribose by PARP-1 displayed no direct impact of sulforaphane itself, but cellular metabolites, namely the glutathione conjugates of sulforaphane and its interconversion product erucin, reduced PARP-1 activity concentration dependently. Interestingly, this sulforaphane metabolite-induced PARP-1 inhibition was prevented by thiol compounds. PARP-1 is a stimulating factor for DNA SSBR-rate and we further demonstrated that 25 μM sulforaphane also delayed the rejoining of H2 O2 -induced DNA strand breaks, although this might be partly due to increased lesion frequencies. Sulforaphane interferes with damage-induced PARylation and SSBR, which implies a sulforaphane-dependent impairment of genomic stability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An eudesman derivative from Verbesina persicifolia D.C. as a natural mild uncoupler in liver mitochondria. A new potential anti-obesity agent?

    PubMed

    Dalla Via, Lisa; García-Argáez, Aída N; Braga, Alessandra; Martínez-Vázquez, Mariano; Grancara, Silvia; Martinis, Pamela; Agostinelli, Enzo; Toninello, Antonio

    2014-01-01

    4β-cinnamoyloxy,1β,3α-dihydroxyeudesm-7,8-ene (CDE) extracted from Verbesina persicifolia induces bioenergetic collapse in rat liver mitochondria (RLM), monitored as a fall in the respiratory control index and ADP/O values. This fall in energy is accompanied by a protonophore effect and membrane potential (Δψ) collapse, demonstrating that CDE behaves as a typical uncoupling agent. However, when examining the effect of CDE in detail, we found that it acts as a "mild" uncoupler because it drops Δψ and increases respiratory state 4. The proposed mechanism is based on the interaction of CDE with membrane protein cytochrome C oxidase, which is implicated in proton permeability, and with the respiratory chain for the generation of reactive oxygen species which mediate and regulate the activity of the above membrane protein. Considering the energy collapse, "mild" uncoupling, and the fact that CDE is largely used in folk medicines, this extract may be viewed as a potentially effective anti-obesity drug and a natural lead compound for developing new natural uncouplers against obesity.

  20. Human hepatitis B viral e antigen interacts with cellular interleukin-1 receptor accessory protein and triggers interleukin-1 response.

    PubMed

    Yang, Chih-Yung; Kuo, Tzu-Hsing; Ting, Ling-Pai

    2006-11-10

    Human hepatitis B virus (HBV) can cause acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HBV e antigen (HBeAg), a secreted protein and not required for viral replication, is thought to play an immunoregulatory role during viral infection. However, the functional involvement of HBeAg in host immune response has not been fully elucidated. We report in this study that HBeAg can bind to interleukin-1 receptor accessory protein (IL-1RAcP). Interleukin-1 (IL-1) plays an important role in inflammation and regulation of immune response, and membrane form of IL-1RAcP (mIL-1RAcP) is an essential component of trimeric IL-1/IL-1 receptor/mIL-1RAcP complex. We show that glutathione S-transferase- or polyhistidine-tagged recombinant HBeAg can interact with endogenous mIL-1RAcP in vitro. Purified (His)6-HBeAg added in the culture medium can interact with overexpressed FLAG-tagged mIL-1RAcP in vivo. Indirect immunofluorescence and confocal microscopy show that HBeAg colocalizes with mIL-1RAcP on the cell surface. Furthermore, HBeAg is able to induce the interaction of IL-1 receptor I (IL-1RI) with mIL-1RAcP and trigger the recruitment of adaptor protein myeloid differentiation factor 88 (MyD88) to the IL-1RI/mIL-1RAcP complex. Assembly and activation of IL-1RI/mIL-1RAcP signaling complex by HBeAg can activate downstream NF-kappaB pathway through IkappaB degradation, induce NF-kappaB-dependent luciferase expression, and induce the expression of IL-1-responsive genes. Silencing of IL-1RAcP by small interfering RNA dramatically abolishes HBeAg-mediated NF-kappaB activation. These results demonstrate that HBeAg can trigger host IL-1 response by binding to mIL-1RAcP. The interaction of HBeAg with mIL-1RAcP may play an important role in modulating host immune response in acute and chronic HBV infection.

  1. Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Interacts with Nsp9 and Cellular DHX9 To Regulate Viral RNA Synthesis.

    PubMed

    Liu, Long; Tian, Jiao; Nan, Hao; Tian, Mengmeng; Li, Yuan; Xu, Xiaodong; Huang, Baicheng; Zhou, Enmin; Hiscox, Julian A; Chen, Hongying

    2016-06-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis. It is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of

  2. Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases

    PubMed Central

    Masuda, Yuji; Kanao, Rie; Kaji, Kentaro; Ohmori, Haruo; Hanaoka, Fumio; Masutani, Chikahide

    2015-01-01

    Translesion DNA synthesis (TLS) by the Y-family DNA polymerases Polη, Polι and Polκ, mediated via interaction with proliferating cell nuclear antigen (PCNA), is a crucial pathway that protects human cells against DNA damage. We report that Polη has three PCNA-interacting protein (PIP) boxes (PIP1, 2, 3) that contribute differentially to two distinct functions, stimulation of DNA synthesis and promotion of PCNA ubiquitination. The latter function is strongly associated with formation of nuclear Polη foci, which co-localize with PCNA. We also show that Polκ has two functionally distinct PIP boxes, like Polη, whereas Polι has a single PIP box involved in stimulation of DNA synthesis. All three polymerases were additionally stimulated by mono-ubiquitinated PCNA in vitro. The three PIP boxes and a ubiquitin-binding zinc-finger of Polη exert redundant and additive effects in vivo via distinct molecular mechanisms. These findings provide an integrated picture of the orchestration of TLS polymerases. PMID:26170230

  3. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1.

    PubMed

    Lammel, Tobias; Navas, José M

    2014-05-01

    Graphene and graphene derivatives constitute a novel class of carbon-based nanomaterials being increasingly produced and used in technical and consumer applications. Release of graphene nanoplatelets during the life cycle of these applications may result in human and environmental exposure calling for assessment of their potential to cause harm to humans and wildlife. This study aimed to assess the toxicity of graphene oxide (GO) and carboxyl graphene (CXYG) nanoplatelets to non-mammalian species using the fish cell line PLHC-1 as in vitro model. The cytotoxicity of GO and CXYG was assessed using different assays measuring alterations in plasma membrane integrity, metabolic activity, and lysosomal and mitochondrial function. The induction of oxidative stress was assessed by measuring intracellular reactive oxygen species (ROS) levels. Interaction with the plasma membrane and internalization of nanoplatelets were investigated by electron microscopy. Graphene nanoplatelets spontaneously penetrated through the plasma membrane and accumulated in the cytosol, where they further interacted with mitochondrial and nuclear membranes. PLHC-1 cells demonstrated significantly reduced mitochondrial membrane potential (MMP) and increased ROS levels at 16 μg/ml GO and CXYG (72 h), but barely any decrease in cell viability. The observation of intracellular graphene accumulations not enclosed by membranes suggests that GO and CXYG internalization in fish hepatoma cells occurs through an endocytosis-independent mechanism.

  4. VP8, the Major Tegument Protein of Bovine Herpesvirus 1, Interacts with Cellular STAT1 and Inhibits Interferon Beta Signaling

    PubMed Central

    Afroz, Sharmin; Brownlie, Robert; Fodje, Michel

    2016-01-01

    ABSTRACT The UL47 gene product, VP8, is the most abundant tegument protein of bovine herpesvirus 1 (BoHV-1). Previously, we demonstrated that a UL47-deleted BoHV-1 mutant (BoHV1-ΔUL47) exhibits 100-fold-reduced virulence in vitro and is avirulent in vivo. In this study, we demonstrated that VP8 expression or BoHV-1 infection inhibits interferon beta (IFN-β) signaling by using an IFN-α/β-responsive plasmid in a luciferase assay. As transducer and activator of transcription (STAT) is an essential component in the IFN-signaling pathways, the effect of VP8 on STAT was investigated. An interaction between VP8 and STAT1 was established by coimmunoprecipitation assays in both VP8-transfected and BoHV-1-infected cells. Two domains of VP8, amino acids 259 to 482 and 632 to 686, were found to be responsible for its interaction with STAT1. The expression of VP8 did not induce STAT1 ubiquitination or degradation. Moreover, VP8 did not reduce STAT1 tyrosine phosphorylation to downregulate IFN-β signaling. However, the expression of VP8 or a version of VP8 (amino acids 219 to 741) that contains the STAT1-interacting domains but not the nuclear localization signal prevented nuclear accumulation of STAT1. Inhibition of nuclear accumulation of STAT1 also occurred during BoHV-1 infection, while nuclear translocation of STAT1 was observed in BoHV1-ΔUL47-infected cells. During BoHV-1 infection, VP8 was detected in the cytoplasm at 2 h postinfection without any de novo protein synthesis, at which time STAT1 was already retained in the cytoplasm. These results suggest that viral VP8 downregulates IFN-β signaling early during infection, thus playing a role in overcoming the antiviral response of BoHV-1-infected cells. IMPORTANCE Since VP8 is the most abundant protein in BoHV-1 virions and thus may be released in large amounts into the host cell immediately upon infection, we proposed that it might have a function in the establishment of conditions suitable for viral replication

  5. Seasonal uncoupling of demographic processes in a marine clonal plant

    NASA Astrophysics Data System (ADS)

    Mascaró, O.; Romero, J.; Pérez, M.

    2014-04-01

    In temperate regions, climatic factors impose a general seasonal pattern on seagrass growth that can be observed in leaf growth rates and, in small species, also in shoot density. Large variations in shoot density suggest a strong temporal uncoupling between shoot recruitment and shoot mortality, and the dependence of each of these processes on different drivers. Here we examine seasonal patterns of recruitment and mortality in the seagrass Cymodocea nodosa, one of the species most sensitive to seasonal forcing in the Mediterranean. We sampled two local populations submitted to different nutrient availability in Alfacs Bay (NW Mediterranean) and determined recruitment and mortality rates, as well as other plant traits, on a monthly basis. Our results confirm the hypothesized uncoupling, with maximum mortality 2 months after maximum recruitment. Whereas timing of recruitment was associated with light availability, and was supported by carbohydrate remobilisation, mortality was related to high water temperatures and probably also to light limitation in late summer due to self-shading. In the high-nutrient population, algal overgrowth caused further light deprivation, with mortality rates higher than in the low-nutrient population. It is emphasised that the demographic balance of the studied populations was negative for most of the year, with the exception of August and September. Therefore, caution is necessary when overall population trends are inferred from single annual sampling events.

  6. The role of uncoupling proteins in diabetes mellitus.

    PubMed

    Liu, Jing; Li, Ji; Li, Wen-Jian; Wang, Chun-Ming

    2013-01-01

    Uncoupling proteins (UCPs) are anion carriers expressed in the mitochondrial inner membrane that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The physiological functions of UCPs have long been debated since the new UCPs (UCP2 to 5) were discovered, and the role of UCPs in the pathogeneses of diabetes mellitus is one of the hottest topics. UCPs are thought to be activated by superoxide and then decrease mitochondrial free radicals generation; this may provide a protective effect on diabetes mellitus that is under the oxidative stress conditions. UCP1 is considered to be a candidate gene for diabetes because of its role in thermogenesis and energy expenditure. UCP2 is expressed in several tissues and acts in the negative regulation of insulin secretion by β-cells and in fatty acid metabolism. UCP3 plays a role in fatty acid metabolism and energy homeostasis and modulates insulin sensitivity. Several gene polymorphisms of UCP1, UCP2, and UCP3 were reported to be associated with diabetes. The progress in the role of UCP1, UCP2, and UCP3 on diabetes mellitus is summarized in this review.

  7. Inflammation and Uncoupling as Mechanisms of Periodontal Bone Loss

    PubMed Central

    Graves, D.T.; Li, J.; Cochran, D.L.

    2011-01-01

    Periodontal disease is characterized by both inflammation and bone loss. Advances in research in both these areas have led to a new appreciation of not only each field but also the intimate relationship between inflammation and bone loss. This relationship has resulted in a new field of science called osteoimmunology and provides a context for better understanding the pathogenesis of periodontal disease. In this review, we discuss several aspects of the immuno-inflammatory host response that ultimately results in loss of alveolar bone. A proposal is made that periodontal inflammation not only stimulates osteoclastogenesis but also interferes with the uncoupling of bone formation and bone resorption, consistent with a pathologic process. Furthermore, arguments based on experimental animal models suggest a critical role of the spatial and temporal aspects of inflammation in the periodontium. A review of these findings leads to a new paradigm to help explain more fully the impact of inflammation on alveolar bone in periodontal disease so that it includes the effects of inflammation on uncoupling of bone formation from resorption. PMID:21135192

  8. The Mitochondrial Uncoupler DNP Triggers Brain Cell mTOR Signaling Network Reprogramming and CREB Pathway Upregulation

    PubMed Central

    Liu, Dong; Zhang, Yongqing; Gharavi, Robert; Park, Hee Ra; Lee, Jaewon; Siddiqui, Sana; Telljohann, Richard; Nassar, Matthew R.; Cutler, Roy G.; Becker, Kevin G.; Mattson, Mark P.

    2015-01-01

    Mitochondrial metabolism is highly responsive to nutrient availability and ongoing activity in neuronal circuits. The molecular mechanisms by which brain cells respond to an increase in cellular energy expenditure are largely unknown. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2, 4-dinitrophenol (DNP), a proton ionophore previously used for weight loss. We found that DNP treatment reduces mitochondrial membrane potential, increases intracellular Ca2+ levels and reduces oxidative stress in cerebral cortical neurons. Gene expression profiling of the cerebral cortex of DNP-treated mice revealed reprogramming of signaling cascades that included suppression of the mTOR and insulin – PI3K – MAPK pathways, and up-regulation of tuberous sclerosis complex 2, a negative regulator of mTOR. Genes encoding proteins involved in autophagy processes were up-regulated in response to DNP. CREB (cAMP-response element-binding protein) signaling, Arc and BDNF, which play important roles in synaptic plasticity and adaptive cellular stress responses, were up-regulated in response to DNP, and DNP-treated mice exhibited improved performance in a test of learning and memory. Immunoblot analysis verified that key DNP-induced changes in gene expression resulted in corresponding changes at the protein level. Our findings suggest that mild mitochondrial uncoupling triggers an integrated signaling response in brain cells characterized by reprogramming of mTOR and insulin signaling, and up-regulation of pathways involved in adaptive stress responses, molecular waste disposal and synaptic plasticity. PMID:26010875

  9. Syndecan-1 Acts as an Important Regulator of CXCL1 Expression and Cellular Interaction of Human Endometrial Stromal and Trophoblast Cells

    PubMed Central

    Altergot-Ahmad, Olga; Pour, Sarah Jean; Krüssel, Jan-Steffen; Markert, Udo Rudolf; Fehm, Tanja Natascha; Bielfeld, Alexandra Petra

    2017-01-01

    Successful implantation of the embryo into the human receptive endometrium is substantial for the establishment of a healthy pregnancy. This study focusses on the role of Syndecan-1 at the embryo-maternal interface, the multitasking coreceptor influencing ligand concentration, release and receptor presentation, and cellular morphology. CXC motif ligand 1, being involved in chemotaxis and angiogenesis during implantation, is of special interest as a ligand of Syndecan-1. Human endometrial stromal cells with and without Syndecan-1 knock-down were decidualized and treated with specific inhibitors to evaluate signaling pathways regulating CXC ligand 1 expression. Western blot analyses of MAPK and Wnt members were performed, followed by analysis of spheroid interactions between human endometrial cells and extravillous trophoblast cells. By mimicking embryo contact using IL-1β, we showed less ERK and c-Jun activation by depletion of Syndecan-1 and less Frizzled 4 production as part of the canonical Wnt pathway. Additionally, more beta-catenin was phosphorylated and therefore degraded after depletion of Syndecan-1. Secretion of CXC motif ligand 1 depends on MEK-1 with respect to Syndecan-1. Regarding the interaction of endometrial and trophoblast cells, the spheroid center-to-center distances were smaller after depletion of Syndecan-1. Therefore, Syndecan-1 seems to affect signaling processes relevant to signaling and intercellular interaction at the trophoblast-decidual interface. PMID:28293067

  10. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75

    SciTech Connect

    Du Li; Zhao Yaxue; Chen, Jing; Yang Liumeng; Zheng Yongtang; Tang Yun Shen Xu Jiang Hualiang

    2008-10-10

    Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{l_brace}[2,4-dioxo-3-(2-oxo-2-phenylethyl) -1,3-thiazolidin-5-ylidene]methyl{r_brace}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery.

  11. Proteomic analysis of silkworm midgut cellular proteins interacting with the 5' end of infectious flacherie virus genomic RNA.

    PubMed

    Li, Mingqian; He, Xinyi; Liu, Han; Fu, Zhangwuke; He, Xiangkang; Lu, Xingmeng

    2015-02-01

    The flacherie disease in the silkworm is caused by the infectious flacherie virus (IFV). IFV relies on its 5' region of genomic RNA to recruit host-related factors to implement viral translation and replication. To identify host proteins bound to the 5'-region of IFV RNA and identify proteins important for its function, mass spectrometry was used to identify proteins from silkworm midgut extracts that were obtained using RNA aptamer-labeled 5' region of IFV RNA. We found 325 protein groups (unique peptide≥2) bound to the 5' region of IFV RNA including translation-related factors (16 ribosomal subunits, 3 eukaryotic initiation factor subunits, 1 elongation factor subunit and 6 potential internal ribosome entry site trans-acting factors), cytoskeleton-related proteins, membrane-related proteins, metabolism enzymes, and other proteins. These results can be used to study the translation and replication related factors of IFV interacting with host silkworm and to control flacherie disease in silkworm.

  12. Discovery of a small molecule that inhibits the interaction of anthrax edema factor with its cellular activator, calmodulin.

    PubMed

    Lee, Young-Sam; Bergson, Pamela; He, Wei Song; Mrksich, Milan; Tang, Wei-Jen

    2004-08-01

    The catalytic efficiency of adenylyl cyclase activity of edema factor (EF) from Bacillus anthracis is enhanced by approximately 1000-fold upon its binding to mammalian protein calmodulin (CaM). A tandem cell-based and protein binding-based screen of a 10,000 member library identified a molecule that inhibits the EF-CaM interaction and therefore the adenylyl cyclase activity. A combination of fluorescence spectroscopy and photolabeling studies showed that the molecule targets the CaM binding region of EF. A series of related compounds were synthesized and evaluated to identify one compound, 4-[4-(4-nitrophenyl)-thiazolylamino]-benzenesulfonamide, that maintained activity against EF but showed minimal toxicity to two cultured cell lines. This compound represents an important reagent to study the role of EF in anthrax pathology and may represent a drug lead against anthrax infection.

  13. The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation.

    PubMed

    Klika, Václav; Baker, Ruth E; Headon, Denis; Gaffney, Eamonn A

    2012-04-01

    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction.

  14. Reciprocal Paracrine Interactions Between Normal Human Epithelial and Mesenchymal Cells Protect Cellular DNA from Radiation-Induced Damage

    SciTech Connect

    Nakazawa, Yuka; Saenko, Vladimir Rogounovitch, Tatiana; Suzuki, Keiji; Mitsutake, Norisato; Matsuse, Michiko; Yamashita, Shunichi

    2008-06-01

    Purpose: To explore whether interactions between normal epithelial and mesenchymal cells can modulate the extent of radiation-induced DNA damage in one or both types of cells. Methods and Materials: Human primary thyrocytes (PT), diploid fibroblasts BJ, MRC-5, and WI-38, normal human mammary epithelial cells (HMEC), and endothelial human umbilical cord vein endothelial cells (HUV-EC-C), cultured either individually or in co-cultures or after conditioned medium transfer, were irradiated with 0.25 to 5 Gy of {gamma}-rays and assayed for the extent of DNA damage. Results: The number of {gamma}-H2AX foci in co-cultures of PT and BJ fibroblasts was approximately 25% lower than in individual cultures at 1 Gy in both types of cells. Reciprocal conditioned medium transfer to individual cultures before irradiation resulted in approximately a 35% reduction of the number {gamma}-H2AX foci at 1 Gy in both types of cells, demonstrating the role of paracrine soluble factors. The DNA-protected state of cells was achieved within 15 min after conditioned medium transfer; it was reproducible and reciprocal in several lines of epithelial cells and fibroblasts, fibroblasts, and endothelial cells but not in epithelial and endothelial cells. Unlike normal cells, human epithelial cancer cells failed to establish DNA-protected states in fibroblasts and vice versa. Conclusions: The results imply the existence of a network of reciprocal interactions between normal epithelial and some types of mesenchymal cells mediated by soluble factors that act in a paracrine manner to protect DNA from genotoxic stress.

  15. HIV-1 integrase modulates the interaction of the HIV-1 cellular cofactor LEDGF/p75 with chromatin.

    PubMed

    Astiazaran, Paulina; Bueno, Murilo Td; Morales, Elisa; Kugelman, Jeffrey R; Garcia-Rivera, Jose A; Llano, Manuel

    2011-04-21

    Chromatin binding plays a central role in the molecular mechanism of LEDGF/p75 in HIV-1 DNA integration. Conflicting results have been reported in regards to the relevance of the LEDGF/p75 chromatin binding element PWWP domain in its HIV-1 cofactor activity. Here we present evidence that re-expression of a LEDGF/p75 mutant lacking the PWWP domain (ΔPWWP) rescued HIV-1 infection in cells verified to express background levels of endogenous LEDGF/p75 that do not support efficient HIV-1 infection. The HIV-1 cofactor activity of LEDGF/p75 ΔPWWP was similar to that of LEDGF/p75 wild type (WT). A possible molecular explanation for the nonessential role of PWWP domain in the HIV-1 cofactor activity of LEDGF/p75 comes from the fact that coexpression of HIV-1 integrase significantly restored the impaired chromatin binding activity of LEDGF/p75 ΔPWWP. However, integrase failed to promote chromatin binding of a non-chromatin bound LEDGF/p75 mutant that lacks both the PWWP domain and the AT hook motifs (ΔPWWP/AT) and that exhibits negligible HIV-1 cofactor activity. The effect of integrase on the chromatin binding of LEDGF/p75 requires the direct interaction of these two proteins. An HIV-1 integrase mutant, unable to interact with LEDGF/p75, failed to enhance chromatin binding, whereas integrase wild type did not increase the chromatin binding strength of a LEDGF/p75 mutant lacking the integrase binding domain (ΔIBD). Our data reveal that the PWWP domain of LEDGF/p75 is not essential for its HIV-1 cofactor activity, possibly due to an integrase-mediated increase of the chromatin binding strength of this LEDGF/p75 mutant.

  16. Monomethylated trivalent arsenic species disrupt steroid receptor interactions with their DNA response elements at non-cytotoxic cellular concentrations

    PubMed Central

    Gosse, Julie A.; Taylor, Vivien F.; Jackson, Brian P.; Hamilton, Joshua W.; Bodwell, Jack E.

    2013-01-01

    Arsenic (As) is considered a top environmental chemical of human health because it has been linked to adverse health effects including cancer, diabetes, cardiovascular disease, and reproductive and developmental problems. In several cell culture and animal models, As acts as an endocrine disruptor, which may underlie many of its health effects. Previous work showed that steroid receptor (SR)-driven gene expression is disrupted in cells treated with inorganic As (arsenite, iAs+3). In those studies, low iAs+3 concentrations (0.1–0.7 μM) stimulated hormone-inducible transcription, whereas somewhat higher but still non-cytotoxic levels (1–3 μM) inhibited transcription. This investigation focuses on the mechanisms underlying these inhibitory effects and evaluates the role of methylated trivalent As metabolites on SR function. Recent evidence suggests that, compared with iAs, methylated forms may have distinct biochemical effects. Here, fluorescence polarization (FP) experiments utilizing purified, hormone-bound human glucocorticoid (GR) and progesterone receptor (PR) have demonstrated that neither inorganic (iAs+3) nor dimethylated (DMA+3) species of trivalent As affect receptor interactions with glucocorticoid DNA response elements (GREs). However, monomethylated forms (monomethylarsenite, MMA+3 and monomethylarsonic diglutathione, MADG) strongly inhibit GR-GRE and PR-GRE binding. Additionally, speciation studies of iAs+3-treated H4IIE rat hepatoma cells show that, under treatment conditions that cause inhibition of hormone-inducible gene transcription, the intracellular concentration of MADG is sufficient to inhibit GR-GRE and PR-GRE interactions in vivo. These results indicate that arsenic’s inhibitory endocrine disruption effects are probably caused in part by methylated metabolites’ disruption of SR ability to bind DNA response elements that are crucial to hormone-driven gene transcription. PMID:23765520

  17. Multifaceted interplay between lipophilicity, protein interaction and luminescence parameters of non-intercalative ruthenium(II) polypyridyl complexes controlling cellular imaging and cytotoxic properties.

    PubMed

    Mazuryk, Olga; Magiera, Katarzyna; Rys, Barbara; Suzenet, Franck; Kieda, Claudine; Brindell, Małgorzata

    2014-12-01

    Here, we examine the photophysical properties of five ruthenium(II) complexes comprising two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and functionalized bipyridine (R₁bpy-R₂, where R₁= H or CH3, R₂= H, CH₃, COO⁻,4-[3-(2-nitro-1H-imidazol-1-yl)propyl] or 1,3-dicyclohexyl-1-carbonyl-urea) towards development of luminescence probes for cellular imaging. These complexes have been shown to interact with albumin and the formed adducts exhibited up to eightfold increase in the luminescence quantum yield as well as the average lifetime of emission. It was demonstrated that they cannot bind to DNA through the intercalation mode and its luminescence in the presence of DNA is quenching. Cell viability experiments indicated that all complexes possess significant dose-dependent cytotoxicity (with IC₅₀ 5-19 μM) on 4T1 breast cancer cell line and their anti-proliferative activity correlates very well with their lipophilicity. Cellular uptake was studied by measuring the ruthenium content in cells using ICP-MS technique. As expected, the better uptake is directly related to higher lipophilicity of doubly charged ruthenium complexes while uptake of monocationic one is much lower in spite of the highest lipophilicity. Additionally staining properties were assessed using flow cytometry and fluorescence microscopy. These experiments showed that complex with 1,3-dicyclohexyl-1-carbonyl-urea substituent exhibits the best staining properties in spite of the lowest luminescence quantum yield in buffered solution (pH 7.4). Our results point out that both the imaging and cytotoxic properties of the studied ruthenium complexes are strongly influence by the level of internalization and protein interaction.

  18. HtrA2 deficiency causes mitochondrial uncoupling through the F1F0-ATP synthase and consequent ATP depletion

    PubMed Central

    Plun-Favreau, H; Burchell, V S; Holmström, K M; Yao, Z; Deas, E; Cain, K; Fedele, V; Moisoi, N; Campanella, M; Miguel Martins, L; Wood, N W; Gourine, A V; Abramov, A Y

    2012-01-01

    Loss of the mitochondrial protease HtrA2 (Omi) in mice leads to mitochondrial dysfunction, neurodegeneration and premature death, but the mechanism underlying this pathology remains unclear. Using primary cultures from wild-type and HtrA2-knockout mice, we find that HtrA2 deficiency significantly reduces mitochondrial membrane potential in a range of cell types. This depolarisation was found to result from mitochondrial uncoupling, as mitochondrial respiration was increased in HtrA2-deficient cells and respiratory control ratio was dramatically reduced. HtrA2-knockout cells exhibit increased proton translocation through the ATP synthase, in combination with decreased ATP production and truncation of the F1 α-subunit, suggesting the ATP synthase as the source of the proton leak. Uncoupling in the HtrA2-deficient mice is accompanied by altered breathing pattern and, on a cellular level, ATP depletion and vulnerability to chemical ischaemia. We propose that this vulnerability may ultimately cause the neurodegeneration observed in these mice. PMID:22739987

  19. Engineering a Therapeutic Lectin by Uncoupling Mitogenicity from Antiviral Activity

    PubMed Central

    Swanson, Michael D.; Boudreaux, Daniel M.; Salmon, Loïc; Chugh, Jeetender; Winter, Harry C.; Meagher, Jennifer L.; André, Sabine; Murphy, Paul V.; Oscarson, Stefan; Roy, René; King, Steven; Kaplan, Mark H.; Goldstein, Irwin J.; Tarbet, E. Bart; Hurst, Brett L.; Smee, Donald F.; de la Fuente, Cynthia; Hoffmann, Hans-Heinrich; Xue, Yi; Rice, Charles M.; Schols, Dominique; Garcia, J. Victor; Stuckey, Jeanne A.; Gabius, Hans-Joachim; Al-Hashimi, Hashim M.; Markovitz, David M.

    2015-01-01

    Summary A key effector route of the Sugar Code involves lectins that exert crucial regulatory controls by targeting distinct cellular glycans. We demonstrate that a single amino acid substitution in a banana lectin, replacing histidine 84 with a threonine, significantly reduces its mitogenicity while preserving its broad-spectrum antiviral potency. X-ray crystallography, NMR spectroscopy, and glycocluster assays reveal that loss of mitogenicity is strongly correlated with loss of pi-pi stacking between aromatic amino acids H84 and Y83, which removes a wall separating two carbohydrate binding sites, thus diminishing multivalent interactions. On the other hand, monovalent interactions and antiviral activity are preserved by retaining other wild-type conformational features and possibly through unique contacts involving the T84 side chain. Through such fine-tuning, target selection and downstream effects of a lectin can be modulated so as to knock down one activity while preserving another, thus providing tools for therapeutics and for understanding the Sugar Code. PMID:26496612

  20. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    PubMed

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.

  1. iEzy-drug: a web server for identifying the interaction between enzymes and drugs in cellular networking.

    PubMed

    Min, Jian-Liang; Xiao, Xuan; Chou, Kuo-Chen

    2013-01-01

    With the features of extremely high selectivity and efficiency in catalyzing almost all the chemical reactions in cells, enzymes play vitally important roles for the life of an organism and hence have become frequent targets for drug design. An essential step in developing drugs by targeting enzymes is to identify drug-enzyme interactions in cells. It is both time-consuming and costly to do this purely by means of experimental techniques alone. Although some computational methods were developed in this regard based on the knowledge of the three-dimensional structure of enzyme, unfortunately their usage is quite limited because three-dimensional structures of many enzymes are still unknown. Here, we reported a sequence-based predictor, called "iEzy-Drug," in which each drug compound was formulated by a molecular fingerprint with 258 feature components, each enzyme by the Chou's pseudo amino acid composition generated via incorporating sequential evolution information and physicochemical features derived from its sequence, and the prediction engine was operated by the fuzzy K-nearest neighbor algorithm. The overall success rate achieved by iEzy-Drug via rigorous cross-validations was about 91%. Moreover, to maximize the convenience for the majority of experimental scientists, a user-friendly web server was established, by which users can easily obtain their desired results.

  2. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling.

    PubMed Central

    Cossart, P; Lecuit, M

    1998-01-01

    Although <50 kb of its 3.3 megabase genome is known, Listeria monocytogenes has received much attention and an impressive amount of data has contributed in raising this bacterium among the best understood intracellular pathogens. The mechanisms that Listeria uses to enter cells, escape from the phagocytic vacuole and spread from one cell to another using an actin-based motility process have been analysed in detail. Several bacterial proteins contributing to these events have been identified, including the invasion proteins internalin A (InlA) and B (InlB), the secreted pore-forming toxin listeriolysin O (LLO) which promotes the escape from the phagocytic vacuole, and the surface protein ActA which is required for actin polymerization and bacterial movement. While LLO and ActA are critical for the infectious process and are not redundant with other listerial proteins, the precise role of InlA and InlB in vivo remains unclear. How InlA, InlB, LLO or ActA interact with the mammalian cells is beginning to be deciphered. The picture that emerges is that this bacterium uses general strategies also used by other invasive bacteria but has evolved a panel of specific tools and tricks to exploit mammalian cell functions. Their study may lead to a better understanding of important questions in cell biology such as ligand receptor signalling and dynamics of actin polymerization in mammalian cells. PMID:9669997

  3. Uncoupled active transport mechanisms accounting for low selectivity in multidrug carriers: P-glycoprotein and SMR antiporters.

    PubMed

    Krupka, R M

    1999-11-15

    The extraordinarily low substrate specificity of P-glycoprotein conflicts with the notion that specific substrate interactions are required in the control of the reaction path in an active transport system. The difficulty is shown to be overcome by a half-coupled mechanism in which the ATP reaction is linked to carrier transformations, as in a fully coupled system, but in which the transported substrate plays a passive role. The mechanism, which requires no specific interaction with the substrate, brings about uphill transport. A half-coupled mechanism is directly supported by two observations: (i) almost completely uncoupled ATPase activity in purified P-glycoprotein, and (ii) a pattern of substrate specificity like that of passive systems, where maximum rates for different substrates vary little (unlike active systems, where maximum rates vary greatly). The mechanism accommodates other findings: partial inhibition of ATPase activity by an actively transported substrate; simultaneous binding and translocation of more than one substrate molecule; and stimulation or inhibition of the transport of one substrate molecule by another. A half-coupled system associated with an internal competitive inhibitor should behave as if tightly coupled, in agreement with the effects of the synthetic peptide, polytryptophan. The degree of coupling in the intact system is yet to be determined, however. A half-coupled ATPase mechanism could originally have evolved in a flippase, where immersion of the carrier in its substrate, the membrane lipid, precludes uncoupled ATP hydrolysis. These concepts may have wider application. An uncoupled antiport mechanism, driven by a proton gradient rather than ATP, can explain low selectivity in the SMR multidrug carriers of bacteria, and a half-coupled mechanism for the ion-driven cotransport of water (the substrate in which the carrier site is immersed) can explain a recently proposed uphill flow of water.

  4. Changes in GDP binding to brown adipose tissue mitochondria and the uncoupling protein

    SciTech Connect

    Swick, A.G.; Swick, R.W. )

    1988-12-01

    Incubation in vitro of brown adipose tissue (BAT) mitochondria with divalent cations, spermine, or alkaline phosphatase led to a marked increase in the binding of ({sup 3}H)GDP. The effect of Mg{sup 2+} appeared to be the most specific and led to the largest increase in GDP binding. A simplified method was developed for measuring GDP binding to purified uncoupling protein from rat BAT mitochondria. Application of this method indicates that uncoupling protein from cold-acclimated rats binds twice as much GDP as uncoupling protein from cold-acclimated rats that were briefly returned to thermoneutrality, paralleling changes in GDP binding to the mitochondria. Incubation of BAT mitochondria with Mg{sup 2+} led to a smaller increase in GDP binding to the subsequently purified uncoupling protein, suggesting that divalent cations may somehow participate in the regulation of the activity of the uncoupling protein.

  5. Multi-parametric cytometry from a complex cellular sample: Improvements and limits of manual versus computational-based interactive analyses.

    PubMed

    Gondois-Rey, F; Granjeaud, S; Rouillier, P; Rioualen, C; Bidaut, G; Olive, D

    2016-05-01

    The wide possibilities opened by the developments of multi-parametric cytometry are limited by the inadequacy of the classical methods of analysis to the multi-dimensional characteristics of the data. While new computational tools seemed ideally adapted and were applied successfully, their adoption is still low among the flow cytometrists. In the purpose to integrate unsupervised computational tools for the management of multi-stained samples, we investigated their advantages and limits by comparison to manual gating on a typical sample analyzed in immunomonitoring routine. A single tube of PBMC, containing 11 populations characterized by different sizes and stained with 9 fluorescent markers, was used. We investigated the impact of the strategy choice on manual gating variability, an undocumented pitfall of the analysis process, and we identified rules to optimize it. While assessing automatic gating as an alternate, we introduced the Multi-Experiment Viewer software (MeV) and validated it for merging clusters and annotating interactively populations. This procedure allowed the finding of both targeted and unexpected populations. However, the careful examination of computed clusters in standard dot plots revealed some heterogeneity, often below 10%, that was overcome by increasing the number of clusters to be computed. MeV facilitated the identification of populations by displaying both the MFI and the marker signature of the dataset simultaneously. The procedure described here appears fully adapted to manage homogeneously high number of multi-stained samples and allows improving multi-parametric analyses in a way close to the classic approach. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  6. Interaction with cellular CD4 exposes HIV-1 envelope epitopes targeted by antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Veillette, Maxime; Désormeaux, Anik; Medjahed, Halima; Gharsallah, Nour-Elhouda; Coutu, Mathieu; Baalwa, Joshua; Guan, Yongjun; Lewis, George; Ferrari, Guido; Hahn, Beatrice H; Haynes, Barton F; Robinson, James E; Kaufmann, Daniel E; Bonsignori, Mattia; Sodroski, Joseph; Finzi, Andrés

    2014-03-01

    Anti-HIV-1 envelope glycoprotein (Env) antibodies without broadly neutralizing activity correlated with protection in the RV144 clinical trial, stimulating interest in other protective mechanisms involving antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC). Env epitopes targeted by many antibodies effective at mediating ADCC are poorly exposed on the unliganded Env trimer. Here we investigated the mechanism of exposure of ADCC epitopes on Env and showed that binding of Env and CD4 within the same HIV-1-infected cell effectively exposes these epitopes. Env capacity to transit to the CD4-bound conformation is required for ADCC epitope exposure. Importantly, cell surface CD4 downregulation by Nef and Vpu accessory proteins and Vpu-mediated BST-2 antagonism modulate exposure of ADCC-mediating epitopes and reduce the susceptibility of infected cells to this effector function in vitro. Significantly, Env conformational changes induced by cell surface CD4 are conserved among Env from HIV-1 and HIV-2/SIVmac lineages. Altogether, our observations describe a highly conserved mechanism required to expose ADCC epitopes that might help explain the evolutionary advantage of downregulation of cell surface CD4 by the HIV-1 Vpu and Nef proteins. HIV-1 envelope epitopes targeted by many antibodies effective at mediating antibody-dependent cell-mediated cytotoxicity (ADCC) are poorly exposed on the unliganded envelope trimer. Here we investigated the mechanism of exposure of these epitopes and found that envelope interaction with the HIV-1 CD4 receptor is required to expose some of these epitopes. Moreover, our results suggest that HIV-1 CD4 downregulation might help avoid the killing of HIV-1-infected cells by this immune mechanism.

  7. Mitochondrial uncoupling and the reprograming of intermediary metabolism in leukemia cells.

    PubMed

    Vélez, Juliana; Hail, Numsen; Konopleva, Marina; Zeng, Zhihong; Kojima, Kensuke; Samudio, Ismael; Andreeff, Michael

    2013-01-01

    Nearly 60 years ago Otto Warburg proposed, in a seminal publication, that an irreparable defect in the oxidative capacity of normal cells supported the switch to glycolysis for energy generation and the appearance of the malignant phenotype (Warburg, 1956). Curiously, this phenotype was also observed by Warburg in embryonic tissues, and recent research demonstrated that normal stem cells may indeed rely on aerobic glycolysis - fermenting pyruvate to lactate in the presence of ample oxygen - rather than on the complete oxidation of pyruvate in the Krebs cycle - to generate cellular energy (Folmes et al., 2012). However, it remains to be determined whether this phenotype is causative for neoplastic development, or rather the result of malignant transformation. In addition, in light of mounting evidence demonstrating that cancer cells can carry out electron transport and oxidative phosphorylation, although in some cases predominantly using electrons from non-glucose carbon sources (Bloch-Frankenthal et al., 1965), Warburg's hypothesis needs to be revisited. Lastly, recent evidence suggests that the leukemia bone marrow microenvironment promotes the Warburg phenotype adding another layer of complexity to the study of metabolism in hematological malignancies. In this review we will discuss some of the evidence for alterations in the intermediary metabolism of leukemia cells and present evidence for a concept put forth decades ago by lipid biochemist Feodor Lynen, and acknowledged by Warburg himself, that cancer cell mitochondria uncouple ATP synthesis from electron transport and therefore depend on glycolysis to meet their energy demands (Lynen, 1951; Warburg, 1956).

  8. Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program.

    PubMed

    Kosuta, Sonja; Held, Mark; Hossain, Md Shakhawat; Morieri, Giulia; Macgillivary, Amanda; Johansen, Christopher; Antolín-Llovera, Meritxell; Parniske, Martin; Oldroyd, Giles E D; Downie, Allan J; Karas, Bogumil; Szczyglowski, Krzysztof

    2011-09-01

    SYMRK is a leucine-rich-repeat (LRR)-receptor kinase that mediates intracellular symbioses of legumes with rhizobia and arbuscular mycorrhizal fungi. It participates in signalling events that lead to epidermal calcium spiking, an early cellular response that is typically considered as central for intracellular accommodation and nodule organogenesis. Here, we describe the Lotus japonicus symRK-14 mutation that alters a conserved GDPC amino-acid sequence in the SYMRK extracellular domain. Normal infection of the epidermis by fungal or bacterial symbionts was aborted in symRK-14. Likewise, epidermal responses of symRK-14 to bacterial signalling, including calcium spiking, NIN gene expression and infection thread formation, were significantly reduced. In contrast, no major negative effects on the formation of nodule primordia and cortical infection were detected. Cumulatively, our data show that the symRK-14 mutation uncouples the epidermal and cortical symbiotic program, while indicating that the SYMRK extracellular domain participates in transduction of non-equivalent signalling events. The GDPC sequence was found to be highly conserved in LRR-receptor kinases in legumes and non-legumes, including the evolutionarily distant bryophytes. Conservation of the GDPC sequence in nearly one-fourth of LRR-receptor-like kinases in the genome of Arabidopsis thaliana suggests, however, that this sequence might also play an important non-symbiotic function in this plant.

  9. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels.

    PubMed

    Anedda, Andrea; Rial, Eduardo; González-Barroso, M Mar

    2008-10-01

    Metformin is a drug widely used to treat type 2 diabetes. It enhances insulin sensitivity by improving glucose utilization in tissues like liver or muscle. Metformin inhibits respiration, and the decrease in cellular energy activates the AMP-activated protein kinase that in turn switches on catabolic pathways. Moreover, metformin increases lipolysis and beta-oxidation in white adipose tissue, thereby reducing the triglyceride stores. The uncoupling proteins (UCPs) are transporters that lower the efficiency of mitochondrial oxidative phosphorylation. UCP2 is thought to protect against oxidative stress although, alternatively, it could play an energy dissipation role. The aim of this work was to analyse the involvement of UCP2 on the effects of metformin in white adipocytes. We studied the effect of this drug in differentiating 3T3-L1 adipocytes and found that metformin causes oxidative stress since it increases the levels of reactive oxygen species (ROS) and lowers the aconitase activity. Variations in UCP2 protein levels parallel those of ROS. Metformin also increases lipolysis in these cells although only when the levels of ROS and UCP2 have decreased. Hence, UCP2 does not appear to be needed to facilitate fatty acid oxidation. Furthermore, treatment of C57BL/6 mice with metformin also augmented the levels of UCP2 in epididymal white adipose tissue. We conclude that metformin treatment leads to the overexpression of UCP2 in adipocytes to minimize the oxidative stress that is probably due to the inhibition of respiration caused by the drug.

  10. Engineering hyaluronic acid hydrogel degradation to control cellular interactions and adult stem cell fate in 3D

    NASA Astrophysics Data System (ADS)

    Khetan, Sudhir

    The design and implementation of extracellular matrix (ECM)-mimetic hydrogels for tissue engineering (TE) applications requires an intensive understanding of cell-material interactions, including matrix remodeling and stem cell differentiation. However, the influence of microenvironmental cues, e.g., matrix biodegradability, on cell behavior in vitro has not been well studied in the case of direct cell encapsulation within 3-dimensional (3D) hydrogels. To address these issues, a facile sequential crosslinking technique was developed that provides spatial and temporal control of 3D hydrogel degradability to investigate the importance of material design on cell behavior. Specifically, hydrogels were synthesized from hyaluronic acid (HA) macromers in a sequential process: (1) a primary Michael-type addition crosslinking using cell adhesive and matrix metalloprotease (MMP)-degradable oligopeptides to consume a portion of total reactive groups and resulting in "-UV" hydrogels permissive to cell-mediated degradation, followed by (2) a secondary, light initiated free-radical crosslinking to consume remaining reactive groups and "switch" the network to a non-degradable structure ("+UV") via the addition of non-degradable kinetic chains. Using this approach, we demonstrated control of encapsulated hMSC spreading by varying the crosslink type (i.e., the relative hydrogel biodegradability), including with spatial control. Upon incubation with bipotential soluble differentiation factors, these same degradation-mediated spreading cues resulted in an hMSC differentiation fate switch within -UV versus +UV environments. Follow-up studies demonstrated that degradation-mediated traction generation, rather than matrix mechanics or cell morphology, is the critical biophysical signal determining hMSC fate. Sequentially crosslinked HA hydrogels were also studied for the capacity to support remodeling by in vivo and ex vivo tissues, including with spatial control, toward tissue

  11. Single-Molecule Imaging Reveals that Small Amyloid-β1–42 Oligomers Interact with the Cellular Prion Protein (PrPC)

    PubMed Central

    Ganzinger, Kristina A; Narayan, Priyanka; Qamar, Seema S; Weimann, Laura; Ranasinghe, Rohan T; Aguzzi, Adriano; Dobson, Christopher M; McColl, James; St George-Hyslop, Peter; Klenerman, David

    2014-01-01

    Oligomers of the amyloid-β peptide (Aβ) play a central role in the pathogenesis of Alzheimer’s disease and have been suggested to induce neurotoxicity by binding to a plethora of cell-surface receptors. However, the heterogeneous mixtures of oligomers of varying sizes and conformations formed by Aβ42 have obscured the nature of the oligomeric species that bind to a given receptor. Here, we have used single-molecule imaging to characterize Aβ42 oligomers (oAβ42) and to confirm the controversial interaction of oAβ42 with the cellular prion protein (PrPC) on live neuronal cells. Our results show that, at nanomolar concentrations, oAβ42 interacts with PrPC and that the species bound to PrPC are predominantly small oligomers (dimers and trimers). Single-molecule biophysical studies can thus aid in deciphering the mechanisms that underlie receptor-mediated oAβ-induced neurotoxicity, and ultimately facilitate the discovery of novel inhibitors of these pathways. PMID:25294384

  12. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    PubMed Central

    Toni, Mattia; Spisni, Enzo; Griffoni, Cristiana; Santi, Spartaco; Riccio, Massimo; Lenaz, Patrizia; Tomasi, Vittorio

    2006-01-01

    It has been reported that cellular prion protein (PrPc) is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1) participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST)-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11), by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2) was triggered, suggesting that following translocations from rafts to caveolae or caveolaelike domains PrPc could interact with Cav-1 and induce signal transduction events. PMID:17489019

  13. Cellular DEAD-box RNA helicase DDX6 modulates interaction of miR-122 with the 5' untranslated region of hepatitis C virus RNA.

    PubMed

    Biegel, Jason M; Henderson, Eric; Cox, Erica M; Bonenfant, Gaston; Netzband, Rachel; Kahn, Samantha; Eager, Rachel; Pager, Cara T

    2017-07-01

    Hepatitis C virus (HCV) subverts the cellular DEAD-box RNA helicase DDX6 to promote virus infection. Using polysome gradient analysis and the subgenomic HCV Renilla reporter replicon genome, we determined that DDX6 does not affect HCV translation. Rather expression of the subgenomic HCV Renilla luciferase reporter at late times, as well as labeling of newly synthesized viral RNA with 4-thiouridine showed that DDX6 modulates replication. Because DDX6 is an effector protein of the microRNA pathway, we also investigated its role in miR-122-directed HCV gene expression. Similar to sequestering miR-122, depletion of DDX6 modulated HCV RNA stability. Interestingly, miR-122-HCV RNA interaction assays with mutant HCV genomes sites and compensatory exogenous miR-122 showed that DDX6 affects the function of miR-122 at one particular binding site. We propose that DDX6 facilitates the miR-122 interaction with HCV 5' UTR, which is necessary for stabilizing the viral genome and the switch between translation and replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Real-time measurements of cellular oxygen consumption, pH, and energy metabolism using nuclear magnetic resonance spectroscopy.

    PubMed

    Pilatus, U; Aboagye, E; Artemov, D; Mori, N; Ackerstaff, E; Bhujwalla, Z M

    2001-05-01

    Changes in molecular expression or apoptotic behavior, induced by malignant transformation or anticancer treatment, are frequently reflected in cellular metabolism and oxygen consumption. A technique to monitor oxygen consumption, cell physiology, and metabolism noninvasively would provide a better understanding of interactions between molecular changes and metabolism in malignant transformation and following cancer treatment. Such a system was developed in this study by adapting multinuclear MRI and spectroscopic techniques to an isolated cell perfusion system. The system was evaluated by studying the effects of two agents, carbonyl cyanide m-chlorophenylhydrazone (CCCP) which is an uncoupler of oxidative phosphorylation, and antimycin, an inhibitor of oxidative phosphorylation, on the oxygen consumption and metabolism of MCF-7 and MatLyLu cancer cell lines.

  15. Molecular identity of uncoupling proteins in thermogenic skunk cabbage.

    PubMed

    Ito-Inaba, Yasuko; Hida, Yamato; Mori, Hitoshi; Inaba, Takehito

    2008-12-01

    Thermogenic skunk cabbage has been reported to have two types of uncoupling protein (UCP), a typical 6-transmembrane (TM) SrUCPA and an atypical 5-TM SrUCPB. To verify further the role of SrUCPs in thermogenic skunk cabbage, we examined the molecular identity of SrUCPs in more detail. Both mRNA and genomic analyses supported the presence of SrUCPA, but not SrUCPB. Furthermore, SrUCP protein purified from spadix mitochondria was identified as SrUCPA by mass spectrometry. These results clearly indicate that SrUCPA is the major expressed UCP in skunk cabbage, and the presence of atypical SrUCPB is unlikely to be associated with thermogenesis of skunk cabbage.

  16. Uncoupling the links between male mating tactics and female attractiveness.

    PubMed

    Ojanguren, Alfredo F; Magurran, Anne E

    2004-12-07

    Because not all females are equally attractive, and because mating reduces the chances of getting further copulations, males should prefer better-quality mates. In this paper, we use the Trinidadian guppy (Poecilia reticulata) to explore the effects of two non-correlated measures of female quality--size and reproductive status--on male mating decisions. All male guppies employ two alternative mating tactics. We found that large females, particularly those from a high predation site, were the target of most sneaky mating attempts. The response persisted in fish raised under standard conditions over several generations in the laboratory. In addition, non-pregnant females received more courtship displays. We conclude that males can discriminate among females and that they uncouple their mating tactics to track different axes of quality.

  17. Uncoupling the links between male mating tactics and female attractiveness.

    PubMed Central

    Ojanguren, Alfredo F; Magurran, Anne E

    2004-01-01

    Because not all females are equally attractive, and because mating reduces the chances of getting further copulations, males should prefer better-quality mates. In this paper, we use the Trinidadian guppy (Poecilia reticulata) to explore the effects of two non-correlated measures of female quality--size and reproductive status--on male mating decisions. All male guppies employ two alternative mating tactics. We found that large females, particularly those from a high predation site, were the target of most sneaky mating attempts. The response persisted in fish raised under standard conditions over several generations in the laboratory. In addition, non-pregnant females received more courtship displays. We conclude that males can discriminate among females and that they uncouple their mating tactics to track different axes of quality. PMID:15801594

  18. Uncoupling primer and releaser responses to pheromone in honey bees

    NASA Astrophysics Data System (ADS)

    Grozinger, Christina M.; Fischer, Patrick; Hampton, Jacob E.

    2007-05-01

    Pheromones produce dramatic behavioral and physiological responses in a wide variety of species. Releaser pheromones elicit rapid responses within seconds or minutes, while primer pheromones produce long-term changes which may take days to manifest. Honeybee queen mandibular pheromone (QMP) elicits multiple distinct behavioral and physiological responses in worker bees, as both a releaser and primer, and thus produces responses on vastly different time scales. In this study, we demonstrate that releaser and primer responses to QMP can be uncoupled. First, treatment with the juvenile hormone analog methoprene leaves a releaser response (attraction to QMP) intact, but modulates QMP’s primer effects on sucrose responsiveness. Secondly, two components of QMP (9-ODA and 9-HDA) do not elicit a releaser response (attraction) but are as effective as QMP at modulating a primer response, downregulation of foraging-related brain gene expression. These results suggest that different responses to a single pheromone may be produced via distinct pathways.

  19. Possible physiological roles of mitochondrial uncoupling proteins--UCPn.

    PubMed

    Jezek, Petr

    2002-10-01

    Five mitochondrial uncoupling proteins exist in the human gemone: UCP2, expressed ubiquitously; UCP1, exclusively in brown adipose tissue (BAT); UCP3, predominantly in muscle; UCP4 and BMCP (UCP5), in brain. UCP4 is the ancestral prototype from which the other UCPn diverged. Findings on the level of organism and reconstituted recombinant proteins demonstrated that UCPn exhibit a protonophoric function, documented by overexpression in mice, L6 myotubes, INS1 cells, muscle, and yeast. In a few cases (yeast), this protonophoric function was correlated with elevated fatty acid (FA) levels. Reconstituted UCPn exhibited nucleotide-sensitive FA induced H(+) uniport. Two mechanisms, local buffering or FA cycling were suggested as an explanation. A basic UCPn role with mild uncoupling is to accelerate metabolism and reduce reactive oxygen species. UCP2 (UCP3) roles were inferred from transcriptional up-regulation mediated by FAs via peroxisome proliferator-activated receptors, cytokines, leptin signalling via hypothalamic pathway, and by thyroide and beta2 adrenergic stimulation. The latter indicated a role in catecholamine-induced thermogenesis in skeletal muscle. UCP2 (UCP3) may contribute to body weight regulation, although obesity was not induced in knockout (KO) mice. An obesity reduction in middle-aged humans was associated with the less common allele of -866 G/A polymorphism in the ucp2 gene promoter enhancing the exon 8 insertion: deletion transcript ratio. Up-regulated UCP2 transcription by pyrogenic cytokines (tumour necrosis factor alpha (TNFalpha)) suggested a role in fever. UCP2 could induce type 2 diabetes as developed from obesity due to up-regulated UCP2 transcription by FAs in pancreatic beta-cells. UCPn might be pro-apoptotic as well as anti-apoptotic, depending on transcriptional and biochemical regulation. Copyright 2002 Elsevier Science Ltd.

  20. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model.

    PubMed

    Tzika, A Aria; Fontes-Oliveira, Cibely Cristine; Shestov, Alexander A; Constantinou, Caterina; Psychogios, Nikolaos; Righi, Valeria; Mintzopoulos, Dionyssios; Busquets, Silvia; Lopez-Soriano, Francisco J; Milot, Sylvain; Lepine, Francois; Mindrinos, Michael N; Rahme, Laurence G; Argiles, Josep M

    2013-09-01

    Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS). The mice used in both experiments were Lewis lung carcinoma models of cancer cachexia. A novel 'fragmented mass isotopomer' approach was used in our dynamic analysis of 13C mass isotopomer data. Our 31P NMR and GC/MS results indicated that the adenosine triphosphate (ATP) synthesis rate and tricarboxylic acid (TCA) cycle flux were reduced by 49% and 22%, respectively, in the cancer-bearing mice (p<0.008; t-test vs. controls). The ratio of ATP synthesis rate to the TCA cycle flux (an index of mitochondrial coupling) was reduced by 32% in the cancer-bearing mice (p=0.036; t-test vs. controls). Genomic analysis revealed aberrant expression levels for key regulatory genes and transmission electron microscopy (TEM) revealed ultrastructural abnormalities in the muscle fiber, consistent with the presence of abnormal, giant mitochondria. Taken together, these data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia. These findings may prove relevant to elucidating the mechanisms underlying skeletal muscle wasting observed in other chronic diseases, as well as in aging.

  1. Astrocyte uncoupling as a cause of human temporal lobe epilepsy.

    PubMed

    Bedner, Peter; Dupper, Alexander; Hüttmann, Kerstin; Müller, Julia; Herde, Michel K; Dublin, Pavel; Deshpande, Tushar; Schramm, Johannes; Häussler, Ute; Haas, Carola A; Henneberger, Christian; Theis, Martin; Steinhäuser, Christian

    2015-05-01

    Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K(+) concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present